Nothing Special   »   [go: up one dir, main page]

WO2019214657A1 - 时域资源分配、确定方法、装置、基站、终端及存储介质 - Google Patents

时域资源分配、确定方法、装置、基站、终端及存储介质 Download PDF

Info

Publication number
WO2019214657A1
WO2019214657A1 PCT/CN2019/086087 CN2019086087W WO2019214657A1 WO 2019214657 A1 WO2019214657 A1 WO 2019214657A1 CN 2019086087 W CN2019086087 W CN 2019086087W WO 2019214657 A1 WO2019214657 A1 WO 2019214657A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
bandwidth resource
domain resource
target
switching
Prior art date
Application number
PCT/CN2019/086087
Other languages
English (en)
French (fr)
Inventor
梁亚超
郝鹏
李剑
张峻峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/053,833 priority Critical patent/US11470590B2/en
Priority to JP2020563445A priority patent/JP7291155B2/ja
Priority to SG11202011095TA priority patent/SG11202011095TA/en
Priority to KR1020207035721A priority patent/KR102579781B1/ko
Priority to EP19799579.8A priority patent/EP3793290A4/en
Publication of WO2019214657A1 publication Critical patent/WO2019214657A1/zh
Priority to US17/900,100 priority patent/US11778622B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, for example, to a time domain resource allocation, a determining method, an apparatus, a base station, a terminal, and a storage medium.
  • the 5th Generation (5th Generation, 5G) technology introduces the concept of Bandwidth Part (BWP) in order to reduce the energy consumption of User Equipment (UE).
  • the base station first configures a set of BWPs for the UE, and then the base station can instruct the UE to dynamically switch the BWP by using downlink control information.
  • the UE needs a certain time to complete the handover of the original BWP to the target BWP. Therefore, the base station needs to ensure sufficient BWP handover time when performing time domain resource allocation. Otherwise, the BWP handover of the UE will fail.
  • the related scheme needs to set a handover specific indication line in the time domain resource allocation table to specify the target time slot deviation after the handover occurs to the UE, so that one or more always exist in the time domain resource allocation table regardless of whether the handover occurs.
  • Switch the dedicated indicator line The number of rows in the time domain resource allocation table is limited. When the switching dedicated indicator row is set, the available rows that can carry other transmitted indication information are reduced, which limits the indication to other transmissions to some extent. Transmission of information.
  • the technical problem that the time domain resource allocation, the determining method, the device, the base station, the terminal, and the storage medium provided by the embodiment of the present invention are mainly solved is: setting the switching exclusive indication line in the time domain resource allocation table of the BWP by the base station proposed at the present stage To specify the target time slot deviation in the case of partial bandwidth resource switching, it is necessary to occupy a large number of rows in the time domain resource allocation table, which limits the transmission of indication information of other transmissions, which is not conducive to optimal resource configuration.
  • an embodiment of the present invention provides a method for determining a time domain resource, including:
  • the embodiment of the invention further provides a time domain resource allocation method, including:
  • Transmitting indication information including the target partial bandwidth resource index identifier and the time domain resource allocation indication information is sent to the terminal.
  • the embodiment of the invention further provides a time domain resource determining apparatus, including:
  • the handover determining unit is configured to determine, according to the original part of the bandwidth resource and the target part of the bandwidth resource, the number of handover time slots required for the current part of the bandwidth resource handover, where the original part of the bandwidth resource and the target part of the bandwidth resource are the terminal Part of the bandwidth resources used before and after partial bandwidth resource switching;
  • the target time slot determining unit is configured to determine, according to the number of the switched time slots and the basic time slot deviation, a target time slot deviation for performing data transmission by using the target part of the bandwidth resource, where the basic time slot deviation is according to the transmission indication information sent by the base station
  • the time domain resource allocation indication information carried in the determination is determined.
  • the embodiment of the invention further provides a time domain resource allocation device, including:
  • the handover determining unit is configured to determine a target partial bandwidth resource used for transmission after the partial bandwidth resource switching;
  • the indication transmission unit is configured to send, to the terminal, transmission indication information including the target partial bandwidth resource index identifier and the time domain resource allocation indication information.
  • An embodiment of the present invention further provides a base station, including a processor, a memory, a communication device, and a communication bus;
  • the communication bus is configured to implement connection communication between the processor and the memory, the processor, and the communication device;
  • the processor is configured to execute at least one program stored in the memory to implement the method of time domain resource allocation of any of the above.
  • the embodiment of the invention further provides a terminal, which comprises a processor, a memory, a communication device and a communication bus;
  • the communication bus is used to implement connection communication between the processor and the memory, the processor, and the communication device;
  • the processor is operative to execute at least one program stored in the memory to implement the method of time domain resource determination of any of the above.
  • the embodiment of the present invention further provides a storage medium, where the storage medium stores at least one of a time domain resource allocation program and a time domain resource determining program, where the time domain resource allocation program can be executed by at least one processor to implement any of the foregoing.
  • the embodiments of the present invention provide a time domain resource allocation, a determining method, a device, a base station, a terminal, and a storage medium.
  • a switching specific indication line in a time domain resource allocation table of a BWP it is easy to restrict transmission of other transmission indication information.
  • the base station may determine the target part of the bandwidth resource used for the transmission after the handover, and then The terminal sends the transmission indication information that includes the target part bandwidth resource index identifier.
  • the terminal may determine, according to the target part bandwidth resource and the original part bandwidth resource, the number of handover time slots required for the current partial bandwidth resource handover; thereby determining, according to the number of handover time slots and the basic time slot deviation specified by the base station. Target time slot deviation.
  • the terminal may determine the number of handover time slots according to the information provided by the base station, and determine the target time slot deviation according to the basic time slot deviation indicated by the base station, without relying on the dependency time.
  • the switch-specific indication line in the domain resource allocation table when part of the bandwidth resource is switched, the terminal may determine the number of handover time slots according to the information provided by the base station, and determine the target time slot deviation according to the basic time slot deviation indicated by the base station, without relying on the dependency time.
  • one or more rows are not used in the time domain resource allocation table as the switching dedicated indication row, which greatly reduces the occupation of the time domain resource allocation table by part of the bandwidth resource switching.
  • the space in the time domain resource allocation table is saved, which provides more opportunities for the transmission of other transmitted information, and is beneficial to the optimal configuration of resources.
  • the scheme for indicating the target time slot deviation is indicated by the handover specific indication line in the time domain resource allocation table.
  • the switching exclusive instruction line needs to be retained in the time domain resource allocation table, which brings The resource is wasted. Therefore, the solution provided by the embodiment of the present invention improves the resource utilization rate compared with the solution proposed at the present stage.
  • FIG. 1 is an interaction diagram between a base station and a terminal in a time domain resource allocation process according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart of determining, according to a target part bandwidth resource and an original part bandwidth resource, a number of handover time slots according to Embodiment 1 of the present invention
  • FIG. 4 is a flowchart of a time domain resource allocation method according to Embodiment 2 of the present invention.
  • FIG. 5 is a flowchart of a method for determining a time domain resource according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of a time domain resource allocation apparatus according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic structural diagram of a time domain resource determining apparatus according to Embodiment 4 of the present invention.
  • FIG. 8 is another schematic structural diagram of a time domain resource determining apparatus according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic structural diagram of a hardware of a base station according to Embodiment 5 of the present invention.
  • FIG. 10 is a schematic structural diagram of a hardware of a terminal provided in Embodiment 5 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • 5G technology has become the trend of future network development.
  • LTE Long Term Evolution
  • 5G has been improved in many aspects.
  • the UE is allowed to select the corresponding BWP according to the type of data to be transmitted in the 5G, which is beneficial to avoid that all the transmissions of the UE use the same bandwidth in the traditional LTE technology, and it is easy to bring The problem of unnecessary energy waste.
  • the base station Before the UE performs transmission, the base station configures a set of BWPs for it, including a BWP for the uplink and a BWP for the downlink. Usually, the base station configures 4 downlink BWPs and 4 uplinks for the UE. BWP. Subcarrier spacing (SCS), bandwidth, and frequency domain location may be independently configured for different BWPs, that is, different BWPs may have different configuration parameters.
  • the base station can instruct the UE to dynamically switch the BWP used for the transmission by using Downlink Control Information (DCI), so that the UE can switch the appropriate BWP according to different transmission requirements, thereby reducing the energy consumption in the transmission.
  • DCI Downlink Control Information
  • BWP switching refers to the transition from the currently used BWP (hereinafter referred to as “the original BWP” for ease of introduction) to the new BWP (hereinafter referred to as "target BWP” for ease of introduction). It is worth noting that the BWP handover is determined according to the received DCI, and the UE does not perform data transmission and reception in the process of switching to the target BWP. Only after the BWP handover is completed can the UE continue data transmission on the target BWP.
  • the BWP handover requires a certain time. If the base station does not guarantee sufficient handover time for the UE when performing time domain resource allocation, the BWP handover of the UE may fail.
  • the solution proposed at this stage is that the base station sets a "switching dedicated indication line" dedicated to the BWP handover in the time domain resource allocation table of the BWP, and the base station will indicate the corresponding in the handover specific indication line.
  • the target time slot deviation after the handover it should be understood that the target time slot deviation is calculated by the base station, and it can ensure that the UE has sufficient switching time.
  • the time domain resource allocation table of each BWP should include three handover specific indication lines, which respectively correspond to switching from the other three BWPs to the BWP. Scenes.
  • the four BWPs of the downlink are A, B, C, and D, respectively
  • three switching dedicated indication lines will be set in the time domain resource allocation table of A, respectively for indicating the switching from B to A.
  • the DCI information that is sent to the UE also carries a time domain resource allocation indication field, which is used to specify to the terminal which row in the time domain resource allocation table to determine the target time slot offset, so that the UE can query the time domain.
  • the resource allocation table determines the location of the corresponding target time domain resource after switching from D to B.
  • the number of rows in the time domain resource allocation table is limited and cannot be extended indefinitely.
  • the number of rows in the time domain resource allocation table may be related to the number of bits occupied by the time domain resource allocation indication field in the DCI information, where the number of rows is 2 n , where n is the time domain resource allocation indication field in the DCI information. Number of digits. For example, when n is 2, the time domain resource allocation table may have 4 rows, and when n is 3, the time domain resource allocation table may have 8 rows. Therefore, if a handover specific indication line corresponding to each handover scenario is set in the time domain resource allocation table, the time domain resource allocation table can only use the remaining rows to carry other transmitted information: continue to configure four base stations for the UE.
  • the downlink BWP is taken as an example.
  • the base station can only use the remaining 1 row to carry the indication information of other transmissions; in the case where the time domain resource allocation table includes 8 rows, The base station can use the remaining 5 lines to carry indication information of other transmissions... This severely limits the transmission of other indication information.
  • the time domain resource allocation indication field in the DCI information only occupies 1 bit, since the time domain resource allocation table has only 2 rows, the time domain resource allocation table cannot even cover all necessary switching exclusive indication lines.
  • the time domain resource allocation table needs to be set to switch the dedicated indication line, thereby causing serious limitation on the transmission of other indication information, and the present embodiment provides a time domain resource allocation method and A time domain resource determining method, wherein the time domain resource allocation method can be performed by the base station side, and the time domain resource determining method can be performed by the terminal side.
  • FIG. 1 shows a base station performing time domain resource allocation method and The terminal executes the time domain resource determining method to implement the interaction diagram in the time domain resource allocation process:
  • the base station determines a target partial bandwidth resource used for the transmission after the handover.
  • the base station can reasonably select one or more of the bandwidth resources allocated for the terminal according to the type of data to be currently transmitted. Used for the transmission of the current data to be transmitted.
  • part of the bandwidth resources reselected by the base station is different from the part of the bandwidth resources currently being used, part of the bandwidth resource switching needs to be performed. Therefore, the partial bandwidth resource switching actually refers to the "original part bandwidth resource" currently being used. The process of switching to the new "target bandwidth resource".
  • the "partial bandwidth resource” referred to in this embodiment actually refers to a continuous resource block (RB) resource, which is also called a BWP resource.
  • RB resource block
  • the base station determines that it needs to switch some of the bandwidth resources used between the terminal and the terminal, it acquires the index identifier of the bandwidth resource of the target part. For example, when the base station and the terminal are about to perform downlink data transmission, but the base station finds that some of the bandwidth resources A currently used are not suitable, and the part of the bandwidth resource C is required, the base station determines that C will be the target part of the bandwidth resource, so the target is obtained.
  • the index of the partial bandwidth resource (Index) is "c".
  • the base station sends, to the terminal, the transmission indication information that includes the target part bandwidth resource index identifier and the time domain resource allocation indication information.
  • the base station After determining the target part of the bandwidth resource, the base station sends the transmission indication information to the terminal, where the transmission indication information carries the index identifier of the target part of the bandwidth resource.
  • the base station sends the transmission indication information to the terminal by using the original partial bandwidth resource. Therefore, in some examples, the base station will use the partial bandwidth resource A to send the transmission indication information.
  • the transmission indication information may include, but is not limited to, DCI, ie, downlink control information.
  • the transmission indication information sent by the base station may further include time domain resource allocation indication information used for the basic time slot deviation specified by the terminal, and the basic time slot deviation is used by the terminal side to calculate the handover required for partial bandwidth resource switching. After the number of time slots, the target time slot offset is calculated.
  • the base station may use the time domain resource allocation indication field in the transmission indication information (for example, DCI information) as the time domain resource allocation indication information, and the time domain resource allocation indication field cooperates with the time domain resource allocation table to specify the basic time slot deviation to the terminal.
  • the terminal may obtain the time domain resource allocation table, and in the time domain resource allocation table, at least two basic time slot deviations may be configured, so that the terminal knows from at least two Which one of the basic time slot deviations is selected, so the base station carries the time domain resource allocation indication field in the DCI information, and the time domain resource allocation indication field can enable the terminal to select a basic time slot designated by the base station from the time domain resource allocation table. deviation. For example, 16 rows are included in the time domain resource allocation table, and these 16 rows are configured basic time slot deviations, and the unique identifiers of the rows in the 16 rows are numbers "0", "1", ... "15", respectively.
  • the value corresponding to the time domain resource allocation indication field is “2”, indicating that the basic time slot deviation specified by the base station for the terminal is the unique identifier in the time domain resource allocation table is “2”. one of.
  • the time domain resource allocation table is not fixed because it is configured by the base station. Therefore, if the base station configures the time domain resource allocation table differently, the time domain resource allocation table acquired by the terminal is different. . It can be understood that the current time domain resource allocation table is always used between the base station and the terminal, that is, the newly configured time domain resource allocation table determines the basic time slot deviation.
  • the basic time slot deviation is a time domain resource location that is configured by the Radio Resource Control (RRC) layer of the base station and is independent of the switching duration of partial bandwidth resource switching, and can be used not only for partial bandwidth resource switching. Determining the target time slot offset can also be used to determine the target time slot offset when no partial bandwidth resource switching is required. For example, when a base station and a terminal continuously use a part of bandwidth resources for data transmission, when the base station allocates time domain resources to the terminal, the time domain resource allocation table is also used, in which case, when the base station specifies A certain basic time slot deviation in the domain resource allocation table is actually the target time slot deviation. Therefore, the basic time slot deviation does not need to ensure that the terminal has sufficient switching duration.
  • RRC Radio Resource Control
  • the base station When the basic time slot deviation is configured, the base station does not need to care whether there is partial bandwidth resource switching, and only needs to be configured according to the usual time domain resource configuration scheme. Therefore, in the embodiment, the basic time slot deviation of the base station is simpler, and the partial bandwidth is not considered in comparison with the target time slot deviation of the dedicated and partial bandwidth resource switching scenarios configured by the base station in the handover specific instruction line. The time limit brought by resource switching.
  • the basic time slot deviation includes an uplink basic time slot deviation or a downlink basic time slot deviation, wherein the uplink basic time slot deviation corresponds to K2 in the time domain resource allocation table, and the downlink basic time slot deviation corresponds to K0 in the time domain resource allocation table.
  • the basic time slot deviation specified by the base station from the time domain resource allocation table for the terminal should be the downlink basic time slot deviation for the downlink, that is, K0;
  • Receiving the data sent by the terminal the basic time slot deviation specified by the terminal using the time domain resource allocation table for the terminal should be the uplink basic time slot deviation for the uplink, that is, K2.
  • time domain resource allocation table in this embodiment is still set in units of partial bandwidth resources, that is, each partial bandwidth resource has a corresponding time domain resource allocation table.
  • the terminal When determining, according to the indication information that the part of the bandwidth resource needs to be switched, the terminal determines, according to the index identifier, a target part of the bandwidth resource used for the transmission after the partial bandwidth resource is switched.
  • the terminal may receive the transmission indication information sent by the base station, and according to the index identifier carried in the transmission indication information, the terminal may determine whether part of the bandwidth resource switching needs to be performed currently. For example, the terminal performs a "blind check" on the original part of the bandwidth resource. It is assumed that the index of the original part of the bandwidth resource is "a". Through the blind detection, the terminal may receive the transmission indication information sent by the base station through the original part of the bandwidth resource A, where the transmission indication information carries the index identifier of the target part of the bandwidth resource. By comparing whether the index identifier of the bandwidth resource of the original part is consistent with the index identifier carried in the transmission indication information, the terminal may determine whether part of the bandwidth resource switching needs to be performed currently.
  • the terminal determines that the base station has instructed itself to switch to another part of the bandwidth resource for data transmission. In this case, the terminal can further determine which of the target partial bandwidth resources indicated by the base station. For example, in the foregoing example, since the index identifier carried by the base station in the transmission indication information is “c”, “c” is inconsistent with the index identifier “a” of the original partial bandwidth resource A for the blind detection, so the terminal can learn the base station. Indicates that part of the bandwidth resource is switched, and the target part of the bandwidth resource used after the handover is C whose index identifier is "c".
  • mapping type of the shared channel is usually divided into two types: mapping type one (also called “mapping type A”) and mapping type two (also called “mapping type B").
  • mapping type A also called “mapping type A”
  • mapping type two also called “mapping type B”
  • the base station upper layer adopts mutually independent DMRS configurations for the mapping type A and the mapping type B. That is, the DMRS configuration parameter of the mapping type A may be the same as or different from the DMRS configuration parameter of the mapping type B.
  • the type of DMRS in the DMRS configuration parameter (specifically, "DL-DMRS-config-type" in the DMRS configuration parameter) and the maximum length of the DMRS (specifically, may be in the DMRS configuration parameter) DL-DMRS-max-len”) can affect the size of the antenna port field in the transmission indication information sent by the base station to the terminal, and thus affect the size of the transmission indication information.
  • the type of the DMRS in the DMRS configuration parameter (specifically, "UL-DMRS-config-type" in the DMRS configuration parameter) and the maximum length of the DMRS (specifically, may be in the DMRS configuration parameter)
  • the UL-DMRS-config-type" and the PUSCH-tp enable value can affect the size of the antenna port field in the transmission indication information sent by the base station to the terminal, and affect the size of the transmission indication information.
  • the terminal does not know whether the base station uses the mapping type A to transmit the transmission indication information or the mapping type B to transmit the transmission indication information, and therefore, the terminal cannot determine the transmission. Indicates the size of the antenna port field in the information, and thus the size of the transmission indication information cannot be determined. In this case, if the terminal performs a blind check, the size of the blind check is smaller than the size of the transmission indication information sent by the base station, and the terminal fails the blind check. After the failure of the blind detection, the terminal needs to perform the blind detection again in the same time slot, which makes the blind detection complexity increase. In order to solve the problem, the present embodiment provides two solutions:
  • Manner 1 The terminal performs blind detection on the transmission indication information according to the maximum size of the antenna port field in the transmission indication information regardless of the DMRS configuration parameters corresponding to the two mapping types.
  • Table 1 shows the correspondence between the DMRS configuration parameters and the antenna port domain for the downlink shared channel:
  • DL-DMRS-config-type DL-DMRS-max-len Antenna indicates the size of the field 1 1 4 1 2 5 2 1 5 2 2 6
  • the size of the antenna port indication field is up to 6 for the downlink situation. Therefore, if the terminal detects the transmission indication information according to the antenna port indication field, the transmission indication is used regardless of which mapping type the base station uses. Information can be detected by the terminal at one time.
  • Table 2 shows the correspondence between the DMRS configuration parameters and the antenna port domain for the uplink shared channel:
  • UL-DMRS-config-type UL-DMRS-max-len PUSCH-tp Antenna indicates the size of the field 1 1 Enable 2
  • the size of the antenna port indication field is at most 5. Therefore, if the terminal detects the transmission indication information according to the antenna port indication field, no matter which mapping type the base station uses to transmit, the transmission indication information is also Can be detected by the terminal at one time.
  • the terminal can also perform blind detection on the transmission indication information according to the second method, as shown in Figure 2:
  • S202 Query DMRS configuration parameters corresponding to mapping type 1 and mapping type 2, respectively.
  • the terminal side can obtain the configuration parameters of the shared channel mapping type A and the configuration parameters of the shared channel mapping type B, and the configuration parameters of the shared channel mapping type A.
  • the configuration parameters of the shared channel mapping type B include the DMRS configuration parameters, so the terminal can query the DMRS configuration parameters corresponding to the mapping type A and the DMRS configuration parameters corresponding to the mapping type B.
  • S204 The terminal determines whether the parameters related to the antenna port domain in the DMRS configuration parameters corresponding to the two mapping types are the same.
  • the parameter related to the antenna port domain refers to a parameter that can affect the size of the antenna port domain.
  • the parameters related to the antenna port domain include the DMRS type and the DMRS maximum length.
