WO2019216416A1 - 撓み量推定装置、ロボット制御装置、及び撓み量推定方法 - Google Patents
撓み量推定装置、ロボット制御装置、及び撓み量推定方法 Download PDFInfo
- Publication number
- WO2019216416A1 WO2019216416A1 PCT/JP2019/018751 JP2019018751W WO2019216416A1 WO 2019216416 A1 WO2019216416 A1 WO 2019216416A1 JP 2019018751 W JP2019018751 W JP 2019018751W WO 2019216416 A1 WO2019216416 A1 WO 2019216416A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- link structure
- deflection amount
- stiffness
- swing angle
- joint
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/106—Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
- B25J9/1065—Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links with parallelograms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/06—Programme-controlled manipulators characterised by multi-articulated arms
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39176—Compensation deflection arm
Definitions
- the present invention relates to a deflection amount estimation device, a robot control device, and a deflection amount estimation method.
- Patent Document 1 proposes a control for accurately positioning a robot including an element having low rigidity in consideration of deflection or the like.
- Patent Document 1 acquires the displacement on the secondary side of the power transmission element of the drive shaft of the arm, and performs feedback control by estimating the displacement on the primary side of the power transmission element with an observer based on the acquired displacement value.
- a deflection amount estimation apparatus is the robot arm 4 in which a plurality of links including a four-joint link structure that swings in a predetermined angle range are connected by a joint.
- a deflection amount estimation device for estimating a deflection amount of a joint link structure unit, wherein a swing angle calculation unit that calculates a swing angle of the four-joint link structure unit and a load received by the four-joint link structure unit are calculated.
- a load calculation unit a stiffness value that is a value of each component of a stiffness matrix that relates a load received by the four-node link structure unit and a deflection amount of the four-node link structure unit, and a swing of the four-node link structure unit
- a stiffness matrix determination unit that determines the stiffness value corresponding to the swing angle of the four-joint link structure detected by the swing angle calculation unit using a stiffness value determination function that represents a correlation with an angle;
- the four-section resource calculated by the load calculator Comprising a load phrase structure portion is subjected, on the basis of the stiffness matrix with the stiffness value component the stiffness matrix determination unit has determined, and a deflection amount calculating unit for calculating the deflection amount of the quadric link structure.
- the present invention has an effect that the amount of calculation in the process of calculating the amount of bending can be reduced, and the amount of bending can be calculated quickly.
- FIG. 2 is a block diagram schematically illustrating a configuration example of a control system of the robot system of FIG. 1.
- 3 is a flowchart illustrating an operation example related to a deflection amount estimation operation of the robot system of FIG. 1. It is a figure which shows an example of the rigidity value determination function used for bending amount estimation operation
- a deflection amount estimation device estimates a deflection amount of the four-joint link structure portion of a robot arm in which a plurality of links including a four-joint link structure portion swinging in a predetermined angle range are connected by a joint.
- a deflection amount estimation device a swing angle calculation unit that calculates a swing angle of the four-bar link structure unit, a load calculation unit that calculates a load received by the four-bar link structure unit, and the four-bar link structure Stiffness value representing the correlation between the stiffness value that is the value of each component of the stiffness matrix that correlates the load received by the portion and the amount of deflection of the 4-joint link structure portion, and the swing angle of the 4-joint link structure portion Using a determination function, a stiffness matrix determining unit that determines the stiffness value corresponding to the swing angle of the four-node link structure detected by the swing angle calculating unit, and the four nodes calculated by the load calculating unit. The load received by the link structure and the rigidity Based on the stiffness matrix with the stiffness value component matrix determination unit has determined, and a deflection amount calculating unit for calculating the deflection amount of the quadric link structure.
- the four-bar link structure part may have a closed link structure.
- the robot arm can be appropriately configured.
- the four-bar link structure part may have a parallel link structure.
- the robot arm can be appropriately configured.
- the stiffness value determination function is a function obtained by previously analyzing the stiffness values respectively corresponding to a plurality of different swing angles, and linearly interpolating the stiffness values corresponding to the plurality of swing angles obtained by the analysis. It may be.
- the amount of calculation in the process of calculating the amount of bending can be further reduced, and the amount of bending can be calculated quickly.
- a robot control device includes the above-described deflection amount estimation device.
- FIG. 1 is a diagram schematically illustrating a configuration example of a robot system 100 including a deflection amount estimation apparatus according to an embodiment.
- the robot system 100 includes a robot body 1 and a robot controller 2.
- the robot body 1 is an articulated industrial robot (articulated robot).
- the robot body 1 is a robot using a parallel link structure for an upper arm structure 12 and a lower arm structure 11 for supporting the hand 8, which will be described later, and has high mechanical rigidity and realizes stable operation under high load conditions. A robot that can do that.
- the robot body 1 includes a base 6, a robot arm 7, and a hand 8.
- the base 6 is fixed and placed on the floor surface, for example, and supports the robot arm 7 and the hand 8.
- the robot arm 7 has a structure in which a plurality of links are connected by joints.
- the robot arm 7 includes a lower arm structure 11, an upper arm structure 12, a joint drive unit 13 (see FIG. 2), and a lower arm drive unit 14 (see FIG. 2).
- the lower arm structure 11 is connected to the base 6 so as to be rotatable around a turning axis extending in the vertical direction, for example.
- a structure connecting the base 6 and the lower arm structure 11 is a first joint JT1.
- the upper arm structure 12 is connected to the lower arm structure 11 so as to be rotatable around an upper arm rotation axis perpendicular to the pivot axis.
- a structure connecting the lower arm structure 11 and the upper arm structure 12 is a third joint JT3.
- the robot arm 7 can consider an operation structure of the lower arm structure 11 described later as a joint (second joint JT2), and including this, the robot arm 7 as a whole has six joint axes.
