WO2019225457A1 - モデル作成方法、プラントの運転支援方法及びモデル作成装置 - Google Patents
モデル作成方法、プラントの運転支援方法及びモデル作成装置 Download PDFInfo
- Publication number
- WO2019225457A1 WO2019225457A1 PCT/JP2019/019445 JP2019019445W WO2019225457A1 WO 2019225457 A1 WO2019225457 A1 WO 2019225457A1 JP 2019019445 W JP2019019445 W JP 2019019445W WO 2019225457 A1 WO2019225457 A1 WO 2019225457A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plant
- model
- image data
- fuel
- data
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0224—Process history based detection method, e.g. whereby history implies the availability of large amounts of data
- G05B23/024—Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
Definitions
- the present disclosure relates to a model creation method, a plant operation support method, and a model creation device.
- Patent Document 1 relates to a statistical model (simulation model) for estimating the value of a measurement signal measured when a control signal is applied to a plant, and the statistical model is used to determine the air damper opening, burner angle, and the like at the operation end of the boiler.
- a control device that minimizes each of the process values using the NOx, CO, and H 2 S concentrations contained in the exhaust gas discharged from the boiler as process values (outputs) of a statistical model.
- Patent Document 1 does not describe any knowledge about how to accurately predict the process value when the plant specification or the fuel property changes.
- At least one embodiment of the present invention has been made in view of the conventional problems as described above.
- the object of the present invention is to accurately predict process values in response to changes in plant specifications and fuel properties. It is to provide a model creation method, a plant operation support method, and a model creation device that can be used.
- a model creation method includes: A model creation method for creating a model indicating a relationship between an input parameter of a plant for burning fuel and a process value, A step of reading the operation data of the plant including at least one of physical parameters related to the specifications of the plant or fuel parameters related to the properties of the fuel, and reading image data of the combustion region of the plant; An extraction step of extracting a feature amount of the image data; A model creation step of creating the model using the at least one of the physical parameter or the fuel parameter and the feature amount of the image data as the input parameter; Is provided.
- the model is created using at least one of the physical parameters or the fuel parameters and the feature amount of the image data as input parameters, so that the difference between the plant specifications and the fuel properties can be reduced.
- the process value can be predicted with high accuracy using image data in consideration.
- one of the input parameters includes the feature value of the image data of the combustion region, for example, when adopting the plant unburned ash as the process value (the plant input parameter and the plant unburned ash When creating a model that shows the relationship), it is possible to always and quickly evaluate unburned ash in ash, which is usually difficult to measure quickly, reducing fuel cost loss by maintaining optimal combustion conditions can do.
- the image data is acquired by photographing the combustion region from above with an imaging device capable of capturing at least one of a moving image or a still image.
- the process value can be accurately predicted by reading image data taken from above the combustion region and using it for model creation.
- the extraction step information relating to any one of the shape, size, color, shade, luminance, temperature (temperature distribution), and wavelength (wavelength distribution) of the combustion region or the amount of change thereof is used as the feature amount of the image data. Extract.
- the information on the shape, size, color, shade, brightness, temperature (temperature distribution), or wavelength (wavelength distribution) of the combustion region or the amount of change thereof is used. Based on this, the process value can be accurately predicted.
- the luminance information of the combustion area is information obtained from the image without detecting the flame itself, for example, even if the flame is not imaged with exhaust gas, for example by installing an imaging device in the upper part of the furnace Information can be obtained. As a result, it is possible to facilitate installation of an imaging device (in-furnace camera) for imaging the inside of the furnace.
- the model is created using an index related to an exhaust gas component of the plant or an index related to an emission of the plant as the process value.
- Exhaust gas components or emissions are generated by the combustion process in the furnace and greatly depend on the combustion state in the combustion region of the plant, so that these generation amounts have a high correlation with the image data of the combustion region. For this reason, as described in (4) above, the process value can be accurately estimated by creating a model using the index related to the exhaust gas component of the plant or the index related to the emission of the plant as the process value.
- a parameter relating to at least one of the structure, performance or design condition of the plant is read as the physical parameter
- the model creation step the model is created using at least one of the structure, performance or design conditions of the plant and the feature amount of the image data as the input parameters.
- the size of the plant, the installation position of the imaging device, and the fuel injection position differ from plant to plant, and even with the same process value, the feature value varies from plant to plant. For this reason, as described in (5) above, by creating a model in consideration of an appropriate physical parameter related to at least one of the structure, performance, or design conditions of the plant, characteristics resulting from differences in plant specifications It is possible to correct the amount difference and improve the estimation accuracy of the process value.
- a parameter relating to at least one of fuel adjustment, combustion, environmental load or moisture is read as the fuel parameter
- the model creation step the model is created using a parameter relating to at least one of fuel adjustment, combustion, environmental load or moisture and the feature quantity of the image data as the input parameters.
- a plant operation support method includes: A plant operation support method using a model indicating a relationship between an input parameter of a plant for burning fuel and a process value, A data reading step for reading operation data of the plant including at least one of a physical parameter related to the specification of the plant or a fuel parameter related to a property of the fuel, and image data of a combustion region of the plant; An extraction step of extracting a feature amount of the image data; A model reading step for reading the model using the at least one of the physical parameters or the fuel parameters and the feature amount of the image data as the input parameters; A simulation step of calculating the process value using the operation data of the plant, the image data of the combustion region of the plant, and the model; An operation instruction step of calculating an operation instruction value of the plant so that the process value satisfies a predetermined condition is further provided.
- the process value can be accurately predicted using image data in consideration of the difference between the plant specification and the fuel property.
- one of the input parameters includes the feature value of the image data of the combustion region, for example, when adopting the plant unburned ash as the process value (the plant input parameter and the plant unburned ash When creating a model that shows the relationship), it is possible to always and quickly evaluate unburned ash in ash, which is usually difficult to measure quickly, reducing fuel cost loss by maintaining optimal combustion conditions can do. Thereby, the operation support of a plant can be performed effectively.
- a model creation device includes: A model creation device for creating a model indicating a relationship between an input parameter of a plant for burning fuel and a process value, Data acquisition configured to acquire operation data of the plant including at least one of a physical parameter related to the specification of the plant or a fuel parameter related to a property of the fuel, and image data of a combustion region of the plant And A data extraction conversion unit configured to extract a feature amount of the image data acquired by the data acquisition unit; A model creation unit configured to create the model using the at least one of the physical parameter or the fuel parameter and the feature amount of the image data as the input parameter; Is provided.
- the model creation device described in (8) above by creating a model using at least one of physical parameters or fuel parameters and the feature amount of image data as input parameters, the difference between the plant specifications and the fuel properties can be reduced.
- the process value can be predicted with high accuracy using image data in consideration.
- An operation support apparatus for a plant A plant operation support apparatus using a model indicating a relationship between an input parameter of a plant for burning fuel and a process value, Data acquisition configured to acquire operation data of the plant including at least one of a physical parameter related to the specification of the plant or a fuel parameter related to a property of the fuel, and image data of a combustion region of the plant And A data extraction conversion unit configured to extract a feature amount of the image data acquired by the data acquisition unit; A model database that stores the model using the input parameters of at least one of the physical parameter or the fuel parameter and the feature amount of the image data; A simulation unit that calculates the process value using the operation data of the plant, the image data of the combustion region of the plant, and the model stored in the model database; An optimization unit configured to determine an optimal set of input parameters such that the process value satisfies a predetermined condition; An operation instruction unit that calculates an operation instruction value of the plant from the set of the optimal input parameters obtained by the optimization unit; Is provided
- the process value can be accurately predicted using image data in consideration of the difference between the plant specification and the fuel property.
- one of the input parameters includes the feature value of the image data of the combustion region, for example, when adopting the plant unburned ash as the process value (the plant input parameter and the plant unburned ash When creating a model that shows the relationship), it is possible to always and quickly evaluate unburned ash in ash, which is usually difficult to measure quickly, reducing fuel cost loss by maintaining optimal combustion conditions can do. For this reason, the operation assistance of a plant can be performed effectively.
- a plant operation support system includes: A plant operation support system comprising the local support system and a remote support system capable of communicating via a network,
- the local support system is: The driving data, the image data, and the model update result are configured to be transmitted to the remote support system, and the driving data, the image data, and the other local support system transmitted from the remote support system are transmitted.
- a first transceiver configured to receive model update results;
- the remote support system includes: The driving data, the image data, and the model update result transmitted from each of the local support systems are configured to be received, and the update result is transmitted to all the other local support systems.
- a second transceiver configured to transmit the image data and the model update result;
- a model creation method capable of accurately predicting process values in response to changes in plant specifications and fuel properties.
- FIG. 1 is a schematic diagram of a boiler plant 100.
- FIG. It is a model creation flowchart which shows the model creation method which concerns on one Embodiment. It is the flowchart which showed the driving
- 1 is an overall configuration diagram showing a boiler plant 100 and an operation control apparatus 200 that controls the boiler plant 100.
- an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
- expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
- the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of the other constituent elements.
- model a model creation method for creating a simulation model (hereinafter simply referred to as “model”) indicating a relationship between an input parameter (input) and a process value (output) of a plant that burns fuel.
- FIG. 1 is a schematic diagram of a boiler plant 100.
- the boiler 2 provided in the boiler plant 100 is configured to burn solid fuel.
- the boiler 2 uses pulverized coal obtained by pulverizing coal as pulverized fuel (solid fuel), combusts the pulverized coal with a combustion burner of the furnace 11, and exchanges heat generated by the combustion with feed water and steam to generate steam. It is a coal fired boiler that can be produced.
- the fuel is not limited to coal, and may be other fuel that can be burned in a boiler, such as biomass. Further, various kinds of fuels may be mixed and used.
- the boiler 2 includes a furnace 11, a combustion device 12, and a flue 13.
- the furnace 11 has, for example, a hollow shape of a square cylinder and extends along the vertical direction.
- the wall surface of the furnace 11 is composed of an evaporation tube (heat transfer tube) and a fin connecting the evaporation tube, and the temperature rise of the furnace wall is suppressed by heat exchange with feed water and steam.
- a plurality of evaporation pipes are arranged in the horizontal direction, and each of the evaporation pipes extends along the vertical direction.
- the fin closes between the evaporation pipe and the evaporation pipe.
- An inclined surface 62 is provided on the furnace bottom of the furnace 11, and a furnace bottom evaporation pipe 70 is provided on the inclined surface 62 to constitute the bottom surface of the furnace.
- An image sensor SR1 is provided above the furnace 11.
- the combustion device 12 is provided on the lower side in the vertical direction on the furnace wall constituting the furnace 11. Moreover, the combustion apparatus 12 has a plurality of combustion burners (for example, combustion burners 21, 22, 23, 24, 25) mounted on the furnace wall. The plurality of combustion burners 21, 22, 23, 24, 25 are arranged at regular intervals along the circumferential direction of the furnace 11, for example. However, the shape of the furnace, the arrangement of the burners, the number of combustion burners in one stage, and the number of stages are not limited to the above forms.
- the combustion burners 21, 22, 23, 24, 25 are respectively supplied to pulverizers (pulverized coal machines / mills) 31, 32, 33, 34, 35 via pulverized coal supply pipes 26, 27, 28, 29, 30. It is connected. Coal is pulverized into a predetermined fine powder size by the pulverizers 31, 32, 33, 34, and 35 when the pulverizers 31, 32, 33, 34, and 35 are fed through a conveyance system (not shown). .
- the pulverized coal (pulverized coal) is supplied to the combustion burners 21, 22, 23, 24, and 25 from the pulverized coal supply pipes 26, 27, 28, 29, and 30 together with the carrier air (primary air).
- the furnace 11 is provided with a wind box 36 at the mounting position of each combustion burner 21, 22, 23, 24, 25.
- One end of the air duct 37b is connected to the wind box 36, and the other end of the air duct 37b is connected to an air duct 37a that supplies air at a connection point 37d.
- a flue 13 is connected vertically above the furnace 11, and a plurality of heat exchangers 41, 42, 43, 44, 45, 46, 47 for generating steam are arranged in the flue 13. ing.
- the combustion burners 21, 22, 23, 24, 25 inject a mixture of pulverized coal fuel and combustion air into the furnace 11 to form a flame, and combustion gas is generated and flows to the flue 13.
- Superheated steam is generated by heating the supply water and steam flowing through the furnace wall and heat exchangers 41 to 47 with combustion gas, and a steam turbine (not shown) is rotationally driven by the generated superheated steam and connected to the rotating shaft of the steam turbine.
- the generator (not shown) is driven to rotate to generate power.
- An exhaust gas passage 48 is connected to the flue 13.
- a denitration device 50 for purifying combustion gas In the exhaust gas passage 48, a denitration device 50 for purifying combustion gas, an air heater 49 for exchanging heat between the air flowing from the forced blower 38 a to the air duct 37 a and the exhaust gas flowing in the exhaust gas passage 48, a dust treatment device 51. , And an induction fan 52 are provided. A chimney 53 is provided at the downstream end of the exhaust gas passage 48.