  • the parameters related to the antenna port domain include the DMRS type, the DMRS maximum length, and the PUSCH-tp enable value.
  • S206 Perform blind detection on the transmission indication information according to the size of the antenna port domain corresponding to any one of the two mapping types.
  • the terminal may detect the transmission indication information according to the mapping type A or the mapping type B.
  • S208 Perform blind detection on the transmission indication information according to a type of the antenna port domain corresponding to the two mapping types.
  • the size of the antenna port field should be 5 in the transmission indication information. If the transmission indication information is sent according to the mapping type B, the size of the antenna port field should be 4.
  • the terminal is not able to determine whether the size of the antenna port field in the transmission indication information sent by the base station is 5 or 4, the terminal can directly select the corresponding antenna port domain size in the two mapping types in order to detect the transmission indication information at one time.
  • the larger one performs the detection that is, the detection of the transmission indication information according to the antenna port field of 5 in the above example.
  • S108 The terminal determines, according to the target part of the bandwidth resource and the original part of the bandwidth resource, the number of handover time slots required for the partial bandwidth resource switching.
  • the handover durations required for all partial bandwidth resource handovers are the same. Even if the target part bandwidth resources are the same, if the handover is performed from different original partial bandwidth resources, the required handover duration may be different. Similarly, Even if the original part of the bandwidth resources are the same, but the target part of the bandwidth resources are different, the required switching time may also be different. Not to mention the switching scenario where the target part of the bandwidth resource is different from the original part of the bandwidth resource. Therefore, different switching scenarios may correspond to different switching durations.
  • the handover scenario is mainly determined according to the relationship between the original part of the bandwidth resource and the target part of the bandwidth resource configuration parameter: in a handover scenario, the original part of the bandwidth resource and the target part of the bandwidth resource have the same bandwidth. (Bandwidth, BW), but the center frequencies of the two are different; in another switching scenario, the original part of the bandwidth resource has the same center frequency as the target part of the bandwidth resource, but the BW of the two is different.
  • BW Bandwidth
  • the original part of the bandwidth resource has the same center frequency as the target part of the bandwidth resource, but the BW of the two is different.
  • Scenario 1 Reconfiguration involves changing the center frequency of the BWP without changing its BW, possibly involving or not changing the SCS.
  • the reconfiguration involves changing the center frequency of the BWP without changing its BW.
  • the reconfiguration may or may not involve the changing the SCS.
  • the scenario 1 refers to the target part of the bandwidth resource compared with the original part of the bandwidth resource, regardless of the child If the carrier spacing is the same or not, the center frequency is different, and the same part of the bandwidth resource switching scenario of the BW.
  • Scenario 2 Reconfiguration involves changing the BW of the BWP without changing its center frequency, possibly with or without changing the SCS.
  • the second configuration means that the target part of the bandwidth resource is compared with the original part of the bandwidth resource, regardless of the subcarrier spacing and the subcarrier spacing is the same as the original carrier bandwidth. No, the BW is different, and the part of the bandwidth resource with the same center frequency is switched.
  • Scenario 3 Reconfiguration involves changing the center frequency of the BW and BWP, with or without involving changes to the SCS. (The reconfiguration involves changing both the BW and the center frequency of the BWP. The reconfiguration may or may not engage the changing the SCS.)
  • the scenario 3 refers to the target part bandwidth resource compared with the original part of the bandwidth resource, regardless of the subcarrier spacing is the same No, part of the bandwidth resource switching scenario where the BW and the center frequency are different.
  • Scenario 4 Reconfiguration involves changing only the SCS, where the center frequency and BW of the BWP remain unchanged. (The reconfiguration involving changing only the SCS, where the center frequency and BW of the BWP remain unchanged.)
  • Scene 4 means that the target part bandwidth resource is the same as the original part bandwidth resource, and the BW and the center frequency are the same, but the subcarrier spacing is different. Part of the bandwidth resource switching scenario.
  • FIG. 3 shows a process in which the terminal determines the number of handover slots required for the partial bandwidth resource handover according to the target part bandwidth resource and the original partial bandwidth resource:
  • S302 Determine a current handover scenario according to a configuration parameter of the original part of the bandwidth resource and a configuration parameter of the target part of the bandwidth resource.
  • the configuration parameters of the bandwidth resource switching scenario and the original part of the bandwidth resource are related to the relationship between the bandwidth resource configuration parameters of the target part. Therefore, after the terminal determines the bandwidth resource of the target part, the configuration parameter and the original bandwidth resource of the target part may be used.
  • the configuration parameters of the partial bandwidth resources determine which of the above several scenarios the current handover scenario belongs to. It should be understood that, after the base station configures a part of the bandwidth resource for the terminal, the terminal side stores the configuration parameters of each part of the bandwidth resource. Of course, in other examples of this embodiment, even if the terminal side does not store the configuration parameters of each part of the bandwidth resource, the base station may notify the terminal by transmitting the indication information.
  • the terminal can determine the part of the bandwidth resource that needs to be performed according to the configuration parameters of the two. Switching part of the bandwidth resource switch belonging to scenario one.
  • S304 Determine a handover duration corresponding to the current handover scenario according to a mapping relationship between the preset handover scenario and the handover duration.
  • the terminal pre-stores the mapping relationship between the switching scenario and the switching duration, and each switching scenario has a switching duration corresponding thereto.
  • the handover duration is related not only to the handover scenario, but also to the frequency level of the carrier used by the terminal to communicate with the base station, and the capabilities of the terminal.
  • the terminal stores a scene-time mapping table, see Table 3 below:
  • “1” represents a scene with a carrier frequency less than 6 GHz
  • “2” represents a scene with a carrier frequency greater than or equal to 6 GHz.
  • the “type 1 switching duration” corresponds to the switching duration of the terminal with high capability in various switching scenarios
  • the “switching duration of type 2" corresponds to the switching duration of the terminal with low capability in various switching scenarios.
  • the terminal After the terminal determines the current partial bandwidth resource switching scenario, it can determine the corresponding switching duration according to the carrier frequency band used by the communication and its own capability. Assuming that the capability of a certain terminal is high, and the frequency band of the level 1 is used for communication, and the bandwidth resource switching of the first scenario is currently performed, by querying the table 3, it can be determined that the switching of the terminal for the part of the bandwidth resource needs 600us. duration.
  • S306 Determine, according to the handover duration and the configuration parameter of the target part bandwidth resource, the number of handover slots required for the partial bandwidth resource handover.
  • the handover duration needs to be converted into the number of handover slots.
  • the number of handover slots is related not only to the handover duration but also to the subcarrier spacing of the target portion of the bandwidth resource.
  • the terminal may first determine the length of the time slot corresponding to the bandwidth subcarrier spacing of the target part, and then calculate the ratio of the switching duration to the length of the single time slot, and round up the ratio to calculate the number of switching time slots.
  • the terminal determines, according to the number of handover time slots and the basic time slot deviation, a target time slot deviation for performing data transmission by using the target partial bandwidth resource.
  • the terminal may determine, according to the number of handover slots, the value of the target slot offset when the target portion of the bandwidth resource is used for data transmission, that is, the location of the target time domain resource:
  • the transmission indication information sent by the base station to the terminal includes time domain resource allocation indication information, and the terminal may combine the bandwidth information of the target part according to the time domain resource allocation indication information.
  • the domain resource allocation table determines the basic slot offset.
  • the transmission indication information is DCI information. Description: In the DCI information, including a time domain resource allocation domain, the time domain resource allocation domain is used to specify a row in the time domain resource allocation table, that is, two basic time periods in the time domain resource allocation table. Specify one in the gap deviation. Then, the terminal sums the basic time slot deviation and the number of switching time slots to determine the target time slot deviation corresponding to the partial bandwidth resource switching.
  • the terminal determines the target time slot deviation to determine the time slot position for data transmission with the base station. Therefore, not only the terminal needs to determine the target time slot deviation, but also the base station should know the target time slot deviation. In order for the two to perform normal data transmission on the target time domain resource location corresponding to the target time slot deviation, the target time slot deviation determined by the base station and the terminal should be consistent. Therefore, the base station side should also calculate the target time slot offset in the same manner as the terminal side. This requires the base station and the terminal to use the same criteria to determine the handover scenario to which the current partial bandwidth resource switch belongs, and store the same handover scenario and handover duration. The mapping relationship between the two (for example, the base station also stores Table 3), in addition, the base station needs to know the terminal capabilities and the like.
  • the terminal may perform data transmission with the target time domain resource location corresponding to the target time slot deviation of the base station.
  • the target time slot offset may include an upstream target time slot offset and/or a downstream target time slot offset.
  • the terminal may receive the data sent by the base station at the corresponding target time domain resource location, and if the target time slot deviation determined by the terminal is the uplink target time slot deviation, The terminal may send data to the base station at the corresponding target time domain resource location.
  • the base station does not need to set the switching dedicated indication line in the time domain resource allocation table specifically for partial bandwidth resource switching, because the terminal can independently use the original partial bandwidth.
  • the resource and the target bandwidth resource determine the number of handover time slots required for the current handover, and then calculate the target time slot deviation, thereby avoiding setting a dedicated indication line in the time domain resource allocation table, thereby affecting the time domain resource allocation table for other transmissions.
  • the transmission of instructions It also avoids the problem that the time domain resource allocation table always needs to set the switching dedicated indication line in the time domain resource allocation table, thereby wasting the time domain resource allocation table space in the scenario where partial bandwidth resource switching is not required. This is beneficial to optimize resource transmission and improve resource utilization.
  • the configuration work is simpler because the base station does not need to care whether the configured transmission time slot satisfies the switching duration of the partial bandwidth resource switching by the terminal when configuring the time domain resource allocation table.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the base station determines the target BWP when performing BWP switching on the BWP that performs data transmission with the terminal.
  • the base station may control the terminal to perform partial bandwidth resource switching at some time. For example, before the time t1, the downlink data between the base station and the terminal does not require high bandwidth, but At time t1, the base station needs to send a large amount of video data to the terminal. Therefore, in order to ensure the video viewing experience of the terminal side user, the base station needs to control the terminal to switch to a part of the bandwidth resource with a larger bandwidth value for data transmission. In this case, the base station may select one of the partial bandwidth resources that it has previously configured for the terminal as the target part of the bandwidth resource that satisfies the transmission requirement.
  • S404 The base station sends the DCI information to the terminal by using the original BWP to indicate the BWP handover.
  • the base station may send the DCI indication information to the terminal, where the DCI indication information may at least perform the indications of the foregoing aspects: first, the DCI information may enable the terminal to determine that part of the bandwidth resource switching is currently required; and the DCI The information also knows which of the target BWPs you need to switch to. In this embodiment, the DCI information can also indicate a basic time slot offset to the terminal. In some examples, the base station may notify the terminal that partial bandwidth resource switching is required by using the BWP indication field in the DCI information. For example, the base station carries the index identifier of the target BWP in the BWP indication field of the DCI information, and after receiving the DCI information, the terminal receives the DCI information.
  • the terminal can also determine which of the woodbag BWPs after the handover.
  • the basic time slot deviation is specified to the terminal through the time domain resource allocation table and the time domain resource allocation indication field in the first embodiment, and therefore will not be described herein.
  • the terminal only performs blind detection on the currently used BWP before the terminal knows that the part of the bandwidth resource needs to be switched. Therefore, in order to ensure that the terminal can receive the DCI information sent by the base station, in this embodiment, the base station passes the original BWP. The transmission of DCI information is performed.
  • the base station may calculate the target time domain resource position, that is, the value of the target time slot deviation, and the base station calculates the target time slot deviation.
  • the process of calculating the target time slot deviation is the same as that of the terminal. For the specific process, refer to the introduction in the first embodiment, or refer to the following.
  • the method for determining the time domain resource on the terminal side is further introduced. Please refer to a flowchart of the time domain resource determining method shown in FIG. 5:
  • S502 The terminal performs blind detection on the original BWP.
  • the terminal is limited to blind detection of the original BWP, in fact, the terminal does not know whether switching will occur at this time. Therefore, in fact, for the terminal, the so-called original BWP is only the BWP currently in use. Only.
  • the terminal can detect the DCI information sent by the base station through the original BWP through blind detection. For details of the blind detection, refer to the introduction in the first embodiment, and details are not described herein again.
  • S504 The terminal determines whether the index identifier carried in the DCI information detected by the blind detection is consistent with the index identifier of the original BWP for which the blind detection is performed.
  • the terminal After detecting the DCI information, the terminal first determines whether the index carried in the DCI information is consistent with the index of the original BWP for the current blind detection. If yes, it indicates that the partial bandwidth resource switching is not required at present, and the process proceeds to S506. Otherwise, it indicates that the base station has instructed itself to perform partial bandwidth resource switching, and therefore proceeds to S508.
  • the terminal is aware of the index of the BWP currently being used.
  • the terminal may optionally parse the detected DCI information and obtain the DCI information from the DCT information indicating domain. .
  • S506 The basic time slot deviation specified by the DCI information is used as the target time slot deviation.
  • the terminal determines that the index carried in the DCI information is consistent with the index of the original BWP, the terminal determines that the partial bandwidth resource switching is not required at present, and therefore can directly combine the time domain resource allocation indication field and the time domain resource allocation table according to the DCI information.
  • the terminal may directly use the basic time slot deviation specified by the time domain resource allocation indication field in the time domain resource allocation table as the target time slot deviation.
  • the size of the time slot specified in the time domain resource allocation table in this embodiment is referred to as “basic time slot deviation”, and for the scenario where partial bandwidth resource switching is not required, the basic time specified in the DCI is used.
  • the slot offset is the target slot offset. Therefore, if the terminal determines that the base station does not indicate partial bandwidth resource switching, the basic slot offset specified by the DCI can be directly referred to as the target slot offset.
  • the number of rows in the time domain resource allocation table is related to the number of bits occupied by the time domain resource allocation indication field in the DCI information.
  • the time domain resource allocation indication field occupies 3 bits in the DCI information
  • the time is
  • the domain resource allocation table includes 8 rows, where each row is assigned a unique identifier, which is "0", "1", "2”, ... "7", that is, "0" corresponds to the first row in the table. "1" corresponds to the second row in the table... “7” corresponds to the eighth row in the table.
  • the table includes three columns, and the first column is used to indicate the downlink basic time slot deviation/uplink basic time slot deviation, usually the downlink basic time slot deviation and the uplink basic time slot.
  • the time domain resource allocation table of the deviation is independent, that is, in the time domain resource allocation table for the downlink, only the downlink basic time slot deviation is configured, and the uplink basic time slot deviation is not carried; likewise, the time domain resource for the uplink is used. In the allocation table, only the uplink basic time slot offset is carried, and the uplink basic time slot offset is not carried.
  • the downlink basic time slot deviation is often characterized by "K0", while the uplink basic time slot deviation is often characterized by "K2".
  • the second column in the time domain resource allocation table is used to carry the symbol allocation indication information in the time slot, and the third column is used to carry the time domain allocation mapping type.
  • the time domain resource allocation table indicates the basic time slot deviation by cooperating with the time domain resource allocation indication field, and the time domain resource allocation indication field carries a unique identifier of a certain row, so the base station wants to specify which row to the terminal.
  • the basic time slot deviation can be carried in the time domain resource allocation indication field of the DCI information.
  • S508 The terminal determines the target BWP.
  • the terminal determines that the index carried in the DCI information is inconsistent with the index of the original BWP, the terminal determines that part of the bandwidth resource switching needs to be performed. Therefore, the terminal can determine which target BWP is based on the index carried in the DCI information, for example, assuming DCI. If the index carried in the message is "d", the target BWP is D.
  • S510 The terminal determines a current handover scenario according to the configuration parameters of the target BWP and the original BWP.
  • the terminal determines the configuration parameter of the target BWP, and also determines the configuration parameter of the original BWP.
  • the terminal side stores the configuration parameters of each BWP configured by the base station. By comparing the configuration parameters between the two BWPs, the terminal can determine the current handover scenario.
  • S512 The terminal querying scene-time length mapping relationship table determines the switching duration corresponding to the current switching scenario.
  • the terminal can determine the handover duration corresponding to the current bandwidth resource switching scenario by querying the scenario-time mapping table.
  • the scenario-time mapping relationship table has been described in detail in the first embodiment. Let me repeat.
  • S514 The terminal converts the handover duration into a number of handover slots corresponding to the target BWP.
  • the terminal When the terminal converts the handover duration into the number of handover slots, it needs to combine the configuration parameters of the target BWP: the terminal first determines the subcarrier spacing SCS of the target BWP, and then determines the slot length of the slot in the target BWP according to the SCS of the target BWP. . Then calculate how many time slots are included in the switching duration, and here is a formula for calculating the number of switching time slots according to the switching duration:
  • the offset indicates the number of handover slots
  • T indicates the handover duration queried by the terminal according to the scenario-time length mapping table.
  • the corresponding slot length is 1 ms
  • the corresponding slot length is 0.5 ms
  • the subcarrier spacing is 60 kHz
  • the corresponding number of switching time slots can be directly queried according to Table 5. It should be understood that, in order to facilitate the query, the contents of Table 3, Table 4, and Table 5 may be organically combined to obtain a comprehensive table, so that after receiving the transmission indication information, the terminal may directly query according to a table. Determine the number of switching slots.
  • S516 The terminal sums the number of handover time slots and the basic time slot deviation specified in the DCI information to obtain a target time slot deviation.
  • the terminal may sum the number of handover time slots and the basic time slot deviations queried from the time domain resource allocation table, thereby determining the target time slot deviation, that is, the bandwidth resources in this part.
  • the target time domain resource location for data transmission between itself and the base station after handover.
  • the time domain resource allocation method and the time domain resource determining method provided by the embodiment when the base station allocates the time domain resource to the terminal, can not only ensure that the terminal has sufficient time for partial bandwidth resource switching, and does not need to be based on the related solution. This brings additional signaling overhead, and can also improve the flexibility of the base station to allocate time domain resources by reducing the concern of the base station when configuring the time domain resource allocation table.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the embodiment provides a time domain resource allocation device, and the time domain resource allocation device can be deployed on the base station side to implement the foregoing time domain resource allocation method:
  • the time domain resource allocation device 60 includes a handover determining unit 602 and an indication transmission unit 604.
  • the handover determining unit 602 is configured to determine a target partial bandwidth resource used for the post-switching transmission when performing partial bandwidth resource switching on a part of the bandwidth resources that perform data transmission with the terminal.
  • the indication transmission unit 604 is configured to send, to the terminal, transmission indication information including a target partial bandwidth resource index identifier and time domain resource allocation indication information.
  • the index identifier is used by the terminal to determine the target part bandwidth resource, and determines the number of handover time slots required for the partial bandwidth resource switching according to the target part bandwidth resource and the original part bandwidth resource used before the partial bandwidth resource switching, and according to the number of handover time slots.
  • the basic time slot deviation determines the target time slot deviation of the data transmission using the target part bandwidth resource, and the basic time slot deviation is determined by the time domain resource allocation indication information.
  • the handover determining unit 602 of the time domain resource allocation device 60 can reasonably configure the terminal according to the type of data to be currently transmitted.
  • One or more of the partial bandwidth resources are selected for the transmission of the current data to be transmitted.
  • part of the bandwidth resources reselected by the base station is different from the part of the bandwidth resources currently being used, part of the bandwidth resource switching needs to be performed. Therefore, the partial bandwidth resource switching actually refers to the "original part bandwidth resource" currently being used. The process of switching to the new "target bandwidth resource".
  • the "partial bandwidth resource" referred to in this embodiment actually refers to a continuous RB resource, also referred to as a BWP resource.
  • the handover determining unit 602 determines that it needs to switch some of the bandwidth resources used between the terminal and the terminal, it acquires an index identifier of the target portion of the bandwidth resource. For example, the downlink data transmission is to be performed between the base station and the terminal, but the handover determining unit 602 finds that the currently used partial bandwidth resource A is not suitable, and needs to use the partial bandwidth resource C, and the handover determining unit 602 determines that C will be the target partial bandwidth.
  • the resource, so the index of the bandwidth resource obtained to the target part is "c".
  • the indication transmission unit 604 After the handover determining unit 602 determines the target partial bandwidth resource, the indication transmission unit 604 sends the transmission indication information to the terminal, where the transmission indication information carries the index identifier of the target partial bandwidth resource. In this embodiment, the indication transmission unit 604 will transmit the transmission indication information to the terminal by using the original partial bandwidth resource. Therefore, in some examples, the indication transmission unit 604 will use the partial bandwidth resource A to transmit the transmission indication information.
  • the transmission indication information may include, but is not limited to, DCI, ie, downlink control information.
  • the basic time slot deviation is used by the terminal side to calculate the handover required for partial bandwidth resource switching.
  • the target time slot offset is calculated.
  • the indication transmission unit 604 may adopt a time domain resource allocation indication field in the transmission indication information (for example, DCI information) as the time domain resource allocation indication information, and the time domain resource allocation indication field cooperates with the time domain resource allocation table to specify the basic time to the terminal. Gap deviation.
  • the terminal may obtain the time domain resource allocation table, and in the time domain resource allocation table, at least two basic time slot deviations may be configured, so that the terminal knows from at least two Which one of the basic time slot deviations is selected, so the base station carries the time domain resource allocation indication field in the DCI information, and the time domain resource allocation indication field can enable the terminal to select a basic time slot designated by the base station from the time domain resource allocation table. deviation. For example, 16 rows are included in the time domain resource allocation table, and these 16 rows are configured basic time slot deviations, and the unique identifiers of the rows in the 16 rows are numbers "0", "1", ... "15", respectively.
