WO2019230771A1 - Pneumatic tire - Google Patents
Pneumatic tire Download PDFInfo
- Publication number
- WO2019230771A1 WO2019230771A1 PCT/JP2019/021236 JP2019021236W WO2019230771A1 WO 2019230771 A1 WO2019230771 A1 WO 2019230771A1 JP 2019021236 W JP2019021236 W JP 2019021236W WO 2019230771 A1 WO2019230771 A1 WO 2019230771A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- annular
- resin
- tire
- end surface
- axial direction
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C5/00—Inflatable pneumatic tyres or inner tubes
- B60C5/01—Inflatable pneumatic tyres or inner tubes without substantial cord reinforcement, e.g. cordless tyres, cast tyres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/20—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
Definitions
- the present invention relates to a pneumatic tire.
- an inclined belt including a metal cord inclined with respect to the tire circumferential direction on the outer side in the tire radial direction of the carcass disposed across the bead portions, and a circumference including a metal cord extending along the tire circumferential direction.
- a pneumatic tire in which a belt including a directional belt is disposed.
- Patent Document 1 discloses a carcass, an active reinforcing material composed of a single layer of reinforcing elements inclined by 4 ° to 7 ° with respect to the tire circumferential direction, and a flat surface positioned in the central portion of the crown of the carcass.
- a tire comprising a crown reinforcement comprising a circumferential polymer reinforcement element is disclosed.
- the weight of the tire can be reduced by using a part of the belt layer including the cord as a flat circumferential polymer reinforcing element as a resin annular body.
- the tire disclosed in Patent Document 1 still has room for improvement in terms of durability and productivity.
- an object of the present invention is to provide a pneumatic tire including a resin annular body that can improve durability and productivity.
- the pneumatic tire as the first aspect of the present invention includes an annular end surface on one side in the tire axial direction of the resin-made first annular portion and an annular end surface on the other side in the tire axial direction of the resin-made second annular portion.
- the annular end surface of the first annular portion and the annular end surface of the second annular portion of the resin annular body are arranged so that at least a part thereof overlaps in the tire radial direction.
- a pneumatic tire according to a second aspect of the present invention includes a resin annular body formed by joining one end surface and the other end surface in the longitudinal direction of a resin strip, and the resin annular body.
- FIG. 1 is a cross-sectional view of a pneumatic tire as an embodiment of the present invention in a cross section parallel to a tire axial direction including a tire center axis. It is a perspective view which shows the resin annular body shown in FIG. It is sectional drawing which shows the tire axial direction cross section of the resin annular body shown in FIG. It is the expanded sectional view which expanded a part of FIG. It is a figure which shows the modification of the cyclic
- “applicable rim” is an industrial standard that is effective in the area where pneumatic tires are produced and used.
- JATMA Joint Automobile Tire Association
- JATMA YEAR BOOK JATMA YEAR BOOK
- ETRTO European STANDARDS MANUAL of TIRE and RIM Technical Organization
- STANDARDS of ETRATO STANDARDS in the applicable size described in YEAR BOOK etc.
- TRA The Tire and Rim Association, Inc.
- Applied Rim refers to future sizes in addition to the current size
- Sizes to be described in the future include the sizes described as “FUTURE DEVELOPMENTS” in the ETRTO 2013 edition).
- a size not described in the industry standard it means a rim having a width corresponding to the bead width of the pneumatic tire.
- the “specified internal pressure” refers to the air pressure (maximum air pressure) corresponding to the maximum load capacity of a single wheel in the applicable size / ply rating described in the above JATMA YEAR BOOK, etc. In the case of no size, the air pressure (maximum air pressure) corresponding to the maximum load capacity defined for each vehicle on which the tire is mounted is assumed. In addition, the “maximum load load” described later is defined for each vehicle on which a tire is mounted in the case of a tire maximum load capacity of the standard of JATMA or the like in the tire of an applicable size, or in the case of a size not described in the industrial standard. It means the load corresponding to the maximum load capacity.
- FIG. 1 is a view showing a pneumatic tire 1 (hereinafter simply referred to as “tire 1”) as the present embodiment.
- FIG. 1 is a cross-sectional view of the tire 1 in a cross section parallel to the tire axial direction A including the tire center axis O (the same direction as the tire width direction).
- this cross section is referred to as “tire axial direction cross section”. Since the tire 1 shown in FIG. 1 has a symmetric configuration with respect to the tire equator plane CL, only one side in the tire axial direction A is shown, but the configuration is asymmetric with respect to the tire equator plane CL. You can also.
- the tire 1 includes a tread portion 1a, a pair of sidewall portions 1b extending from both ends of the tread portion 1a in the tire axial direction A to the inside in the tire radial direction B, and each sidewall portion 1b. And a pair of bead portions 1c provided at the inner end in the tire radial direction B.
- the tire 1 of this embodiment is a tubeless type radial tire for a passenger car.
- the “tread portion 1a” means a portion sandwiched between the tread ends TE on both sides in the tire axial direction A.
- the “bead portion 1 c” means a portion where a bead member 3 described later is located in the tire radial direction B.
- the “sidewall portion 1b” means a portion between the tread portion 1a and the bead portion 1c.
- the “tread end TE” means a position on the outermost side in the tire axial direction of the ground contact surface in a state where the tire is mounted on the above-described applied rim, the above-mentioned specified internal pressure is filled, and a maximum load is applied. .
- the tire 1 includes a bead member 3, a carcass 4, a resin annular body 5, a belt 6, a tread rubber 7, a side rubber 8, and an inner liner 9.
- the bead member 3 is embedded in the bead portion 1c.
- the bead member 3 includes a bead core 3a and a rubber bead filler 3b positioned on the outer side in the tire radial direction B with respect to the bead core 3a.
- the bead core 3a includes a plurality of bead wires that are covered with rubber.
- the bead wire is formed of a steel cord.
- the steel cord can be made of, for example, steel monofilament or stranded wire.
- the carcass 4 extends between the pair of bead portions 1c, more specifically between the bead cores 3a of the pair of bead members 3, and extends in a toroidal shape.
- the carcass 4 has at least a radial structure.
- the carcass 4 includes one or more carcass plies 4a in which carcass cords are arranged at an angle of, for example, 75 ° to 90 ° with respect to the tire circumferential direction C (see FIG. 1 and the like).
- the carcass ply 4a includes a ply body portion positioned between the pair of bead cores 3a, and a ply folding portion that is folded from the inside to the outside in the tire axial direction A around the bead core 3a at both ends of the ply body portion.
- a bead filler 3b extending from the bead core 3a to the outer side in the tire radial direction B is disposed between the ply main body portion and the ply folded portion.
- the carcass cord constituting the carcass ply 4a a polyester cord is adopted in this embodiment, but other than this, an organic fiber cord such as nylon, rayon, aramid, or a metal cord such as steel is adopted as necessary. Also good. Also, the number of carcass plies 4a may be two or more.
- FIG. 2 is a perspective view showing the resin annular body 5 shown in FIG.
- FIG. 3 is a cross-sectional view showing a cross section in the tire axial direction of the resin annular body 5.
- FIG. 4 is an enlarged cross-sectional view in which a part of FIG. 3 is enlarged.
- the resin annular body 5 is located on the outer side in the tire radial direction B of the crown portion of the carcass 4 in the tread portion 1a. Further, unlike the belt 6 described later, the resin annular body 5 does not include a cord. That is, no cord is arranged in the resin annular body 5.
- the resin annular body 5 is formed by joining a resin-made first annular portion 5a and a resin-made second annular portion 5b. Specifically, as shown in FIGS. 3 and 4, the annular end surface 11 on the one side in the tire axial direction A of the first annular portion 5 a and the annular end surface 12 on the other side in the tire axial direction A of the second annular portion 5 b. And are joined.
- the annular end surface 11 of the first annular portion 5 a of the resin annular body 5 and the annular end surface 12 of the second annular portion 5 b are arranged so that at least a part thereof overlaps with the tire radial direction B. And are joined in this state.
- the entire region of the annular end surface 11 of the first annular portion 5a and the entire region of the annular end surface 12 of the second annular portion 5b of the present embodiment are arranged so as to overlap with the tire axial direction A. It is joined.
- annular part 5a of this embodiment is joined by welding with respect to the cyclic
- the inner end edge 11 a in the tire radial direction B of the annular end surface 11 of the first annular portion 5 a of the resin annular body 5 corresponds to the second annular portion 5 b of the resin annular body 5.
- the annular end surface 12 is located on the inner side in the tire radial direction B than the outer end edge 12b in the tire radial direction B.
- the outer end edge 11 b in the tire radial direction B of the annular end surface 11 of the first annular portion 5 a of the resin annular body 5 is formed on the annular end surface 12 of the second annular portion 5 b of the resin annular body 5. It is located outside the inner end edge 12a in the tire radial direction B in the tire radial direction B.
- the thickness of the resin annular body 5 in the tire radial direction B at the joint portion of the first annular portion 5a and the second annular portion 5b of the resin annular body 5 is suppressed and becomes a joint surface.
- the annular end surface 11 of the first annular portion 5a and the annular end surface 12 of the second annular portion 5b can be secured large. Therefore, the joint strength between the first annular portion 5a and the second annular portion 5b can be increased.
- the above-described joint portion or It can suppress that stress concentration generate
- the resin annular body 5 is formed by joining the annular end surface 11 of the first annular portion 5a and the annular end surface 12 of the second annular portion 5b, so that the resin of this embodiment can be obtained. Even if it is the structure which has the diameter reduction parts 13 and 14 (refer FIG. 3) in the both ends of the tire axial direction A like the annular body 5, the core metal mold
- the tire 1 with improved durability and productivity can be realized by using the resin annular body 5 of the present embodiment.
- the resin constituting the resin annular body 5 for example, a thermoplastic elastomer or a thermoplastic resin can be used, and a resin that is cross-linked by heat or an electron beam or a resin that is cured by thermal rearrangement can also be used.
- the resin constituting the resin annular body 5 does not include rubber (an organic polymer substance exhibiting rubber elasticity at room temperature).
- thermoplastic elastomers polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), polyester-based thermoplastic elastomer (TPC) And dynamic crosslinkable thermoplastic elastomer (TPV).
- TPO polyolefin-based thermoplastic elastomer
- TPS polystyrene-based thermoplastic elastomer
- TPA polyamide-based thermoplastic elastomer
- TPU polyurethane-based thermoplastic elastomer
- TPC polyester-based thermoplastic elastomer
- TPV dynamic crosslinkable thermoplastic elastomer
- thermoplastic resin include polyurethane resin, polyolefin resin, vinyl chloride resin, polyamide resin and the like.
- the deflection temperature under load (at the time of 0.45 MPa load) specified in ISO75-2 or ASTM D648 is 78 ° C or more, and the tensile yield strength specified in JIS K7113 is used.
- a material having a tensile breaking elongation of 50% or more as defined in JIS K7113 and a Vicat softening temperature (Method A) as defined in JIS K7206 of 130 ° C. or more can be used.
- the annular end surface 11 and the annular end surface 12 are arranged not only in the tire radial direction B but also in the thickness direction of the resin annular body 5.
- the thickness direction of the resin annular body 5 is a direction orthogonal to a tangent to the inner surface of the resin annular body 5 on the tire inner surface side in a tire axial direction sectional view (see FIG. 1) which is a sectional view along the tire axial direction A. Means.
- the belt 6 includes a cord disposed on the outer side in the tire radial direction B of the resin annular body 5 in the tread portion 1a and covered with rubber or resin.
- the belt 6 of the present embodiment includes one or more belt layers (one layer in the present embodiment) disposed on the outer side in the tire radial direction B with respect to the crown portion of the carcass 4. More specifically, as shown in FIG. 1, the belt 6 of the present embodiment is constituted by a circumferential belt 6 a composed of only one circumferential belt layer.
- the circumferential belt 6a as the belt 6 of the present embodiment is a steel cord as a metal belt cord of 10 ° or less, preferably 5 ° or less, more preferably 2 with respect to the tire circumferential direction C (see FIG. 1 and the like). This is a spiral belt formed by spirally winding around the tire center axis O at an angle of less than or equal to 0 °. More specifically, the circumferential belt 6a as the belt 6 of the present embodiment is a rubber-coated belt formed by a rubber-coated cord made of a cord 10b such as a steel cord covered with a coated rubber 10a.
- the circumferential belt 6a as the belt 6 is spirally wound around the outer surface of the resin annular body 5 across the reduced diameter portions 13 and 14 at both ends in the tire axial direction A of the resin annular body 5. It is comprised by the rubber-coated code
- the rubber-coated cord is wound around the outer surface of the resin annular body 5 in the tire radial direction B while being joined to the outer surface of the resin annular body 5 in the tire radial direction B.
- the rubber-coated cord and the resin annular body 5 are joined by welding the covering rubber 10 a of the rubber-coated cord and the resin annular body 5.
- the covering rubber 10a of the rubber covering cord and the resin annular body 5 are not limited to welding, and may be joined by bonding with an adhesive or the like.
- the rubber-coated cords are joined at adjacent portions in the tire axial direction A.
- the portions of the rubber-coated cord that are adjacent to each other in the tire axial direction A are joined together by welding the coated rubber 10a.
- the portions of the rubber-coated cord adjacent to each other in the tire axial direction A are not limited to welding, and may be joined by bonding with an adhesive or the like.
- the rubber-coated cord of the present embodiment includes two steel cords, but may be a rubber-coated cord including only one steel cord or a rubber-coated cord including three or more steel cords.
- the belt 6 of the present embodiment is a rubber-coated belt, but is not limited to this configuration, and the belt 6 is a resin-coated belt formed from a resin-coated cord made of a cord such as a steel cord coated with a coating resin. It is good.
- the coating resin a resin similar to the resin constituting the resin annular body 5 can be used.
- the tensile elastic modulus (specified in JIS K7113: 1995) of the coating resin covering the cord is preferably 50 MPa or more. This is because the belt rigidity can be increased. Moreover, it is preferable that the tensile elasticity modulus of coating resin which coat
- the coating resin here does not include rubber (an organic polymer substance exhibiting rubber elasticity at room temperature).
- the resin-coated cord can be formed, for example, by coating a molten coating resin on the outer peripheral side of the cord and solidifying by cooling.
- the use of the resin-coated belt can improve the tire performance such as steering stability while reducing the weight.
- the cord can be made of, for example, steel monofilament or stranded wire. Moreover, an organic fiber, carbon fiber, or those strands can also be used for a cord.
- the belt 6 has a configuration in which a rubber-coated cord or a resin-coated cord is spirally wound, but a plurality of belts 6 are arranged in the tire axial direction A and are 10 ° or less with respect to the tire circumferential direction C.
