WO2019225062A1 - Preform molding device - Google Patents
Preform molding device Download PDFInfo
- Publication number
- WO2019225062A1 WO2019225062A1 PCT/JP2019/003323 JP2019003323W WO2019225062A1 WO 2019225062 A1 WO2019225062 A1 WO 2019225062A1 JP 2019003323 W JP2019003323 W JP 2019003323W WO 2019225062 A1 WO2019225062 A1 WO 2019225062A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- cavity
- heat insulating
- hot runner
- gate
- Prior art date
Links
- 238000000465 moulding Methods 0.000 title claims abstract description 37
- 239000011347 resin Substances 0.000 claims abstract description 145
- 229920005989 resin Polymers 0.000 claims abstract description 145
- 238000009413 insulation Methods 0.000 claims abstract description 27
- 238000002347 injection Methods 0.000 claims description 31
- 239000007924 injection Substances 0.000 claims description 31
- 238000000071 blow moulding Methods 0.000 claims description 23
- 238000001746 injection moulding Methods 0.000 claims description 10
- 238000000926 separation method Methods 0.000 claims description 10
- 239000000155 melt Substances 0.000 claims description 3
- 230000002087 whitening effect Effects 0.000 abstract description 5
- 238000002844 melting Methods 0.000 abstract description 3
- 230000008018 melting Effects 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000002093 peripheral effect Effects 0.000 description 11
- 230000006835 compression Effects 0.000 description 9
- 238000007906 compression Methods 0.000 description 9
- 238000010103 injection stretch blow moulding Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229920000784 Nomex Polymers 0.000 description 4
- 239000004763 nomex Substances 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/26—Moulds
Definitions
- the present invention relates to a preform molding apparatus in an injection stretch blow molding machine in which an injection molded preform is released and stretch blow molding is performed to obtain a hollow molded body and the hollow molded body is taken out.
- a blow molding die is used to stretch and blow an injection molding part in which a resin is injected from an injection device and injection molding a preform and a preform released from the injection mold of the injection molding part.
- a stretch blow molding section that performs molding to obtain a hollow molded body, and a take-out section that takes out the hollow molded body from the blow mold of the stretch blow molding section so that it can be sent out of the molding machine.
- a preform molding apparatus is composed of an injection mold composed of a mold for injection molding.
- the injection mold in this preform molding apparatus is a lip mold that forms the mouth outer peripheral surface shape of the preform and also serves to carry the injection molded preform, and the outer peripheral surface shape and bottom of the preform body
- a cavity mold that forms the outer surface shape and a core mold that forms the inner surface shape from the mouth to the bottom of the preform are combined.
- the hot runner device 2 of the preform molding apparatus 1 has a hot runner nozzle 3 standing upright, and although not shown, the hot runner nozzles 3 are arranged in a state where a plurality of the hot runner nozzles 3 are upright. ing.
- a cavity mold 5 of an injection mold 4 is mounted on the hot runner device 2 via a connecting plate 2a, and the tip of the hot runner nozzle 3 is inserted into a circular recess 6 formed in the lower surface of the cavity mold 5. Part 7 has entered.
- a cavity gate 8 that tapers downward reaches the center of the circular recess 6.
- a heat insulating member 9 having an opening 16 (see FIG. 4) at the center is sandwiched between the circular recess 6 on the lower surface of the cavity mold 5 and the tip 7 of the hot runner nozzle 3.
- the heat insulating member 9 is used for the purpose of making it difficult for heat propagation to occur between the high temperature hot runner nozzle 3 and the cavity mold 5, and also serves as a sealing member for preventing resin leakage.
- high temperature molten resin is injected from the injection device into the injection mold through the hot runner device, and the hot runner nozzle portion is also kept at a high temperature in order to maintain the molten state of the resin.
- the cavity mold is cooled in order to quickly mold the resin fed into the injection mold from the nozzle port of the hot runner nozzle into a preform.
- the cooling on the injection mold side does not affect the tip of the hot runner nozzle, and the cooling from the molten resin injected into the injection mold is not impaired by the heat from the hot runner nozzle side.
- the heat insulating member is sandwiched between the cavity-shaped circular recess and the tip of the hot runner nozzle.
- the injection stretch blow molding machine is a molding machine for producing a hollow molded body by a hot parison type molding method in which a preform released from an injection mold as described above is stretch blow molded with a blow mold. It is. Therefore, the preform is released from the injection mold at a timing at which the mold does not lose its shape even when it is released and is ready for blow molding.
- a document is that a bowl-shaped heat insulating member is sandwiched between a concave curved surface portion of a concave portion on a lower surface of a cavity mold and a convex curved surface portion of a tip portion of a hot runner nozzle.
- Patent Document 2 shown as FIG.
- Patent Document 3 discloses that a shallow pot-shaped heat insulating member is sandwiched between a concave portion on a lower surface of a cavity mold and a tip portion of a hot runner nozzle.
- the heat insulating member shown in Patent Document 1 has a disk shape, and if it is compared with the heat insulating members shown in Patent Documents 2 and 3, the shape is simple and can be made with high yield. It is a heat insulating member that can be made.
- the concave top surface 10 of the circular recess 6 of the cavity mold 5 is a flat surface
- the hot runner nozzle 3 of the hot runner apparatus 2 The distal end portion end surface 11 of the distal end portion 7 is a flat surface, and the entire end portion end surface 11 serves as a heat insulating member contact surface 12.
- the heat insulating paper 13 and the heat insulating plate 14 used in the above combination have an opening 16 corresponding to the gate port 15 (diameter of about 2 mm) at the lower end of the cavity gate 8.
- the diameter of the opening 16 of the heat insulating plate 14 is, for example, the same as or smaller than the diameter of the gate opening 15, and the diameter of the opening 16 of the heat insulating paper 13 is about 1 smaller than the diameter of the gate opening 15, for example. About 4 mm.
- the reason why the heat insulating member 9 is configured by superposing the heat insulating paper 13 and the heat insulating plate 14 is that when the heat insulating paper 13 is used alone, the opening 16 of the heat insulating paper 13 is caused by repeated passage of the molten resin. This is because the diameter of the heat insulating paper 14 is gradually increased and the metal heat insulating plate 14 is overlapped with the heat insulating paper 13 to prevent the opening 16 of the heat insulating paper 13 from spreading.
- the heat insulating member 9 is formed in a disk shape. It was.
- the resin of the gate portion of the preform and the resin in the opening 16 of the heat insulating member 9 are appropriately set. There was a case where stringing occurred at the gate portion without separation.
- the opening 16 of the heat insulating member 9 is made to have a small diameter.
- the diameter of 16 is reduced, it is difficult for molten resin to be fed from the hot runner nozzle to the injection mold. Moreover, the malfunction of whitening the gate part of a preform arises.
- the present invention sandwiches a disk-shaped heat-insulating paper having a simple shape between the circular hole-shaped concave portion on the cavity mold side and the tip of the hot runner nozzle inserted into the circular hole-shaped concave portion.
- a preform molding apparatus a preform that can be blow-molded can be released by properly dividing the resin part of the gate part of the preform and the resin part located on the heat insulating paper side.
- the object is to produce a hollow molded body in which no whitening occurs in the gate portion and no stringing occurs.
- the present invention has been made in consideration of the above-mentioned problems, and is tapered downward in a hot runner device in which a plurality of hot runner nozzles are erected and a circular hole-like concave portion into which the tip of the hot runner nozzle enters.
- the cavity mold has reached the cavity gate, the resin injected from the hot runner nozzle side through the cavity gate is molded into a preform, and the preform is released in a state where blow molding is possible after the injection molding.
- a preform molding apparatus comprising an injection mold for molding
- the top surface in the concave portion of the cavity-shaped circular concave portion is a flat surface
- the heat insulating member contact surface at the tip of the hot runner nozzle is a flat surface
- a disk-shaped heat insulating paper having an opening at the center is fitted into the cavity-shaped circular hole-shaped concave portion, and the gate port of the cavity gate is located at the center of the opening of the heat-insulating paper
- the heat insulating paper is sandwiched between the flat surface of the top surface of the concave portion of the cavity-shaped circular hole-shaped concave portion and the heat insulating member contact surface of the front end portion of the hot runner nozzle so as to be compressively deformable,
- a resin melt layer formed of a molten resin from a hot runner nozzle The resin melt layer overlaps with the resin melt layer and heat exchange with the resin melt layer is possible.
- the melt resin can be solidified by contact with the top surface of the cavity mold circular recess and heat exchange with the cavity mold. It is compressed and deformed to a thickness that forms two layers with the resin heat insulation layer,
- the hole in the heat insulating paper is The resin positioned in the resin heat insulating layer that exchanges heat with the resin melt layer is separated from the preform in a state in which the blow molding is enabled by the contact with the top surface of the cavity-shaped circular recess.
- the circular opening of the opening is The resin positioned in the resin heat insulating layer that exchanges heat with the resin melt layer is in contact with the top surface of the cavity of the cavity-shaped circular recess so that heat exchange can be performed to maintain the solidified state.
- the preform molding apparatus is characterized by providing the preform molding apparatus to solve the above-mentioned problems.
- the ratio of the circular opening area of the opening of the heat insulating paper to the gate opening of the cavity gate is:
- the resin positioned in the resin heat insulating layer that exchanges heat with the resin melt layer is separated from the preform in a state in which the blow molding is enabled by the contact with the top surface of the cavity-shaped circular recess. It is favorable that the ratio of the circular opening area is such that heat exchange can be performed while maintaining a solidified state in which fracture separation occurs between the resin located at the gate port of the cavity gate during molding.
- the heat insulation paper which is a disk-shaped heat insulation member is the heat insulation member which is the flat surface of the top surface of a recessed part of a cavity type
- Resin melting formed by the molten resin from the hot runner nozzle in the space surrounded by the top surface of the concave portion of the circular hole-shaped concave portion, the opening of the heat insulating paper and the tip of the hot runner nozzle by sandwiching with the contact surface Heat exchange between the layer and the resin melt layer overlaps with the resin melt layer, and can be solidified by contact with the top surface of the cavity-shaped concave recess and heat exchange with the cavity mold It is provided in a thickness so that two layers with a resin heat insulating layer are formed.
- the resin molten layer and the resin heat insulating layer overlapping the resin molten layer are formed. Since two layers are formed, at the time of release of the preform in a state where blow molding is possible, a break occurs between the resin of the gate part of the preform and the resin of the resin heat insulating layer, Stringing does not occur. Therefore, even if the preform is pulled up from the cavity mold at a timing at which blow molding can be performed, there is an effect that an appropriate mold release without stringing can be performed.
- the hot runner can be easily operated by adjusting the thickness of the heat insulating paper. There is an effect that it is possible to secure a state in which the molten resin can be fed to the injection mold side by breaking through the resin heat insulation layer without resistance by feeding the molten resin from the nozzle side.
- the opening is a circular opening, and this circular opening is the thermal contact with the resin melt layer. Since the resin located in the resin heat insulating layer to be exchanged is in contact with the top surface of the cavity-shaped circular recess, the heat exchange to maintain the solidified state is possible. The width can be increased to prevent whitening of the gate portion of the preform.
- the preform molding apparatus 1 of the present invention includes a hot runner apparatus 2 and an injection mold 4 formed on the hot runner apparatus 2. As described above, in the hot runner device 2, a plurality of hot runner nozzles 3 corresponding to the number of molds are erected.
- a preform molding space is formed in a portion above the hot runner nozzle 3, and directed downward into the circular recess 6 into which the tip 7 of the hot runner nozzle 3 enters. It has a cavity mold 5 which is reached by a tapered gate 8 which is tapered.
- the injection mold 4 forms the cavity mold 5, a core mold that can be arranged inside the cavity mold 5 up and down, and the shape of the outer peripheral surface of the mouth of the preform. It is comprised from the lip type
- the injection mold 4 molds the resin injected through the cavity gate 8 from the hot runner nozzle 3 side into a preform, and releases the preform in a state where blow molding is possible after the injection molding. It is what.
- the injection mold 4 is composed of a cavity mold 5, a core mold, and a lip mold.
- the lower part of the injection mold 4 is shown in FIGS. The part is illustrated. 3 and 4, the lower part of the injection mold 4 is shown.
- a disc-shaped heat insulating paper 13 is fitted into the concave inner surface 10 side of the circular hole-shaped concave portion 6 of the cavity mold 5.
- the heat insulating paper 13 is sandwiched between the top surface 10 of the concave portion on the cavity mold 5 side and the heat insulating member contact surface 12 formed on the tip end surface 11 of the tip 7 of the hot runner nozzle 3.
- An opening 16 is punched and formed in the center of the heat insulating paper 13, and this opening 16 is a circular opening (circular opening) concentric with the center of the heat insulating paper 13 itself.
- the center of the opening 16 is positioned corresponding to the gate port 15 of the cavity gate 8 and is opened with a larger diameter than the gate port 15.
- the top surface 10 in the recess on the cavity mold 5 side is a flat surface.