- the denitration device 50 may not be provided as long as the exhaust gas standard is satisfied.
- the air for conveying pulverized coal (primary air) is sent from the primary air blower 38 b to the air duct 37 e passing through the air heater 49 and the air duct 37 f bypassing the air heater 49.
- the primary air is merged after the air flow rate of both ducts is adjusted so as to reach a predetermined temperature, etc., and sent to the pulverizers (mills) 31, 32, 33, 34, 35 via the air duct 37g. It is done.
- the after-air port 39 is provided in the furnace 11.
- One end of an air duct 37c is connected to the after air port 39, and the other end of the air duct 37c is connected to an air duct 37a for supplying air at a connection point 37d. If the two-stage combustion method is not adopted, the after-air port 39 may not be provided.
- the air sent from the blower 38 to the air duct 37a is heated by the air heater 49 by heat exchange with the combustion gas, and is led to the wind box 36 via the air duct 37b and the air duct 37c. Branching to the after air led to the after air port 39 at the connecting point 37d.
- the image sensor SR1 is provided on the top of the furnace 11 so as to generate image data of the combustion region in the boiler plant 100.
- the image sensor SR1 constitutes an imaging device that can capture at least one of a moving image or a still image, for example, and is provided so that the combustion region can be captured from above.
- the imaging device may be a camera such as a digital camera, a video camera, or an infrared camera capable of detecting a specific wavelength.
- the image data of the combustion region may be an image itself captured inside the furnace 11, or may be a feature amount that can be extracted from the image.
- the image may be a still image or a frame (image) that constitutes a moving image.
- the image sensor SR ⁇ b> 1 may be installed at a position other than the upper part of the furnace 11, such as a side wall part of the furnace 11.
- an image sensor is installed in a portion forming the secondary combustion region in the side wall portion, or a portion further upward (portion closer to the upper portion), and is directed obliquely downward so as to image a lower portion where the primary combustion region is located. May be installed.
- FIG. 2 is a model creation flowchart showing a model creation method according to an embodiment.
- a model showing the relationship between the input parameters (inputs) and process values (outputs) of the boiler plant 100 by using image data of the combustion region in the boiler plant 100 that burns fuel. create.
- the model according to the present embodiment is used for predicting (simulating) a process value based on input parameters input to the model.
- a model is created for each process value, but the present invention is not limited to this, and a plurality of process values may be output by one model.
- boiler plant as a typical power plant will be described here as an example, the model creation method described below is not limited to a boiler plant but can be widely applied to plants that produce industrial products or materials.
- a steam supply plant and an iron manufacturing plant are exemplified in addition to a power generation plant.
- the operation data read in the reading step S ⁇ b> 1 includes at least one of physical parameters related to plant specifications or fuel parameters related to fuel properties, and process values of the plant 100.
- a parameter related to at least one of the structure, performance, and design conditions of the plant 100 may be read as a physical parameter.
- the image data of the combustion region of the plant 100 may be either a still image or a moving image that is a continuation of a still image, acquired by the image sensor SR1 installed in the plant 100.
- the image data format may be TIFF or BMP for still images, uncompressed data represented by AVI for moving images, JPEG or PNG for still images, and MPEG for moving images. Or data in a compression format represented by MP4.
- the feature amount of the image data read in the reading step S1 is extracted.
- the feature amount calculation can be processed in parallel with the reading of the image data by appropriately selecting the configuration of the apparatus, and even when the amount of the image data becomes enormous, the reading of all the image data is completed.
- the feature amount calculation process can be started from before.
- the feature amount of the image data relates to, for example, the shape, size, color, shading, brightness, temperature (temperature distribution), or wavelength (wavelength distribution) of the combustion region that appears in the image data or is obtained based on the image data. It may be information or a change amount of at least one of these pieces of information.
- the amount of change refers to the amount of change in space and / or time.
- the feature amount is information obtained by quantifying the feature of the image data, which is typically calculated from the luminance information of the image data.
- a feature amount obtained by a three-dimensional higher-order local autocorrelation feature amount (CHLAC feature amount), CNN (Convolution Natural Network), or AE (AutoEncoder) is used. Also good.
- the CHLAC feature amount has an advantage that the spatio-temporal variation appearing in the entire image can be expressed in a compact manner. Further, by extracting feature amounts by convolution processing and pooling processing in CNN and encoding processing in AE, it is possible to effectively reduce and acquire the entire features of the image.
- the feature amount extracted based on the luminance information may be a luminance value (luminance value) itself obtained from an image, or may be a statistical value such as an average or peak luminance value.
- the feature amount may be any of an area, a shape, and a size of a portion having a luminance equal to or higher than a predetermined value, or may be a change amount of the luminance value.
- the luminance information may include information that can be converted from the luminance value, such as temperature and temperature distribution obtained by converting the luminance value.
- the luminance information of the image data is information obtained by converting the shade values of R (red), G (green), and B (blue) in a color image into shade values of black and white (grayscale). It is possible to extract feature amounts of more various patterns by calculating feature amounts from RGB shade information before conversion, that is, image color information.
- the feature amount extracted based on the color information of the image may be the respective RGB shade values, or may be a statistical value such as an average or a peak shade value. Or the value which shows the correlation between each wavelength like the ratio of the value of R and the value of G may be sufficient, for example.
- Luminance information is information obtained from an image without detecting the flame itself.
- image data can be obtained even when the flame is not imaged with exhaust gas, such as by installing the image sensor SR1 in the upper part of the furnace. Can do.
- an imaging device in-furnace camera
- step S31 1 is added to the number N of model creations (initial value is 0).
- step S32 model creation conditions and additional parameter candidates are read. When the number of times N is 2 or more, the model creation conditions and additional parameter candidates are changed.
- the model creation conditions are a model creation target (process value), a method (function formula), an allowable error, and the like.
- the additional parameter candidate is an input parameter addition candidate to be described later.
- step S33 it is determined whether or not the plant specifications (operating conditions) or fuel properties change during operation of the plant 100. If the plant specifications change during operation of the plant 100 in step S33, physical parameters related to the plant specifications are added to the model input parameters in step S34.
- the physical parameter is a parameter related to at least one of the structure, performance, and design conditions of the plant 100. If the fuel property changes during operation of the plant 100 in step S33, the fuel parameter related to the fuel property is added to the model input parameter in step S35.
- the fuel parameter is a parameter related to at least one of fuel adjustment, combustion, environmental load, and moisture. If neither the plant specifications nor the fuel properties change during operation of the plant 100 in step S33, the input parameter is not added (step S36).
- the size of the plant, the installation position of the imaging device, and the fuel injection position differ from plant to plant, and even with the same process value, the feature value varies from plant to plant. For this reason, as described above, by creating a model in consideration of an appropriate physical parameter related to at least one of the structure, performance, or design conditions of the plant 100, the difference in the feature amount due to the difference in the plant specifications can be reduced. Correction can be made to improve the estimation accuracy of the process value. In addition, the process value varies due to changes in the properties of the fuel that is input, even under the same plant operating conditions. Therefore, as described above, appropriate values related to at least one of fuel adjustment, combustion, environmental load, and moisture By creating a model in consideration of various fuel parameters, it is possible to correct a difference in feature amount due to a difference in fuel properties and improve process value estimation accuracy.
- step S37 the relationship between the input parameters of the model and the process values is machine-learned using the operation data and image data read in the reading step S1, and the model indicating the relationship between the input parameters of the plant 100 and the process values.
- the model indicating the relationship between the input parameters of the plant 100 and the process values.
- step S41 the accuracy of the model created in step S37 is verified using the operation data and image data not used in machine learning in step S37 among the operation data and image data read in step S1.
- the driving data and image data that were not used for machine learning in step S37 out of the driving data and image data read in reading step S1 are input to the model created in step S37.
- the simulation value (virtual process value) of the process value (output) calculated by the model is compared with the process value (actual process value) as the actual measurement value in the operation data read in the reading step S1. Confirm.
- step S42 it is determined whether or not the error confirmed in step S41 is within the allowable error range. If the error confirmed in step S41 is within the allowable error range, it is determined that the model created in step S37 is valid. If the error confirmed in S41 exceeds the allowable error, it is determined in step S42 that the model created in step S37 is not valid, and it is checked in step S43 whether the number N is equal to or less than the allowable number Nth. . If the number N is equal to or smaller than the allowable number Nth in step S43, the process returns to model creation step S3, and the model is modified by changing the model creation conditions and additional parameter candidates.
- step S5 the steps shown in detail below are executed.
- step S51 when it is determined in step S42 that the model created in step S37 is valid, in step S51, the model is output to an input / output unit and a model database described later. If the above-mentioned number N exceeds the allowable number Nth in step S43, a model creation error is output in step S52. Either the model or the model creation error is output and the model creation flow ends.
- the operator can confirm the relationship (trend) between the input and the output.
- the model is created by using the physical parameters related to the specifications of the plant 100, the fuel parameters related to the properties of the fuel, and the feature values of the image data of the combustion region as input parameters.
- the process value can be accurately predicted using image data in consideration of the difference in the plant specifications and the fuel properties.
- one of the input parameters includes the feature value of the image data of the combustion region, for example, when adopting the plant unburned ash as the process value (the plant input parameter and the plant unburned ash When creating a model that shows the relationship), it is possible to always and quickly evaluate the unburned content in ash, which is usually difficult to measure quickly, and reduce the fuel cost and denitration cost by maintaining the optimal combustion state. Loss can be reduced.
- FIG. 3 is a flowchart showing a driving instruction flow for giving a result of a simulation using the model created in FIG. 2 as a driving instruction to the driving control apparatus 200.
- step S61 the operation data of the plant 100 and the image data of the combustion region are read (data reading step).
- step 62 a model created by the method shown in FIG. 2 is read (model reading step).
- step S63 the feature amount of the image data read in step S6 is extracted as in step S2 (extraction step).
- simulation condition is a set of input parameters, that is, a set of image data of at least one of a physical parameter related to the specification of the plant 100 or a fuel parameter related to the properties of the fuel and a combustion region of the plant 100.
- step S72 the input parameter set set in step S71 is input to the model created by the method shown in FIG. As a result of the simulation, a process value (virtual process value) of the plant 100 is calculated.
- step S8 an operation instruction value for the operation control device 200 is calculated so that the process value satisfies a predetermined condition.
- step S81 the simulation result is evaluated.
- step S82 it is determined whether the virtual process value is optimal (whether a predetermined condition is satisfied). If it is not optimal, the process returns to step S71 to reset the simulation conditions and instruct to calculate a new virtual process value.
- the evaluation in step S81 may be performed by converting each virtual process value into a score (dimensionless) with a predetermined conversion coefficient.
- step S82 it may be determined that the virtual process value is optimal when the total score value is equal to or greater than a predetermined value. Or, the simulation is performed in multiple cases (simulation conditions), and the virtual process value is optimal when the total value of the scores is the highest among the results, or when the operator determines that the upper case is optimal You may judge.
- a case with a higher score may be automatically searched using a genetic algorithm or particle swarm optimization technique, and it may be determined whether or not the result is optimal.
- step S83 a driving instruction value is calculated based on the simulation conditions and results determined to be optimal, and the results are output to an output screen or the like to be described later. Thereafter, the driving instruction flow ends.
- the process value can be accurately estimated by using a general-purpose model, so that the operation support of the plant 100 can be effectively performed.
- FIG. 4A is an overall configuration diagram showing the plant 100 and an operation control apparatus 200 that controls the plant 100.
- FIG. 4B is a diagram illustrating a hardware configuration of the operation control apparatus 200.
- the operation control device 200 includes a CPU (Central Processing Unit) 72, a RAM (Random Access Memory) 74, a ROM (Read Only Memory) 76, an HDD (Hard Disk Drive) 78, an input I / F 80, and an output I / F 82. These are configured using computers connected to each other via a bus 84.
- the hardware configuration of the operation control device 200 is not limited to the above, and may be configured by a combination of a control circuit and a storage device.
- the operation control device 200 is configured by a computer executing a program that realizes each function of the operation control device 200.
- the function of each part in the operation control apparatus 200 described below is realized, for example, by loading a program held in the ROM 76 into the RAM 74 and executing the program by the CPU 72 and reading and writing data in the RAM 74 and the ROM 76. Further, by providing an arithmetic device specialized in image processing such as GPU (Graphics Processing Unit), it is possible to more efficiently execute image data processing.
- GPU Graphics Processing Unit
- the plant 100 includes the configuration shown in FIG. 1 in detail, but FIG. 4A typically shows the image sensor SR1, the physical sensor SR2, and the operation end OP.
- the operation end OP refers to a valve or a damper.
- the configuration of the image sensor SR1 is as described above.