- the belt 6 is a spiral belt formed in a state where a rubber-coated cord or a resin-coated cord made of a cord 10b coated with a coating rubber 10a or a coating resin is spirally wound as in the present embodiment. It is preferable that In this way, since the circumferential belt 6a can be formed by the continuous cord 10b having no joint portion in the tire circumferential direction C, the rigidity of the tire 1 in the tire circumferential direction C can be further increased.
- the tread rubber 7 constitutes an outer surface of the tread portion 1a in the tire radial direction B (hereinafter referred to as “tread outer surface”), and the tread outer surface of the present embodiment has a tire circumferential direction C (see FIG. A tread pattern including a circumferential groove 7a extending in the tire axial direction A and a widthwise groove (not shown) extending in the tire axial direction A is formed.
- the side rubber 8 constitutes an outer surface of the sidewall portion 1b in the tire axial direction A, and is formed integrally with the tread rubber 7 described above.
- the inner liner 9 is laminated on the inner surface of the carcass 4 and is formed of butyl rubber having low air permeability in the present embodiment.
- the butyl rubber means butyl rubber and halogenated butyl rubber which is a derivative thereof.
- the resin annular body 5 of the present embodiment is composed of a first annular portion 5a and a second annular portion 5b. That is, both end portions in the tire axial direction A of the resin annular body 5 of the present embodiment are configured by the first annular portion 5a or the second annular portion 5b. Further, the joint between the annular end surface 11 of the first annular portion 5 a and the annular end surface 12 of the second annular portion 5 b is formed at a position in the tire axial direction A where the outer diameter of the tire 1 is maximum. As shown in FIG. 1, both ends of the resin annular body 5 in the tire axial direction A are located outside the tread end TE in the tire axial direction A. In other words, the resin annular body 5 extends to the outside in the tire axial direction A from the tread end TE.
- the end portion on the other side in the tire axial direction A of the first annular portion 5 a (in the present embodiment, the annular end surface 11 in the tire axial direction A is The end portion on the opposite side to a certain side) is a reduced diameter portion 13 that decreases in diameter so as to approach the tire center axis O toward the outer end in the tire axial direction A.
- there is an end portion on one side of the second annular portion 5b in the tire axial direction A in the present embodiment, there is an annular end surface 12 in the tire axial direction A).
- the end portion on the opposite side to the side) is a reduced diameter portion 14 that decreases in diameter so as to approach the tire center axis O toward the outer end in the tire axial direction.
- both end portions in the tire axial direction A of the resin annular body 5 of the present embodiment are constituted by the reduced diameter portions 13 and 14 that are reduced in diameter so as to approach the tire center axis O toward the outer end in the tire axial direction A. ing.
- the tread end TE (see FIG. 1) is compared with the case where the reduced diameter portions 13 and 14 are not provided and the resin annular body has a uniform inner diameter and outer diameter. It is possible to suppress the local contact pressure from locally increasing at a position in the vicinity, and to suppress the occurrence of uneven wear on the outer surface of the tread.
- the reduced diameter portions 13 and 14 are reduced in diameter so as to substantially follow the carcass 4 in a cross-sectional view along the tire axial direction A.
- the outer surface in the tire radial direction B of the resin annular body 5 of the present embodiment is a barrel shape, and the outer surfaces of the reduced diameter portions 13 and 14 of the present embodiment are convex shapes. It is a curved surface that bends in a straight line.
- the outer surfaces of the diameter-reduced portions 13 and 14 in the tire radial direction B convex curved surfaces, local fluctuations in the contact pressure are caused at positions near the tread end TE (see FIG. 1). Can be suppressed more.
- the annular end surface 11 of the first annular portion 5 a and the annular end surface 12 of the second annular portion 5 b of the resin annular body 5 are connected to the tire shaft of the resin annular body 5.
- the inclined surface is inclined with respect to the tire axial direction A and the tire radial direction B.
- the inclination angle ⁇ 1 of the annular end surface 11 of the first annular portion 5a with respect to the tire axial direction A is preferably close to 0 ° along the tire axial direction A from the viewpoint of expanding the joint surface. . Therefore, the inclination angle ⁇ 1 of the annular end surface 11 of the first annular portion 5a with respect to the tire axial direction A is preferably 45 ° or less, and more preferably 30 ° or less. The same applies to the inclination angle ⁇ 2 of the annular end surface 12 of the second annular portion 5b with respect to the tire axial direction A.
- the entire region of the annular end surface 11 of the first annular portion 5 a of the present embodiment is in a position overlapping with the entire region of the second annular portion 5 b in the tire axial direction A. That is, the annular end surfaces 11 and 12 are not exposed on the inner surface side and the outer surface side in the tire radial direction B of the resin annular body 5. And the 1st annular part 5a and the 2nd annular part 5b are joined by welding between the annular end surface 11 of the 1st annular part 5a, and the annular end surface 12 of the 2nd annular part 5b. As described above, the annular end surfaces 11 and 12 are configured to include the inclined surface, whereby a large joint surface can be secured.
- annular end surfaces 11 and 12 of this embodiment are comprised only by the inclined surface inclined with respect to the tire axial direction A, in addition to an inclined surface, the surface etc. extended in parallel with the tire radial direction B etc.
- An annular end face may be included.
- the first annular portion 5a of the present embodiment has a substantially uniform thickness at positions excluding the position of the annular end surface 11.
- the thickness of the first annular portion 5a of the present embodiment is set from a range of 0.3 mm to 1.0 mm, for example.
- the second annular portion 5b of the present embodiment also has a substantially uniform thickness at positions other than the position of the annular end surface 12.
- the thickness of the 2nd annular part 5b of this embodiment is set as the thickness substantially equal to the 1st annular part 5a.
- FIG. 5 is a view showing a modification of the annular end faces 11 and 12 shown in FIG.
- An annular end surface 111 of the first annular portion 5a illustrated in FIG. 5 includes an inclined surface that is inclined with respect to the tire axial direction A in the tire axial direction sectional view that is a sectional view along the tire axial direction A.
- the annular end surface 111 of the first annular portion 5a shown in FIG. 5 has a first inclined surface 120a that is inclined with respect to the tire axial direction A and a tire axial direction A in the tire axial sectional view.
- the first inclined surface 120a and the second inclined surface 120b form a top portion 121 of the annular end surface 111 by ridgelines intersecting each other.
- annular end surface 112 of the second annular portion 5b shown in FIG. 5 includes an inclined surface that is inclined with respect to the tire axial direction A in the tire axial direction sectional view that is a sectional view along the tire axial direction A.
- the annular end surface 112 of the second annular portion 5b shown in FIG. 5 has a first inclined surface 122a that is inclined with respect to the tire axial direction A and a tire axial direction A in the tire axial sectional view.
- the first inclined surface 122a and the second inclined surface 122b form a top portion 123 of the annular end surface 112 by ridge lines intersecting each other.
- the first inclined surface 120a of the annular end surface 111 of the first annular portion 5a is disposed to face the second inclined surface 122b of the annular end surface 112 of the second annular portion 5b so as to overlap in the tire radial direction B.
- the first inclined surface 120a of the annular end surface 111 of the first annular portion 5a and the second inclined surface 122b of the annular end surface 112 of the second annular portion 5b are welded.
- the tire radial direction B of the resin annular body 5 of the junction part of the annular end surfaces 111 and 112 is provided.
- the bulging portion 125 that melts and bulges when the annular end surface 111 of the first annular portion 5 a and the annular end surface 112 of the second annular portion 5 b are welded can be received in the groove 124.
- the bulging portion 125 generated by melting the annular end surfaces 111 and 112 becomes the resin ring after welding. Protruding to the outer surface side of the body 5 can be suppressed.
- the stress concentration of the tire can be further suppressed, and therefore the durability of the tire can be further enhanced.
- the annular end surface is formed on the inner surface side of the resin annular body 5 at the joint portion of the annular end surfaces 111 and 112.
- a groove 126 having a V-shaped cross section extending in the tire circumferential direction C and formed by a first inclined surface 120a of 111 and a first inclined surface 122a of the annular end surface 112 is formed. Therefore, the bulging portion 127 that melts and bulges when the annular end surface 111 of the first annular portion 5 a and the annular end surface 112 of the second annular portion 5 b are welded can be received in the groove 126.
- FIG. 6 is a view showing another modification of the annular end faces 11 and 12 shown in FIG.
- An annular end surface 211 of the first annular portion 5a shown in FIG. 6 has a joint receiving surface 228 extending along the tire axial direction A of the resin annular body 5 in a cross-sectional view of the resin annular body 5 along the tire axial direction A. Including staircase.
- annular end surface 211 of the first annular portion 5a shown in FIG. 6 is continuous with the joint receiving surface 228 and one end of the joint receiving surface 228 in the tire axial direction A and extends inward in the tire radial direction B.
- annular end surface 212 of the second annular portion 5b shown in FIG. 6 is a joint receiving surface that extends along the tire axial direction A of the resin annular body 5 in a cross-sectional view along the tire axial direction A of the resin annular body 5. This is a step surface including H.231.
- annular end surface 212 of the second annular portion 5b shown in FIG. 6 is continuous with the joint receiving surface 231 and one end of the joint receiving surface 231 in the tire axial direction A and extends outward in the tire radial direction B.
- a distal end surface 233 that is continuous with the other end in the tire axial direction A of the joint receiving surface 231 and extends inward in the tire radial direction B.
- the joint receiving surface 228 of the annular end surface 211 of the first annular portion 5a is disposed to face the joint receiving surface 231 of the annular end surface 212 of the second annular portion 5b so as to overlap in the tire radial direction B.
- the joint receiving surface 228 of the annular end surface 211 of the first annular portion 5a and the joint receiving surface 231 of the annular end surface 212 of the second annular portion 5b are welded together.
- a gap is formed between the distal end surface 230 of the annular end surface 211 of the first annular portion 5a and the proximal end surface 232 of the annular end surface 212 of the second annular portion 5b.
- This gap forms a groove 234 having a rectangular cross section that opens to the outer surface side in the tire radial direction B of the resin annular body 5 and extends in the tire circumferential direction C. Therefore, the bulging portion 235 that melts and bulges when the annular end surface 211 of the first annular portion 5a and the annular end surface 212 of the second annular portion 5b are welded can be received in the groove 234.
- a gap is formed between the base end surface 229 of the annular end surface 211 of the first annular portion 5a and the distal end surface 233 of the annular end surface 212 of the second annular portion 5b.
- This gap constitutes a rectangular cross-sectional groove 236 that opens to the inner surface side of the resin annular body 5 and extends in the tire circumferential direction C. Therefore, the bulging portion 237 that melts and bulges when the annular end surface 211 of the first annular portion 5a and the annular end surface 212 of the second annular portion 5b are welded can be received in the groove 236.
- FIG. 7A and 7B are perspective views showing modifications of the resin annular body 5.
- FIG. 7A is a diagram illustrating a resin annular body 305 as a modification of the resin annular body 5.
- FIG. 7B is a view showing a resin annular body 405 as a modified example of the resin annular body 5.
- the resin annular body 305 shown in FIG. 7A and the resin annular body 405 shown in FIG. 7B are formed by forming one strip body in an annular shape and joining the end faces to each other as compared with the resin annular body 5 shown in FIGS. It differs in that it is formed.
- the resin annular body 305 shown in FIG. 7A is formed by joining one end face 339 and the other end face 340 in the longitudinal direction of a resin strip 338. That is, the longitudinal direction of the strip body 338 is the same direction as the tire circumferential direction C.
- At least a part of one end surface 339 of the strip body 338 and the other end surface 340 of the strip body 338 are arranged so as to overlap in the tire radial direction B. In the present embodiment, at least a part of one end surface 339 of the strip body 338 and the other end surface 340 of the strip body 338 are arranged so as to overlap in the thickness direction of the strip body 338.
- FIG. 8 is a cross-sectional view showing a cross section of the resin annular body 305 shown in FIG. 7A perpendicular to the tire axial direction A (the same direction as the tire width direction) of the strip body 338.
- the inner end edge 339a in the tire radial direction B of one end surface 339 of the strip body 338 is more in the tire radial direction than the outer end edge 340b in the tire radial direction B of the other end surface 340 of the strip body 338.
- outer end edge 339b in the tire radial direction B of one end surface 339 of the strip body 338 is located outside the inner end edge 340a in the tire radial direction B of the other end surface 340 of the strip body 338 in the outer side in the tire radial direction B. To do.
- the resin annular body 305 can be formed with one member, and the same effect can be obtained.
- the resin annular body 405 shown in FIG. 7B is different in the configuration of the joint portion from the resin annular body 305 shown in FIG. 7A, but the other configurations are the same. Specifically, one end surface 339 and the other end surface 340 of the resin annular body 305 shown in FIG. 7A extend along the tire axial direction A, whereas the strip body of the resin annular body 405 shown in FIG. 7B. One end surface 439 and the other end surface 440 of 438 extend inclined with respect to the tire axial direction A when the resin annular body 405 is viewed from the outside in the tire radial direction B. By setting it as such a structure, durability of a tire can be improved more.
- both end portions in the tire axial direction A of the resin annular body 305 shown in FIG. 7A are constituted by reduced diameter portions 313 and 314.
- the outer surface in the tire radial direction of each of the reduced diameter portions 313 and 314 is a curved surface that curves into a convex shape.
- both end portions in the tire axial direction A of the resin annular body 405 shown in FIG. 7B are constituted by reduced diameter portions 413 and 414.
- the outer surface in the tire radial direction B of each of the reduced diameter portions 413 and 414 is a curved surface that curves into a convex shape.
- the end face 339 and the other end face 340 can be adopted as shapes in a cross-sectional view (see FIG. 8) perpendicular to the tire axial direction A (the same direction as the tire width direction) of the strip body 338, and the same effect can be obtained. Can do.
- the end face 439 and the other end face 440 can be adopted as shapes in a cross-sectional view orthogonal to the tire axial direction A (the same direction as the tire width direction) of the strip body 438, and similar effects can be obtained.
- the pneumatic tire according to the present invention is not limited to the specific configurations shown in the above-described embodiments and modifications, and various modifications and changes can be made without departing from the scope of the claims.
- the resin annular body shown in FIGS. 1 to 7 has a barrel-shaped outer shape, but there are reduced diameter portions only at both ends in the tire axial direction A, and the central portion in the tire axial direction A has an inner diameter and It is good also as a resin annular body comprised by the cylinder part with a uniform outer diameter.
- the present invention relates to a pneumatic tire.