- the front end portion end surface 11 on the hot runner nozzle 3 side is also a flat surface
- the heat insulating member contact surface 12 formed on the front end portion end surface 11 is also a flat surface.
- the heat insulating paper 13 is not only positioned between the flat surface of the concave top surface 10 on the cavity mold 5 side and the flat surface of the heat insulating member contact surface 12 on the hot runner nozzle 3 side. The heat insulating paper 13 is compressed and deformed so that the thickness of the heat insulating paper 13 is reduced by being sandwiched between the flat surfaces.
- the thickness of the heat insulating paper 13 after the compression deformation is It is preferable that the ratio is about 92 with respect to 100. It is to be noted that two layers of resin, which will be described later, are formed in the opening 16 during injection molding.
- the heat insulating paper 13 is a single sheet, and a plurality of sheets can be used by overlapping as necessary.
- two sheets of heat insulating paper 13 having an opening 16 with a diameter of 8 mm and a thickness of 0.76 mm are prepared and fitted into the circular hole-shaped recess 6 in a superposed state. Then, the heat insulating paper 13 superposed on the two sheets is compressed and deformed so as to have a thickness of 1.40 mm by sandwiching the two flat surfaces.
- the heat insulating paper 13 is sandwiched between the circular recess 6 of the cavity mold 5 and the tip 7 of the hot runner nozzle 3.
- the central portion of the heat insulating paper 13 includes a concave inner surface 10 which is a flat surface of the circular concave portion 6 of the cavity mold 5, an inner peripheral surface of the opening 16 of the heat insulating paper 13, and a tip portion of the hot runner nozzle 3.
- a space 18 is formed that is surrounded by a nozzle port peripheral surface 17 (a portion that becomes a heat insulating member non-contact region in the tip end surface 11) that is a part of the tip end surface 11 that is a flat surface 7. .
- a nozzle port 19 of the hot runner nozzle 3 faces from below, and a gate port 15 of the cavity gate 8 faces from above. Then, the injection stretch blow molding machine equipped with the preform molding apparatus 1 is operated and molten resin is supplied from the injection apparatus side to the injection mold 4 through the hot runner apparatus 2, so that the space 18 is always resin. It will be filled with.
- the thickness of the heat insulating paper 13 can be changed by applying pressure from above and below.
- the state of the resin filled in the space 18 changes depending on the thickness of the heat insulating paper 13. That is, the state of the resin inside the space 18 differs between when the upper and lower dimensions of the space 18 are increased and when the dimension is decreased.
- the heat insulating paper 13 is formed by filling the space 18 with molten resin passing through a resin path from the nozzle port 19 toward the gate port 15 when the preform molding apparatus 1 is in operation.
- the space 18 is compressed and deformed to a thickness that forms two layers of the resin melt layer 20 and the resin heat insulation layer 21 in the space 18.
- the resin melt layer 20 is a layer formed of the melt resin from the hot runner nozzle 3 and is a portion where the high temperature melt resin can flow.
- the resin heat insulation layer 21 is superimposed on the resin melt layer 20 to exchange heat with the molten resin of the resin melt layer 20 and is in contact with the top surface 10 in the recess of the circular recess 6 of the cavity mold 5.
- the molten resin can be solidified by heat exchange with the cavity mold 5.
- the space 18 has an upper and lower dimension such that the thickness of the heat insulating paper 13 after being compressed and deformed is smaller than about 92 with respect to the thickness 100 at the time of non-compression. It is likely to be filled with molten resin.
- the vertical dimension of the space 18 is made to be significantly larger than the value of 1.40 mm (for example, when the vertical dimension of the space 18 is increased by stacking three sheets of heat insulating paper 13 or the like)
- the thickness of the solidified resin layer formed on the concave inner surface 10 side of the circular hole-like concave portion 6 of the cavity mold 5 is increased, and the resistance when the molten resin is fed to the cavity mold 5 side is increased.
- the preform molding apparatus 1 is configured to release the preform in a state where blow molding is possible.
- the opening 16 of the heat insulating paper 13 is devised so that when the preform is released from the resin in the gate portion and the resin positioned in the opening 16, a resin that is stretched into a thin thread is not generated. However, it is implemented with a simple configuration.
- the opening 16 of the heat insulating paper 13 is made of resin located in the resin heat insulating layer 21 that constantly performs the heat exchange with the resin melt layer 20, and the top surface 10 in the concave portion of the circular concave portion 6 of the cavity mold 5.
- the solidified state in which breakage separation occurs between the resin located at the gate port 15 of the cavity gate 8 when the preform in a state where blow molding is possible is brought into contact with the resin.
- the circular opening (circular opening) of the opening 16 is such that the resin located in the resin heat insulating layer 21 that exchanges heat with the resin melt layer 20 comes into contact with the top surface 10 in the recess on the cavity mold 5 side. It is provided in a size that allows heat exchange to maintain the solidified condition.
- the gate opening 15 and the opening 16 are both circular openings and are arranged so as to be concentric.
- the ratio of the circular opening area of the opening 16 of the heat insulating paper 13 to the gate opening 15 of the cavity gate 8 is expressed as follows. I am doing so. That is, the resin located in the resin heat insulating layer 21 that performs the heat exchange with the resin melt layer 20 is in contact with the top surface 10 in the concave portion of the circular concave portion 6 of the cavity mold 5. Circular opening area ratio that enables heat exchange to maintain a solidified state in which breakage separation occurs with the resin located at the gate port 15 of the cavity gate 8 when the preform in a state in which blow molding is enabled is released. It is said.
- the resin mold heat insulating layer is a cavity mold 5 in which the diameter of the gate port 15 is 2 mm, and heat exchange is performed between the cavity mold 5 side and the top surface 10 in the recess.
- 21 is preferably about 8 mm, and the ratio of the circular opening area of the gate port 15 to the circular opening area of the opening 16 is about It is good to set it as 3:50.
- the resin heat insulating layer 21 in contact with the cavity mold 5 and exchanging heat is maintained in a solidified state similar to that of the resin of the gate portion of the preform that is released at a timing at which blow molding is possible. Is done.
- fracture separation occurs between the resin at the gate portion of the preform and the resin maintained in the solidified state of the resin heat insulating layer 21. For this reason, stringing does not occur at the gate portion of the preform that has been released at the timing when blow molding is possible.
- the diameter of the circular opening of the opening 16 of the heat insulating paper 13 whose thickness is compressed and deformed as described above is about 4 mm, and the circular opening area ratio between the gate port 15 and the opening 16 is about 3:13. This is not preferable because the possibility of stringing increases.
- the above-mentioned heat insulating paper refers to a highly heat-insulating paper sheet, and is not made of 100% pulp.
- the heat insulating paper 13 used in the above embodiment is a heat insulating paper made from a meta-aramid fiber, and Nomex paper (Nomex registered trademark) manufactured by DuPont was used.
- the tip end surface 11 of the tip portion 7 of the hot runner nozzle 3 is a flat surface, and the tip end surface 11 is the peripheral surface of the nozzle port with the nozzle port 19 in the center. 17 and the heat insulating member contact surface 12 located continuously outside the nozzle port peripheral surface 17 are formed.
- the entire tip end surface 11 is a flat surface. It is not limited to.
- FIG. 2 shows another example of implementation.
- the entire surface of the end face 11 of the tip is not a flat face, and the nozzle port peripheral face 17 is made a paragraph so as to be lower than the height position of the heat insulating member contact face 12.
- a circular tip recess 22 is formed in the center of the tip end surface 11 with the nozzle port peripheral surface 17 as a bottom surface and the nozzle port 19 being opened at the center thereof.
- the flat surface of the concave top surface 10 on the cavity mold 5 side and the flat surface of the heat insulating member contact surface 12 which is the uppermost surface at the tip 7 of the hot runner nozzle 3
- the heat insulating paper 13 is positioned between them.
- the heat insulating paper 13 is compressed so that the thickness of the heat insulating paper 13 is reduced by being sandwiched between the two upper and lower flat surfaces (the top surface 10 in the recess and the heat insulating member contact surface 12), as in the above-described embodiment. It is deformed.
- the thickness of the heat insulating paper 13 after being compressed and deformed when the thickness of the heat insulating paper 13 (two-layered state) is not subjected to compression pressure in the thickness direction is defined as 100. Is about 92 with respect to 100, so that two layers of resin (resin melt layer 20 and resin heat insulation layer 21) are formed in the opening 16 during injection molding.
- FIG. 2 another embodiment in which the heat insulating paper 13 is sandwiched between the top and bottom surfaces of the cavity inner surface 10 on the cavity mold 5 side and the heat insulating member contact surface 12 around the circular tip recess 22.
- the insulating paper 13 is a single sheet.
- the inside surface 10 of a recessed part and a heat insulation member contact surface are used using the thing (Nomex paper) whose diameter of the opening 16 is 5 mm and thickness is 0.5 mm (at the time of non-compression). It is preferable to make the thickness 0.3 mm by sandwiching with 12.
- FIG. 2 The embodiment shown in FIG. 2 is an example in which a single heat insulating paper 13 is compressed and deformed to have a thickness of 0.3 mm as described above. A circular tip recess 22 is formed.
- the space 18 in this example is surrounded by the concave top surface 10 of the circular recess 6 of the cavity mold 5, the inner peripheral surface of the opening 16 of the heat insulating paper 13, and the inner surface of the tip recess 22.
- the depth of the tip recess 22 is preferably 1.6 mm, the depth of the tip recess 22 (1.6 mm), and the thickness (0.3 mm) of the heat-insulated paper 13 compressed and deformed. Therefore, it is preferable that the vertical dimension of the space 18 is 1.9 mm.
- the nozzle port 19 of the hot runner nozzle 3 faces from below, and the gate port 15 of the cavity gate 8 faces from above.
- the injection stretch blow molding machine is operated, and the molten resin is supplied from the injection device side to the injection mold 4 through the hot runner device 2, so that the space 18 is always filled with the resin.
- the hot runner nozzle 3 has the tip recess portion 22 of the tip portion 7 thereof, and the compressive deformation of the heat insulating paper 13 by the concave top surface 10 and the heat insulating member contact surface 12 on the cavity mold 5 side is also the same as the above embodiment.
- the molten resin passing through the resin path from the nozzle port 19 to the gate port 15 fills the space 18, and the molten resin fills the space 18 with the molten resin 20 and the resin heat insulating layer. 21 to form a two-layer thickness.
- the opening 16 of the heat insulating paper 13 is made of resin located in the resin heat insulating layer 21 that always performs heat exchange with the resin molten layer 20, and the top surface 10 in the recess on the cavity mold 5 side. In this contact, when the preform in a state in which blow molding is enabled is released, it is maintained in a solidified state in which fracture separation occurs between the resin located at the gate port 15 of the cavity gate 8.
- the circular opening of the opening 16 is also wide enough to allow heat exchange in which the resin located in the resin heat insulation layer 21 is in contact with the top surface 10 of the concave portion on the cavity mold 5 side and is maintained in a solidified state that does not cause stringing. That's it.
- the gate opening 15 and the opening 16 are both circular openings and are arranged so as to be concentric.
- the ratio of the circular opening area of the opening 16 of the heat insulating paper 13 to the gate opening 15 is the same as that of the resin melt layer 20.
- the resin located in the resin heat insulating layer 21 for heat exchange is in contact with the top surface 10 of the recess on the cavity mold 5 side, and when the preform is released from the preform in a state where blow molding is possible, the gate port 15 of the cavity gate 8
- the ratio of the circular opening area is such that heat exchange is possible to maintain a solidified state in which breakage separation occurs between the resin and the resin located at the position.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
The purpose of the present invention is to manufacture a hollow molded body in which whitening does not occur in a gate part and which is free from stringiness in such a manner that a preform capable of being blow-molded is properly divided between a resin portion of the gate part and a resin portion on a heat insulation sheet side of the preform to allow mold release by a preform molding device in which a disc-shaped heat insulation sheet having a simple shape is held between a circular-hole-shaped concave part on a cavity mold side and a tip end of a hot runner nozzle that is inserted into the circular-hole-shaped concave part. The thickness of a heat insulation sheet 13 is set at a thickness at which a resin melting layer 20 and a resin heat insulation layer 21 are formed in an opening 16 of the heat insulation sheet 13, and the circular opening of the opening 16 is set at a width at which a resin in the resin heat insulation layer 21 that performs heat exchange with the resin melting layer 20 is allowed to come in contact with an inter-concave part top surface 10 of a circular-hole-shaped concave part 6 of a cavity mold 5 and perform heat exchange to maintain a solidified state.
Description
本発明は、射出成形されたプリフォームを離型してから延伸ブロー成形を行なって中空成形体を得て、その中空成形体を取り出す射出延伸ブロー成形機におけるプリフォーム成形装置に関するものである。
The present invention relates to a preform molding apparatus in an injection stretch blow molding machine in which an injection molded preform is released and stretch blow molding is performed to obtain a hollow molded body and the hollow molded body is taken out.