- the physical sensor SR2 is a sensor for detecting operation data including process values of the plant 100 in addition to a temperature sensor or the like.
- the data acquisition unit 301 includes the operation data of the plant 100 (at least one of the physical parameters related to the specifications of the plant 100 or the fuel parameters related to the properties of the fuel, the process value of the plant 100), and the combustion region of the plant 100. And image data.
- the data acquisition unit 301 acquires image data from the image sensor SR1 of the plant 100 and stores it in the image database DB1.
- the data acquisition unit 301 acquires operation data from the physical sensor SR2 and stores it in the operation database DB2.
- the image database DB1 stores the image data of the fuel region in the plant 100 acquired by the data acquisition unit 301.
- the operation database DB2 stores the operation data of the plant 100 acquired by the data acquisition unit 301.
- the data extraction / conversion unit 302 reads (extracts) data necessary for model creation and operation control from the image database DB1 and the operation database DB2, and performs complementation or format conversion as necessary. Further, an example of the conversion here is a process of estimating and identifying operation data that cannot be directly measured by the image sensor SR1 or the physical sensor SR2 from other data. Since the estimation process is executed in software using a computer, the estimated value is called a soft sensor value.
- the data extraction / conversion unit 302 reads the image data stored in the image database DB1 and extracts the feature amount of the image data.
- the plant specification database DB3 stores physical parameters related to the specifications of the plant 100. A specific example of physical parameters in the plant specification database DB3 will be described later with reference to FIG.
- the fuel property database DB4 stores fuel parameters related to the properties of fuel used in the boiler plant 100. A specific example of the fuel parameter in the fuel property database DB4 will be described later with reference to FIG.
- the model creation unit 303 (model creation device) is configured to create a model using at least one of a physical parameter or a fuel parameter and a feature amount of image data as input parameters.
- the model creation unit 303 uses the operation data and image data from the data extraction / conversion unit 302, the plant specification data from the plant specification database DB3, and the fuel property data from the fuel property database DB4 to generate a boiler.
- a model indicating the relationship between the input parameters of the plant 100 and the process values is created.
- the created model is stored and stored in the model database DB5.
- the simulation unit 304 calculates a virtual process value using the operation data and the feature amount of the image data output from the data extraction conversion unit 302 and the model output from the model database DB5, and outputs the calculation result to the optimization unit 305. To do.
- the optimization unit 305 is configured to calculate an optimal set of input parameters so that the process value satisfies a predetermined condition.
- the optimization unit 305 determines whether or not the virtual process value is optimal (whether or not the virtual process value satisfies a predetermined condition), and outputs the virtual process value to the operation instruction unit 306 if it is determined to be optimal. If it is determined that it is not, the set of input parameters as simulation conditions is reset and output to the simulation unit 304 so as to perform simulation again.
- the driving instruction unit 306 calculates a driving instruction value based on the set of input parameters determined to be optimal, and outputs it to the driving control unit 201 (details are described in the driving instruction step).
- the input / output unit 307 displays a model creation result and a verification result, a simulation evaluation result, and a driving instruction proposal screen, and accepts an operator's instruction for each. Further, if there is input of additional information to the plant specification database DB3 or the fuel property database DB4, the input result is output to each.
- a driving control device 200 including a driving support device 300 and a driving control unit 201 may be configured.
- the operation control unit 201 controls the operation (valve opening degree, etc.) of each operation end OP of the boiler plant 100 based on the operation instruction value output from the operation instruction unit 306 of the operation support device 300.
- the operation control may be performed automatically based on the operation instruction value, or may be performed after the operator's consent at the input / output unit 307.
- the operation control unit 201 adds the operation instruction value from the operation support apparatus 300 as a bias value to the operation instruction value from the boiler plant control device (not shown), and instructs the final operation instruction value. May be.
- Fig. 5 is a schematic diagram showing the relationship between model inputs and outputs.
- the model input parameters include at least one of physical parameters and fuel parameters (both physical parameters and fuel parameters in the illustrated embodiment), and feature amount parameters related to the feature amount of the image data. And are included.
- the parameter for the operation end OP is a parameter indicating an instruction value (valve opening degree or the like) to the operation end OP.
- a model is created for each process value.
- the process value (virtual process value) as an output calculated by simulation using a model includes, for example, unburned ash content, NOx value, CO value, and the like.
- a process value is obtained by creating a model using a feature amount extracted from image data obtained by imaging the inside of the furnace, using an index related to the exhaust gas component of the plant 100 or an index related to the emission of the plant as a process value. It can be estimated with high accuracy.
- the model is created in consideration of a time lag until the exhaust gas or emission generated in the combustion state indicated by the past image information reaches the state quantity measurement point.
- a time lag may differ so much that it cannot be ignored depending on the type of furnace and the location of the measurement point.
- FIG. 6 is an example of a data format in the model database DB5.
- the horizontal axis is segmented by function, input parameter, and model details for each plant.
- a technique for modeling is described. Examples of modeling methods include, but are not limited to, stepwise methods, random forests, k-nearest neighbor methods (KNN), and neural network methods.
- KNN k-nearest neighbor methods
- each item of the model formula shown below is described. Or the reference destination of another database in which each item is described may be described.
- F f (x, ⁇ , ⁇ , n) (A)
- f is a modeling method (function)
- x is an input parameter
- ⁇ weighted
- ⁇ is an intercept
- n is the number of input parameters.
- the vertical axis is divided by model creation unit.
- process values to be modeled are listed.
- FIG. 7 is an example of a data format in the plant specification database DB3.
- the horizontal axis is divided by plant name.
- the vertical axis is divided by items representing plant specifications.
- Structural specifications are dimensions, and furnace dimensions are exemplified.
- the performance specification is a value representing the performance of the plant, and examples thereof include exhaust gas temperature and steam temperature. As the structural specification and performance index, not only the representative value of the measurement result but also the value of the design condition may be described.
- FIG. 8 shows an example of a data format in the fuel property database DB4.
- the horizontal axis is divided by fuel.
- the vertical axis is divided by items representing fuel properties.
- the fuel properties include, for example, information on fuel such as fuel components (such as carbon or moisture) and fineness after pulverization, and examples include industrial analysis (such as fuel ratio) and elemental analysis (such as carbon content).
- the fuel ratio is a ratio of fixed carbon to volatile components.
- FIG. 9 is an example of a data format in the additional parameter candidate database DB6.
- the horizontal axis is divided according to the data acquisition method and applicable conditions.
- the data acquisition method may be a method of acquiring a measured value by measurement with the physical sensor SR2, or a method of acquiring a calculated value (soft sensor value) calculated by combining a plurality of measured values. Good. If there is no measured value of an appropriate parameter that represents the plant specification, the calculated value may be substituted.
- the vertical axis is divided by physical parameters and fuel parameters.
- the physical parameters include those obtained from boiler specifications such as structural dimensions and those obtained from measured values or calculated values such as gas temperature and steam temperature. The latter may be set with reference to the design value from the boiler specification.
- the fuel parameters are the motor current value of the table of the pulverizer, the pressure acting on the rollers and the differential pressure of the fluid (gas, powder), etc. for coal pulverization, fuel consumption (call flow), heat transfer for coal combustion
- the operation data of one pulverizer is used as a representative, and when the pulverizer stops, the operation data is switched to another pulverizer operation data. This is because even if one pulverizer stops due to maintenance or the like, operation support can be continued using operation data of another pulverizer. What is necessary is just to select a grinder according to the burner position which supplies an operation rate and pulverized coal. In particular, it is preferable to select from a pulverizer that supplies pulverized coal to the middle burner as much as possible. This is because the average behavior in the boiler can be reflected.
- FIG. 10 is a diagram illustrating an example of the overall configuration of a driving support system 500 that supports model creation.
- the driving support system 500 can communicate with a plurality of local support systems 300A, 300B, and 300C provided for each of the plurality of boiler plants 100A, 100B, and 100C, and the local support systems 300A, 300B, and 300C via the network N, for example.
- the remote support system 400 is comprised. Boiler plants 100A, 100B, and 100C are connected to local support systems 300A, 300B, and 300C, respectively. Each of the local support systems 300A, 300B, and 300C is connected to the remote support system via the network N.
- FIG. 11 is a diagram showing a detailed configuration example of the driving support system 500, and shows the configuration of the local support system 300A as a representative configuration example.
- the local support systems 300B and 300C have the same configuration as the local support system 300A.
- the local support system 300 ⁇ / b> A includes a driving support device 300 and a first transmission / reception unit 308. Note that the driving control device 200 may be employed instead of the driving support device 300.
- the remote support system 400 includes a second transmission / reception unit 401 and a common model database DB7.
- the first transmission / reception unit 308 is configured to transmit the operation data, the image data, and the model update result of the plant 100 to the second transmission / reception unit 401 at regular intervals or according to an instruction from the second transmission / reception unit 401.
- the first transmission / reception unit 308 is configured to receive the operation data, image data, and model update results of the plant 100 in the other local support systems 300B and 300C transmitted from the second transmission / reception unit 401.
- the second transmission / reception unit 401 is configured to receive operation data, image data, and model update results transmitted from the local support systems 300A, 300B, and 300C.
- the operation data, the image data, and the model update result are transmitted to the first transmission / reception unit 308 of all other local support systems 300A, 300B, and 300C at any time or at regular intervals. ing.
- the first transmission / reception unit 308 When the first transmission / reception unit 308 receives new operation data and a model update result, the first transmission / reception unit 308 transmits the operation data update result to the operation database DB2 and the model update result to the model database DB5.