- 1 pneumatic tire, 1a: tread portion, 1b: sidewall portion, 1c: bead portion, 3: bead member, 3a: bead core, 3b: bead filler, 4: carcass, 4a: carcass ply, 5, 305, 405: Resin annular body, 5a: first annular portion, 5b: second annular portion, 6: belt, 6a: circumferential belt, 7: tread rubber, 7a: circumferential groove, 8: side rubber, 9: inner liner, 10a: Covered rubber, 10b: cord, 11, 111, 211: annular end surface of the first annular portion, 11a: inner edge of the annular end surface of the first annular portion, 11b: outer edge of the annular end surface of the first annular portion, 12 112a, 212: the annular end surface of the second annular portion, 12a: the inner edge of the annular end surface of the second annular portion, and 12b: the outer end of the annular end surface of the second annular portion
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
A pneumatic tire of the present invention has a tread portion provided with: a resin annular body formed of an annular end surface on one side in a tire axis direction of a first annular portion made of resin and an annular end surface on the other side in the tire axis direction of a second annular portion made of resin which are joined together; and a belt which is disposed on the outside in a tire radial direction of the resin annular body, and includes a cord covered with rubber or resin. The annular end surface of the first annular portion of the resin annular body and the annular end surface of the second annular portion of the resin annular body are arranged so as to at least partly overlap each other in the tire radial direction.
Description
本発明は空気入りタイヤに関する。
The present invention relates to a pneumatic tire.
従来から、ビード部間に跨って配置されるカーカスのタイヤ径方向外側に、タイヤ周方向に対して傾斜する金属コードを含む傾斜ベルトと、タイヤ周方向に沿って延在する金属コードを含む周方向ベルトと、を備えるベルトを配置する空気入りタイヤが知られている。
Conventionally, an inclined belt including a metal cord inclined with respect to the tire circumferential direction on the outer side in the tire radial direction of the carcass disposed across the bead portions, and a circumference including a metal cord extending along the tire circumferential direction. There is known a pneumatic tire in which a belt including a directional belt is disposed.
特許文献1には、カーカスと、タイヤ周方向に対して4°~7°だけ傾けられた補強要素の単一の層から成る実働補強材と、カーカスのクラウンの中央部分内に位置決めされた扁平な円周方向ポリマー補強要素とから成る、クラウン補強材を備えるタイヤが開示されている。
Patent Document 1 discloses a carcass, an active reinforcing material composed of a single layer of reinforcing elements inclined by 4 ° to 7 ° with respect to the tire circumferential direction, and a flat surface positioned in the central portion of the crown of the carcass. A tire comprising a crown reinforcement comprising a circumferential polymer reinforcement element is disclosed.
特許文献1に記載のタイヤによれば、コードを含むベルト層の一部を、樹脂環状体としての扁平な円周方向ポリマー補強要素にすることで、タイヤを低重量化することができる。しかしながら、特許文献1に開示のタイヤは、耐久性及び生産性の観点で、依然として改善の余地がある。
According to the tire described in Patent Document 1, the weight of the tire can be reduced by using a part of the belt layer including the cord as a flat circumferential polymer reinforcing element as a resin annular body. However, the tire disclosed in Patent Document 1 still has room for improvement in terms of durability and productivity.
そこで本発明は、耐久性及び生産性を向上させることが可能な、樹脂環状体を備える空気入りタイヤを提供することを目的とする。
Therefore, an object of the present invention is to provide a pneumatic tire including a resin annular body that can improve durability and productivity.
本発明の第1の態様としての空気入りタイヤは、樹脂製の第1環状部のタイヤ軸方向の一方側の環状端面と、樹脂製の第2環状部のタイヤ軸方向の他方側の環状端面と、が接合されることにより形成されている樹脂環状体と、前記樹脂環状体のタイヤ径方向外側に配置され、ゴム又は樹脂により被覆されているコードを含むベルトと、を備え前記樹脂環状体の前記第1環状部の前記環状端面、及び、前記樹脂環状体の前記第2環状部の前記環状端面は、少なくとも一部がタイヤ径方向に重なって配置されている。
The pneumatic tire as the first aspect of the present invention includes an annular end surface on one side in the tire axial direction of the resin-made first annular portion and an annular end surface on the other side in the tire axial direction of the resin-made second annular portion. A resin annular body formed by joining, and a belt including a cord disposed on the outer side in the tire radial direction of the resin annular body and covered with rubber or resin. The annular end surface of the first annular portion and the annular end surface of the second annular portion of the resin annular body are arranged so that at least a part thereof overlaps in the tire radial direction.
本発明の第2の態様としての空気入りタイヤは、樹脂製のストリップ体の長手方向の一方の端面と他方の端面とが接合されることにより形成されている樹脂環状体と、前記樹脂環状体のタイヤ径方向外側に配置され、ゴム又は樹脂により被覆されているコードを含むベルトと、を備え、前記ストリップ体の前記一方の端面、及び、前記ストリップ体の前記他方の端面は、少なくとも一部がタイヤ径方向に重なって配置されている。
A pneumatic tire according to a second aspect of the present invention includes a resin annular body formed by joining one end surface and the other end surface in the longitudinal direction of a resin strip, and the resin annular body. A belt including a cord disposed on the outer side in the tire radial direction and covered with rubber or a resin, wherein the one end surface of the strip body and the other end surface of the strip body are at least partially Are overlapped in the tire radial direction.
本発明によれば、耐久性及び生産性を向上させることが可能な、樹脂環状体を備える空気入りタイヤを提供することができる。
According to the present invention, it is possible to provide a pneumatic tire including a resin annular body that can improve durability and productivity.
以下、本発明に係る空気入りタイヤについて、図1~図8を参照して説明する。各図において共通する部材・部位には同一の符号を付している。
Hereinafter, the pneumatic tire according to the present invention will be described with reference to FIGS. In each figure, the same code | symbol is attached | subjected to the common member and site | part.
以下、特に断りのない限り、各要素の寸法、長さ関係、位置関係等は、空気入りタイヤを適用リムに装着し、規定内圧を充填し、無負荷とした、基準状態で測定されるものとする。
Hereinafter, unless otherwise specified, the dimensions, length relationships, positional relationships, etc. of each element are measured in a standard state where a pneumatic tire is mounted on the applicable rim, the specified internal pressure is filled, and no load is applied. And
ここで、「適用リム」とは、空気入りタイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA(日本自動車タイヤ協会)のJATMA YEAR BOOK、欧州ではETRTO(The European Tyre and Rim Technical Organisation)のSTANDARDS MANUAL、米国ではTRA(The Tire and Rim Association,Inc.)のYEAR BOOK等に記載されているまたは将来的に記載される、適用サイズにおける標準リム(ETRTOのSTANDARDS MANUALではMeasuring Rim、TRAのYEAR BOOKではDesign Rim)を指す(即ち、上記の「適用リム」には、現行サイズに加えて将来的に上記産業規格に含まれ得るサイズも含む。「将来的に記載されるサイズ」の例としては、ETRTO 2013年度版において「FUTURE DEVELOPMENTS」として記載されているサイズを挙げることができる。)が、上記産業規格に記載のないサイズの場合は、空気入りタイヤのビード幅に対応した幅のリムをいう。
また、「規定内圧」とは、上記のJATMA YEAR BOOK等に記載されている、適用サイズ・プライレーティングにおける単輪の最大負荷能力に対応する空気圧(最高空気圧)をいい、上記産業規格に記載のないサイズの場合は、タイヤを装着する車両ごとに規定される最大負荷能力に対応する空気圧(最高空気圧)をいうものとする。また後述する「最大負荷荷重」は、適用サイズのタイヤにおける上記JATMA等の規格のタイヤ最大負荷能力、又は、上記産業規格に記載のないサイズの場合は、タイヤを装着する車両ごとに規定される最大負荷能力に対応する荷重を意味する。 Here, “applicable rim” is an industrial standard that is effective in the area where pneumatic tires are produced and used. In Japan, JATMA (Japan Automobile Tire Association) JATMA YEAR BOOK, and in Europe, ETRTO (The European) STANDARDS MANUAL of TIRE and RIM Technical Organization, STANDARDS of ETRATO STANDARDS in the applicable size described in YEAR BOOK, etc. of TRA (The Tire and Rim Association, Inc.) in the United States or in the future Refers to Measuring Rim, and Design Rim on TRA's YEAR BOOK (i.e., "Applied Rim" above refers to future sizes in addition to the current size) Examples of “sizes to be described in the future” include the sizes described as “FUTURE DEVELOPMENTS” in the ETRTO 2013 edition). In the case of a size not described in the industry standard, it means a rim having a width corresponding to the bead width of the pneumatic tire.
The “specified internal pressure” refers to the air pressure (maximum air pressure) corresponding to the maximum load capacity of a single wheel in the applicable size / ply rating described in the above JATMA YEAR BOOK, etc. In the case of no size, the air pressure (maximum air pressure) corresponding to the maximum load capacity defined for each vehicle on which the tire is mounted is assumed. In addition, the “maximum load load” described later is defined for each vehicle on which a tire is mounted in the case of a tire maximum load capacity of the standard of JATMA or the like in the tire of an applicable size, or in the case of a size not described in the industrial standard. It means the load corresponding to the maximum load capacity.
また、「規定内圧」とは、上記のJATMA YEAR BOOK等に記載されている、適用サイズ・プライレーティングにおける単輪の最大負荷能力に対応する空気圧(最高空気圧)をいい、上記産業規格に記載のないサイズの場合は、タイヤを装着する車両ごとに規定される最大負荷能力に対応する空気圧(最高空気圧)をいうものとする。また後述する「最大負荷荷重」は、適用サイズのタイヤにおける上記JATMA等の規格のタイヤ最大負荷能力、又は、上記産業規格に記載のないサイズの場合は、タイヤを装着する車両ごとに規定される最大負荷能力に対応する荷重を意味する。 Here, “applicable rim” is an industrial standard that is effective in the area where pneumatic tires are produced and used. In Japan, JATMA (Japan Automobile Tire Association) JATMA YEAR BOOK, and in Europe, ETRTO (The European) STANDARDS MANUAL of TIRE and RIM Technical Organization, STANDARDS of ETRATO STANDARDS in the applicable size described in YEAR BOOK, etc. of TRA (The Tire and Rim Association, Inc.) in the United States or in the future Refers to Measuring Rim, and Design Rim on TRA's YEAR BOOK (i.e., "Applied Rim" above refers to future sizes in addition to the current size) Examples of “sizes to be described in the future” include the sizes described as “FUTURE DEVELOPMENTS” in the ETRTO 2013 edition). In the case of a size not described in the industry standard, it means a rim having a width corresponding to the bead width of the pneumatic tire.
The “specified internal pressure” refers to the air pressure (maximum air pressure) corresponding to the maximum load capacity of a single wheel in the applicable size / ply rating described in the above JATMA YEAR BOOK, etc. In the case of no size, the air pressure (maximum air pressure) corresponding to the maximum load capacity defined for each vehicle on which the tire is mounted is assumed. In addition, the “maximum load load” described later is defined for each vehicle on which a tire is mounted in the case of a tire maximum load capacity of the standard of JATMA or the like in the tire of an applicable size, or in the case of a size not described in the industrial standard. It means the load corresponding to the maximum load capacity.
図1は、本実施形態としての空気入りタイヤ1(以下、単に「タイヤ1」と記載する。)を示す図である。図1は、タイヤ1の、タイヤ中心軸線Oを含むタイヤ軸方向A(タイヤ幅方向と同じ方向)に平行な断面での断面図である。以下、この断面を「タイヤ軸方向断面」と記載する。なお、図1に示すタイヤ1は、タイヤ赤道面CLに対して対称な構成であるため、タイヤ軸方向Aの一方側のみを示しているが、タイヤ赤道面CLに対して非対称な構成とすることもできる。
FIG. 1 is a view showing a pneumatic tire 1 (hereinafter simply referred to as “tire 1”) as the present embodiment. FIG. 1 is a cross-sectional view of the tire 1 in a cross section parallel to the tire axial direction A including the tire center axis O (the same direction as the tire width direction). Hereinafter, this cross section is referred to as “tire axial direction cross section”. Since the tire 1 shown in FIG. 1 has a symmetric configuration with respect to the tire equator plane CL, only one side in the tire axial direction A is shown, but the configuration is asymmetric with respect to the tire equator plane CL. You can also.
図1に示すように、タイヤ1は、トレッド部1aと、このトレッド部1aのタイヤ軸方向Aの両端部からタイヤ径方向Bの内側に延びる一対のサイドウォール部1bと、各サイドウォール部1bのタイヤ径方向Bの内側の端部に設けられた一対のビード部1cと、を備えている。本実施形態のタイヤ1は、チューブレスタイプの乗用車用ラジアルタイヤである。ここで「トレッド部1a」は、タイヤ軸方向Aにおいて両側のトレッド端TEにより挟まれる部分を意味する。また、「ビード部1c」とは、タイヤ径方向Bにおいて後述するビード部材3が位置する部分を意味する。そして「サイドウォール部1b」とは、トレッド部1aとビード部1cとの間の部分を意味する。なお、「トレッド端TE」とは、タイヤを上述の適用リムに装着し、上述の規定内圧を充填し、最大負荷荷重を負荷した状態での接地面のタイヤ軸方向最外側の位置を意味する。
As shown in FIG. 1, the tire 1 includes a tread portion 1a, a pair of sidewall portions 1b extending from both ends of the tread portion 1a in the tire axial direction A to the inside in the tire radial direction B, and each sidewall portion 1b. And a pair of bead portions 1c provided at the inner end in the tire radial direction B. The tire 1 of this embodiment is a tubeless type radial tire for a passenger car. Here, the “tread portion 1a” means a portion sandwiched between the tread ends TE on both sides in the tire axial direction A. Further, the “bead portion 1 c” means a portion where a bead member 3 described later is located in the tire radial direction B. The “sidewall portion 1b” means a portion between the tread portion 1a and the bead portion 1c. The “tread end TE” means a position on the outermost side in the tire axial direction of the ground contact surface in a state where the tire is mounted on the above-described applied rim, the above-mentioned specified internal pressure is filled, and a maximum load is applied. .
タイヤ1は、ビード部材3、カーカス4、樹脂環状体5、ベルト6、トレッドゴム7、サイドゴム8、及び、インナーライナ9、を備えている。
The tire 1 includes a bead member 3, a carcass 4, a resin annular body 5, a belt 6, a tread rubber 7, a side rubber 8, and an inner liner 9.
[ビード部材3]
ビード部材3は、ビード部1cに埋設されている。ビード部材3は、ビードコア3aと、このビードコア3aに対してタイヤ径方向Bの外側に位置するゴム製のビードフィラ3bと、を備えている。ビードコア3aは、周囲をゴムにより被覆されている複数のビードワイヤを備えている。ビードワイヤはスチールコードにより形成されている。スチールコードは、例えば、スチールのモノフィラメント又は撚り線からなるものとすることができる。 [Bead member 3]
Thebead member 3 is embedded in the bead portion 1c. The bead member 3 includes a bead core 3a and a rubber bead filler 3b positioned on the outer side in the tire radial direction B with respect to the bead core 3a. The bead core 3a includes a plurality of bead wires that are covered with rubber. The bead wire is formed of a steel cord. The steel cord can be made of, for example, steel monofilament or stranded wire.