- a joint second joint JT2
- five joint shafts excluding the lower arm structure 11 are driven by a joint drive unit 13 provided corresponding to each joint, and the distal end side with respect to the proximal end side link.
- the link is rotated around the rotation axis.
- the lower arm structure 11 is driven by a lower arm driving unit 14 (details will be described later).
- the upper arm structure 12 is a serial link structure, and is configured in the same manner as the upper arm structure of a well-known vertical articulated 6-axis robot, and thus detailed description thereof is omitted.
- distal end side means the hand 8 side in the direction in which the robot arm 7 extends
- proximal end side means the base 6 side.
- the lower arm structure (four-bar link structure part) 11 is an arm structure that swings within a predetermined angle range.
- the lower arm structure 11 includes a base 31, a drive link 32, a driven link 33, and an intermediate link 34.
- the base 31 is connected to the base 6 so as to be rotatable around a turning axis.
- the drive link 32 and the driven link 33 are respectively connected at their proximal ends to the base 31 via the first connection shaft 35 and the second connection shaft 36, and at the distal ends thereof as the third connection shaft 37 and the fourth connection shaft. It is connected to the intermediate link 34 via 38.
- Each connecting shaft connects one link to be connected and the other link so as to be rotatable around a rotation axis.
- each connecting shaft extends in a direction orthogonal to the turning axis and extends in parallel to each other.
- the distance between the axes of the first connection shaft 35 and the second connection shaft 36 and the distance between the axes of the third connection shaft 37 and the fourth connection shaft 38 are the same, and the first connection shaft 35 and the third connection shaft 38 are the same.
- the interval between the shafts 37 and the interval between the second connecting shaft 36 and the fourth connecting shaft 38 are the same. That is, the lower arm structure 11 has a parallel link structure and a ring-closed four-bar link structure having four nodes.
- the drive link 32 and the driven link 33 swing with symmetry, and the swing angle of the drive link 32 and the swing angle of the driven link 33 are the same. Thereby, the third joint JT3 can maintain the posture with respect to the first joint JT1.
- the lower arm drive unit 14 drives and swings the lower arm structure 11.
- the lower arm drive unit 14 includes a servo motor and a speed reducer attached to a base 31 (not shown), and the output shaft of the servo motor is fixedly connected to the drive link 32 at the first connecting shaft 35 via the speed reducer. ing. Therefore, the joint drive unit 13 swings the drive link 32 by the driving force.
- the lower arm drive unit 14 also includes an encoder 14a that detects the angular position of the output shaft of the servo motor. The angular position information of the output shaft of the servo motor detected by the encoder 14a is input to the arithmetic unit 21 and the servo amplifier 23 described later of the robot controller 2 (see FIG. 2).
- FIG. 2 is a block diagram schematically illustrating a configuration example of a control system of the robot system 100.
- a robot controller (robot control device) 2 is arranged around the robot body 1 and performs position control, speed control, or current control of the control target axis of the robot body 1.
- the robot controller 2 includes, for example, a computing unit 21 having a computing unit such as a CPU, a storage unit 22 having a memory such as a ROM and a RAM, a lower arm driving unit 14, and a joint driving unit 13. And a plurality of servo amplifiers 23 provided corresponding to the respective servo motors.
- the robot controller 2 estimates the amount of deflection of the four-joint link structure, that is, the amount of displacement of the position and posture of the third joint JT3 relative to the first joint JT1 due to the deflection of the lower arm structure 11.
- the robot controller 2 may be composed of a single controller that performs centralized control, or may be composed of a plurality of controllers that perform distributed control in cooperation with each other.
- the calculation unit 21 includes a swing angle calculation unit 25, a load calculation unit 26, a stiffness matrix determination unit 27, a deflection amount calculation unit 28, and a command generation unit 29.
- the swing angle calculation unit 25, the load calculation unit 26, the stiffness matrix determination unit 27, and the deflection amount calculation unit 28 constitute a deflection amount estimation device.
- These functional units 25 to 29 are functional blocks that are realized when the arithmetic unit 21 executes a predetermined control program stored in the storage unit 22 (details will be described in an operation example).
- a predetermined control program is stored in the storage unit 22, and the operation of the robot body 1 is controlled by the calculation unit 21 reading and executing these control programs. Further, the storage unit 22 stores a stiffness value determination function to be described later.
- the deflection amount estimation device is a device that estimates a dynamic deflection amount of the lower arm structure 11 due to a dynamic load generated by acceleration / deceleration of the robot arm 7 when the robot arm 7 is operated. This is a device that estimates the displacement of the position and posture of the distal end (third joint JT3) with respect to the distal end (first joint JT1).
- Servo amplifier 23 controls the corresponding servo motor. That is, for example, in position control, the servo amplifier 23 servos so that the deviation from the current position with respect to the angular position of the output shaft of the servo motor determined based on the position command value generated by the command generation unit 29 is zero.
- the motor follows the motor.
- FIG. 3 is a flowchart showing an operation example related to the bending amount estimation operation of the robot system 100.
- the swing angle calculation unit 25 calculates the swing angle of the lower arm structure 11 based on the angular position information of the output shaft of the servo motor that drives the drive link 32 detected by the encoder 14a of the lower arm drive unit 14. (Step S1).
- the load calculation unit 26 calculates the load received by the lower arm structure 11 (step S3).
- the load received by the lower arm structure 11 is a dynamic load received by the lower arm structure 11 as the link is accelerated and decelerated during the operation of the robot arm 7.
- the load calculating unit 26 handles the load amount with a sign. For example, a load is generated by accelerating the link when the robot arm 7 starts swinging, and a load is generated by decelerating the link at the end of swinging. Treat as.
- the stiffness matrix determination unit 27 calculates a stiffness value that is a value of each component of the stiffness matrix C (rigidity matrix, stiffness matrix) corresponding to the swing angle of the lower arm structure 11 detected by the swing angle calculation unit 25. Determine (step S5).