- the present invention is not limited to the above-described embodiments, and includes forms obtained by modifying the above-described embodiments and forms obtained by appropriately combining these forms.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
燃料を燃焼するプラントの入力パラメータとプロセス値との関係を示すモデルを作成するモデル作成方法であって、プラントの仕様に関係する物理パラメータ又は燃料の性状に関係する燃料パラメータのうち少なくとも一方を含むプラントの運転データと、プラントの燃焼領域の画像データとを読み込む読込ステップと、画像データの特徴量を抽出する抽出ステップと、物理パラメータ又は燃料パラメータのうち少なくとも一方と、画像データの特徴量とを入力パラメータとしてモデルを作成するモデル作成ステップと、を備える。
Description
本開示は、モデル作成方法、プラントの運転支援方法及びモデル作成装置に関する。
特許文献1には、プラントに制御信号を与えたときに計測される計測信号の値を推定する統計モデル(シミュレーションモデル)に関し、ボイラの操作端のエアダンパの開度やバーナの角度等を統計モデルの入力パラメータとし、ボイラから排出される排ガスに含まれるNOx、CO及びH2S濃度等を統計モデルのプロセス値(アウトプット)として、プロセス値の各々を最小化する制御装置が開示されている。
ところで、プラントの仕様や燃料の性状が変化した場合には、プラントの入力パラメータとプロセス値との関係が変化することが想定される。しかしながら、特許文献1には、プラントの仕様や燃料の性状が変化した場合に如何にしてプロセス値を精度よく予測するかについての知見は何ら記載されていない。
本発明の少なくとも一実施形態は、上述したような従来の課題に鑑みなされたものであって、その目的とするところは、プラントの仕様や燃料性状の変化に対応してプロセス値を精度良く予測することができるモデル作成方法、プラントの運転支援方法及びモデル作成装置を提供することである。
(1)本発明の少なくとも一実施形態に係るモデル作成方法は、
燃料を燃焼するプラントの入力パラメータとプロセス値との関係を示すモデルを作成するモデル作成方法であって、
前記プラントの仕様に関係する物理パラメータ又は前記燃料の性状に関係する燃料パラメータのうち少なくとも一方を含む前記プラントの運転データと、前記プラントの燃焼領域の画像データを読み込む読込ステップと、
前記画像データの特徴量を抽出する抽出ステップと、
前記物理パラメータ又は前記燃料パラメータのうち前記少なくとも一方と、前記画像データの前記特徴量とを前記入力パラメータとして前記モデルを作成するモデル作成ステップと、
を備える。
燃料を燃焼するプラントの入力パラメータとプロセス値との関係を示すモデルを作成するモデル作成方法であって、
前記プラントの仕様に関係する物理パラメータ又は前記燃料の性状に関係する燃料パラメータのうち少なくとも一方を含む前記プラントの運転データと、前記プラントの燃焼領域の画像データを読み込む読込ステップと、
前記画像データの特徴量を抽出する抽出ステップと、
前記物理パラメータ又は前記燃料パラメータのうち前記少なくとも一方と、前記画像データの前記特徴量とを前記入力パラメータとして前記モデルを作成するモデル作成ステップと、
を備える。
上記(1)に記載のモデル作成方法によれば、物理パラメータ又は燃料パラメータのうち少なくとも一方と、画像データの特徴量とを入力パラメータとしてモデルを作成することにより、プラント仕様と燃料性状の違いを考慮して画像データを用いてプロセス値を精度良く予測することができる。また、入力パラメータの一つに燃焼領域の画像データの特徴量を含むため、例えばプロセス値としてプラントの灰中未燃分を採用する場合(プラントの入力パラメータとプラントの灰中未燃分との関係を示すモデルを作成する場合)には、通常は迅速な測定が困難な灰中未燃分を常時かつ迅速に評価することが可能となり、最適な燃焼状態の維持による燃料費のロスを削減することができる。
(2)幾つかの実施形態では、上記(1)に記載のモデル作成方法において、
前記画像データは、動画像または静止画像の少なくとも一方が撮像可能な撮像装置によって前記燃焼領域を上から撮影して取得される。
前記画像データは、動画像または静止画像の少なくとも一方が撮像可能な撮像装置によって前記燃焼領域を上から撮影して取得される。
上記(2)に記載のモデル作成方法によれば、燃焼領域の上から撮影した画像データを読み込んでモデル作成に利用することにより、プロセス値を精度良く予測することができる。
(3)幾つかの実施形態では、上記(1)又は(2)に記載のモデル作成方法において、
前記抽出ステップでは、前記画像データの特徴量として、前記燃焼領域の形、大きさ、色、濃淡、輝度、温度(温度分布)、波長(波長分布)のいずれかに係る情報またはその変化量を抽出する。
前記抽出ステップでは、前記画像データの特徴量として、前記燃焼領域の形、大きさ、色、濃淡、輝度、温度(温度分布)、波長(波長分布)のいずれかに係る情報またはその変化量を抽出する。
上記(3)に記載のモデル作成方法によれば、燃焼領域の形、大きさ、色、濃淡、輝度、温度(温度分布)、波長(波長分布)のいずれかに係る情報またはその変化量に基づいて、プロセス値を精度良く予測することができる。また、燃焼領域の輝度情報は火炎そのものを検出することなく画像から得られる情報であり、例えば火炉内の上部に撮像装置を設置するなど火炎が排ガスで撮像されないような場合であっても、画像情報を得ることができる。これによって、火炉内を撮像するための撮像装置(炉内カメラ)の設置を容易化することも可能となる。
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかに記載のモデル作成方法において、
前記モデル作成ステップでは、前記プラントの排気ガス成分に係る指標又は前記プラントの排出物に係る指標を前記プロセス値として前記モデルを作成する。
前記モデル作成ステップでは、前記プラントの排気ガス成分に係る指標又は前記プラントの排出物に係る指標を前記プロセス値として前記モデルを作成する。
排気ガス成分又は排出物は、火炉内の燃焼プロセスで生成され、プラントの燃焼領域における燃焼状態に大きく左右されるため、これらの生成量は燃焼領域の画像データとの相関性が高い。このため、上記(4)に記載のようにプラントの排気ガス成分に係る指標又はプラントの排出物に係る指標をプロセス値としてモデルを作成することにより、プロセス値を精度良く推定できる。
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかに記載のモデル作成方法において、
前記読込ステップでは、前記プラントの構造、性能又は設計条件の少なくとも一つに係るパラメータを前記物理パラメータとして読み込み、
前記モデル作成ステップでは、前記プラントの構造、性能又は設計条件の少なくとも一つと前記画像データの前記特徴量とを前記入力パラメータとして前記モデルを作成する。
前記読込ステップでは、前記プラントの構造、性能又は設計条件の少なくとも一つに係るパラメータを前記物理パラメータとして読み込み、
前記モデル作成ステップでは、前記プラントの構造、性能又は設計条件の少なくとも一つと前記画像データの前記特徴量とを前記入力パラメータとして前記モデルを作成する。
プラントの大きさや撮像装置の設置位置、燃料の投入位置はプラント毎に異なり、同一のプロセス値であっても特徴量の値はプラント毎に異なる。このため、上記(5)に記載のように、プラントの構造、性能又は設計条件の少なくとも一つに係る適切な物理パラメータを考慮してモデルを作成することで、プラント仕様の違いに起因する特徴量の差異を補正し、プロセス値の推定精度を向上させることができる。
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかに記載のモデル作成方法において、
前記読込ステップでは、燃料の調整、燃焼、環境負荷又は水分の少なくとも一つに係るパラメータを前記燃料パラメータとして読み込み、
前記モデル作成ステップでは、燃料の調整、燃焼、環境負荷又は水分の少なくとも一つに係るパラメータと前記画像データの前記特徴量とを前記入力パラメータとして前記モデルを作成する。
前記読込ステップでは、燃料の調整、燃焼、環境負荷又は水分の少なくとも一つに係るパラメータを前記燃料パラメータとして読み込み、
前記モデル作成ステップでは、燃料の調整、燃焼、環境負荷又は水分の少なくとも一つに係るパラメータと前記画像データの前記特徴量とを前記入力パラメータとして前記モデルを作成する。
プロセス値は、投入される燃料性状の変化により、同一のプラント運転条件であっても変動することから、上記(6)に記載のように燃料の調整、燃焼、環境負荷又は水分の少なくとも一つに係る適切な燃料パラメータを考慮してモデルを作成することで、燃料性状の違いに起因する特徴量の差異を補正し、プロセス値の推定精度を向上させることができる。
(7)本発明の少なくとも一実施形態に係るプラントの運転支援方法は、
燃料を燃焼するプラントの入力パラメータとプロセス値との関係を示すモデルを用いるプラントの運転支援方法であって、
前記プラントの仕様に関係する物理パラメータ又は前記燃料の性状に関係する燃料パラメータのうち少なくとも一方を含む前記プラントの運転データと、前記プラントの燃焼領域の画像データとを読み込むデータ読込ステップと、
前記画像データの特徴量を抽出する抽出ステップと、
前記物理パラメータ又は前記燃料パラメータのうち前記少なくとも一方と、前記画像データの前記特徴量とを前記入力パラメータとした前記モデルを読み込むモデル読込ステップと、
前記プラントの運転データと、前記プラントの燃焼領域の画像データと、前記モデルとを用いて前記プロセス値を算出するシミュレーションステップと、
前記プロセス値が所定条件を満たすように、前記プラントの運転指示値を算出する運転指示ステップをさらに備える。
燃料を燃焼するプラントの入力パラメータとプロセス値との関係を示すモデルを用いるプラントの運転支援方法であって、
前記プラントの仕様に関係する物理パラメータ又は前記燃料の性状に関係する燃料パラメータのうち少なくとも一方を含む前記プラントの運転データと、前記プラントの燃焼領域の画像データとを読み込むデータ読込ステップと、
前記画像データの特徴量を抽出する抽出ステップと、
前記物理パラメータ又は前記燃料パラメータのうち前記少なくとも一方と、前記画像データの前記特徴量とを前記入力パラメータとした前記モデルを読み込むモデル読込ステップと、
前記プラントの運転データと、前記プラントの燃焼領域の画像データと、前記モデルとを用いて前記プロセス値を算出するシミュレーションステップと、
前記プロセス値が所定条件を満たすように、前記プラントの運転指示値を算出する運転指示ステップをさらに備える。
上記(7)に記載のプラントの運転支援方法によれば、物理パラメータ又は燃料パラメータのうち少なくとも一方と、画像データの特徴量とを入力パラメータとするモデルを用いてプロセス値を算出することにより、プラント仕様と燃料性状の違いを考慮して画像データを用いてプロセス値を精度良く予測することができる。また、入力パラメータの一つに燃焼領域の画像データの特徴量を含むため、例えばプロセス値としてプラントの灰中未燃分を採用する場合(プラントの入力パラメータとプラントの灰中未燃分との関係を示すモデルを作成する場合)には、通常は迅速な測定が困難な灰中未燃分を常時かつ迅速に評価することが可能となり、最適な燃焼状態の維持による燃料費のロスを削減することができる。これにより、プラントの運転支援を効果的に行うことができる。
(8)本発明の少なくとも一実施形態に係るモデル作成装置は、
燃料を燃焼するプラントの入力パラメータとプロセス値との関係を示すモデルを作成するモデル作成装置であって、
前記プラントの仕様に関係する物理パラメータ又は前記燃料の性状に関係する燃料パラメータのうち少なくとも一方を含む前記プラントの運転データと、前記プラントの燃焼領域の画像データとを取得するよう構成されたデータ取得部と、
前記データ取得部によって取得された前記画像データの特徴量を抽出するよう構成されたデータ抽出変換部と、
前記物理パラメータ又は前記燃料パラメータのうち前記少なくとも一方と、前記画像データの前記特徴量とを前記入力パラメータとして前記モデルを作成するよう構成されたモデル作成部と、
を備える。
燃料を燃焼するプラントの入力パラメータとプロセス値との関係を示すモデルを作成するモデル作成装置であって、
前記プラントの仕様に関係する物理パラメータ又は前記燃料の性状に関係する燃料パラメータのうち少なくとも一方を含む前記プラントの運転データと、前記プラントの燃焼領域の画像データとを取得するよう構成されたデータ取得部と、
前記データ取得部によって取得された前記画像データの特徴量を抽出するよう構成されたデータ抽出変換部と、
前記物理パラメータ又は前記燃料パラメータのうち前記少なくとも一方と、前記画像データの前記特徴量とを前記入力パラメータとして前記モデルを作成するよう構成されたモデル作成部と、
を備える。
上記(8)に記載のモデル作成装置によれば、物理パラメータ又は燃料パラメータのうち少なくとも一方と、画像データの特徴量とを入力パラメータとしてモデルを作成することにより、プラント仕様と燃料性状の違いを考慮して画像データを用いてプロセス値を精度良く予測することができる。
(9)本発明の少なくとも一実施形態に係るプラントの運転支援装置は、
燃料を燃焼するプラントの入力パラメータとプロセス値との関係を示すモデルを用いるプラントの運転支援装置であって、
前記プラントの仕様に関係する物理パラメータ又は前記燃料の性状に関係する燃料パラメータのうち少なくとも一方を含む前記プラントの運転データと、前記プラントの燃焼領域の画像データとを取得するよう構成されたデータ取得部と、
前記データ取得部によって取得された前記画像データの特徴量を抽出するよう構成されたデータ抽出変換部と、
前記物理パラメータ又は前記燃料パラメータのうち少なくとも一方と、前記画像データの前記特徴量とを前記入力パラメータとした前記モデルを記憶するモデルデータベースと、
前記プラントの運転データと、前記プラントの燃焼領域の画像データと、前記モデルデータベースに記憶された前記モデルとを用いて前記プロセス値を算出するシミュレーション部と、
前記プロセス値が所定条件を満たすように、最適な入力パラメータのセットをもとめるよう構成された最適化部と、
前記最適化部によって求めた前記最適な入力パラメータのセットから前記プラントの運転指示値を算出する運転指示部と、
を備える。
燃料を燃焼するプラントの入力パラメータとプロセス値との関係を示すモデルを用いるプラントの運転支援装置であって、