ビード部材3は、ビード部1cに埋設されている。ビード部材3は、ビードコア3aと、このビードコア3aに対してタイヤ径方向Bの外側に位置するゴム製のビードフィラ3bと、を備えている。ビードコア3aは、周囲をゴムにより被覆されている複数のビードワイヤを備えている。ビードワイヤはスチールコードにより形成されている。スチールコードは、例えば、スチールのモノフィラメント又は撚り線からなるものとすることができる。 [Bead member 3]
The
[カーカス4]
カーカス4は、一対のビード部1c間、より具体的には一対のビード部材3のビードコア3a間に跨っており、トロイダル状に延在している。また、カーカス4は、少なくともラジアル構造を有している。 [Carcass 4]
Thecarcass 4 extends between the pair of bead portions 1c, more specifically between the bead cores 3a of the pair of bead members 3, and extends in a toroidal shape. The carcass 4 has at least a radial structure.
カーカス4は、一対のビード部1c間、より具体的には一対のビード部材3のビードコア3a間に跨っており、トロイダル状に延在している。また、カーカス4は、少なくともラジアル構造を有している。 [Carcass 4]
The
更に、カーカス4は、カーカスコードをタイヤ周方向C(図1等参照)に対して例えば75°~90゜の角度で配列した1枚以上(本実施形態では1枚)のカーカスプライ4aから構成されている。このカーカスプライ4aは、一対のビードコア3a間に位置するプライ本体部と、このプライ本体部の両端で、ビードコア3aの廻りでタイヤ軸方向Aの内側から外側に折り返されるプライ折返し部と、を備えている。そして、プライ本体部とプライ折返し部との間には、ビードコア3aからタイヤ径方向Bの外側に先細状に延びるビードフィラ3bが配置されている。カーカスプライ4aを構成するカーカスコードとして、本実施形態ではポリエステルコードを採用しているが、これ以外にもナイロン、レーヨン、アラミドなどの有機繊維コードや、必要によりスチールなどの金属コードを採用してもよい。また、カーカスプライ4aの枚数についても、2枚以上としてもよい。
Further, the carcass 4 includes one or more carcass plies 4a in which carcass cords are arranged at an angle of, for example, 75 ° to 90 ° with respect to the tire circumferential direction C (see FIG. 1 and the like). Has been. The carcass ply 4a includes a ply body portion positioned between the pair of bead cores 3a, and a ply folding portion that is folded from the inside to the outside in the tire axial direction A around the bead core 3a at both ends of the ply body portion. ing. A bead filler 3b extending from the bead core 3a to the outer side in the tire radial direction B is disposed between the ply main body portion and the ply folded portion. As the carcass cord constituting the carcass ply 4a, a polyester cord is adopted in this embodiment, but other than this, an organic fiber cord such as nylon, rayon, aramid, or a metal cord such as steel is adopted as necessary. Also good. Also, the number of carcass plies 4a may be two or more.
[樹脂環状体5]
図2は、図1に示す樹脂環状体5を示す斜視図である。また、図3は、樹脂環状体5のタイヤ軸方向断面を示す断面図である。図4は、図3の一部を拡大した拡大断面図である。樹脂環状体5は、トレッド部1aにおいて、カーカス4のクラウン部のタイヤ径方向Bの外側に位置する。また、樹脂環状体5は、後述するベルト6と異なり、コードを備えていない。すなわち、樹脂環状体5内には、コードが配置されていない。 [Resin ring 5]
FIG. 2 is a perspective view showing the resinannular body 5 shown in FIG. FIG. 3 is a cross-sectional view showing a cross section in the tire axial direction of the resin annular body 5. FIG. 4 is an enlarged cross-sectional view in which a part of FIG. 3 is enlarged. The resin annular body 5 is located on the outer side in the tire radial direction B of the crown portion of the carcass 4 in the tread portion 1a. Further, unlike the belt 6 described later, the resin annular body 5 does not include a cord. That is, no cord is arranged in the resin annular body 5.
図2は、図1に示す樹脂環状体5を示す斜視図である。また、図3は、樹脂環状体5のタイヤ軸方向断面を示す断面図である。図4は、図3の一部を拡大した拡大断面図である。樹脂環状体5は、トレッド部1aにおいて、カーカス4のクラウン部のタイヤ径方向Bの外側に位置する。また、樹脂環状体5は、後述するベルト6と異なり、コードを備えていない。すなわち、樹脂環状体5内には、コードが配置されていない。 [Resin ring 5]
FIG. 2 is a perspective view showing the resin
図2~図4に示すように、樹脂環状体5は、樹脂製の第1環状部5aと、樹脂製の第2環状部5bと、が接合されることにより形成されている。具体的に、図3、図4に示すように、第1環状部5aのタイヤ軸方向Aの一方側の環状端面11と、第2環状部5bのタイヤ軸方向Aの他方側の環状端面12と、が接合されている。
2 to 4, the resin annular body 5 is formed by joining a resin-made first annular portion 5a and a resin-made second annular portion 5b. Specifically, as shown in FIGS. 3 and 4, the annular end surface 11 on the one side in the tire axial direction A of the first annular portion 5 a and the annular end surface 12 on the other side in the tire axial direction A of the second annular portion 5 b. And are joined.
図3、図4に示すように、樹脂環状体5の第1環状部5aの環状端面11、及び、第2環状部5bの環状端面12は、少なくとも一部がタイヤ径方向Bに重なって配置され、この状態で接合されている。詳細は後述するが、本実施形態の第1環状部5aの環状端面11の全域、及び、第2環状部5bの環状端面12の全域は、タイヤ軸方向Aに重なって配置され、この状態で接合されている。なお、本実施形態の第1環状部5aの環状端面11は、第2環状部5bの環状端面12に対して、溶着により接合されているが、例えば、接着剤等により接着されることで接合される構成としてもよい。
As shown in FIGS. 3 and 4, the annular end surface 11 of the first annular portion 5 a of the resin annular body 5 and the annular end surface 12 of the second annular portion 5 b are arranged so that at least a part thereof overlaps with the tire radial direction B. And are joined in this state. Although details will be described later, the entire region of the annular end surface 11 of the first annular portion 5a and the entire region of the annular end surface 12 of the second annular portion 5b of the present embodiment are arranged so as to overlap with the tire axial direction A. It is joined. In addition, although the cyclic | annular end surface 11 of the 1st cyclic | annular part 5a of this embodiment is joined by welding with respect to the cyclic | annular end surface 12 of the 2nd cyclic | annular part 5b, it joins by adhere | attaching with an adhesive agent etc., for example. It is good also as a structure to be made.
より具体的には、図4に示すように、樹脂環状体5の第1環状部5aの環状端面11のタイヤ径方向Bの内側端縁11aは、樹脂環状体5の第2環状部5bの環状端面12のタイヤ径方向Bの外側端縁12bよりもタイヤ径方向Bの内側に位置する。また、図4に示すように、樹脂環状体5の第1環状部5aの環状端面11のタイヤ径方向Bの外側端縁11bは、樹脂環状体5の第2環状部5bの環状端面12のタイヤ径方向Bの内側端縁12aよりもタイヤ径方向Bの外側に位置する。
More specifically, as shown in FIG. 4, the inner end edge 11 a in the tire radial direction B of the annular end surface 11 of the first annular portion 5 a of the resin annular body 5 corresponds to the second annular portion 5 b of the resin annular body 5. The annular end surface 12 is located on the inner side in the tire radial direction B than the outer end edge 12b in the tire radial direction B. As shown in FIG. 4, the outer end edge 11 b in the tire radial direction B of the annular end surface 11 of the first annular portion 5 a of the resin annular body 5 is formed on the annular end surface 12 of the second annular portion 5 b of the resin annular body 5. It is located outside the inner end edge 12a in the tire radial direction B in the tire radial direction B.
このような構成とすれば、樹脂環状体5の第1環状部5a及び第2環状部5bの接合部での、樹脂環状体5のタイヤ径方向Bの厚みを抑制しつつ、接合面となる第1環状部5aの環状端面11及び第2環状部5bの環状端面12を大きく確保することができる。そのため、第1環状部5a及び第2環状部5bの接合強度を高めることができる。また、樹脂環状体5の第1環状部5a及び第2環状部5bの接合部又はその近傍で局所的に樹脂環状体5のタイヤ径方向Bの厚みが大きくなることにより、上述の接合部又はその近傍の位置でタイヤ1のトレッド部1aに応力集中が発生することを抑制できる。その結果、トレッド部1aの破壊を抑制でき、タイヤ1の耐久性を高めることができる。
With such a configuration, the thickness of the resin annular body 5 in the tire radial direction B at the joint portion of the first annular portion 5a and the second annular portion 5b of the resin annular body 5 is suppressed and becomes a joint surface. The annular end surface 11 of the first annular portion 5a and the annular end surface 12 of the second annular portion 5b can be secured large. Therefore, the joint strength between the first annular portion 5a and the second annular portion 5b can be increased. In addition, when the thickness of the resin annular body 5 in the tire radial direction B is locally increased at or near the joint portion of the first annular portion 5a and the second annular portion 5b of the resin annular body 5, the above-described joint portion or It can suppress that stress concentration generate | occur | produces in the tread part 1a of the tire 1 in the position of the vicinity. As a result, destruction of the tread portion 1a can be suppressed, and the durability of the tire 1 can be improved.
また、樹脂環状体5を、第1環状部5aの環状端面11と、第2環状部5bの環状端面12と、を接合することで形成される構成とすることで、たとえ本実施形態の樹脂環状体5のようなタイヤ軸方向Aの両端部に縮径部13及び14(図3参照)がある構成であったとしても、通常の射出成形において樹脂環状体5の内側にあるコア金型がタイヤ軸方向Aに抜けなくなるという不具合を解消できると共に、複雑な金型を用いることなく、タイヤ軸方向Aに分割した複数の環状部を、金型を用いて形成し、その後に環状部同士を接合することで、樹脂環状体5を容易に製造することができる。
Further, the resin annular body 5 is formed by joining the annular end surface 11 of the first annular portion 5a and the annular end surface 12 of the second annular portion 5b, so that the resin of this embodiment can be obtained. Even if it is the structure which has the diameter reduction parts 13 and 14 (refer FIG. 3) in the both ends of the tire axial direction A like the annular body 5, the core metal mold | die inside the resin annular body 5 in normal injection molding Can be eliminated in the tire axial direction A, and a plurality of annular parts divided in the tire axial direction A can be formed by using a mold without using a complicated mold, and the annular parts are thereafter The resin annular body 5 can be easily manufactured by joining.
以上のように、本実施形態の樹脂環状体5を用いることで、耐久性及び生産性が向上したタイヤ1を実現することができる。
As described above, the tire 1 with improved durability and productivity can be realized by using the resin annular body 5 of the present embodiment.
樹脂環状体5を構成する樹脂は、例えば、熱可塑性エラストマーや熱可塑性樹脂を用いることができ、また、熱や電子線によって架橋が生じる樹脂や、熱転位によって硬化する樹脂を用いることもできる。なお、樹脂環状体5を構成する樹脂には、ゴム(常温でゴム弾性を示す有機高分子物質)は含まれないものとする。
As the resin constituting the resin annular body 5, for example, a thermoplastic elastomer or a thermoplastic resin can be used, and a resin that is cross-linked by heat or an electron beam or a resin that is cured by thermal rearrangement can also be used. The resin constituting the resin annular body 5 does not include rubber (an organic polymer substance exhibiting rubber elasticity at room temperature).
熱可塑性エラストマーとしては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、動的架橋型熱可塑性エラストマー(TPV)等が挙げられる。また、熱可塑性樹脂としては、ポリウレタン樹脂、ポリオレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂等が挙げられる。さらに、熱可塑性樹脂としては、例えば、ISO75-2又はASTM D648に規定されている荷重たわみ温度(0.45MPa荷重時)が78°C以上、かつ、JIS K7113に規定される引張降伏強さが10MPa以上、かつ、同じくJIS K7113に規定される引張破壊伸びが50%以上、かつ、JIS K7206に規定されるビカット軟化温度(A法)が130°C以上であるものを用いることができる。
As thermoplastic elastomers, polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), polyester-based thermoplastic elastomer (TPC) And dynamic crosslinkable thermoplastic elastomer (TPV). Examples of the thermoplastic resin include polyurethane resin, polyolefin resin, vinyl chloride resin, polyamide resin and the like. Further, as the thermoplastic resin, for example, the deflection temperature under load (at the time of 0.45 MPa load) specified in ISO75-2 or ASTM D648 is 78 ° C or more, and the tensile yield strength specified in JIS K7113 is used. A material having a tensile breaking elongation of 50% or more as defined in JIS K7113 and a Vicat softening temperature (Method A) as defined in JIS K7206 of 130 ° C. or more can be used.
なお、本実施形態において、環状端面11及び環状端面12は、タイヤ径方向Bのみならず、樹脂環状体5の厚み方向においても重なって配置されている。樹脂環状体5の厚み方向とは、タイヤ軸方向Aに沿う断面視であるタイヤ軸方向断面視(図1参照)において、樹脂環状体5のタイヤ内面側の内面の接線に対して直交する方向を意味する。
In the present embodiment, the annular end surface 11 and the annular end surface 12 are arranged not only in the tire radial direction B but also in the thickness direction of the resin annular body 5. The thickness direction of the resin annular body 5 is a direction orthogonal to a tangent to the inner surface of the resin annular body 5 on the tire inner surface side in a tire axial direction sectional view (see FIG. 1) which is a sectional view along the tire axial direction A. Means.
[ベルト6]
ベルト6は、トレッド部1aにおいて、樹脂環状体5のタイヤ径方向Bの外側に配置され、ゴム又は樹脂により被覆されているコードを含む。具体的に、本実施形態のベルト6は、カーカス4のクラウン部に対してタイヤ径方向Bの外側に配置されている1層以上(本実施形態では1層)のベルト層を備えている。より具体的には、図1に示すように、本実施形態のベルト6は、1層のみの周方向ベルト層からなる周方向ベルト6aにより構成されている。 [Belt 6]
Thebelt 6 includes a cord disposed on the outer side in the tire radial direction B of the resin annular body 5 in the tread portion 1a and covered with rubber or resin. Specifically, the belt 6 of the present embodiment includes one or more belt layers (one layer in the present embodiment) disposed on the outer side in the tire radial direction B with respect to the crown portion of the carcass 4. More specifically, as shown in FIG. 1, the belt 6 of the present embodiment is constituted by a circumferential belt 6 a composed of only one circumferential belt layer.