- the stiffness matrix C is a 6 ⁇ 6 symmetric matrix that relates the load (force and wrench in six directions of force and moment, wrench) w received by the lower arm structure 11 and the deflection amount ⁇ of the lower arm structure 11. It has 36 components c 11 to c 66 shown in (1).
- the stiffness matrix determination unit 27 determines a stiffness value by using a stiffness value determination function that is individually defined for each of these 36 components (21 excluding symmetrical components).
- the stiffness value determination function is a function representing the correlation between the stiffness value and the swing angle of the lower arm structure 11, and is calculated by analysis using a finite element method (FEM). That is, first, stiffness values respectively corresponding to a plurality of different swing angles are obtained by analysis in advance. Specifically, when the angle at which the drive link 32 is in the upright state is 0 °, the state inclined forward is positive, and the state inclined backward is negative, for example, the drive link 32 is ⁇ 60 °, The stiffness value is acquired for each of the states inclined at ⁇ 30 °, 0 °, 30 °, and 60 °.
- FEM finite element method
- FIG. 4A shows an example of a stiffness value determining function according to c 36 component. Further, an example of a stiffness value decision function according to c 13 components in Figure 4B.
- the sampling interval for acquiring the stiffness value by the finite element method is set so that the tendency of the stiffness value change appears by linear interpolation, and the stiffness value is acquired at intervals of 30 °, for example, as shown in FIGS. 4A and 4B. As a result, the tendency of the change in the stiffness value can be acquired.
- the deflection amount calculation unit 28 is configured to lower arm based on the stiffness matrix C determined based on the load received by the lower arm structure 11 calculated by the load calculation unit 26 and the stiffness value determined by the stiffness matrix determination unit 27.
- a deflection amount ⁇ of the structure 11 is calculated (step S7). That is, the deflection amount calculation unit 28 calculates the deflection amount ⁇ using a function according to the following equation (2).
- the deflection amount estimation apparatus of the robot system 100 quickly estimates the deflection amount ⁇ of the four-joint link structure using the stiffness matrix C having the stiffness value components c 11 to c 66 determined based on the swing angle. .
- the amount of calculation can be reduced and the amount of deflection can be calculated quickly as compared with the case where the equation expressing the relationship between the wrench w of each link and the amount of deflection ⁇ is solved simultaneously. .
- the operation speed of the robot main body 1 can be improved. Note that, as expressed in Expression (2), the influence of the gravity component is negligible in the estimation of the amount of dynamic deflection, so this influence is ignored.
- the command generation unit 29 generates a command value based on the operation program (step S7).
- the command generation unit 29 calculates a compensation amount according to the dynamic deflection amount ⁇ of the lower arm structure 11 calculated by the deflection amount calculation unit 28.