前記プラントの仕様に関係する物理パラメータ又は前記燃料の性状に関係する燃料パラメータのうち少なくとも一方を含む前記プラントの運転データと、前記プラントの燃焼領域の画像データとを取得するよう構成されたデータ取得部と、
前記データ取得部によって取得された前記画像データの特徴量を抽出するよう構成されたデータ抽出変換部と、
前記物理パラメータ又は前記燃料パラメータのうち少なくとも一方と、前記画像データの前記特徴量とを前記入力パラメータとした前記モデルを記憶するモデルデータベースと、
前記プラントの運転データと、前記プラントの燃焼領域の画像データと、前記モデルデータベースに記憶された前記モデルとを用いて前記プロセス値を算出するシミュレーション部と、
前記プロセス値が所定条件を満たすように、最適な入力パラメータのセットをもとめるよう構成された最適化部と、
前記最適化部によって求めた前記最適な入力パラメータのセットから前記プラントの運転指示値を算出する運転指示部と、
を備える。
上記(9)に記載のプラントの運転支援装置によれば、物理パラメータ又は燃料パラメータのうち少なくとも一方と、画像データの特徴量とを入力パラメータとするモデルを用いてプロセス値を算出することにより、プラント仕様と燃料性状の違いを考慮して画像データを用いてプロセス値を精度良く予測することができる。また、入力パラメータの一つに燃焼領域の画像データの特徴量を含むため、例えばプロセス値としてプラントの灰中未燃分を採用する場合(プラントの入力パラメータとプラントの灰中未燃分との関係を示すモデルを作成する場合)には、通常は迅速な測定が困難な灰中未燃分を常時かつ迅速に評価することが可能となり、最適な燃焼状態の維持による燃料費のロスを削減することができる。このため、プラントの運転支援を効果的に行うことができる。
(10)本発明の少なくとも一実施形態に係るプラントの運転支援システムは、
前記ローカル支援システムとネットワークを介して通信可能な遠隔支援システムとを備えるプラントの運転支援システムであって、
前記ローカル支援システムは、
前記運転データ、前記画像データ及び前記モデルの更新結果を前記遠隔支援システムへ送信するよう構成されるとともに、前記遠隔支援システムから送信された他のローカル支援システムにおける前記運転データ、前記画像データ及び前記モデルの更新結果を受信するよう構成された第一送受信部を含み、
前記遠隔支援システムは、
それぞれの前記ローカル支援システムから送信された前記運転データ、前記画像データ及び前記モデルの更新結果を受信するよう構成されるとともに、該更新結果を他のすべての前記ローカル支援システムへ前記運転データ、前記画像データ及び前記モデルの更新結果として送信するよう構成された第二送受信部を含む。
前記ローカル支援システムとネットワークを介して通信可能な遠隔支援システムとを備えるプラントの運転支援システムであって、
前記ローカル支援システムは、
前記運転データ、前記画像データ及び前記モデルの更新結果を前記遠隔支援システムへ送信するよう構成されるとともに、前記遠隔支援システムから送信された他のローカル支援システムにおける前記運転データ、前記画像データ及び前記モデルの更新結果を受信するよう構成された第一送受信部を含み、
前記遠隔支援システムは、
それぞれの前記ローカル支援システムから送信された前記運転データ、前記画像データ及び前記モデルの更新結果を受信するよう構成されるとともに、該更新結果を他のすべての前記ローカル支援システムへ前記運転データ、前記画像データ及び前記モデルの更新結果として送信するよう構成された第二送受信部を含む。
上記(10)に記載のプラントの運転支援システムによれば、他のローカル支援システム(例えば先行プラント)における運転データ、画像データおよびモデルの更新結果を共有することができる。
本発明の少なくとも一つの実施形態によれば、プラントの仕様や燃料性状の変化に対応してプロセス値を精度良く予測することができるモデル作成方法、プラントの運転支援方法及びモデル作成装置が提供される。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
以下では、燃料を燃焼するプラントの入力パラメータ(インプット)とプロセス値(アウトプット)との関係を示すシミュレーションモデル(以下、単に「モデル」と記載する。)を作成するモデル作成方法について説明する。
まず、モデル作成方法がモデル化の対象とするプラントの一例として、ボイラプラント100の構成を示す。図1は、ボイラプラント100の概要図である。
ボイラプラント100が備えるボイラ2は、固体燃料を燃焼させるよう構成されている。ボイラ2は、石炭を粉砕した微粉炭を微粉燃料(固体燃料)として用い、この微粉炭を火炉11の燃焼バーナにより燃焼させ、この燃焼により発生した熱を給水や蒸気と熱交換して蒸気を生成することが可能な石炭焚きボイラである。なお、燃料は石炭に限られず、バイオマス等、ボイラで燃焼可能な他の燃料であってもよい。さらに多種の燃料を混合して使用してもよい。
ボイラプラント100が備えるボイラ2は、固体燃料を燃焼させるよう構成されている。ボイラ2は、石炭を粉砕した微粉炭を微粉燃料(固体燃料)として用い、この微粉炭を火炉11の燃焼バーナにより燃焼させ、この燃焼により発生した熱を給水や蒸気と熱交換して蒸気を生成することが可能な石炭焚きボイラである。なお、燃料は石炭に限られず、バイオマス等、ボイラで燃焼可能な他の燃料であってもよい。さらに多種の燃料を混合して使用してもよい。
ボイラ2は、火炉11と燃焼装置12と煙道13を含む。火炉11は、例えば四角筒の中空形状を有し鉛直方向に沿って延設されている。火炉11の壁面は、蒸発管(伝熱管)と蒸発管を接続するフィンとで構成され、給水及び蒸気との熱交換により火炉壁の温度上昇が抑制される。具体的には、例えば、火炉11の側壁面に、複数の蒸発管が水平方向に並んで配置されるとともに蒸発管の各々が鉛直方向に沿って延設されている。フィンは、蒸発管と蒸発管との間を閉塞している。火炉11の炉底には傾斜面62が設けられており、傾斜面62に炉底蒸発管70が設けられて火炉の底面を構成する。火炉11の上方には、画像センサSR1が設けられている。
燃焼装置12は、火炉11を構成する火炉壁における鉛直方向の下部側に設けられている。また、燃焼装置12は、火炉壁に装着された複数の燃焼バーナ(例えば燃焼バーナ21,22,23,24,25)を有している。複数の燃焼バーナ21,22,23,24,25は、例えば火炉11の周方向に沿って均等間隔で配設されている。但し、火炉の形状、バーナの配置、一つの段における燃焼バーナの数、及び段数は上記形態に限定されるものではない。
燃焼バーナ21,22,23,24,25は、それぞれ、微粉炭供給管26,27,28,29,30を介して粉砕機(微粉炭機/ミル)31,32,33,34,35に連結されている。石炭は、図示しない搬送系統で搬送されて粉砕機31,32,33,34,35に投入されると、粉砕機31,32,33,34,35で所定の微粉の大きさに粉砕される。粉砕された石炭(微粉炭)は、搬送用空気(1次空気)とともに、微粉炭供給管26,27,28,29,30から燃焼バーナ21,22,23,24,25に供給される。
また、火炉11には、各燃焼バーナ21,22,23,24,25の装着位置に風箱36が設けられている。空気ダクト37bの一端部が風箱36に連結されており、空気ダクト37bの他端部が空気を供給する空気ダクト37aに連結点37dにおいて連結されている。
また、火炉11の鉛直方向上方には煙道13が連結されており、蒸気を生成するための複数の熱交換器41,42,43,44,45,46,47が煙道13に配置されている。燃焼バーナ21,22,23,24,25が火炉11内に微粉炭燃料と燃焼用空気との混合気を噴射することで火炎が形成され、燃焼ガスが生成されて煙道13に流れる。火炉壁及び熱交換器41~47を流れる給水や蒸気を燃焼ガスにより加熱することで過熱蒸気が生成され、生成された過熱蒸気により図示しない蒸気タービンが回転駆動され、蒸気タービンの回転軸に連結した図示しない発電機が回転駆動されることで発電が行われる。煙道13には排ガス通路48が連結される。排ガス通路48には、燃焼ガスの浄化を行うための脱硝装置50、押込送風機38aから空気ダクト37aへ流れる空気と排ガス通路48を流れる排ガスとの間で熱交換を行うエアヒータ49、煤塵処理装置51、及び誘引送風機52などが設けられている。排ガス通路48の下流端部には煙突53が設けられている。なお、脱硝装置50は排ガス基準を満足できれば設けなくてもよい。
また、微粉炭の搬送用空気(1次空気)は、1次空気送風機38bからエアヒータ49を通過する空気ダクト37eとエアヒータ49をバイパスする空気ダクト37fとに送られる。1次空気は、所定の温度等になるように両方のダクトの送風量が調整された後に合流し、空気ダクト37gを経由して粉砕機(ミル)31,32,33,34,35に送られる。
火炉11は、1次空気及び風箱36から火炉11に投入される燃焼用空気(2次空気)による燃料過剰燃焼後に、新たに燃焼用空気(アフタエア)を投入して燃料希薄燃焼を行わせる、所謂2段燃焼方式の火炉である。そのため、火炉11にはアフタエアポート39が備えられる。アフタエアポート39には空気ダクト37cの一端部が連結され、空気ダクト37cの他端部は空気を供給する空気ダクト37aに連結点37dにおいて連結される。なお、2段燃焼方式を採用しない場合、アフタエアポート39は設けなくてもよい。
送風機38から空気ダクト37aに送られた空気は、エアヒータ49で燃焼ガスとの熱交換により温められ、空気ダクト37bを経由して風箱36へ導かれる2次空気と、空気ダクト37cを経由してアフタエアポート39へと導かれるアフタエアとに連結点37dにおいて分岐する。
画像センサSR1は、ボイラプラント100における燃焼領域の画像データを生成するように火炉11の上部に設けられている。画像センサSR1は、例えば動画像または静止画像の少なくとも一方を撮像可能な撮像装置を構成しており、燃焼領域を上から撮影できるように設けられている。撮像装置は、例えば、デジタルカメラ、ビデオカメラ、又は特定の波長を検知可能な赤外線カメラなどのカメラであってもよい。燃焼領域の画像データは、火炉11内を撮像した画像そのものであってもよいし、画像から抽出可能な特徴量であってもよい。また、画像は、静止画像であってもよいし、動画像を構成するフレーム(画像)であっても良い。画像センサSR1は、火炉11の側壁部など、火炉11の上部以外の位置に設置されても良い。例えば、側壁部における二次燃焼領域を形成する部分や、そのさらに上の部分(上部により近い部分)に画像センサを設置すると共に、一次燃焼領域が位置する下方を撮像するように斜め下に向けて設置されてもよい。
図2は、一実施形態に係るモデル作成方法を示すモデル作成フロー図である。
図2に示すモデル作成方法では、燃料を燃焼するボイラプラント100における燃焼領域の画像データを活用して、ボイラプラント100の入力パラメータ(インプット)とプロセス値(アウトプット)との関係を示すモデルを作成する。本実施形態に係るモデルは、該モデルに入力された入力パラメータに基づいてプロセス値を予測(シミュレーション)するために用いられる。原則としてモデルはプロセス値ごとに作成されるが、これに限定されず1つのモデルで複数のプロセス値を出力するようにしてもよい。また、ここでは典型的な発電プラントとしてのボイラプラントを例に説明するが、以下で説明するモデル作成方法は、ボイラプラントに限らず、広く工業製品又は材料を生成するプラントにも適用可能である。例えば、燃料を燃焼するプラントとして、発電プラント以外に、蒸気供給プラント、製鉄プラントが例示される。
図2に示すモデル作成方法では、燃料を燃焼するボイラプラント100における燃焼領域の画像データを活用して、ボイラプラント100の入力パラメータ(インプット)とプロセス値(アウトプット)との関係を示すモデルを作成する。本実施形態に係るモデルは、該モデルに入力された入力パラメータに基づいてプロセス値を予測(シミュレーション)するために用いられる。原則としてモデルはプロセス値ごとに作成されるが、これに限定されず1つのモデルで複数のプロセス値を出力するようにしてもよい。また、ここでは典型的な発電プラントとしてのボイラプラントを例に説明するが、以下で説明するモデル作成方法は、ボイラプラントに限らず、広く工業製品又は材料を生成するプラントにも適用可能である。例えば、燃料を燃焼するプラントとして、発電プラント以外に、蒸気供給プラント、製鉄プラントが例示される。
まず、読込ステップS1において、プラント100の運転データと、プラント100の燃焼領域の画像データを読み込む。また、読込ステップS1で読み込まれる運転データは、プラントの仕様に関係する物理パラメータ又は燃料の性状に関係する燃料パラメータのうち少なくとも一方と、プラント100のプロセス値とを含む。読込ステップS1で物理パラメータを読み込む場合には、プラント100の構造、性能、又は設計条件のうち少なくとも一つに係るパラメータを物理パラメータとして読み込んでもよい。また、プラント100の燃焼領域の画像データは、プラント100に設置された画像センサSR1によって取得され、静止画および静止画の連続である動画の何れであってもよい。画像データの形式は、静止画であればTIFFやBMP、動画であればAVIに代表される非圧縮形式のデータであってもよいし、静止画であればJPEGやPNG、動画であればMPEGやMP4に代表される圧縮形式のデータであってもよい。
次に、抽出ステップS2において、読込ステップS1で読み込んだ画像データの特徴量を抽出する。特徴量の計算は、装置の構成を適切に選ぶことで画像データの読み込みと並行して処理することが可能であり、画像データの容量が膨大になる場合でも全ての画像データの読み込みが終了する前から特徴量の計算処理を開始することができる。画像データの特徴量は、例えば、画像データに現れたり画像データに基づいて得られたりする燃焼領域の形、大きさ、色、濃淡、輝度、温度(温度分布)若しくは波長(波長分布)に係る情報であってもよいし、これらの情報のうち少なくとも一つの情報の変化量であってもよい。なお、変化量とは、空間的および/または時間的な変化量のことを指す。特徴量は典型的には画像データの輝度情報から計算される、画像データの特徴を数値化した情報である。
特徴量として上記の変化量等を採用する場合には、例えば立体高次局所自己相関特徴量(CHLAC特徴量)、CNN(Convolution Neural Network)、又はAE(AutoEncoder)により得られる特徴量を用いてもよい。CHLAC特徴量は、画像の全体に現れる時空間変動をコンパクトに表現できるという利点を有する。また、CNNでは畳み込み処理やプーリング処理によって、AEではエンコード処理によって特徴量を抽出することで、画像の全体の特徴を効果的に縮小し取得することができる。
輝度情報に基づいて抽出される特徴量は、画像から得られる輝度の値(輝度値)そのものであっても良いし、輝度値の平均、ピークなどの統計値であっても良い。あるいは、上記の特徴量は、所定値以上の輝度を有する部分の面積、形、大きさのいずれかであっても良いし輝度値の変化量であっても良い。なお、輝度情報には、輝度値を変換することにより得られる温度や温度分布などの、輝度値から変換可能な情報が含まれてもよい。