射出延伸ブロー成形機においては、射出装置から樹脂が射出されてプリフォームを射出成形する射出成形部と、前記射出成形部の射出成形型から離型したプリフォームを、ブロー成形型にて延伸ブロー成形を行なって中空成形体を得る延伸ブロー成形部と、この延伸ブロー成形部のブロー成形型から中空成形体を離型して成形機外へと送り出すことができるように取り出す取り出し部との三つのステージを備えているものがある。
In an injection stretch blow molding machine, a blow molding die is used to stretch and blow an injection molding part in which a resin is injected from an injection device and injection molding a preform and a preform released from the injection mold of the injection molding part. A stretch blow molding section that performs molding to obtain a hollow molded body, and a take-out section that takes out the hollow molded body from the blow mold of the stretch blow molding section so that it can be sent out of the molding machine. Some have two stages.
上記射出延伸ブロー成形機の射出成形部では、射出装置から送り込まれる溶融樹脂を複数のランナーに分岐するホットランナー装置と、ホットランナー装置の上部に位置し、前記ランナーごとに対応してプリフォームを射出成形する金型からなる射出成形型とでプリフォーム成形装置が構成される。
In the injection molding section of the injection stretch blow molding machine, a hot runner device that branches the molten resin fed from the injection device into a plurality of runners, and a hot runner device that is located above the hot runner device, a preform corresponding to each runner is provided. A preform molding apparatus is composed of an injection mold composed of a mold for injection molding.
このプリフォーム成形装置での射出成形型は、プリフォームの口部外周面形状を形成するとともに射出成形されたプリフォームを搬送する役割を兼ねるリップ型と、プリフォームの胴部外周面形状と底部外面形状とを形成するキャビティ型と、プリフォームの口部から底部にかけての内面形状を形成するコア型とが組み合わされている。
The injection mold in this preform molding apparatus is a lip mold that forms the mouth outer peripheral surface shape of the preform and also serves to carry the injection molded preform, and the outer peripheral surface shape and bottom of the preform body A cavity mold that forms the outer surface shape and a core mold that forms the inner surface shape from the mouth to the bottom of the preform are combined.
図3に示すようにプリフォーム成形装置1の上記ホットランナー装置2はホットランナーノズル3が立設していて、図示はされていないが前記ホットランナーノズル3は複数が立設した状態で配列されている。ホットランナー装置2の上に、連結板2aを介して射出成形型4のキャビティ型5が取り付けられていて、キャビティ型5の下面に凹設された円孔状凹部6にホットランナーノズル3の先端部7が入り込んでいる。そして前記円孔状凹部6の中心に、下方に向けて先細りしているキャビティゲート8が達している。
As shown in FIG. 3, the hot runner device 2 of the preform molding apparatus 1 has a hot runner nozzle 3 standing upright, and although not shown, the hot runner nozzles 3 are arranged in a state where a plurality of the hot runner nozzles 3 are upright. ing. A cavity mold 5 of an injection mold 4 is mounted on the hot runner device 2 via a connecting plate 2a, and the tip of the hot runner nozzle 3 is inserted into a circular recess 6 formed in the lower surface of the cavity mold 5. Part 7 has entered. A cavity gate 8 that tapers downward reaches the center of the circular recess 6.
上記キャビティ型5の下面の円孔状凹部6とホットランナーノズル3の先端部7との間には、中心に開孔16(図4参照)を有した断熱部材9が挟み込まれている。断熱部材9は高温度のホットランナーノズル3とキャビティ型5との間で熱の伝搬が起こり難くする目的で用いられ、また樹脂漏れを防ぐシール部材の役割も果たしている。
A heat insulating member 9 having an opening 16 (see FIG. 4) at the center is sandwiched between the circular recess 6 on the lower surface of the cavity mold 5 and the tip 7 of the hot runner nozzle 3. The heat insulating member 9 is used for the purpose of making it difficult for heat propagation to occur between the high temperature hot runner nozzle 3 and the cavity mold 5, and also serves as a sealing member for preventing resin leakage.
つまり、上記射出延伸ブロー成形機では、高温度の溶融樹脂を射出装置からホットランナー装置を通して射出成形金型に射出しており、樹脂の溶融状態を保つためにホットランナーノズルの部分も高温度に維持されているが、一方、ホットランナーノズルのノズル口から射出成形型に送り込まれた樹脂を素早くプリフォームに成形するためにキャビティ型を冷やしている。
In other words, in the above-described injection stretch blow molding machine, high temperature molten resin is injected from the injection device into the injection mold through the hot runner device, and the hot runner nozzle portion is also kept at a high temperature in order to maintain the molten state of the resin. On the other hand, the cavity mold is cooled in order to quickly mold the resin fed into the injection mold from the nozzle port of the hot runner nozzle into a preform.
そして、射出成形型側での冷却がホットランナーノズルの先端部に影響を及ぼさないように、またホットランナーノズル側からの熱によって、射出成形型に射出された溶融樹脂に対する冷却が損なわないようにする必要がある。そのために、キャビティ型の円孔状凹部とホットランナーノズルの先端部との間に上記断熱部材を挟み込んでいる。
The cooling on the injection mold side does not affect the tip of the hot runner nozzle, and the cooling from the molten resin injected into the injection mold is not impaired by the heat from the hot runner nozzle side. There is a need to. For this purpose, the heat insulating member is sandwiched between the cavity-shaped circular recess and the tip of the hot runner nozzle.
なお、上記射出延伸ブロー成形機は、上述したように射出成形型から離型したプリフォームを、ブロー成形型にて延伸ブロー成形を行なうホットパリソンタイプの成形方法で中空成形体を製造する成形機である。そのために離型しても型崩れせず、かつブロー成形を行なうことができる状態になるタイミングで射出成形型からプリフォームを離型している。
The injection stretch blow molding machine is a molding machine for producing a hollow molded body by a hot parison type molding method in which a preform released from an injection mold as described above is stretch blow molded with a blow mold. It is. Therefore, the preform is released from the injection mold at a timing at which the mold does not lose its shape even when it is released and is ready for blow molding.
また、断熱部材を用いた技術としては、本願出願人の先の出願である特許文献1の図4に示されているように、キャビティ型の下面における凹部とホットランナーノズルの先端部との間に円板状の断熱部材を挟み込むようにした技術が示されている。
Further, as a technique using a heat insulating member, as shown in FIG. 4 of Patent Document 1 which is an earlier application of the applicant of the present application, a gap between the concave portion on the lower surface of the cavity mold and the tip of the hot runner nozzle is used. Shows a technique in which a disk-shaped heat insulating member is sandwiched.
また、断熱部材を用いた技術としては、お椀状の断熱部材を、キャビティ型の下面の凹部の凹曲面部分とホットランナーノズルの先端部の凸曲面部分との間に挟み込むようにした点を文献中の図2として示す特許文献2がある。
In addition, as a technique using a heat insulating member, a document is that a bowl-shaped heat insulating member is sandwiched between a concave curved surface portion of a concave portion on a lower surface of a cavity mold and a convex curved surface portion of a tip portion of a hot runner nozzle. There is Patent Document 2 shown as FIG.
同じく断熱部材を用いた技術として、特許文献3に、浅鍋状の断熱部材を、キャビティ型の下面の凹部とホットランナーノズルの先端部との間に挟み込むようにした点が示されている。
Similarly, as a technique using a heat insulating member, Patent Document 3 discloses that a shallow pot-shaped heat insulating member is sandwiched between a concave portion on a lower surface of a cavity mold and a tip portion of a hot runner nozzle.
上記特許文献2に示されたキャップ状の断熱部材や特許文献3に示された浅鍋状の断熱部材ではその断熱部材の形状が複雑であり、断熱部材自体の作製がコスト高になるという問題がある。
In the cap-shaped heat insulating member shown in Patent Document 2 and the shallow pan-shaped heat insulating member shown in Patent Document 3, the shape of the heat insulating member is complicated, and the production of the heat insulating member itself is expensive. There is.
特許文献1に示された断熱部材は円板状であり、特許文献2、3に示された断熱部材に対して形状の対比をすればシンプルな形状となっていて、歩留まりよく作成することができる断熱部材である。
The heat insulating member shown in Patent Document 1 has a disk shape, and if it is compared with the heat insulating members shown in Patent Documents 2 and 3, the shape is simple and can be made with high yield. It is a heat insulating member that can be made.
図3、図4に示す上述したプリフォーム成形装置1では、キャビティ型5の円孔状凹部6の凹部内天面10が平坦面とされているとともに、ホットランナー装置2のホットランナーノズル3の先端部7の先端部端面11が平坦面とされ、この先端部端面11の全面を断熱部材接触面12としている。
In the preform molding apparatus 1 shown in FIG. 3 and FIG. 4, the concave top surface 10 of the circular recess 6 of the cavity mold 5 is a flat surface, and the hot runner nozzle 3 of the hot runner apparatus 2 The distal end portion end surface 11 of the distal end portion 7 is a flat surface, and the entire end portion end surface 11 serves as a heat insulating member contact surface 12.
そして、図4に示すように上記プリフォーム成形装置1において、キャビティ型5側の凹部内天面10とホットランナーノズル3側の前記断熱部材接触面12との間に、円板状の断熱部材9である断熱紙13を下位に、ステンレス製の断熱板14を上位にした重ね合わせ状態で挟み込みしていた。
And in the said preform shaping | molding apparatus 1 as shown in FIG. 4, between the top surface 10 of a recessed part by the side of the cavity type | mold 5, and the said heat insulation member contact surface 12 by the side of the hot runner nozzle 3, it is a disk-shaped heat insulation member. 9 was sandwiched in a superposed state with the heat insulating paper 13 being the lower side and the stainless steel heat insulating plate 14 being the upper side.
上記組み合わせで使用している断熱紙13と断熱板14とは、勿論、キャビティゲート8の下端のゲート口15(直径約2mm)に対応する開孔16が開けられている。断熱板14の開孔16の直径を、例えばゲート口15の直径と同径、或いは小径とするとともに、断熱紙13の開孔16の直径を、例えばゲート口15の直径より小径である約1.4mm程度のものとしていた。そして、断熱紙13と断熱板14とを重ね合わせた厚さtが約0.4mm程度になるように、キャビティ型5側の凹部内天面10とホットランナーノズル3側の断熱部材接触面12との二面の平坦面で圧縮されている。
Of course, the heat insulating paper 13 and the heat insulating plate 14 used in the above combination have an opening 16 corresponding to the gate port 15 (diameter of about 2 mm) at the lower end of the cavity gate 8. The diameter of the opening 16 of the heat insulating plate 14 is, for example, the same as or smaller than the diameter of the gate opening 15, and the diameter of the opening 16 of the heat insulating paper 13 is about 1 smaller than the diameter of the gate opening 15, for example. About 4 mm. The concave inner surface 10 on the cavity mold 5 side and the heat insulating member contact surface 12 on the hot runner nozzle 3 side so that the thickness t of the heat insulating paper 13 and the heat insulating plate 14 overlapped is about 0.4 mm. It is compressed by two flat surfaces.
断熱紙13と断熱板14とを重ね合わせて断熱部材9を構成している理由は、断熱紙13を単独で使用した場合、溶融樹脂が繰り返し通過することでその断熱紙13の開孔16が徐々に拡径してしまうためであり、金属製の断熱板14を断熱紙13に重ねることで断熱紙13の開孔16の広がりを防止していた。
The reason why the heat insulating member 9 is configured by superposing the heat insulating paper 13 and the heat insulating plate 14 is that when the heat insulating paper 13 is used alone, the opening 16 of the heat insulating paper 13 is caused by repeated passage of the molten resin. This is because the diameter of the heat insulating paper 14 is gradually increased and the metal heat insulating plate 14 is overlapped with the heat insulating paper 13 to prevent the opening 16 of the heat insulating paper 13 from spreading.
このようにプリフォームを射出成形してそのプリフォームを、時間を置かずに延伸ブロー成形型へ移すことができるように離型するプリフォーム成形装置では、断熱部材9を円板状の形態としていた。
In this way, in the preform molding apparatus in which the preform is injection-molded and released so that the preform can be transferred to the stretch blow mold without taking time, the heat insulating member 9 is formed in a disk shape. It was.
しかしながら上記プリフォーム成形装置1において、ブロー成形が可能となるタイミングでプリフォームを離型するときに、そのプリフォームのゲート部の樹脂と上記断熱部材9の開孔16にある樹脂とが適正に分離せず、ゲート部に糸引きが生じる場合があった。
However, in the preform molding apparatus 1, when the preform is released at a timing at which blow molding is possible, the resin of the gate portion of the preform and the resin in the opening 16 of the heat insulating member 9 are appropriately set. There was a case where stringing occurred at the gate portion without separation.