- This compensation amount is an amount proportional to the acceleration of the lower arm structure 11, and the compensation amount at the start of the swing and the compensation amount at the end of the operation have opposite signs. Thereby, vibration of the robot arm 7 accompanying acceleration / deceleration of the robot arm 7 can be suppressed.
- the deflection amount estimating apparatus quickly estimates the deflection amount ⁇ of the four-bar link structure using the stiffness matrix C having the stiffness value components c 11 to c 66 determined based on the swing angle. To do. Therefore, the amount of calculation can be reduced, and the amount of deflection can be calculated quickly. Thereby, the operation speed of the robot main body 1 can be improved.
- the deflection amount estimation apparatus estimates the dynamic deflection amount ⁇ , but is not limited thereto. Instead, in the deflection amount estimation device, the load calculation unit 26 calculates a static load, and the deflection amount calculation unit 28 estimates the static deflection amount based on the relationship between the static load and the static deflection amount. May be.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Human Computer Interaction (AREA)
Abstract
所定の角度範囲において揺動する4節リンク構造部(11)を含む複数のリンクが関節によって連結されてなるロボットアーム(7)の4節リンク構造部の撓み量を推定する撓み量推定装置であって、4節リンク構造部の揺動角を算出する揺動角算出部(25)と、4節リンク構造部が受ける負荷を算出する負荷算出部(26)と、4節リンク構造部が受ける負荷と4節リンク構造部の撓み量とを関係づける剛性行列の各成分の値である剛性値と、4節リンク構造部の揺動角との相関関係を表した剛性値決定関数を用いて、揺動角算出部が検知した4節リンク構造部の揺動角に対応する剛性値を決定する剛性行列決定部(27)と、負荷算出部が算出した4節リンク構造部が受ける負荷と、剛性値決定部が決定した剛性値に基づき、4節リンク構造部の撓み量を算出する撓み量算出部(28)と、を備える。
Description
本発明は、撓み量推定装置、ロボット制御装置、及び撓み量推定方法に関する。
従来、例えば特許文献1において、剛性が低い要素を含むロボットについて、たわみ等を考慮して正確に位置決め等をする制御に関して提案がなされている。特許文献1は、アームの駆動軸の動力伝達要素の二次側の変位を取得し、取得した変位値に基づきオブザーバにより動力伝達要素の一次側の変位を推定してフィードバック制御するものである。
近年、産業用ロボットは、サイクルタイム減少等のための高速化やアームのリンクの軽量化が進められている。しかし、高速化や軽量化により、位置決め動作時にアームのリンクの撓みやこの撓みに起因する振動が発生し、位置決め精度等の低下が生じることになる。このため、リンクの撓みを考慮しつつ振動を防止して正確に位置決め等の制御を実現するため、その撓み量を推定することが望まれている。特に、平行リンク構造等の4節リンク構造を用いたロボットアームは、高負荷条件下における安定動作を実現することができるものであるが、リンク構造が複雑となり、その撓み量の推定には困難が伴う。しかし、特許文献1においては、アームのリンクは剛性が高いものとしており、そのたわみについては考慮されていなかった。このように、従来の技術においては、高速化やアームのリンクの軽量化に対応することが困難であった。
上記課題を解決するため、本発明のある態様に係る撓み量推定装置は、所定の角度範囲において揺動する4節リンク構造部を含む複数のリンクが関節によって連結されてなるロボットアームの前記4節リンク構造部の撓み量を推定する撓み量推定装置であって、前記4節リンク構造部の揺動角を算出する揺動角算出部と、前記4節リンク構造部が受ける負荷を算出する負荷算出部と、前記4節リンク構造部が受ける負荷と前記4節リンク構造部の撓み量とを関係づける剛性行列の各成分の値である剛性値と、前記4節リンク構造部の揺動角との相関関係を表した剛性値決定関数を用いて、前記揺動角算出部が検知した前記4節リンク構造部の揺動角に対応する前記剛性値を決定する剛性行列決定部と、前記負荷算出部が算出した前記4節リンク構造部が受ける負荷と、前記剛性行列決定部が決定した前記剛性値成分を有する前記剛性行列に基づき、前記4節リンク構造部の撓み量を算出する撓み量算出部と、を備える。
この構成によれば、揺動角に基づいて決定した剛性値成分を有する剛性行列を用いて、迅速に4節リンク構造の撓み量を推定することができる。したがって、撓み量を算出する過程における計算量を少なくすることができ、撓み量を迅速に算出することができる。
本発明は、撓み量を算出する過程における計算量を少なくすることができ、撓み量を迅速に算出することができるという効果を奏する。
ある態様に係る撓み量推定装置は、所定の角度範囲において揺動する4節リンク構造部を含む複数のリンクが関節によって連結されてなるロボットアームの前記4節リンク構造部の撓み量を推定する撓み量推定装置であって、前記4節リンク構造部の揺動角を算出する揺動角算出部と、前記4節リンク構造部が受ける負荷を算出する負荷算出部と、前記4節リンク構造部が受ける負荷と前記4節リンク構造部の撓み量とを関係づける剛性行列の各成分の値である剛性値と、前記4節リンク構造部の揺動角との相関関係を表した剛性値決定関数を用いて、前記揺動角算出部が検知した前記4節リンク構造部の揺動角に対応する前記剛性値を決定する剛性行列決定部と、前記負荷算出部が算出した前記4節リンク構造部が受ける負荷と、前記剛性行列決定部が決定した前記剛性値成分を有する前記剛性行列に基づき、前記4節リンク構造部の撓み量を算出する撓み量算出部と、を備える。
この構成によれば、揺動角に基づいて決定した剛性値成分を有する剛性行列を用いて、迅速に4節リンク構造の撓み量を推定することができる。したがって、撓み量を算出する過程における計算量を少なくすることができ、撓み量を迅速に算出することができる。
前記4節リンク構造部は、閉じたリンク構造を有していてもよい。
この構成によれば、ロボットアームを適切に構成することができる。
前記4節リンク構造部は、平行リンク構造を有していてもよい。