画像データの輝度情報は、カラー画像におけるR(赤)、G(緑)、B(青)の濃淡の値を、白黒(グレースケール)の濃淡の値に変換して得られる情報であるため、変換前のRGBの濃淡情報、即ち画像の色情報から特徴量を計算することで、より多様なパターンの特徴量を抽出することが可能である。画像の色情報に基づいて抽出される特徴量は、RGBの各々の濃淡の値そのものであっても良いし、濃淡値の平均、ピークなどの統計値であっても良い。あるいは、例えばRの値とGの値の比といったような、各波長間の相関関係を示す値であっても良い。
輝度情報は、火炎そのものを検出することなく画像から得られる情報であり、例えば火炉内の上部に画像センサSR1を設置するなど火炎が排ガスで撮像されないような場合であっても画像データを得ることができる。これによって、火炉内を撮像するための撮像装置(炉内カメラ)の設置を容易化することも可能となる。
次に、モデル作成ステップS3において、以下に詳細を示す各ステップが順次実行される。まず、ステップS31において、モデル作成の回数N(初期値は0)に1を追加する。そして、ステップS32で、モデル作成条件及び追加パラメータ候補を読み込む。回数Nが2以上の場合には、モデル作成条件及び追加パラメータ候補の変更を行う。ここで、モデル作成条件とは、モデル作成の対象(プロセス値)、手法(関数式)及び許容誤差等のことである。また、追加パラメータ候補とは、後述する入力パラメータの追加候補のことである。
次に、ステップS33において、プラント仕様(運転条件)または燃料性状がプラント100の運転中に変化するか否かを判断する。ステップS33でプラント100の運転中にプラント仕様が変化する場合は、ステップS34でプラント仕様に関係する物理パラメータをモデルの入力パラメータに追加する。ここで、物理パラメータとは、プラント100の構造、性能、又は設計条件のうち少なくとも一つに係るパラメータである。ステップS33でプラント100の運転中に燃料性状が変化する場合は、ステップS35で燃料性状に関係する燃料パラメータをモデルの入力パラメータに追加する。ここで、燃料パラメータとは、燃料の調整、燃焼、環境負荷又は水分の少なくとも一つに係るパラメータである。ステップS33でプラント100の運転中にプラント仕様及び燃料性状のいずれも変化しない場合は、入力パラメータの追加は行わない(ステップS36)。
プラントの大きさや撮像装置の設置位置、燃料の投入位置はプラント毎に異なり、同一のプロセス値であっても特徴量の値はプラント毎に異なる。このため、上記のように、プラント100の構造、性能又は設計条件の少なくとも一つに係る適切な物理パラメータを考慮してモデルを作成することで、プラント仕様の違いに起因する特徴量の差異を補正し、プロセス値の推定精度を向上させることができる。また、プロセス値は、投入される燃料性状の変化により、同一のプラント運転条件であっても変動することから、上記のように燃料の調整、燃焼、環境負荷又は水分の少なくとも一つに係る適切な燃料パラメータを考慮してモデルを作成することで、燃料性状の違いに起因する特徴量の差異を補正し、プロセス値の推定精度を向上させることができる。
次に、ステップS37において、読込ステップS1で読み込んだ運転データと画像データを用いてモデルの入力パラメータとプロセス値との関係を機械学習し、プラント100の入力パラメータとプロセス値との関係を示すモデルを作成する。例えば、読込ステップS1で読み込んだ運転データの一部と画像データの一部を用いて、入力パラメータ(物理パラメータ又は燃料パラメータの少なくとも一方と画像データ)とプロセス値との関係を機械学習し、プラント100の入力パラメータとプロセス値との関係を示すモデルを作成する。
次に、検証ステップS4において、以下に詳細を示す各ステップが順次実行される。まず、ステップS41において、ステップS1で読み込んだ運転データと画像データのうち、ステップS37で機械学習に使用しなかった運転データと画像データを用いて、ステップS37で作成されたモデルの精度検証を行う。例えば、読込ステップS1で読み込んだ運転データと画像データのうちステップS37で機械学習に使用しなかった運転データと画像データをステップS37で作成したモデルに入力する。そして、該モデルで算出されたプロセス値(アウトプット)のシミュレーション値(仮想プロセス値)と、読込ステップS1で読み込んだ運転データにおける実測値としてのプロセス値(実プロセス値)とを対比し、誤差を確認する。
次に、ステップS42において、ステップS41で確認した誤差が許容誤差の範囲内か否かを判断する。ステップS41で確認した誤差が許容誤差の範囲内であれば、ステップS37で作成したモデルは妥当であると判断する。S41で確認した誤差が許容誤差を超える場合には、ステップS42において、ステップS37で作成したモデルは妥当でないと判断して、ステップS43で回数Nが許容回数Nth以下であるか否かを確認する。ステップS43で回数Nが許容回数Nth以下であれば、モデル作成ステップS3に戻り、モデル作成条件、追加パラメータ候補を変更して、モデルを修正する。
次に、出力ステップS5において、以下に詳細を示す各ステップが実行される。まず、ステップS37で作成されたモデルは妥当であるとステップS42で判断された場合には、ステップS51において、当該モデルを後述する入出力部やモデルデータベースへ出力する。ステップS43で前述の回数Nが許容回数Nthを超える場合は、ステップS52においてモデル作成エラーを出力する。モデルもしくはモデル作成エラーのいずれかを出力してモデル作成フローは終了する。
出力ステップS5において、モデルの入力パラメータとプロセス値との関係を出力することにより、入力と出力の関係(傾向)についてオペレータが確認できる。
図2に示したモデル作成方法によれば、プラント100の仕様に関係する物理パラメータ、燃料の性状に関係する燃料パラメータ、及び燃焼領域の画像データの特徴量を入力パラメータとしてモデルを作成することにより、プラント仕様及び燃料性状の違いを考慮して画像データを用いてプロセス値を精度よく予測することができる。また、入力パラメータの一つに燃焼領域の画像データの特徴量を含むため、例えばプロセス値としてプラントの灰中未燃分を採用する場合(プラントの入力パラメータとプラントの灰中未燃分との関係を示すモデルを作成する場合)には、通常は迅速な測定が困難な灰中未燃分を常時かつ迅速に評価することが可能となり、最適な燃焼状態の維持による燃料費や脱硝費のロスを削減することができる。
図2ではプラント100のモデルの作成手法について説明したが、このようにして作成されたモデルは例えばプラント100の運転制御装置200(図4A及び図4B参照)に組み込まれて利用される。図3、図4A及び図4Bを用いてプラント100の運転制御装置200について説明する。
まず図3は、図2で作成したモデルを用いたシミュレーションの結果を、運転制御装置200に対する運転指示として与える運転指示フローを示したフローチャートである。
まず、ステップS61において、プラント100の運転データ、燃焼領域の画像データを読み込む(データ読込ステップ)。また、ステップ62において、図2に示した方法により作成したモデルを読み込む(モデル読込ステップ)。さらに、ステップS63では、ステップS2と同様にステップS6で読み込んだ画像データの特徴量を抽出する(抽出ステップ)。
次に、シミュレーションステップS7において、シミュレーションを実施する。まずS71において、シミュレーション条件を設定する。シミュレーション条件とは、入力パラメータのセット、すなわちプラント100の仕様に関係する物理パラメータ又は燃料の性状に関係する燃料パラメータのうち少なくとも一方とプラント100の燃焼領域の画像データのセットのことである。
ステップS72において、ステップS71で設定した入力パラメータのセットを図2に示した方法で作成したモデルに入力してシミュレーションを実施する。シミュレーションの結果として、プラント100のプロセス値(仮想プロセス値)が算出される。
運転指示ステップS8では、プロセス値が所定条件を満たすように、運転制御装置200に対する運転指示値を算出する。まずステップS81において、シミュレーション結果を評価する。ステップS82では、仮想プロセス値が最適か否か(所定条件を満たすか否か)を判断する。最適でない場合は、ステップS71に戻りシミュレーション条件を再設定して、新たな仮想プロセス値を算出することを指示する。
ステップS81における評価は、それぞれの仮想プロセス値を所定の換算係数でスコア(無次元)に換算することで行ってもよい。ステップS82では、そのスコアの合計値が所定値以上となる場合に仮想プロセス値が最適であると判断してもよい。または、複数のケース(シミュレーション条件)でシミュレーションを行い、それらの結果のうちスコアの合計値の最も高い場合、あるいは上位の数ケースのうちオペレータが最適と判断する場合に仮想プロセス値が最適であると判断してもよい。さらに、スコアがより高いケースを遺伝的アルゴリズムや粒子群最適化の手法を用いて自動で探索して、その結果から最適か否かを判断してもよい。
次に、ステップS83において、最適と判断されたシミュレーションの条件および結果に基づいて運転指示値を算出し、結果を後述する出力画面等へ出力する。その後、運転指示フローは終了となる。
上記運転指示フローによれば、汎用的なモデルを用いることによりプロセス値を精度良く推定することができるため、プラント100の運転支援を効果的に行うことができる。
図4Aは、プラント100及びプラント100の制御を行う運転制御装置200を示す全体構成図である。図4Bは運転制御装置200のハードウェア構成を示す図である。運転制御装置200は、CPU(Central Processing Unit)72、RAM(Random Access Memory)74、ROM(Read Only Memory)76、HDD (Hard Disk Drive)78、入力I/F80、及び出力I/F82を含み、これらがバス84を介して互いに接続されたコンピュータを用いて構成される。なお、運転制御装置200のハードウェア構成は上記に限定されず、制御回路と記憶装置との組み合わせにより構成されてもよい。また運転制御装置200は、運転制御装置200の各機能を実現するプログラムをコンピュータが実行することにより構成される。以下で説明する運転制御装置200における各部の機能は、例えばROM76に保持されるプログラムをRAM74にロードしてCPU72で実行するとともに、RAM74やROM76におけるデータの読み出し及び書き込みを行うことで実現される。さらに、例えばGPU(Graphics Processing Unit)のような画像処理に特化した演算装置を備えることで、より効率良く画像データの処理を実行することが実現される。
プラント100は、詳細には図1に示した構成を含むが、図4Aには、代表的に画像センサSR1、物理センサSR2、及び操作端OPを記載している。操作端OPとは、弁やダンパのことを指す。
画像センサSR1の構成については上述の通りである。物理センサSR2は、温度センサ等の他、プラント100のプロセス値を含む運転データを検知するためのセンサである。
データ取得部301は、プラント100の運転データ(プラント100の仕様に関係する物理パラメータ又は燃料の性状に関係する燃料パラメータのうち少なくとも一方と、プラント100のプロセス値)と、プラント100の燃焼領域の画像データとを取得するよう構成されている。データ取得部301は、プラント100の画像センサSR1から画像データを取得して画像データベースDB1に格納する。また、データ取得部301は、物理センサSR2から運転データを取得して運転データベースDB2に格納する。
画像データベースDB1は、データ取得部301によって取得したプラント100における燃料領域の画像データを記憶する。運転データベースDB2は、データ取得部301によって取得したプラント100の運転データを記憶する。
データ抽出変換部302は、モデル作成や運転制御用に必要なデータを画像データベースDB1及び運転データベースDB2から読込み(抽出し)、必要に応じて補完又はフォーマット変換を行う。また、ここでの変換の一例は、画像センサSR1又は物理センサSR2により直接計測できない運転データを、他のデータなどから推定し、同定する処理などである。係る推定処理は計算機を用いてソフト的に実行されることから推定した値をソフトセンサ値と呼ぶ。また、データ抽出変換部302は、画像データベースDB1に記憶された画像データを読み込んで画像データの特徴量を抽出する。
プラント仕様データベースDB3は、プラント100の仕様に関係する物理パラメータを記憶する。プラント仕様データベースDB3における物理パラメータの具体例は図7を用いて後述する。燃料性状データベースDB4は、ボイラプラント100で使用される燃料の性状に関係する燃料パラメータを記憶する。燃料性状データベースDB4における燃料パラメータの具体例は図8を用いて後述する。
モデル作成部303(モデル作成装置)は、物理パラメータ又は燃料パラメータのうち少なくとも一方と、画像データの特徴量とを入力パラメータとしてモデルを作成するよう構成されている。図示する形態では、モデル作成部303は、データ抽出変換部302からの運転データ及び画像データ、プラント仕様データベースDB3からのプラント仕様データ、並びに燃料性状データベースDB4からの燃料の性状データを用いて、ボイラプラント100の入力パラメータとプロセス値との関係を示すモデルを作成するよう構成されている。作成されたモデルは、モデルデータベースDB5に格納されて記憶される。
シミュレーション部304は、データ抽出変換部302から出力された運転データ及び画像データの特徴量並びにモデルデータベースDB5から出力されたモデルを用いて仮想プロセス値を算出し、算出結果を最適化部305へ出力する。
最適化部305は、プロセス値が所定条件を満たすように、最適な入力パラメータのセットを算出するよう構成されている。最適化部305は、仮想プロセス値が最適か否か(仮想プロセス値が所定条件を満たすか否か)を判断し、最適と判断した場合は仮想プロセス値を運転指示部306へ出力し、最適でないと判断した場合はシミュレーション条件としての入力パラメータのセットを再設定して再度シミュレーションを行うようシミュレーション部304へ出力する。運転指示部306は、最適と判断された入力パラメータのセットに基づいて運転指示値を算出し、運転制御部201へ出力する(詳細は上記運転指示ステップに記載)。
入出力部307は、モデルの作成結果及び検証結果、シミュレーションの評価結果、及び運転指示の提案画面を表示し、それぞれに対してオペレータの指示を受け付ける。また、プラント仕様データベースDB3又は燃料性状データベースDB4に対する追加情報の入力があれば、入力結果をそれぞれに出力する。
幾つかの実施形態では、図4Aに示すように、運転支援装置300と運転制御部201とを備える運転制御装置200を構成してもよい。