ベルト6は、トレッド部1aにおいて、樹脂環状体5のタイヤ径方向Bの外側に配置され、ゴム又は樹脂により被覆されているコードを含む。具体的に、本実施形態のベルト6は、カーカス4のクラウン部に対してタイヤ径方向Bの外側に配置されている1層以上(本実施形態では1層)のベルト層を備えている。より具体的には、図1に示すように、本実施形態のベルト6は、1層のみの周方向ベルト層からなる周方向ベルト6aにより構成されている。 [Belt 6]
The
本実施形態のベルト6としての周方向ベルト6aは、金属のベルトコードとしてのスチールコードをタイヤ周方向C(図1等参照)に対して10°以下、好ましくは5°以下、より好ましくは2°以下の角度で、タイヤ中心軸線Oの回りに、螺旋状に巻回させて形成されているスパイラルベルトである。より具体的に、本実施形態のベルト6としての周方向ベルト6aは、被覆ゴム10aにより被覆されているスチールコード等のコード10bからなるゴム被覆コードにより形成されているゴム被覆ベルトである。つまり、ベルト6としての周方向ベルト6aは、樹脂環状体5のタイヤ軸方向Aの両端部の縮径部13及び14間に亘って、樹脂環状体5の外面に対して螺旋状に巻き回された状態のゴム被覆コードにより構成されている。
The circumferential belt 6a as the belt 6 of the present embodiment is a steel cord as a metal belt cord of 10 ° or less, preferably 5 ° or less, more preferably 2 with respect to the tire circumferential direction C (see FIG. 1 and the like). This is a spiral belt formed by spirally winding around the tire center axis O at an angle of less than or equal to 0 °. More specifically, the circumferential belt 6a as the belt 6 of the present embodiment is a rubber-coated belt formed by a rubber-coated cord made of a cord 10b such as a steel cord covered with a coated rubber 10a. That is, the circumferential belt 6a as the belt 6 is spirally wound around the outer surface of the resin annular body 5 across the reduced diameter portions 13 and 14 at both ends in the tire axial direction A of the resin annular body 5. It is comprised by the rubber-coated code | cord | chord of the state made.
ゴム被覆コードは、樹脂環状体5のタイヤ径方向Bの外面に接合されながら、樹脂環状体5のタイヤ径方向Bの外面に巻き回される。本実施形態では、ゴム被覆コードの被覆ゴム10aと樹脂環状体5とを溶着することで、ゴム被覆コードと樹脂環状体5とを接合する。但し、ゴム被覆コードの被覆ゴム10aと樹脂環状体5とは、溶着に限らず、接着剤等で接着することにより接合されてもよい。
The rubber-coated cord is wound around the outer surface of the resin annular body 5 in the tire radial direction B while being joined to the outer surface of the resin annular body 5 in the tire radial direction B. In the present embodiment, the rubber-coated cord and the resin annular body 5 are joined by welding the covering rubber 10 a of the rubber-coated cord and the resin annular body 5. However, the covering rubber 10a of the rubber covering cord and the resin annular body 5 are not limited to welding, and may be joined by bonding with an adhesive or the like.
また、ゴム被覆コードは、タイヤ軸方向Aに隣接する部分同士が接合されている。本実施形態では、ゴム被覆コードのタイヤ軸方向Aに隣接する部分同士を、被覆ゴム10aを溶着することで接合する。但し、ゴム被覆コードのタイヤ軸方向Aに隣接する部分同士は、溶着に限らず、接着剤等で接着することにより接合されてもよい。
Further, the rubber-coated cords are joined at adjacent portions in the tire axial direction A. In the present embodiment, the portions of the rubber-coated cord that are adjacent to each other in the tire axial direction A are joined together by welding the coated rubber 10a. However, the portions of the rubber-coated cord adjacent to each other in the tire axial direction A are not limited to welding, and may be joined by bonding with an adhesive or the like.
本実施形態のゴム被覆コードは、2本のスチールコードを備えるが、1本のみのスチールコードを備えるゴム被覆コードとしてもよく、3本以上のスチールコードを備えるゴム被覆コードとしてもよい。
The rubber-coated cord of the present embodiment includes two steel cords, but may be a rubber-coated cord including only one steel cord or a rubber-coated cord including three or more steel cords.
また、本実施形態のベルト6はゴム被覆ベルトであるが、この構成に限らず、ベルト6を、被覆樹脂により被覆されているスチールコード等のコードからなる樹脂被覆コードから形成される樹脂被覆ベルトとしてもよい。被覆樹脂は、上述の樹脂環状体5を構成する樹脂と同様の樹脂を用いることができる。
Further, the belt 6 of the present embodiment is a rubber-coated belt, but is not limited to this configuration, and the belt 6 is a resin-coated belt formed from a resin-coated cord made of a cord such as a steel cord coated with a coating resin. It is good. As the coating resin, a resin similar to the resin constituting the resin annular body 5 can be used.
コードを被覆する被覆樹脂の引張弾性率(JIS K7113:1995に規定される)は、50MPa以上が好ましい。ベルト剛性を高めることができるからである。また、コードを被覆する被覆樹脂の引張弾性率は、1000MPa以下とすることが好ましい。乗り心地性を良好に維持することができるからである。なお、ここでいう被覆樹脂には、ゴム(常温でゴム弾性を示す有機高分子物質)は含まれないものとする。上記の樹脂被覆コードは、例えば、溶融状態の被覆樹脂をコードの外周側に被覆し、冷却により固化させることによって形成することができる。
The tensile elastic modulus (specified in JIS K7113: 1995) of the coating resin covering the cord is preferably 50 MPa or more. This is because the belt rigidity can be increased. Moreover, it is preferable that the tensile elasticity modulus of coating resin which coat | covers a cord shall be 1000 Mpa or less. This is because the ride comfort can be maintained well. The coating resin here does not include rubber (an organic polymer substance exhibiting rubber elasticity at room temperature). The resin-coated cord can be formed, for example, by coating a molten coating resin on the outer peripheral side of the cord and solidifying by cooling.
樹脂は重量に比して剛性が高いため、樹脂被覆ベルトとすることで、軽量化しつつも、操縦安定性等のタイヤ性能を向上させることができる。
Since the resin has higher rigidity than the weight, the use of the resin-coated belt can improve the tire performance such as steering stability while reducing the weight.
コードは、任意の既知の材料を用いることができ、例えば上述のスチールコードを用いることができる。スチールコードは、例えば、スチールのモノフィラメント又は撚り線からなるものとすることができる。また、コードは、有機繊維やカーボン繊維又はそれらの撚り線等を用いることもできる。
コ ー ド Any known material can be used for the cord, for example, the above steel cord can be used. The steel cord can be made of, for example, steel monofilament or stranded wire. Moreover, an organic fiber, carbon fiber, or those strands can also be used for a cord.
なお、ベルト6は、ゴム被覆コード又は樹脂被覆コードを螺旋状に巻き回した状態で形成される構成であるが、タイヤ軸方向Aに複数配置された、タイヤ周方向Cに対して10°以下の角度で傾斜して又は平行に延在するコード10bが、被覆ゴム10a又は被覆樹脂により被覆されている構成であれば、特に限定されない。但し、ベルト6は、本実施形態のように、被覆ゴム10a又は被覆樹脂により被覆されているコード10bからなるゴム被覆コード又は樹脂被覆コードが螺旋状に巻き回された状態で形成されるスパイラルベルトとすることが好ましい。このようにすれば、タイヤ周方向Cで接合部のない連続したコード10bによって周方向ベルト6aを形成できるため、タイヤ1のタイヤ周方向Cの剛性を、より高めることができる。
The belt 6 has a configuration in which a rubber-coated cord or a resin-coated cord is spirally wound, but a plurality of belts 6 are arranged in the tire axial direction A and are 10 ° or less with respect to the tire circumferential direction C. There is no particular limitation as long as the cord 10b inclined at an angle or extending in parallel is covered with the covering rubber 10a or the covering resin. However, the belt 6 is a spiral belt formed in a state where a rubber-coated cord or a resin-coated cord made of a cord 10b coated with a coating rubber 10a or a coating resin is spirally wound as in the present embodiment. It is preferable that In this way, since the circumferential belt 6a can be formed by the continuous cord 10b having no joint portion in the tire circumferential direction C, the rigidity of the tire 1 in the tire circumferential direction C can be further increased.
[トレッドゴム7及びサイドゴム8]
トレッドゴム7は、トレッド部1aのタイヤ径方向Bの外側の面(以下、「トレッド外面」と記載する。)を構成しており、本実施形態のトレッド外面には、タイヤ周方向C(図1等参照)に延在する周方向溝7aや、タイヤ軸方向Aに延在する、図示しない幅方向溝等、を含むトレッドパターンが形成されている。サイドゴム8は、サイドウォール部1bのタイヤ軸方向Aの外側の面を構成しており、上述のトレッドゴム7と一体で形成されている。 [Treadrubber 7 and side rubber 8]
Thetread rubber 7 constitutes an outer surface of the tread portion 1a in the tire radial direction B (hereinafter referred to as “tread outer surface”), and the tread outer surface of the present embodiment has a tire circumferential direction C (see FIG. A tread pattern including a circumferential groove 7a extending in the tire axial direction A and a widthwise groove (not shown) extending in the tire axial direction A is formed. The side rubber 8 constitutes an outer surface of the sidewall portion 1b in the tire axial direction A, and is formed integrally with the tread rubber 7 described above.
トレッドゴム7は、トレッド部1aのタイヤ径方向Bの外側の面(以下、「トレッド外面」と記載する。)を構成しており、本実施形態のトレッド外面には、タイヤ周方向C(図1等参照)に延在する周方向溝7aや、タイヤ軸方向Aに延在する、図示しない幅方向溝等、を含むトレッドパターンが形成されている。サイドゴム8は、サイドウォール部1bのタイヤ軸方向Aの外側の面を構成しており、上述のトレッドゴム7と一体で形成されている。 [Tread
The
[インナーライナ9]
インナーライナ9は、カーカス4の内面に積層されており、本実施形態では、空気透過性の低いブチル系ゴムにより形成されている。なお、ブチル系ゴムとは、ブチルゴム、及びその誘導体であるハロゲン化ブチルゴムを意味する。 [Inner liner 9]
The inner liner 9 is laminated on the inner surface of thecarcass 4 and is formed of butyl rubber having low air permeability in the present embodiment. The butyl rubber means butyl rubber and halogenated butyl rubber which is a derivative thereof.
インナーライナ9は、カーカス4の内面に積層されており、本実施形態では、空気透過性の低いブチル系ゴムにより形成されている。なお、ブチル系ゴムとは、ブチルゴム、及びその誘導体であるハロゲン化ブチルゴムを意味する。 [Inner liner 9]
The inner liner 9 is laminated on the inner surface of the
以下、図1~図4を参照して、本実施形態の樹脂環状体5の更なる詳細について説明する。
Hereinafter, further details of the resin annular body 5 of the present embodiment will be described with reference to FIGS. 1 to 4.
図2に示すように、本実施形態の樹脂環状体5は、第1環状部5a及び第2環状部5bにより構成されている。つまり、本実施形態の樹脂環状体5のタイヤ軸方向Aの両端部それぞれは、第1環状部5a又は第2環状部5bにより構成されている。また、第1環状部5aの環状端面11及び第2環状部5bの環状端面12の接合部は、タイヤ1の外径が最大となるタイヤ軸方向Aの位置に形成されている。また、図1に示すように、樹脂環状体5のタイヤ軸方向Aの両端は、トレッド端TEよりもタイヤ軸方向Aの外側に位置する。換言すれば、樹脂環状体5は、トレッド端TEよりもタイヤ軸方向Aの外側まで延在している。
As shown in FIG. 2, the resin annular body 5 of the present embodiment is composed of a first annular portion 5a and a second annular portion 5b. That is, both end portions in the tire axial direction A of the resin annular body 5 of the present embodiment are configured by the first annular portion 5a or the second annular portion 5b. Further, the joint between the annular end surface 11 of the first annular portion 5 a and the annular end surface 12 of the second annular portion 5 b is formed at a position in the tire axial direction A where the outer diameter of the tire 1 is maximum. As shown in FIG. 1, both ends of the resin annular body 5 in the tire axial direction A are located outside the tread end TE in the tire axial direction A. In other words, the resin annular body 5 extends to the outside in the tire axial direction A from the tread end TE.
図1、図2に示すように、本実施形態の樹脂環状体5において、第1環状部5aのタイヤ軸方向Aの他方側の端部(本実施形態ではタイヤ軸方向Aの環状端面11がある側とは反対側の端部)は、タイヤ軸方向Aの外端に向かうにつれてタイヤ中心軸線Oに近づくように縮径する縮径部13である。また、図2に示すように、本実施形態の樹脂環状体5において、第2環状部5bのタイヤ軸方向Aの一方側の端部(本実施形態ではタイヤ軸方向Aの環状端面12がある側とは反対側の端部)は、タイヤ軸方向の外端に向かうにつれてタイヤ中心軸線Oに近づくように縮径する縮径部14である。
As shown in FIGS. 1 and 2, in the resin annular body 5 of the present embodiment, the end portion on the other side in the tire axial direction A of the first annular portion 5 a (in the present embodiment, the annular end surface 11 in the tire axial direction A is The end portion on the opposite side to a certain side) is a reduced diameter portion 13 that decreases in diameter so as to approach the tire center axis O toward the outer end in the tire axial direction A. Further, as shown in FIG. 2, in the resin annular body 5 of the present embodiment, there is an end portion on one side of the second annular portion 5b in the tire axial direction A (in the present embodiment, there is an annular end surface 12 in the tire axial direction A). The end portion on the opposite side to the side) is a reduced diameter portion 14 that decreases in diameter so as to approach the tire center axis O toward the outer end in the tire axial direction.
つまり、本実施形態の樹脂環状体5のタイヤ軸方向Aの両端部は、タイヤ軸方向Aの外端に向かうにつれてタイヤ中心軸線Oに近づくように縮径する縮径部13及び14により構成されている。このような縮径部13及び14を設けることにより、縮径部13及び14を設けず内径及び外径が一様な樹脂環状体とする場合と比較して、トレッド端TE(図1参照)近傍の位置で、接地圧が局所的に大きくなることを抑制し、トレッド外面に偏摩耗が生じることを抑制できる。なお、縮径部13及び14は、タイヤ軸方向Aに沿う断面視において、カーカス4にほぼ沿うように縮径している。
That is, both end portions in the tire axial direction A of the resin annular body 5 of the present embodiment are constituted by the reduced diameter portions 13 and 14 that are reduced in diameter so as to approach the tire center axis O toward the outer end in the tire axial direction A. ing. By providing such reduced diameter portions 13 and 14, the tread end TE (see FIG. 1) is compared with the case where the reduced diameter portions 13 and 14 are not provided and the resin annular body has a uniform inner diameter and outer diameter. It is possible to suppress the local contact pressure from locally increasing at a position in the vicinity, and to suppress the occurrence of uneven wear on the outer surface of the tread. The reduced diameter portions 13 and 14 are reduced in diameter so as to substantially follow the carcass 4 in a cross-sectional view along the tire axial direction A.