この構成によれば、ロボットアームを適切に構成することができる。
前記剛性値決定関数は、互いに異なる複数の前記揺動角にそれぞれ対応する前記剛性値を予め解析により取得し、解析により取得した複数の前記揺動角に対応する前記剛性値を線形補間した関数であってもよい。
この構成によれば、撓み量を算出する過程における計算量をより少なくすることができ、撓み量を迅速に算出することができる。
ある態様に係るロボット制御装置は、上記の撓み量推定装置を備える。
この構成によれば、揺動角に基づいて決定した剛性値成分を有する剛性行列を用いて、迅速に4節リンク構造の撓み量を推定することができる。したがって、計算量を少なくすることができ、撓み量を迅速に算出することができる。これによって、ロボット本体の動作速度を向上させることができる。
以下、実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。また、以下では、全ての図を通じて、同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
図1は、実施の形態に係る撓み量推定装置を含むロボットシステム100の構成例を概略的に示す図である。図1に示すように、ロボットシステム100は、ロボット本体1と、ロボットコントローラ2とを備える。
[ロボット本体の構成例]
ロボット本体1は、多関節型の産業用ロボット(多関節ロボット)である。また、ロボット本体1は、後述する上部アーム構造12及びハンド8を支持する下部アーム構造11に平行リンク構造を用いたロボットであり、高い機械剛性を有し、高負荷条件下における安定動作を実現することができるロボットである。
ロボット本体1は、多関節型の産業用ロボット(多関節ロボット)である。また、ロボット本体1は、後述する上部アーム構造12及びハンド8を支持する下部アーム構造11に平行リンク構造を用いたロボットであり、高い機械剛性を有し、高負荷条件下における安定動作を実現することができるロボットである。
ロボット本体1は、基台6と、ロボットアーム7と、ハンド8とを含む。基台6は、例えば床面に固定されて載置され、ロボットアーム7及びハンド8を支持している。
ロボットアーム7は、複数のリンクが関節によって連結されている構造を有する。ロボットアーム7は、下部アーム構造11と、上部アーム構造12と、関節駆動部13(図2参照)と、下部アーム駆動部14(図2参照)とを含む。下部アーム構造11は、基台6に対して例えば上下方向に延びる旋回軸線周りに回動可能に連結されている。この基台6と下部アーム構造11とを連結している構造が第1関節JT1である。また、上部アーム構造12は、下部アーム構造11に対して旋回軸線と直交する上部アーム回動軸線周りに回動可能に連結されている。この下部アーム構造11と上部アーム構造12とを連結している構造が第3関節JT3である。ロボットアーム7は、後述する下部アーム構造11の動作構造を関節(第2関節JT2)と見做すことができ、これを含めると、ロボットアーム7全体で6つの関節軸を有する。これらの関節軸のうち、下部アーム構造11を除く5つの関節軸は、それぞれの関節に対応して設けられた関節駆動部13によって駆動され、近位端側のリンクに対して遠位端側のリンクを回動軸線周りに回動させる。また、下部アーム構造11は、下部アーム駆動部14(詳細は後述)によって駆動される。上部アーム構造12は、シリアルリンク構造であり、周知の垂直多関節型の6軸ロボットの上部アーム構造と同様に構成されるので、その詳細な説明を省略する。なお、本明細書において、遠位端側という用語は、ロボットアーム7が延びる方向において、ハンド8側を意味し、近位端側という用語は、基台6側を意味する。
下部アーム構造(4節リンク構造部)11は、所定の角度範囲において揺動するアーム構造である。下部アーム構造11は、ベース31と、駆動リンク32と、従動リンク33と、中間リンク34とを含む。ベース31は、基台6に対して旋回軸線周りに回動可能に連結されている。駆動リンク32及び従動リンク33はそれぞれ、近位端部が第1連結軸35及び第2連結軸36を介してベース31に連結され、遠位端部が第3連結軸37及び第4連結軸38を介して中間リンク34に連結されている。各連結軸は、連結する一方のリンク及び他方のリンクを回動軸線周りに回動可能に連結している。また、各連結軸の軸線は、旋回軸線と直交する方向に延び、且つ互いに平行に延びている。そして、第1連結軸35及び第2連結軸36の軸線の間隔と、第3連結軸37及び第4連結軸38の軸線の間隔は同一であり、また、第1連結軸35及び第3連結軸37の間隔と、第2連結軸36及び第4連結軸38の間隔は同一である。すなわち、下部アーム構造11は、平行リンク構造を有し、4つの節を有する環状に閉じた4節リンク構造を有する。そして、駆動リンク32及び従動リンク33は対称性をもって揺動し、また、駆動リンク32の揺動角及び従動リンク33の揺動角は同一となるように構成されている。これによって、第3関節JT3は、第1関節JT1に対する姿勢を維持することができる。
そして、下部アーム駆動部14が下部アーム構造11を駆動し、揺動させる。下部アーム駆動部14は、図示しないベース31に取り付けられたサーボモータと減速機を備え、サーボモータの出力軸は減速機を介して第1連結軸35において、駆動リンク32に固定的に連結されている。したがって、関節駆動部13は、その駆動力によって、駆動リンク32を揺動させる。また、下部アーム駆動部14は、サーボモータの出力軸の角度位置を検出するエンコーダ14aを有する。エンコーダ14aによって検出されたサーボモータの出力軸の角度位置情報は、ロボットコントローラ2の後述する演算部21及びサーボアンプ23に入力される(図2参照)。
[ロボットコントローラの構成例]
図2は、ロボットシステム100の制御系統の構成例を概略的に表すブロック図である。
図2は、ロボットシステム100の制御系統の構成例を概略的に表すブロック図である。
図1に示すように、ロボットコントローラ(ロボット制御装置)2は、ロボット本体1の周辺に配置され、ロボット本体1の制御対象軸の位置制御、速度制御、又は電流制御を行う。図2に示すように、ロボットコントローラ2は、例えば、CPU等の演算器を有する演算部21と、ROM及びRAM等のメモリを有する記憶部22と、下部アーム駆動部14及び関節駆動部13のそれぞれのサーボモータに対応して設けられた複数のサーボアンプ23とを含む。また、ロボットコントローラ2は、4節リンク構造部の撓み量、すなわち、下部アーム構造11の撓みに起因する第1関節JT1に対する第3関節JT3の位置及び姿勢の変位量を推定する。ロボットコントローラ2は、集中制御する単独のコントローラで構成されていてもよく、互いに協働して分散制御する複数のコントローラで構成されてもよい。
演算部21は、揺動角算出部25と、負荷算出部26と、剛性行列決定部27と、撓み量算出部28と、指令生成部29とを含む。揺動角算出部25、負荷算出部26、剛性行列決定部27、及び撓み量算出部28が撓み量推定装置を構成する。これらの機能部25~29は、記憶部22に格納された所定の制御プログラムを演算部21が実行することにより実現される機能ブロックである(詳細は動作例において述べる)。記憶部22は、所定の制御プログラムが記憶されていて、演算部21がこれらの制御プログラムを読み出して実行することにより、ロボット本体1の動作が制御される。また、記憶部22は、後述する剛性値決定関数が記憶されている。
撓み量推定装置は、ロボットアーム7を動作させた際に、ロボットアーム7の加減速によって生じる動的負荷による下部アーム構造11の動的撓み量を推定する装置であり、下部アーム構造11の近位端(第1関節JT1)に対する遠位端(第3関節JT3)の位置及び姿勢の変位量を推定する装置である。