この場合、運転制御部201は、運転支援装置300の運転指示部306から出力される運転指示値に基づいてボイラプラント100の各操作端OPの運転(弁の開度等)を制御する。なお運転制御は、運転指示値に基づいて自動で行っても、入出力部307でのオペレータの承諾を経てから行っても、いずれでもよい。また、運転制御部201は、ボイラプラント制御装置(不図示)からの運転指示値に対して、運転支援装置300からの運転指示値をバイアス値として加算して、最終的な運転指示値を指示してもよい。
この場合、運転制御部201は、運転支援装置300の運転指示部306から出力される運転指示値に基づいてボイラプラント100の各操作端OPの運転(弁の開度等)を制御する。なお運転制御は、運転指示値に基づいて自動で行っても、入出力部307でのオペレータの承諾を経てから行っても、いずれでもよい。また、運転制御部201は、ボイラプラント制御装置(不図示)からの運転指示値に対して、運転支援装置300からの運転指示値をバイアス値として加算して、最終的な運転指示値を指示してもよい。
図5はモデルのインプットとアウトプットの関係を表す模式図である。モデルの入力パラメータには、操作端OP用のパラメータに加えて、物理パラメータ又は燃料パラメータの少なくとも一方(図示する形態では物理パラメータと燃料パラメータの両方)と、画像データの特徴量に係る特徴量パラメータとが含まれる。操作端OP用のパラメータとは、操作端OPへの指示値(弁の開度等)を示すパラメータのことである。モデルは、プロセス値ごとに作成される。モデルを用いたシミュレーションにより算出されたアウトプットとしてのプロセス値(仮想プロセス値)には、例えば灰中未燃分、NOx値、CO値等が含まれる。
プラント100の排気ガス成分又は排出物の生成量はプラントの燃焼領域における燃焼状態に大きく左右されるため、排ガス成分又は排出物の生成量は燃焼領域の画像データとの親和性が高い。このため、プラント100の排気ガス成分に係る指標又はプラントの排出物に係る指標をプロセス値として、火炉内を撮像した画像データから抽出した特徴量を用いてモデルを作成することにより、プロセス値を精度良く推定できる。
また、上記モデルは、過去の画像情報によって示される燃焼状態で生じた排ガス又は排出物が状態量の計測地点に到達するまでのタイムラグを考慮して作成されることが望ましい。このようなタイムラグは火炉の種類や計測地点の位置によって無視できないほど異なる場合があり、画像データとプロセス値のタイムラグを考慮してモデルを作成することにより、推定精度の高い推定モデルを作成することができる。
図6は、モデルデータベースDB5におけるデータフォーマットの一例である。
横軸は、プラントごとに関数、入力パラメータ、及びモデル詳細で区分けされる。関数には、モデル化する手法が記載される。モデル化する手法としては、ステップワイズ法、ランダムフォレスト、k近傍法(KNN)、ニューラルネットワーク法などが例示されるがこれに限られない。モデル詳細には、以下に示すモデル式の各項目が記載される。もしくは各項目を記載された別のデータベースの引用先が記載されてもよい。
F=f(x,ω,λ,n) (A)
ここで、fはモデル化手法(関数)、xは入力パラメータ、ωは重み付け、λは切片、nは入力パラメータの数を示す。
横軸は、プラントごとに関数、入力パラメータ、及びモデル詳細で区分けされる。関数には、モデル化する手法が記載される。モデル化する手法としては、ステップワイズ法、ランダムフォレスト、k近傍法(KNN)、ニューラルネットワーク法などが例示されるがこれに限られない。モデル詳細には、以下に示すモデル式の各項目が記載される。もしくは各項目を記載された別のデータベースの引用先が記載されてもよい。
F=f(x,ω,λ,n) (A)
ここで、fはモデル化手法(関数)、xは入力パラメータ、ωは重み付け、λは切片、nは入力パラメータの数を示す。
縦軸はモデルの作成単位で区分けされる。プロセス値ごとにモデルを作成する場合は、モデル化の対象とするプロセス値が列挙される。
図7は、プラント仕様データベースDB3におけるデータフォーマットの一例である。横軸はプラント名で区分けする。
縦軸は、プラント仕様を表す項目で区分けする。ここでは、構造仕様と性能仕様で区別している。構造仕様とは寸法のことであり、火炉寸法が例示される。性能仕様とは、プラントの性能を表す値であり、排ガス温度、蒸気温度等が例示される。構造仕様、性能指標は、計測結果の代表値だけでなく設計条件の値を記載してもよい。
縦軸は、プラント仕様を表す項目で区分けする。ここでは、構造仕様と性能仕様で区別している。構造仕様とは寸法のことであり、火炉寸法が例示される。性能仕様とは、プラントの性能を表す値であり、排ガス温度、蒸気温度等が例示される。構造仕様、性能指標は、計測結果の代表値だけでなく設計条件の値を記載してもよい。
図8は、燃料性状データベースDB4におけるデータフォーマットの一例である。横軸は燃料で区分けされる。縦軸は、燃料性状を表す項目で区分けする。燃料性状には、例えば燃料の成分(炭素又は水分など)や粉砕後の微粉度など、燃料に関する情報が含まれ、工業分析(燃料比等)と元素分析(炭素量等)が例示される。ここで燃料比とは、固定炭素と揮発分の比のことである。
図9は、追加パラメータ候補データベースDB6におけるデータフォーマットの一例である。
横軸はデータ取得法や適用条件で区分けする。データ取得法は、物理センサSR2での計測により計測値として取得する方法であってもよいし、複数の計測値を組合せて計算された計算値(ソフトセンサ値)として取得する方法であってもよい。プラント仕様を表す適切なパラメータの計測値がない場合に計算値で代用してもよい。
横軸はデータ取得法や適用条件で区分けする。データ取得法は、物理センサSR2での計測により計測値として取得する方法であってもよいし、複数の計測値を組合せて計算された計算値(ソフトセンサ値)として取得する方法であってもよい。プラント仕様を表す適切なパラメータの計測値がない場合に計算値で代用してもよい。
縦軸は、物理パラメータ及び燃料パラメータで区分けする。物理パラメータは、構造寸法などボイラ仕様から得られるものと、ガス温度や蒸気温度など計測値あるいは計算値から得られるものとを含む。なお、後者は、ボイラ仕様から設計値を参照して設定してもよい。
燃料パラメータは、石炭の粉砕に関して粉砕機のテーブルのモータ電流値、ローラに作用する圧力及び流体(気体、紛体)の差圧等であり、石炭の燃焼に関して燃料消費量(コールフロー)、伝熱面の吸収熱量及びボイラ出力等であり、環境負荷に関して排ガス中のSO2値等であり、水分に関して粉砕機の入口空気温度等である。
なお、粉砕機に関する運転データについて、2台以上の粉砕機の運転データを入力パラメータに用いてモデルを作成するのが好ましい。この場合、仮想プロセス値を算出する際は、1台の粉砕機の運転データを代表して使用し、当該粉砕機が停止した場合は別の粉砕機の運転データへ切り替える。1台の粉砕機がメンテナンス等で停止しても、別の粉砕機の運転データを用いて運転支援を継続できるためである。粉砕機は、稼働率や微粉炭を供給するバーナ位置に応じて選定すればよい。特に、なるべく中段のバーナに微粉炭を供給する粉砕機から選定するのが好ましい。ボイラ内の平均的な挙動を反映できるためである。
図10は、モデル作成を支援する運転支援システム500の全体構成例を示す図である。
運転支援システム500は、例えば複数のボイラプラント100A、100B、100C毎に設けられた複数のローカル支援システム300A、300B、300Cと、ローカル支援システム300A、300B、300CとネットワークNを介して通信可能な遠隔支援システム400とから構成されている。ボイラプラント100A、100B、100Cは、それぞれローカル支援システム300A、300B、300Cに接続されている。ローカル支援システム300A、300B、300Cの各々は、ネットワークNを介して遠隔支援システムに接続されている。
運転支援システム500は、例えば複数のボイラプラント100A、100B、100C毎に設けられた複数のローカル支援システム300A、300B、300Cと、ローカル支援システム300A、300B、300CとネットワークNを介して通信可能な遠隔支援システム400とから構成されている。ボイラプラント100A、100B、100Cは、それぞれローカル支援システム300A、300B、300Cに接続されている。ローカル支援システム300A、300B、300Cの各々は、ネットワークNを介して遠隔支援システムに接続されている。
図11は、運転支援システム500の詳細構成例を示す図であり、ローカル支援システム300Aの構成を代表構成例として示している。ローカル支援システム300B、300Cもローカル支援システム300Aと同じ構成を有している。
ローカル支援システム300Aは、運転支援装置300と第一送受信部308とを含む。なお、運転支援装置300ではなく運転制御装置200が採用されてもよい。遠隔支援システム400は、第二送受信部401と、共通モデルデータベースDB7とを含む。
第一送受信部308は、プラント100の運転データ、画像データ及びモデルの更新結果を、一定周期または第二送受信部401からの指示により第二送受信部401へ送信するよう構成されている。また、第一送受信部308は、第二送受信部401から送信された他のローカル支援システム300B,300Cにおけるプラント100の運転データ、画像データ及びモデルの更新結果を受信するよう構成されている。
第二送受信部401は、それぞれのローカル支援システム300A、300B、300Cから送信された運転データ、画像データ及びモデルの更新結果を受信するよう構成されている。新たな更新結果を受信した場合、随時または一定周期で運転データ、画像データ及びモデルの更新結果を、他の全てのローカル支援システム300A、300B、300Cの第一送受信部308へ送信するよう構成されている。
第一送受信部308は、新たな運転データとモデルの更新結果を受信した場合、運転データの更新結果を運転データベースDB2へ、モデルの更新結果をモデルデータベースDB5へそれぞれ送信する。
かかる構成により、他のローカル支援システム300A、300B、300Cにおける運転データ、画像データおよびモデルの更新結果を共有することができる。
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
2 ボイラ
11 火炉
12 燃焼装置
13 煙道
21,22,23,24,25 燃焼バーナ
26,27,28,29,30 微粉炭供給管
31,32,33,34,35 粉砕機
36 風箱
37a,37b,37c,37e,37f,37g 空気ダクト
37d 連結点
38 送風機
38a 押込送風機
38b 1次空気送風機
39 アフタエアポート
41,42,43,44,45,46,47 熱交換器
48 排ガス通路
49 エアヒータ
50 脱硝装置
51 煤塵処理装置
52 誘引送風機
53 煙突
62 傾斜面
70 炉底蒸発管
72 CPU
74 RAM
76 ROM
78 HDD
80 入力I/F
82 出力I/F
84 バス
100 ボイラプラント
200 運転制御装置
201 運転制御部
300 運転支援装置
300A,300B,300C ローカル支援システム
301 データ取得部
302 データ抽出変換部
303 モデル作成部
304 シミュレーション部
305 最適化部
306 運転指示部
307 入出力部
308 第一送受信部
400 遠隔支援システム
401 第二送受信部
500 運転支援システム
DB1 画像データベース
DB2 運転データベース
DB3 プラント仕様データベース
DB4 燃料性状データベース
DB5 モデルデータベース
DB6 追加パラメータ候補データベース
DB7 共通モデルデータベース
N ネットワーク
OP 操作端
SR1 画像センサ
SR2 物理センサ
11 火炉
12 燃焼装置
13 煙道
21,22,23,24,25 燃焼バーナ
26,27,28,29,30 微粉炭供給管
31,32,33,34,35 粉砕機
36 風箱
37a,37b,37c,37e,37f,37g 空気ダクト
37d 連結点
38 送風機
38a 押込送風機
38b 1次空気送風機
39 アフタエアポート
41,42,43,44,45,46,47 熱交換器
48 排ガス通路
49 エアヒータ
50 脱硝装置
51 煤塵処理装置
52 誘引送風機
53 煙突
62 傾斜面
70 炉底蒸発管
72 CPU
74 RAM
76 ROM
78 HDD
80 入力I/F
82 出力I/F
84 バス
100 ボイラプラント
200 運転制御装置
201 運転制御部
300 運転支援装置
300A,300B,300C ローカル支援システム
301 データ取得部
302 データ抽出変換部
303 モデル作成部
304 シミュレーション部
305 最適化部
306 運転指示部
307 入出力部
308 第一送受信部
400 遠隔支援システム
401 第二送受信部
500 運転支援システム
DB1 画像データベース
DB2 運転データベース
DB3 プラント仕様データベース
DB4 燃料性状データベース
DB5 モデルデータベース
DB6 追加パラメータ候補データベース
DB7 共通モデルデータベース
N ネットワーク
OP 操作端
SR1 画像センサ
SR2 物理センサ
Claims (10)
- 燃料を燃焼するプラントの入力パラメータとプロセス値との関係を示すモデルを作成するモデル作成方法であって、
前記プラントの仕様に関係する物理パラメータ又は前記燃料の性状に関係する燃料パラメータのうち少なくとも一方を含む前記プラントの運転データと、前記プラントの燃焼領域の画像データとを読み込む読込ステップと、
前記画像データの特徴量を抽出する抽出ステップと、
前記物理パラメータ又は前記燃料パラメータのうち前記少なくとも一方と、前記画像データの前記特徴量とを前記入力パラメータとして前記モデルを作成するモデル作成ステップと、
を備える、モデル作成方法。 - 前記画像データは、動画像または静止画像の少なくとも一方が撮像可能な撮像装置によって前記燃焼領域を上から撮影して取得された、請求項1に記載のモデル作成方法。
- 前記抽出ステップでは、前記画像データの特徴量として、前記燃焼領域の形、大きさ、色、濃淡、輝度、温度、波長のいずれかに係る情報またはその変化量を抽出する、請求項1又は2に記載のモデル作成方法。
- 前記モデル作成ステップでは、前記プラントの排気ガス成分に係る指標または前記プラントの排出物に係る指標を前記プロセス値として前記モデルを作成する、請求項1乃至3の何れか1項に記載のモデル作成方法。
- 前記読込ステップでは、前記プラントの構造、性能又は設計条件の少なくとも一つに係るパラメータを前記物理パラメータとして読み込み、
前記モデル作成ステップでは、前記プラントの構造、性能又は設計条件の前記少なくとも一つと前記画像データの前記特徴量とを前記入力パラメータとして前記モデルを作成する、請求項1乃至4の何れか1項に記載のモデル作成方法。 - 前記読込ステップでは、燃料の調整、燃焼、環境負荷又は水分の少なくとも一つに係るパラメータを前記燃料パラメータとして読み込み、