ブロー成形が可能な状態で離型できるようにするという条件の下で、上記糸引き自体を生じないようにする対策としては、断熱部材9の開孔16を小径にして対処するが、開孔16を小径にすると、溶融樹脂がホットランナーノズルから射出成形型に送り込み難くなっていた。またプリフォームのゲート部を白化させるという不具合が生じる。
Under the condition that the mold can be released in a state where blow molding is possible, as a measure for preventing the above-described stringing itself from occurring, the opening 16 of the heat insulating member 9 is made to have a small diameter. When the diameter of 16 is reduced, it is difficult for molten resin to be fed from the hot runner nozzle to the injection mold. Moreover, the malfunction of whitening the gate part of a preform arises.
そこで本発明は上記事情に鑑み、キャビティ型側の円孔状凹部とこの円孔状凹部に差し込みするホットランナーノズルの先端部との間にシンプルな形状である円板状の断熱紙を挟み込みしたプリフォーム成形装置で、ブロー成形できる状態のプリフォームを、このプリフォームのゲート部の樹脂部分と断熱紙側に位置する樹脂部分との間が適正に分断されて離型できるようにすることを課題とし、ゲート部に白化が生じず糸引きの無い中空成形体を製造することを目的とするものである。
Therefore, in view of the above circumstances, the present invention sandwiches a disk-shaped heat-insulating paper having a simple shape between the circular hole-shaped concave portion on the cavity mold side and the tip of the hot runner nozzle inserted into the circular hole-shaped concave portion. In a preform molding apparatus, a preform that can be blow-molded can be released by properly dividing the resin part of the gate part of the preform and the resin part located on the heat insulating paper side. The object is to produce a hollow molded body in which no whitening occurs in the gate portion and no stringing occurs.
(請求項1の発明)
本発明は上記課題を考慮してなされたもので、複数のホットランナーノズルが立設しているホットランナー装置と、前記ホットランナーノズルの先端部が入り込む円孔状凹部に、下方に向けて先細りしたキャビティゲートが達しているキャビティ型を有していて、ホットランナーノズル側からキャビティゲートを経て射出された樹脂をプリフォームに成形し、その射出成形後にブロー成形が可能な状態でプリフォームを離型する射出成形型とを備えるプリフォーム成形装置において、
キャビティ型の円孔状凹部の凹部内天面が平坦面とされているとともに、ホットランナーノズルの先端部の断熱部材接触面が平坦面とされ、
前記キャビティ型の円孔状凹部に、中心に開孔を有した円板状の断熱紙を嵌め込みして、この断熱紙の開孔の中心にキャビティゲートのゲート口が対応位置しており、
前記断熱紙が、キャビティ型の円孔状凹部の凹部内天面の前記平坦面とホットランナーノズルの先端部の前記断熱部材接触面とで圧縮変形可能に挟み込まれていて、
キャビティ型の円孔状凹部とこの円孔状凹部に入り込んだホットランナーノズルの先端部とで挟み込みされた前記断熱紙は、
キャビティ型の円孔状凹部の凹部内天面の平坦面と断熱紙の開孔とホットランナーノズルの先端部とで囲まれて、ホットランナーノズルのノズル口とキャビティゲートのゲート口とが臨んでいる空間に、
ホットランナーノズルからの溶融樹脂で形成される樹脂溶融層と、
前記樹脂溶融層の上に重なってこの樹脂溶融層との熱交換をするとともに、キャビティ型の円孔状凹部の凹部内天面に接触してキャビティ型との熱交換で溶融樹脂が固化可能な樹脂断熱層と
の二層を形成する厚さに圧縮変形されていて、
前記断熱紙の開孔は、
樹脂溶融層との前記熱交換をする樹脂断熱層に位置する樹脂を、キャビティ型の円孔状凹部の凹部内天面との前記接触で、前記ブロー成形を可能にした状態のプリフォームの離型時にキャビティゲートのゲート口に位置する樹脂との間で破断分離が生じる固化状態に維持するものであって、
前記開孔の円開口は、
樹脂溶融層との前記熱交換をする樹脂断熱層に位置する樹脂が、キャビティ型の円孔状凹部の凹部内天面と接触して、前記固化状態に維持する熱交換が可能な広さとされていることを特徴とするプリフォーム成形装置であり、このプリフォーム成形装置を提供して上記課題を解消するものである。 (Invention of Claim 1)
The present invention has been made in consideration of the above-mentioned problems, and is tapered downward in a hot runner device in which a plurality of hot runner nozzles are erected and a circular hole-like concave portion into which the tip of the hot runner nozzle enters. The cavity mold has reached the cavity gate, the resin injected from the hot runner nozzle side through the cavity gate is molded into a preform, and the preform is released in a state where blow molding is possible after the injection molding. In a preform molding apparatus comprising an injection mold for molding,
The top surface in the concave portion of the cavity-shaped circular concave portion is a flat surface, and the heat insulating member contact surface at the tip of the hot runner nozzle is a flat surface,
A disk-shaped heat insulating paper having an opening at the center is fitted into the cavity-shaped circular hole-shaped concave portion, and the gate port of the cavity gate is located at the center of the opening of the heat-insulating paper,
The heat insulating paper is sandwiched between the flat surface of the top surface of the concave portion of the cavity-shaped circular hole-shaped concave portion and the heat insulating member contact surface of the front end portion of the hot runner nozzle so as to be compressively deformable,
The heat insulating paper sandwiched between the cavity-shaped circular recess and the tip of the hot runner nozzle that has entered the circular recess,
Surrounded by the flat surface of the top surface of the cavity-shaped circular hole-shaped recess, the opening of the heat insulating paper, and the tip of the hot runner nozzle, the nozzle port of the hot runner nozzle and the gate port of the cavity gate face each other. In the space
A resin melt layer formed of a molten resin from a hot runner nozzle,
The resin melt layer overlaps with the resin melt layer and heat exchange with the resin melt layer is possible. The melt resin can be solidified by contact with the top surface of the cavity mold circular recess and heat exchange with the cavity mold. It is compressed and deformed to a thickness that forms two layers with the resin heat insulation layer,
The hole in the heat insulating paper is
The resin positioned in the resin heat insulating layer that exchanges heat with the resin melt layer is separated from the preform in a state in which the blow molding is enabled by the contact with the top surface of the cavity-shaped circular recess. Maintaining a solidified state in which fracture separation occurs between the resin located at the gate opening of the cavity gate at the time of molding,
The circular opening of the opening is
The resin positioned in the resin heat insulating layer that exchanges heat with the resin melt layer is in contact with the top surface of the cavity of the cavity-shaped circular recess so that heat exchange can be performed to maintain the solidified state. The preform molding apparatus is characterized by providing the preform molding apparatus to solve the above-mentioned problems.
本発明は上記課題を考慮してなされたもので、複数のホットランナーノズルが立設しているホットランナー装置と、前記ホットランナーノズルの先端部が入り込む円孔状凹部に、下方に向けて先細りしたキャビティゲートが達しているキャビティ型を有していて、ホットランナーノズル側からキャビティゲートを経て射出された樹脂をプリフォームに成形し、その射出成形後にブロー成形が可能な状態でプリフォームを離型する射出成形型とを備えるプリフォーム成形装置において、
キャビティ型の円孔状凹部の凹部内天面が平坦面とされているとともに、ホットランナーノズルの先端部の断熱部材接触面が平坦面とされ、
前記キャビティ型の円孔状凹部に、中心に開孔を有した円板状の断熱紙を嵌め込みして、この断熱紙の開孔の中心にキャビティゲートのゲート口が対応位置しており、
前記断熱紙が、キャビティ型の円孔状凹部の凹部内天面の前記平坦面とホットランナーノズルの先端部の前記断熱部材接触面とで圧縮変形可能に挟み込まれていて、
キャビティ型の円孔状凹部とこの円孔状凹部に入り込んだホットランナーノズルの先端部とで挟み込みされた前記断熱紙は、
キャビティ型の円孔状凹部の凹部内天面の平坦面と断熱紙の開孔とホットランナーノズルの先端部とで囲まれて、ホットランナーノズルのノズル口とキャビティゲートのゲート口とが臨んでいる空間に、
ホットランナーノズルからの溶融樹脂で形成される樹脂溶融層と、
前記樹脂溶融層の上に重なってこの樹脂溶融層との熱交換をするとともに、キャビティ型の円孔状凹部の凹部内天面に接触してキャビティ型との熱交換で溶融樹脂が固化可能な樹脂断熱層と
の二層を形成する厚さに圧縮変形されていて、
前記断熱紙の開孔は、
樹脂溶融層との前記熱交換をする樹脂断熱層に位置する樹脂を、キャビティ型の円孔状凹部の凹部内天面との前記接触で、前記ブロー成形を可能にした状態のプリフォームの離型時にキャビティゲートのゲート口に位置する樹脂との間で破断分離が生じる固化状態に維持するものであって、
前記開孔の円開口は、
樹脂溶融層との前記熱交換をする樹脂断熱層に位置する樹脂が、キャビティ型の円孔状凹部の凹部内天面と接触して、前記固化状態に維持する熱交換が可能な広さとされていることを特徴とするプリフォーム成形装置であり、このプリフォーム成形装置を提供して上記課題を解消するものである。 (Invention of Claim 1)
The present invention has been made in consideration of the above-mentioned problems, and is tapered downward in a hot runner device in which a plurality of hot runner nozzles are erected and a circular hole-like concave portion into which the tip of the hot runner nozzle enters. The cavity mold has reached the cavity gate, the resin injected from the hot runner nozzle side through the cavity gate is molded into a preform, and the preform is released in a state where blow molding is possible after the injection molding. In a preform molding apparatus comprising an injection mold for molding,
The top surface in the concave portion of the cavity-shaped circular concave portion is a flat surface, and the heat insulating member contact surface at the tip of the hot runner nozzle is a flat surface,
A disk-shaped heat insulating paper having an opening at the center is fitted into the cavity-shaped circular hole-shaped concave portion, and the gate port of the cavity gate is located at the center of the opening of the heat-insulating paper,
The heat insulating paper is sandwiched between the flat surface of the top surface of the concave portion of the cavity-shaped circular hole-shaped concave portion and the heat insulating member contact surface of the front end portion of the hot runner nozzle so as to be compressively deformable,
The heat insulating paper sandwiched between the cavity-shaped circular recess and the tip of the hot runner nozzle that has entered the circular recess,
Surrounded by the flat surface of the top surface of the cavity-shaped circular hole-shaped recess, the opening of the heat insulating paper, and the tip of the hot runner nozzle, the nozzle port of the hot runner nozzle and the gate port of the cavity gate face each other. In the space
A resin melt layer formed of a molten resin from a hot runner nozzle,
The resin melt layer overlaps with the resin melt layer and heat exchange with the resin melt layer is possible. The melt resin can be solidified by contact with the top surface of the cavity mold circular recess and heat exchange with the cavity mold. It is compressed and deformed to a thickness that forms two layers with the resin heat insulation layer,
The hole in the heat insulating paper is
The resin positioned in the resin heat insulating layer that exchanges heat with the resin melt layer is separated from the preform in a state in which the blow molding is enabled by the contact with the top surface of the cavity-shaped circular recess. Maintaining a solidified state in which fracture separation occurs between the resin located at the gate opening of the cavity gate at the time of molding,
The circular opening of the opening is
The resin positioned in the resin heat insulating layer that exchanges heat with the resin melt layer is in contact with the top surface of the cavity of the cavity-shaped circular recess so that heat exchange can be performed to maintain the solidified state. The preform molding apparatus is characterized by providing the preform molding apparatus to solve the above-mentioned problems.
(請求項2の発明)
前記キャビティゲートのゲート口に対する前記断熱紙の開孔の円開口面積比は、
樹脂溶融層との前記熱交換をする樹脂断熱層に位置する樹脂が、キャビティ型の円孔状凹部の凹部内天面との前記接触で、前記ブロー成形を可能にした状態のプリフォームの離型時にキャビティゲートのゲート口に位置する樹脂との間で破断分離が生じる固化状態に維持する熱交換が可能とされている円開口面積比であることが良好である。 (Invention of Claim 2)
The ratio of the circular opening area of the opening of the heat insulating paper to the gate opening of the cavity gate is:
The resin positioned in the resin heat insulating layer that exchanges heat with the resin melt layer is separated from the preform in a state in which the blow molding is enabled by the contact with the top surface of the cavity-shaped circular recess. It is favorable that the ratio of the circular opening area is such that heat exchange can be performed while maintaining a solidified state in which fracture separation occurs between the resin located at the gate port of the cavity gate during molding.
前記キャビティゲートのゲート口に対する前記断熱紙の開孔の円開口面積比は、
樹脂溶融層との前記熱交換をする樹脂断熱層に位置する樹脂が、キャビティ型の円孔状凹部の凹部内天面との前記接触で、前記ブロー成形を可能にした状態のプリフォームの離型時にキャビティゲートのゲート口に位置する樹脂との間で破断分離が生じる固化状態に維持する熱交換が可能とされている円開口面積比であることが良好である。 (Invention of Claim 2)
The ratio of the circular opening area of the opening of the heat insulating paper to the gate opening of the cavity gate is:
The resin positioned in the resin heat insulating layer that exchanges heat with the resin melt layer is separated from the preform in a state in which the blow molding is enabled by the contact with the top surface of the cavity-shaped circular recess. It is favorable that the ratio of the circular opening area is such that heat exchange can be performed while maintaining a solidified state in which fracture separation occurs between the resin located at the gate port of the cavity gate during molding.