サーボアンプ23は、対応するサーボモータの制御を行う。すなわち、サーボアンプ23は、例えば、位置制御においては、指令生成部29において生成された位置指令値に基づき決定したサーボモータの出力軸の角度位置に対する現在位置との偏差を0にするようにサーボモータの追従制御を行う。
[動作例]
次に、ロボットシステム100の撓み量推定動作に係る動作例を説明する。
次に、ロボットシステム100の撓み量推定動作に係る動作例を説明する。
図3は、ロボットシステム100の撓み量推定動作に係る動作例を示すフローチャートである。
まず、揺動角算出部25は、下部アーム駆動部14のエンコーダ14aが検知した駆動リンク32を駆動するサーボモータの出力軸の角度位置情報に基づき、下部アーム構造11の揺動角を算出する(ステップS1)。
次に、負荷算出部26は、下部アーム構造11が受ける負荷を算出する(ステップS3)。本実施の形態において、下部アーム構造11が受ける負荷とは、ロボットアーム7の動作時のリンクの加減速に伴って下部アーム構造11が受ける動的負荷である。負荷算出部26は、負荷量を符号付きで取り扱い、例えば、ロボットアーム7の揺動開始時にリンクを加速することにより+負荷が生じ、揺動終了時にリンクを減速することにより-負荷が生じるものとして取り扱う。
次に、剛性行列決定部27は、揺動角算出部25が検知した下部アーム構造11の揺動角に対応する剛性行列C(rigidity matrix, stiffness matrix)の各成分の値である剛性値を決定する(ステップS5)。剛性行列Cは、下部アーム構造11が受ける負荷(力及びモーメントの6方向の力、レンチ)wと下部アーム構造11の撓み量δとを関係づける6×6の対称行列であり、以下の式(1)に示すc11~c66の36個の成分を有する。
剛性行列決定部27は、これら36個の成分(対称成分を除くと21個)のぞれぞれについて個別に規定される剛性値決定関数を用いて、剛性値を決定する。
剛性値決定関数は、剛性値と下部アーム構造11の揺動角との相関関係を表した関数であり、有限要素法(FEM)を使用した解析により算出される。すなわち、まず、互いに異なる複数の揺動角にそれぞれ対応する剛性値を予め解析により取得する。具体的には、駆動リンク32が直立状態にある角度を0°とし、前方に傾斜させた状態を正、後方に傾斜させた状態を負とした場合、例えば、駆動リンク32を-60°、-30°、0°、30°、60°に傾斜させた状態のそれぞれについて、剛性値を取得する。そして、解析により取得した複数の揺動角に対応する剛性値を線形補間し、これを剛性値決定関数とする。図4Aにc36成分に係る剛性値決定関数の一例を示す。また、図4Bにc13成分に係る剛性値決定関数の一例を示す。また、有限要素法によって剛性値を取得するサンプリング間隔は、線形補間によって剛性値の変化の傾向が表れるように設定され、図4A及び図4Bに示すように例えば30°間隔で剛性値を取得することによって、剛性値の変化の傾向を取得することができる。
次に、撓み量算出部28は、負荷算出部26が算出した下部アーム構造11が受ける負荷と、剛性行列決定部27が決定した剛性値に基づき決定された剛性行列Cに基づいて、下部アーム構造11の撓み量δを算出する(ステップS7)。すなわち、撓み量算出部28は、以下の式(2)に係る関数を用いて、撓み量δを算出する。
ところで、通常、シリアルリンクにおいては、レンチwと撓み量δとの関係は線形性を持つ。しかし、4節リンク構造においては、図4A及び図4Bに示すように、レンチwと撓み量δとの関係は非線形性を持ち、剛性行列Cは揺動角に応じて互いに異なる変化傾向を示す剛性値成分を有することから、その撓み量δの推定が困難であった。しかし、ロボットシステム100の撓み量推定装置は、揺動角に基づいて決定した剛性値成分c11~c66を有する剛性行列Cを用いて、迅速に4節リンク構造の撓み量δを推定する。したがって、例えば、各リンクのレンチwと撓み量δとの関係を表した式を連立して解く場合と比較して、計算量を少なくすることができ、撓み量を迅速に算出することができる。これによって、ロボット本体1の動作速度を向上させることができる。なお、式(2)に表すように、動的撓み量の推定において、重力成分の影響は軽微であるので、この影響を無視している。
次に、指令生成部29は、動作プログラムに基づき指令値を生成する(ステップS7)。この際、指令生成部29は、撓み量算出部28が算出した下部アーム構造11の動的撓み量δに応じた補償量を算出する。この補償量は、下部アーム構造11の加速度に比例する量であり、揺動開始時における補償量と動作終了時における補償量とは反対符号となる。これによって、ロボットアーム7の加減速に伴うロボットアーム7の振動を抑制することができる。
以上に説明したように、撓み量推定装置は、揺動角に基づいて決定した剛性値成分c11~c66を有する剛性行列Cを用いて、迅速に4節リンク構造の撓み量δを推定する。したがって、計算量を少なくすることができ、撓み量を迅速に算出することができる。これによって、ロボット本体1の動作速度を向上させることができる。
<変形例>
上記実施の形態においては、撓み量推定装置は、動的撓み量δを推定したがこれに限られるものではない。これに代えて、撓み量推定装置は、負荷算出部26が静的負荷を算出し、撓み量算出部28が静的負荷と静的撓み量との関係に基づいて静的撓み量を推定してもよい。
上記実施の形態においては、撓み量推定装置は、動的撓み量δを推定したがこれに限られるものではない。これに代えて、撓み量推定装置は、負荷算出部26が静的負荷を算出し、撓み量算出部28が静的負荷と静的撓み量との関係に基づいて静的撓み量を推定してもよい。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
JT1 第1関節
JT2 第2関節
JT3 第3関節
1 ロボット本体
2 ロボットコントローラ
7 ロボットアーム
11 下部アーム構造
14 下部アーム駆動部
14a エンコーダ
21 演算部
22 記憶部
23 サーボアンプ
25 揺動角算出部
26 負荷算出部
27 剛性行列決定部
28 撓み量算出部
29 指令生成部
100 ロボットシステム
JT2 第2関節
JT3 第3関節
1 ロボット本体
2 ロボットコントローラ
7 ロボットアーム
11 下部アーム構造
14 下部アーム駆動部
14a エンコーダ
21 演算部
22 記憶部
23 サーボアンプ
25 揺動角算出部
26 負荷算出部
27 剛性行列決定部
28 撓み量算出部
29 指令生成部
100 ロボットシステム
Claims (6)
- 所定の角度範囲において揺動する4節リンク構造部を含む複数のリンクが関節によって連結されてなるロボットアームの前記4節リンク構造部の撓み量を推定する撓み量推定装置であって、
前記4節リンク構造部の揺動角を算出する揺動角算出部と、
前記4節リンク構造部が受ける負荷を算出する負荷算出部と、
前記4節リンク構造部が受ける負荷と前記4節リンク構造部の撓み量とを関係づける剛性行列の各成分の値である剛性値と、前記4節リンク構造部の揺動角との相関関係を表した剛性値決定関数を用いて、前記揺動角算出部が検知した前記4節リンク構造部の揺動角に対応する前記剛性値を決定する剛性行列決定部と、
前記負荷算出部が算出した前記4節リンク構造部が受ける負荷と、前記剛性行列決定部が決定した前記剛性値成分を有する前記剛性行列に基づき、前記4節リンク構造部の撓み量を算出する撓み量算出部と、を備える撓み量推定装置。 - 前記4節リンク構造部は、閉じたリンク構造を有する、請求項1に記載の撓み量推定装置。
- 前記4節リンク構造部は、平行リンク構造を有する、請求項1に記載の撓み量推定装置。