  • the value corresponding to the time domain resource allocation indication field is “2”, indicating that the basic time slot deviation indicated by the transmission unit 604 for the terminal is in the time domain resource allocation table.
  • the time domain resource allocation table is not fixed because it is configured by the base station. Therefore, if the base station configures the time domain resource allocation table differently, the time domain resource allocation table acquired by the terminal is different. . It can be understood that the basic time slot deviation is always determined by using the current time domain resource allocation table, that is, the newly configured time domain resource allocation table, between the indication transmission unit 604 and the terminal.
  • the basic time slot deviation is a time domain resource location that is configured by the Radio Resource Control (RRC) layer of the base station and is independent of the switching duration of partial bandwidth resource switching, and can be used not only for partial bandwidth resource switching. Determining the target time slot offset can also be used to determine the target time slot offset when no partial bandwidth resource switching is required. For example, in the process of continuously using a certain part of the bandwidth resource for data transmission between the base station and the terminal, when the transmission unit 604 is allocated to the terminal to allocate the time domain resource, the time domain resource allocation table is also used. In this case, the transmission is indicated. A certain time slot deviation in the time domain resource allocation table specified by unit 604 is actually the target time slot offset.
  • RRC Radio Resource Control
  • the basic time slot deviation does not need to ensure that the terminal has sufficient switching duration.
  • the base station does not need to care whether there is partial bandwidth resource switching, and only needs to be configured according to the usual time domain resource configuration scheme. Therefore, in the embodiment, the basic time slot deviation of the base station is simpler, and the partial bandwidth is not considered in comparison with the target time slot deviation of the dedicated and partial bandwidth resource switching scenarios configured by the base station in the handover specific instruction line. The time limit brought by resource switching.
  • the basic time slot deviation includes an uplink basic time slot deviation and/or a downlink basic time slot deviation, wherein the uplink basic time slot deviation corresponds to K2 in the time domain resource allocation table, and the downlink basic time slot deviation Corresponds to K0 in the time domain resource allocation table. If the current base station is to send data to the terminal, and the terminal needs to receive data, the basic time slot deviation specified by the transmission unit 601 to transmit the indication information for the terminal from the time domain resource allocation table should be the downlink basic time slot deviation for the downlink.
  • the basic time slot deviation specified by the transmission unit 604 for the terminal by using the time domain resource allocation indication information and the time domain resource allocation table should be the uplink basic time slot deviation for the uplink. , that is, K2.
  • time domain resource allocation table in this embodiment is still set in units of partial bandwidth resources, that is, each partial bandwidth resource has a corresponding time domain resource allocation table.
  • the function of the handover determining unit 602 can be implemented by the processor of the base station, and the function of the indication transmission unit 604 can be implemented by the processor of the base station and the communication device. .
  • the time domain resource allocation apparatus may send the transmission indication information including the target part bandwidth resource index identifier to the terminal by using the original part bandwidth resource used before the handover, and let the terminal determine the target part bandwidth according to the index identifier in the transmission indication information.
  • the resource and then determining the number of handover time slots required for the partial bandwidth resource handover according to the target part bandwidth resource and the original part bandwidth resource, and according to the calculated number of handover time slots and the basic time specified by the time domain resource allocation indication information
  • the slot offset determines the target slot offset. Therefore, the scheme of switching the dedicated indication line for specifically indicating the partial bandwidth resource switching in the time domain resource allocation table is discarded, which is beneficial to save the space of the time domain resource allocation table, so that the time domain resource allocation table can be carried. More indications of other transmissions.
  • the base station since the base station does not need to indicate the target time slot deviation satisfying the handover duration requirement in the time domain resource allocation table, the flexibility of the base station for time domain resource allocation is improved.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the present embodiment provides a time domain resource determining apparatus, which can be deployed on the terminal side to implement the foregoing time domain resource allocation method. Referring to the time domain resource determining apparatus 70 shown in FIG.
  • the time domain resource determining means 70 includes a handover determining unit 702 and a target slot determining unit 704.
  • the time domain resource determining apparatus 70 may determine, according to the index identifier carried in the transmission indication information, the target partial bandwidth resource used for the transmission after the partial bandwidth resource switching.
  • the subsequent handover determining unit 702 can determine the number of handover slots required for the partial bandwidth resource handover according to the target partial bandwidth resource and the original partial bandwidth resource; the target slot determination unit 704 is configured to determine the target partial bandwidth based on the number of handover slots.
  • the target time slot deviation of the resource for data transmission is configured to determine the target partial bandwidth based on the number of handover slots.
  • the time domain resource determining apparatus 70 may receive the transmission indication information sent by the base station, and determine whether a partial bandwidth resource handover is currently required according to the index identifier carried in the received transmission indication information. For example, a "blind check" can be performed on the original part of the bandwidth resource, and it is assumed that the index of the original part of the bandwidth resource is "a". Through the blind detection, the time domain resource determining apparatus 70 can receive the transmission indication information sent by the base station through the original part of the bandwidth resource A, and the transmission indication information carries the index identifier of the target part of the bandwidth resource.
  • the time domain resource determining apparatus 70 may determine whether part of the bandwidth resource switching is currently required, and if the two are consistent, the partial bandwidth is not required. Resource switching; but if the two of the comparison results are inconsistent, the time domain resource determining means 70 determines that the base station has instructed the terminal to switch to another portion of the bandwidth resource for data transmission therewith. In this case, the time domain resource determining means 70 may further determine which of the target partial bandwidth resources indicated by the base station.
  • the device 70 can learn that the base station instructs the terminal to perform partial bandwidth resource switching, and the target part of the bandwidth resource used after the handover is C whose index identifier is “c”.
  • the time domain resource determining apparatus 70 can not only switch the determining unit 702 and the target time slot determining unit 704, but also include an indication detecting unit 700 for Part of the bandwidth resource performs blind detection to obtain transmission indication information.
  • mapping type of the shared channel is usually divided into two types: mapping type one (also called “mapping type A”) and mapping type two (also called “mapping type B").
  • mapping type A also called “mapping type A”
  • mapping type two also called “mapping type B”
  • the base station upper layer adopts mutually independent DMRS configurations for the mapping type A and the mapping type B. That is, the DMRS configuration parameter of the mapping type A may be the same as or different from the DMRS configuration parameter of the mapping type B.
  • the type of DMRS in the DMRS configuration parameter (specifically, "DL-DMRS-config-type" in the DMRS configuration parameter) and the maximum length of the DMRS (specifically, may be in the DMRS configuration parameter) DL-DMRS-max-len”) can affect the size of the antenna port field in the transmission indication information sent by the base station to the terminal, and thus affect the size of the transmission indication information.
  • the type of the DMRS in the DMRS configuration parameter (specifically, "UL-DMRS-config-type" in the DMRS configuration parameter) and the maximum length of the DMRS (specifically, may be in the DMRS configuration parameter)
  • the UL-DMRS-config-type" and the PUSCH-tp enable value can affect the size of the antenna port field in the transmission indication information sent by the base station to the terminal, and affect the size of the transmission indication information.
  • the indication detecting unit 700 does not know whether the base station transmits the transmission indication information by using the mapping type A or the transmission type information by using the mapping type B before receiving the transmission indication information sent by the base station, and therefore, the indication detecting unit is 700 cannot determine the size of the antenna port field in the transmission indication information, and thus cannot determine the size of the transmission indication information. In this case, if the detection unit 700 is instructed to perform blind detection, the size of the blind detection is smaller than the size of the transmission indication information transmitted by the base station, and the blind detection fails. After the blind detection fails, the indication detecting unit 700 needs to perform blind detection again in the same time slot, which makes the blind detection complexity increase. In order to solve the problem, the present embodiment provides two solutions:
  • the indication detecting unit 700 performs blind detection on the transmission indication information according to the DMRS configuration parameter corresponding to the two mapping types, always in accordance with the maximum size of the antenna port field in the transmission indication information.
  • Table 1 has shown the correspondence between the DMRS configuration parameters and the antenna port domain for the downlink shared channel.
  • the size of the antenna port indication field is at most 6, for the downlink case, so if the indication detecting unit 700 is indicated, If the transmission indication information is detected according to the antenna port indication field, the transmission indication information can be detected by the indication detecting unit 700 at one time regardless of which mapping type the base station uses to transmit.
  • Table 2 has shown the correspondence between the DMRS configuration parameters and the antenna port domain for the uplink shared channel. Therefore, according to Table 2, for the uplink situation, the size of the antenna port indication field is at most 5. Therefore, if the indication detecting unit 700 detects the transmission indication information according to the antenna port indication field, no matter which mapping type the base station adopts. To transmit, the transmission indication information can also be detected by the detection unit 700 at one time.
  • the indication detecting unit 700 may also perform blind detection on the transmission indication information according to the mode 2:
  • the indication detecting unit 700 separately queries the DMRS configuration parameters corresponding to the mapping type 1 and the mapping type 2, and then determines whether the parameters related to the antenna port domain in the DMRS configuration parameters corresponding to the two mapping types are the same. If they are the same, the indication detecting unit 700 performs blind detection on the transmission indication information according to the size of the antenna port domain corresponding to any one of the two mapping types. If not, the indication detecting unit 700 performs blind detection on the transmission indication information according to a type of the antenna port domain corresponding to the two mapping types.
  • the terminal side can obtain the configuration parameters of the shared channel mapping type A and the configuration parameters of the shared channel mapping type B, and the configuration parameters of the shared channel mapping type A.
  • the DMRS configuration parameter is included in the configuration parameter of the shared channel mapping type B, so the indication detecting unit 700 can query the DMRS configuration parameter corresponding to the mapping type A and the DMRS configuration parameter corresponding to the mapping type B.
  • the parameter related to the antenna port domain refers to a parameter that can affect the size of the antenna port domain.
  • the parameters related to the antenna port domain that the indication detecting unit 700 can query include the DMRS type and the DMRS maximum length.
  • the parameters related to the antenna port domain that the indication detecting unit 700 can query include the DMRS type, the DMRS maximum length, and the PUSCH-tp enable value.
  • the indication detecting unit 700 is not able to determine whether the size of the antenna port field in the transmission indication information sent by the base station is 5 or 4, in order to detect the transmission indication information at a time, the indication detecting unit 700 can directly follow the two mapping types. One of the corresponding antenna port domain sizes is detected, that is, in the above example, the transmission indication information is detected according to the antenna port field of 5.
  • the handover determining unit 702 may use the original part of the bandwidth resource and the original part of the bandwidth resource before switching.
  • the bandwidth resource determines the number of handover slots required for this partial bandwidth resource handover.
  • the handover durations required for all partial bandwidth resource handovers are the same. Even if the target part bandwidth resources are the same, if the handover is performed from different original partial bandwidth resources, the required handover duration may be different. Similarly, Even if the original part of the bandwidth resources are the same, but the target part of the bandwidth resources are different, the required switching time may also be different. Not to mention the switching scenario where the target part of the bandwidth resource is different from the original part of the bandwidth resource. Therefore, different switching scenarios may correspond to different switching durations.
  • the handover scenario is mainly determined according to the relationship between the original part of the bandwidth resource and the target part of the bandwidth resource configuration parameter: in a handover scenario, the original part of the bandwidth resource and the target part of the bandwidth resource have the same BW, However, the center frequencies of the two are different. In another handover scenario, the original part of the bandwidth resource has the same center frequency as the target part of the bandwidth resource, but the BWs of the two are different.
  • four handover scenarios of partial bandwidth resource switching have been introduced. After the target partial bandwidth resource is determined, the handover determining unit 702 may perform configuration parameters according to the target partial bandwidth resource and configuration parameters of the original partial bandwidth resource. It is determined which of the above several scenarios the current partial bandwidth resource switching scenario belongs to.
  • the terminal side stores the configuration parameters of each part of the bandwidth resource.
  • the base station may notify the handover determining unit 702 by transmitting the indication information.
  • the handover determining unit 702 can determine the current need according to the configuration parameters of the two.
  • Part of the bandwidth resource switching belongs to part of the bandwidth resource switching of scenario 1.
  • the time domain resource determining apparatus 70 pre-stores the mapping relationship between the switching scenario and the switching duration, and each switching scenario has a switching duration corresponding thereto.
  • the handover duration is related not only to the handover scenario, but also to the frequency level of the carrier used by the terminal to communicate with the base station, and the capabilities of the terminal.
  • the time domain resource determining apparatus 70 stores the scene-time length mapping relationship table, see Table 3 in the first embodiment.
  • the handover determining unit 702 may determine the corresponding switching duration according to the carrier frequency band used by the terminal communication and the capability of the terminal. Assuming that the capability of a certain terminal is high, and the frequency band of the level 1 is used for communication, and the handover determining unit 702 determines that the bandwidth resource switching of the first scenario is to be performed, the handover determining unit 702 queries the table 3 for the current partial bandwidth. Resource switching requires a switchover duration of 600us.
  • the handover determining unit 702 determines the handover duration, it is necessary to convert the handover duration into the number of handover slots. It should be understood that the number of handover slots is related not only to the handover duration but also to the subcarrier spacing of the target portion of the bandwidth resource.
  • the handover determining unit 702 may first determine the length of the time slot corresponding to the bandwidth part subcarrier interval of the target part, and then calculate the ratio of the switching duration to the length of the single time slot, and round up the ratio to calculate the number of switching time slots. .
  • the target slot determining unit 704 may determine, according to the number of the handover slots, a value of the target slot offset when the target portion bandwidth resource is used for data transmission, that is, where the target time domain resource is located. position:
  • the transmission indication information sent by the base station to the time domain resource determining apparatus 70 includes time domain resource allocation indication information, and the target time slot determining unit 704 may be based on the time domain resource.
  • the allocation indication information is combined with the time domain resource allocation table of the target part bandwidth resource to determine the basic time slot deviation.
  • the transmission indication information is described as DCI information: the DCI information includes a time domain resource allocation domain, and the time domain resource allocation domain is used to specify a certain row in the time domain resource allocation table, that is, for the time domain resource. Specify one of the two basic time slot deviations in the allocation table. Then, the target time slot determining unit 704 sums the basic time slot deviation and the number of switching time slots to determine the target time slot deviation corresponding to the partial bandwidth resource switching.
  • the target time slot determining unit 704 determines that the target time slot deviation is a slot position for determining data transmission between the terminal and the base station, and therefore, not only the time domain resource determining apparatus 70 on the terminal side needs to determine the target time slot. Deviation, and the base station should also know the target time slot offset. In order for the two to perform normal data transmission on the target time domain resource location corresponding to the target time slot deviation, the target time slot deviation determined by the base station and the target time slot determining unit 704 should be consistent.
  • the base station side should also calculate the target time slot offset in the same manner as the terminal side, which requires the base station to use the same criteria as the target time slot determining unit 704 to determine the switching scenario to which the current partial bandwidth resource switch belongs, and store the same
  • the mapping relationship between the handover scenario and the handover duration for example, the base station also stores Table 3
  • the base station also needs to know the terminal capability and the like.
  • the terminal may perform data transmission with the target time domain resource location corresponding to the target time slot deviation of the base station.
  • the target time slot offset may include an upstream target time slot offset and/or a downstream target time slot offset.
  • the terminal may receive the data transmitted by the base station in the corresponding target time slot deviation if the target time slot deviation determined by the target time slot determining unit 704 If the uplink target time slot is offset, the terminal may send data to the base station in the corresponding target time slot deviation.
  • the functions of the time domain resource determining apparatus 70, the handover determining unit 702, and the target slot determining unit 704 in the time domain resource determining apparatus 70 can be implemented by the processor of the terminal.
  • the function of the indication detecting unit 700 can be implemented by the processor of the terminal and the communication unit.
  • the base station does not need to set the switching dedicated indication line in the time domain resource allocation table specifically for partial bandwidth resource switching, because the time domain resource determining apparatus on the terminal side can according to the original part of the bandwidth.
  • the resource and the target bandwidth resource determine the number of handover time slots required for the current handover, and then calculate the target time slot deviation, thereby avoiding setting a dedicated indication line in the time domain resource allocation table, thereby affecting the time domain resource allocation table for other transmissions. Carrying instructions. It also avoids the problem that the time domain resource allocation table always needs to set the switching exclusive indication line in the time domain resource allocation table, thereby wasting the time domain resource allocation table space in the scenario where partial bandwidth resource switching is not required. This is beneficial to optimize resource transmission and improve resource utilization.
  • the configuration of the time domain resource allocation table can be made simpler.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the embodiment provides a storage medium in which one or more computer programs that can be read, compiled, and executed by one or more processors can be stored.
  • the storage medium can be stored.
  • the time domain resource determining program may be configured by one or more processors to perform the steps of implementing any one of the time domain resource determining methods described in the first embodiment and the second embodiment.
  • This embodiment further provides a base station. Referring to the hardware structure of the base station shown in FIG.
  • the base station 9 includes a first processor 91, a first memory 92, a first communication device 93, and a first communication bus 94.
  • the first communication bus 94 is configured to implement a communication connection between the first memory 92, the first communication device 93, and the first processor 91, respectively.
  • the first memory 92 may be the foregoing storage medium storing a time domain resource allocation program
  • the first processor 91 may read the time domain resource allocation program stored in the first memory 92, compile and execute, at the first communication device 93.
  • the steps of implementing any one of the time domain resource allocation methods introduced in Embodiment 1 and Embodiment 2 are implemented in conjunction with:
  • the first processor 91 determines the target part of the bandwidth resource used for the transmission after the handover, and controls the original part used by the first communication device 93 before the handover.
  • the bandwidth resource sends the transmission indication information including the target part bandwidth resource index identifier to the terminal.
  • the index identifier in the transmission indication information may allow the terminal to determine the target part bandwidth resource, determine the number of handover time slots required for the partial bandwidth resource handover according to the target part bandwidth resource and the original part bandwidth resource, and at the same time, the transmission indication information is also carried sometimes
  • the domain resource allocation indication information the terminal may determine the basic time slot deviation specified by the base station 9 according to the time domain resource allocation indication information, and then determine the target time slot deviation of the data transmission using the target partial bandwidth resource according to the number of the switched time slots. .
  • FIG. 10 provides a hardware structure diagram of the terminal:
  • the terminal 1 includes a second processor 11, a second memory 12, a second communication device 13, and a second communication bus for connecting the second processor 11 and the second memory 12, the second processor 11 and the second communication device 13. 14.
  • the second memory 12 may be the foregoing storage medium storing the time domain resource determining program.
  • the second processor 11 can read the time domain resource determining program stored in the second memory 12, compile and execute, and implement any one of the first embodiment and the second embodiment in cooperation with the second communication device 13. Steps for determining the time domain resource determination method:
  • the second communication device 13 may receive the transmission indication information under the control of the second processor 11, and the second processor 11 may determine, according to the transmission indication information received by the second communication device 13, whether partial bandwidth resource switching is required, in determining When the partial bandwidth resource switching needs to be performed, the second processor 11 determines, according to the index identifier carried in the transmission indication information, the target partial bandwidth resource used for the transmission after the partial bandwidth resource switching, and determines the current part according to the target partial bandwidth resource and the original partial bandwidth resource. The number of switching slots required for bandwidth resource switching. Subsequently, the second processor 11 determines a target slot offset for performing data transmission using the target partial bandwidth resource based on the number of handover slots and the basic slot offset specified by the time domain resource allocation indication information in the transmission indication information.
  • the base station and the terminal that is, the storage medium provided in this embodiment, allow the terminal to determine the number of handover time slots according to the information provided by the base station, and further determine the target time slot deviation, without relying on the switching exclusive indication line in the time domain resource allocation table. It greatly reduces the occupation of the time domain resource allocation table by part of the bandwidth resource switching, saves the space in the time domain resource allocation table, and provides more transmission opportunities for the indication information of other transmissions, which is beneficial to realizing optimal allocation of resources. .
  • time domain resource allocation method and apparatus can be applied not only to the 5G communication system, but also to the 5G communication system. It can also be applied to any communication system in the future.
  • modules or steps of the above embodiments of the present invention can be implemented by a general computing device, which can be concentrated on a single computing device or distributed among multiple computing devices.
  • they may be implemented by program code executable by the computing device, such that they may be stored in a computer storage medium (ROM/RAM, disk, optical disk) by a computing device, and at some
  • the steps shown or described may be performed in an order different than that herein, or they may be separately fabricated into individual integrated circuit modules, or a plurality of modules or steps may be fabricated into a single integrated circuit module. . Therefore, the application is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种时域资源分配、确定方法、装置、基站、终端及存储介质,时域资源分配方法包括:根据原部分带宽资源以及目标部分带宽资源确定本次部分带宽资源切换所需的切换时隙数目,所述原部分带宽资源、所述目标部分带宽资源分别为终端在本次部分带宽资源切换前、后所使用的部分带宽资源;根据所述切换时隙数目以及基本时隙偏差确定采用所述目标部分带宽资源进行数据传输的目标时隙偏差,所述基本时隙偏差根据基站发送的传输指示信息中携带的时域资源分配指示信息确定。