(請求項1の発明の効果)
請求項1の発明によれば、円板状の断熱部材である断熱紙は、キャビティ型の円孔状凹部の凹部内天面の平坦面とホットランナーノズルの先端部の平坦面である断熱部材接触面との挟み込みによって、円孔状凹部の凹部内天面と断熱紙の開孔とホットランナーノズルの先端部とで囲まれた空間に、ホットランナーノズルからの溶融樹脂で形成される樹脂溶融層と、この樹脂溶融層の上に重なってこの樹脂溶融層との熱交換をするとともに、キャビティ型の円孔状凹部の凹部内天面に接触してキャビティ型との熱交換で固化が可能な樹脂断熱層との二層が形成されるようにした厚さに設けられている。 (Effect of the invention of claim 1)
According to invention ofClaim 1, the heat insulation paper which is a disk-shaped heat insulation member is the heat insulation member which is the flat surface of the top surface of a recessed part of a cavity type | mold circular hole-shaped recessed part, and the flat surface of the front-end | tip part of a hot runner nozzle. Resin melting formed by the molten resin from the hot runner nozzle in the space surrounded by the top surface of the concave portion of the circular hole-shaped concave portion, the opening of the heat insulating paper and the tip of the hot runner nozzle by sandwiching with the contact surface Heat exchange between the layer and the resin melt layer overlaps with the resin melt layer, and can be solidified by contact with the top surface of the cavity-shaped concave recess and heat exchange with the cavity mold It is provided in a thickness so that two layers with a resin heat insulating layer are formed.
請求項1の発明によれば、円板状の断熱部材である断熱紙は、キャビティ型の円孔状凹部の凹部内天面の平坦面とホットランナーノズルの先端部の平坦面である断熱部材接触面との挟み込みによって、円孔状凹部の凹部内天面と断熱紙の開孔とホットランナーノズルの先端部とで囲まれた空間に、ホットランナーノズルからの溶融樹脂で形成される樹脂溶融層と、この樹脂溶融層の上に重なってこの樹脂溶融層との熱交換をするとともに、キャビティ型の円孔状凹部の凹部内天面に接触してキャビティ型との熱交換で固化が可能な樹脂断熱層との二層が形成されるようにした厚さに設けられている。 (Effect of the invention of claim 1)
According to invention of
このように円孔状凹部の凹部内天面と断熱紙の開孔とホットランナーノズルの先端部とで囲まれた上記空間には、樹脂溶融層とこの樹脂溶融層に重なる樹脂断熱層との二層が形成されるようにしているので、ブロー成形を可能にした状態のプリフォームの離型時には、そのプリフォームのゲート部の樹脂と樹脂断熱層の樹脂との間に破断が起きて、糸引きが生じない。そのため、ブロー成形できるタイミングでプリフォームをキャビティ型から引き上げるようにしても、糸引きの無い適正な離型が行なえるという効果を奏する。
Thus, in the space surrounded by the top surface of the concave portion of the circular concave portion, the opening of the heat insulating paper, and the tip of the hot runner nozzle, the resin molten layer and the resin heat insulating layer overlapping the resin molten layer are formed. Since two layers are formed, at the time of release of the preform in a state where blow molding is possible, a break occurs between the resin of the gate part of the preform and the resin of the resin heat insulating layer, Stringing does not occur. Therefore, even if the preform is pulled up from the cavity mold at a timing at which blow molding can be performed, there is an effect that an appropriate mold release without stringing can be performed.
また、ホットランナーノズルからの溶融樹脂が流れ込んでなる樹脂溶融層が上記樹脂断熱層の下層となる形で設けられているので、断熱紙の厚さを調整するという簡単な操作にて、ホットランナーノズル側からの溶融樹脂の送り込みによって抵抗なく樹脂断熱層を突き破って射出成形型側に溶融樹脂を送り込みできる状態を確保できるという効果を奏する。
In addition, since the resin melt layer in which the molten resin flows from the hot runner nozzle is provided as a lower layer of the resin heat insulating layer, the hot runner can be easily operated by adjusting the thickness of the heat insulating paper. There is an effect that it is possible to secure a state in which the molten resin can be fed to the injection mold side by breaking through the resin heat insulation layer without resistance by feeding the molten resin from the nozzle side.
さらに、開孔が小孔であった場合にプリフォームのゲート部に白化が生じ易かったが、本発明において開孔は円開口とされていて、この円開口は、樹脂溶融層との前記熱交換をする樹脂断熱層に位置する樹脂が、キャビティ型の円孔状凹部の凹部内天面と接触して、前記固化状態に維持する熱交換が可能な広さとしているので、開孔の広さを広くしてプリフォームのゲート部の白化を防止することができる。
Further, when the opening was a small hole, whitening was likely to occur in the gate portion of the preform. However, in the present invention, the opening is a circular opening, and this circular opening is the thermal contact with the resin melt layer. Since the resin located in the resin heat insulating layer to be exchanged is in contact with the top surface of the cavity-shaped circular recess, the heat exchange to maintain the solidified state is possible. The width can be increased to prevent whitening of the gate portion of the preform.
(請求項2の発明の効果)
請求項2の発明によれば、キャビティ型のキャビティゲートのゲート口の円開口面積に基づいて比率から断熱紙の開孔を設けるようにすればよく、断熱紙の作製が容易になるという優れた効果を奏するものである。 (Effect of the invention of claim 2)
According to the second aspect of the present invention, it is only necessary to provide the opening of the heat insulating paper from the ratio based on the circular opening area of the gate opening of the cavity type cavity gate, and it is excellent in that the heat insulating paper can be easily manufactured. There is an effect.
請求項2の発明によれば、キャビティ型のキャビティゲートのゲート口の円開口面積に基づいて比率から断熱紙の開孔を設けるようにすればよく、断熱紙の作製が容易になるという優れた効果を奏するものである。 (Effect of the invention of claim 2)
According to the second aspect of the present invention, it is only necessary to provide the opening of the heat insulating paper from the ratio based on the circular opening area of the gate opening of the cavity type cavity gate, and it is excellent in that the heat insulating paper can be easily manufactured. There is an effect.
つぎに本発明を図1と図2に示す実施の形態に基づいて詳細に説明する。なお、図3と図4に示す従来例と構成が重複する部分は同符号を付してその説明を省略する。
Next, the present invention will be described in detail based on the embodiment shown in FIGS. 3 and 4 are denoted by the same reference numerals, and the description thereof is omitted.
本発明のプリフォーム成形装置1はホットランナー装置2とこのホットランナー装置2の上部に構成される射出成形型4とを備えているものである。そして上述したようにホットランナー装置2では型取り数に応じた複数のホットランナーノズル3が立設している。
The preform molding apparatus 1 of the present invention includes a hot runner apparatus 2 and an injection mold 4 formed on the hot runner apparatus 2. As described above, in the hot runner device 2, a plurality of hot runner nozzles 3 corresponding to the number of molds are erected.
また射出成形型4では、ホットランナーノズル3の上方となる部分にプリフォームの成形空間が形成されるようにしており、ホットランナーノズル3の先端部7が入り込む円孔状凹部6に下方に向けて先細りしたキャビティゲート8が達しているキャビティ型5を有している。射出成形型4は、上述したように前記キャビティ型5と、上下してこのキャビティ型5の内側に配置可能とされるコア型と、プリフォームの口部外周面形状を形成し、プリフォームの搬送及びブロー成形された中空成形体を搬送する役割も兼ねるリップ型とから構成される。
In addition, in the injection mold 4, a preform molding space is formed in a portion above the hot runner nozzle 3, and directed downward into the circular recess 6 into which the tip 7 of the hot runner nozzle 3 enters. It has a cavity mold 5 which is reached by a tapered gate 8 which is tapered. As described above, the injection mold 4 forms the cavity mold 5, a core mold that can be arranged inside the cavity mold 5 up and down, and the shape of the outer peripheral surface of the mouth of the preform. It is comprised from the lip type | mold which also serves as the role which conveys the hollow molded object conveyed and blow molded.
そして、射出成形型4は、ホットランナーノズル3側からキャビティゲート8を経て射出された樹脂をプリフォームに成形し、その射出成形後にブロー成形が可能な状態でプリフォームを離型するようにしているものである。なお、射出成形型4はキャビティ型5とコア型とリップ型とで構成されているが、本発明のポイントを明確に説明するために、図1と図2においては、射出成形型4の下部部分を図示している。また図3と図4においても射出成形型4はその下部部分が図示されている。
The injection mold 4 molds the resin injected through the cavity gate 8 from the hot runner nozzle 3 side into a preform, and releases the preform in a state where blow molding is possible after the injection molding. It is what. The injection mold 4 is composed of a cavity mold 5, a core mold, and a lip mold. In order to clearly explain the points of the present invention, the lower part of the injection mold 4 is shown in FIGS. The part is illustrated. 3 and 4, the lower part of the injection mold 4 is shown.
(断熱紙)
キャビティ型5の上記円孔状凹部6の凹部内天面10側に円板状の断熱紙13が嵌め入れられている。そして、キャビティ型5側の凹部内天面10とホットランナーノズル3の先端部7の先端部端面11に形成されている断熱部材接触面12との間で前記断熱紙13を挟み込みしている。 (Insulated paper)
A disc-shapedheat insulating paper 13 is fitted into the concave inner surface 10 side of the circular hole-shaped concave portion 6 of the cavity mold 5. The heat insulating paper 13 is sandwiched between the top surface 10 of the concave portion on the cavity mold 5 side and the heat insulating member contact surface 12 formed on the tip end surface 11 of the tip 7 of the hot runner nozzle 3.
キャビティ型5の上記円孔状凹部6の凹部内天面10側に円板状の断熱紙13が嵌め入れられている。そして、キャビティ型5側の凹部内天面10とホットランナーノズル3の先端部7の先端部端面11に形成されている断熱部材接触面12との間で前記断熱紙13を挟み込みしている。 (Insulated paper)
A disc-shaped
上記断熱紙13の中央には開孔16が打ち抜き形成されていて、この開孔16は断熱紙13自体の中心と同心の円状の開口(円開口)である。そして開孔16の中心はキャビティゲート8のゲート口15と対応位置していて、前記ゲート口15に比べて大径にして開口されている。
An opening 16 is punched and formed in the center of the heat insulating paper 13, and this opening 16 is a circular opening (circular opening) concentric with the center of the heat insulating paper 13 itself. The center of the opening 16 is positioned corresponding to the gate port 15 of the cavity gate 8 and is opened with a larger diameter than the gate port 15.
キャビティ型5側の凹部内天面10は平坦面である。またホットランナーノズル3側の先端部端面11も平坦面であって、この先端部端面11に形成されている上記断熱部材接触面12も平坦面としている。そして上記断熱紙13は、単にキャビティ型5側の凹部内天面10の平坦面とホットランナーノズル3側の断熱部材接触面12の平坦面との間に位置しているだけではなく、前記二面の平坦面で挟み込まれて断熱紙13の厚さが小さくなるように圧縮変形している。
The top surface 10 in the recess on the cavity mold 5 side is a flat surface. Moreover, the front end portion end surface 11 on the hot runner nozzle 3 side is also a flat surface, and the heat insulating member contact surface 12 formed on the front end portion end surface 11 is also a flat surface. The heat insulating paper 13 is not only positioned between the flat surface of the concave top surface 10 on the cavity mold 5 side and the flat surface of the heat insulating member contact surface 12 on the hot runner nozzle 3 side. The heat insulating paper 13 is compressed and deformed so that the thickness of the heat insulating paper 13 is reduced by being sandwiched between the flat surfaces.
(圧縮変形による断熱紙の厚さ調整)
断熱紙13の厚さが小さくなる圧縮変形の度合いについては、例えば厚さ方向に圧縮の圧力を受けていないときの厚さを100とした場合、圧縮変形した後の断熱紙13の厚さが前記100に対して約92程度となるようにすることが良好である。なお、射出成形に際して開孔16に後述する樹脂による二層が形成されるようにすることを条件とするものである。 (Adjustment of insulation paper thickness by compression deformation)
With respect to the degree of compression deformation in which the thickness of theheat insulating paper 13 is reduced, for example, when the thickness when the pressure of compression is not applied in the thickness direction is 100, the thickness of the heat insulating paper 13 after the compression deformation is It is preferable that the ratio is about 92 with respect to 100. It is to be noted that two layers of resin, which will be described later, are formed in the opening 16 during injection molding.