前記モデル作成ステップでは、燃料の調整、燃焼、環境負荷又は水分の少なくとも一つに係るパラメータと前記画像データの前記特徴量とを前記入力パラメータとして前記モデルを作成する、請求項1乃至5の何れか1項に記載のモデル作成方法。 - 燃料を燃焼するプラントの入力パラメータとプロセス値との関係を示すモデルを用いるプラントの運転支援方法であって、
前記プラントの仕様に関係する物理パラメータ又は前記燃料の性状に関係する燃料パラメータのうち少なくとも一方を含む前記プラントの運転データと、前記プラントの燃焼領域の画像データとを読み込むデータ読込ステップと、
前記画像データの特徴量を抽出する抽出ステップと、
前記物理パラメータ又は前記燃料パラメータのうち前記少なくとも一方と、前記画像データの前記特徴量とを前記入力パラメータとした前記モデルを読み込むモデル読込ステップと、
前記プラントの運転データと、前記プラントの燃焼領域の画像データと、前記モデルとを用いて前記プロセス値を算出するシミュレーションステップと、
前記プロセス値が所定条件を満たすように、前記プラントの運転指示値を算出する運転指示ステップをさらに備える、プラントの運転支援方法。 - 燃料を燃焼するプラントの入力パラメータとプロセス値との関係を示すモデルを作成するモデル作成装置であって、
前記プラントの仕様に関係する物理パラメータ又は前記燃料の性状に関係する燃料パラメータのうち少なくとも一方を含む前記プラントの運転データと、前記プラントの燃焼領域の画像データとを取得するよう構成されたデータ取得部と、
前記データ取得部によって取得された前記画像データの特徴量を抽出するよう構成されたデータ抽出変換部と、
前記物理パラメータ又は前記燃料パラメータのうち少なくとも一方と、前記画像データの前記特徴量とを前記入力パラメータとして前記モデルを作成するよう構成されたモデル作成部と、
を備えるモデル作成装置。 - 燃料を燃焼するプラントの入力パラメータとプロセス値との関係を示すモデルを用いるプラントの運転支援装置であって、
前記プラントの仕様に関係する物理パラメータ又は前記燃料の性状に関係する燃料パラメータのうち少なくとも一方を含む前記プラントの運転データと、前記プラントの燃焼領域の画像データとを取得するよう構成されたデータ取得部と、
前記データ取得部によって取得された前記画像データの特徴量を抽出するよう構成されたデータ抽出変換部と、
前記物理パラメータ又は前記燃料パラメータのうち少なくとも一方と、前記画像データの前記特徴量とを前記入力パラメータとした前記モデルを記憶するモデルデータベースと、
前記プラントの運転データと、前記プラントの燃焼領域の画像データと、前記モデルデータベースに記憶された前記モデルとを用いて前記プロセス値を算出するシミュレーション部と、
前記プロセス値が所定条件を満たすように、最適な入力パラメータのセットをもとめるよう構成された最適化部と、
前記最適化部によって求めた前記最適な入力パラメータのセットから前記プラントの運転指示値を算出する運転指示部と、
を備える、プラントの運転支援装置。 - 請求項9に記載のプラントの運転支援装置を含む複数のローカル支援システムと、
前記ローカル支援システムとネットワークを介して通信可能な遠隔支援システムとを備えるプラントの運転支援システムであって、
前記ローカル支援システムは、
前記運転データ、前記画像データ及び前記モデルの更新結果を前記遠隔支援システムへ送信するよう構成されるとともに、前記遠隔支援システムから送信された他のローカル支援システムにおける前記運転データ、前記画像データ及び前記モデルの更新結果を受信するよう構成された第一送受信部を含み、
前記遠隔支援システムは、
それぞれの前記ローカル支援システムから送信された前記運転データ、前記画像データ及び前記モデルの更新結果を受信するよう構成されるとともに、該更新結果を他のすべての前記ローカル支援システムへ前記運転データ、前記画像データ及び前記モデルの更新結果として送信するよう構成された第二送受信部を含む、プラントの運転支援システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PH12020551917A PH12020551917A1 (en) | 2018-05-21 | 2020-11-10 | Model generation method, plant operation assistance method, and model generation device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018096811A JP6718911B2 (ja) | 2018-05-21 | 2018-05-21 | モデル作成方法、プラントの運転支援方法及びモデル作成装置 |
JP2018-096811 | 2018-05-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019225457A1 true WO2019225457A1 (ja) | 2019-11-28 |
Family
ID=68616731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/019445 WO2019225457A1 (ja) | 2018-05-21 | 2019-05-16 | モデル作成方法、プラントの運転支援方法及びモデル作成装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6718911B2 (ja) |
PH (1) | PH12020551917A1 (ja) |
WO (1) | WO2019225457A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024080088A1 (ja) * | 2022-10-13 | 2024-04-18 | 住友重機械工業株式会社 | 支援装置、支援方法及びプログラム |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7071437B2 (ja) * | 2020-05-20 | 2022-05-18 | 三菱重工業株式会社 | 燃焼炉の状態推定装置、プログラム及び方法並びに燃焼炉システム |
JP7454775B2 (ja) * | 2020-07-31 | 2024-03-25 | 三菱重工サーマルシステムズ株式会社 | 異常診断装置、異常診断方法、及びプログラム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050147288A1 (en) * | 2002-08-16 | 2005-07-07 | Powitec Intelligent Technologies Gmbh | Method for monitoring a thermodynamic process |
US20080013821A1 (en) * | 2004-05-20 | 2008-01-17 | Macgregor John F | Method For Controlling The Appearance Of Products And Process Performance By Image Analysis |
JP2016192000A (ja) * | 2015-03-31 | 2016-11-10 | 横河電機株式会社 | 業務支援装置及び業務支援方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3210473B2 (ja) * | 1993-03-11 | 2001-09-17 | 株式会社東芝 | ビジュアルフィードバック制御装置 |
-
2018
- 2018-05-21 JP JP2018096811A patent/JP6718911B2/ja active Active
-
2019
- 2019-05-16 WO PCT/JP2019/019445 patent/WO2019225457A1/ja active Application Filing
-
2020
- 2020-11-10 PH PH12020551917A patent/PH12020551917A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050147288A1 (en) * | 2002-08-16 | 2005-07-07 | Powitec Intelligent Technologies Gmbh | Method for monitoring a thermodynamic process |
US20080013821A1 (en) * | 2004-05-20 | 2008-01-17 | Macgregor John F | Method For Controlling The Appearance Of Products And Process Performance By Image Analysis |
JP2016192000A (ja) * | 2015-03-31 | 2016-11-10 | 横河電機株式会社 | 業務支援装置及び業務支援方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024080088A1 (ja) * | 2022-10-13 | 2024-04-18 | 住友重機械工業株式会社 | 支援装置、支援方法及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
JP2019204145A (ja) | 2019-11-28 |
PH12020551917A1 (en) | 2021-06-14 |
JP6718911B2 (ja) | 2020-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019225457A1 (ja) | モデル作成方法、プラントの運転支援方法及びモデル作成装置 | |
WO2019159883A1 (ja) | モデル作成方法、プラントの運転支援方法、モデル作成装置、モデル、プログラム、及びプログラムを記録した記録媒体 | |
CN105276611B (zh) | 火电厂锅炉燃烧调整优化方法与系统 | |
Park et al. | Coupled fluid dynamics and whole plant simulation of coal combustion in a tangentially-fired boiler | |
JP6824859B2 (ja) | 炉内状態量推定装置、推定モデル作成装置、それらのプログラムおよび方法 | |
Dzikuć et al. | Selected aspects of combustion optimization of coal in power plants | |
Panagiotidis et al. | Study of slagging and fouling mechanisms in a lignite-fired power plant | |
KR102216820B1 (ko) | 시험 계획 장치 및 시험 계획 방법 | |
WO2019208773A1 (ja) | プラントの運転支援装置、プラントの運転支援方法、プラントの学習モデルの作成方法、プラントの運転支援プログラム、プラントの運転支援プログラムを記録した記録媒体、プラントの学習モデルの作成プログラム、及びプラントの学習モデルの作成プログラムを記録した記録媒体 | |
CN104571022A (zh) | 基于煤耗与可控因子关系的耗差分析模型实验系统及方法 | |
Drosatos et al. | Comparative investigation of a co-firing scheme in a lignite-fired boiler at very low thermal-load operation using either pre-dried lignite or biomass as supporting fuel | |
Stupar et al. | Assessing the impact of primary measures for NOx reduction on the thermal power plant steam boiler | |
CN110088532A (zh) | 用于燃烧系统控制的系统和方法 | |
Eslick et al. | Predictive modeling of a subcritical pulverized-coal power plant for optimization: Parameter estimation, validation, and application | |
JP2019204145A5 (ja) | ||
TWI677771B (zh) | 模擬結果之評價裝置及方法 | |
KR102329372B1 (ko) | 운전 조건 평가 장치, 운전 조건 평가 방법, 및 보일러의 제어 시스템 | |
Luo et al. | Changing characteristics of flame images under different oxy-fuel atmospheres in a 3-MW pilot-scale furnace | |
CN111753691B (zh) | 一种检测及控制气化炉的方法、设备及系统 | |
JP2022134564A (ja) | 特徴量抽出方法、性能予測モデル作成方法、プラントの運転支援方法、特徴量抽出装置、性能予測モデル作成装置、及びプラントの運転支援装置 | |
JP2017228102A (ja) | 原料選定支援装置、及び原料選定支援方法 | |
JP2022134592A (ja) | 予測モデル作成装置、排ガス濃度制御システム、予測モデル作成方法、及び排ガス濃度制御方法 | |
WO2023171293A1 (ja) | 画像検査装置、機械学習装置、画像検査方法、画像検査プログラム | |
Caposciutti et al. | An Experimental Investigation on the Effect of Exhaust Gas Recirculation in a Small-scale Fixed Bed Biomass Boiler | |
KR102627013B1 (ko) | 보일러의 운전 지원 장치 및 보일러의 운전 지원 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19807871 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19807871 Country of ref document: EP Kind code of ref document: A1 |