- 前記剛性値決定関数は、互いに異なる複数の前記揺動角にそれぞれ対応する前記剛性値を予め解析により取得し、解析により取得した複数の前記揺動角に対応する前記剛性値を線形補間した関数である、請求項1乃至3の何れか1に記載の撓み量推定装置。
- 請求項1乃至4の何れか1に記載の前記撓み量推定装置を備える、ロボット制御装置。
- 所定の角度範囲において揺動する4節リンク構造部を含む複数のリンクが関節によって連結されてなるロボットアームの前記4節リンク構造部の撓み量を検出する撓み量推定方法であって、
前記4節リンク構造部の揺動角を算出する揺動角算出ステップと、
前記4節リンク構造部が受ける負荷を算出する負荷算出ステップと、
前記4節リンク構造部が受ける負荷と前記4節リンク構造部の撓み量とを関係づける剛性行列の各成分の値である剛性値と、前記4節リンク構造部の揺動角との相関関係を表した剛性値決定関数を用いて、前記揺動角算出ステップにおいて算出した前記4節リンク構造部の揺動角に対応する前記剛性値を決定する剛性行列決定ステップと、
前記負荷算出ステップにおいて算出した前記4節リンク構造部が受ける負荷と、前記剛性行列決定ステップにおいて決定した前記剛性値成分を有する前記剛性行列に基づき、前記4節リンク構造部の撓み量を算出する撓み量算出ステップと、を備える撓み量推定方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980031705.0A CN112512758B (zh) | 2018-05-11 | 2019-05-10 | 挠曲量推断装置、机器人控制装置以及挠曲量推断方法 |
US17/093,651 US11613004B2 (en) | 2018-05-11 | 2020-11-10 | Deflection amount estimating device, robot control device and method of estimating amount of deflection |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018092479A JP7141847B2 (ja) | 2018-05-11 | 2018-05-11 | 撓み量推定装置、ロボット制御装置、及び撓み量推定方法 |
JP2018-092479 | 2018-05-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/093,651 Continuation US11613004B2 (en) | 2018-05-11 | 2020-11-10 | Deflection amount estimating device, robot control device and method of estimating amount of deflection |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019216416A1 true WO2019216416A1 (ja) | 2019-11-14 |
Family
ID=68467012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/018751 WO2019216416A1 (ja) | 2018-05-11 | 2019-05-10 | 撓み量推定装置、ロボット制御装置、及び撓み量推定方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11613004B2 (ja) |
JP (1) | JP7141847B2 (ja) |
CN (1) | CN112512758B (ja) |
WO (1) | WO2019216416A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102591945B1 (ko) | 2021-09-28 | 2023-10-24 | 한국생산기술연구원 | 로봇 강성 유지 자세를 구현하는 가공 장치 및 이를 이용한 로봇 강성 유지 자세를 구현하는 가공 방법 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0197588A (ja) * | 1987-10-09 | 1989-04-17 | Daikin Ind Ltd | 多関節ロボット |
JPH06320449A (ja) * | 1994-04-25 | 1994-11-22 | Nissan Motor Co Ltd | 関節型産業用ロボット |
JPH07261821A (ja) * | 1994-03-16 | 1995-10-13 | Fanuc Ltd | 負荷による撓みを考慮したロボット軌道計画方法 |
JP2003266358A (ja) * | 2002-03-18 | 2003-09-24 | Sony Corp | ロボット装置及び関節軸駆動装置 |
JP2006289534A (ja) * | 2005-04-07 | 2006-10-26 | Keio Gijuku | マニピュレータ |
JP2013255981A (ja) * | 2012-06-14 | 2013-12-26 | Mitsubishi Electric Corp | ロボット制御装置および撓み補正方法 |
JP2014028407A (ja) * | 2012-07-31 | 2014-02-13 | Seiko Epson Corp | ロボットの制御装置、制御方法、およびロボット |
US9193573B1 (en) * | 2012-05-11 | 2015-11-24 | The Boeing Company | Process for measuring and controlling extension of scissor linkage systems |
JP2016013608A (ja) * | 2014-07-03 | 2016-01-28 | 川崎重工業株式会社 | ロボットの教示点変換方法、装置、及びロボットセル |
JP2017209762A (ja) * | 2016-05-26 | 2017-11-30 | キヤノン株式会社 | ロボット装置、ロボット制御方法、プログラム、記録媒体及び物品の製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4756662A (en) * | 1986-03-31 | 1988-07-12 | Agency Of Industrial Science & Technology | Varible compliance manipulator |
JP3380327B2 (ja) | 1994-04-11 | 2003-02-24 | 新日本製鐵株式会社 | パラレルリンクマニピュレータのたわみ補正制御方法 |
JP4469239B2 (ja) * | 2004-07-20 | 2010-05-26 | キャタピラージャパン株式会社 | 作業機械の操作装置 |
JP5214578B2 (ja) | 2009-12-02 | 2013-06-19 | 本田技研工業株式会社 | 動力装置の制御装置 |
JP2013244540A (ja) * | 2012-05-23 | 2013-12-09 | Nachi Fujikoshi Corp | 産業用ロボットの重力たわみ角補正方法および装置 |
CN103862465B (zh) * | 2014-02-20 | 2016-12-07 | 三一汽车制造有限公司 | 多关节机械臂坐标校正方法和装置 |