より具体的に、図2に示すように、本実施形態の樹脂環状体5のタイヤ径方向Bの外面は樽形状であり、本実施形態の縮径部13及び14それぞれの外面は、凸形状に湾曲する湾曲面である。このように、縮径部13及び14のタイヤ径方向Bの外面を凸形状となる湾曲面とすることにより、トレッド端TE(図1参照)近傍の位置で、接地圧の局所的な変動を、より抑制できる。
More specifically, as shown in FIG. 2, the outer surface in the tire radial direction B of the resin annular body 5 of the present embodiment is a barrel shape, and the outer surfaces of the reduced diameter portions 13 and 14 of the present embodiment are convex shapes. It is a curved surface that bends in a straight line. Thus, by making the outer surfaces of the diameter-reduced portions 13 and 14 in the tire radial direction B convex curved surfaces, local fluctuations in the contact pressure are caused at positions near the tread end TE (see FIG. 1). Can be suppressed more.
図4に示すように、本実施形態では、樹脂環状体5のうち接合されている第1環状部5aの環状端面11及び第2環状部5bの環状端面12は、樹脂環状体5のタイヤ軸方向Aに沿う断面視であるタイヤ軸方向断面視において、タイヤ軸方向A及びタイヤ径方向Bに対して傾斜する傾斜面である。
As shown in FIG. 4, in the present embodiment, the annular end surface 11 of the first annular portion 5 a and the annular end surface 12 of the second annular portion 5 b of the resin annular body 5 are connected to the tire shaft of the resin annular body 5. In the tire axial direction sectional view which is a sectional view along the direction A, the inclined surface is inclined with respect to the tire axial direction A and the tire radial direction B.
タイヤ軸方向断面視において、第1環状部5aの環状端面11のタイヤ軸方向Aに対する傾斜角度θ1は、接合面の拡大の観点では、タイヤ軸方向Aに沿うように0°に近づけることが好ましい。したがって、第1環状部5aの環状端面11のタイヤ軸方向Aに対する傾斜角度θ1は、45°以下とすることが好ましく、30°以下とすることがより好ましい。なお、第2環状部5bの環状端面12のタイヤ軸方向Aに対する傾斜角度θ2も同様である。
In the cross-sectional view in the tire axial direction, the inclination angle θ1 of the annular end surface 11 of the first annular portion 5a with respect to the tire axial direction A is preferably close to 0 ° along the tire axial direction A from the viewpoint of expanding the joint surface. . Therefore, the inclination angle θ1 of the annular end surface 11 of the first annular portion 5a with respect to the tire axial direction A is preferably 45 ° or less, and more preferably 30 ° or less. The same applies to the inclination angle θ2 of the annular end surface 12 of the second annular portion 5b with respect to the tire axial direction A.
また、図4に示すように、本実施形態の第1環状部5aの環状端面11の全域は、第2環状部5bの全域と、タイヤ軸方向Aで重なる位置にある。つまり、環状端面11及び12は、樹脂環状体5のタイヤ径方向Bの内面側及び外面側に露出していない。そして、第1環状部5aの環状端面11と、第2環状部5bの環状端面12と、の間で溶着されることで、第1環状部5a及び第2環状部5bは接合されている。このように、環状端面11及び12を、傾斜面を含む構成とすることにより、接合面を大きく確保することができる。
Further, as shown in FIG. 4, the entire region of the annular end surface 11 of the first annular portion 5 a of the present embodiment is in a position overlapping with the entire region of the second annular portion 5 b in the tire axial direction A. That is, the annular end surfaces 11 and 12 are not exposed on the inner surface side and the outer surface side in the tire radial direction B of the resin annular body 5. And the 1st annular part 5a and the 2nd annular part 5b are joined by welding between the annular end surface 11 of the 1st annular part 5a, and the annular end surface 12 of the 2nd annular part 5b. As described above, the annular end surfaces 11 and 12 are configured to include the inclined surface, whereby a large joint surface can be secured.
なお、本実施形態の環状端面11及び12は、タイヤ軸方向Aに対して傾斜する傾斜面のみにより構成されているが、傾斜面以外に、タイヤ径方向Bに平行に延在する面等を含む環状端面であってもよい。但し、本実施形態の環状端面11及び12のように、タイヤ軸方向Aに対して傾斜する傾斜面のみの構成とすれば、簡易な構成でありながら、接合面を大きく確保できるため好ましい。
In addition, although the annular end surfaces 11 and 12 of this embodiment are comprised only by the inclined surface inclined with respect to the tire axial direction A, in addition to an inclined surface, the surface etc. extended in parallel with the tire radial direction B etc. An annular end face may be included. However, it is preferable to use only an inclined surface that is inclined with respect to the tire axial direction A, such as the annular end surfaces 11 and 12 of the present embodiment, because a large bonding surface can be ensured with a simple configuration.
ここで、本実施形態の第1環状部5aは、環状端面11の位置を除く位置で、略一様な厚みを有している。本実施形態の第1環状部5aの厚みは、例えば、0.3mm~1.0mmの範囲から設定される。また、本実施形態の第2環状部5bについても、環状端面12の位置を除く位置で、略一様な厚みを有している。本実施形態の第2環状部5bの厚みは、第1環状部5aと略等しい厚みに設定される。
Here, the first annular portion 5a of the present embodiment has a substantially uniform thickness at positions excluding the position of the annular end surface 11. The thickness of the first annular portion 5a of the present embodiment is set from a range of 0.3 mm to 1.0 mm, for example. The second annular portion 5b of the present embodiment also has a substantially uniform thickness at positions other than the position of the annular end surface 12. The thickness of the 2nd annular part 5b of this embodiment is set as the thickness substantially equal to the 1st annular part 5a.
図5は、図4に示す環状端面11及び12の変形例を示す図である。図5に示す第1環状部5aの環状端面111は、タイヤ軸方向Aに沿う断面視であるタイヤ軸方向断面視において、タイヤ軸方向Aに対して傾斜する傾斜面を含む。
FIG. 5 is a view showing a modification of the annular end faces 11 and 12 shown in FIG. An annular end surface 111 of the first annular portion 5a illustrated in FIG. 5 includes an inclined surface that is inclined with respect to the tire axial direction A in the tire axial direction sectional view that is a sectional view along the tire axial direction A.
より具体的に、図5に示す第1環状部5aの環状端面111は、タイヤ軸方向断面視において、タイヤ軸方向Aに対して傾斜する第1傾斜面120aと、タイヤ軸方向Aに対して第1傾斜面120aとは反対側に傾斜する第2傾斜面120bと、を備える。第1傾斜面120a及び第2傾斜面120bは互いに交差する稜線により環状端面111の頂部121を形成している。
More specifically, the annular end surface 111 of the first annular portion 5a shown in FIG. 5 has a first inclined surface 120a that is inclined with respect to the tire axial direction A and a tire axial direction A in the tire axial sectional view. A second inclined surface 120b inclined to the opposite side of the first inclined surface 120a. The first inclined surface 120a and the second inclined surface 120b form a top portion 121 of the annular end surface 111 by ridgelines intersecting each other.
また、図5に示す第2環状部5bの環状端面112は、タイヤ軸方向Aに沿う断面視であるタイヤ軸方向断面視において、タイヤ軸方向Aに対して傾斜する傾斜面を含む。
Further, the annular end surface 112 of the second annular portion 5b shown in FIG. 5 includes an inclined surface that is inclined with respect to the tire axial direction A in the tire axial direction sectional view that is a sectional view along the tire axial direction A.
より具体的に、図5に示す第2環状部5bの環状端面112は、タイヤ軸方向断面視において、タイヤ軸方向Aに対して傾斜する第1傾斜面122aと、タイヤ軸方向Aに対して第1傾斜面122aとは反対側に傾斜する第2傾斜面122bと、を備える。第1傾斜面122a及び第2傾斜面122bは互いに交差する稜線により環状端面112の頂部123を形成している。
More specifically, the annular end surface 112 of the second annular portion 5b shown in FIG. 5 has a first inclined surface 122a that is inclined with respect to the tire axial direction A and a tire axial direction A in the tire axial sectional view. A second inclined surface 122b inclined to the opposite side of the first inclined surface 122a. The first inclined surface 122a and the second inclined surface 122b form a top portion 123 of the annular end surface 112 by ridge lines intersecting each other.
第1環状部5aの環状端面111の第1傾斜面120aは、第2環状部5bの環状端面112の第2傾斜面122bと、タイヤ径方向Bに重なるように対向して配置されている。そして、第1環状部5aの環状端面111の第1傾斜面120aと、第2環状部5bの環状端面112の第2傾斜面122bと、は溶着されている。
The first inclined surface 120a of the annular end surface 111 of the first annular portion 5a is disposed to face the second inclined surface 122b of the annular end surface 112 of the second annular portion 5b so as to overlap in the tire radial direction B. The first inclined surface 120a of the annular end surface 111 of the first annular portion 5a and the second inclined surface 122b of the annular end surface 112 of the second annular portion 5b are welded.
また、図5に示す第1環状部5aの環状端面111には、第2傾斜面120bが設けられているため、環状端面111及び112の接合部の、樹脂環状体5のタイヤ径方向Bの外面側に、環状端面111の第2傾斜面120bと環状端面112の第2傾斜面122bとにより区画される、タイヤ周方向Cに延在するV字断面状の溝124が形成されている。そのため、第1環状部5aの環状端面111及び第2環状部5bの環状端面112を溶着する際に溶融して膨出する膨出部125を、溝124内に受けることができる。これにより、第1環状部5aの環状端面111及び第2環状部5bの環状端面112を溶着する際に、環状端面111及び112が溶融することにより生じる膨出部125が、溶着後の樹脂環状体5の外面側に突出することを抑制することができる。その結果、図4に示す環状端面11及び12の構成と比較して、タイヤの応力集中を、より抑制できるため、タイヤの耐久性を、より高めることができる。
Moreover, since the 2nd inclined surface 120b is provided in the annular end surface 111 of the 1st annular part 5a shown in FIG. 5, the tire radial direction B of the resin annular body 5 of the junction part of the annular end surfaces 111 and 112 is provided. A groove 124 having a V-shaped cross section extending in the tire circumferential direction C, which is defined by the second inclined surface 120b of the annular end surface 111 and the second inclined surface 122b of the annular end surface 112, is formed on the outer surface side. Therefore, the bulging portion 125 that melts and bulges when the annular end surface 111 of the first annular portion 5 a and the annular end surface 112 of the second annular portion 5 b are welded can be received in the groove 124. As a result, when the annular end surface 111 of the first annular portion 5a and the annular end surface 112 of the second annular portion 5b are welded, the bulging portion 125 generated by melting the annular end surfaces 111 and 112 becomes the resin ring after welding. Protruding to the outer surface side of the body 5 can be suppressed. As a result, compared with the configuration of the annular end surfaces 11 and 12 shown in FIG. 4, the stress concentration of the tire can be further suppressed, and therefore the durability of the tire can be further enhanced.
更に、図5に示す第2環状部5bの環状端面112には、第1傾斜面122aが設けられているため、環状端面111及び112の接合部の樹脂環状体5の内面側に、環状端面111の第1傾斜面120aと環状端面112の第1傾斜面122aとにより区画される、タイヤ周方向Cに延在するV字断面状の溝126が形成されている。そのため、第1環状部5aの環状端面111及び第2環状部5bの環状端面112を溶着する際に溶融して膨出する膨出部127を、溝126内に受けることができる。これにより、第1環状部5aの環状端面111及び第2環状部5bの環状端面112を溶着する際に、環状端面111及び112が溶融することにより生じる膨出部127が、溶着後の樹脂環状体5の内面側に突出することを抑制することができる。その結果、図4に示す環状端面11及び12の構成と比較して、タイヤの応力集中を、より抑制できるため、タイヤの耐久性を、より高めることができる。
Furthermore, since the first inclined surface 122a is provided on the annular end surface 112 of the second annular portion 5b shown in FIG. 5, the annular end surface is formed on the inner surface side of the resin annular body 5 at the joint portion of the annular end surfaces 111 and 112. A groove 126 having a V-shaped cross section extending in the tire circumferential direction C and formed by a first inclined surface 120a of 111 and a first inclined surface 122a of the annular end surface 112 is formed. Therefore, the bulging portion 127 that melts and bulges when the annular end surface 111 of the first annular portion 5 a and the annular end surface 112 of the second annular portion 5 b are welded can be received in the groove 126. As a result, when the annular end surface 111 of the first annular portion 5a and the annular end surface 112 of the second annular portion 5b are welded, the bulging portion 127 generated by the melting of the annular end surfaces 111 and 112 becomes the resin ring after welding. Protruding to the inner surface side of the body 5 can be suppressed. As a result, compared with the configuration of the annular end surfaces 11 and 12 shown in FIG. 4, the stress concentration of the tire can be further suppressed, and therefore the durability of the tire can be further enhanced.
図6は、図4に示す環状端面11及び12の別の変形例を示す図である。図6に示す第1環状部5aの環状端面211は、樹脂環状体5のタイヤ軸方向Aに沿う断面視において、樹脂環状体5のタイヤ軸方向Aに沿って延在する接合受け面228を含む階段面である。
FIG. 6 is a view showing another modification of the annular end faces 11 and 12 shown in FIG. An annular end surface 211 of the first annular portion 5a shown in FIG. 6 has a joint receiving surface 228 extending along the tire axial direction A of the resin annular body 5 in a cross-sectional view of the resin annular body 5 along the tire axial direction A. Including staircase.
より具体的に、図6に示す第1環状部5aの環状端面211は、接合受け面228と、この接合受け面228のタイヤ軸方向Aの一端に連続し、タイヤ径方向Bの内側に延在する基端面229と、接合受け面228のタイヤ軸方向Aの他端に連続し、タイヤ径方向Bの外側に延在する先端面230と、を備える。
More specifically, the annular end surface 211 of the first annular portion 5a shown in FIG. 6 is continuous with the joint receiving surface 228 and one end of the joint receiving surface 228 in the tire axial direction A and extends inward in the tire radial direction B. A proximal end surface 229 that is present, and a distal end surface 230 that is continuous with the other end of the joint receiving surface 228 in the tire axial direction A and extends outward in the tire radial direction B.
また、図6に示す第2環状部5bの環状端面212は、樹脂環状体5のタイヤ軸方向Aに沿う断面視において、樹脂環状体5のタイヤ軸方向Aに沿って延在する接合受け面231を含む階段面である。
Further, the annular end surface 212 of the second annular portion 5b shown in FIG. 6 is a joint receiving surface that extends along the tire axial direction A of the resin annular body 5 in a cross-sectional view along the tire axial direction A of the resin annular body 5. This is a step surface including H.231.