Description

时域资源分配、确定方法、装置、基站、终端及存储介质
本申请要求在2018年05月11日提交中国专利局、申请号为201810449607.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,例如涉及一种时域资源分配、确定方法、装置、基站、终端及存储介质。
背景技术
第五代移动通信(5th Generation,5G)技术为了降低用户设备(User Equipment,UE)的能量消耗,引入了部分带宽(Bandwidth Part,BWP)的概念。基站先为UE配置一组BWP,随后基站可通过下行控制信息指示UE动态地切换BWP。UE需要一定的时间才能完成原BWP到目标BWP的切换,所以基站进行时域资源分配时需要保证预留足够BWP切换时间,否则,UE的BWP切换将会失败。不过相关方案由于需要在时域资源分配表中设置切换专属指示行来向UE指定切换发生后的目标时隙偏差,因此,无论是否发生切换,在时域资源分配表中始终存在一个或多个切换专属指示行。而时域资源分配表中的行数是有限的,当设置了切换专属指示行之后,能够携带其他传输的指示信息的可用行就变少了,这在一定程度上限制了对其他传输的指示信息的传输。
发明内容
本发明实施例提供的时域资源分配、确定方法、装置、基站、终端及存储介质,主要解决的技术问题是:现阶段提出的由基站在BWP的时域资源分配表中设置切换专属指示行来指定部分带宽资源切换情况下的目标时隙偏差的方案,需要大量占用时域资源分配表中行,限制了其他传输的指示信息的传输,不利于资源的优化配置。
为解决上述技术问题,本发明实施例提供一种时域资源确定方法,包括:
根据原部分带宽资源以及目标部分带宽资源确定本次部分带宽资源切换所需的切换时隙数目,所述原部分带宽资源、所述目标部分带宽资源分别为终端在本次部分带宽资源切换前、后所使用的部分带宽资源;
根据所述切换时隙数目以及基本时隙偏差确定采用所述目标部分带宽资源进行数据传输的目标时隙偏差,所述基本时隙偏差根据基站发送的传输指示信息中携带的时域资源分配指示信息确定。
本发明实施例还提供一种时域资源分配方法,包括:
确定本次部分带宽资源切换后传输所用的目标部分带宽资源;
向终端发送包含所述目标部分带宽资源索引标识和时域资源分配指示信息的传输指示信息。
本发明实施例还提供一种时域资源确定装置,包括:
切换确定单元,设置为根据原部分带宽资源以及目标部分带宽资源确定本次部分带宽资源切换所需的切换时隙数目,所述原部分带宽资源、所述目标部分带宽资源分别为终端在本次部分带宽资源切换前、后所使用的部分带宽资源;
目标时隙确定单元,设置为根据所述切换时隙数目以及基本时隙偏差确定采用所述目标部分带宽资源进行数据传输的目标时隙偏差,所述基本时隙偏差根据基站发送的传输指示信息中携带的时域资源分配指示信息确定。
本发明实施例还提供一种时域资源分配装置,包括:
切换确定单元,设置为确定本次部分带宽资源切换后传输所用的目标部分带宽资源;
指示传输单元,设置为向终端发送包含所述目标部分带宽资源索引标识和时域资源分配指示信息的传输指示信息。
本发明实施例还提供一种基站,包括处理器、存储器、通信装置及通信总线;
通信总线设置为实现处理器和存储器、处理器和通信装置的连接通信;
处理器设置为执行存储器中存储的至少一个程序,以实现如上任一项的时域资源分配的方法。
本发明实施例还提供一种终端,其中,包括处理器、存储器、通信装置及通信总线;
通信总线用于实现处理器和存储器、处理器和通信装置的连接通信;
处理器用于执行存储器中存储的至少一个程序,以实现如上任一项的时域资源确定的方法。
本发明实施例还提供一种存储介质,存储介质中存储有时域资源分配程序和时域资源确定程序中的至少之一,时域资源分配程序可被至少一个处理器执 行,以实现如上任一项的时域资源分配的方法;时域资源确定程序可被至少一个处理器执行,以实现如上任一项的时域资源确定的方法。
本发明实施例提供一种时域资源分配、确定方法、装置、基站、终端及存储介质,针对在BWP的时域资源分配表中设置切换专属指示行,容易限制其他传输指示信息的传输,不利于资源的优化配置问题,本发明实施例提供的方案中,在需要对与终端进行数据传输的部分带宽资源进行部分带宽资源切换时,基站可以确定切换后传输所用的目标部分带宽资源,然后向终端发送包含目标部分带宽资源索引标识的传输指示信息。终端接收到传输指示信息后,可以根据根据目标部分带宽资源以及原部分带宽资源确定本次部分带宽资源切换所需的切换时隙数目;从而根据切换时隙数目以及基站指定的基本时隙偏差确定目标时隙偏差。由于本发明实施例提供的方案中,在部分带宽资源切换时,终端可以自己根据基站提供的信息确定出切换时隙数目,结合基站指示的基本时隙偏差确定出目标时隙偏差,无需依赖时域资源分配表中的切换专属指示行。因此根据本发明实施例提供的方案,就无需在时域资源分配表中采用一个或多个行来作为切换专属指示行,这极大地降低了部分带宽资源切换对时域资源分配表的占用,节省了时域资源分配表中的空间,给其他传输的信息的传输提供了更多的机会,有利于实现资源的优化配置。同时,通过时域资源分配表中的切换专属指示行来指示目标时隙偏差的方案,在不进行部分带宽资源切换时,也需要在时域资源分配表中保留切换专属指示行,这带来了极大的资源浪费,因此,相对于现阶段提出的方案,本发明实施例提供的方案提升了资源利用率。
本申请其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本申请说明书中的记载变的显而易见。
附图概述
图1为本发明实施例一中提供的时域资源分配过程中基站与终端的一种交互图;
图2为本发明实施例一中提供的终端盲检的一种流程图;
图3为本发明实施例一中提供的终端根据目标部分带宽资源以及原部分带宽资源确定切换时隙数目的一种流程图;
图4为本发明实施例二中提供的时域资源分配方法的一种流程图;
图5为本发明实施例二中提供的时域资源确定方法的一种流程图;
图6为本发明实施例三中提供的时域资源分配装置的一种结构示意图;
图7为本发明实施例四中提供的时域资源确定装置的一种结构示意图;
图8为本发明实施例四中提供的时域资源确定装置的另一种结构示意图;
图9为本发明实施例五中提供的基站的一种硬件结构示意图;
图10为本发明实施例五中提供的终端的一种硬件结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,下面通过具体实施方式结合附图对本发明实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
实施例一:
随着无线通信技术的发展和用户对通信需求的日益增加,为了满足更高、更快和更新的通信需要,5G技术已成为未来网络发展的趋势。相比于传统的长期演进技术(Long Term Evolution,LTE)技术,5G在许多方面都进行了相应的改进。例如,为了降低UE在通信过程中的能量消耗,5G中允许UE根据需要传输的数据的类型选择相应的BWP,这有利于避免传统的LTE技术中UE所有的传输都使用相同的带宽,容易带来不必要的能量浪费的问题。
在UE进行传输前,基站会为其配置一组BWP,包括用于上行链路的BWP和用于下行链路的BWP,通常基站会为UE配置4个下行链路BWP和4个上行链路BWP。针对不同的BWP可独立配置子载波间隔(SCS)、带宽和频域位置等,也即,不同的BWP可拥有不同的配置参数。基站可通过下行控制信息(Downlink Control Information,DCI)指示UE动态地切换传输所用的BWP,使UE可以根据不同的传输需求切换合适的BWP,从而降低传输中的能量消耗。BWP切换是指从当前所用的BWP(为了便于介绍,后续称为“原BWP”)变换到新的BWP(为了便于介绍,后续称为“目标BWP”)。值得注意的是,从根据接收到的DCI确定需要进行BWP切换,到切换到目标BWP的过程中,UE不进行数据的发送与接收。只有当BWP切换完成后,UE才能在目标BWP上继续进行数据传输。
应当理解的是,BWP切换时需要一定的时间,如果基站在进行时域资源分配时不能保证为UE预留足够的切换时间,则会导致UE的BWP切换失败。为了保证UE有足够的切换时间,现阶段提出的方案是由基站在BWP的时域资源 分配表中设置专门用于BWP切换的“切换专属指示行”,基站将在切换专属指示行中指示对应切换后的目标时隙偏差,应当明白的是,该目标时隙偏差是由基站经过计算得到,能够确保UE具备足够的切换时间。
以基站为UE配置了四个下行链路BWP为例,则在每一个BWP的时域资源分配表中都应当包含三个切换专属指示行,分别对应于从其他三个BWP切换到该BWP的场景。例如当下行链路的四个BWP分别是A、B、C、D时,则在A的时域资源分配表中将会设置三个切换专属指示行,分别用于指示从B到A的切换场景所对应的目标时隙偏差、从C到A的切换场景所对应的目标时隙偏差以及从D到A的切换场景所对应的目标时隙偏差。在B的时域资源分配表中也会有三个切换专属指示行,分别用于指示从A到B的切换场景所对应的目标时隙偏差、从C到B的切换场景所对应的目标时隙偏差以及从D到B的切换场景所对应的目标时隙偏差。同样地,在C和D的时域资源分配表中也是类似。所以,如果基站需要指示UE将二者之间通信所采用的BWP由D切换到B,则基站将会通过原BWP,即D向UE发送DCI信息,在该DCI信息中基站会指示UE切换到目标BWP,即B上。同时,在下发给UE的DCI信息中还会携带时域资源分配指示域,用于向终端指定根据时域资源分配表中的哪一行确定目标时隙偏差,这样,UE就可以通过查询时域资源分配表确定出从D切换至B后对应的目标时域资源的位置。
应当理解的是,时域资源分配表中的行数是有限的,并不能无限扩展。具体地,时域资源分配表的行数可以根据DCI信息中时域资源分配指示域所占的位数有关,通常行数为2 n,n为DCI信息中时域资源分配指示域所占的位数。例如,当n为2时,则时域资源分配表可以有4行,当n为3时,时域资源分配表可以有8行。因此,如果在时域资源分配表中设置了对应各切换场景的切换专属指示行,则时域资源分配表就只能采用剩余行来携带其他传输的信息:继续以基站为UE配置了四个下行链路BWP为例,则在时域资源分配表包括4行的情况下,基站仅可以采用剩余的1行来携带其他传输的指示信息;在时域资源分配表包括8行的情况下,基站可以采用剩余的5行来携带其他传输的指示信息……这严重限制了其他指示信息的传输。甚至,当DCI信息中时域资源分配指示域仅占1bit时,因为时域资源分配表只有2行,因此,时域资源分配表中甚至不能涵盖所有必要的切换专属指示行。
为了解决上述时域资源分配方案中,需要通过占用时域资源分配表设置切 换专属指示行,进而对其它指示信息的传输造成严重的限制的问题,本实施例提供一种时域资源分配方法和一种时域资源确定方法,其中时域资源分配方法可以由基站侧执行,而时域资源确定方法可以由终端侧执行,请参见图1,图1示出了基站执行时域资源分配方法和终端执行时域资源确定方法从而实现时域资源分配过程中的交互示意图:
S102:基站确定切换后传输所用的目标部分带宽资源。
在基站与终端之间进行数据传输的过程中,二者之间传输的数据类型可能会不断变化,对于有的数据,可能需要较大的带宽资源,而另外一些数据可能对带宽资源的要求并不高,因此,为了降低终端侧收发数据带来的功耗,也为了合理利用带宽资源,基站会根据当前待传输的数据的类型合理地从为终端配置的各部分带宽资源中选择一个或多个用于当前待传输数据的传输。当基站重新选择的部分带宽资源与当前正在使用的部分带宽资源不同时,就需要进行“部分带宽资源切换”,所以,所谓部分带宽资源切换实际就是指从当前正在使用的“原部分带宽资源”切换到新的“目标带宽资源”的过程。本实施例中所说的“部分带宽资源”实际上是指连续的资源块(Resource Block,RB)资源,也称为BWP资源。
在基站确定需要对其与终端之间所使用的部分带宽资源进行切换时,其会获取到目标部分带宽资源的索引标识。例如基站与终端之间即将进行下行数据传输,但此时基站发现当前所使用的部分带宽资源A不适合,需要使用部分带宽资源C,则基站确定C将作为目标部分带宽资源,因此获取到目标部分带宽资源的索引标识(Index)为“c”。
S104:基站向终端发送包含目标部分带宽资源索引标识和时域资源分配指示信息的传输指示信息。
确定出目标部分带宽资源之后,基站向终端发送传输指示信息,该传输指示信息中携带有目标部分带宽资源的索引标识。在本实施例中,基站会采用原部分带宽资源向终端发送该传输指示信息,所以,在一些示例中,基站将会使用部分带宽资源A来发送传输指示信息。在本实施例的一些示例当中,传输指示信息可以包括但不限于DCI,即下行链路控制信息。
同时,基站所发送的传输指示信息中还可以包括用于向终端指定的基本时隙偏差的时域资源分配指示信息,基本时隙偏差用于终端侧在计算出部分带宽资源切换所需的切换时隙数目之后,计算目标时隙偏差。基站可以采用传输指 示信息(例如DCI信息)中的时域资源分配指示域作为时域资源分配指示信息,时域资源分配指示域通过与时域资源分配表配合来向终端指定基本时隙偏差。在基站配置了时域资源分配表之后,终端可以获取到该时域资源分配表,在时域资源分配表中,可以配置有至少两个基本时隙偏差,为了让终端知道从这至少两个基本时隙偏差中选择哪一个,所以基站会在DCI信息中携带时域资源分配指示域,该时域资源分配指示域可以令终端从时域资源分配表中选择出基站指定的一个基本时隙偏差。例如,在时域资源分配表中包括16行,这16行均是配置的基本时隙偏差,这16行中各行的唯一标识分别是数字“0”、“1”…“15”。而基站向终端发送的传输指示信息中,时域资源分配指示域所对应的值是“2”,则说明基站为终端指定的基本时隙偏差是时域资源分配表中唯一标识为“2”的一个。
可以理解的是,时域资源分配表并不是固定不变的,因为其是由基站配置的,因此,基站对时域资源分配表的配置不同,那么终端获取到的时域资源分配表也不同。可以理解的是,基站和终端之间总是利用当前的时域资源分配表,也即最新配置的时域资源分配表确定基本时隙偏差。
值得注意的是,基本时隙偏差是由基站无线资源控制(Radio Resource Control,RRC)层配置的、与部分带宽资源切换的切换时长无关的时域资源位置,其不仅可以用于部分带宽资源切换时确定目标时隙偏差,也可以用于在无需部分带宽资源切换时确定目标时隙偏差。例如,基站与终端之间持续使用某一部分带宽资源进行数据传输的过程中,基站向终端分配时域资源时,也是通过时域资源分配表进行的,在这种情况下,基站所指定的时域资源分配表中的某一基本时隙偏差实际就是目标时隙偏差。所以,基本时隙偏差并不需要保证终端具备足够的切换时长。在配置基本时隙偏差的时候,基站也不必关心是否存在部分带宽资源的切换,只需要按照通常的时域资源配置方案进行配置即可。所以相对于现阶段所讨论方案中基站在切换专属指示行中所配置的专用与部分带宽资源切换场景的目标时隙偏差,本实施例中基站配置基本时隙偏差更为简单,不必考虑部分带宽资源切换带来的时间限制。
在时域资源分配表中,基本时隙偏差包括上行基本时隙偏差或下行基本时隙偏差,其中,上行基本时隙偏差对应于时域资源分配表中的K2,下行基本时隙偏差对应于时域资源分配表中的K0。如果当前基站要向终端发送数据,而终端需要接收数据,则基站从时域资源分配表中为终端指定的基本时隙偏差应当 是针对下行的下行基本时隙偏差,即K0;如果当前基站要接收终端发送的数据,则其利用时域资源分配表为终端指定的基本时隙偏差应当是针对上行的上行基本时隙偏差,即K2。
另外,本实施例中的时域资源分配表仍旧是以部分带宽资源为单位设置的,也即每一个部分带宽资源都有对应的时域资源分配表。
S106:在根据传输指示信息确定需要进行部分带宽资源切换时,终端根据索引标识确定部分带宽资源切换后传输所用的目标部分带宽资源。
终端可以接收基站发送的传输指示信息,根据该传输指示信息中所携带的索引标识,终端可以确定当前是否需要进行部分带宽资源切换。例如,终端会在原部分带宽资源上进行“盲检”,这里假定原部分带宽资源的索引标识为“a”。通过盲检,终端可以接收到基站通过原部分带宽资源A发送的传输指示信息,在该传输指示信息中携带有目标部分带宽资源的索引标识。通过比较原部分带宽资源的索引标识与传输指示信息中所携带的索引标识是否一致,终端可以确定当前是否需要进行部分带宽资源切换,若二者一致则说明不需要进行部分带宽资源切换;但如果比较结果中二者不一致,则终端确定基站已经指示自己切换到另一部分带宽资源上与其进行数据传输。在这种情况下,终端可以进一步确定基站所指示的目标部分带宽资源是哪一个。例如在前述示例中,由于基站在传输指示信息中所携带的索引标识是“c”,“c”与盲检所针对的原部分带宽资源A的索引标识“a”不一致,因此终端可以获知基站指示自己进行部分带宽资源切换,且切换后所使用的目标部分带宽资源为索引标识是“c”的C。
下面对终端盲检接收传输指示信息的过程进行简单介绍:
无论是上行还是下行,共享信道的映射类型通常分为两种:映射类型一(也称“映射类型A”)和映射类型二(也称“映射类型B”)。在现在的标准38.331中,为了能够更灵活地配置两种映射类型对应的解调参考信号(Demodulation reference signal,DMRS)配置,基站高层针对映射类型A与映射类型B采用互相独立的DMRS配置。也即映射类型A的DMRS配置参数与映射类型B的DMRS配置参数可能相同,也可能不同。
对于下行而言,DMRS配置参数中DMRS的类型(具体的,可以是DMRS配置参数中的“DL-DMRS-config-type”)、DMRS的最大长度(具体的,可以是DMRS配置参数中的“DL-DMRS-max-len”)能够影响基站向终端发送的传输指示信息中天线端口域的大小,进而就会影响传输指示信息的大小。
对于上行而言,DMRS配置参数中DMRS的类型(具体的,可以是DMRS配置参数中的“UL-DMRS-config-type”)、DMRS的最大长度(具体的,可以是DMRS配置参数中的“UL-DMRS-config-type”)以及PUSCH-tp使能值能够影响基站向终端发送的传输指示信息中天线端口域的大小,并影响传输指示信息的大小。
毫无疑义的是,终端在接收到基站发送的传输指示信息之前,并不知道基站是采用映射类型A发送传输指示信息,还是采用映射类型B发送传输指示信息,因此,终端也就不能确定传输指示信息中天线端口域的大小,进而无法确定传输指示信息的大小。在这种情况下,如果终端进行盲检时,盲检的尺寸大小比基站所发送的传输指示信息的大小要小,则终端就会盲检失败。在盲检失败后,终端就需要在同一时隙中再次进行盲检,这使得盲检复杂度提升,为了解决该问题,本实施例提供一下两种解决方式:
方式一:终端不管两种映射类型对应的DMRS配置参数,总是按照传输指示信息中天线端口域的大小为最大值的情况对传输指示信息进行盲检。
表1示出针对下行共享信道,DMRS配置参数与天线端口域之间的对应关系:
表1
DL-DMRS-config-type DL-DMRS-max-len 天线指示域的大小
1 1 4
1 2 5
2 1 5
2 2 6
根据表1可知,针对下行情况,天线端口指示域的大小最大为6,所以,如果终端按照天线端口指示域为6对传输指示信息进行检测,则无论基站采用哪种映射类型来发送,传输指示信息都能被终端一次性检测到。
表2示出针对上行共享信道,DMRS配置参数与天线端口域之间的对应关系:
表2
UL-DMRS-config-type UL-DMRS-max-len PUSCH-tp 天线指示域的大小
1 1 enable 2
1 2 enable 4
1 1 disable 3
1 2 disable 4
2 1 disable 4
2 2 enable 5
所以,针对上行情况,天线端口指示域的大小最大为5,所以,如果终端按照天线端口指示域为5对传输指示信息进行检测,则无论基站采用哪种映射类型来发送,传输指示信息也都能被终端一次性检测到。
另外,终端还可以根据方式二来对传输指示信息进行盲检,请参见图2:
S202:分别查询映射类型一和映射类型二对应的DMRS配置参数。
在基站高层配置了共享信道各映射类型对应的配置参数后,终端侧是可以获取到共享信道映射类型A的配置参数和共享信道映射类型B的配置参数的,共享信道映射类型A的配置参数,以及共享信道映射类型B的配置参数中均包括DMRS配置参数,所以终端可以查询确定映射类型A对应的DMRS配置参数,以及映射类型B对应的DMRS配置参数。
S204:终端判断两种映射类型对应的DMRS配置参数中与天线端口域相关的参数是否相同。
若判断结果为是,则进入S206,否则进入S208。在本实施例中。所谓与天线端口域相关的参数是指能够影响天线端口域大小的参数。对于下行而言,与天线端口域相关的参数包括DMRS类型和DMRS最大长度。对于上行而言,与天线端口域相关的参数包括DMRS类型、DMRS最大长度以及PUSCH-tp使能值。
S206:按照两种映射类型中的任意一种对应的天线端口域的大小对传输指示信息进行盲检。
如果终端确定两种映射类型对应的DMRS配置参数中与天线端口域相关的参数相同,则此时,终端按照映射类型A或者按照映射类型B来检测传输指示信息都是可以的。