JP2017024142A (ja) * | 2015-07-27 | 2017-02-02 | ファナック株式会社 | 支持体の弾性変形を補償するロボット制御装置 |
JP6298026B2 (ja) * | 2015-09-15 | 2018-03-20 | ファナック株式会社 | 多関節ロボットのたわみを計測するたわみ計測システム |
KR20240000643A (ko) * | 2019-06-03 | 2024-01-02 | 광주과학기술원 | 피니싱 작업을 위한 매니퓰레이터 및 그의 제어 방법 |
-
2018
- 2018-05-11 JP JP2018092479A patent/JP7141847B2/ja active Active
-
2019
- 2019-05-10 CN CN201980031705.0A patent/CN112512758B/zh active Active
- 2019-05-10 WO PCT/JP2019/018751 patent/WO2019216416A1/ja active Application Filing
-
2020
- 2020-11-10 US US17/093,651 patent/US11613004B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0197588A (ja) * | 1987-10-09 | 1989-04-17 | Daikin Ind Ltd | 多関節ロボット |
JPH07261821A (ja) * | 1994-03-16 | 1995-10-13 | Fanuc Ltd | 負荷による撓みを考慮したロボット軌道計画方法 |
JPH06320449A (ja) * | 1994-04-25 | 1994-11-22 | Nissan Motor Co Ltd | 関節型産業用ロボット |
JP2003266358A (ja) * | 2002-03-18 | 2003-09-24 | Sony Corp | ロボット装置及び関節軸駆動装置 |
JP2006289534A (ja) * | 2005-04-07 | 2006-10-26 | Keio Gijuku | マニピュレータ |
US9193573B1 (en) * | 2012-05-11 | 2015-11-24 | The Boeing Company | Process for measuring and controlling extension of scissor linkage systems |
JP2013255981A (ja) * | 2012-06-14 | 2013-12-26 | Mitsubishi Electric Corp | ロボット制御装置および撓み補正方法 |
JP2014028407A (ja) * | 2012-07-31 | 2014-02-13 | Seiko Epson Corp | ロボットの制御装置、制御方法、およびロボット |
JP2016013608A (ja) * | 2014-07-03 | 2016-01-28 | 川崎重工業株式会社 | ロボットの教示点変換方法、装置、及びロボットセル |
JP2017209762A (ja) * | 2016-05-26 | 2017-11-30 | キヤノン株式会社 | ロボット装置、ロボット制御方法、プログラム、記録媒体及び物品の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20210053238A1 (en) | 2021-02-25 |
CN112512758A (zh) | 2021-03-16 |
JP2019195892A (ja) | 2019-11-14 |
JP7141847B2 (ja) | 2022-09-26 |
CN112512758B (zh) | 2023-06-23 |
US11613004B2 (en) | 2023-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10751874B2 (en) | Method of teaching robot and robotic arm control device | |
CN103213134B (zh) | 机械手的控制方法和机械手 | |
JP5893666B2 (ja) | 力に応じて動かすロボットのロボット制御装置およびロボットシステム | |
JP5327722B2 (ja) | ロボットの負荷推定装置及び負荷推定方法 | |
JP7135408B2 (ja) | ロボット制御装置およびロボットシステム | |
JP5946859B2 (ja) | 力に応じて動かすロボットのロボット制御装置およびロボットシステム | |
JP2020078247A (ja) | 駆動装置、アクチュエータユニット、ロボット装置、駆動装置の制御方法、アクチュエータユニットの制御方法、ロボット装置の制御方法 | |
JP5916583B2 (ja) | 多関節ロボットのウィービング制御装置 | |
JP2015085445A (ja) | ロボット制御装置、ロボットおよびロボット制御方法 | |
JP6044511B2 (ja) | ロボットの制御方法及びロボットシステム | |
US20200189102A1 (en) | Robot apparatus, robot system, control method of robot apparatus, product manufacturing method using robot apparatus, and storage medium | |
JP2016190292A (ja) | ロボット制御装置、ロボットシステムおよびロボット制御方法 | |
JP2018058181A (ja) | 外乱オブザーバ及びロボット制御装置 | |
JP2604929B2 (ja) | ロボットの制御装置 | |
JP2013166224A (ja) | ロボットの制御装置、ロボット及びそのプログラム | |
WO2019216416A1 (ja) | 撓み量推定装置、ロボット制御装置、及び撓み量推定方法 | |
CN112703090B (zh) | 机器人控制装置、机器人控制方法及存储介质 | |
JP2017056525A (ja) | ロボット装置、ロボット制御方法、プログラム、記録媒体及び組立部品の製造方法 | |
JP2016221653A (ja) | ロボット制御装置およびロボットシステム | |
WO2023238871A1 (ja) | 撓み量推定装置、ロボット制御装置、及び撓み量推定方法 | |
JP6896824B2 (ja) | ロボット装置、ロボットシステム、ロボット装置の制御方法、ロボット装置を用いた物品の製造方法、情報処理装置、情報処理方法、制御プログラム及び記録媒体 | |
JPH058187A (ja) | ロボツト | |
JP2019214105A (ja) | ロボット制御装置およびロボット制御方法 | |
JP7391523B2 (ja) | 制御装置、ロボットシステム、制御方法、物品の製造方法、プログラム、及び記録媒体 | |
JP2017148913A (ja) | ロボット、制御装置及びロボットの制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19798981 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19798981 Country of ref document: EP Kind code of ref document: A1 |