より具体的に、図6に示す第2環状部5bの環状端面212は、接合受け面231と、この接合受け面231のタイヤ軸方向Aの一端に連続し、タイヤ径方向Bの外側に延在する基端面232と、接合受け面231のタイヤ軸方向Aの他端に連続し、タイヤ径方向Bの内側に延在する先端面233と、を備える。
More specifically, the annular end surface 212 of the second annular portion 5b shown in FIG. 6 is continuous with the joint receiving surface 231 and one end of the joint receiving surface 231 in the tire axial direction A and extends outward in the tire radial direction B. And a distal end surface 233 that is continuous with the other end in the tire axial direction A of the joint receiving surface 231 and extends inward in the tire radial direction B.
第1環状部5aの環状端面211の接合受け面228は、第2環状部5bの環状端面212の接合受け面231と、タイヤ径方向Bに重なるように対向して配置されている。そして、第1環状部5aの環状端面211の接合受け面228と、第2環状部5bの環状端面212の接合受け面231と、は溶着されている。
The joint receiving surface 228 of the annular end surface 211 of the first annular portion 5a is disposed to face the joint receiving surface 231 of the annular end surface 212 of the second annular portion 5b so as to overlap in the tire radial direction B. The joint receiving surface 228 of the annular end surface 211 of the first annular portion 5a and the joint receiving surface 231 of the annular end surface 212 of the second annular portion 5b are welded together.
図6に示すように、タイヤ軸方向Aに沿う断面視で、タイヤ軸方向Aに対して傾斜する傾斜面を備えない環状端面211及び212としてもよい。このような構成であっても、接合面を大きく確保することができる。
As shown in FIG. 6, it is good also as the annular end surfaces 211 and 212 which are not provided with the inclined surface which inclines with respect to the tire axial direction A in the cross sectional view along the tire axial direction A. Even with such a configuration, a large joint surface can be secured.
また、図6に示すように、第1環状部5aの環状端面211の先端面230と、第2環状部5bの環状端面212の基端面232と、の間には間隙が形成されている。この間隙は、樹脂環状体5のタイヤ径方向Bの外面側に開口し、タイヤ周方向Cに延在する矩形断面状の溝234を構成している。そのため、第1環状部5aの環状端面211及び第2環状部5bの環状端面212を溶着する際に溶融して膨出する膨出部235を、溝234内に受けることができる。これにより、第1環状部5aの環状端面211及び第2環状部5bの環状端面212を溶着する際に、環状端面211及び212が溶融することにより生じる膨出部235が、溶着後の樹脂環状体5の外面側に突出することを抑制することができる。その結果、図4に示す環状端面11及び12の構成と比較して、タイヤの応力集中を、より抑制できるため、タイヤの耐久性を、より高めることができる。
Further, as shown in FIG. 6, a gap is formed between the distal end surface 230 of the annular end surface 211 of the first annular portion 5a and the proximal end surface 232 of the annular end surface 212 of the second annular portion 5b. This gap forms a groove 234 having a rectangular cross section that opens to the outer surface side in the tire radial direction B of the resin annular body 5 and extends in the tire circumferential direction C. Therefore, the bulging portion 235 that melts and bulges when the annular end surface 211 of the first annular portion 5a and the annular end surface 212 of the second annular portion 5b are welded can be received in the groove 234. As a result, when the annular end surface 211 of the first annular portion 5a and the annular end surface 212 of the second annular portion 5b are welded, the bulging portion 235 generated by melting the annular end surfaces 211 and 212 becomes the resin ring after welding. Protruding to the outer surface side of the body 5 can be suppressed. As a result, compared with the configuration of the annular end surfaces 11 and 12 shown in FIG. 4, the stress concentration of the tire can be further suppressed, and therefore the durability of the tire can be further enhanced.
更に、図6に示すように、第1環状部5aの環状端面211の基端面229と、第2環状部5bの環状端面212の先端面233と、の間には間隙が形成されている。この間隙は、樹脂環状体5の内面側に開口し、タイヤ周方向Cに延在する矩形断面状の溝236を構成している。そのため、第1環状部5aの環状端面211及び第2環状部5bの環状端面212を溶着する際に溶融して膨出する膨出部237を、溝236内に受けることができる。これにより、第1環状部5aの環状端面211及び第2環状部5bの環状端面212を溶着する際に、環状端面211及び212が溶融することにより生じる膨出部237が、溶着後の樹脂環状体5の内面側に突出することを抑制することができる。その結果、図4に示す環状端面11及び12の構成と比較して、タイヤの応力集中を、より抑制できるため、タイヤの耐久性を、より高めることができる。
Furthermore, as shown in FIG. 6, a gap is formed between the base end surface 229 of the annular end surface 211 of the first annular portion 5a and the distal end surface 233 of the annular end surface 212 of the second annular portion 5b. This gap constitutes a rectangular cross-sectional groove 236 that opens to the inner surface side of the resin annular body 5 and extends in the tire circumferential direction C. Therefore, the bulging portion 237 that melts and bulges when the annular end surface 211 of the first annular portion 5a and the annular end surface 212 of the second annular portion 5b are welded can be received in the groove 236. As a result, when the annular end surface 211 of the first annular portion 5a and the annular end surface 212 of the second annular portion 5b are welded, the bulging portion 237 generated by melting the annular end surfaces 211 and 212 becomes the resin ring after welding. Protruding to the inner surface side of the body 5 can be suppressed. As a result, compared with the configuration of the annular end surfaces 11 and 12 shown in FIG. 4, the stress concentration of the tire can be further suppressed, and therefore the durability of the tire can be further enhanced.
図7A、図7Bは、樹脂環状体5の変形例を示す斜視図である。具体的に、図7Aは、樹脂環状体5の変形例としての樹脂環状体305を示す図である。図7Bは、樹脂環状体5の変形例としての樹脂環状体405を示す図である。図7Aに示す樹脂環状体305及び図7Bに示す樹脂環状体405は、図1~図6に示す樹脂環状体5と比較して、1つのストリップ体を環状にして端面同士を接合することにより形成されている点で相違している。
7A and 7B are perspective views showing modifications of the resin annular body 5. Specifically, FIG. 7A is a diagram illustrating a resin annular body 305 as a modification of the resin annular body 5. FIG. 7B is a view showing a resin annular body 405 as a modified example of the resin annular body 5. The resin annular body 305 shown in FIG. 7A and the resin annular body 405 shown in FIG. 7B are formed by forming one strip body in an annular shape and joining the end faces to each other as compared with the resin annular body 5 shown in FIGS. It differs in that it is formed.
図7Aに示す樹脂環状体305は、樹脂製のストリップ体338の長手方向の一方の端面339と他方の端面340とが接合されることにより形成されている。つまり、ストリップ体338の長手方向とは、タイヤ周方向Cと同じ方向となる。
The resin annular body 305 shown in FIG. 7A is formed by joining one end face 339 and the other end face 340 in the longitudinal direction of a resin strip 338. That is, the longitudinal direction of the strip body 338 is the same direction as the tire circumferential direction C.
ストリップ体338の一方の端面339、及び、ストリップ体338の他方の端面340は、少なくとも一部がタイヤ径方向Bに重なって配置されている。また、本実施形態では、ストリップ体338の一方の端面339、及び、ストリップ体338の他方の端面340は、少なくとも一部が、ストリップ体338の厚み方向に重なって配置されている。
At least a part of one end surface 339 of the strip body 338 and the other end surface 340 of the strip body 338 are arranged so as to overlap in the tire radial direction B. In the present embodiment, at least a part of one end surface 339 of the strip body 338 and the other end surface 340 of the strip body 338 are arranged so as to overlap in the thickness direction of the strip body 338.
図8は、図7Aに示す樹脂環状体305の、ストリップ体338のタイヤ軸方向A(タイヤ幅方向と同じ方向)と直交する断面を示す断面図である。図8に示すように、ストリップ体338の一方の端面339のタイヤ径方向Bの内側端縁339aは、ストリップ体338の他方の端面340のタイヤ径方向Bの外側端縁340bよりもタイヤ径方向Bの内側に位置する。また、ストリップ体338の一方の端面339のタイヤ径方向Bの外側端縁339bは、ストリップ体338の他方の端面340のタイヤ径方向Bの内側端縁340aよりもタイヤ径方向Bの外側に位置する。
FIG. 8 is a cross-sectional view showing a cross section of the resin annular body 305 shown in FIG. 7A perpendicular to the tire axial direction A (the same direction as the tire width direction) of the strip body 338. As shown in FIG. 8, the inner end edge 339a in the tire radial direction B of one end surface 339 of the strip body 338 is more in the tire radial direction than the outer end edge 340b in the tire radial direction B of the other end surface 340 of the strip body 338. Located inside B. Further, the outer end edge 339b in the tire radial direction B of one end surface 339 of the strip body 338 is located outside the inner end edge 340a in the tire radial direction B of the other end surface 340 of the strip body 338 in the outer side in the tire radial direction B. To do.
このような構成とすることで、図1~図6に示す複数の部材同士を接合(図1~図6では2つの環状部を接合)して形成される樹脂環状体5と比較して、1つの部材で樹脂環状体305を形成することができ、同様の作用効果を得ることができる。
By adopting such a configuration, compared to the resin annular body 5 formed by joining a plurality of members shown in FIGS. 1 to 6 (joining two annular portions in FIGS. 1 to 6), The resin annular body 305 can be formed with one member, and the same effect can be obtained.
また、図7Bに示す樹脂環状体405は、図7Aに示す樹脂環状体305と比較して、接合部の構成が相違しているが、その他の構成は同様である。具体的に、図7Aに示す樹脂環状体305の一方の端面339及び他方の端面340は、タイヤ軸方向Aに沿って延在するのに対して、図7Bに示す樹脂環状体405のストリップ体438の一方の端面439及び他方の端面440は、樹脂環状体405をタイヤ径方向Bの外側から見た平面視において、タイヤ軸方向Aに対して傾斜して延在している。このような構成とすることにより、タイヤの耐久性を、より高めることができる。
Further, the resin annular body 405 shown in FIG. 7B is different in the configuration of the joint portion from the resin annular body 305 shown in FIG. 7A, but the other configurations are the same. Specifically, one end surface 339 and the other end surface 340 of the resin annular body 305 shown in FIG. 7A extend along the tire axial direction A, whereas the strip body of the resin annular body 405 shown in FIG. 7B. One end surface 439 and the other end surface 440 of 438 extend inclined with respect to the tire axial direction A when the resin annular body 405 is viewed from the outside in the tire radial direction B. By setting it as such a structure, durability of a tire can be improved more.
なお、図7Aに示す樹脂環状体305についても、図1に示す樹脂環状体5と同様、タイヤ軸方向Aの少なくとも一方の端部は、タイヤ軸方向Aの外端に向かうにつれてタイヤ中心軸線Oに近づくように縮径する縮径部である。より具体的に、図7Aに示す樹脂環状体305のタイヤ軸方向Aの両端部は縮径部313及び314により構成されている。縮径部313及び314それぞれのタイヤ径方向の外面は、凸形状に湾曲する湾曲面である。
As for the resin annular body 305 shown in FIG. 7A, as in the resin annular body 5 shown in FIG. 1, at least one end portion in the tire axial direction A extends toward the outer end in the tire axial direction A. It is a reduced diameter part which reduces in diameter so that it may approach. More specifically, both end portions in the tire axial direction A of the resin annular body 305 shown in FIG. 7A are constituted by reduced diameter portions 313 and 314. The outer surface in the tire radial direction of each of the reduced diameter portions 313 and 314 is a curved surface that curves into a convex shape.
また、図7Bに示す樹脂環状体405についても、図1に示す樹脂環状体5と同様、タイヤ軸方向Aの少なくとも一方の端部は、タイヤ軸方向Aの外端に向かうにつれてタイヤ中心軸線Oに近づくように縮径する縮径部である。より具体的に、図7Bに示す樹脂環状体405のタイヤ軸方向Aの両端部は縮径部413及び414により構成されている。縮径部413及び414それぞれのタイヤ径方向Bの外面は、凸形状に湾曲する湾曲面である。
7B, as in the case of the resin annular body 5 shown in FIG. 1, at least one end portion in the tire axial direction A is the tire center axis O as it goes toward the outer end in the tire axial direction A. It is a reduced diameter part which reduces in diameter so that it may approach. More specifically, both end portions in the tire axial direction A of the resin annular body 405 shown in FIG. 7B are constituted by reduced diameter portions 413 and 414. The outer surface in the tire radial direction B of each of the reduced diameter portions 413 and 414 is a curved surface that curves into a convex shape.
なお、図4に示す環状端面11及び12の形状、図5に示す環状端面111及び112の形状、並びに、図6に示す環状端面211及び212の形状は、図7Aに示すストリップ体338の一方の端面339及び他方の端面340の、ストリップ体338のタイヤ軸方向A(タイヤ幅方向と同じ方向)と直交する断面視(図8参照)での形状として採用でき、同様の作用効果を得ることができる。また、図4に示す環状端面11及び12の形状、図5に示す環状端面111及び112の形状、並びに、図6に示す環状端面211及び212の形状は、図7Bに示すストリップ体438の一方の端面439及び他方の端面440の、ストリップ体438のタイヤ軸方向A(タイヤ幅方向と同じ方向)と直交する断面視での形状として採用でき、同様の作用効果を得ることができる。
Note that the shapes of the annular end surfaces 11 and 12 shown in FIG. 4, the shapes of the annular end surfaces 111 and 112 shown in FIG. 5, and the shapes of the annular end surfaces 211 and 212 shown in FIG. The end face 339 and the other end face 340 can be adopted as shapes in a cross-sectional view (see FIG. 8) perpendicular to the tire axial direction A (the same direction as the tire width direction) of the strip body 338, and the same effect can be obtained. Can do. Further, the shape of the annular end surfaces 11 and 12 shown in FIG. 4, the shape of the annular end surfaces 111 and 112 shown in FIG. 5, and the shape of the annular end surfaces 211 and 212 shown in FIG. The end face 439 and the other end face 440 can be adopted as shapes in a cross-sectional view orthogonal to the tire axial direction A (the same direction as the tire width direction) of the strip body 438, and similar effects can be obtained.