断熱紙13の厚さが小さくなる圧縮変形の度合いについては、例えば厚さ方向に圧縮の圧力を受けていないときの厚さを100とした場合、圧縮変形した後の断熱紙13の厚さが前記100に対して約92程度となるようにすることが良好である。なお、射出成形に際して開孔16に後述する樹脂による二層が形成されるようにすることを条件とするものである。 (Adjustment of insulation paper thickness by compression deformation)
With respect to the degree of compression deformation in which the thickness of the
断熱紙13は一枚であることが限定されているものではなく、必要に応じて複数枚を重ね合わせて用いることができる。具体的な一例としては、開孔16の直径が8mm、厚さ0.76mmの断熱紙13を二枚用意し、重ね合わせた状態で円孔状凹部6に嵌め入れる。そしてこの二枚にして重ね合わされた断熱紙13を上記二面の平坦面の挟み込みで1.40mmの厚さになるように圧縮変形させる。
It is not limited that the heat insulating paper 13 is a single sheet, and a plurality of sheets can be used by overlapping as necessary. As a specific example, two sheets of heat insulating paper 13 having an opening 16 with a diameter of 8 mm and a thickness of 0.76 mm are prepared and fitted into the circular hole-shaped recess 6 in a superposed state. Then, the heat insulating paper 13 superposed on the two sheets is compressed and deformed so as to have a thickness of 1.40 mm by sandwiching the two flat surfaces.
(空間)
上述したように断熱紙13が、キャビティ型5の円孔状凹部6とホットランナーノズル3の先端部7とで挟み込まれている。そして断熱紙13の中央の部分には、キャビティ型5の円孔状凹部6の平坦面である凹部内天面10と断熱紙13の開孔16の内周面とホットランナーノズル3の先端部7の平坦面とされている先端部端面11の一部分となるノズル口周囲面17(先端部端面11中の断熱部材非接触領域となる部分)とで囲まれている空間18が形成されている。 (space)
As described above, theheat insulating paper 13 is sandwiched between the circular recess 6 of the cavity mold 5 and the tip 7 of the hot runner nozzle 3. The central portion of the heat insulating paper 13 includes a concave inner surface 10 which is a flat surface of the circular concave portion 6 of the cavity mold 5, an inner peripheral surface of the opening 16 of the heat insulating paper 13, and a tip portion of the hot runner nozzle 3. A space 18 is formed that is surrounded by a nozzle port peripheral surface 17 (a portion that becomes a heat insulating member non-contact region in the tip end surface 11) that is a part of the tip end surface 11 that is a flat surface 7. .
上述したように断熱紙13が、キャビティ型5の円孔状凹部6とホットランナーノズル3の先端部7とで挟み込まれている。そして断熱紙13の中央の部分には、キャビティ型5の円孔状凹部6の平坦面である凹部内天面10と断熱紙13の開孔16の内周面とホットランナーノズル3の先端部7の平坦面とされている先端部端面11の一部分となるノズル口周囲面17(先端部端面11中の断熱部材非接触領域となる部分)とで囲まれている空間18が形成されている。 (space)
As described above, the
上記空間18には、下方からホットランナーノズル3のノズル口19が臨んでいるとともに、上方からはキャビティゲート8のゲート口15が臨んでいる。そして本プリフォーム成形装置1を搭載した射出延伸ブロー成形機が稼働して射出装置側からホットランナー装置2を経て射出成形型4に溶融樹脂が供給されることで、前記空間18は、常時樹脂で満たされる箇所となる。
In the space 18, a nozzle port 19 of the hot runner nozzle 3 faces from below, and a gate port 15 of the cavity gate 8 faces from above. Then, the injection stretch blow molding machine equipped with the preform molding apparatus 1 is operated and molten resin is supplied from the injection apparatus side to the injection mold 4 through the hot runner apparatus 2, so that the space 18 is always resin. It will be filled with.
断熱紙13は上述したように上下方向から圧力を加えることでその厚さを変更することができる。そして断熱紙13の厚さによって上記空間18に満たされる樹脂の状態が変化する。即ち、空間18の上下の寸法を大きくした場合と小さくした場合とでは、空間18の内部の樹脂の状態が相違する。
As described above, the thickness of the heat insulating paper 13 can be changed by applying pressure from above and below. The state of the resin filled in the space 18 changes depending on the thickness of the heat insulating paper 13. That is, the state of the resin inside the space 18 differs between when the upper and lower dimensions of the space 18 are increased and when the dimension is decreased.
そして本実施の形態において、上記断熱紙13は、本プリフォーム成形装置1の稼働時にノズル口19からゲート口15に向けての樹脂経路を通る溶融樹脂が上記空間18に満ちて、この溶融樹脂によって空間18に樹脂溶融層20と樹脂断熱層21との二層を形成する厚さに圧縮変形されている。
In the present embodiment, the heat insulating paper 13 is formed by filling the space 18 with molten resin passing through a resin path from the nozzle port 19 toward the gate port 15 when the preform molding apparatus 1 is in operation. The space 18 is compressed and deformed to a thickness that forms two layers of the resin melt layer 20 and the resin heat insulation layer 21 in the space 18.
(樹脂溶融層)
樹脂溶融層20は、ホットランナーノズル3からの溶融樹脂で形成される層であり、高温度の溶融樹脂が流動可能な状態となっている部分である。 (Resin melt layer)
Theresin melt layer 20 is a layer formed of the melt resin from the hot runner nozzle 3 and is a portion where the high temperature melt resin can flow.
樹脂溶融層20は、ホットランナーノズル3からの溶融樹脂で形成される層であり、高温度の溶融樹脂が流動可能な状態となっている部分である。 (Resin melt layer)
The
(樹脂断熱層)
また樹脂断熱層21は、樹脂溶融層20の上に重なってこの樹脂溶融層20の溶融樹脂との熱交換をするとともに、キャビティ型5の円孔状凹部6の凹部内天面10に接触してキャビティ型5との熱交換で溶融樹脂が固化可能な層である。 (Resin insulation layer)
The resinheat insulation layer 21 is superimposed on the resin melt layer 20 to exchange heat with the molten resin of the resin melt layer 20 and is in contact with the top surface 10 in the recess of the circular recess 6 of the cavity mold 5. Thus, the molten resin can be solidified by heat exchange with the cavity mold 5.
また樹脂断熱層21は、樹脂溶融層20の上に重なってこの樹脂溶融層20の溶融樹脂との熱交換をするとともに、キャビティ型5の円孔状凹部6の凹部内天面10に接触してキャビティ型5との熱交換で溶融樹脂が固化可能な層である。 (Resin insulation layer)
The resin
なお、空間18の上下の寸法を、圧縮変形した後の断熱紙13の厚さが非圧縮時の厚さ100に対して約92程度より更に小さくなるようにした場合の間隔では、空間18は溶融樹脂で満たされる可能性が高い。一方、空間18の上下の寸法を、上記1.40mmの値より大幅に大きくなるようにした場合(例えば三枚の断熱紙13を重ねるなどして空間18の上下の寸法を大きくした場合)、キャビティ型5の円孔状凹部6の凹部内天面10側で形成される固化状態の樹脂層の厚さが大きくなって、キャビティ型5側へ溶融樹脂を送り込みするときの抵抗が大きくなる。
It should be noted that the space 18 has an upper and lower dimension such that the thickness of the heat insulating paper 13 after being compressed and deformed is smaller than about 92 with respect to the thickness 100 at the time of non-compression. It is likely to be filled with molten resin. On the other hand, when the vertical dimension of the space 18 is made to be significantly larger than the value of 1.40 mm (for example, when the vertical dimension of the space 18 is increased by stacking three sheets of heat insulating paper 13 or the like), The thickness of the solidified resin layer formed on the concave inner surface 10 side of the circular hole-like concave portion 6 of the cavity mold 5 is increased, and the resistance when the molten resin is fed to the cavity mold 5 side is increased.
(開孔の円開口の大きさ)
上述しているようにプリフォーム成形装置1は、ブロー成形できる状態でプリフォームを離型するようにしているものである。そして断熱紙13の開孔16にあっては、プリフォームを離型するときにゲート部の樹脂と開孔16に位置する樹脂との間で、細く糸状に引き伸ばされる樹脂が生じないように工夫が、簡易な構成で実施されている。 (Size of circular opening of opening)
As described above, thepreform molding apparatus 1 is configured to release the preform in a state where blow molding is possible. The opening 16 of the heat insulating paper 13 is devised so that when the preform is released from the resin in the gate portion and the resin positioned in the opening 16, a resin that is stretched into a thin thread is not generated. However, it is implemented with a simple configuration.
上述しているようにプリフォーム成形装置1は、ブロー成形できる状態でプリフォームを離型するようにしているものである。そして断熱紙13の開孔16にあっては、プリフォームを離型するときにゲート部の樹脂と開孔16に位置する樹脂との間で、細く糸状に引き伸ばされる樹脂が生じないように工夫が、簡易な構成で実施されている。 (Size of circular opening of opening)
As described above, the
即ち、断熱紙13の開孔16は、樹脂溶融層20との上記熱交換を常時行なっている樹脂断熱層21に位置する樹脂を、キャビティ型5の円孔状凹部6の凹部内天面10との接触で、ブロー成形を可能にした状態のプリフォームの離型時にキャビティゲート8のゲート口15に位置する樹脂との間で破断分離が生じる固化状態に維持する。
That is, the opening 16 of the heat insulating paper 13 is made of resin located in the resin heat insulating layer 21 that constantly performs the heat exchange with the resin melt layer 20, and the top surface 10 in the concave portion of the circular concave portion 6 of the cavity mold 5. The solidified state in which breakage separation occurs between the resin located at the gate port 15 of the cavity gate 8 when the preform in a state where blow molding is possible is brought into contact with the resin.
そして開孔16の円開口(円状の開口)は、樹脂溶融層20との熱交換をする樹脂断熱層21に位置する樹脂がキャビティ型5側の凹部内天面10と接触して、上記条件の固化状態に維持する熱交換が可能な広さに設けられている。
The circular opening (circular opening) of the opening 16 is such that the resin located in the resin heat insulating layer 21 that exchanges heat with the resin melt layer 20 comes into contact with the top surface 10 in the recess on the cavity mold 5 side. It is provided in a size that allows heat exchange to maintain the solidified condition.
さらにゲート口15と開孔16とが共に円開口であるとともに、同心となるように配置されていて、キャビティゲート8のゲート口15に対する断熱紙13の開孔16の円開口面積比をつぎのようにしている。即ち、前記円開口面積比を、樹脂溶融層20との上記熱交換をする樹脂断熱層21に位置する樹脂が、キャビティ型5の円孔状凹部6の凹部内天面10との接触で、ブロー成形を可能にした状態のプリフォームの離型時にキャビティゲート8のゲート口15に位置する樹脂との間で破断分離が生じる固化状態に維持する熱交換が可能とされている円開口面積比としている。
Further, the gate opening 15 and the opening 16 are both circular openings and are arranged so as to be concentric. The ratio of the circular opening area of the opening 16 of the heat insulating paper 13 to the gate opening 15 of the cavity gate 8 is expressed as follows. I am doing so. That is, the resin located in the resin heat insulating layer 21 that performs the heat exchange with the resin melt layer 20 is in contact with the top surface 10 in the concave portion of the circular concave portion 6 of the cavity mold 5. Circular opening area ratio that enables heat exchange to maintain a solidified state in which breakage separation occurs with the resin located at the gate port 15 of the cavity gate 8 when the preform in a state in which blow molding is enabled is released. It is said.
具体的な一例としては、上記ゲート口15の直径が2mmとされたキャビティ型5であって、このキャビティ型5側の凹部内天面10との間で熱交換することとなる上記樹脂断熱層21を好適に得られるようにするために、開孔16の円開口の直径を約8mmとすることが好ましく、ゲート口15の円開口面積と開孔16の円開口面積との比を、約3:50とすることが良好である。
As a specific example, the resin mold heat insulating layer is a cavity mold 5 in which the diameter of the gate port 15 is 2 mm, and heat exchange is performed between the cavity mold 5 side and the top surface 10 in the recess. 21 is preferably about 8 mm, and the ratio of the circular opening area of the gate port 15 to the circular opening area of the opening 16 is about It is good to set it as 3:50.
上記円面積比とすることで、キャビティ型5に接して熱交換している樹脂断熱層21は、ブロー成形が可能なタイミングで離型するプリフォームのゲート部の樹脂と同様の固化状態に維持される。そして、前記プリフォームを離型するときに、プリフォームのゲート部の樹脂と前記樹脂断熱層21の固化状態に維持されている樹脂との間で、破断分離が生じる。このため、ブロー成形が可能なタイミングで離型されたプリフォームのゲート部に糸引きが生じない。
By setting the circular area ratio, the resin heat insulating layer 21 in contact with the cavity mold 5 and exchanging heat is maintained in a solidified state similar to that of the resin of the gate portion of the preform that is released at a timing at which blow molding is possible. Is done. When the preform is released from the mold, fracture separation occurs between the resin at the gate portion of the preform and the resin maintained in the solidified state of the resin heat insulating layer 21. For this reason, stringing does not occur at the gate portion of the preform that has been released at the timing when blow molding is possible.