S208:按照两种映射类型对应的天线端口域的大小较大的一种对传输指示信息进行盲检。
如果终端确定两种映射类型对应的DMRS配置参数中与天线端口域相关的 参数不同,例如,假定终端查询到下行共享信道映射类型A对应的DL-DMRS-config-type=1,DL-DMRS-max-len=2;而下行共享信道映射类型B对应的DL-DMRS-config-type=1,DL-DMRS-max-len=1,则此时如果基站时按照映射类型A来发送传输指示信息,则传输指示信息中,天线端口域的大小应该为5,如果按照映射类型B来发送传输指示信息,则天线端口域的大小应该为4。虽然此时终端并不能够确定基站发送的传输指示信息内天线端口域的大小是5还是4,但为了一次性检测到传输指示信息,终端可以直接按照两种映射类型中对应的天线端口域大小中较大的一种进行检测,也即在上述示例中按照天线端口域为5来进行传输指示信息的检测。
S108:终端根据目标部分带宽资源以及原部分带宽资源确定本次部分带宽资源切换所需的切换时隙数目。
应当理解的是,并不是所有部分带宽资源切换所需要的切换时长都相同,即使目标部分带宽资源相同,但若是从不同的原部分带宽资源切换过去,需要的切换时长可能也不同;同样地,即使原部分带宽资源相同,但目标部分带宽资源不同,则所需要的切换时长也可能会有所不同。更不用说目标部分带宽资源与原部分带宽资源均不相同的切换场景了。所以,不同的切换场景可能会对应不同的切换时长。
在本实施例中,切换场景主要根据原部分带宽资源与目标部分带宽资源配置参数之间的关系确定:在一种切换场景中,原部分带宽资源与目标部分带宽资源之间具有相同的带宽大小(Bandwidth,BW),但二者的中心频率不同;在另一种切换场景中,原部分带宽资源与目标部分带宽资源之间具有相同的中心频率,但二者的BW不同。在现阶段已有的标准会议中,定义了以下四种切换场景:
场景一:重新配置涉及改变BWP的中心频率而不改变其BW,可能涉及或不涉及改变SCS。(The reconfiguration involves changing the center frequency of the BWP without changing its BW.The reconfiguration may or may not involve changing the SCS.)简单来说,场景一是指目标部分带宽资源与原部分带宽资源相比,无论子载波间隔相同与否,中心频率不同,BW相同的部分带宽资源切换场景。
场景二:重新配置涉及改变BWP的BW而不改变其中心频率,可能涉及或不涉及改变SCS。(The reconfiguration involves changing the BW of the BWP  without changing its center frequency.The reconfiguration may or may not involve changing the SCS.)场景二是指目标部分带宽资源与原部分带宽资源相比,无论子载波间隔相同与否,BW不同,中心频率相同的部分带宽资源切换场景。
场景三:重新配置涉及改变BW和BWP的中心频率,可能涉及或不涉及改变SCS。(The reconfiguration involves changing both the BW and the center frequency of the BWP.The reconfiguration may or may not involve changing the SCS.)场景三是指目标部分带宽资源与原部分带宽资源相比,无论子载波间隔相同与否,BW与中心频率均不同的部分带宽资源切换场景。
场景四:重新配置涉及仅改变SCS,其中BWP的中心频率和BW保持不变。(The reconfiguration involves changing only the SCS,where the center frequency and BW of the BWP remain unchanged.)场景四是指目标部分带宽资源与原部分带宽资源相比,BW与中心频率均相同,但子载波间隔不同的部分带宽资源切换场景。
图3示出了终端根据目标部分带宽资源以及原部分带宽资源确定本次部分带宽资源切换所需的切换时隙数目的过程:
S302:根据原部分带宽资源的配置参数和目标部分带宽资源的配置参数确定当前的切换场景。
由于部分带宽资源切换场景与原部分带宽资源的配置参数同目标部分带宽资源配置参数之间的关系有关,因此,当终端确定了目标部分带宽资源后,可以根据目标部分带宽资源的配置参数和原部分带宽资源的配置参数确定出当前的切换场景属于上述几种场景中的哪一种。应当理解的是,当基站为终端配置了部分带宽资源之后,终端侧会存储各部分带宽资源的配置参数。当然,在本实施例的另一些示例当中,即使终端侧不存储各部分带宽资源的配置参数,基站也可以通过传输指示信息告知终端。
这里假定目标部分带宽资源C与原部分带宽资源A相比,传输带宽资源具有相同的BW,但二者的中心频率不同,因此,终端根据二者的配置参数可以确定当下需要进行的部分带宽资源切换属于场景一的部分带宽资源切换。
S304:根据预先存储的切换场景与切换时长的映射关系确定当前切换场景所对应的切换时长。
在本实施例中,终端预先存储了切换场景与切换时长的映射关系,各切换场景都有与之对应的切换时长。在本实施例的另一些示例当中,切换时长不仅 与切换场景有关,而且还与终端与基站通信所使用载波的频率等级、终端的能力有关。例如,在一种示例中,终端存储了场景-时长映射关系表,请参见如下表3:
表3
Figure PCTCN2019086087-appb-000001
在频率等级一列中,“1”表征载波频率小于6GHz的场景,“2”表征载波频率大于等于6GHz的场景。“类型一的切换时长”对应能力高的终端在各种切换场景下的切换时长,而“类型二的切换时长”对应能力低的终端在各种切换场景下的切换时长。
在终端确定当前的部分带宽资源切换场景后,可以根据自己通信所使用的载波频段,以及自己的能力确定对应的切换时长是多少。假定某一终端的能力较高,且采用等级1的频段进行通信,而且当前是要进行场景一的部分带宽资源切换,则通过查询表3,可以确定针对该部分带宽资源切换终端需要600us的切换时长。
S306:根据切换时长以及目标部分带宽资源的配置参数确定本次部分带宽资源切换所需的切换时隙数目。
终端确定出切换时长之后,需要将切换时长转换成切换时隙数目,应当明白的是,切换时隙数目的数目不仅与切换时长有关,还与目标部分带宽资源的子载波间隔有关。终端可以先确定出目标部分带宽资源子载波间隔所对应的时隙长度,然后计算切换时长与单个时隙长度的比值,并对该比值进行向上取整,从而计算得到切换时隙数目。
S110:终端根据切换时隙数目以及基本时隙偏差确定采用目标部分带宽资源进行数据传输的目标时隙偏差。
计算出切换时隙数目之后,终端可以基于该切换时隙数目确定采用目标部分带宽资源进行数据传输时目标时隙偏差的值,也即目标时域资源所在的位置:
在本实施例中,在需要进行部分带宽资源切换时,基站向终端发送的传输指示信息里包括时域资源分配指示信息,终端可以根据该时域资源分配指示信息,结合目标部分带宽资源的时域资源分配表确定出基本时隙偏差。这里以传输指示信息为DCI信息。进行说明:在DCI信息中,包括时域资源分配域,该时域资源分配域用于指定时域资源分配表中的某一行,也即用于从时域资源分配表内的两个基本时隙偏差中指定一个。然后终端对基本时隙偏差与切换时隙数目进行求和可以确定本次部分带宽资源切换所对应的目标时隙偏差。
可以理解的是,终端确定目标时隙偏差是为了确定与基站之间进行数据传输的时隙位置,因此,不仅终端需要确定该目标时隙偏差,而且基站也应当要知道该目标时隙偏差。为了让二者在目标时隙偏差对应的目标时域资源位置上进行正常的数据传输,基站与终端确定出的目标时隙偏差应当一致。所以,基站侧也应当按照终端侧相同的方式来计算目标时隙偏差,这就要求基站与终端采用同样的准则来确定当前部分带宽资源切换所属的切换场景,并且存储相同的切换场景与切换时长间的映射关系(例如基站也存储表3),另外,基站还需要知道终端能力等。
确定了目标时隙偏差后,终端可以与基站在目标时隙偏差对应的目标时域资源位置进行数据传输。应当理解的是,目标时隙偏差可以包括上行目标时隙偏差和/或下行目标时隙偏差。假定在终端确定出的目标时隙偏差是下行目标时隙偏差,则终端可以在对应的目标时域资源位置接收基站发送的数据,如果终端确定的目标时隙偏差是上行目标时隙偏差,则终端可以在对应的目标时域资源位置向基站发送数据。
本发明实施例提供的时域资源分配方法和时域资源确定方法中,基站不需要专门为了部分带宽资源切换而在时域资源分配表中设置切换专属指示行,因为终端可以自己根据原部分带宽资源与目标带宽资源确定出当前切换所需要的切换时隙数目,进而计算出目标时隙偏差,因此避免了在时域资源分配表中设置专属指示行,从而影响时域资源分配表对其他传输的指示信息的传输。也避免了相关方案中因为时域资源分配表中始终需要设置切换专属指示行,从而在不需要部分带宽资源切换的场景下浪费时域资源分配表空间的问题。这有利于优化资源传输,提升资源利用率。
更进一步地,由于基站在配置时域资源分配表的时候不需要关心配置的传输时隙是否满足终端进行部分带宽资源切换的切换时长,因此配置工作更为简单。
实施例二:
本实施例将结合具体示例继续对前述实施例中提供的时域资源分配方法以及时域资源确定方法进行介绍,请参见图4:
S402:基站在需要对与终端进行数据传输的BWP进行BWP切换时,确定目标BWP。
出于满足与终端间数据传输的需求的目的,基站可能会在一些时候控制终端进行部分带宽资源切换,例如,在在t1时刻之前,基站与终端之间的下行数据对带宽要求不高,但在t1时刻,基站需要向终端发送大量的视频数据,因此,为了保证终端侧用户视频观看的体验,则基站需要控制终端切换到带宽值更大的部分带宽资源上进行数据传输。在这种情况下,基站可以从其预先为终端配置的个部分带宽资源中选择一个满足传输要求的作为目标部分带宽资源。
S404:基站通过原BWP向终端发送DCI信息指示BWP切换。
确定出目标BWP之后,基站可以向终端发送DCI指示信息,该DCI指示信息至少可以起到这样几方面的指示作用:首先,该DCI信息可以让终端确定当前需要进行部分带宽资源切换;而且该DCI信息还能够了解需要切换到的目标BWP是哪一个。在本实施例中,该DCI信息还能够向终端指示基本时隙偏差。在一些示例中,基站可以通过DCI信息中的BWP指示域来告知终端需要进行部分带宽资源切换,例如基站将目标BWP的索引标识携带在DCI信息的BWP指示域中,终端接收到DCI信息后,可以通过比较该DCI信息BWP指示域中的索引标识与当前使用的BWP的索引标识是否一致来确定是否需要进行部分带宽资源切换,如果二者一致,则说明不需要进行部分带宽资源切换,如果二者不一致,则说明需要进行部分带宽资源切换,同时,终端还能确定切换后的木包BWP是哪一个。
在实施例一中已经较为详细地介绍了通过时域资源分配表以及时域资源分配指示域来向终端指定基本时隙偏差,因此这里不再赘述。
由于在终端了解需要进行部分带宽资源切换之前,终端只会对当前正在使用的BWP进行盲检,因此,为了保证终端可以接收到基站发送的DCI信息,在 本实施例中,基站会通过原BWP进行DCI信息的传输。
在基站向终端发送了作为传输指示信息的DCI信息后,基站可以计算与终端在目标BWP上进行数据传输的目标时域资源位置,也即目标时隙偏差的值,基站计算目标时隙偏差的过程与终端计算目标时隙偏差的过程基本一致,因此具体的过程请参见实施例一的介绍,或者参见后续介绍。
下面对终端侧的时域资源确定方法进行进一步介绍,请结合图5示出的时域资源确定方法的一种流程图:
S502:终端在原BWP上进行盲检。
虽然这里限定终端是针对原BWP进行盲检,但实际上,终端此时并不知道是否会发生切换,因此,实际上,对于终端而言,所谓的原BWP只不过是当前仍在使用的BWP而已。终端通过盲检,可以检测到基站通过该原BWP发送的DCI信息。盲检的具体细节请参见实施例一中的介绍,这里不再赘述。
S504:终端确定盲检检测到的DCI信息中所携带的索引标识与盲检所针对的原BWP的索引标识是否一致。
在检测到DCI信息之后,终端先确定DCI信息中所携带的Index与当前盲检所针对的原BWP的Index是否一致,若是,则说明当前并不需要进行部分带宽资源切换,进入S506。否则,说明基站已经指示自己进行部分带宽资源切换了,因此进入S508。
应当明白的是,终端是知晓当前正在使用的BWP的Index的,对于DCI信息所携带的Index,可选地,终端可以对检测到的DCI信息进行解析,从该DCI信息BWP指示域中进行获取。
S506:将DCI信息所指定的基本时隙偏差作为目标时隙偏差。
如果终端确定DCI信息中所携带的Index与原BWP的Index一致,则终端确定当前不需要进行部分带宽资源切换,因此可以直接根据DCI信息中时域资源分配指示域,结合时域资源分配表来确定基站为自己分配的时域资源,也即目标时隙偏差。具体地,终端可以直接将时域资源分配表中被时域资源分配指示域所指定的基本时隙偏差作为目标时隙偏差。
为了便于介绍,本实施例中将时域资源分配表中所指定的时隙大小称为“基本时隙偏差”,对于不需要进行部分带宽资源切换的场景而言,DCI中所指定的基本时隙偏差就是目标时隙偏差,所以,如果终端确定基站并未指示进行部分带宽资源切换,则可以直接将DCI所指定的基本时隙偏差所谓目标时隙偏差。
下面对时域资源分配表进行简单的介绍:
根据前述介绍可知,时域资源分配表的行数与时域资源分配指示域在DCI信息中所占的位数有关,这里假定时域资源分配指示域在DCI信息中占3位,则该时域资源分配表包括8行,这里为每一行分别分配一个唯一标识,分别为“0”、“1”、“2”…“7”,也即“0”对应于表中的第一行,“1”对应于表中的第二行……“7”对应于表中的第八行。
在本实施例所介绍的时域资源分配表中,表中包括3列,第一列中用于指示下行基本时隙偏差/上行基本时隙偏差,通常下行基本时隙偏差和上行基本时隙偏差的时域资源分配表独立,也即在针对下行的时域资源分配表中,只会配置下行基本时隙偏差,不会携带上行基本时隙偏差;同样地,在针对上行的时域资源分配表中,只会携带上行基本时隙偏差,不会携带上行基本时隙偏差。下行基本时隙偏差常采用“K0”表征,而上行基本时隙偏差则常采用“K2”表征。时域资源分配表中的第二列用于携带时隙内符号分配指示信息,第三列用于携带时域分配映射类型。
通常时域资源分配表是通过与时域资源分配指示域配合来指示基本时隙偏差的,时域资源分配指示域中携带的是某一行的唯一标识,因此基站想要向终端指定哪一行的基本时隙偏差,就可以将该行的唯一标识携带在DCI信息的时域资源分配指示域中。
S508:终端确定目标BWP。
如果终端确定DCI信息中所携带的Index与原BWP的Index不一致,则终端确定需要进行部分带宽资源切换,因此,终端可以根据DCI信息中所携带的Index确定目标BWP是哪一个,例如,假定DCI信息中所携带的Index为“d”,则说明目标BWP为D。
S510:终端根据目标BWP与原BWP的配置参数确定当前的切换场景。
确定出目标BWP之后,终端确定目标BWP的配置参数,同时也确定原BWP的配置参数,在本实施例中,终端侧存储有基站为其配置的各BWP的配置参数。通过比较两个BWP之间的配置参数,终端可以确定出当前的切换场景。
S512:终端查询场景-时长映射关系表确定当前切换场景对应的切换时长。
确定了切换场景之后,终端可以通过查询场景-时长映射关系表确定当前部分带宽资源切换场景所对应的切换时长,场景-时长映射关系表在实施例一中已经进行了比较详细的介绍,这里不再赘述。
S514:终端将切换时长换算成对应于目标BWP的切换时隙数目。
终端在将切换时长转换成切换时隙数目时,需要结合目标BWP的配置参数:终端先确定目标BWP的子载波间隔SCS,进而根据目标BWP的SCS确定出目标BWP中时隙slot的时隙长度。然后计算切换时长中包含多少个时隙,这里提供一种根据切换时长计算切换时隙数目的公式:
Figure PCTCN2019086087-appb-000002
其中,offset表示切换时隙数目,T表示终端根据场景-时长映射关系表查询到的切换时长。由于子载波间隔为15KHz时,对应的时隙长度为1ms;子载波间隔为30KHz时,对应的时隙长度为0.5ms;子载波间隔为60KHz时,对应的时隙长度为0.25ms……也即u与子载波间隔之间满足这样的关系:子载波间隔=2 u·15(KHz)。表4中示出了几种典型的子载波间隔及其对应的u值:
表4
u 子载波间隔(KHz)
0 15
1 30
2 60
上述计算offset的公式经过简化可得:
Figure PCTCN2019086087-appb-000003
表5中示出了各种切换时长与u以及切换时隙数目之间的对应关系,其中第一行自第二列起示出了各种典型的切换时长,而第一列自第二行起示出了u的各种取值:
表5
Figure PCTCN2019086087-appb-000004
Figure PCTCN2019086087-appb-000005
所以,在根据前述表3确定出本次部分带宽资源切换的切换时长,并根据表4查询出目标部分带宽资源对应的u值之后,可以直接根据表5查询出对应的切换时隙数目。应当理解的是,为了便于查询,也可以将表3、表4以及表5的内容进行有机得合并,从而得到一个综合的表,让终端在接收到传输指示信息后,可以直接根据一个表查询确定切换时隙数目。
S516:终端对切换时隙数目与DCI信息中指定的基本时隙偏差求和得到目标时隙偏差。
计算出切换时隙数目后,终端可以对切换时隙数目与从时域资源分配表中查询到的基本时隙偏差进行求和,进而可以确定目标时隙偏差,也即在本次部分带宽资源切换后,自己与基站之间进行数据传输的目标时域资源位置。对于确定基本时隙偏差的过程,前面S506下已经做了比较详细的介绍,这里不再赘述。
本实施例提供的时域资源分配方法和时域资源确定方法,在基站向终端分配时域资源时,不仅能够保证终端具有足够的时间进行部分带宽资源切换,而且,不需要在相关方案的基础上带来额外的信令开销,同时也可以通过减少基站配置时域资源分配表时的顾虑来提升基站分配时域资源的灵活性。
实施例三:
本实施例提供一种时域资源分配装置,该时域资源分配装置可以被部署在基站侧,实现前述时域资源分配方法:
请参见图6,时域资源分配装置60包括切换确定单元602、指示传输单元604。其中切换确定单元602用于在需要对与终端进行数据传输的部分带宽资源进行部分带宽资源切换时,确定切换后传输所用的目标部分带宽资源。指示传输单元604用于向终端发送包含目标部分带宽资源索引标识和时域资源分配指示信息的传输指示信息。索引标识用以供终端确定目标部分带宽资源,根据目 标部分带宽资源以及部分带宽资源切换前所用的原部分带宽资源确定本次部分带宽资源切换所需的切换时隙数目,并根据切换时隙数目以及基本时隙偏差确定采用目标部分带宽资源进行数据传输的目标时隙偏差,基本时隙偏差通过时域资源分配指示信息确定。
在基站与终端之间进行数据传输的过程中,二者之间传输的数据类型可能会不断变化,对于有的数据,可能需要较大的带宽资源,而另外一些数据可能对带宽资源的要求并不高,因此,为了降低终端侧收发数据带来的功耗,也为了合理利用带宽资源,时域资源分配装置60的切换确定单元602会根据当前待传输的数据的类型合理地从为终端配置的各部分带宽资源中选择一个或多个用于当前待传输数据的传输。当基站重新选择的部分带宽资源与当前正在使用的部分带宽资源不同时,就需要进行“部分带宽资源切换”,所以,所谓部分带宽资源切换实际就是指从当前正在使用的“原部分带宽资源”切换到新的“目标带宽资源”的过程。本实施例中所说的“部分带宽资源”实际上是指连续的RB资源,也称为BWP资源。
在切换确定单元602确定需要对其与终端之间所使用的部分带宽资源进行切换时,其会获取到目标部分带宽资源的索引标识。例如基站与终端之间即将进行下行数据传输,但此时切换确定单元602发现当前所使用的部分带宽资源A不适合,需要使用部分带宽资源C,则切换确定单元602确定C将作为目标部分带宽资源,因此获取到目标部分带宽资源的索引标识为“c”。
切换确定单元602确定出目标部分带宽资源之后,指示传输单元604向终端发送传输指示信息,该传输指示信息中携带有目标部分带宽资源的索引标识。在本实施例中,指示传输单元604会采用原部分带宽资源向终端发送该传输指示信息,所以,在一些示例中,指示传输单元604将会使用部分带宽资源A来发送传输指示信息。在本实施例的一些示例当中,传输指示信息可以包括但不限于DCI,即下行链路控制信息。
同时,指示传输单元604所发送的传输指示信息中用于向终端指定的基本时隙偏差的时域资源分配指示信息,基本时隙偏差用于终端侧在计算出部分带宽资源切换所需的切换时隙数目之后,计算目标时隙偏差。指示传输单元604可以采用传输指示信息(例如DCI信息)中的时域资源分配指示域作为时域资源分配指示信息,时域资源分配指示域通过与时域资源分配表配合来向终端指定基本时隙偏差。在基站配置了时域资源分配表之后,终端可以获取到该时域 资源分配表,在时域资源分配表中,可以配置有至少两个基本时隙偏差,为了让终端知道从这至少两个基本时隙偏差中选择哪一个,所以基站会在DCI信息中携带时域资源分配指示域,该时域资源分配指示域可以令终端从时域资源分配表中选择出基站指定的一个基本时隙偏差。例如,在时域资源分配表中包括16行,这16行均是配置的基本时隙偏差,这16行中各行的唯一标识分别是数字“0”、“1”…“15”。而指示传输单元604向终端发送的传输指示信息中,时域资源分配指示域所对应的值是“2”,则说明指示传输单元604为终端指定的基本时隙偏差是时域资源分配表中唯一标识为“2”的一个。
可以理解的是,时域资源分配表并不是固定不变的,因为其是由基站配置的,因此,基站对时域资源分配表的配置不同,那么终端获取到的时域资源分配表也不同。可以理解的是,指示传输单元604和终端之间总是利用当前的时域资源分配表,也即最新配置的时域资源分配表确定基本时隙偏差。
值得注意的是,基本时隙偏差是由基站无线资源控制(Radio Resource Control,RRC)层配置的、与部分带宽资源切换的切换时长无关的时域资源位置,其不仅可以用于部分带宽资源切换时确定目标时隙偏差,也可以用于在无需部分带宽资源切换时确定目标时隙偏差。例如,基站与终端之间持续使用某一部分带宽资源进行数据传输的过程中,指示传输单元604向终端分配时域资源时,也是通过时域资源分配表进行的,在这种情况下,指示传输单元604所指定的时域资源分配表中的某一基本时隙偏差实际就是目标时隙偏差。所以,基本时隙偏差并不需要保证终端具备足够的切换时长。在配置基本时隙偏差的时候,基站也不必关心是否存在部分带宽资源的切换,只需要按照通常的时域资源配置方案进行配置即可。所以相对于现阶段所讨论方案中基站在切换专属指示行中所配置的专用与部分带宽资源切换场景的目标时隙偏差,本实施例中基站配置基本时隙偏差更为简单,不必考虑部分带宽资源切换带来的时间限制。
在时域资源分配表中,基本时隙偏差包括上行基本时隙偏差和/或下行基本时隙偏差,其中,上行基本时隙偏差对应于时域资源分配表中的K2,下行基本时隙偏差对应于时域资源分配表中的K0。如果当前基站要向终端发送数据,而终端需要接收数据,则指示传输单元604发送的传输指示信息从时域资源分配表中为终端指定的基本时隙偏差应当是针对下行的下行基本时隙偏差,即K0;如果当前基站要接收终端发送的数据,则指示传输单元604利用时域资源分配指示信息和时域资源分配表为终端指定的基本时隙偏差应当是针对上行的上行 基本时隙偏差,即K2。
另外,本实施例中的时域资源分配表仍旧是以部分带宽资源为单位设置的,也即每一个部分带宽资源都有对应的时域资源分配表。
可以理解的是,当时域资源分配装置部署在基站上时,其切换确定单元602的功能可以通过基站的处理器实现,而指示传输单元604的功能则可以通过基站的处理器与通信装置共同实现。
本实施例提供的时域资源分配装置,可以通过切换前所用的原部分带宽资源向终端发送包含目标部分带宽资源索引标识的传输指示信息,让终端根据传输指示信息中的索引标识确定目标部分带宽资源,然后根据目标部分带宽资源以及原部分带宽资源确定本次部分带宽资源切换所需的切换时隙数目,并根据计算出的切换时隙数目,以及时域资源分配指示信息所指定的基本时隙偏差确定目标时隙偏差。从而摒弃相关通过在时域资源分配表中设置用于对部分带宽资源切换进行专门指示的切换专属指示行的方案,有利于节省时域资源分配表的空间,从而让时域资源分配表可以携带更多其他传输的指示信息。而且,由于基站无需在时域资源分配表中指明满足切换时长需求的目标时隙偏差,因此提升了基站进行时域资源分配的灵活性。
实施例四:
本实施例提供一种时域资源确定装置,该时域资源分配装置可以被部署在终端侧,实现前述时域资源分配方法,请参见图7示出的时域资源确定装置70:
时域资源确定装置70包括切换确定单元702以及目标时隙确定单元704。在根据从原部分带宽资源上接收的传输指示信息确定需要进行部分带宽资源切换时,时域资源确定装置70可以根据传输指示信息携带的索引标识确定部分带宽资源切换后传输所用的目标部分带宽资源,随后切换确定单元702可以根据目标部分带宽资源以及原部分带宽资源确定本次部分带宽资源切换所需的切换时隙数目;目标时隙确定单元704用于基于切换时隙数目确定采用目标部分带宽资源进行数据传输的目标时隙偏差。
时域资源确定装置70可以接收基站发送的传输指示信息,并根据接收到的传输指示信息中所携带的索引标识确定当前是否需要进行部分带宽资源切换。例如,可以在原部分带宽资源上进行“盲检”,这里假定原部分带宽资源的索引标识为“a”。通过盲检,时域资源确定装置70可以接收到基站通过原部分带宽资源 A发送的传输指示信息,在该传输指示信息中携带有目标部分带宽资源的索引标识。通过比较原部分带宽资源的索引标识与传输指示信息中所携带的索引标识是否一致,时域资源确定装置70可以确定当前是否需要进行部分带宽资源切换,若二者一致则说明不需要进行部分带宽资源切换;但如果比较结果中二者不一致,则时域资源确定装置70确定基站已经指示终端切换到另一部分带宽资源上与其进行数据传输。在这种情况下,时域资源确定装置70可以进一步确定基站所指示的目标部分带宽资源是哪一个。例如在前述示例中,由于基站在传输指示信息中所携带的索引标识是“c”,“c”与盲检所针对的原部分带宽资源A的索引标识“a”不一致,因此时域资源确定装置70可以获知基站指示终端进行部分带宽资源切换,且切换后所使用的目标部分带宽资源为索引标识是“c”的C。
在本实施例的另一种示例中,如图8所示:时域资源确定装置70不仅可以切换确定单元702以及目标时隙确定单元704,还可以包括指示检测单元700,其用于对原部分带宽资源进行盲检获取传输指示信息。
无论是上行还是下行,共享信道的映射类型通常分为两种:映射类型一(也称“映射类型A”)和映射类型二(也称“映射类型B”)。在现在的标准38.331中,为了能够更灵活地配置两种映射类型对应的DMRS配置,基站高层针对映射类型A与映射类型B采用互相独立的DMRS配置。也即映射类型A的DMRS配置参数与映射类型B的DMRS配置参数可能相同,也可能不同。
对于下行而言,DMRS配置参数中DMRS的类型(具体的,可以是DMRS配置参数中的“DL-DMRS-config-type”)、DMRS的最大长度(具体的,可以是DMRS配置参数中的“DL-DMRS-max-len”)能够影响基站向终端发送的传输指示信息中天线端口域的大小,进而就会影响传输指示信息的大小。
对于上行而言,DMRS配置参数中DMRS的类型(具体的,可以是DMRS配置参数中的“UL-DMRS-config-type”)、DMRS的最大长度(具体的,可以是DMRS配置参数中的“UL-DMRS-config-type”)以及PUSCH-tp使能值能够影响基站向终端发送的传输指示信息中天线端口域的大小,并影响传输指示信息的大小。
毫无疑义的是,指示检测单元700在接收到基站发送的传输指示信息之前,并不知道基站是采用映射类型A发送传输指示信息,还是采用映射类型B发送传输指示信息,因此,指示检测单元700也就不能确定传输指示信息中天线端口域的大小,进而无法确定传输指示信息的大小。在这种情况下,如果指示检 测单元700进行盲检时,盲检的尺寸大小比基站所发送的传输指示信息的大小要小,就会盲检失败。在盲检失败后,指示检测单元700就需要在同一时隙中再次进行盲检,这使得盲检复杂度提升,为了解决该问题,本实施例提供一下两种解决方式:
方式一:指示检测单元700不管两种映射类型对应的DMRS配置参数,总是按照传输指示信息中天线端口域的大小为最大值的情况对传输指示信息进行盲检。
前面表1已经示出针对下行共享信道,DMRS配置参数与天线端口域之间的对应关系,根据表1可知,针对下行情况,天线端口指示域的大小最大为6,所以,如果指示检测单元700按照天线端口指示域为6对传输指示信息进行检测,则无论基站采用哪种映射类型来发送,传输指示信息都能被指示检测单元700一次性检测到。
表2已经示出针对上行共享信道,DMRS配置参数与天线端口域之间的对应关系。所以,根据表2可知,针对上行情况,天线端口指示域的大小最大为5,所以,如果指示检测单元700按照天线端口指示域为5对传输指示信息进行检测,则无论基站采用哪种映射类型来发送,传输指示信息也都能被指示检测单元700一次性检测到。
指示检测单元700还可以根据方式二来对传输指示信息进行盲检:
首先,指示检测单元700分别查询映射类型一和映射类型二对应的DMRS配置参数,然后判断两种映射类型对应的DMRS配置参数中与天线端口域相关的参数是否相同。若相同,则指示检测单元700按照两种映射类型中的任意一种对应的天线端口域的大小对传输指示信息进行盲检。若不同,则指示检测单元700按照两种映射类型对应的天线端口域的大小较大的一种对传输指示信息进行盲检。
在基站高层配置了共享信道各映射类型对应的配置参数后,终端侧是可以获取到共享信道映射类型A的配置参数和共享信道映射类型B的配置参数的,共享信道映射类型A的配置参数,以及共享信道映射类型B的配置参数中均包括DMRS配置参数,所以指示检测单元700可以查询确定映射类型A对应的DMRS配置参数,以及映射类型B对应的DMRS配置参数。
所谓与天线端口域相关的参数是指能够影响天线端口域大小的参数。对于下行而言,指示检测单元700可以查询的与天线端口域相关的参数包括DMRS 类型和DMRS最大长度。对于上行而言,指示检测单元700可以查询的与天线端口域相关的参数包括DMRS类型、DMRS最大长度以及PUSCH-tp使能值。
如果指示检测单元700确定两种映射类型对应的DMRS配置参数中与天线端口域相关的参数不同,例如,假定指示检测单元700查询到下行共享信道映射类型A对应的DL-DMRS-config-type=1,DL-DMRS-max-len=2;而下行共享信道映射类型B对应的DL-DMRS-config-type=1,DL-DMRS-max-len=1,则此时如果基站时按照映射类型A来发送传输指示信息,则传输指示信息中,天线端口域的大小应该为5,如果按照映射类型B来发送传输指示信息,则天线端口域的大小应该为4。虽然此时指示检测单元700并不能够确定基站发送的传输指示信息内天线端口域的大小是5还是4,但为了一次性检测到传输指示信息,指示检测单元700可以直接按照两种映射类型中对应的天线端口域大小较大的一种进行检测,也即在上述示例中按照天线端口域为5来进行传输指示信息的检测。
在时域资源确定装置70根据传输指示信息携带的索引标识确定部分带宽资源切换后传输所用的目标部分带宽资源后,切换确定单元702可以根据目标部分带宽资源以及部分带宽资源切换前所用的原部分带宽资源确定本次部分带宽资源切换所需的切换时隙数目。
应当理解的是,并不是所有部分带宽资源切换所需要的切换时长都相同,即使目标部分带宽资源相同,但若是从不同的原部分带宽资源切换过去,需要的切换时长可能也不同;同样地,即使原部分带宽资源相同,但目标部分带宽资源不同,则所需要的切换时长也可能会有所不同。更不用说目标部分带宽资源与原部分带宽资源均不相同的切换场景了。所以,不同的切换场景可能会对应不同的切换时长。
在本实施例中,切换场景主要根据原部分带宽资源与目标部分带宽资源配置参数之间的关系确定:在一种切换场景中,原部分带宽资源与目标部分带宽资源之间具有相同的BW,但二者的中心频率不同;在另一种切换场景中,原部分带宽资源与目标部分带宽资源之间具有相同的中心频率,但二者的BW不同。在前述实施例中已经对部分带宽资源切换的四种切换场景进行了介绍,在确定了目标部分带宽资源后,切换确定单元702可以根据目标部分带宽资源的配置参数和原部分带宽资源的配置参数确定出当前的部分带宽资源切换场景属于上述几种场景中的哪一种。应当理解的是,当基站为终端配置了部分带宽资源之 后,终端侧会存储各部分带宽资源的配置参数。当然,在本实施例的另一些示例当中,即使终端侧不存储各部分带宽资源的配置参数,基站也可以通过传输指示信息告知切换确定单元702。
这里假定目标部分带宽资源C与原部分带宽资源A相比传输带宽资源,具有相同的BW,但二者的中心频率不同,因此,切换确定单元702根据二者的配置参数可以确定当下需要进行的部分带宽资源切换属于场景一的部分带宽资源切换。
在本实施例中,时域资源确定装置70预先存储了切换场景与切换时长的映射关系,各切换场景都有与之对应的切换时长。在本实施例的另一些示例当中,切换时长不仅与切换场景有关,而且还与终端与基站通信所使用载波的频率等级、终端的能力有关。例如,在一种示例中,时域资源确定装置70存储了场景-时长映射关系表,请参见实施例一中的表3。
在表3频率等级一列中,“1”表征载波频率小于6GHz的场景,“2”表征载波频率大于等于6GHz的场景。“类型一的切换时长”对应能力高的终端在各种切换场景下的切换时长,而“类型二的切换时长”对应能力低的终端在各种切换场景下的切换时长。
在切换确定单元702确定当前的部分带宽资源切换场景后,可以根据终端通信所使用的载波频段,以及终端的能力确定对应的切换时长是多少。假定某一终端的能力较高,且采用等级1的频段进行通信,而且切换确定单元702确定当前是要进行场景一的部分带宽资源切换,则切换确定单元702通过查询表3,本次部分带宽资源切换需要600us的切换时长。
切换确定单元702确定出切换时长之后,需要将切换时长转换成切换时隙数目,应当明白的是,切换时隙数目的数目不仅与切换时长有关,还与目标部分带宽资源的子载波间隔有关。切换确定单元702可以先确定出目标部分带宽资源子载波间隔所对应的时隙长度,然后计算切换时长与单个时隙长度的比值,并对该比值进行向上取整,从而计算得到切换时隙数目。
切换确定单元702计算出切换时隙数目之后,目标时隙确定单元704可以基于该切换时隙数目确定采用目标部分带宽资源进行数据传输时目标时隙偏差的值,也即目标时域资源所在的位置:
在本实施例中,在需要进行部分带宽资源切换时,基站向时域资源确定装置70发送的传输指示信息中,包括时域资源分配指示信息,目标时隙确定单元 704可以根据该时域资源分配指示信息,结合目标部分带宽资源的时域资源分配表确定出基本时隙偏差。这里以传输指示信息为DCI信息进行说明:在DCI信息中,包括时域资源分配域,该时域资源分配域用于指定时域资源分配表中的某一行,也即用于从时域资源分配表内的两个基本时隙偏差中指定一个。然后目标时隙确定单元704对基本时隙偏差与切换时隙数目进行求和可以确定本次部分带宽资源切换所对应的目标时隙偏差。
可以理解的是,目标时隙确定单元704确定目标时隙偏差是为了确定终端与基站之间进行数据传输的时隙位置,因此,不仅终端侧的时域资源确定装置70需要确定该目标时隙偏差,而且基站也应当要知道该目标时隙偏差。为了让二者在目标时隙偏差对应的目标时域资源位置上进行正常的数据传输,基站与目标时隙确定单元704确定出的目标时隙偏差应当一致。所以,基站侧也应当按照终端侧相同的方式来计算目标时隙偏差,这就要求基站采用与目标时隙确定单元704同样的准则来确定当前部分带宽资源切换所属的切换场景,并且存储相同的切换场景与切换时长间的映射关系(例如基站也存储表3),另外,基站还需要知道终端能力等。
确定了目标时隙偏差后,终端可以与基站在目标时隙偏差对应的目标时域资源位置进行数据传输。应当理解的是,目标时隙偏差可以包括上行目标时隙偏差和/或下行目标时隙偏差。假定在目标时隙确定单元704确定出的目标时隙偏差是下行目标传输数据,则终端可以在对应的目标时隙偏差接收基站发送的数据,如果目标时隙确定单元704确定的目标时隙偏差是上行目标时隙偏差,则终端可以在对应的目标时隙偏差向基站发送数据。
当将时域资源确定装置70部署在终端上时,时域资源确定装置70中时域资源确定装置70、切换确定单元702以及目标时隙确定单元704的功能均可以通过终端的处理器来实现。而指示检测单元700的功能,则可以通过终端的处理器与通信单元共同实现。
本发明实施例提供的时域资源确定装置中,基站不需要专门为了部分带宽资源切换而在时域资源分配表中设置切换专属指示行,因为终端侧的时域资源确定装置可以根据原部分带宽资源与目标带宽资源确定出当前切换所需要的切换时隙数目,进而计算出目标时隙偏差,因此避免了在时域资源分配表中设置专属指示行,从而影响时域资源分配表对其他传输的指示信息的携带。也避免了相关方案中因为时域资源分配表中始终需要设置切换专属指示行,从而在不 需要部分带宽资源切换的场景下浪费时域资源分配表空间的问题。这有利于优化资源传输,提升资源利用率。
更进一步地,由于基站在配置时域资源分配表的时候不需要关心配置的传输时隙是否满足终端进行部分带宽资源切换的切换时长,因此可以使得时域资源分配表的配置工作更为简单。
实施例五:
本实施例提供一种存储介质,该存储介质中可以存储有一个或多个可供一个或多个处理器读取、编译并执行的计算机程序,在本实施例中,该存储介质可以存储时域资源分配程序与时域资源确定程序中的至少一个,其中时域资源分配程序可供一个或多个处理器执行实现前述实施例一与实施例二中介绍的任意一种时域资源分配方法的步骤。时域资源确定程序可供一个或多个处理器执行实现前述实施例一与实施例二中介绍的任意一种时域资源确定方法的步骤。
本实施例还提供一种基站,请参见图9示出的基站的硬件结构示意图:
基站9包括第一处理器91、第一存储器92、第一通信装置93以及第一通信总线94。第一通信总线94用于分别实现第一存储器92、第一通信装置93同第一处理器91的通信连接。
第一存储器92可以为前述存储有时域资源分配程序的存储介质,第一处理器91可以读取第一存储器92中存储的时域资源分配程序,进行编译并执行,在第一通信装置93的配合下实现实施例一与实施例二介绍的任意一种时域资源分配方法的步骤:
在确定需要对与终端进行数据传输的部分带宽资源进行部分带宽资源切换时,第一处理器91确定切换后传输所用的目标部分带宽资源,并控制第一通信装置93通过切换前所用的原部分带宽资源向终端发送包含目标部分带宽资源索引标识的传输指示信息。传输指示信息中的索引标识可以让终端确定目标部分带宽资源,根据目标部分带宽资源以及原部分带宽资源确定本次部分带宽资源切换所需的切换时隙数目,同时,传输指示信息中还携带有时域资源分配指示信息,终端根据该时域资源分配指示信息可以确定出基站9所指定的基本时隙偏差,然后结合切换时隙数目就可以确定采用目标部分带宽资源进行数据传输的目标时隙偏差。
对于基站9的第一处理器91执行时域资源分配程序实现时域资源分配方法 的具体细节,请参见前述各实施例的介绍,这里不再赘述。
本实施例还提供一种终端,图10提供了终端的一种硬件结构示意图:
终端1包括第二处理器11、第二存储器12、第二通信装置13以及用于连接第二处理器11与第二存储器12、第二处理器11与第二通信装置13的第二通信总线14。
其中,第二存储器12可以为前述存储有时域资源确定程序的存储介质。第二处理器11可以读取第二存储器12中存储的时域资源确定程序,进行编译并执行,从而在第二通信装置13的配合下,实现实施例一与实施例二中介绍的任意一种时域资源确定方法的步骤:
第二通信装置13可以在第二处理器11的控制下接收的传输指示信息,第二处理器11可以根据第二通信装置13接收到的传输指示信息确定是否需要进行部分带宽资源切换,在确定需要进行部分带宽资源切换时,第二处理器11根据传输指示信息携带的索引标识确定部分带宽资源切换后传输所用的目标部分带宽资源,并根据目标部分带宽资源以及原部分带宽资源确定本次部分带宽资源切换所需的切换时隙数目。随后,第二处理器11基于切换时隙数目以及传输指示信息中时域资源分配指示信息所指定的基本时隙偏差确定采用目标部分带宽资源进行数据传输的目标时隙偏差。
对于终端1的第二处理器11执行时域资源确定程序实现时域资源确定方法的具体细节,请参见前述各实施例的介绍,这里不再赘述。
本实施例提供的基站、终端即存储介质,可以让终端自己根据基站提供的信息确定出切换时隙数目,进而确定出目标时隙偏差,无需依赖时域资源分配表中的切换专属指示行,极大地降低了部分带宽资源切换对时域资源分配表的占用,节省了时域资源分配表中的空间,给其他传输的指示信息的提供了更多的传输机会,有利于实现资源的优化配置。
本领域技术人员应当明白的是,本申请各实施例中提供的时域资源分配方法、装置,时域资源确定方法、装置,以及及基站、终端、存储介质,不仅可以应用于5G通信系统,也可以应用于未来的任何一个通信系统中。
显然,本领域的技术人员应该明白,上述本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序 代码来实现,从而,可以将它们存储在计算机存储介质(ROM/RAM、磁碟、光盘)中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。所以,本申请不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本发明实施例所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (15)

  1. 一种时域资源确定方法,包括:
    根据原部分带宽资源以及目标部分带宽资源确定本次部分带宽资源切换所需的切换时隙数目,所述原部分带宽资源、所述目标部分带宽资源分别为终端在本次部分带宽资源切换前、后所使用的部分带宽资源;
    根据所述切换时隙数目以及基本时隙偏差确定采用所述目标部分带宽资源进行数据传输的目标时隙偏差,所述基本时隙偏差根据基站发送的传输指示信息中携带的时域资源分配指示信息确定。
  2. 如权利要求1所述的方法,其中,所述根据原部分带宽资源以及目标部分带宽资源确定本次部分带宽资源切换所需的切换时隙数目包括:
    根据所述原部分带宽资源的配置参数和所述目标部分带宽资源的配置参数确定当前切换场景;
    根据预先存储的切换场景与切换时长的映射关系确定当前切换场景所对应的切换时长;
    根据所述切换时长以及所述目标部分带宽资源的配置参数确定本次部分带宽资源切换所需的切换时隙数目。
  3. 如权利要求2所述的方法,其中,所述目标部分带宽资源的配置参数包括所述目标部分带宽资源的子载波间隔;所述根据所述切换时长以及所述目标部分带宽资源的配置参数确定本次部分带宽资源切换所需的切换时隙数目包括:
    确定所述目标部分带宽资源的子载波间隔所对应的时隙长度;
    对所述切换时长与所述时隙长度的比值向上取整得到本次部分带宽资源切换所需的切换时隙数目。
  4. 如权利要求1所述的方法,其中,所述时域资源分配指示信息包括时域资源分配指示域,所述时域资源分配指示域用于指定时域资源分配表中至少两个基本时隙偏差中的一个;所述根据所述切换时隙数目以及基本时隙偏差确定采用所述目标部分带宽资源进行数据传输的目标时隙偏差之前,还包括:
    根据所述时域资源分配指示域的指示,从时域资源分配表中确定所述基站指定的基本时隙偏差。
  5. 如权利要求1所述的方法,在所述根据原部分带宽资源以及目标部分带宽资源确定本次部分带宽资源切换所需的切换时隙数目之前,还包括采用以下两种方式中的任意一种对所述原部分带宽资源进行盲检,获取传输指示信息:
    方式一:
    按照所述传输指示信息中天线端口域的大小为最大值的情况对所述传输指示信息进行盲检;
    方式二:
    分别查询映射类型一和映射类型二对应的解调参考信号DMRS配置参数;
    在所述映射类型一和映射类型二对应的DMRS配置参数中与天线端口域相关的参数相同的情况下,按照所述映射类型一和映射类型二中的任意一种对应的天线端口域的大小对所述传输指示信息进行盲检;
    在所述映射类型一和映射类型二对应的DMRS配置参数中与天线端口域相关的参数不同的情况下,按照两种映射类型对应的天线端口域的大小中较大的一种对所述传输指示信息进行盲检。
  6. 如权利要求5所述的方法,其中,在当前需要进行数据接收的情况下,所述DMRS配置参数中与天线端口域相关的参数包括:DMRS类型和DMRS最大长度;
    在当前需要进行数据发送的情况下,所述DMRS配置参数中与天线端口域相关的参数包括:DMRS类型、DMRS最大长度以及PUSCH-tp使能值。
  7. 如权利要求1-6任一项所述的方法,其中,所述基本时隙偏差包括上行基本时隙偏差或下行基本时隙偏差。
  8. 如权利要求1-6任一项所述的方法,其中,所述传输指示信息包括下行链路控制信息DCI。
  9. 一种时域资源分配方法,包括:
    确定本次部分带宽资源切换后传输所用的目标部分带宽资源;
    向终端发送包含所述目标部分带宽资源索引标识和时域资源分配指示信息的传输指示信息。
  10. 如权利要求9所述的方法,其中,所述时域资源分配指示信息包括时域资源分配指示域,所述时域资源分配指示域用于指定时域资源分配表中至少两个基本时隙偏差中的一个。
  11. 一种时域资源确定装置,包括:
    切换确定单元,设置为根据原部分带宽资源以及目标部分带宽资源确定本次部分带宽资源切换所需的切换时隙数目,所述原部分带宽资源、所述目标部分带宽资源分别为终端在本次部分带宽资源切换前、后所使用的部分带宽资源;
    目标时隙确定单元,设置为根据所述切换时隙数目以及基本时隙偏差确定 采用所述目标部分带宽资源进行数据传输的目标时隙偏差,所述基本时隙偏差根据基站发送的传输指示信息中携带的时域资源分配指示信息确定。
  12. 一种时域资源分配装置,包括:
    切换确定单元,设置为确定本次部分带宽资源切换后传输所用的目标部分带宽资源;
    指示传输单元,设置为向终端发送包含所述目标部分带宽资源索引标识和时域资源分配指示信息的传输指示信息。
  13. 一种基站,包括处理器、存储器、通信装置及通信总线;
    所述通信总线设置为实现处理器和存储器、所述处理器和所述通信装置的连接通信;
    所述处理器设置为执行存储器中存储的至少一个程序,以实现如权利要求9或10所述的时域资源分配的方法。
  14. 一种终端,包括处理器、存储器、通信装置及通信总线;
    所述通信总线设置为实现处理器和存储器、所述处理器和所述通信装置的连接通信;
    所述处理器设置为执行存储器中存储的至少一个程序,以实现如权利要求1至8中任一项所述的时域资源确定的方法。
  15. 一种存储介质,所述存储介质中存储有时域资源分配程序和时域资源确定程序中的至少之一,所述时域资源分配程序可被至少一个处理器执行,以实现如权利要求9或10所述的时域资源分配的方法;所述时域资源确定程序可被至少一个处理器执行,以实现如权利要求1至8中任一项所述的时域资源确定的方法。
PCT/CN2019/086087 2018-05-11 2019-05-09 时域资源分配、确定方法、装置、基站、终端及存储介质 WO2019214657A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/053,833 US11470590B2 (en) 2018-05-11 2019-05-09 Time-domain resource allocation and determination method and apparatus, base station, terminal, and storage medium
JP2020563445A JP7291155B2 (ja) 2018-05-11 2019-05-09 時間領域リソース割り当て・決定方法、装置、基地局、端末および記憶媒体
SG11202011095TA SG11202011095TA (en) 2018-05-11 2019-05-09 Time-domain resource allocation and determination method and apparatus, base station, terminal, and storage medium
KR1020207035721A KR102579781B1 (ko) 2018-05-11 2019-05-09 시간 영역 자원 할당 및 확정 방법, 장치, 기지국, 단말 및 저장 매체
EP19799579.8A EP3793290A4 (en) 2018-05-11 2019-05-09 METHOD AND APPARATUS FOR ALLOCATING AND DETERMINING TIME-DOMAIN RESOURCES, BASE STATION, TERMINAL, AND STORAGE MEDIUM
US17/900,100 US11778622B2 (en) 2018-05-11 2022-08-31 Method and apparatus for obtaining information, terminal, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810449607.6A CN110475347B (zh) 2018-05-11 2018-05-11 时域资源分配、确定方法、装置、基站、终端及存储介质
CN201810449607.6 2018-05-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/053,833 A-371-Of-International US11470590B2 (en) 2018-05-11 2019-05-09 Time-domain resource allocation and determination method and apparatus, base station, terminal, and storage medium
US17/900,100 Continuation US11778622B2 (en) 2018-05-11 2022-08-31 Method and apparatus for obtaining information, terminal, and storage medium

Publications (1)

Publication Number Publication Date
WO2019214657A1 true WO2019214657A1 (zh) 2019-11-14

Family

ID=68467205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086087 WO2019214657A1 (zh) 2018-05-11 2019-05-09 时域资源分配、确定方法、装置、基站、终端及存储介质

Country Status (7)

Country Link
US (2) US11470590B2 (zh)
EP (1) EP3793290A4 (zh)
JP (1) JP7291155B2 (zh)
KR (1) KR102579781B1 (zh)
CN (2) CN110475347B (zh)
SG (1) SG11202011095TA (zh)
WO (1) WO2019214657A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111953549A (zh) * 2020-08-21 2020-11-17 上海海事大学 一种用于海事边缘节点的在线优化资源管理办法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11032001B2 (en) 2018-04-05 2021-06-08 Qualcomm Incorporated Timing parameter management for bandwidth part switching
CN110475347B (zh) * 2018-05-11 2024-02-20 中兴通讯股份有限公司 时域资源分配、确定方法、装置、基站、终端及存储介质
CN110731113B (zh) * 2019-08-30 2023-11-07 北京小米移动软件有限公司 数据传输方法、装置及存储介质
WO2021114142A1 (zh) * 2019-12-11 2021-06-17 Oppo广东移动通信有限公司 通信场景切换方法、装置、终端设备和网络设备
CN113329495B (zh) * 2020-02-29 2022-09-02 华为技术有限公司 一种通信方法及装置
US20220369351A1 (en) * 2021-05-11 2022-11-17 Qualcomm Incorporated Indication of scheduling delays for a shared channel with bwp switching in higher frequency bands
CN113453361B (zh) * 2021-06-28 2022-07-05 中信科移动通信技术股份有限公司 一种上行时域资源指示方法及系统
CN113825240B (zh) * 2021-09-15 2024-04-05 杭州阿里云飞天信息技术有限公司 资源分配方法及基站设备
CN116419408A (zh) * 2021-12-28 2023-07-11 维沃移动通信有限公司 参考信号端口指示方法、终端及网络侧设备
CN114466226B (zh) * 2022-01-28 2023-12-08 杭州灵伴科技有限公司 带宽时长占比确定方法、装置、设备和计算机可读介质
WO2023195821A1 (en) * 2022-04-08 2023-10-12 Samsung Electronics Co., Ltd. Method and apparatus for downlink control information interpretation in wireless communication system
CN116939853A (zh) * 2022-04-08 2023-10-24 大唐移动通信设备有限公司 一种信息处理方法、装置和可读存储介质
WO2024031577A1 (zh) * 2022-08-11 2024-02-15 北京小米移动软件有限公司 时域资源分配方法、装置、设备及存储介质
WO2024212338A1 (en) * 2023-04-11 2024-10-17 Huawei Technologies Co., Ltd. System and scheme on unified and duplexing-unaware frame structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102648599A (zh) * 2009-12-08 2012-08-22 高通股份有限公司 无线通信中的多载波启用/禁用
CN102859915A (zh) * 2010-07-22 2013-01-02 Lg电子株式会社 传输上行链路信号的装置及其方法
CN104756416A (zh) * 2013-09-13 2015-07-01 华为技术有限公司 一种波道带宽切换的方法及网络设备
WO2018066899A1 (ko) * 2016-10-07 2018-04-12 주식회사 케이티 새로운 무선 통신 시스템에서 주파수 오프셋 추정을 위한 참조 신호를 전송하는 방법 및 장치

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076076B (zh) * 2009-11-20 2015-11-25 夏普株式会社 一种解调参考信号的资源分配通知方法
CN103312391B (zh) * 2012-03-09 2018-11-06 中兴通讯股份有限公司 下行解调参考信号配置信令的通知方法、装置及接收装置
WO2014035085A1 (ko) * 2012-08-28 2014-03-06 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널 검출 방법 및 이를 위한 장치
CN104936162A (zh) * 2014-03-21 2015-09-23 中兴通讯股份有限公司 邻小区传输参数配置方法、确定方法及相关装置
CN106341847B (zh) * 2015-07-14 2019-09-13 华为技术有限公司 一种在多用户传输中指示资源分配信息的方法及接入点
EP3282633B1 (en) * 2016-08-12 2020-08-05 ASUSTek Computer Inc. Method and apparatus for determining numerology bandwidth in a wireless communication system
US10159097B2 (en) * 2016-09-30 2018-12-18 Qualcomm Incorporated Signaling and determination of slot and mini-slot structure
US10499371B2 (en) * 2016-11-03 2019-12-03 Samsung Electronics Co., Ltd. Method and apparatus of flexible data transmissions and receptions in next generation cellular networks
CA3022159A1 (en) * 2017-10-26 2019-04-26 Comcast Cable Communications, Llc Activation and deactivation of configured grant
CA3022244A1 (en) * 2017-10-27 2019-04-27 Comcast Cable Communications, Llc Group common dci for wireless resources
AU2018407188A1 (en) * 2018-02-08 2020-09-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Channel detection method and device, and computer storage medium
US10772074B2 (en) * 2018-02-16 2020-09-08 At&T Intellectual Property I, L.P. Facilitation of reporting sub-band channel quality indicators for 5G or other next generation network
US11032001B2 (en) * 2018-04-05 2021-06-08 Qualcomm Incorporated Timing parameter management for bandwidth part switching
US20190313385A1 (en) * 2018-04-05 2019-10-10 Qualcomm Incorporated Compact dci for urllc
US10615916B2 (en) * 2018-04-06 2020-04-07 At&T Intellectual Property I, L.P. Retransmission of failed transport blocks for 5G or other next generation network
CN110475347B (zh) * 2018-05-11 2024-02-20 中兴通讯股份有限公司 时域资源分配、确定方法、装置、基站、终端及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102648599A (zh) * 2009-12-08 2012-08-22 高通股份有限公司 无线通信中的多载波启用/禁用
CN102859915A (zh) * 2010-07-22 2013-01-02 Lg电子株式会社 传输上行链路信号的装置及其方法
CN104756416A (zh) * 2013-09-13 2015-07-01 华为技术有限公司 一种波道带宽切换的方法及网络设备
WO2018066899A1 (ko) * 2016-10-07 2018-04-12 주식회사 케이티 새로운 무선 통신 시스템에서 주파수 오프셋 추정을 위한 참조 신호를 전송하는 방법 및 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111953549A (zh) * 2020-08-21 2020-11-17 上海海事大学 一种用于海事边缘节点的在线优化资源管理办法

Also Published As

Publication number Publication date
CN110475347B (zh) 2024-02-20
US20230007649A1 (en) 2023-01-05
EP3793290A1 (en) 2021-03-17
KR20210008856A (ko) 2021-01-25
US20210235440A1 (en) 2021-07-29
JP7291155B2 (ja) 2023-06-14
EP3793290A4 (en) 2022-01-26
SG11202011095TA (en) 2020-12-30
CN117939649A (zh) 2024-04-26
US11778622B2 (en) 2023-10-03
US11470590B2 (en) 2022-10-11
KR102579781B1 (ko) 2023-09-18
JP2021521731A (ja) 2021-08-26
CN110475347A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2019214657A1 (zh) 时域资源分配、确定方法、装置、基站、终端及存储介质
US11632206B2 (en) Method and apparatus for obtaining resource indication value
CN109152036B (zh) 上行资源的授权方法、装置及系统
US11641260B2 (en) Switching method, base station and terminal
JP7493094B2 (ja) 同期信号ブロック伝送方法及び通信装置
CN110381543B (zh) 一种激活频域资源的方法、设备及系统
JP2022534103A (ja) リソース設定方法及び通信装置
CN109150379B (zh) 一种通信方法、网络设备及终端设备
CN110741612B (zh) 一种调度请求的配置方法、网络设备及终端设备
WO2015067197A1 (zh) D2d发现信号的发送方法和发送装置
WO2018228537A1 (zh) 信息发送、接收方法及装置
US20220247535A1 (en) Electronic device, wireless communication method and computer readable medium
US20230139778A1 (en) Resource configuration method and apparatus
WO2020143490A1 (zh) 通信方法及装置
JP2022530556A (ja) 高速な2次セル(sセル)管理のためのレイヤ1(l1)シグナリング
WO2022022673A1 (zh) 一种通信方法及装置
JP2021510277A (ja) パワーヘッドルーム報告処理方法、端末及びネットワーク側機器
WO2022224942A1 (ja) 端末、基地局及び通信方法
EP4380213A1 (en) Communication method and communication apparatus
CN113473641B (zh) 一种通信方法和通信装置
WO2024012207A1 (zh) 一种直接通信接口资源确定方法、终端及网络设备
WO2022062861A1 (zh) 一种上行控制信道的传输方法、装置、存储介质及芯片
WO2022224941A1 (ja) 端末、基地局及び通信方法
CN117411598A (zh) 系统信息接收方法、发送方法、装置、终端及网络侧设备
US20170071012A1 (en) Base station, user equipment and associated methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563445

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207035721

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019799579

Country of ref document: EP