本発明に係る空気入りタイヤは、上述した実施形態及び変形例に示す具体的な構成に限定されず、請求の範囲を逸脱しない限りで、種々の変形、変更が可能である。例えば、図1~図7に示す樹脂環状体は、樽形状の外形を有する構成であるが、タイヤ軸方向Aの両端部のみに縮径部があり、タイヤ軸方向Aの中央部が内径及び外径が一様な筒部により構成されている樹脂環状体としてもよい。
The pneumatic tire according to the present invention is not limited to the specific configurations shown in the above-described embodiments and modifications, and various modifications and changes can be made without departing from the scope of the claims. For example, the resin annular body shown in FIGS. 1 to 7 has a barrel-shaped outer shape, but there are reduced diameter portions only at both ends in the tire axial direction A, and the central portion in the tire axial direction A has an inner diameter and It is good also as a resin annular body comprised by the cylinder part with a uniform outer diameter.
本発明は空気入りタイヤに関する。
The present invention relates to a pneumatic tire.
1:空気入りタイヤ、 1a:トレッド部、 1b:サイドウォール部、 1c:ビード部、 3:ビード部材、 3a:ビードコア、 3b:ビードフィラ、 4:カーカス、 4a:カーカスプライ、 5、305、405:樹脂環状体、 5a:第1環状部、 5b:第2環状部、 6:ベルト、 6a:周方向ベルト、 7:トレッドゴム、 7a:周方向溝、 8:サイドゴム、 9:インナーライナ、 10a:被覆ゴム、 10b:コード、 11、111、211:第1環状部の環状端面、 11a:第1環状部の環状端面の内側端縁、 11b:第1環状部の環状端面の外側端縁、 12、112、212:第2環状部の環状端面、 12a:第2環状部の環状端面の内側端縁、 12b:第2環状部の環状端面の外側端縁、 13、14、313、314、413、414:縮径部、 120a:第1環状部の環状端面の第1傾斜面、 120b:第1環状部の環状端面の第2傾斜面、 121:第1環状部の環状端面の頂部、 122a:第2環状部の環状端面の第1傾斜面、 122b:第2環状部の環状端面の第2傾斜面、 123:第1環状部の環状端面の頂部、 124、126:溝、 125、127:膨出部、 228:第1環状部の環状端面の接合受け面、 229:第1環状部の環状端面の基端面、 230:第1環状部の環状端面の先端面、 231:第2環状部の環状端面の接合受け面、 232:第2環状部の環状端面の基端面、 233:第2環状部の環状端面の先端面、 234、236:溝、 235、237:膨出部、 338、438:ストリップ体、 339、439:ストリップ体の一方の端面、 339a:ストリップ体の一方の端面の内側端縁、 339b:ストリップ体の一方の端面の外側端縁、 340、440:ストリップ体の他方の端面、 340a:ストリップ体の他方の端面の内側端縁、 340b:ストリップ体の他方の端面の外側端縁、 A:タイヤ軸方向、 B:タイヤ径方向、 C:タイヤ周方向(ストリップ体の長手方向)、 O:タイヤ中心軸線、 CL:タイヤ赤道面、 TE:トレッド端、 θ1、θ2:環状端面の傾斜角度
1: pneumatic tire, 1a: tread portion, 1b: sidewall portion, 1c: bead portion, 3: bead member, 3a: bead core, 3b: bead filler, 4: carcass, 4a: carcass ply, 5, 305, 405: Resin annular body, 5a: first annular portion, 5b: second annular portion, 6: belt, 6a: circumferential belt, 7: tread rubber, 7a: circumferential groove, 8: side rubber, 9: inner liner, 10a: Covered rubber, 10b: cord, 11, 111, 211: annular end surface of the first annular portion, 11a: inner edge of the annular end surface of the first annular portion, 11b: outer edge of the annular end surface of the first annular portion, 12 112a, 212: the annular end surface of the second annular portion, 12a: the inner edge of the annular end surface of the second annular portion, and 12b: the outer end of the annular end surface of the second annular portion. , 13, 14, 313, 314, 413, 414: reduced diameter portion, 120a: first inclined surface of the annular end surface of the first annular portion, 120b: second inclined surface of the annular end surface of the first annular portion, 121: first The top of the annular end surface of one annular portion, 122a: the first inclined surface of the annular end surface of the second annular portion, 122b: the second inclined surface of the annular end surface of the second annular portion, 123: the top of the annular end surface of the first annular portion 124, 126: groove, 125, 127: bulging portion, 228: joint receiving surface of the annular end surface of the first annular portion, 229: proximal end surface of the annular end surface of the first annular portion, 230: annular shape of the first annular portion 231: base end surface of the annular end surface of the second annular portion, 233: distal end surface of the annular end surface of the second annular portion, 234, 236: grooves , 235, 237: bulge part, 3 8, 438: Strip body, 339, 439: One end face of the strip body, 339a: Inner edge of one end face of the strip body, 339b: Outer edge of one end face of the strip body, 340, 440: Strip body 340a: inner end edge of the other end face of the strip body, 340b: outer edge of the other end face of the strip body, A: tire axial direction, B: tire radial direction, C: tire circumferential direction (strip Body longitudinal axis), O: tire center axis, CL: tire equatorial plane, TE: tread edge, θ1, θ2: inclination angle of annular end face
Claims (11)
- 樹脂製の第1環状部のタイヤ軸方向の一方側の環状端面と、樹脂製の第2環状部のタイヤ軸方向の他方側の環状端面と、が接合されることにより形成されている樹脂環状体と、
前記樹脂環状体のタイヤ径方向外側に配置され、ゴム又は樹脂により被覆されているコードを含むベルトと、をトレッド部に備え、
前記樹脂環状体の前記第1環状部の前記環状端面、及び、前記樹脂環状体の前記第2環状部の前記環状端面は、少なくとも一部がタイヤ径方向に重なって配置されている、空気入りタイヤ。 A resin ring formed by joining an annular end surface on one side in the tire axial direction of the first annular portion made of resin and an annular end surface on the other side in the tire axial direction of the second annular portion made of resin. Body,
A belt including a cord that is disposed on the outer side in the tire radial direction of the resin annular body and is covered with rubber or resin, and is provided in the tread portion,
The annular end surface of the first annular portion of the resin annular body and the annular end surface of the second annular portion of the resin annular body are arranged such that at least a part thereof is overlapped in the tire radial direction. tire. - 前記樹脂環状体のタイヤ軸方向の少なくとも一方の端部は、タイヤ軸方向の外端に向かうにつれてタイヤ中心軸線に近づくように縮径する縮径部である、請求項1に記載の空気入りタイヤ。 2. The pneumatic tire according to claim 1, wherein at least one end portion of the resin annular body in the tire axial direction is a reduced diameter portion that is reduced in diameter so as to approach the tire central axis line toward an outer end in the tire axial direction. .
- 前記縮径部のタイヤ径方向の外面は、凸形状に湾曲する湾曲面である、請求項2に記載の空気入りタイヤ。 The pneumatic tire according to claim 2, wherein an outer surface of the reduced diameter portion in a tire radial direction is a curved surface curved in a convex shape.
- 前記樹脂環状体のうち接合されている前記第1環状部の前記環状端面及び前記第2環状部の前記環状端面それぞれは、前記樹脂環状体のタイヤ軸方向に沿う断面視において、前記樹脂環状体のタイヤ軸方向に対して傾斜する傾斜面を含む、請求項1乃至3のいずれか1つに記載の空気入りタイヤ。 Each of the annular end surface of the first annular portion and the annular end surface of the second annular portion that are joined in the resin annular body is the resin annular body in a sectional view along the tire axial direction of the resin annular body. The pneumatic tire according to any one of claims 1 to 3, including an inclined surface that is inclined with respect to the tire axial direction.
- 前記樹脂環状体のうち接合されている前記第1環状部の前記環状端面及び前記第2環状部の前記環状端面それぞれは、前記樹脂環状体のタイヤ軸方向に沿う断面視において、前記樹脂環状体のタイヤ軸方向に沿って延在する接合受け面を含む階段面である、請求項1乃至3のいずれか1つに記載の空気入りタイヤ。 Each of the annular end surface of the first annular portion and the annular end surface of the second annular portion that are joined in the resin annular body is the resin annular body in a sectional view along the tire axial direction of the resin annular body. The pneumatic tire according to any one of claims 1 to 3, wherein the pneumatic tire is a stepped surface including a joint receiving surface extending along the tire axial direction.
- 樹脂製のストリップ体の長手方向の一方の端面と他方の端面とが接合されることにより形成されている樹脂環状体と、
前記樹脂環状体のタイヤ径方向外側に配置され、ゴム又は樹脂により被覆されているコードを含むベルトと、を備え、
前記ストリップ体の前記一方の端面、及び、前記ストリップ体の前記他方の端面は、少なくとも一部がタイヤ径方向に重なって配置されている、空気入りタイヤ。 A resin annular body formed by joining one end face and the other end face in the longitudinal direction of the resin strip; and
A belt including a cord disposed on the outer side in the tire radial direction of the resin annular body and covered with rubber or resin,
A pneumatic tire in which at least a part of the one end surface of the strip body and the other end surface of the strip body are arranged to overlap each other in the tire radial direction. - 前記樹脂環状体のタイヤ軸方向の少なくとも一方の端部は、タイヤ軸方向の外端に向かうにつれてタイヤ中心軸線に近づくように縮径する縮径部である、請求項6に記載の空気入りタイヤ。 7. The pneumatic tire according to claim 6, wherein at least one end portion of the resin annular body in the tire axial direction is a reduced diameter portion that decreases in diameter so as to approach the tire central axis line toward the outer end in the tire axial direction. .
- 前記縮径部のタイヤ径方向の外面は、凸形状に湾曲する湾曲面である、請求項7に記載の空気入りタイヤ。 The pneumatic tire according to claim 7, wherein an outer surface of the reduced diameter portion in a tire radial direction is a curved surface curved in a convex shape.
- 前記樹脂環状体のうち接合されている前記ストリップ体の前記一方の端面及び前記他方の端面それぞれは、前記ストリップ体のタイヤ軸方向と直交する断面視において、前記ストリップ体の長手方向に対して傾斜する傾斜面を含む、請求項6乃至8のいずれか1つに記載の空気入りタイヤ。 Each of the one end surface and the other end surface of the strip body joined among the resin annular bodies is inclined with respect to the longitudinal direction of the strip body in a cross-sectional view orthogonal to the tire axial direction of the strip body. The pneumatic tire according to any one of claims 6 to 8, comprising an inclined surface.
- 前記樹脂環状体のうち接合されている前記ストリップ体の前記一方の端面及び前記他方の端面それぞれは、前記ストリップ体のタイヤ軸方向と直交する断面視において、前記ストリップ体の長手方向に沿って延在する接合受け面を含む階段面である、請求項6乃至8のいずれか1つに記載の空気入りタイヤ。 Each of the one end face and the other end face of the strip body joined among the resin annular bodies extends along the longitudinal direction of the strip body in a cross-sectional view orthogonal to the tire axial direction of the strip body. The pneumatic tire according to any one of claims 6 to 8, which is a stepped surface including an existing joint receiving surface.
- 前記樹脂環状体のうち接合されている前記ストリップ体の前記一方の端面及び前記他方の端面は、前記樹脂環状体をタイヤ径方向の外側から見た平面視において、タイヤ軸方向に対して傾斜して延在している、請求項6乃至10のいずれか1つに記載の空気入りタイヤ。 The one end face and the other end face of the strip body joined among the resin annular bodies are inclined with respect to the tire axial direction in a plan view of the resin annular body viewed from the outside in the tire radial direction. The pneumatic tire according to any one of claims 6 to 10, wherein the pneumatic tire extends.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-105499 | 2018-05-31 | ||
JP2018105499A JP2019209751A (en) | 2018-05-31 | 2018-05-31 | Pneumatic tire |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019230771A1 true WO2019230771A1 (en) | 2019-12-05 |
Family
ID=68697020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/021236 WO2019230771A1 (en) | 2018-05-31 | 2019-05-29 | Pneumatic tire |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019209751A (en) |
WO (1) | WO2019230771A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63212104A (en) * | 1987-02-25 | 1988-09-05 | Sumitomo Rubber Ind Ltd | Pneumatic tyre |
JPH03143701A (en) * | 1989-10-27 | 1991-06-19 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
JPH05116504A (en) * | 1991-04-15 | 1993-05-14 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
WO2009110353A1 (en) * | 2008-03-07 | 2009-09-11 | 横浜ゴム株式会社 | Pneumatic tire and process for producing the same |
JP2014097800A (en) * | 2009-02-17 | 2014-05-29 | Bridgestone Corp | Tire and tire manufacturing method |
-
2018
- 2018-05-31 JP JP2018105499A patent/JP2019209751A/en active Pending
-
2019
- 2019-05-29 WO PCT/JP2019/021236 patent/WO2019230771A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63212104A (en) * | 1987-02-25 | 1988-09-05 | Sumitomo Rubber Ind Ltd | Pneumatic tyre |
JPH03143701A (en) * | 1989-10-27 | 1991-06-19 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
JPH05116504A (en) * | 1991-04-15 | 1993-05-14 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
WO2009110353A1 (en) * | 2008-03-07 | 2009-09-11 | 横浜ゴム株式会社 | Pneumatic tire and process for producing the same |
JP2014097800A (en) * | 2009-02-17 | 2014-05-29 | Bridgestone Corp | Tire and tire manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2019209751A (en) | 2019-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6909068B2 (en) | Bead members and pneumatic tires | |
WO2019230770A1 (en) | Pneumatic tire | |
WO2018235499A1 (en) | Bead member, pneumatic tire, and assembly | |
JP7011461B2 (en) | Pneumatic tires | |
US11305585B2 (en) | Pneumatic tire | |
US11472230B2 (en) | Pneumatic tire | |
WO2019230771A1 (en) | Pneumatic tire | |
WO2018235500A1 (en) | Production method for pneumatic tire, and pneumatic tire | |
WO2019239898A1 (en) | Pneumatic tire | |
WO2020129847A1 (en) | Run-flat tire | |
US11235620B2 (en) | Pneumatic tire | |
WO2019230772A1 (en) | Pneumatic tire | |
JP6959895B2 (en) | Manufacturing method for pneumatic tires and resin-coated belts | |
JP2021091294A (en) | Run flat tire | |
JP6952647B2 (en) | Pneumatic tires | |
JP6963496B2 (en) | Pneumatic tires | |
WO2019230768A1 (en) | Pneumatic tire, and method for manufacturing pneumatic tire | |
WO2019230767A1 (en) | Pneumatic tire and method for manufacturing pneumatic tire | |
JP7032924B2 (en) | Pneumatic tires | |
WO2019244769A1 (en) | Run flat tire | |
JP2024083808A (en) | Pneumatic tire | |
WO2019239895A1 (en) | Pneumatic tire | |
WO2019230811A1 (en) | Pneumatic tire | |
JP2002067182A (en) | Pneumatic tire and method for manufacturing the same | |
JP2022082949A (en) | Pneumatic tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19812284 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19812284 Country of ref document: EP Kind code of ref document: A1 |