なお、上述のように厚さを圧縮変形した断熱紙13の開孔16の円開口の直径を約4mmの直径として、ゲート口15と開孔16の円開口面積比を約3:13とすると、糸引きが生じる可能性が高まって好ましくない。
In addition, when the diameter of the circular opening of the opening 16 of the heat insulating paper 13 whose thickness is compressed and deformed as described above is about 4 mm, and the circular opening area ratio between the gate port 15 and the opening 16 is about 3:13. This is not preferable because the possibility of stringing increases.
上述した断熱紙は高断熱性のある紙状シートを指した呼び方であり、100%のパルプからなるものではない。上記実施の形態で用いた断熱紙13はメタ系アラミド繊維から作製されている断熱紙であり、デュポン社製ノーメックス紙(ノーメックス登録商標)を使用した。
The above-mentioned heat insulating paper refers to a highly heat-insulating paper sheet, and is not made of 100% pulp. The heat insulating paper 13 used in the above embodiment is a heat insulating paper made from a meta-aramid fiber, and Nomex paper (Nomex registered trademark) manufactured by DuPont was used.
(他の実施例)
上記実施の例において、ホットランナーノズル3の先端部7の先端部端面11はその全面を平坦面にしていて、さらにこの先端部端面11が、ノズル口19を中央に配した上記ノズル口周囲面17とこのノズル口周囲面17の外側に連続して位置する上記断熱部材接触面12とを形成しているものとしたが、本発明では、前記先端部端面11の全面が平坦面であることに限定されるものではない。 (Other examples)
In the above embodiment, thetip end surface 11 of the tip portion 7 of the hot runner nozzle 3 is a flat surface, and the tip end surface 11 is the peripheral surface of the nozzle port with the nozzle port 19 in the center. 17 and the heat insulating member contact surface 12 located continuously outside the nozzle port peripheral surface 17 are formed. However, in the present invention, the entire tip end surface 11 is a flat surface. It is not limited to.
上記実施の例において、ホットランナーノズル3の先端部7の先端部端面11はその全面を平坦面にしていて、さらにこの先端部端面11が、ノズル口19を中央に配した上記ノズル口周囲面17とこのノズル口周囲面17の外側に連続して位置する上記断熱部材接触面12とを形成しているものとしたが、本発明では、前記先端部端面11の全面が平坦面であることに限定されるものではない。 (Other examples)
In the above embodiment, the
図2は他の実施の例を示している。この例では先端部端面11の全面が平坦面とされているものではなく、上記ノズル口周囲面17を、断熱部材接触面12の高さ位置に対して下位となるように段落としさせており、ノズル口周囲面17の部分を底面としてその中央にノズル口19を開口させている円形の先端窪み部22を、先端部端面11の中央に形成している。
FIG. 2 shows another example of implementation. In this example, the entire surface of the end face 11 of the tip is not a flat face, and the nozzle port peripheral face 17 is made a paragraph so as to be lower than the height position of the heat insulating member contact face 12. A circular tip recess 22 is formed in the center of the tip end surface 11 with the nozzle port peripheral surface 17 as a bottom surface and the nozzle port 19 being opened at the center thereof.
そして、この図2で示す実施の例では、キャビティ型5側の凹部内天面10の平坦面とホットランナーノズル3の先端部7での最上面である上記断熱部材接触面12の平坦面との間に上記断熱紙13を位置させている。断熱紙13は、上述した実施の例と同様に前記上下二面の平坦面(凹部内天面10、断熱部材接触面12)で挟み込まれて、断熱紙13の厚さが小さくなるように圧縮変形している。
In the embodiment shown in FIG. 2, the flat surface of the concave top surface 10 on the cavity mold 5 side and the flat surface of the heat insulating member contact surface 12 which is the uppermost surface at the tip 7 of the hot runner nozzle 3 The heat insulating paper 13 is positioned between them. The heat insulating paper 13 is compressed so that the thickness of the heat insulating paper 13 is reduced by being sandwiched between the two upper and lower flat surfaces (the top surface 10 in the recess and the heat insulating member contact surface 12), as in the above-described embodiment. It is deformed.
(圧縮変形による断熱紙の厚さ調整)
(先の実施の例の場合)
断熱紙13の厚さが小さくなる圧縮変形の度合いにおいて、先に説明した上記実施の例では、上述したように開孔16の直径が8mm、厚さが0.76mm(非圧縮時)の断熱紙13(ノーメックス紙)を用いていて、この断熱紙13を二枚重ねにして挟み込みをし、上記二面の平坦面の挟み込みで1.40mmの厚さになるように圧縮変形されている。即ち、空間18の上下の寸法を1.40mmとしている。 (Adjustment of insulation paper thickness by compression deformation)
(In the case of the previous implementation example)
In the degree of compression deformation in which the thickness of theheat insulating paper 13 is reduced, as described above, the diameter of the aperture 16 is 8 mm and the thickness is 0.76 mm (when not compressed) as described above. Paper 13 (Nomex paper) is used, and the two heat insulating papers 13 are overlapped and sandwiched, and compressed and deformed to a thickness of 1.40 mm by sandwiching the two flat surfaces. That is, the upper and lower dimensions of the space 18 are 1.40 mm.
(先の実施の例の場合)
断熱紙13の厚さが小さくなる圧縮変形の度合いにおいて、先に説明した上記実施の例では、上述したように開孔16の直径が8mm、厚さが0.76mm(非圧縮時)の断熱紙13(ノーメックス紙)を用いていて、この断熱紙13を二枚重ねにして挟み込みをし、上記二面の平坦面の挟み込みで1.40mmの厚さになるように圧縮変形されている。即ち、空間18の上下の寸法を1.40mmとしている。 (Adjustment of insulation paper thickness by compression deformation)
(In the case of the previous implementation example)
In the degree of compression deformation in which the thickness of the
そして、先の実施の例の場合、断熱紙13(二枚重ね状態)の厚さ方向に圧縮の圧力を受けていないときの厚さを100とした場合、圧縮変形した後の断熱紙13の厚さが前記100に対して約92程度となるようにしており、これによって、射出成形に際して開孔16に樹脂による二層(樹脂溶融層20、樹脂断熱層21)が形成されるようにしている。
In the case of the previous embodiment, the thickness of the heat insulating paper 13 after being compressed and deformed when the thickness of the heat insulating paper 13 (two-layered state) is not subjected to compression pressure in the thickness direction is defined as 100. Is about 92 with respect to 100, so that two layers of resin (resin melt layer 20 and resin heat insulation layer 21) are formed in the opening 16 during injection molding.
(他の実施の例の場合)
図2に示すようにキャビティ型5側の上記凹部内天面10と上記円形の先端窪み部22の周りの断熱部材接触面12との上下二面で断熱紙13を挟み込んでいる他の実施の例では、断熱紙13を一枚としている例である。そして、その断熱紙13にあっては、開孔16の直径が5mm、厚さが0.5mm(非圧縮時)のもの(ノーメックス紙)を用いて、凹部内天面10と断熱部材接触面12との挟み込みによって、厚さが0.3mmとなるようにすることが良好である。 (In the case of other implementation examples)
As shown in FIG. 2, another embodiment in which theheat insulating paper 13 is sandwiched between the top and bottom surfaces of the cavity inner surface 10 on the cavity mold 5 side and the heat insulating member contact surface 12 around the circular tip recess 22. In the example, the insulating paper 13 is a single sheet. And in the heat insulation paper 13, the inside surface 10 of a recessed part and a heat insulation member contact surface are used using the thing (Nomex paper) whose diameter of the opening 16 is 5 mm and thickness is 0.5 mm (at the time of non-compression). It is preferable to make the thickness 0.3 mm by sandwiching with 12.
図2に示すようにキャビティ型5側の上記凹部内天面10と上記円形の先端窪み部22の周りの断熱部材接触面12との上下二面で断熱紙13を挟み込んでいる他の実施の例では、断熱紙13を一枚としている例である。そして、その断熱紙13にあっては、開孔16の直径が5mm、厚さが0.5mm(非圧縮時)のもの(ノーメックス紙)を用いて、凹部内天面10と断熱部材接触面12との挟み込みによって、厚さが0.3mmとなるようにすることが良好である。 (In the case of other implementation examples)
As shown in FIG. 2, another embodiment in which the
(空間)
図2の実施の例は、上述したように一枚の断熱紙13を圧縮変形させてその厚さを0.3mmとする形態を採用することができる例であり、上記空間18を確保する上で円形の先端窪み部22を形成しているものである。 (space)
The embodiment shown in FIG. 2 is an example in which a singleheat insulating paper 13 is compressed and deformed to have a thickness of 0.3 mm as described above. A circular tip recess 22 is formed.
図2の実施の例は、上述したように一枚の断熱紙13を圧縮変形させてその厚さを0.3mmとする形態を採用することができる例であり、上記空間18を確保する上で円形の先端窪み部22を形成しているものである。 (space)
The embodiment shown in FIG. 2 is an example in which a single
そして、この例における上記空間18は、キャビティ型5の円孔状凹部6の凹部内天面10と断熱紙13の開孔16の内周面と先端窪み部22の内面とで囲まれている部分である。さらに前記先端窪み部22の深さは1.6mmとすることが良好であり、この先端窪み部22の深さ(1.6mm)と圧縮変形した断熱紙13の厚さ(0.3mm)とから、空間18の上下の寸法が1.9mmとすることが良好である。
The space 18 in this example is surrounded by the concave top surface 10 of the circular recess 6 of the cavity mold 5, the inner peripheral surface of the opening 16 of the heat insulating paper 13, and the inner surface of the tip recess 22. Part. Further, the depth of the tip recess 22 is preferably 1.6 mm, the depth of the tip recess 22 (1.6 mm), and the thickness (0.3 mm) of the heat-insulated paper 13 compressed and deformed. Therefore, it is preferable that the vertical dimension of the space 18 is 1.9 mm.
上記空間18においても、下方からホットランナーノズル3のノズル口19が臨んでいるとともに、上方からはキャビティゲート8のゲート口15が臨んでいる。そして射出延伸ブロー成形機が稼働して射出装置側からホットランナー装置2を経て射出成形型4に溶融樹脂が供給されることで、前記空間18は常時樹脂で満たされる。
Also in the space 18, the nozzle port 19 of the hot runner nozzle 3 faces from below, and the gate port 15 of the cavity gate 8 faces from above. The injection stretch blow molding machine is operated, and the molten resin is supplied from the injection device side to the injection mold 4 through the hot runner device 2, so that the space 18 is always filled with the resin.
ホットランナーノズル3の先端部7の上記先端窪み部22を有し、キャビティ型5側の凹部内天面10と断熱部材接触面12とによる断熱紙13に対する圧縮変形も、上述の実施の例と同様に、プリフォーム成形装置1の稼働時にノズル口19からゲート口15に向けての樹脂経路を通る溶融樹脂が空間18に満ちて、この溶融樹脂によって空間18に樹脂溶融層20と樹脂断熱層21との二層を形成する厚さとなるようにしているものである。
The hot runner nozzle 3 has the tip recess portion 22 of the tip portion 7 thereof, and the compressive deformation of the heat insulating paper 13 by the concave top surface 10 and the heat insulating member contact surface 12 on the cavity mold 5 side is also the same as the above embodiment. Similarly, when the preform molding apparatus 1 is in operation, the molten resin passing through the resin path from the nozzle port 19 to the gate port 15 fills the space 18, and the molten resin fills the space 18 with the molten resin 20 and the resin heat insulating layer. 21 to form a two-layer thickness.
(開孔の円開口の大きさ)
図2に示す実施の例も、断熱紙13の開孔16は、樹脂溶融層20との熱交換を常時行なう樹脂断熱層21に位置する樹脂を、キャビティ型5側の凹部内天面10との接触で、ブロー成形を可能にした状態のプリフォームの離型時にキャビティゲート8のゲート口15に位置する樹脂との間で破断分離が生じる固化状態に維持する。 (Size of circular opening of opening)
In the embodiment shown in FIG. 2 as well, theopening 16 of the heat insulating paper 13 is made of resin located in the resin heat insulating layer 21 that always performs heat exchange with the resin molten layer 20, and the top surface 10 in the recess on the cavity mold 5 side. In this contact, when the preform in a state in which blow molding is enabled is released, it is maintained in a solidified state in which fracture separation occurs between the resin located at the gate port 15 of the cavity gate 8.
図2に示す実施の例も、断熱紙13の開孔16は、樹脂溶融層20との熱交換を常時行なう樹脂断熱層21に位置する樹脂を、キャビティ型5側の凹部内天面10との接触で、ブロー成形を可能にした状態のプリフォームの離型時にキャビティゲート8のゲート口15に位置する樹脂との間で破断分離が生じる固化状態に維持する。 (Size of circular opening of opening)
In the embodiment shown in FIG. 2 as well, the
そして開孔16の円開口も、上記樹脂断熱層21に位置する樹脂がキャビティ型5側の凹部内天面10と接触して、糸引きを生じさせない固化状態に維持する熱交換が可能な広さである。
The circular opening of the opening 16 is also wide enough to allow heat exchange in which the resin located in the resin heat insulation layer 21 is in contact with the top surface 10 of the concave portion on the cavity mold 5 side and is maintained in a solidified state that does not cause stringing. That's it.
さらにゲート口15と開孔16とが共に円開口であり、同心となるように配置されていて、ゲート口15に対する断熱紙13の開孔16の円開口面積比を、樹脂溶融層20との熱交換をする樹脂断熱層21に位置する樹脂が、キャビティ型5側の凹部内天面10との接触で、ブロー成形を可能にした状態のプリフォームの離型時にキャビティゲート8のゲート口15に位置する樹脂との間で破断分離が生じる固化状態に維持する熱交換が可能とされている円開口面積比としている点も、上記実施の例と同じである。
Furthermore, the gate opening 15 and the opening 16 are both circular openings and are arranged so as to be concentric. The ratio of the circular opening area of the opening 16 of the heat insulating paper 13 to the gate opening 15 is the same as that of the resin melt layer 20. The resin located in the resin heat insulating layer 21 for heat exchange is in contact with the top surface 10 of the recess on the cavity mold 5 side, and when the preform is released from the preform in a state where blow molding is possible, the gate port 15 of the cavity gate 8 This is also the same as the above example in that the ratio of the circular opening area is such that heat exchange is possible to maintain a solidified state in which breakage separation occurs between the resin and the resin located at the position.
1…プリフォーム成形装置
2…ホットランナー装置
3…ホットランナーノズル
4…射出成形型
5…キャビティ型
6…キャビティ型の円孔状凹部
7…ホットランナーノズルの先端部
8…キャビティゲート
10…凹部内天面
11…先端部端面
12…断熱部材接触面
13…断熱紙
14…断熱板
15…ゲート口
16…開孔
17…ノズル口周囲面
18…空間
19…ノズル口
20…樹脂溶融層
21…樹脂断熱層
22…円柱状の先端窪み部
DESCRIPTION OFSYMBOLS 1 ... Preform molding apparatus 2 ... Hot runner apparatus 3 ... Hot runner nozzle 4 ... Injection mold 5 ... Cavity mold 6 ... Cavity mold circular recessed part 7 ... Hot runner nozzle tip part 8 ... Cavity gate 10 ... In the recessed part Top surface 11 ... End surface 12 of the tip part 12 ... Heat insulation member contact surface 13 ... Heat insulation paper 14 ... Heat insulation plate 15 ... Gate port 16 ... Opening 17 ... Nozzle port peripheral surface 18 ... Space 19 ... Nozzle port 20 ... Resin melt layer 21 ... Resin Heat insulation layer 22 ... Columnar tip recess
2…ホットランナー装置
3…ホットランナーノズル
4…射出成形型
5…キャビティ型
6…キャビティ型の円孔状凹部
7…ホットランナーノズルの先端部
8…キャビティゲート
10…凹部内天面
11…先端部端面
12…断熱部材接触面
13…断熱紙
14…断熱板
15…ゲート口
16…開孔
17…ノズル口周囲面
18…空間
19…ノズル口
20…樹脂溶融層
21…樹脂断熱層
22…円柱状の先端窪み部
DESCRIPTION OF
Claims (2)
- 複数のホットランナーノズルが立設しているホットランナー装置と、前記ホットランナーノズルの先端部が入り込む円孔状凹部に、下方に向けて先細りしたキャビティゲートが達しているキャビティ型を有していて、ホットランナーノズル側からキャビティゲートを経て射出された樹脂をプリフォームに成形し、その射出成形後にブロー成形が可能な状態でプリフォームを離型する射出成形型とを備えるプリフォーム成形装置において、
キャビティ型の円孔状凹部の凹部内天面が平坦面とされているとともに、ホットランナーノズルの先端部の断熱部材接触面が平坦面とされ、
前記キャビティ型の円孔状凹部に、中心に開孔を有した円板状の断熱紙を嵌め込みして、この断熱紙の開孔の中心にキャビティゲートのゲート口が対応位置しており、
前記断熱紙が、キャビティ型の円孔状凹部の凹部内天面の前記平坦面とホットランナーノズルの先端部の前記断熱部材接触面とで圧縮変形可能に挟み込まれていて、
キャビティ型の円孔状凹部とこの円孔状凹部に入り込んだホットランナーノズルの先端部とで挟み込みされた前記断熱紙は、
キャビティ型の円孔状凹部の凹部内天面の平坦面と断熱紙の開孔とホットランナーノズルの先端部とで囲まれて、ホットランナーノズルのノズル口とキャビティゲートのゲート口とが臨んでいる空間に、
ホットランナーノズルからの溶融樹脂で形成される樹脂溶融層と、
前記樹脂溶融層の上に重なってこの樹脂溶融層との熱交換をするとともに、キャビティ型の円孔状凹部の凹部内天面に接触してキャビティ型との熱交換で溶融樹脂が固化可能な樹脂断熱層と
の二層を形成する厚さに圧縮変形されていて、
前記断熱紙の開孔は、
樹脂溶融層との前記熱交換をする樹脂断熱層に位置する樹脂を、キャビティ型の円孔状凹部の凹部内天面との前記接触で、前記ブロー成形を可能にした状態のプリフォームの離型時にキャビティゲートのゲート口に位置する樹脂との間で破断分離が生じる固化状態に維持するものであって、
前記開孔の円開口は、
樹脂溶融層との前記熱交換をする樹脂断熱層に位置する樹脂が、キャビティ型の円孔状凹部の凹部内天面と接触して、前記固化状態に維持する熱交換が可能な広さとされていることを特徴とするプリフォーム成形装置。 A hot runner device in which a plurality of hot runner nozzles are erected, and a cavity mold in which a cavity gate tapered downward is reached in a circular hole-like concave portion into which the tip of the hot runner nozzle enters. In a preform molding apparatus including an injection mold for molding a resin injected from a hot runner nozzle side through a cavity gate into a preform, and releasing the preform in a state where blow molding is possible after the injection molding,
The top surface in the concave portion of the cavity-shaped circular concave portion is a flat surface, and the heat insulating member contact surface at the tip of the hot runner nozzle is a flat surface,
A disk-shaped heat insulating paper having an opening at the center is fitted into the cavity-shaped circular hole-shaped concave portion, and the gate port of the cavity gate is located at the center of the opening of the heat-insulating paper,
The heat insulating paper is sandwiched between the flat surface of the top surface of the concave portion of the cavity-shaped circular hole-shaped concave portion and the heat insulating member contact surface of the front end portion of the hot runner nozzle so as to be compressively deformable,
The heat insulating paper sandwiched between the cavity-shaped circular recess and the tip of the hot runner nozzle that has entered the circular recess,
Surrounded by the flat surface of the top surface of the cavity-shaped circular hole-shaped recess, the opening of the heat insulating paper, and the tip of the hot runner nozzle, the nozzle port of the hot runner nozzle and the gate port of the cavity gate face each other. In the space
A resin melt layer formed of a molten resin from a hot runner nozzle,
The resin melt layer overlaps with the resin melt layer and heat exchange with the resin melt layer is possible. The melt resin can be solidified by contact with the top surface of the cavity mold circular recess and heat exchange with the cavity mold. It is compressed and deformed to a thickness that forms two layers with the resin heat insulation layer,
The hole in the heat insulating paper is
The resin positioned in the resin heat insulating layer that exchanges heat with the resin melt layer is separated from the preform in a state in which the blow molding is enabled by the contact with the top surface of the cavity-shaped circular recess. Maintaining a solidified state in which fracture separation occurs between the resin located at the gate opening of the cavity gate at the time of molding,
The circular opening of the opening is
The resin positioned in the resin heat insulating layer that exchanges heat with the resin melt layer is in contact with the top surface of the cavity of the cavity-shaped circular recess so that heat exchange can be performed to maintain the solidified state. A preform molding apparatus. - 前記キャビティゲートのゲート口に対する前記断熱紙の開孔の円開口面積比は、
樹脂溶融層との前記熱交換をする樹脂断熱層に位置する樹脂が、キャビティ型の円孔状凹部の凹部内天面との前記接触で、前記ブロー成形を可能にした状態のプリフォームの離型時にキャビティゲートのゲート口に位置する樹脂との間で破断分離が生じる固化状態に維持する熱交換が可能とされている円開口面積比である請求項1に記載のプリフォーム成形装置。 The ratio of the circular opening area of the opening of the heat insulating paper to the gate opening of the cavity gate is:
The resin positioned in the resin heat insulating layer that exchanges heat with the resin melt layer is separated from the preform in a state in which the blow molding is enabled by the contact with the top surface of the cavity-shaped circular recess. The preform molding apparatus according to claim 1, wherein the ratio of the circular opening area is such that heat exchange is possible to maintain a solidified state in which fracture separation occurs between the resin located at the gate port of the cavity gate at the time of molding.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018099806A JP2021137965A (en) | 2018-05-24 | 2018-05-24 | Preform molding apparatus |
JP2018-099806 | 2018-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019225062A1 true WO2019225062A1 (en) | 2019-11-28 |
Family
ID=68615709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/003323 WO2019225062A1 (en) | 2018-05-24 | 2019-01-31 | Preform molding device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2021137965A (en) |
TW (1) | TW202003200A (en) |
WO (1) | WO2019225062A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06254928A (en) * | 1993-03-09 | 1994-09-13 | Nissei Asb Mach Co Ltd | Injection molding starting method |
JP2000351151A (en) * | 1999-09-21 | 2000-12-19 | Nissei Asb Mach Co Ltd | Preform molding apparatus |
JP2002361691A (en) * | 2001-06-13 | 2002-12-18 | Nissei Asb Mach Co Ltd | Hot runner unit |
JP2004059129A (en) * | 2002-07-31 | 2004-02-26 | Aoki Technical Laboratory Inc | Bottle having hanger on bottom, its molding method and injection-molding die |
WO2017002150A1 (en) * | 2015-06-30 | 2017-01-05 | 株式会社青木固研究所 | Method for molding container using injection stretch blow molding machine |
-
2018
- 2018-05-24 JP JP2018099806A patent/JP2021137965A/en active Pending
- 2018-11-05 TW TW107139221A patent/TW202003200A/en unknown
-
2019
- 2019-01-31 WO PCT/JP2019/003323 patent/WO2019225062A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06254928A (en) * | 1993-03-09 | 1994-09-13 | Nissei Asb Mach Co Ltd | Injection molding starting method |
JP2000351151A (en) * | 1999-09-21 | 2000-12-19 | Nissei Asb Mach Co Ltd | Preform molding apparatus |
JP2002361691A (en) * | 2001-06-13 | 2002-12-18 | Nissei Asb Mach Co Ltd | Hot runner unit |
JP2004059129A (en) * | 2002-07-31 | 2004-02-26 | Aoki Technical Laboratory Inc | Bottle having hanger on bottom, its molding method and injection-molding die |
WO2017002150A1 (en) * | 2015-06-30 | 2017-01-05 | 株式会社青木固研究所 | Method for molding container using injection stretch blow molding machine |
Also Published As
Publication number | Publication date |
---|---|
TW202003200A (en) | 2020-01-16 |
JP2021137965A (en) | 2021-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3339231A (en) | Method and apparatus for manufacturing by expansion-molding articles in thermoplastic material | |
CN106687272A (en) | Molding apparatus and method for manufacturing an opening device | |
CN109293226A (en) | A kind of split type 3D glass hot-bending die and 3D glass bending forming method | |
KR20040002783A (en) | Injection mold having hot-runner mold | |
TW200523098A (en) | A gate cooling structure in a molding stack | |
WO2019225062A1 (en) | Preform molding device | |
US3579620A (en) | Blow molding | |
TWI681860B (en) | Mold for forming | |
US8585394B2 (en) | Cooling sleeve with a support element | |
JP3573374B2 (en) | Preform molding method in injection stretch blow molding | |
JP2011098512A (en) | Mold assembly for injection molding machine and injection molding machine | |
JP2022035824A5 (en) | ||
JP5789556B2 (en) | Double container manufacturing method | |
JP2006505485A (en) | Apparatus and method for producing bottle stopper glass stopper | |
TWI609844B (en) | Apparatus and method of forming a 3d glass | |
CN206356511U (en) | A kind of flash structure of common die forging | |
CN216828591U (en) | Extrusion die of double-layer multi-cavity semi-open section | |
JP6657551B2 (en) | Method for manufacturing resin molded body | |
JP4409013B2 (en) | Mold | |
JP3791903B2 (en) | Mold for blow molding | |
JP2019188698A (en) | Injection molding mold | |
JP7422865B2 (en) | Hot runner type and resin container manufacturing equipment | |
KR102055736B1 (en) | Blow forming apparatus and forming method thereof | |
JP2006112014A (en) | Cap part for safety helmet that is made of reinforcing fiber-including thermoplastic resin and method for producing the same | |
JP2008132708A (en) | Manufacturing method of synthetic resin foamed sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19807007 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19807007 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |