Nothing Special   »   [go: up one dir, main page]

WO2019208377A1 - Polyarylene sulfide resin composition, molded article, composite molded article, and method for producing foregoing - Google Patents

Polyarylene sulfide resin composition, molded article, composite molded article, and method for producing foregoing Download PDF

Info

Publication number
WO2019208377A1
WO2019208377A1 PCT/JP2019/016595 JP2019016595W WO2019208377A1 WO 2019208377 A1 WO2019208377 A1 WO 2019208377A1 JP 2019016595 W JP2019016595 W JP 2019016595W WO 2019208377 A1 WO2019208377 A1 WO 2019208377A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy
polyarylene sulfide
resin composition
parts
mass
Prior art date
Application number
PCT/JP2019/016595
Other languages
French (fr)
Japanese (ja)
Inventor
卓哉 西田
由希 出口
昌則 内潟
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2020516280A priority Critical patent/JPWO2019208377A1/en
Publication of WO2019208377A1 publication Critical patent/WO2019208377A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention relates to a resin composition, a molded article, a composite molded article, and a method for producing them, including a polyarylene sulfide (hereinafter sometimes abbreviated as “PAS”) resin.
  • PAS polyarylene sulfide
  • PAS resins represented by polyphenylene sulfide (hereinafter sometimes abbreviated as “PPS”) resins are excellent in mechanical strength, heat resistance, chemical resistance, moldability, and dimensional stability. It is used as electrical / electronic equipment parts, automotive parts materials, etc.
  • these parts are bonded to a part material made of epoxy resin or the like as a secondary process.
  • PAS resins have relatively poor adhesion to other resins, especially adhesion to epoxy resins. Therefore, for example, when bonding PASs with epoxy adhesives, bonding PAS resins with other materials, or sealing electrical / electronic parts with epoxy resins, the adhesion between PAS resins and epoxy resins (hereinafter referred to as “bonding”) In some cases, the problem of “adhesiveness” is a problem.
  • PAS resin is inferior in toughness, it has a problem that it is brittle with respect to a thermal cycle by repeated low and high temperatures, or thermal shock, and inferior in thermal shock resistance. Further, when reinforced with a fibrous reinforcing material such as glass fiber, anisotropy occurs, and a phenomenon such as warping or twisting occurs in the molded product, and the dimensional stability is not sufficient.
  • a molded body made of a PAS resin composition obtained by blending PAS resin, bisphenol-type epoxy resin, novolac-type epoxy resin, glass fiber, and glass flake and melting and kneading has been proposed (patent).
  • Reference 2 The molded body was excellent in the thermal shock resistance even if it has an adhesiveness with an epoxy resin and a weld part, but there is still room for improvement in the thermal shock resistance, such as injection molding. There was still room for improvement in the thermal shock resistance in the direction perpendicular to the resin flow (TD direction) during melt molding.
  • the problem to be solved by the present invention is a polyarylene sulfide resin which is excellent in epoxy adhesiveness and has excellent thermal shock resistance, in particular, thermal shock resistance in the case of having a weld part, as well as excellent thermal shock resistance in the TD direction.
  • An epoxy resin (B) having an epoxy equivalent weight in the following range, an epoxy group-containing polyolefin (C), glass fiber (D1) and glass flake (D2), and the amount of epoxy groups in the composition It has been found that the above-mentioned problems can be solved by setting the amount in the range of 25 [ ⁇ mol] to 300 [ ⁇ mol] in 1 g of the composition, and the present invention has been completed.
  • the present invention provides a polyarylene sulfide resin composition
  • a polyarylene sulfide resin composition comprising a polyarylene sulfide resin (A), an epoxy resin (B), an epoxy group-containing polyolefin (C), glass fibers (D1), and glass flakes (D2).
  • the total proportion of epoxy groups of the epoxy resin (B) and the epoxy group-containing polyolefin (C) is in the range of 25 [ ⁇ mol] to 300 [ ⁇ mol]
  • the epoxy equivalent of the epoxy resin (B) is 100 [g / eq. ] 2400 [g / eq. ] It relates to a polyarylene sulfide resin composition in the following range.
  • the present invention also relates to a molded article formed by melt molding the polyarylene sulfide resin composition.
  • the present invention also provides a polyarylene sulfide resin composition in which a polyarylene sulfide resin (A), an epoxy resin (B), an epoxy group-containing polyolefin (C), glass fibers (D1), and glass flakes (D2) are melt-kneaded.
  • the total proportion of epoxy groups of the epoxy resin (B) and the epoxy group-containing polyolefin (C) is in the range of 25 [ ⁇ mol] to 300 [ ⁇ mol]
  • the epoxy equivalent of the epoxy resin (B) is 100 [g / eq. ] 2400 [g / eq.
  • the present invention relates to a method for producing a polyarylene sulfide resin composition in the following range.
  • this invention relates to the manufacturing method of the composite molded article which adhere
  • a molded article of a polyarylene sulfide resin composition having excellent epoxy adhesiveness and not only thermal shock resistance, particularly in the case of having a weld portion, but also excellent thermal shock resistance in the TD direction.
  • a polyarylene sulfide resin composition capable of providing the molded article, a composite molded article obtained by bonding the molded article and a cured product of a curable resin composition containing an epoxy resin, and a method for producing the same. be able to.
  • it is a metal block member used for the cold thermal shock resistance (heat cycle property) test of the TD direction of a molded article (without a weld part).
  • it is a molded article (without a weld part) used for the cold thermal shock resistance (heat cycle property) test of TD direction.
  • the polyarylene sulfide resin composition used in the present invention comprises a polyarylene sulfide resin (A), an epoxy resin (B), an epoxy group-containing polyolefin (C), glass fibers (D1), and glass flakes (D2).
  • a polyarylene sulfide resin composition comprising: With respect to 100 parts by mass of the polyarylene sulfide resin (A), the glass fiber ranges from 10 parts by mass to 350 parts by mass, the glass flake ranges from 1 part by mass to 250 parts by mass, In 1 g of the polyarylene sulfide resin composition, the total proportion of epoxy groups of the epoxy resin (B) and the epoxy group-containing polyolefin (C) is in the range of 25 [ ⁇ mol] to 300 [ ⁇ mol], The epoxy equivalent of the epoxy resin (B) is 100 [g / eq. ] 2400 [g / eq. It is characterized by being in the following range.
  • the polyarylene sulfide resin composition used in the present invention comprises a polyarylene sulfide resin (A) as an essential component.
  • the polyarylene sulfide resin used in the present invention has a resin structure having a repeating unit of a structure in which an aromatic ring and a sulfur atom are bonded.
  • the polyarylene sulfide resin has the following general formula (1)
  • R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group). And, if necessary, the following general formula (2)
  • the trifunctional structural moiety represented by the formula (2) is preferably in the range of 0.001 mol% to 3 mol% or less, particularly 0.01 mol% or more with respect to the total number of moles with other structural moieties. To 1 mol% or less.
  • R 1 and R 2 in the formula are preferably hydrogen atoms from the viewpoint of the mechanical strength of the polyarylene sulfide resin.
  • those bonded at the para position represented by the following formula (3) and those bonded at the meta position represented by the following formula (4) are exemplified.
  • the bond of the sulfur atom to the aromatic ring in the repeating unit is a structure bonded at the para-position represented by the general formula (3). In terms of surface.
  • polyarylene sulfide resin is not limited to the structural portion represented by the general formulas (1) and (2), but the following structural formulas (5) to (8)
  • the structural site represented by the formula (1) and the structural site represented by the general formula (2) may be included at 30 mol% or less.
  • the structural site represented by the general formulas (5) to (8) is preferably 10 mol% or less from the viewpoint of heat resistance and mechanical strength of the polyarylene sulfide resin.
  • the bonding mode thereof may be either a random copolymer or a block copolymer. Good.
  • the polyarylene sulfide resin may have a naphthyl sulfide bond or the like in its molecular structure, but is preferably 3 mol% or less with respect to the total number of moles with other structural sites, particularly 1 It is preferable that it is below mol%.
  • the physical properties of the polyarylene sulfide resin are not particularly limited as long as the effects of the present invention are not impaired, but are as follows.
  • the melt viscosity of the polyarylene sulfide resin used in the present invention is not particularly limited, but the melt viscosity (V6) measured at 300 ° C. is preferably in the range of 2 [Pa ⁇ s] to 1000 [Pa ⁇ s]. Furthermore, the range of 10 [Pa ⁇ s] to 500 [Pa ⁇ s] is more preferable because the balance between fluidity and mechanical strength is improved, and in particular, the range is 60 [Pa ⁇ s] to 200 [Pa ⁇ s]. s] The following range is particularly preferable. However, in the present invention, the melt viscosity (V6) is as follows.
  • the non-Newtonian index of the polyarylene sulfide resin (A) used in the present invention is not particularly limited as long as the effect of the present invention is not impaired, but is preferably in the range of 0.90 or more and 2.00 or less.
  • the non-Newtonian index is preferably in the range of 0.90 to 1.50, more preferably in the range of 0.95 to 1.20. preferable.
  • Such a polyarylene sulfide resin is excellent in mechanical properties, fluidity, and abrasion resistance.
  • SR shear rate (second ⁇ 1 )
  • SS shear stress (dyne / cm 2 )
  • K represents a constant. The closer the N value is to 1, the closer the PPS is to a linear structure, and the higher the N value is, the more branched the structure is.
  • the method for producing the polyarylene sulfide resin (A) is not particularly limited.
  • Examples thereof include a method in which p-chlorothiophenol is self-condensed by adding other copolymerization components if necessary.
  • the method 2) is versatile and preferable.
  • an alkali metal salt of carboxylic acid or sulfonic acid or an alkali hydroxide may be added to adjust the degree of polymerization.
  • a hydrous sulfiding agent is introduced into a mixture containing a heated organic polar solvent and a dihalogenoaromatic compound at a rate at which water can be removed from the reaction mixture, and the dihalogenoaromatic compound in the organic polar solvent.
  • a sulfidizing agent if necessary, added with a polyhalogenoaromatic compound and reacted, and the amount of water in the reaction system is 0.02 mol to 0.5 mol with respect to 1 mol of the organic polar solvent.
  • dihalogenoaromatic compound examples include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, 4, 4'-dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p, p '-Dihalodiphenyl ether, 4,4'-dihalobenzophenone, 4,4'-dihalodiphenyl sulfone, 4,4'-dihalodiphenyl sulfoxide, 4,4'-dihalodiphenyl sulfide, and each of the above compounds Compounds having an alky
  • halogen atom contained in each compound is a chlorine atom or a bromine atom.
  • the post-treatment method of the reaction mixture containing the polyarylene sulfide resin obtained by the polymerization step is not particularly limited.
  • the reaction mixture is left as it is, or an acid or a base is used.
  • the solvent is distilled off under reduced pressure or normal pressure, and then the solid after the solvent is distilled off is water, a reaction solvent (or an organic solvent having an equivalent solubility in a low molecular weight polymer), acetone, methyl ethyl ketone.
  • a solvent such as alcohols, and further neutralizing, washing with water, filtering and drying, or (3) after completion of the polymerization reaction, water,
  • a solvent such as acetone, methyl ethyl ketone, alcohol, etc.
  • water is added to the reaction mixture to wash with water. Filtration, if necessary, acid treatment at the time of washing with water, acid treatment and drying, (5) after completion of the polymerization reaction, the reaction mixture is filtered, and if necessary, once or twice or more with a reaction solvent Washing Further water washing, a method of filtering and drying, and the like.
  • the polyarylene sulfide resin may be dried in a vacuum or in an inert gas atmosphere such as air or nitrogen. May be.
  • the polyarylene sulfide resin composition of the present invention contains the epoxy resin (B) as an essential component.
  • the epoxy resin used in the present invention is not particularly limited as long as the effects of the present invention are exhibited.
  • Examples thereof include bisphenol type epoxy resins, novolac type epoxy resins, and epoxy resins having a polyarylene ether structure ( ⁇ ).
  • bisphenol type epoxy resin is preferable because it has excellent adhesiveness and excellent thermal shock resistance, and particularly has excellent thermal shock resistance in the TD direction as well as thermal shock resistance when having a weld portion. Can be mentioned.
  • the thermal shock resistance As the epoxy equivalent of the epoxy resin used in the present invention, while reducing the gas generation amount at the time of melting, and excellent adhesion, not only the thermal shock resistance, particularly the thermal shock resistance when having a weld part, from the viewpoint of excellent thermal shock resistance in the TD direction, 2400 [g / eq. ], More preferably 2100 [g / eq. ], More preferably 1900 [g / eq. ] From the viewpoint of being in the following range and excellent in fluidity, it is preferably 100 [g / eq. ], More preferably 190 [g / eq. ], More preferably 210 [g / eq. ] The above range.
  • Examples of the epoxy resin of the bisphenol type epoxy resin include glycidyl ethers of bisphenols, specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, Examples thereof include bisphenol S type epoxy resin, bisphenol AD type epoxy resin, and tetrabromobisphenol A type epoxy resin.
  • a bisphenol type epoxy resin while reducing the amount of gas generated at the time of melting, it has excellent adhesiveness, and also has a thermal shock property, particularly a thermal shock property in the case of having a weld portion, as well as a thermal shock in the TD direction. From the viewpoint of excellent properties, it is preferably 2400 [g / eq.
  • novolac type epoxy resin examples include novolac type epoxy resins obtained by reacting novolac type phenol resins obtained by condensation reaction of phenols and aldehydes with epihalohydrin. Specific examples include phenol novolacs. Type epoxy resin, cresol novolak type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolak type epoxy resin, naphthol-cresol co-condensed novolak type epoxy resin, and brominated phenol novolak type epoxy resin. When the epoxy resin is a novolak type epoxy resin, the gas generation amount at the time of melting is reduced, and the adhesiveness is excellent.
  • the TD direction From the viewpoint of excellent thermal shock resistance, it is preferably 300 [g / eq. ], More preferably 250 [g / eq. ] From the viewpoint of being in the following range and excellent in fluidity, it is preferably 100 [g / eq. ], More preferably 190 [g / eq. ] The above range.
  • epoxy resin (B) used in the present invention one or more of the above-mentioned various types can be used in combination.
  • the polyarylene sulfide resin composition of the present invention contains an epoxy group-containing polyolefin (C) as an essential component.
  • the epoxy group-containing polyolefin further imparts a functional group, for example, by homopolymerization of ⁇ -olefin or copolymerization of different ⁇ -olefins
  • the ⁇ -olefin include those having 2 to 8 carbon atoms such as ethylene, propylene and butene-1.
  • an epoxy group (glycidyl group) is mentioned as a functional group.
  • the vinyl polymerizable compound having such a functional group include ⁇ , ⁇ -unsaturated carboxylic acids such as (meth) acrylic acid and (meth) acrylic acid esters and alkyl esters thereof, maleic acid, fumaric acid, and the like.
  • examples thereof include acids, itaconic acid and other ⁇ , ⁇ -unsaturated dicarboxylic acids having 4 to 10 carbon atoms and derivatives thereof (mono- or diesters and acid anhydrides thereof), and glycidyl (meth) acrylate.
  • the above-mentioned ethylene-propylene copolymer and ethylene-butene copolymer having an epoxy group are preferable from the viewpoint of improving mechanical strength, particularly toughness and impact resistance.
  • the epoxy group-containing polyolefin (C) used in the present invention one or more of the above-mentioned various types can be used in combination.
  • the total proportion of epoxy groups of the epoxy resin (B) and the epoxy group-containing polyolefin (C) in 1 g of the polyarylene sulfide resin composition described later is a predetermined amount.
  • the epoxy equivalent of the epoxy group-containing polyolefin (C) is preferably 5000 [g / eq. ], More preferably 4900 [g / eq. ], More preferably 4800 [g / eq. ] From the viewpoint of being in the following range and excellent in fluidity, preferably 1200 [g / eq. ], More preferably 1300 [g / eq. ], More preferably, 1400 [g / eq. ] The above range.
  • the present invention while reducing the amount of gas generated at the time of melting, it is excellent in adhesiveness, and further, not only thermal shock resistance, particularly in the case of having a weld part, but also in thermal shock resistance in the TD direction.
  • the total proportion of epoxy groups of the epoxy resin (B) and the epoxy group-containing polyolefin (C) in 1 g of the polyarylene sulfide resin composition is in the range of 25 [ ⁇ mol] or more, and adhesion and From the viewpoint of improving not only the thermal shock property, particularly the thermal shock property in the case of having a weld portion, but also the thermal shock property in the TD direction, a range of 30 [ ⁇ mol] or more is preferable, and a range of 35 [ ⁇ mol] or more is more preferable.
  • the range is 300 [ ⁇ mol] or less, and the range of 270 [ ⁇ mol] or less is preferred.
  • the range of 250 [ ⁇ mol] or less is
  • the ratio of the epoxy group of the epoxy resin (B) in 1 g of the polyarylene sulfide resin composition is in the range of 20 [ ⁇ mol] to 250 [ ⁇ mol]
  • the epoxy group-containing polyolefin (C) It is more preferable that the ratio of the epoxy group possessed by () is in the range of 5 [ ⁇ mol] to 50 [ ⁇ mol].
  • the blending ratios of the epoxy resin (B) and the epoxy group-containing polyolefin (C) in the polyarylene sulfide resin composition of the present invention are the same as the epoxy resin (B) and the epoxy group-containing polyolefin in 1 g of the polyarylene sulfide resin composition.
  • the epoxy resin (B) and the epoxy group-containing polyolefin (C) are blended at a blending ratio in which the total proportion of epoxy groups possessed by (C) is in the range of 25 [ ⁇ mol] to 300 [ ⁇ mol].
  • the epoxy resin (B) is in the range of 5 parts by mass to 30 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin.
  • the epoxy group-containing polyolefin (C) is preferably in the range of 5 parts by mass or more and 30 parts by mass or less, and from the viewpoint of epoxy resin adhesion, thermal shock resistance, and impact resistance, it is 7 parts by mass or more. More preferred is a range, more preferred is a range of 9 parts by mass or more, and more preferred is a range of 28 parts by mass or less from the viewpoint of the amount of gas generated. preferable.
  • the epoxy resin (B) has an epoxy group amount from the viewpoint of excellent epoxy adhesiveness and thermal shock resistance, particularly not only the thermal shock resistance in the case of having a weld portion, but also excellent thermal shock resistance in the TD direction. Is preferably blended so as to be larger than the epoxy group amount of the epoxy group-containing polyolefin (C).
  • the polyarylene sulfide resin composition used in the present invention comprises glass fiber (D1) as an essential component.
  • the glass fiber chopped strands used for injection molding compounds are preferably used.
  • the fiber diameter and fiber length are not particularly limited as long as the effects of the present invention are not impaired, but the fiber diameter (diameter) is preferably in the range of 3 ⁇ m to 20 ⁇ m, more preferably in the range of 6 ⁇ m to 13 ⁇ m.
  • the length of the glass fiber is arbitrary, it is preferable to reduce the amount of deformation of the molded product due to the balance between the mechanical properties and deformation of the molded product, but the average fiber is preferred in terms of mechanical strength.
  • the length is preferably at least 30 ⁇ m and longer, and is appropriately selected according to the required performance. Usually, the range of 50 ⁇ m to 2000 ⁇ m is preferable.
  • There is no restriction on the cross-sectional shape of the glass fiber and a round shape is usually used. A similar cross-sectional shape is preferable, and a flat cross-sectional shape is particularly preferable.
  • the glass fiber used in the present invention is preferably pretreated with a silane coupling agent or the like.
  • the blending ratio of the glass fibers is preferably in the range of 10 to 350 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin, and the viewpoint of improving heat resistance, mechanical strength, particularly thermal shock resistance. Is more preferably in the range of 20 parts by mass or more, more preferably in the range of 30 parts by mass or more, and from the viewpoint of improving dimensional stability and fluidity, it is in the range of 100 parts by mass or less. More preferably, the range is 80 parts by mass or less.
  • the polyarylene sulfide resin composition used in the present invention contains glass flakes (D2) as an essential component.
  • the glass flakes used in the present invention known glass flakes can be used as long as they are scale-like glass fillers.
  • the average particle diameter is in the range of 10 ⁇ m to 4000 ⁇ m and / or the average thickness is. What is a glass flake in the range of 0.1 ⁇ m or more to 20 ⁇ m or less is preferable, and the average particle diameter is in the range of 100 ⁇ m or more to 300 ⁇ m or less and / or the average thickness from the viewpoint of excellent moisture permeability and surface appearance. Is preferably in the range of 2 ⁇ m to 10 ⁇ m.
  • the average particle size is 100 ⁇ m or more and / or the average thickness is 2 ⁇ m or more, it suppresses the deterioration of the surface appearance that occurs because the glass flakes float with glass fibers on the surface of the molded product
  • an average particle size of 300 ⁇ m or less and / or an average thickness of 10 ⁇ m or less is used, part of the glass flakes is crushed during melt kneading, As a result of being easily formed, the phenomenon of floating on the surface of the molded article with glass fibers and impairing the surface appearance is preferable.
  • the average particle size and the average thickness mean a particle size of 50% cumulative degree obtained from a cumulative particle size distribution curve measured by a laser light diffraction method.
  • the glass flakes used in the present invention are preferably pretreated with a silane coupling agent or the like.
  • the linear expansion coefficient in the flow direction and the right-angle direction can be reduced, and the thermal shock resistance of repeating low and high temperatures can be improved.
  • the blending ratio of the glass flakes is not only the adhesiveness, heat resistance, mechanical strength, thermal shock resistance, particularly the thermal shock resistance in the case of having a weld part, but also cooling in the TD direction with respect to 100 parts by mass of the polyarylene sulfide resin. From the viewpoint of excellent impact properties and from the viewpoint of improving dimensional stability, it is preferably in the range of 1 part by mass or more, more preferably in the range of 20 parts by mass or more, and in the range of 30 parts by mass or more. More preferably. On the other hand, from the viewpoint of improving mechanical strength and moldability, a range of 250 parts by mass or less is preferable, a range of 100 parts by mass or less is more preferable, and a range of 80 parts by mass or less is more preferable.
  • the blending ratio of the glass fiber and the glass flake is not particularly limited as long as the effect of the present invention is achieved, but it is preferable that the blending ratio of the glass fiber is larger than the glass flake from the viewpoint of improving the mechanical strength, From the viewpoint of improving the dimensional stability, it is preferable that the blending ratio of the glass flake is larger than that of the glass fiber.
  • the polyarylene sulfide resin composition used in the present invention is a filler other than the glass fibers (D1) and the glass flakes (D2) as necessary, as long as the effects of the present invention are not impaired. (Referred to as “agent”) as an optional component.
  • agents known and conventional materials can be used as long as they do not impair the effects of the present invention.
  • various fillers such as fibrous ones and non-fibrous ones such as granular or plate-like ones can be used.
  • Examples of the filler are shapes.
  • fibrous fillers such as carbon fibers, silane glass fibers, ceramic fibers, aramid fibers, metal fibers, potassium titanate, silicon carbide, calcium silicate, wollastonite, and natural fibers can be used.
  • non-fibrous such as glass beads, barium sulfate, clay, pyrophyllite, bentonite, sericite, mica, talc, attapulgite, ferrite, calcium silicate, calcium carbonate, magnesium carbonate, glass beads, zeolite, milled fiber, calcium sulfate Fillers can also be used.
  • other fillers are not essential components, and when added, the content is not particularly limited as long as the effects of the present invention are not impaired.
  • the content of the other filler is, for example, preferably 1 part by mass or more, more preferably 10 parts by mass or more, preferably 600 parts by mass, more preferably 100 parts by mass relative to 100 parts by mass of the polyarylene sulfide resin (A).
  • the range is 200 parts by mass or less. In such a range, the resin composition is preferable because it exhibits good mechanical strength and moldability.
  • the polyarylene sulfide resin composition used in the present invention can contain a silane coupling agent as an optional component, if necessary, within the range where the effects of the present invention are exhibited.
  • the silane coupling agent is not particularly limited as long as the effects of the present invention are not impaired, but a silane coupling agent having a functional group that reacts with a carboxy group, for example, an epoxy group, an isocyanato group, an amino group, or a hydroxyl group is preferable. Can be mentioned.
  • silane coupling agents include epoxy groups such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • alkoxysilane compounds Containing alkoxysilane compounds, ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatopropylmethyldiethoxysilane, ⁇ -isocyanatopropylethyldimethoxysilane , ⁇ -isocyanatopropylethyldiethoxysilane, isocyanato group-containing alkoxysilane compounds such as ⁇ -isocyanatopropyltrichlorosilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ - ( -Aminoethyl) Amino group-containing alkoxysilane compounds such as aminopropyltrimethoxysilane and ⁇ -aminopropyltrime
  • alkoxysilane compounds are preferred because they can react with the polyarylene sulfide polymer via a functional group to give an apparent molecular weight.
  • the silane coupling agent is not an essential component, but when it is added, the amount added is not particularly limited as long as the effects of the present invention are not impaired, but the polyarylene sulfide resin (A) is 100 parts by mass. Is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, preferably 10 parts by mass or less, more preferably 5 parts by mass or less. Within such a range, the resin composition is preferable because it has good corona resistance and moldability, in particular, releasability, and the molded product exhibits excellent adhesiveness with the epoxy resin and further improves the mechanical strength.
  • the polyarylene sulfide resin composition used in the present invention can contain a thermoplastic elastomer other than the epoxy group-containing polyolefin (C) as an optional component, as necessary, within the range where the effects of the present invention are exhibited.
  • the thermoplastic elastomer include polyolefin-based elastomers, fluorine-based elastomers, and silicone-based elastomers. Among these, polyolefin-based elastomers are preferable.
  • the content is not particularly limited as long as the effects of the present invention are not impaired, but with respect to 100 parts by mass of the polyarylene sulfide resin (A), preferably 0.01 parts by mass or more.
  • the range is preferably 0.1 parts by mass or more, preferably 10 parts by mass or less, more preferably 5 parts by mass or less. Within such a range, the resulting polyarylene sulfide resin composition is preferred because the impact resistance is improved.
  • the polyolefin-based elastomer is obtained by, for example, homopolymerization of ⁇ -olefin or copolymerization of different ⁇ -olefins with a functionalized vinyl polymerizable compound in the case of further adding a functional group. It can be obtained by copolymerization.
  • the ⁇ -olefin include those having 2 to 8 carbon atoms such as ethylene, propylene and butene-1.
  • the functional group is not particularly limited as long as it is a functional group other than an epoxy group, and examples thereof include carboxy groups, acid anhydride groups represented by the formula — (CO) O (CO) —, those Ester, amino group, hydroxyl group, mercapto group, isocyanate group, or oxazoline group.
  • vinyl polymerizable compound having such a functional group examples include ⁇ , ⁇ -unsaturated carboxylic acids such as (meth) acrylic acid and (meth) acrylic acid esters and alkyl esters thereof, maleic acid, fumaric acid, and the like.
  • carboxylic acids such as (meth) acrylic acid and (meth) acrylic acid esters and alkyl esters thereof, maleic acid, fumaric acid, and the like.
  • examples thereof include acids, itaconic acid and other ⁇ , ⁇ -unsaturated dicarboxylic acids having 4 to 10 carbon atoms and derivatives thereof (mono- or diesters and acid anhydrides thereof), and glycidyl (meth) acrylate.
  • an ethylene-propylene copolymer and an ethylene-butene copolymer having at least one functional group selected from the group consisting of the above-described epoxy group, carboxy group, and acid anhydride group are mechanically selected. It is preferable from the viewpoint of improving strength, particularly toughness and impact resistance.
  • the polyarylene sulfide resin composition used in the present invention can contain a resin other than the epoxy resin (B) and the epoxy group-containing polyolefin (C) as an optional component within a range not impairing the effects of the present invention.
  • resins include polyester resins, polyamide resins, polyimide resins, polyetherimide resins, polycarbonate resins, polyphenylene ether resins, polysulfone resins, polyether sulfone resins, polyether ether ketone resins, polyether ketone resins, polyarylenes.
  • polyethylene resin excluding epoxy group-containing polyolefin (C)
  • polypropylene resin excluding epoxy group-containing polyolefin (C)
  • polytetrafluoroethylene resin polydifluoroethylene resin
  • polystyrene resin ABS resin
  • Synthetic resins such as urethane resins and liquid crystal polymers
  • the content of these resins varies depending on the purpose and cannot be specified unconditionally, but from 0.01 parts by mass to 1000 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin (A). In the following range, it may be appropriately adjusted according to the purpose and use so as not to impair the effects of the present invention.
  • the polyarylene sulfide resin composition used in the present invention is a colorant, an antistatic agent, an antioxidant, a heat stabilizer, an ultraviolet stabilizer, an ultraviolet absorber, foaming, as long as the effects of the present invention are not impaired.
  • You may contain well-known and usual additives, such as an agent, a flame retardant, a flame retardant adjuvant, a rust preventive agent, and a mold release agent, as an arbitrary component as needed. These additives are not essential components.
  • the effect of the present invention is not impaired, preferably in the range of 0.01 parts by mass to 1000 parts by mass. It may be used by appropriately adjusting according to the purpose and application.
  • mold release agents examples include natural waxes such as carnauba wax, metal salts of higher fatty acids such as zinc stearate, and polyolefin waxes such as oxidized or non-oxidized polyethylene wax.
  • the epoxy resin or epoxy group-containing polyolefin used in the present invention is melt kneaded in the presence of a component acting as a so-called curing agent (hereinafter referred to as a curing agent acting component) such as a phenol resin, an amine (active hydrogen compound), or a carboxylic acid anhydride.
  • a curing agent acting component such as a phenol resin, an amine (active hydrogen compound), or a carboxylic acid anhydride.
  • the epoxy group disappears due to curing reaction (addition reaction with active hydrogen compound, copolycondensation reaction with acid anhydride), so the proportion of curing agent active component in polyarylene sulfide resin composition is in the epoxy resin component
  • the active group in the curing agent working component is 0.1 equivalent or less, more preferably 0.01 equivalent or less, and most preferably 0 equivalent, that is, absent (less than the detection limit amount) with respect to 1 epoxy group in total. It is.
  • the polyarylene sulfide resin composition used in the present invention comprises polyarylene sulfide resin (A), epoxy resin (B), epoxy group-containing polyolefin (C), glass fiber (D1), and glass flake (D2) as essential components.
  • the polyarylene sulfide resin (A) is obtained by a production method including a step of melt-kneading at a melting point or higher.
  • a preferred method for producing the polyarylene sulfide resin composition used in the present invention is that the polyarylene sulfide resin (A), the epoxy resin (B), the epoxy group-containing polyolefin (C) and the glass flakes (
  • Each component of D2) and optional components such as other fillers and additives as described above can be used in various forms such as powders, pellets, strips, etc. for ribbon blenders, Henschel mixers, V blenders, etc.
  • a known melt kneader such as a Banbury mixer, a mixing roll, a single or twin screw extruder and a kneader, and the glass fiber (D1) is extruded from the side feeder of the melt extruder.
  • the resin temperature in the extruder is not less than the melting point of the polyarylene sulfide resin, preferably not less than the melting point + 10 ° C., more preferably not less than the melting point + 10 ° C., more preferably not less than the melting point + 20 ° C., preferably not more than the melting point + 100 ° C., more preferably It can be manufactured through a step of melt kneading in a temperature range of melting point + 50 ° C. or less. Addition and mixing of each component to the melt kneader may be performed simultaneously or may be performed separately.
  • the melt kneader is preferably a biaxial kneader / extruder from the viewpoints of dispersibility and productivity.
  • a resin component discharge rate ranging from 5 (kg / hr) to 500 (kg / hr) or less
  • a screw It is preferable to melt-knead while adjusting the rotation speed from 50 (rpm) to 500 (rpm) as appropriate, and the ratio (discharge amount / screw rotation speed) is 0.02 (kg / hr / rpm).
  • the position of the side feeder is such that the ratio of the distance from the extruder resin charging part to the side feeder with respect to the total screw length of the biaxial kneading extruder is preferably 0.1 or more, more preferably 0.3 or more. Therefore, the range is preferably 0.9 or less, more preferably 0.7 or less.
  • the polyarylene sulfide resin composition used in the present invention obtained by melt-kneading is composed of the essential components polyarylene sulfide resin (A), epoxy resin (B), epoxy group-containing polyolefin (C) and glass fiber ( D1), glass flakes (D2), and a molten mixture containing optional components to be added as necessary and components derived from them, and after the melt-kneading, they are processed into pellets, chips, granules, powders and the like by known methods Then, it is preferable to perform preliminary drying at a temperature of 100 ° C. or higher and 150 ° C. or lower as necessary to provide various types of molding.
  • the polyarylene sulfide resin composition used in the present invention produced by the above production method has a polyarylene sulfide resin as a matrix, and the epoxy resin (B) and the epoxy group-containing polyolefin (C) as essential components in the matrix.
  • a glass fiber (D1), glass flake (D2), a component derived therefrom, and a morphology in which an optional component added as necessary is dispersed are formed.
  • the polyarylene sulfide resin molded article can have excellent epoxy resin adhesion, heat resistance, mechanical strength, thermal shock resistance, and dimensional stability.
  • the molded article of the present invention can be obtained by melt-molding the polyarylene sulfide resin composition.
  • a melt molding a general method may be used, which can be used for various moldings such as injection molding, insert molding, compression molding, extrusion molding of composites, sheets, pipes, pultrusion molding, blow molding, transfer molding, In particular, it is excellent in releasability, so it is suitable for injection molding applications.
  • various molding conditions are not particularly limited, and can be usually molded by a general method.
  • the resin temperature is equal to or higher than the melting point of the polyarylene sulfide resin, preferably the melting point + 10 ° C.
  • the resin discharge port may be injected into the mold and molded.
  • the mold temperature may be set to a known temperature range, for example, room temperature (23 ° C.) or higher, preferably 120 ° C. or higher, preferably 300 ° C. or lower, more preferably 180 ° C. or lower.
  • the polyarylene sulfide resin molded product used in the present invention is excellent in adhesiveness, that is, adhesiveness with a curable resin composition containing an epoxy resin.
  • the curable resin composition containing an epoxy resin is preferably a composition obtained by mixing an epoxy resin and a curing agent.
  • the epoxy resin used in the present invention is not particularly limited as long as the effects of the present invention are not impaired, and examples thereof include bisphenol type epoxy resins, novolac type epoxy resins, and epoxy resins having a polyarylene ether structure ( ⁇ ). Of these, bisphenol-type epoxy resins are preferred because of their excellent adhesiveness.
  • Examples of the epoxy resin of the bisphenol type epoxy resin include glycidyl ethers of bisphenols, specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, Examples thereof include bisphenol S type epoxy resin, bisphenol AD type epoxy resin, and tetrabromobisphenol A type epoxy resin.
  • novolac type epoxy resin examples include novolac type epoxy resins obtained by reacting novolac type phenol resins obtained by condensation reaction of phenols and aldehydes with epihalohydrin. Specific examples include phenol novolacs. Type epoxy resin, cresol novolak type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolak type epoxy resin, naphthol-cresol co-condensed novolak type epoxy resin, and brominated phenol novolak type epoxy resin.
  • the curing agent is not particularly limited as long as it is generally used as a curing agent for epoxy resins.
  • an amine type curing agent, a phenol resin type curing agent, an acid anhydride type curing agent, and a latent property examples thereof include a curing agent.
  • amine type curing agent known ones can be used, and aliphatic polyamines, aromatic polyamines, heterocyclic polyamines, their epoxy adducts, Mannich modified products, and polyamide modified products can be used. Specifically, diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, isophoronediamine, 1,3-bisaminomethylcyclohexane, bis ( 4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, diaminodiphenylmethane, m-phenylenediamine, diaminodiphenylsulfone, diethyltoluenediamine, trimethylenebis (4-aminobenzoate), polytetramethylene oxide-di- Examples thereof include p-aminobenzoate. Of these
  • phenol resin type curing agent known ones can be used, for example, bisphenols such as bisphenol A, bisphenol F, and biphenol, tri (hydroxyphenyl) methane, 1,1,1-tri (hydroxyphenyl) ethane. And trifunctional phenolic compounds such as phenol novolac, cresol novolac and the like.
  • acid anhydride type curing agent known ones can be used.
  • methyl nadic acid hexahydrophthalic anhydride
  • hexahydrophthalic anhydride and methylhexahydrophthalic anhydride.
  • latent curing agents examples include dicyandiamide, imidazole, BF3-amine complex, and guanidine derivatives.
  • curing agents can be used alone or in combination of two or more.
  • a curing accelerator can be used in appropriate combination as long as the effects of the present invention are not impaired.
  • Various curing accelerators can be used, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts.
  • the curable resin composition containing an epoxy resin used in the present invention may be allowed to undergo a curing reaction in the absence of a solvent, but benzene, toluene, xylene, ethyl acetate, acetone, methyl ethyl ketone, diethyl ether, tetrahydrofuran, methyl acetate, acetonitrile Curing reaction in a solvent such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, 1,1,2-trichloroethane, tetrachloroethylene, N-methylpyrrolidone, isopropyl alcohol, isobutanol, and t-butyl alcohol May be.
  • a solvent such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, 1,1,2-trichloroethane, tetrachloroethylene, N-methylpyr
  • the use ratio of the epoxy resin and the curing agent is not particularly limited as long as it is a known ratio within a range not impairing the effect of the present invention, but is excellent in curability. Since a cured product having excellent heat resistance and chemical resistance of the cured product is obtained, the active group in the curing agent is from 0.7 equivalent to 1. An amount in the range of 5 equivalents or less is preferred.
  • the molded product formed by molding the polyarylene sulfide resin composition used in the present invention is excellent in epoxy resin adhesion, it is a composite molded product formed by bonding with a cured product of a curable resin composition containing an epoxy resin. It can be used suitably.
  • the composite molded article of the present invention can be produced by a method including a step of adhering a molded article formed by melt molding a polyarylene sulfide resin composition and a cured product of a curable resin composition containing an epoxy resin. .
  • the adhesive between the molded product and the cured product may be a known method as long as the effects of the present invention are not impaired.
  • the molded product is brought into contact with a curable resin composition containing an epoxy resin, and the curable resin is contacted.
  • a method including a step of curing the composition may be mentioned.
  • at least a part of the surface to be bonded to the curable resin composition at the time of bonding preferably 50% or more, more preferably the entire surface is heated and melted, and then a curable resin containing an epoxy resin.
  • the method of making a composition contact and hardening this curable resin composition is also mentioned.
  • the curable resin composition is cured by bringing the curable resin composition in an uncured state into contact with the molded article and then completely curing the curable resin composition, After being in a cured state (so-called B-stage state), it can be completely cured by contacting with the molded product.
  • the composite molded product of the present invention can be used for various applications.
  • main applications include housings for electronic devices such as various home appliances, mobile phones, and PCs (Personal Computers), protection / support members for box-type electrical / electronic component integrated modules, multiple individual semiconductors or modules, Sensor, LED lamp, connector, socket, resistor, relay case, switch, coil bobbin, capacitor, variable capacitor case, optical pickup, oscillator, various terminal boards, transformer, plug, printed circuit board, tuner, speaker, microphone, headphones, Small motors, magnetic head bases, power modules, terminal blocks, semiconductors, liquid crystals, FDD carriages, FDD chassis, motor brush holders, parabolic antennas, computer-related parts and other electrical and electronic parts; VTR parts, TV parts, irons , Hair dryer, rice cooker parts , Microwave oven parts, audio parts, audio / video equipment parts such as audio / laser disc / compact disc / DVD disc / Blu-ray disc, lighting parts, refrigerator parts, air conditioner parts, typewriter parts, word processor parts, water heater and bath
  • application area 12.9 mm ⁇ 12.9 mm.
  • the other side was bonded to the coated surface, fixed using a clip, and heated and cured / adhered in a hot air dryer set at 135 ° C. for 3 hours. After cooling at 23 ° C. for 1 day, the spacer was removed, and the obtained test piece was obtained.
  • the strain rate was 5 mm / min
  • the distance between the fulcrums was 60 mm
  • the value divided by the adhesion area was defined as the epoxy adhesive strength (MPa).
  • a steel insert block member having a length of 25 mm, a width of 40 mm, and a thickness of 10 mm connects the midpoints of the sides in the vertical direction of the member, and has a thickness of 3.55 mm on a straight line parallel to the side in the horizontal direction of the member.
  • the insert block member is held inside the injection mold by using the two through holes and two steel cylindrical pins installed in the injection mold.
  • the entire outer periphery of the insert block member is coated with a polyphenylene sulfide resin composition having a thickness of 1 mm, and we Using an injection molding die which is designed to part d is formed to obtain the polyphenylene sulfide resin composition pellets were injection-molded moldings.
  • the temperature is maintained at ⁇ 40 ° C./1 hour to 140 ° C./1 hour. The thermal shock test which makes a cycle was implemented, and the number of cycles until a crack generate
  • the insert block member (M) is installed so as to be held inside the injection molding die and melted.
  • the polyphenylene sulfide resin composition flows from the side F 1 side to the F 2 side, and a gate portion and a liquid escape portion are formed so that a weld portion is not formed.
  • pellets of the polyphenylene sulfide resin composition are injection molded to obtain a molded product (P).
  • a thermal shock test was conducted in a gas-phase type thermal shock tester with a temperature cycle of ⁇ 40 ° C./1 hour to 170 ° C./1 hour held as one cycle of the thermal cycle. It was measured.
  • Polyphenylene sulfide resin (A-1) The one produced by the following (Production Example 1) was used.
  • the amount of SMAB in the autoclave was 0.147 mol per mol of sulfur atoms present in the autoclave.
  • the theoretical dehydration amount is 27.921 g, so 609 g (33.8 mol) of the remaining water amount in the autoclave is 878 g (48.8 mol).
  • the amount of water in the autoclave was 0.065 mol per mol of sulfur atoms present in the autoclave.
  • Step 2 After the dehydration step, the internal temperature was cooled to 160 ° C., NMP46.343 kg (467.5 mol) was charged, and the temperature was raised to 185 ° C. The amount of water in the autoclave was 0.025 mol per 1 mol of NMP charged in step 2.
  • the gauge pressure reached 0.00 MPa
  • the valve connected to the rectifying column was opened, and the temperature was raised to an internal temperature of 200 ° C. over 1 hour. At this time, the cooling and the valve opening were controlled so that the rectification tower outlet temperature was 110 ° C. or lower.
  • the distilled vapor of p-DCB and water was condensed by a condenser and separated by a decanter, and p-DCB was returned to the autoclave.
  • the amount of distilled water was 228 g (12.7 mol).
  • Step 3 The water content in the autoclave at the start of Step 3 was 41 g (2.3 mol), 0.005 mol per mol of NMP charged in Step 2, and 0.010 mol per mol of sulfur atoms present in the autoclave. .
  • the amount of SMAB in the autoclave was 0.147 mol per mol of sulfur atoms present in the autoclave, as in Step 1.
  • the temperature was raised from an internal temperature of 200 ° C. to 230 ° C. over 3 hours, stirred at 230 ° C. for 1 hour, then heated to 250 ° C. and stirred for 1 hour.
  • the gauge pressure at an internal temperature of 200 ° C. was 0.03 MPa, and the final gauge pressure was 0.40 MPa.
  • the temperature was raised by pressurizing to 0.1 MPa with a gauge pressure using nitrogen gas at a liquid temperature of 150 ° C. After maintaining at a liquid temperature of 240 ° C. for 2 hours, the reaction was allowed to proceed with stirring at a liquid temperature of 260 ° C. for 3 hours, and the upper part of the autoclave was sprinkled to cool. Next, the temperature was lowered and cooling of the upper part of the autoclave was stopped. The upper part of the autoclave was kept constant during cooling to prevent the liquid temperature from dropping. The maximum pressure during the reaction was 0.85 MPa.
  • Epoxy resin (b-1) Bisphenol A type epoxy resin “Epiclon 7050” manufactured by DIC Corporation (epoxy equivalent 1900 [g / eq.])
  • the epoxy equivalent of the epoxy resin conforms to JIS K7236 (2001). This is the value measured.
  • B-2 Cresol novolac-type epoxy resin “Epiclon N-695P” (epoxy equivalent 210 [g / eq.]) Manufactured by DIC Corporation
  • B-3 Bisphenol A type epoxy resin “Epiclon HM-101” manufactured by DIC Corporation (epoxy equivalent 3900 [g / eq.])
  • B-4 Bisphenol A type epoxy resin “Epicoat 1009” manufactured by Japan Epoxy Resin Co., Ltd. (epoxy equivalent 2900 [g / eq.])
  • Polyolefin resin (c-1) ethylene / methyl acrylate / glycidyl methacrylate (67/27/6 mass%) copolymer “Bond First 7M” (epoxy equivalent 2369 [g / eq.]) Manufactured by Sumitomo Chemical Co., Ltd.
  • the epoxy equivalent of the polyolefin resin is a calculated value based on each component in the raw material and its ratio. In addition, each component in the raw material and its ratio can be confirmed from delivery specifications, catalogs, etc.
  • C-5 Ethylene / maleic anhydride / ethyl acrylate copolymer “Bondaine AX8390” manufactured by Sumitomo Chemical Co., Ltd.
  • C-6 Polyester elastomer “Perprene P150B” manufactured by Toyobo Co., Ltd. (a copolymer comprising an aromatic polyester and an aliphatic polyether)
  • Inorganic filler (d-1): Glass fiber (glass fiber chopped strand having a fiber diameter of 10 ⁇ m and a length of 3 mm)
  • D-2 Glass flakes (“REFG-301” manufactured by Nippon Sheet Glass Co., Ltd., average thickness 5 ⁇ m, average particle size 160 [ ⁇ m])
  • (e-1) Calcium montanate (“CaV-102” manufactured by Clariant Japan Co., Ltd.)
  • E-2 Ethylenediamine / stearic acid / sebacic acid polycondensate “Right Amide WH-255” manufactured by Kyoeisha Chemical Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Provided are: a molded article of a polyarylene sulfide (PAS) resin composition having excellent epoxy adhesiveness and thermal shock resistance, in particular not only the thermal shock resistance addressed when a welded part is included but also the thermal shock resistance in the transverse (TD) direction; a PAS resin composition that can provide said molded article; and a composite molded article made by bonding said molded article and a cured product of a curable resin composition including an epoxy resin; and a method for producing the foregoing. More specifically, provided are: a PAS resin composition resulting from blending a PAS resin, an epoxy resin, an epoxy group-containing polyolefin, glass fibers, and glass flakes, wherein, with respect to 100 parts by mass of the PAS resin, the content of the glass fibers is 10-350 parts by mass and the content of the glass flakes is 1-250 parts by mass, the total content of epoxy group included in the epoxy resin and the epoxy resin-containing polyolefin is 25-300 μmol per 1 g of the PAS resin composition, and the epoxy equivalent of the epoxy resin is 100-2,400 g/eq.; a molded article thereof; a composite molded article thereof; and a method for producing the foregoing.

Description

ポリアリーレンスルフィド樹脂組成物、成形品、複合成形品及びそれらの製造方法Polyarylene sulfide resin composition, molded article, composite molded article, and production method thereof
 本発明は、ポリアリーレンスルフィド(以下、「PAS」と略称することがある)樹脂を含む樹脂組成物、成形品、複合成形品およびそれらの製造方法に関する。 The present invention relates to a resin composition, a molded article, a composite molded article, and a method for producing them, including a polyarylene sulfide (hereinafter sometimes abbreviated as “PAS”) resin.
 ポリフェニレンスルフィド(以下、「PPS」と略すことがある)樹脂に代表されるPAS樹脂は、機械的強度、耐熱性、耐薬品性、成形加工性、寸法安定性に優れ、これら特性を利用して、電気・電子機器部品、自動車部品材料等として使用されている。 PAS resins represented by polyphenylene sulfide (hereinafter sometimes abbreviated as “PPS”) resins are excellent in mechanical strength, heat resistance, chemical resistance, moldability, and dimensional stability. It is used as electrical / electronic equipment parts, automotive parts materials, etc.
 そして、これら部品はその二次加工としてエポキシ樹脂等からなる部品材料と接着する場合が多々見られる。しかし、PAS樹脂は他の樹脂との接着性、特にエポキシ樹脂との接着性が比較的悪い。そのため、例えばエポキシ系接着剤によるPAS同士の接合、PAS樹脂と他の材料との接合、あるいはエポキシ樹脂による電気・電子部品の封止等の際に、PAS樹脂とエポキシ樹脂との接着性(以下、単に「接着性」ということがある)の悪さが問題となっていた。 In many cases, these parts are bonded to a part material made of epoxy resin or the like as a secondary process. However, PAS resins have relatively poor adhesion to other resins, especially adhesion to epoxy resins. Therefore, for example, when bonding PASs with epoxy adhesives, bonding PAS resins with other materials, or sealing electrical / electronic parts with epoxy resins, the adhesion between PAS resins and epoxy resins (hereinafter referred to as “bonding”) In some cases, the problem of “adhesiveness” is a problem.
 また、PAS樹脂は靱性に劣るため、低温と高温の繰り返しによる冷熱サイクル、あるいはサーマルショックに対して脆く、冷熱衝撃性に劣るという問題がある。さらに、ガラス繊維等の繊維状強化材で補強すると、異方性が生じ、成形体にソリ、ねじれ等の現象が起こり、寸法安定性が十分といえるものではなかった。 Further, since PAS resin is inferior in toughness, it has a problem that it is brittle with respect to a thermal cycle by repeated low and high temperatures, or thermal shock, and inferior in thermal shock resistance. Further, when reinforced with a fibrous reinforcing material such as glass fiber, anisotropy occurs, and a phenomenon such as warping or twisting occurs in the molded product, and the dimensional stability is not sufficient.
 このような現状から、PAS樹脂の冷熱衝撃性、寸法安定性、エポキシ樹脂との接着性の改良を目的にこれまでにいくつかの検討がなされ、例えば、ガラス繊維、オレフィン系重合体、エポキシ樹脂、ガラスフレークを配合したPAS樹脂組成物が提案されている(特許文献1参照)。しかし、該方法は、エポキシ樹脂としてビスフェノールA型エポキシ樹脂を用いるため、エポキシ樹脂との接着性や流動性に優れるものの、冷熱衝撃性が実用では充分とは言い難いレベルのものであった。 From such a current situation, several studies have been made so far for the purpose of improving the thermal shock resistance, dimensional stability, and adhesiveness of the epoxy resin of the PAS resin. For example, glass fiber, olefin polymer, epoxy resin A PAS resin composition containing glass flakes has been proposed (see Patent Document 1). However, since this method uses a bisphenol A type epoxy resin as an epoxy resin, it has excellent adhesiveness and fluidity with the epoxy resin, but the thermal shock resistance is at a level that is hardly sufficient for practical use.
 そこで、PAS樹脂と、ビスフェノール型エポキシ樹脂と、ノボラック型エポキシ樹脂と、ガラス繊維と、ガラスフレークとを配合して溶融混練して得られるPAS樹脂組成物からなる成形体が提案されている(特許文献2参照)。該成形体はエポキシ樹脂との接着性と、ウェルド部を有していても冷熱衝撃性に優れるものであったが、当該冷熱衝撃性にまだ改良の余地があるだけでなく、射出成形等の溶融成形時に樹脂の流れに対する直角方向(TD方向)の冷熱衝撃性にもまだ改良の余地があった。 Therefore, a molded body made of a PAS resin composition obtained by blending PAS resin, bisphenol-type epoxy resin, novolac-type epoxy resin, glass fiber, and glass flake and melting and kneading has been proposed (patent). Reference 2). The molded body was excellent in the thermal shock resistance even if it has an adhesiveness with an epoxy resin and a weld part, but there is still room for improvement in the thermal shock resistance, such as injection molding. There was still room for improvement in the thermal shock resistance in the direction perpendicular to the resin flow (TD direction) during melt molding.
特開2005-306926号公報JP 2005-306926 A WO2013/141363号パンフレットWO2013 / 141363 pamphlet
 そこで本発明が解決しようとする課題は、エポキシ接着性に優れ、かつ、冷熱衝撃性、特にウェルド部を有する場合の冷熱衝撃性のみならず、TD方向の冷熱衝撃性にも優れるポリアリーレンスルフィド樹脂組成物の成形品、該成形品を提供可能なポリアリーレンスルフィド樹脂組成物、および、該成形品と、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とが接着してなる複合成形品およびその製造方法を提供することにある。 Therefore, the problem to be solved by the present invention is a polyarylene sulfide resin which is excellent in epoxy adhesiveness and has excellent thermal shock resistance, in particular, thermal shock resistance in the case of having a weld part, as well as excellent thermal shock resistance in the TD direction. Molded product of composition, polyarylene sulfide resin composition capable of providing the molded product, and composite molded product obtained by bonding the molded product to a cured product of a curable resin composition containing an epoxy resin, and the same It is to provide a manufacturing method.
 本発明者は上記課題を解決するために鋭意研究した結果、ポリアリーレンスルフィド樹脂(A)と100〔g/eq.〕以上から2400〔g/eq.〕以下の範囲のエポキシ当量を有するエポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とガラス繊維(D1)とガラスフレーク(D2)とを用い、かつ、組成物中のエポキシ基量を、樹脂組成物1g中25〔μmol〕以上から300〔μmol〕以下の範囲とすることにより、上記課題を解決することができることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventor has found that polyarylene sulfide resin (A) and 100 [g / eq. ] 2400 [g / eq. ] An epoxy resin (B) having an epoxy equivalent weight in the following range, an epoxy group-containing polyolefin (C), glass fiber (D1) and glass flake (D2), and the amount of epoxy groups in the composition It has been found that the above-mentioned problems can be solved by setting the amount in the range of 25 [μmol] to 300 [μmol] in 1 g of the composition, and the present invention has been completed.
 すなわち、本発明は、ポリアリーレンスルフィド樹脂(A)とエポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とガラス繊維(D1)とガラスフレーク(D2)とを配合してなるポリアリーレンスルフィド樹脂組成物であって、
 ポリアリーレンスルフィド樹脂(A)100質量部に対して、ガラス繊維が10質量部以上から350質量部以下の範囲、ガラスフレークが1質量部以上から250質量部以下の範囲であり、
 ポリアリーレンスルフィド樹脂組成物1g中における、エポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とが有するエポキシ基の合計の割合が25〔μmol〕以上から300〔μmol〕以下の範囲であり、さらにエポキシ樹脂(B)のエポキシ当量が、100〔g/eq.〕以上から2400〔g/eq.〕以下の範囲であるポリアリーレンスルフィド樹脂組成物に関する。
That is, the present invention provides a polyarylene sulfide resin composition comprising a polyarylene sulfide resin (A), an epoxy resin (B), an epoxy group-containing polyolefin (C), glass fibers (D1), and glass flakes (D2). A thing,
With respect to 100 parts by mass of the polyarylene sulfide resin (A), the glass fiber ranges from 10 parts by weight to 350 parts by weight, and the glass flake ranges from 1 part by weight to 250 parts by weight.
In 1 g of the polyarylene sulfide resin composition, the total proportion of epoxy groups of the epoxy resin (B) and the epoxy group-containing polyolefin (C) is in the range of 25 [μmol] to 300 [μmol], The epoxy equivalent of the epoxy resin (B) is 100 [g / eq. ] 2400 [g / eq. ] It relates to a polyarylene sulfide resin composition in the following range.
 また、本発明は、前記のポリアリーレンスルフィド樹脂組成物を溶融成形してなる成形品に関する。 The present invention also relates to a molded article formed by melt molding the polyarylene sulfide resin composition.
 また、本発明は、ポリアリーレンスルフィド樹脂(A)とエポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とガラス繊維(D1)とガラスフレーク(D2)とを溶融混練するポリアリーレンスルフィド樹脂組成物の製造方法であって、
 ポリアリーレンスルフィド樹脂(A)100質量部に対して、ガラス繊維が10質量部以上から350質量部以下の範囲、ガラスフレークが1質量部以上から250質量部以下の範囲であり、
 ポリアリーレンスルフィド樹脂組成物1g中における、エポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とが有するエポキシ基の合計の割合が25〔μmol〕以上から300〔μmol〕以下の範囲であり、さらにエポキシ樹脂(B)のエポキシ当量が、100〔g/eq.〕以上から2400〔g/eq.〕以下の範囲であるポリアリーレンスルフィド樹脂組成物の製造方法に関する。
The present invention also provides a polyarylene sulfide resin composition in which a polyarylene sulfide resin (A), an epoxy resin (B), an epoxy group-containing polyolefin (C), glass fibers (D1), and glass flakes (D2) are melt-kneaded. A manufacturing method of
With respect to 100 parts by mass of the polyarylene sulfide resin (A), the glass fiber ranges from 10 parts by weight to 350 parts by weight, and the glass flake ranges from 1 part by weight to 250 parts by weight.
In 1 g of the polyarylene sulfide resin composition, the total proportion of epoxy groups of the epoxy resin (B) and the epoxy group-containing polyolefin (C) is in the range of 25 [μmol] to 300 [μmol], The epoxy equivalent of the epoxy resin (B) is 100 [g / eq. ] 2400 [g / eq. The present invention relates to a method for producing a polyarylene sulfide resin composition in the following range.
 さらに、本発明は、前記成形品と、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とを接着する複合成形品の製造方法に関する。
 さらに本発明は、前記成形品に、エポキシ樹脂を含む硬化性樹脂組成物を接触させた後、該硬化性樹脂組成物を硬化する工程を含む、複合成形品の製造方法に関する。
Furthermore, this invention relates to the manufacturing method of the composite molded article which adhere | attaches the said molded article and the hardened | cured material of curable resin composition containing an epoxy resin.
Furthermore, this invention relates to the manufacturing method of a composite molded article including the process of making this curable resin composition contact after making the curable resin composition containing an epoxy resin contact.
 本発明によれば、エポキシ接着性に優れ、かつ、冷熱衝撃性、特にウェルド部を有する場合の冷熱衝撃性のみならず、TD方向の冷熱衝撃性にも優れるポリアリーレンスルフィド樹脂組成物の成形品、該成形品を提供可能なポリアリーレンスルフィド樹脂組成物、および、該成形品と、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とが接着してなる複合成形品およびその製造方法を提供することができる。 According to the present invention, a molded article of a polyarylene sulfide resin composition having excellent epoxy adhesiveness and not only thermal shock resistance, particularly in the case of having a weld portion, but also excellent thermal shock resistance in the TD direction. Provided are a polyarylene sulfide resin composition capable of providing the molded article, a composite molded article obtained by bonding the molded article and a cured product of a curable resin composition containing an epoxy resin, and a method for producing the same. be able to.
実施例において、成形品(ウェルド部なし)のTD方向の耐冷熱衝撃性(ヒートサイクル性)試験に用いた金属ブロック部材である。In an Example, it is a metal block member used for the cold thermal shock resistance (heat cycle property) test of the TD direction of a molded article (without a weld part). 実施例において、TD方向の耐冷熱衝撃性(ヒートサイクル性)試験に用いた成形品(ウェルド部なし)である。In an Example, it is a molded article (without a weld part) used for the cold thermal shock resistance (heat cycle property) test of TD direction.
 本発明に用いるポリアリーレンスルフィド樹脂組成物は、ポリアリーレンスルフィド樹脂(A)とエポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とガラス繊維(D1)とガラスフレーク(D2)とを配合してなるポリアリーレンスルフィド樹脂組成物であって、
 ポリアリーレンスルフィド樹脂(A)100質量部に対して、ガラス繊維が10質量部以上から350質量部以下の範囲、ガラスフレークが1質量部以上から250質量部以下の範囲であり、
 ポリアリーレンスルフィド樹脂組成物1g中における、エポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とが有するエポキシ基の合計の割合が25〔μmol〕以上から300〔μmol〕以下の範囲であり、さらにエポキシ樹脂(B)のエポキシ当量が、100〔g/eq.〕以上から2400〔g/eq.〕以下の範囲であることを特徴とする。
The polyarylene sulfide resin composition used in the present invention comprises a polyarylene sulfide resin (A), an epoxy resin (B), an epoxy group-containing polyolefin (C), glass fibers (D1), and glass flakes (D2). A polyarylene sulfide resin composition comprising:
With respect to 100 parts by mass of the polyarylene sulfide resin (A), the glass fiber ranges from 10 parts by mass to 350 parts by mass, the glass flake ranges from 1 part by mass to 250 parts by mass,
In 1 g of the polyarylene sulfide resin composition, the total proportion of epoxy groups of the epoxy resin (B) and the epoxy group-containing polyolefin (C) is in the range of 25 [μmol] to 300 [μmol], The epoxy equivalent of the epoxy resin (B) is 100 [g / eq. ] 2400 [g / eq. It is characterized by being in the following range.
 本発明に用いるポリアリーレンスルフィド樹脂組成物は、ポリアリーレンスルフィド樹脂(A)を必須成分として配合してなる。本発明で用いるポリアリーレンスルフィド樹脂は、芳香族環と硫黄原子とが結合した構造を繰り返し単位とする樹脂構造を有するものであり、具体的には、下記一般式(1) The polyarylene sulfide resin composition used in the present invention comprises a polyarylene sulfide resin (A) as an essential component. The polyarylene sulfide resin used in the present invention has a resin structure having a repeating unit of a structure in which an aromatic ring and a sulfur atom are bonded. Specifically, the polyarylene sulfide resin has the following general formula (1)
Figure JPOXMLDOC01-appb-C000001
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1~4の範囲のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、エトキシ基を表す。)で表される構造部位と、必要に応じてさらに下記一般式(2)
Figure JPOXMLDOC01-appb-C000001
(Wherein R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group). And, if necessary, the following general formula (2)
Figure JPOXMLDOC01-appb-C000002
で表される3官能性の構造部位と、を繰り返し単位とする樹脂である。式(2)で表される3官能性の構造部位は、他の構造部位との合計モル数に対して0.001モル%から3モル%以下の範囲が好ましく、特に0.01モル%以上から1モル%以下の範囲であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
And a trifunctional structural moiety represented by formula (1). The trifunctional structural moiety represented by the formula (2) is preferably in the range of 0.001 mol% to 3 mol% or less, particularly 0.01 mol% or more with respect to the total number of moles with other structural moieties. To 1 mol% or less.
 ここで、前記一般式(1)で表される構造部位は、特に該式中のR及びRは、前記ポリアリーレンスルフィド樹脂の機械的強度の点から水素原子であることが好ましく、その場合、下記式(3)で表されるパラ位で結合するもの、及び下記式(4)で表されるメタ位で結合するものが挙げられる。 Here, in the structural part represented by the general formula (1), R 1 and R 2 in the formula are preferably hydrogen atoms from the viewpoint of the mechanical strength of the polyarylene sulfide resin. In this case, those bonded at the para position represented by the following formula (3) and those bonded at the meta position represented by the following formula (4) are exemplified.
Figure JPOXMLDOC01-appb-C000003
 これらの中でも、特に繰り返し単位中の芳香族環に対する硫黄原子の結合は前記一般式(3)で表されるパラ位で結合した構造であることが前記ポリアリーレンスルフィド樹脂の耐熱性や結晶性の面で好ましい。
Figure JPOXMLDOC01-appb-C000003
Among these, in particular, the bond of the sulfur atom to the aromatic ring in the repeating unit is a structure bonded at the para-position represented by the general formula (3). In terms of surface.
 また、前記ポリアリーレンスルフィド樹脂は、前記一般式(1)や(2)で表される構造部位のみならず、下記の構造式(5)~(8) Further, the polyarylene sulfide resin is not limited to the structural portion represented by the general formulas (1) and (2), but the following structural formulas (5) to (8)
Figure JPOXMLDOC01-appb-C000004
で表される構造部位を、前記一般式(1)と一般式(2)で表される構造部位との合計の30モル%以下で含んでいてもよい。特に本発明では上記一般式(5)~(8)で表される構造部位は10モル%以下であることが、ポリアリーレンスルフィド樹脂の耐熱性、機械的強度の点から好ましい。前記ポリアリーレンスルフィド樹脂中に、上記一般式(5)~(8)で表される構造部位を含む場合、それらの結合様式としては、ランダム共重合体、ブロック共重合体の何れであってもよい。
Figure JPOXMLDOC01-appb-C000004
The structural site represented by the formula (1) and the structural site represented by the general formula (2) may be included at 30 mol% or less. In particular, in the present invention, the structural site represented by the general formulas (5) to (8) is preferably 10 mol% or less from the viewpoint of heat resistance and mechanical strength of the polyarylene sulfide resin. When the polyarylene sulfide resin contains a structural moiety represented by the above general formulas (5) to (8), the bonding mode thereof may be either a random copolymer or a block copolymer. Good.
 また、前記ポリアリーレンスルフィド樹脂は、その分子構造中に、ナフチルスルフィド結合などを有していてもよいが、他の構造部位との合計モル数に対して、3モル%以下が好ましく、特に1モル%以下であることが好ましい。 Further, the polyarylene sulfide resin may have a naphthyl sulfide bond or the like in its molecular structure, but is preferably 3 mol% or less with respect to the total number of moles with other structural sites, particularly 1 It is preferable that it is below mol%.
 また、ポリアリーレンスルフィド樹脂の物性は、本発明の効果を損ねない限り特に限定されないが、以下の通りである。 The physical properties of the polyarylene sulfide resin are not particularly limited as long as the effects of the present invention are not impaired, but are as follows.
(溶融粘度)
 本発明に用いるポリアリーレンスルフィド樹脂の溶融粘度は特に限定されないが、300℃で測定した溶融粘度(V6)が2〔Pa・s〕以上から1000〔Pa・s〕以下の範囲であることが好ましく、さらに流動性および機械的強度のバランスが良好となることから10〔Pa・s〕以上から500〔Pa・s〕以下の範囲がより好ましく、特に60〔Pa・s〕以上から200〔Pa・s〕以下の範囲であることが特に好ましい。但し、本発明において、溶融粘度(V6)は、ポリアリーレンスルフィド樹脂を島津製作所製フローテスター、CFT-500Dを用い、300℃、荷重:1.96×10Pa、L/D=10(mm)/1(mm)にて、6分間保持した後に溶融粘度を測定した値とする。
(Melt viscosity)
The melt viscosity of the polyarylene sulfide resin used in the present invention is not particularly limited, but the melt viscosity (V6) measured at 300 ° C. is preferably in the range of 2 [Pa · s] to 1000 [Pa · s]. Furthermore, the range of 10 [Pa · s] to 500 [Pa · s] is more preferable because the balance between fluidity and mechanical strength is improved, and in particular, the range is 60 [Pa · s] to 200 [Pa · s]. s] The following range is particularly preferable. However, in the present invention, the melt viscosity (V6) is as follows. Polyarylene sulfide resin is flow tester manufactured by Shimadzu Corporation, CFT-500D, 300 ° C., load: 1.96 × 10 6 Pa, L / D = 10 (mm ) / 1 (mm), and the melt viscosity is measured after holding for 6 minutes.
(非ニュートン指数)
 本発明に用いるポリアリーレンスルフィド樹脂(A)の非ニュートン指数は、本発明の効果を損ねない限り特に限定されないが、0.90以上から2.00以下の範囲であることが好ましい。リニア型ポリアリーレンスルフィド樹脂を用いる場合には、非ニュートン指数が0.90以上から1.50以下の範囲であることが好ましく、さらに0.95以上から1.20以下の範囲であることがより好ましい。このようなポリアリーレンスルフィド樹脂は機械的物性、流動性、耐磨耗性に優れる。ただし、非ニュートン指数(N値)は、キャピログラフを用いて300℃、オリフィス長(L)とオリフィス径(D)の比、L/D=40の条件下で、剪断速度及び剪断応力を測定し、下記式を用いて算出した値である。
(Non-Newtonian index)
The non-Newtonian index of the polyarylene sulfide resin (A) used in the present invention is not particularly limited as long as the effect of the present invention is not impaired, but is preferably in the range of 0.90 or more and 2.00 or less. When the linear polyarylene sulfide resin is used, the non-Newtonian index is preferably in the range of 0.90 to 1.50, more preferably in the range of 0.95 to 1.20. preferable. Such a polyarylene sulfide resin is excellent in mechanical properties, fluidity, and abrasion resistance. However, the non-Newtonian index (N value) is measured by measuring the shear rate and shear stress using a capillograph at 300 ° C, the ratio of the orifice length (L) to the orifice diameter (D), and L / D = 40. These are values calculated using the following formula.
Figure JPOXMLDOC01-appb-M000005
[ただし、SRは剪断速度(秒-1)、SSは剪断応力(ダイン/cm)、そしてKは定数を示す。]N値は1に近いほどPPSは線状に近い構造であり、N値が高いほど分岐が進んだ構造であることを示す。
Figure JPOXMLDOC01-appb-M000005
[Wherein SR represents shear rate (second −1 ), SS represents shear stress (dyne / cm 2 ), and K represents a constant. The closer the N value is to 1, the closer the PPS is to a linear structure, and the higher the N value is, the more branched the structure is.
(製造方法)
 前記ポリアリーレンスルフィド樹脂(A)の製造方法としては、特に限定されないが、例えば1)硫黄と炭酸ソーダの存在下でジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、2)極性溶媒中でスルフィド化剤等の存在下にジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、3)p-クロルチオフェノールを、必要ならばその他の共重合成分を加えて、自己縮合させる方法、等が挙げられる。これらの方法のなかでも、2)の方法が汎用的であり好ましい。反応の際に、重合度を調節するためにカルボン酸やスルホン酸のアルカリ金属塩や、水酸化アルカリを添加しても良い。上記2)方法のなかでも、加熱した有機極性溶媒とジハロゲノ芳香族化合物とを含む混合物に含水スルフィド化剤を水が反応混合物から除去され得る速度で導入し、有機極性溶媒中でジハロゲノ芳香族化合物とスルフィド化剤とを、必要に応じてポリハロゲノ芳香族化合物と加え、反応させること、及び反応系内の水分量を該有機極性溶媒1モルに対して0.02モル以上から0.5モル以下の範囲にコントロールすることによりポリアリーレンスルフィド樹脂を製造する方法(特開平07-228699号公報参照。)や、固形のアルカリ金属硫化物及び非プロトン性極性有機溶媒の存在下でジハロゲノ芳香族化合物と必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加え、アルカリ金属水硫化物及び有機酸アルカリ金属塩を、硫黄源1モルに対して0.01モル以上から0.9モル以下の範囲の有機酸アルカリ金属塩および反応系内の水分量を非プロトン性極性有機溶媒1モルに対して0.02モル以下の範囲にコントロールしながら反応させる方法(WO2010/058713号パンフレット参照。)で得られるものが特に好ましい。ジハロゲノ芳香族化合物の具体的な例としては、p-ジハロベンゼン、m-ジハロベンゼン、o-ジハロベンゼン、2,5-ジハロトルエン、1,4-ジハロナフタレン、1-メトキシ-2,5-ジハロベンゼン、4,4’-ジハロビフェニル、3,5-ジハロ安息香酸、2,4-ジハロ安息香酸、2,5-ジハロニトロベンゼン、2,4-ジハロニトロベンゼン、2,4-ジハロアニソール、p,p’-ジハロジフェニルエーテル、4,4’-ジハロベンゾフェノン、4,4’-ジハロジフェニルスルホン、4,4’-ジハロジフェニルスルホキシド、4,4’-ジハロジフェニルスルフィド、及び、上記各化合物の芳香環に炭素原子数1~18の範囲のアルキル基を有する化合物が挙げられ、ポリハロゲノ芳香族化合物としては1,2,3-トリハロベンゼン、1,2,4-トリハロベンゼン、1,3,5-トリハロベンゼン、1,2,3,5-テトラハロベンゼン、1,2,4,5-テトラハロベンゼン、1,4,6-トリハロナフタレンなどが挙げられる。また、上記各化合物中に含まれるハロゲン原子は、塩素原子、臭素原子であることが望ましい。
(Production method)
The method for producing the polyarylene sulfide resin (A) is not particularly limited. For example, 1) dihalogenoaromatic compound in the presence of sulfur and sodium carbonate, and if necessary polyhalogenoaromatic compound or other copolymerization component. In addition, a polymerization method, 2) a dihalogenoaromatic compound in a polar solvent in the presence of a sulfidizing agent, and a polyhalogenoaromatic compound or other copolymerization component, if necessary, and polymerization, 3) Examples thereof include a method in which p-chlorothiophenol is self-condensed by adding other copolymerization components if necessary. Among these methods, the method 2) is versatile and preferable. In the reaction, an alkali metal salt of carboxylic acid or sulfonic acid or an alkali hydroxide may be added to adjust the degree of polymerization. Among the above methods 2), a hydrous sulfiding agent is introduced into a mixture containing a heated organic polar solvent and a dihalogenoaromatic compound at a rate at which water can be removed from the reaction mixture, and the dihalogenoaromatic compound in the organic polar solvent. And a sulfidizing agent, if necessary, added with a polyhalogenoaromatic compound and reacted, and the amount of water in the reaction system is 0.02 mol to 0.5 mol with respect to 1 mol of the organic polar solvent. In the presence of a solid alkali metal sulfide and an aprotic polar organic solvent, and a method for producing a polyarylene sulfide resin by controlling to a range of Add polyhalogenoaromatic compounds or other copolymerization components if necessary, alkali metal hydrosulfides and organic acid alkali metals The organic acid alkali metal salt in the range of 0.01 mol to 0.9 mol with respect to 1 mol of the sulfur source and the water content in the reaction system are 0.02 with respect to 1 mol of the aprotic polar organic solvent. What is obtained by the method of making it react, controlling in the range below a mole (refer WO2010 / 058713 pamphlet) is especially preferable. Specific examples of the dihalogenoaromatic compound include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, 4, 4'-dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p, p '-Dihalodiphenyl ether, 4,4'-dihalobenzophenone, 4,4'-dihalodiphenyl sulfone, 4,4'-dihalodiphenyl sulfoxide, 4,4'-dihalodiphenyl sulfide, and each of the above compounds Compounds having an alkyl group having 1 to 18 carbon atoms in the aromatic ring, and polyhalogenoaromatic compounds include 1,2,3-trimethyl. Lobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 1,2,3,5-tetrahalobenzene, 1,2,4,5-tetrahalobenzene, 1,4,6- And trihalonaphthalene. Moreover, it is desirable that the halogen atom contained in each compound is a chlorine atom or a bromine atom.
 重合工程により得られたポリアリーレンスルフィド樹脂を含む反応混合物の後処理方法としては、特に制限されるものではないが、例えば、(1)重合反応終了後、先ず反応混合物をそのまま、あるいは酸または塩基を加えた後、減圧下または常圧下で溶媒を留去し、次いで溶媒留去後の固形物を水、反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、更に中和、水洗、濾過および乾燥する方法、或いは、(2)重合反応終了後、反応混合物に水、アセトン、メチルエチルケトン、アルコール類、エーテル類、ハロゲン化炭化水素、芳香族炭化水素、脂肪族炭化水素などの溶媒(使用した重合溶媒に可溶であり、かつ少なくともポリアリーレンスルフィドに対しては貧溶媒である溶媒)を沈降剤として添加して、ポリアリーレンスルフィドや無機塩等の固体状生成物を沈降させ、これらを濾別、洗浄、乾燥する方法、或いは、(3)重合反応終了後、反応混合物に反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌した後、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、その後中和、水洗、濾過および乾燥をする方法、(4)重合反応終了後、反応混合物に水を加えて水洗浄、濾過、必要に応じて水洗浄の時に酸を加えて酸処理し、乾燥をする方法、(5)重合反応終了後、反応混合物を濾過し、必要に応じ、反応溶媒で1回または2回以上洗浄し、更に水洗浄、濾過および乾燥する方法、等が挙げられる。 The post-treatment method of the reaction mixture containing the polyarylene sulfide resin obtained by the polymerization step is not particularly limited. For example, (1) after the completion of the polymerization reaction, the reaction mixture is left as it is, or an acid or a base is used. After adding the solvent, the solvent is distilled off under reduced pressure or normal pressure, and then the solid after the solvent is distilled off is water, a reaction solvent (or an organic solvent having an equivalent solubility in a low molecular weight polymer), acetone, methyl ethyl ketone. , A method of washing once or twice with a solvent such as alcohols, and further neutralizing, washing with water, filtering and drying, or (2) after completion of the polymerization reaction, water, acetone, methyl ethyl ketone, alcohols, Ethers, halogenated hydrocarbons, aromatic hydrocarbons, aliphatic hydrocarbons and other solvents (soluble in the polymerization solvent used and at least A solvent that is a poor solvent for polyarylene sulfide) as a precipitating agent to precipitate solid products such as polyarylene sulfide and inorganic salts, and filter, wash, and dry these, or (3) After the completion of the polymerization reaction, the reaction mixture (or an organic solvent having an equivalent solubility with respect to the low molecular polymer) is added to the reaction mixture and stirred, and then filtered to remove the low molecular weight polymer. A method of washing once or twice with a solvent such as acetone, methyl ethyl ketone, alcohol, etc., followed by neutralization, washing with water, filtration and drying. (4) After completion of the polymerization reaction, water is added to the reaction mixture to wash with water. Filtration, if necessary, acid treatment at the time of washing with water, acid treatment and drying, (5) after completion of the polymerization reaction, the reaction mixture is filtered, and if necessary, once or twice or more with a reaction solvent Washing Further water washing, a method of filtering and drying, and the like.
  尚、上記(1)~(5)に例示したような後処理方法において、ポリアリーレンスルフィド樹脂の乾燥は真空中で行なってもよいし、空気中あるいは窒素のような不活性ガス雰囲気中で行なってもよい。 In the post-treatment methods exemplified in the above (1) to (5), the polyarylene sulfide resin may be dried in a vacuum or in an inert gas atmosphere such as air or nitrogen. May be.
 本発明のポリアリーレンスルフィド樹脂組成物は、エポキシ樹脂(B)を必須成分として配合する。 The polyarylene sulfide resin composition of the present invention contains the epoxy resin (B) as an essential component.
 本発明に用いるエポキシ樹脂としては、本発明の効果を奏するものであれば特に限定されず、たとえば、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂やポリアリーレンエーテル構造(α)を有するエポキシ樹脂などが挙げられ、このうち、接着性に優れ、かつ冷熱衝撃性に優れ、特にウェルド部を有する場合の冷熱衝撃性のみならず、TD方向の冷熱衝撃性にも優れることからビスフェノール型エポキシ樹脂が好ましいものとして挙げられる。 The epoxy resin used in the present invention is not particularly limited as long as the effects of the present invention are exhibited. Examples thereof include bisphenol type epoxy resins, novolac type epoxy resins, and epoxy resins having a polyarylene ether structure (α). Among them, bisphenol type epoxy resin is preferable because it has excellent adhesiveness and excellent thermal shock resistance, and particularly has excellent thermal shock resistance in the TD direction as well as thermal shock resistance when having a weld portion. Can be mentioned.
 本発明に用いるエポキシ樹脂のエポキシ当量としては、溶融時のガス発生量を低減しつつ、かつ、接着性に優れ、さらに、冷熱衝撃性、特にウェルド部を有する場合の冷熱衝撃性のみならず、TD方向の冷熱衝撃性にも優れる観点から、好ましくは2400〔g/eq.〕以下、より好ましくは2100〔g/eq.〕以下、さらに好ましくは1900〔g/eq.〕以下の範囲であり、かつ、流動性に優れる観点から、好ましくは100〔g/eq.〕以上、より好ましくは190〔g/eq.〕以上、さらに好ましくは210〔g/eq.〕以上の範囲である。 As the epoxy equivalent of the epoxy resin used in the present invention, while reducing the gas generation amount at the time of melting, and excellent adhesion, not only the thermal shock resistance, particularly the thermal shock resistance when having a weld part, From the viewpoint of excellent thermal shock resistance in the TD direction, 2400 [g / eq. ], More preferably 2100 [g / eq. ], More preferably 1900 [g / eq. ] From the viewpoint of being in the following range and excellent in fluidity, it is preferably 100 [g / eq. ], More preferably 190 [g / eq. ], More preferably 210 [g / eq. ] The above range.
 前記ビスフェノール型エポキシ樹脂のエポキシ樹脂の種類としては、ビスフェノール類のグリシジルエーテルが挙げられ、具体的にはビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、またはテトラブロモビスフェノールA型エポキシ樹脂などが挙げられる。ビスフェノール型エポキシ樹脂の場合、溶融時のガス発生量を低減しつつ、かつ、接着性に優れ、さらに、冷熱衝撃性、特にウェルド部を有する場合の冷熱衝撃性のみならず、TD方向の冷熱衝撃性にも優れる観点から、好ましくは2400〔g/eq.〕以下、より好ましくは2100〔g/eq.〕以下、さらに好ましくは1900〔g/eq.〕以下の範囲であり、かつ、流動性に優れる観点から、好ましくは100〔g/eq.〕以上、より好ましくは190〔g/eq.〕以上、さらに好ましくは210〔g/eq.〕以上の範囲である。 Examples of the epoxy resin of the bisphenol type epoxy resin include glycidyl ethers of bisphenols, specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, Examples thereof include bisphenol S type epoxy resin, bisphenol AD type epoxy resin, and tetrabromobisphenol A type epoxy resin. In the case of a bisphenol type epoxy resin, while reducing the amount of gas generated at the time of melting, it has excellent adhesiveness, and also has a thermal shock property, particularly a thermal shock property in the case of having a weld portion, as well as a thermal shock in the TD direction. From the viewpoint of excellent properties, it is preferably 2400 [g / eq. ], More preferably 2100 [g / eq. ], More preferably 1900 [g / eq. ] From the viewpoint of being in the following range and excellent in fluidity, it is preferably 100 [g / eq. ], More preferably 190 [g / eq. ], More preferably 210 [g / eq. ] The above range.
 また、前記ノボラック型エポキシ樹脂の種類としてはフェノール類とアルデヒドとの縮合反応により得られたノボラック型フェノール樹脂をエピハロヒドリンと反応させて得られるノボラック型エポキシ樹脂が挙げられ、具体例には、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂が挙げられる。エポキシ樹脂がノボラック型エポキシ樹脂の場合、溶融時のガス発生量を低減しつつ、かつ、接着性に優れ、さらに、冷熱衝撃性、特にウェルド部を有する場合の冷熱衝撃性のみならず、TD方向の冷熱衝撃性にも優れる観点から、好ましくは300〔g/eq.〕以下、より好ましくは250〔g/eq.〕以下の範囲であり、かつ、流動性に優れる観点から、好ましくは100〔g/eq.〕以上、より好ましくは190〔g/eq.〕以上の範囲である。 Examples of the novolac type epoxy resin include novolac type epoxy resins obtained by reacting novolac type phenol resins obtained by condensation reaction of phenols and aldehydes with epihalohydrin. Specific examples include phenol novolacs. Type epoxy resin, cresol novolak type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolak type epoxy resin, naphthol-cresol co-condensed novolak type epoxy resin, and brominated phenol novolak type epoxy resin. When the epoxy resin is a novolak type epoxy resin, the gas generation amount at the time of melting is reduced, and the adhesiveness is excellent. Furthermore, not only the thermal shock resistance, particularly the thermal shock resistance in the case of having a weld part, the TD direction From the viewpoint of excellent thermal shock resistance, it is preferably 300 [g / eq. ], More preferably 250 [g / eq. ] From the viewpoint of being in the following range and excellent in fluidity, it is preferably 100 [g / eq. ], More preferably 190 [g / eq. ] The above range.
 本発明に用いるエポキシ樹脂(B)は、上記の種々のものを1種または2種以上併用することができる。 As the epoxy resin (B) used in the present invention, one or more of the above-mentioned various types can be used in combination.
 本発明のポリアリーレンスルフィド樹脂組成物は、エポキシ基含有ポリオレフィン(C)を必須成分として配合する。 The polyarylene sulfide resin composition of the present invention contains an epoxy group-containing polyolefin (C) as an essential component.
 前記エポキシ基含有ポリオレフィンは、例えば、α-オレフィンの単独重合または異なるα-オレフィン同士の共重合により、さらに、官能基を付与する場合には、α-オレフィンと官能基を有するビニル重合性化合物との共重合により得ることができる。α-オレフィンは、例えば、エチレン、プロピレン及びブテン-1等の炭素原子数2~8の範囲のものが挙げられる。また、官能基としては、エポキシ基(グリシジル基)が挙げられる。 When the epoxy group-containing polyolefin further imparts a functional group, for example, by homopolymerization of α-olefin or copolymerization of different α-olefins, the α-olefin and the vinyl polymerizable compound having a functional group and Can be obtained by copolymerization. Examples of the α-olefin include those having 2 to 8 carbon atoms such as ethylene, propylene and butene-1. Moreover, an epoxy group (glycidyl group) is mentioned as a functional group.
 このような官能基を有するビニル重合性化合物の具体例としては、例えば、(メタ)アクリル酸及び(メタ)アクリル酸エステル等のα,β-不飽和カルボン酸及びそのアルキルエステル、マレイン酸、フマル酸、イタコン酸及びその他の炭素原子数4~10のα,β-不飽和ジカルボン酸及びその誘導体(モノ若しくはジエステル、及びその酸無水物等)、並びにグリシジル(メタ)アクリレート等が挙げられる。これらの中でも、上述したエポキシ基を有するエチレン-プロピレン共重合体及びエチレン-ブテン共重合体が、機械的強度、特に靭性及び耐衝撃性の向上の点から好ましい。 Specific examples of the vinyl polymerizable compound having such a functional group include α, β-unsaturated carboxylic acids such as (meth) acrylic acid and (meth) acrylic acid esters and alkyl esters thereof, maleic acid, fumaric acid, and the like. Examples thereof include acids, itaconic acid and other α, β-unsaturated dicarboxylic acids having 4 to 10 carbon atoms and derivatives thereof (mono- or diesters and acid anhydrides thereof), and glycidyl (meth) acrylate. Among these, the above-mentioned ethylene-propylene copolymer and ethylene-butene copolymer having an epoxy group are preferable from the viewpoint of improving mechanical strength, particularly toughness and impact resistance.
 本発明に用いるエポキシ基含有ポリオレフィン(C)は、上記の種々のものを1種または2種以上併用することができる。本発明に用いるエポキシ基含有ポリオレフィン(C)は、後述するポリアリーレンスルフィド樹脂組成物1g中における、エポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とが有するエポキシ基の合計の割合が所定量となるよう適宜調整しながら用いればよいが、溶融時のガス発生量を低減しつつ、かつ、接着性に優れ、さらに、冷熱衝撃性、特にウェルド部を有する場合の冷熱衝撃性のみならず、TD方向の冷熱衝撃性にも優れる観点から、エポキシ基含有ポリオレフィン(C)のエポキシ当量が、好ましくは5000〔g/eq.〕以下、より好ましくは4900〔g/eq.〕以下、さらに好ましくは4800〔g/eq.〕以下の範囲であり、かつ、流動性に優れる観点から、好ましくは1200〔g/eq.〕以上、より好ましくは1300〔g/eq.〕以上、さらに好ましくは1400〔g/eq.〕以上の範囲である。 As the epoxy group-containing polyolefin (C) used in the present invention, one or more of the above-mentioned various types can be used in combination. In the epoxy group-containing polyolefin (C) used in the present invention, the total proportion of epoxy groups of the epoxy resin (B) and the epoxy group-containing polyolefin (C) in 1 g of the polyarylene sulfide resin composition described later is a predetermined amount. It may be used while appropriately adjusting so as to be, while reducing the amount of gas generation at the time of melting, and excellent adhesiveness, in addition to the thermal shock resistance, especially when having a weld portion, From the viewpoint of excellent thermal shock resistance in the TD direction, the epoxy equivalent of the epoxy group-containing polyolefin (C) is preferably 5000 [g / eq. ], More preferably 4900 [g / eq. ], More preferably 4800 [g / eq. ] From the viewpoint of being in the following range and excellent in fluidity, preferably 1200 [g / eq. ], More preferably 1300 [g / eq. ], More preferably, 1400 [g / eq. ] The above range.
 本発明では、溶融時のガス発生量を低減しつつ、かつ、接着性に優れ、さらに、冷熱衝撃性、特にウェルド部を有する場合の冷熱衝撃性のみならず、TD方向の冷熱衝撃性にも優れる観点から、ポリアリーレンスルフィド樹脂組成物1g中における、エポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とが有するエポキシ基の合計の割合が25〔μmol〕以上の範囲であり、接着性および冷熱衝撃性、特にウェルド部を有する場合の冷熱衝撃性のみならず、TD方向の冷熱衝撃性がより向上する観点から30〔μmol〕以上の範囲が好ましく、35〔μmol〕以上の範囲がより好ましく、かつ、ガス発生量が低減でき、さらに流動性に優れる観点から300〔μmol〕以下の範囲であり、270〔μmol〕以下の範囲が好ましく、250〔μmol〕以下の範囲がより好ましい。 In the present invention, while reducing the amount of gas generated at the time of melting, it is excellent in adhesiveness, and further, not only thermal shock resistance, particularly in the case of having a weld part, but also in thermal shock resistance in the TD direction. From an excellent viewpoint, the total proportion of epoxy groups of the epoxy resin (B) and the epoxy group-containing polyolefin (C) in 1 g of the polyarylene sulfide resin composition is in the range of 25 [μmol] or more, and adhesion and From the viewpoint of improving not only the thermal shock property, particularly the thermal shock property in the case of having a weld portion, but also the thermal shock property in the TD direction, a range of 30 [μmol] or more is preferable, and a range of 35 [μmol] or more is more preferable. In addition, from the viewpoint of reducing the amount of gas generated and excellent fluidity, the range is 300 [μmol] or less, and the range of 270 [μmol] or less is preferred. The range of 250 [μmol] or less is more preferable.
 さらに、ポリアリーレンスルフィド樹脂組成物1g中における、エポキシ樹脂(B)が有するエポキシ基の割合が20〔μmol〕以上から250〔μmol〕以下の範囲であることがより好ましく、エポキシ基含有ポリオレフィン(C)が有するエポキシ基の割合が5〔μmol〕以上から50〔μmol〕以下の範囲であることがより好ましい。 Furthermore, it is more preferable that the ratio of the epoxy group of the epoxy resin (B) in 1 g of the polyarylene sulfide resin composition is in the range of 20 [μmol] to 250 [μmol], and the epoxy group-containing polyolefin (C It is more preferable that the ratio of the epoxy group possessed by () is in the range of 5 [μmol] to 50 [μmol].
 本発明のポリアリーレンスルフィド樹脂組成物におけるエポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)のそれぞれの配合割合は、ポリアリーレンスルフィド樹脂組成物1g中における、エポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とが有するエポキシ基の合計の割合が25〔μmol〕以上から300〔μmol〕以下の範囲となる配合割合でエポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とを配合すれば特に限定されないが、ポリアリーレンスルフィド樹脂100質量部に対して、エポキシ樹脂(B)は5質量部以上から30質量部以下の範囲であることが好ましく、エポキシ樹脂接着性、冷熱衝撃性の観点から7質量部以上の範囲であることがより好ましく、9質量部以上の範囲がさらに好ましく、かつ、冷熱衝撃性、ガス発生量の観点から28質量部以下の範囲であることがより好ましく、26質量部以下の範囲であることがさらに好ましい。また、同様に、エポキシ基含有ポリオレフィン(C)は5質量部以上から30質量部以下の範囲であることが好ましく、エポキシ樹脂接着性、冷熱衝撃性、耐衝撃性の観点から7質量部以上の範囲であることがより好ましく、9質量部以上の範囲がさらに好ましく、かつ、ガス発生量の観点から28質量部以下の範囲であることがより好ましく、26質量部以下の範囲であることがさらに好ましい。さらに、エポキシ接着性に優れ、かつ、冷熱衝撃性、特にウェルド部を有する場合の冷熱衝撃性のみならず、TD方向の冷熱衝撃性にも優れる観点から、エポキシ樹脂(B)が有するエポキシ基量は、エポキシ基含有ポリオレフィン(C)が有するエポキシ基量よりも多くなるように配合することが好ましい。 The blending ratios of the epoxy resin (B) and the epoxy group-containing polyolefin (C) in the polyarylene sulfide resin composition of the present invention are the same as the epoxy resin (B) and the epoxy group-containing polyolefin in 1 g of the polyarylene sulfide resin composition. Especially when the epoxy resin (B) and the epoxy group-containing polyolefin (C) are blended at a blending ratio in which the total proportion of epoxy groups possessed by (C) is in the range of 25 [μmol] to 300 [μmol]. Although not limited, it is preferable that the epoxy resin (B) is in the range of 5 parts by mass to 30 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin. From the viewpoint of epoxy resin adhesiveness and thermal shock resistance, 7 A range of more than 9 parts by mass is more preferred, and a range of more than 9 parts by mass is more preferred. And from the viewpoint of thermal shock resistance and gas generation amount, it is more preferably 28 parts by mass or less, and further preferably 26 parts by mass or less. Similarly, the epoxy group-containing polyolefin (C) is preferably in the range of 5 parts by mass or more and 30 parts by mass or less, and from the viewpoint of epoxy resin adhesion, thermal shock resistance, and impact resistance, it is 7 parts by mass or more. More preferred is a range, more preferred is a range of 9 parts by mass or more, and more preferred is a range of 28 parts by mass or less from the viewpoint of the amount of gas generated. preferable. Furthermore, the epoxy resin (B) has an epoxy group amount from the viewpoint of excellent epoxy adhesiveness and thermal shock resistance, particularly not only the thermal shock resistance in the case of having a weld portion, but also excellent thermal shock resistance in the TD direction. Is preferably blended so as to be larger than the epoxy group amount of the epoxy group-containing polyolefin (C).
 本発明に用いるポリアリーレンスルフィド樹脂組成物は、ガラス繊維(D1)を必須成分として配合してなる。 The polyarylene sulfide resin composition used in the present invention comprises glass fiber (D1) as an essential component.
 ガラス繊維としては、射出成形用コンパウンド向けに用いられるチョップドストランドが好ましく用いられる。繊維径、繊維長は本発明の効果を損ねない範囲であれば特に限定されないが、繊維径(直径)が3μm以上から20μm以下の範囲が好ましく、6μm以上から13μm以下の範囲がより好ましい。ガラス繊維の長さは任意であるが、成形品の機械的性質と変形との兼ね合いにより、成形品の変形量を小さくする為には短い方が好ましいが、機械的強度の面からは平均繊維長が少なくとも30μm以上で長い方が好ましく、要求される性能に応じて適宜選択される。通常は50μm以上から2000μm以下の範囲が好ましい。ガラス繊維の断面形状について制限はなく、通常、丸形が用いられるが、成形品のそりを抑える場合には扁平形、まゆ形、長円形、楕円形、半円若しくは円弧形、矩形又はこれらの類似形状の断面形状が好ましく、特に扁平形の断面形状であることがより好ましい。 As the glass fiber, chopped strands used for injection molding compounds are preferably used. The fiber diameter and fiber length are not particularly limited as long as the effects of the present invention are not impaired, but the fiber diameter (diameter) is preferably in the range of 3 μm to 20 μm, more preferably in the range of 6 μm to 13 μm. Although the length of the glass fiber is arbitrary, it is preferable to reduce the amount of deformation of the molded product due to the balance between the mechanical properties and deformation of the molded product, but the average fiber is preferred in terms of mechanical strength. The length is preferably at least 30 μm and longer, and is appropriately selected according to the required performance. Usually, the range of 50 μm to 2000 μm is preferable. There is no restriction on the cross-sectional shape of the glass fiber, and a round shape is usually used. A similar cross-sectional shape is preferable, and a flat cross-sectional shape is particularly preferable.
 本発明に用いるガラス繊維にはシランカップリング剤等で予め処理されたものを用いることが好ましい。 The glass fiber used in the present invention is preferably pretreated with a silane coupling agent or the like.
 ガラス繊維の配合割合は、ポリアリーレンスルフィド樹脂100質量部に対して、10質量部以上から350質量部以下の範囲であることが好ましく、耐熱性、機械的強度、特に冷熱衝撃性が向上する観点から20質量部以上の範囲であることがより好ましく、30質量部以上の範囲であることがさらに好ましく、かつ、寸法安定性、流動性が向上する観点から100質量部以下の範囲であることがより好ましく、80質量部以下の範囲であることがさらに好ましい。 The blending ratio of the glass fibers is preferably in the range of 10 to 350 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin, and the viewpoint of improving heat resistance, mechanical strength, particularly thermal shock resistance. Is more preferably in the range of 20 parts by mass or more, more preferably in the range of 30 parts by mass or more, and from the viewpoint of improving dimensional stability and fluidity, it is in the range of 100 parts by mass or less. More preferably, the range is 80 parts by mass or less.
 本発明に用いるポリアリーレンスルフィド樹脂組成物は、ガラスフレーク(D2)を必須成分として配合してなる。 The polyarylene sulfide resin composition used in the present invention contains glass flakes (D2) as an essential component.
 本発明で用いるガラスフレークは、鱗片状のガラスフィラーであれば公知のものを用いることができるが、このうち、平均粒径が10μm以上から4000μm以下の範囲であり、および/または、平均厚みが0.1μm以上から20μm以下の範囲の鱗片状ガラスであるものが好ましく、耐透湿性および表面外観性に優れる点から、平均粒径が100μm以上から300μm以下の範囲であり、および/または平均厚みが2μm以上から10μm以下の範囲のものを用いることが好ましい。平均粒径が100μm以上および/または平均厚みが2μm以上のものを用いた場合には、成形品の表面に鱗片状ガラスフレークがガラス繊維を伴って浮くために発生する表面外観性の低下を抑制することができ、一方、平均粒径が300μm以下および/または平均厚みが10μm以下のものを用いた場合にも、溶融混練時に鱗片状ガラスフレークの一部が破砕され、小粒径のものが形成されやすくなる結果、ガラス繊維を伴って成形品表面に浮き、表面外観性を損ねる現象を抑制することができるため好ましい。 As the glass flakes used in the present invention, known glass flakes can be used as long as they are scale-like glass fillers. Among these, the average particle diameter is in the range of 10 μm to 4000 μm and / or the average thickness is. What is a glass flake in the range of 0.1 μm or more to 20 μm or less is preferable, and the average particle diameter is in the range of 100 μm or more to 300 μm or less and / or the average thickness from the viewpoint of excellent moisture permeability and surface appearance. Is preferably in the range of 2 μm to 10 μm. When the average particle size is 100 μm or more and / or the average thickness is 2 μm or more, it suppresses the deterioration of the surface appearance that occurs because the glass flakes float with glass fibers on the surface of the molded product On the other hand, even when an average particle size of 300 μm or less and / or an average thickness of 10 μm or less is used, part of the glass flakes is crushed during melt kneading, As a result of being easily formed, the phenomenon of floating on the surface of the molded article with glass fibers and impairing the surface appearance is preferable.
 なお、本発明において、平均粒径、平均厚みはレーザー光回折法によって測定された累積粒度分布曲線より得られる累積度50%粒度を意味する。 In the present invention, the average particle size and the average thickness mean a particle size of 50% cumulative degree obtained from a cumulative particle size distribution curve measured by a laser light diffraction method.
 本発明に用いるガラスフレークにはシランカップリング剤等で予め処理されたものを用いることが好ましい。 The glass flakes used in the present invention are preferably pretreated with a silane coupling agent or the like.
 本発明はこのような鱗片状のガラスフレークを用いて成形品中に分散させることにより、流動方向・直角方向の線膨張係数を小さくさせ、低温と高温を繰り返す冷熱衝撃性を向上させることができる。 In the present invention, by using such scaly glass flakes to be dispersed in a molded product, the linear expansion coefficient in the flow direction and the right-angle direction can be reduced, and the thermal shock resistance of repeating low and high temperatures can be improved. .
 ガラスフレークの配合割合は、ポリアリーレンスルフィド樹脂100質量部に対して、接着性、耐熱性、機械的強度、冷熱衝撃性、特にウェルド部を有する場合の冷熱衝撃性のみならず、TD方向の冷熱衝撃性にも優れる観点と、寸法安定性が向上する観点から、1質量部以上の範囲であることが好ましく、20質量部以上の範囲であることがより好ましく、30質量部以上の範囲であることがさらに好ましい。一方、機械的強度、成形性が向上する観点から、250質量部以下の範囲が好ましく、100質量部以下の範囲がより好ましく、80質量部以下の範囲であることがさらに好ましい。 The blending ratio of the glass flakes is not only the adhesiveness, heat resistance, mechanical strength, thermal shock resistance, particularly the thermal shock resistance in the case of having a weld part, but also cooling in the TD direction with respect to 100 parts by mass of the polyarylene sulfide resin. From the viewpoint of excellent impact properties and from the viewpoint of improving dimensional stability, it is preferably in the range of 1 part by mass or more, more preferably in the range of 20 parts by mass or more, and in the range of 30 parts by mass or more. More preferably. On the other hand, from the viewpoint of improving mechanical strength and moldability, a range of 250 parts by mass or less is preferable, a range of 100 parts by mass or less is more preferable, and a range of 80 parts by mass or less is more preferable.
 ガラス繊維とガラスフレークの配合割合は、本発明の効果を奏する範囲であれば特に限定されないが、機械的強度が向上する観点からガラスフレークよりガラス繊維の配合割合が多いことが好ましく、一方で、寸法安定性が向上する観点からガラス繊維よりガラスフレークの配合割合が多いことが好ましい。 The blending ratio of the glass fiber and the glass flake is not particularly limited as long as the effect of the present invention is achieved, but it is preferable that the blending ratio of the glass fiber is larger than the glass flake from the viewpoint of improving the mechanical strength, From the viewpoint of improving the dimensional stability, it is preferable that the blending ratio of the glass flake is larger than that of the glass fiber.
 本発明に用いるポリアリーレンスルフィド樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、ガラス繊維(D1)とガラスフレーク(D2)以外の充填剤(以下、単に「他の充填剤」という)を任意成分として含有することができる。これら他の充填剤としては本発明の効果を損なうものでなければ公知慣用の材料を用いることもでき、例えば、繊維状のものや、粒状や板状などの非繊維状のものなど、さまざまな形状の充填剤等が挙げられる。具体的には、炭素繊維、シランガラス繊維、セラミック繊維、アラミド繊維、金属繊維、チタン酸カリウム、炭化珪素、珪酸カルシウム、ワラストナイト等の繊維、天然繊維等の繊維状充填剤が使用でき、またガラスビーズ、硫酸バリウム、クレー、パイロフィライト、ベントナイト、セリサイト、マイカ、タルク、アタパルジャイト、フェライト、珪酸カルシウム、炭酸カルシウム、炭酸マグネシウム、ガラスビーズ、ゼオライト、ミルドファイバー、硫酸カルシウム等の非繊維状充填剤も使用できる。 The polyarylene sulfide resin composition used in the present invention is a filler other than the glass fibers (D1) and the glass flakes (D2) as necessary, as long as the effects of the present invention are not impaired. (Referred to as “agent”) as an optional component. As these other fillers, known and conventional materials can be used as long as they do not impair the effects of the present invention. For example, various fillers such as fibrous ones and non-fibrous ones such as granular or plate-like ones can be used. Examples of the filler are shapes. Specifically, fibrous fillers such as carbon fibers, silane glass fibers, ceramic fibers, aramid fibers, metal fibers, potassium titanate, silicon carbide, calcium silicate, wollastonite, and natural fibers can be used. Also non-fibrous such as glass beads, barium sulfate, clay, pyrophyllite, bentonite, sericite, mica, talc, attapulgite, ferrite, calcium silicate, calcium carbonate, magnesium carbonate, glass beads, zeolite, milled fiber, calcium sulfate Fillers can also be used.
 本発明において他の充填剤は必須成分ではなく、添加する場合、その含有量は本発明の効果を損ねなければ特に限定されるものではない。他の充填剤の含有量としては例えば、ポリアリーレンスルフィド樹脂(A)100質量部に対して、好ましくは1質量部以上、より好ましくは10質量部以上から、好ましくは600質量部、より好ましくは200質量部以下の範囲である。かかる範囲において、樹脂組成物が良好な機械的強度と成形性を示すため好ましい。 In the present invention, other fillers are not essential components, and when added, the content is not particularly limited as long as the effects of the present invention are not impaired. The content of the other filler is, for example, preferably 1 part by mass or more, more preferably 10 parts by mass or more, preferably 600 parts by mass, more preferably 100 parts by mass relative to 100 parts by mass of the polyarylene sulfide resin (A). The range is 200 parts by mass or less. In such a range, the resin composition is preferable because it exhibits good mechanical strength and moldability.
 本発明に用いるポリアリーレンスルフィド樹脂組成物は、本発明の効果を奏する範囲で、必要に応じて、シランカップリング剤を任意成分として含有することができる。シランカップリング剤としては、本発明の効果を損ねなければ特に限定されないが、カルボキシ基と反応する官能基、例えば、エポキシ基、イソシアナト基、アミノ基または水酸基を有するシランカップリング剤が好ましいものとして挙げられる。このようなシランカップリング剤としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有アルコキシシラン化合物、γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルトリエトキシシラン、γ-イソシアナトプロピルメチルジメトキシシラン、γ-イソシアナトプロピルメチルジエトキシシラン、γ-イソシアナトプロピルエチルジメトキシシラン、γ-イソシアナトプロピルエチルジエトキシシラン、γ-イソシアナトプロピルトリクロロシラン等のイソシアナト基含有アルコキシシラン化合物、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン等のアミノ基含有アルコキシシラン化合物、γ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルトリエトキシシラン等の水酸基含有アルコキシシラン化合物が挙げられる。これらのアルコキシシラン化合物は官能基を介してポリアリーレンスルフィドポリマーと反応し、見かけ上の分子量をさせることができるため好ましい。本発明においてシランカップリング剤は必須成分ではないが、添加する場合、その配合量は、本発明の効果を損ねなければその添加量は特に限定されないが、ポリアリーレンスルフィド樹脂(A)100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上から、好ましくは10質量部以下、より好ましくは5質量部以下の範囲である。かかる範囲において、樹脂組成物が良好な耐コロナ性と成形性、特に離形性を有し、かつ成形品がエポキシ樹脂と優れた接着性を呈しつつ、さらに機械的強度が向上するため好ましい。 The polyarylene sulfide resin composition used in the present invention can contain a silane coupling agent as an optional component, if necessary, within the range where the effects of the present invention are exhibited. The silane coupling agent is not particularly limited as long as the effects of the present invention are not impaired, but a silane coupling agent having a functional group that reacts with a carboxy group, for example, an epoxy group, an isocyanato group, an amino group, or a hydroxyl group is preferable. Can be mentioned. Examples of such silane coupling agents include epoxy groups such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Containing alkoxysilane compounds, γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, γ-isocyanatopropylethyldimethoxysilane , Γ-isocyanatopropylethyldiethoxysilane, isocyanato group-containing alkoxysilane compounds such as γ-isocyanatopropyltrichlorosilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ- ( -Aminoethyl) Amino group-containing alkoxysilane compounds such as aminopropyltrimethoxysilane and γ-aminopropyltrimethoxysilane, and hydroxyl group-containing alkoxysilane compounds such as γ-hydroxypropyltrimethoxysilane and γ-hydroxypropyltriethoxysilane. It is done. These alkoxysilane compounds are preferred because they can react with the polyarylene sulfide polymer via a functional group to give an apparent molecular weight. In the present invention, the silane coupling agent is not an essential component, but when it is added, the amount added is not particularly limited as long as the effects of the present invention are not impaired, but the polyarylene sulfide resin (A) is 100 parts by mass. Is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, preferably 10 parts by mass or less, more preferably 5 parts by mass or less. Within such a range, the resin composition is preferable because it has good corona resistance and moldability, in particular, releasability, and the molded product exhibits excellent adhesiveness with the epoxy resin and further improves the mechanical strength.
 本発明に用いるポリアリーレンスルフィド樹脂組成物は、本発明の効果を奏する範囲で、必要に応じて、エポキシ基含有ポリオレフィン(C)以外の熱可塑性エラストマーを任意成分として含有することができる。熱可塑性エラストマーとしては、ポリオレフィン系エラストマー、弗素系エラストマーまたはシリコーン系エラストマーが挙げられ、このうちポリオレフィン系エラストマーが好ましいものとして挙げられる。これらのエラストマーを添加する場合、その含有量は、本発明の効果を損ねなければ特に限定されないが、ポリアリーレンスルフィド樹脂(A)100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上から、好ましくは10質量部以下、より好ましくは5質量部以下の範囲である。かかる範囲において、得られるポリアリーレンスルフィド樹脂組成物の耐衝撃性が向上するため好ましい。 The polyarylene sulfide resin composition used in the present invention can contain a thermoplastic elastomer other than the epoxy group-containing polyolefin (C) as an optional component, as necessary, within the range where the effects of the present invention are exhibited. Examples of the thermoplastic elastomer include polyolefin-based elastomers, fluorine-based elastomers, and silicone-based elastomers. Among these, polyolefin-based elastomers are preferable. When these elastomers are added, the content is not particularly limited as long as the effects of the present invention are not impaired, but with respect to 100 parts by mass of the polyarylene sulfide resin (A), preferably 0.01 parts by mass or more. The range is preferably 0.1 parts by mass or more, preferably 10 parts by mass or less, more preferably 5 parts by mass or less. Within such a range, the resulting polyarylene sulfide resin composition is preferred because the impact resistance is improved.
 前記ポリオレフィン系エラストマーは、例えば、α-オレフィンの単独重合または異なるα-オレフィン同士の共重合により、さらに、官能基を付与する場合には、α-オレフィンと官能基を有するビニル重合性化合物との共重合により得ることができる。α-オレフィンは、例えば、エチレン、プロピレン及びブテン-1等の炭素原子数2~8の範囲のものが挙げられる。また、官能基としては、エポキシ基以外の官能基であれば特に限定されず公知のものが挙げられ、カルボキシ基、式-(CO)O(CO)-で表される酸無水物基、それらのエステル、アミノ基、水酸基、メルカプト基、イソシアネート基、またはオキサゾリン基などが挙げられる。 The polyolefin-based elastomer is obtained by, for example, homopolymerization of α-olefin or copolymerization of different α-olefins with a functionalized vinyl polymerizable compound in the case of further adding a functional group. It can be obtained by copolymerization. Examples of the α-olefin include those having 2 to 8 carbon atoms such as ethylene, propylene and butene-1. The functional group is not particularly limited as long as it is a functional group other than an epoxy group, and examples thereof include carboxy groups, acid anhydride groups represented by the formula — (CO) O (CO) —, those Ester, amino group, hydroxyl group, mercapto group, isocyanate group, or oxazoline group.
 このような官能基を有するビニル重合性化合物の具体例としては、例えば、(メタ)アクリル酸及び(メタ)アクリル酸エステル等のα,β-不飽和カルボン酸及びそのアルキルエステル、マレイン酸、フマル酸、イタコン酸及びその他の炭素原子数4~10のα,β-不飽和ジカルボン酸及びその誘導体(モノ若しくはジエステル、及びその酸無水物等)、並びにグリシジル(メタ)アクリレート等が挙げられる。これらの中でも、上述したエポキシ基、カルボキシ基、及び、該酸無水物基からなる群から選ばれる少なくとも1種の官能基を有するエチレン-プロピレン共重合体及びエチレン-ブテン共重合体が、機械的強度、特に靭性及び耐衝撃性の向上の点から好ましい。 Specific examples of the vinyl polymerizable compound having such a functional group include α, β-unsaturated carboxylic acids such as (meth) acrylic acid and (meth) acrylic acid esters and alkyl esters thereof, maleic acid, fumaric acid, and the like. Examples thereof include acids, itaconic acid and other α, β-unsaturated dicarboxylic acids having 4 to 10 carbon atoms and derivatives thereof (mono- or diesters and acid anhydrides thereof), and glycidyl (meth) acrylate. Among these, an ethylene-propylene copolymer and an ethylene-butene copolymer having at least one functional group selected from the group consisting of the above-described epoxy group, carboxy group, and acid anhydride group are mechanically selected. It is preferable from the viewpoint of improving strength, particularly toughness and impact resistance.
 更に、本発明に用いるポリアリーレンスルフィド樹脂組成物は、本発明の効果を損なわない範囲で、エポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)以外の樹脂を任意成分として配合することができる。そのような樹脂としては、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリアリーレン樹脂、ポリエチレン樹脂(エポキシ基含有ポリオレフィン(C)を除く)、ポリプロピレン樹脂(エポキシ基含有ポリオレフィン(C)を除く)、ポリ四弗化エチレン樹脂、ポリ二弗化エチレン樹脂、ポリスチレン樹脂、ABS樹脂、ウレタン樹脂、液晶ポリマー等の合成樹脂などを任意成分として含有することができる。また、これらの樹脂の含有量は、それぞれの目的に応じて異なり、一概に規定することはできないが、ポリアリーレンスルフィド樹脂(A)100質量部に対して0.01質量部以上から1000質量部以下の範囲で、本発明の効果を損なわないよう目的や用途に応じて適宜調整して用いればよい。 Furthermore, the polyarylene sulfide resin composition used in the present invention can contain a resin other than the epoxy resin (B) and the epoxy group-containing polyolefin (C) as an optional component within a range not impairing the effects of the present invention. Such resins include polyester resins, polyamide resins, polyimide resins, polyetherimide resins, polycarbonate resins, polyphenylene ether resins, polysulfone resins, polyether sulfone resins, polyether ether ketone resins, polyether ketone resins, polyarylenes. Resin, polyethylene resin (excluding epoxy group-containing polyolefin (C)), polypropylene resin (excluding epoxy group-containing polyolefin (C)), polytetrafluoroethylene resin, polydifluoroethylene resin, polystyrene resin, ABS resin, Synthetic resins such as urethane resins and liquid crystal polymers can be contained as optional components. In addition, the content of these resins varies depending on the purpose and cannot be specified unconditionally, but from 0.01 parts by mass to 1000 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin (A). In the following range, it may be appropriately adjusted according to the purpose and use so as not to impair the effects of the present invention.
 また本発明に用いるポリアリーレンスルフィド樹脂組成物は、本発明の効果を損なわない範囲で、その他にも着色剤、帯電防止剤、酸化防止剤、耐熱安定剤、紫外線安定剤、紫外線吸収剤、発泡剤、難燃剤、難燃助剤、防錆剤、離型剤等の公知慣用の添加剤を必要に応じ、任意成分として含有してもよい。これらの添加剤は必須成分ではなく、例えば、ポリアリーレンスルフィド樹脂(A)100質量部に対して、好ましくは0.01質量部以上から1000質量部以下の範囲で、本発明の効果を損なわないよう目的や用途に応じて適宜調整して用いればよい。 In addition, the polyarylene sulfide resin composition used in the present invention is a colorant, an antistatic agent, an antioxidant, a heat stabilizer, an ultraviolet stabilizer, an ultraviolet absorber, foaming, as long as the effects of the present invention are not impaired. You may contain well-known and usual additives, such as an agent, a flame retardant, a flame retardant adjuvant, a rust preventive agent, and a mold release agent, as an arbitrary component as needed. These additives are not essential components. For example, with respect to 100 parts by mass of the polyarylene sulfide resin (A), the effect of the present invention is not impaired, preferably in the range of 0.01 parts by mass to 1000 parts by mass. It may be used by appropriately adjusting according to the purpose and application.
 他の離型剤としては、例えばカルナバワックス等の天然ワックス、ステアリン酸亜鉛等の高級脂肪酸の金属塩類、酸化ないし非酸化ポリエチレンワックス等のポリオレフィンワックスが挙げられる。 Examples of other mold release agents include natural waxes such as carnauba wax, metal salts of higher fatty acids such as zinc stearate, and polyolefin waxes such as oxidized or non-oxidized polyethylene wax.
 本発明に用いるエポキシ樹脂やエポキシ基含有ポリオレフィンは、フェノール樹脂やアミン(活性水素化合物)、カルボン酸無水物といった、いわゆる硬化剤として作用する成分(以下、硬化剤作用成分という)が存在すると溶融混練時に硬化反応(活性水素化合物との付加反応、酸無水物との共重縮合反応)によりエポキシ基が消失するため、ポリアリーレンスルフィド樹脂組成物中の硬化剤作用成分の割合が、エポキシ樹脂成分中のエポキシ基の合計1当量に対して、硬化剤作用成分中の活性基が0.1当量以下、より好ましくは0.01当量以下、最も好ましくは0当量、すなわち不存在(検出限界量以下)である。 The epoxy resin or epoxy group-containing polyolefin used in the present invention is melt kneaded in the presence of a component acting as a so-called curing agent (hereinafter referred to as a curing agent acting component) such as a phenol resin, an amine (active hydrogen compound), or a carboxylic acid anhydride. Sometimes the epoxy group disappears due to curing reaction (addition reaction with active hydrogen compound, copolycondensation reaction with acid anhydride), so the proportion of curing agent active component in polyarylene sulfide resin composition is in the epoxy resin component The active group in the curing agent working component is 0.1 equivalent or less, more preferably 0.01 equivalent or less, and most preferably 0 equivalent, that is, absent (less than the detection limit amount) with respect to 1 epoxy group in total. It is.
 本発明に用いるポリアリーレンスルフィド樹脂組成物は、ポリアリーレンスルフィド樹脂(A)とエポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とガラス繊維(D1)とガラスフレーク(D2)とを必須成分として、ポリアリーレンスルフィド樹脂(A)の融点以上で溶融混練する工程を含む製造方法により得られる。 The polyarylene sulfide resin composition used in the present invention comprises polyarylene sulfide resin (A), epoxy resin (B), epoxy group-containing polyolefin (C), glass fiber (D1), and glass flake (D2) as essential components. The polyarylene sulfide resin (A) is obtained by a production method including a step of melt-kneading at a melting point or higher.
 本発明に用いるポリアリーレンスルフィド樹脂組成物の好ましい製造方法は、上述した含有量となるよう、ポリアリーレンスルフィド樹脂(A)と、エポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とガラスフレーク(D2)の各必須成分と、必要に応じて、上述した他の充填剤、添加剤などの任意成分を、粉末、ペレット、細片など様々な形態でリボンブレンター、ヘンシェルミキサー、Vブレンダーなどに投入してドライブレンドした後、バンバリーミキサー、ミキシングロール、単軸または2軸の押出機およびニーダーなどの公知の溶融混練機に投入し、ガラス繊維(D1)を溶融押出機のサイドフィーダーから該押出機内に投入することが分散性および繊維の破損を抑制する観点から好ましい。また、押出機内の樹脂温度がポリアリーレンスルフィド樹脂の融点以上、好ましくは融点+10℃以上、より好ましくは融点+10℃以上、さらに好ましくは融点+20℃以上から、好ましくは融点+100℃以下、より好ましくは融点+50℃以下となる温度範囲で溶融混練する工程を経て製造することができる。溶融混練機への各成分の添加、混合は同時に行ってもよいし、分割して行っても良い。 A preferred method for producing the polyarylene sulfide resin composition used in the present invention is that the polyarylene sulfide resin (A), the epoxy resin (B), the epoxy group-containing polyolefin (C) and the glass flakes ( Each component of D2) and optional components such as other fillers and additives as described above can be used in various forms such as powders, pellets, strips, etc. for ribbon blenders, Henschel mixers, V blenders, etc. After being charged and dry blended, it is charged into a known melt kneader such as a Banbury mixer, a mixing roll, a single or twin screw extruder and a kneader, and the glass fiber (D1) is extruded from the side feeder of the melt extruder. It is preferable to put in the machine from the viewpoint of suppressing dispersibility and fiber breakage. Further, the resin temperature in the extruder is not less than the melting point of the polyarylene sulfide resin, preferably not less than the melting point + 10 ° C., more preferably not less than the melting point + 10 ° C., more preferably not less than the melting point + 20 ° C., preferably not more than the melting point + 100 ° C., more preferably It can be manufactured through a step of melt kneading in a temperature range of melting point + 50 ° C. or less. Addition and mixing of each component to the melt kneader may be performed simultaneously or may be performed separately.
 前記溶融混練機としては分散性や生産性の観点から二軸混練押出機が好ましく、例えば、樹脂成分の吐出量5(kg/hr)以上から、500(kg/hr)以下の範囲と、スクリュー回転数50(rpm)以上から、500(rpm)以下の範囲とを適宜調整しながら溶融混練することが好ましく、それらの比率(吐出量/スクリュー回転数)が0.02(kg/hr/rpm)以上から、5(kg/hr/rpm)以下の範囲となる条件下に溶融混練することがさらに好ましい。また、サイドフィーダーの位置は、前記二軸混練押出機のスクリュー全長に対する、該押出機樹脂投入部から該サイドフィーダーまでの距離の比率が、好ましくは0.1以上、より好ましくは0.3以上から、好ましくは0.9以下、より好ましくは0.7以下の範囲である。 The melt kneader is preferably a biaxial kneader / extruder from the viewpoints of dispersibility and productivity. For example, a resin component discharge rate ranging from 5 (kg / hr) to 500 (kg / hr) or less, a screw It is preferable to melt-knead while adjusting the rotation speed from 50 (rpm) to 500 (rpm) as appropriate, and the ratio (discharge amount / screw rotation speed) is 0.02 (kg / hr / rpm). ) From the above, it is more preferable to melt-knead under conditions that are in the range of 5 (kg / hr / rpm) or less. The position of the side feeder is such that the ratio of the distance from the extruder resin charging part to the side feeder with respect to the total screw length of the biaxial kneading extruder is preferably 0.1 or more, more preferably 0.3 or more. Therefore, the range is preferably 0.9 or less, more preferably 0.7 or less.
 このように溶融混練して得られる本発明に用いるポリアリーレンスルフィド樹脂組成物は、必須成分であるポリアリーレンスルフィド樹脂(A)とエポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とガラス繊維(D1)とガラスフレーク(D2)と、必要に応じて加える任意成分およびそれらの由来成分を含む溶融混合物であり、該溶融混練後に、公知の方法でペレット、チップ、顆粒、粉末等の形態に加工してから、必要に応じて100℃以上から150℃以下の温度で予備乾燥を施して、各種成形に供することが好ましい。 Thus, the polyarylene sulfide resin composition used in the present invention obtained by melt-kneading is composed of the essential components polyarylene sulfide resin (A), epoxy resin (B), epoxy group-containing polyolefin (C) and glass fiber ( D1), glass flakes (D2), and a molten mixture containing optional components to be added as necessary and components derived from them, and after the melt-kneading, they are processed into pellets, chips, granules, powders and the like by known methods Then, it is preferable to perform preliminary drying at a temperature of 100 ° C. or higher and 150 ° C. or lower as necessary to provide various types of molding.
 上記製造方法により製造される本発明に用いるポリアリーレンスルフィド樹脂組成物は、ポリアリーレンスルフィド樹脂をマトリックスとし、当該マトリックス中に、必須成分であるエポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とガラス繊維(D1)とガラスフレーク(D2)と、それらに由来する成分、必要に応じて添加する任意成分が分散したモルフォロジーを形成する。その結果、ポリアリーレンスルフィド樹脂成形品が優れたエポキシ樹脂接着性、耐熱性、機械的強度、冷熱衝撃性、さらに寸法安定性に優れたものとすることができる。 The polyarylene sulfide resin composition used in the present invention produced by the above production method has a polyarylene sulfide resin as a matrix, and the epoxy resin (B) and the epoxy group-containing polyolefin (C) as essential components in the matrix. A glass fiber (D1), glass flake (D2), a component derived therefrom, and a morphology in which an optional component added as necessary is dispersed are formed. As a result, the polyarylene sulfide resin molded article can have excellent epoxy resin adhesion, heat resistance, mechanical strength, thermal shock resistance, and dimensional stability.
 本発明の成形品は、前記ポリアリーレンスルフィド樹脂組成物を溶融成形することにより得られる。溶融成形としては一般的な方法で良く、射出成形、インサート成形、圧縮成形、コンポジット、シート、パイプなどの押出成形、引抜成形、ブロー成形、トランスファー成形など各種成形に供することが可能であるが、特に離形性にも優れるため射出成形用途に適している。射出成形や、インサート成形にて成形する場合、各種成形条件は特に限定されず、通常一般的な方法にて成形することができる。例えば、射出成形機内で、樹脂温度がポリアリーレンスルフィド樹脂の融点以上、好ましくは該融点+10℃以上、より好ましくは融点+10℃以上、さらに好ましくは融点+20℃以上から、好ましくは融点+100℃以下、より好ましくは融点+50℃以下の温度範囲で前記ポリアリーレンスルフィド樹脂組成物を溶融する工程を経た後、樹脂吐出口よりを金型内に注入して成形すればよい。その際、金型温度も公知の温度範囲、例えば、室温(23℃)以上、好ましくは120℃以上から、好ましくは300℃以下、より好ましくは180℃以下の範囲に設定すればよい。 The molded article of the present invention can be obtained by melt-molding the polyarylene sulfide resin composition. As a melt molding, a general method may be used, which can be used for various moldings such as injection molding, insert molding, compression molding, extrusion molding of composites, sheets, pipes, pultrusion molding, blow molding, transfer molding, In particular, it is excellent in releasability, so it is suitable for injection molding applications. In the case of molding by injection molding or insert molding, various molding conditions are not particularly limited, and can be usually molded by a general method. For example, in an injection molding machine, the resin temperature is equal to or higher than the melting point of the polyarylene sulfide resin, preferably the melting point + 10 ° C. or higher, more preferably the melting point + 10 ° C. or higher, more preferably the melting point + 20 ° C. or higher, preferably the melting point + 100 ° C. or lower. More preferably, after the step of melting the polyarylene sulfide resin composition in the temperature range of the melting point + 50 ° C. or lower, the resin discharge port may be injected into the mold and molded. At that time, the mold temperature may be set to a known temperature range, for example, room temperature (23 ° C.) or higher, preferably 120 ° C. or higher, preferably 300 ° C. or lower, more preferably 180 ° C. or lower.
 本発明に用いるポリアリーレンスルフィド樹脂成形品は、接着性、すなわち、エポキシ樹脂を含む硬化性樹脂組成物との接着性に優れる。ここで言うエポキシ樹脂を含む硬化性樹脂組成物とは、エポキシ樹脂と硬化剤とを混合して得られる組成物であることが好ましい。 The polyarylene sulfide resin molded product used in the present invention is excellent in adhesiveness, that is, adhesiveness with a curable resin composition containing an epoxy resin. Here, the curable resin composition containing an epoxy resin is preferably a composition obtained by mixing an epoxy resin and a curing agent.
 本発明において用いる前記エポキシ樹脂としては、本発明の効果を損ねなければ特に限定されず、たとえば、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂やポリアリーレンエーテル構造(α)を有するエポキシ樹脂などが挙げられ、このうち、接着性に優れることからビスフェノール型エポキシ樹脂が好ましいものとして挙げられる。 The epoxy resin used in the present invention is not particularly limited as long as the effects of the present invention are not impaired, and examples thereof include bisphenol type epoxy resins, novolac type epoxy resins, and epoxy resins having a polyarylene ether structure (α). Of these, bisphenol-type epoxy resins are preferred because of their excellent adhesiveness.
 前記ビスフェノール型エポキシ樹脂のエポキシ樹脂の種類としては、ビスフェノール類のグリシジルエーテルが挙げられ、具体的にはビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、またはテトラブロモビスフェノールA型エポキシ樹脂などが挙げられる。 Examples of the epoxy resin of the bisphenol type epoxy resin include glycidyl ethers of bisphenols, specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, Examples thereof include bisphenol S type epoxy resin, bisphenol AD type epoxy resin, and tetrabromobisphenol A type epoxy resin.
 また、前記ノボラック型エポキシ樹脂の種類としてはフェノール類とアルデヒドとの縮合反応により得られたノボラック型フェノール樹脂をエピハロヒドリンと反応させて得られるノボラック型エポキシ樹脂が挙げられ、具体例には、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂が挙げられる。 Examples of the novolac type epoxy resin include novolac type epoxy resins obtained by reacting novolac type phenol resins obtained by condensation reaction of phenols and aldehydes with epihalohydrin. Specific examples include phenol novolacs. Type epoxy resin, cresol novolak type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolak type epoxy resin, naphthol-cresol co-condensed novolak type epoxy resin, and brominated phenol novolak type epoxy resin.
 本発明に用いる硬化性樹脂組成物に含まれるこれらのエポキシ樹脂は、硬化剤により硬化反応させ使用されることが好ましい。当該硬化剤としては、一般にエポキシ樹脂の硬化剤として用いられるものであれば特に制限されるものではないが、例えば、アミン型硬化剤、フェノール樹脂型硬化剤、酸無水物型硬化剤、潜在性硬化剤等が挙げられる。 These epoxy resins contained in the curable resin composition used in the present invention are preferably used after being cured with a curing agent. The curing agent is not particularly limited as long as it is generally used as a curing agent for epoxy resins. For example, an amine type curing agent, a phenol resin type curing agent, an acid anhydride type curing agent, and a latent property. Examples thereof include a curing agent.
 アミン型硬化剤としては、公知のものを用いることができ、脂肪族ポリアミン、芳香族ポリアミン、複素環式ポリアミン等やそれらのエポキシ付加物、マンニッヒ変性化物、ポリアミドの変性物を用いることができる。具体的には、ジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタミン、m-キシレンジアミン、トリメチルへキサメチレンジアミン、2-メチルペンタメチレンジアミン、イソフォロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン、ジアミノジフェニルメタン、m-フェニレンジアミン、ジアミノジフェニルスルホン、ジエチルトルエンジアミン、トリメチレンビス(4-アミノベンゾエート)、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート等が挙げられる。このうち、硬化性に優れることから、m-キシレンジアミン、1,3-ビスアミノメチルシクロヘキサンが特に好ましいものとして挙げられる。 As the amine type curing agent, known ones can be used, and aliphatic polyamines, aromatic polyamines, heterocyclic polyamines, their epoxy adducts, Mannich modified products, and polyamide modified products can be used. Specifically, diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, isophoronediamine, 1,3-bisaminomethylcyclohexane, bis ( 4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, diaminodiphenylmethane, m-phenylenediamine, diaminodiphenylsulfone, diethyltoluenediamine, trimethylenebis (4-aminobenzoate), polytetramethylene oxide-di- Examples thereof include p-aminobenzoate. Of these, m-xylenediamine and 1,3-bisaminomethylcyclohexane are particularly preferred because of their excellent curability.
 フェノール樹脂型硬化剤としては、公知のものを用いることができ、例えば、ビスフェノールA、ビスフェノールF、ビフェノール等のビスフェノール類、トリ(ヒドロキシフェニル)メタン、1,1,1-トリ(ヒドロキシフェニル)エタン等の3官能フェノール化合物、フェノールノボラック、又はクレゾールノボラック等が挙げられる。 As the phenol resin type curing agent, known ones can be used, for example, bisphenols such as bisphenol A, bisphenol F, and biphenol, tri (hydroxyphenyl) methane, 1,1,1-tri (hydroxyphenyl) ethane. And trifunctional phenolic compounds such as phenol novolac, cresol novolac and the like.
 酸無水物型硬化剤としては、公知のものを用いることができ、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。 As the acid anhydride type curing agent, known ones can be used. For example, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, anhydrous Examples thereof include methyl nadic acid, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride.
 潜在性硬化剤としては、ジシアンジアミド、イミダゾール、BF3-アミン錯体、グアニジン誘導体等が挙げられる。 Examples of latent curing agents include dicyandiamide, imidazole, BF3-amine complex, and guanidine derivatives.
 これらの硬化剤は、単独で用いることも2種以上併用することもできる。また、本発明の効果を損なわない範囲において、硬化促進剤を適宜併用して用いることも可能である。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。 These curing agents can be used alone or in combination of two or more. In addition, a curing accelerator can be used in appropriate combination as long as the effects of the present invention are not impaired. Various curing accelerators can be used, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts.
 本発明に用いるエポキシ樹脂を含む硬化性樹脂組成物は、無溶媒下で硬化反応をさせても良いが、ベンゼン、トルエン、キシレン、酢酸エチル、アセトン、メチルエチルケトン、ジエチルエーテル、テトラヒドロフラン、酢酸メチル、アセトニトリル、クロロホルム、塩化メチレン、四塩化炭素、1,2-ジクロロエタン、1,1,2-トリクロロエタン、テトラクロロエチレン、N-メチルピロリドン、イソプロピルアルコールやイソブタノール、t-ブチルアルコール等の溶媒下で硬化反応をさせてもよい。 The curable resin composition containing an epoxy resin used in the present invention may be allowed to undergo a curing reaction in the absence of a solvent, but benzene, toluene, xylene, ethyl acetate, acetone, methyl ethyl ketone, diethyl ether, tetrahydrofuran, methyl acetate, acetonitrile Curing reaction in a solvent such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, 1,1,2-trichloroethane, tetrachloroethylene, N-methylpyrrolidone, isopropyl alcohol, isobutanol, and t-butyl alcohol May be.
 本発明に用いる硬化性樹脂組成物において、エポキシ樹脂と硬化剤との使用割合は、本発明の効果を損なわない範囲において公知の割合であれば特に限定されるものではないが、硬化性に優れ、硬化物の耐熱性や耐薬品性に優れる硬化物が得られることから、エポキシ樹脂成分中のエポキシ基の合計1当量に対して、硬化剤中の活性基が0.7当量以上から1.5当量以下の範囲になる量が好ましい。 In the curable resin composition used in the present invention, the use ratio of the epoxy resin and the curing agent is not particularly limited as long as it is a known ratio within a range not impairing the effect of the present invention, but is excellent in curability. Since a cured product having excellent heat resistance and chemical resistance of the cured product is obtained, the active group in the curing agent is from 0.7 equivalent to 1. An amount in the range of 5 equivalents or less is preferred.
 本発明に用いるポリアリーレンスルフィド樹脂組成物を成形してなる成形品は、エポキシ樹脂接着性に優れることから、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とが接着してなる複合成形品として好適に用いることができる。 Since the molded product formed by molding the polyarylene sulfide resin composition used in the present invention is excellent in epoxy resin adhesion, it is a composite molded product formed by bonding with a cured product of a curable resin composition containing an epoxy resin. It can be used suitably.
 本発明の複合成形品は、ポリアリーレンスルフィド樹脂組成物を溶融成形してなる成形品と、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とを接着する工程を含む方法により製造することができる。 The composite molded article of the present invention can be produced by a method including a step of adhering a molded article formed by melt molding a polyarylene sulfide resin composition and a cured product of a curable resin composition containing an epoxy resin. .
 前記成形品と硬化物との接着は、本発明の効果を損なわない範囲において公知の方法でよいが、前記成形品と、エポキシ樹脂を含む硬化性樹脂組成物とを接触させ、該硬化性樹脂組成物を硬化させる工程を含む方法が挙げられる。また、前記成形品を、接着時に前記硬化性樹脂組成物と接着させる表面の少なくとも一部、好ましくは50%以上、より好ましくは全面を加熱して溶融してから、エポキシ樹脂を含む硬化性樹脂組成物とを接触させ、該硬化性樹脂組成物を硬化させる方法も挙げられる。一方、該硬化性樹脂組成物の硬化は、該硬化性樹脂組成物の未硬化状態のものを該成形品と接触させてから完全に硬化させることや、一旦、該硬化性樹脂組成物を半硬化状態(いわゆるBステージ状態)としてから、該成形品と接触させて完全硬化させることもできる。 The adhesive between the molded product and the cured product may be a known method as long as the effects of the present invention are not impaired. However, the molded product is brought into contact with a curable resin composition containing an epoxy resin, and the curable resin is contacted. A method including a step of curing the composition may be mentioned. Further, at least a part of the surface to be bonded to the curable resin composition at the time of bonding, preferably 50% or more, more preferably the entire surface is heated and melted, and then a curable resin containing an epoxy resin. The method of making a composition contact and hardening this curable resin composition is also mentioned. On the other hand, the curable resin composition is cured by bringing the curable resin composition in an uncured state into contact with the molded article and then completely curing the curable resin composition, After being in a cured state (so-called B-stage state), it can be completely cured by contacting with the molded product.
 このようにして得られた本発明の複合成形品は、種々の用途に用いることが出来る。主な用途例としては、各種家電製品、携帯電話、及びPC(Personal Computer)等の電子機器の筐体、箱型の電気・電子部品集積モジュール用保護・支持部材・複数の個別半導体またはモジュール、センサ、LEDランプ、コネクタ、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサ、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナ、スピーカ、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、端子台、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダ、パラボラアンテナ、コンピュータ関連部品等に代表される電気・電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤ、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザディスク・コンパクトディスク・DVDディスク・ブルーレイディスク等の音声・映像機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライタ部品、ワードプロセッサ部品、あるいは給湯機や風呂の湯量、温度センサなどの水回り機器部品等に代表される家庭、事務電気製品部品;オフィスコンピュータ関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部品、ライタ、タイプライタなどに代表される機械関連部品:顕微鏡、双眼鏡、カメラ、時計等に代表される光学機器、精密機械関連部品;オルタネーターターミナル、オルタネーターコネクタ、ブラシホルダー、スリップリング、ICレギュレータ、ライトディマ用ポテンシオメーターベース、リレーブロック、インヒビタースイッチ、排気ガスバルブ等の各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディ、キャブレタースペーサ、排気ガスセンサ、冷却水センサ、油温センサ、ブレーキパットウェアーセンサ、スロットルポジションセンサ、クランクシャフトポジションセンサ、エアーフローメータ、ブレーキパッド摩耗センサ、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダ、ウォーターポンプインペラ、タービンベイン、ワイパーモーター関係部品、デュストリビュータ、スタータースイッチ、イグニッションコイルおよびそのボビン、モーターインシュレータ、モーターロータ、モーターコア、スターターリレ、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクタ、ホーンターミナル、電装部品絶縁板、ステップモーターロータ、ランプソケット、ランプリフレクタ、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルタ、点火装置ケース、パワーモジュール、インバータ、パワーデバイス、インテリジェントパワーモジュール、絶縁ゲートバイポーラトランジスタ、パワーコントロールユニット、リアクトル、コンバータ、コンデンサ、インシュレーター、モーター端子台、バッテリー、電動コンプレッサー、バッテリー電流センサ、ジャンクションブロック、DLIシステム用イグニッションコイル等を収納するケース等の自動車・車両関連部品、その他各種用途にも適用可能である。 The composite molded product of the present invention thus obtained can be used for various applications. Examples of main applications include housings for electronic devices such as various home appliances, mobile phones, and PCs (Personal Computers), protection / support members for box-type electrical / electronic component integrated modules, multiple individual semiconductors or modules, Sensor, LED lamp, connector, socket, resistor, relay case, switch, coil bobbin, capacitor, variable capacitor case, optical pickup, oscillator, various terminal boards, transformer, plug, printed circuit board, tuner, speaker, microphone, headphones, Small motors, magnetic head bases, power modules, terminal blocks, semiconductors, liquid crystals, FDD carriages, FDD chassis, motor brush holders, parabolic antennas, computer-related parts and other electrical and electronic parts; VTR parts, TV parts, irons , Hair dryer, rice cooker parts , Microwave oven parts, audio parts, audio / video equipment parts such as audio / laser disc / compact disc / DVD disc / Blu-ray disc, lighting parts, refrigerator parts, air conditioner parts, typewriter parts, word processor parts, water heater and bath Household appliances, office electrical product parts, such as water heater parts, temperature sensors, etc .; office computer-related parts, telephone-related parts, facsimile-related parts, copier-related parts, cleaning jigs, motor parts, Machine-related parts typified by writers and typewriters: Optical equipment typified by microscopes, binoculars, cameras, watches, etc., precision machine-related parts; Alternator terminals, alternator connectors, brush holders, slip rings, IC regulators, for light dimmers Potentiometer Various valves such as base, relay block, inhibitor switch, exhaust gas valve, fuel-related / exhaust system / intake system pipes, air intake nozzle snorkel, intake manifold, fuel pump, engine coolant joint, carburetor main body, carburetor spacer, exhaust Gas sensor, cooling water sensor, oil temperature sensor, brake pad wear sensor, throttle position sensor, crankshaft position sensor, air flow meter, brake pad wear sensor, thermostat base for air conditioner, heating hot air flow control valve, brush holder for radiator motor , Water pump impeller, turbine vane, wiper motor related parts, distributor, starter switch, ignition And its bobbins, motor insulators, motor rotors, motor cores, starter relays, wire harnesses for transmissions, window washer nozzles, air conditioner panel switch boards, coils for fuel-related electromagnetic valves, connectors for fuses, horn terminals, electrical component insulation plates, Step motor rotor, lamp socket, lamp reflector, lamp housing, brake piston, solenoid bobbin, engine oil filter, ignition device case, power module, inverter, power device, intelligent power module, insulated gate bipolar transistor, power control unit, reactor, Converter, capacitor, insulator, motor terminal block, battery, electric compressor, battery The present invention is also applicable to automobile / vehicle-related parts such as a case that houses a terry current sensor, a junction block, an ignition coil for a DLI system, and other various uses.
 以下に具体的な例を挙げて、本発明をさらに詳しく説明する。なお、部、%は、特に断りがない場合、質量基準とする。また、製造例にて製造した樹脂の分析はそれぞれ以下の条件で行った。 Hereinafter, the present invention will be described in more detail with specific examples. Parts and% are based on mass unless otherwise specified. Moreover, the analysis of resin manufactured in the manufacture example was performed on the following conditions, respectively.
(実施例1~8及び比較例1~6)PPS樹脂組成物の製造
表1及び表2に記載する組成成分および配合量にしたがい、各材料をタンブラーで均一に混合した。その後、東芝機械株式会社製ベント付き2軸押出機「TEM-35B」に前記配合材料を投入し、樹脂成分吐出量25kg/hr、スクリュー回転数200rpm、樹脂成分の吐出量(kg/hr)とスクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)=0.1(kg/hr・rpm)、設定樹脂温度320℃で溶融混練して樹脂組成物のペレットを得た。このペレットを用いて以下の接着試験を行った。試験及び評価の結果は、表1~4に示す。
(Examples 1 to 8 and Comparative Examples 1 to 6) Production of PPS resin compositions According to the composition components and blending amounts shown in Tables 1 and 2, the materials were uniformly mixed with a tumbler. Thereafter, the blended material was put into a twin-screw extruder “TEM-35B” manufactured by Toshiba Machine Co., Ltd., and the resin component discharge rate was 25 kg / hr, the screw rotation speed was 200 rpm, and the resin component discharge rate (kg / hr). The ratio of the screw rotation speed (rpm) (discharge amount / screw rotation speed) = 0.1 (kg / hr · rpm) and melt kneading at a set resin temperature of 320 ° C. to obtain resin composition pellets. The following adhesion test was performed using this pellet. The results of the test and evaluation are shown in Tables 1 to 4.
(測定例)PPS成形品とエポキシ樹脂との接着強度(エポキシ接着強度)
 次いで、得られたペレットをシリンダー温度310℃に設定した住友重機製射出成形機(SE75D-HP)に供給し、金型温度140℃に温調したASTM1号ダンベル片成形用金型を用いて射出成形を行い、ASTM1号ダンベル片を得た。その後、ASTM1号ダンベル片を中央から2等分し、エポキシ接着剤との接触面積が170mmとなるようにフッ素樹脂粘着テープ(テフロン(登録商標)テープ)(厚さ:0.08mm)でマスキングし、エポキシ樹脂(ナガセケムテックス(株)製2液型エポキシ樹脂、主剤:XNR5002、硬化剤:XNH5002、配合比は主剤:硬化剤=100:90)を塗布した(塗布面積:12.9mm×12.9mm)。もう一方を塗布面に張り合わせて、クリップを用い固定し、135℃に設定した熱風乾燥機中で3時間加熱し硬化・接着させた。23℃下で1日冷却後スペーサーを外し、得られた試験片を得て、次いで歪み速度5mm/min、支点間距離60mm、23℃下でインストロン社製引張試験機を用い引張破断強さを測定し、接着面積で除した値をエポキシ接着強度(MPa)とした。
(Measurement example) Adhesive strength between PPS molded product and epoxy resin (epoxy adhesive strength)
Next, the obtained pellets were supplied to an injection molding machine (SE75D-HP) manufactured by Sumitomo Heavy Industries set at a cylinder temperature of 310 ° C., and injected using an ASTM No. 1 dumbbell mold for molding at a mold temperature of 140 ° C. Molding was performed to obtain ASTM No. 1 dumbbell pieces. Then, ASTM No. 1 dumbbell piece is divided into two equal parts from the center and masked with fluororesin adhesive tape (Teflon (registered trademark) tape) (thickness: 0.08 mm) so that the contact area with the epoxy adhesive is 170 mm 2. Then, an epoxy resin (two-pack type epoxy resin manufactured by Nagase ChemteX Corporation, main component: XNR5002, curing agent: XNH5002, mixing ratio is main agent: curing agent = 100: 90) was applied (application area: 12.9 mm × 12.9 mm). The other side was bonded to the coated surface, fixed using a clip, and heated and cured / adhered in a hot air dryer set at 135 ° C. for 3 hours. After cooling at 23 ° C. for 1 day, the spacer was removed, and the obtained test piece was obtained. Then, the strain rate was 5 mm / min, the distance between the fulcrums was 60 mm, and the tensile strength at break using an Instron tensile tester at 23 ° C. And the value divided by the adhesion area was defined as the epoxy adhesive strength (MPa).
(測定法) weld部を有する成形品の耐冷熱衝撃性(ヒートサイクル性)試験
 以下に示す、ウェルド部を有する成形品を用いて耐冷熱衝撃性評価を行った。なお、当該評価は、加速試験とするために、熱膨張係数の大きい金属部材をインサート成形した成形品を用いることにより実施した。
(Measurement Method) Cold and Thermal Shock Resistance (Heat Cycle) Test of Molded Product Having Weld Part Evaluation of cold and thermal shock resistance was performed using a molded product having a weld part shown below. In addition, the said evaluation was implemented by using the molded article which insert-molded the metal member with a large thermal expansion coefficient in order to set it as an acceleration test.
 縦25mm、横40mm、厚さ10mmの鋼鉄製のインサートブロック部材の、前記部材縦方向の辺の中点同士を結び、前記部材横方向の辺に平行な直線上に、直径3.55mmの厚さ方向に平行な2個の貫通穴の直径の中心を有し、該貫通穴の直径の中心同士が前記直線の中点を中心にして20mm離れて配置されたインサートブロック部材を準備し、次いで、前記2個の貫通穴と射出成形用金型内部に設置された2本の鋼鉄製円柱形のピンとを用いて、前記インサートブロック部材が前記射出成形用金型の内部に保持されるように設置し、かつ、ポリフェニレンスルフィド樹脂組成物のペレットを射出成形した後に、前記インサートブロック部材の外周全面が肉厚1mmのポリフェニレンスルフィド樹脂組成物で被覆され、かつ、weld部が形成されるように設計された射出成形金型を用いて、前記ポリフェニレンスルフィド樹脂組成物のペレットを射出成形し成形品を得た。得られた前記インサートブロック部材を内包するポリフェニレンスルフィド樹脂組成物の成形品を用いて、気相式の冷熱衝撃試験機中で-40℃/1時間保持~140℃/1時間保持を冷熱サイクル1サイクルとする冷熱衝撃試験を実施し、クラックが発生して破断するまでのサイクル数を測定した。 A steel insert block member having a length of 25 mm, a width of 40 mm, and a thickness of 10 mm connects the midpoints of the sides in the vertical direction of the member, and has a thickness of 3.55 mm on a straight line parallel to the side in the horizontal direction of the member. Preparing an insert block member having a diameter center of two through-holes parallel to the vertical direction, the diameter centers of the through-holes being arranged 20 mm apart from each other about the midpoint of the straight line; The insert block member is held inside the injection mold by using the two through holes and two steel cylindrical pins installed in the injection mold. After the installation and injection molding of the pellets of the polyphenylene sulfide resin composition, the entire outer periphery of the insert block member is coated with a polyphenylene sulfide resin composition having a thickness of 1 mm, and we Using an injection molding die which is designed to part d is formed to obtain the polyphenylene sulfide resin composition pellets were injection-molded moldings. Using the obtained molded product of the polyphenylene sulfide resin composition encapsulating the insert block member, in the gas phase type thermal shock tester, the temperature is maintained at −40 ° C./1 hour to 140 ° C./1 hour. The thermal shock test which makes a cycle was implemented, and the number of cycles until a crack generate | occur | produces and it fractures was measured.
(測定法) 成形品(ウェルド部なし)のTD方向の耐冷熱衝撃性(ヒートサイクル性)試験
 以下に示す、成形品(ウェルド部無し)を用いてTD方向の耐冷熱衝撃性評価を行った。なお、当該評価は、加速試験とするために、熱膨張係数の大きい金属部材(図1)をインサート成形し、TD方向へのクラックが生じるよう金属部材の四隅が樹脂部材で被覆部されないよう、非被覆部(L)を設けた成形品(図2)を用いることにより実施した。
 まず、図1に示す、縦56mm、横66mm、厚さ5mmの鋼鉄製のインサートブロック部材(M)を準備し、次いで、前記部材の角に設けられた4個の貫通穴(h)と射出成型用金型内部に設置された4本の鋼鉄製円柱形のピンとを用いて、前記インサートブロック部材(M)が前記射出成型用金型の内部に保持されるように設置し、かつ、溶融したポリフェニレンスルフィド樹脂組成物が側面F側からF側へ流動して、ウェルド部が形成されない様にゲート部および液逃げ部が形成され、射出成型後に、前記インサートブロック部材(M)の上下面が肉厚1mmの樹脂部で図2に示す形状に被覆されるように設計された射出成形金型を用いて、前記ポリフェニレンスルフィド樹脂組成物のペレットを射出成型し成型品(P)を得た。
(Measuring method) Cold and thermal shock resistance (heat cycle property) test in the TD direction of the molded product (without the weld portion) Evaluation of the thermal and thermal shock resistance in the TD direction was performed using the molded product (without the weld portion) shown below. . In order to make the evaluation an accelerated test, a metal member having a large thermal expansion coefficient (FIG. 1) is insert-molded so that the four corners of the metal member are not covered with the resin member so that cracks in the TD direction occur. It implemented by using the molded article (FIG. 2) which provided the non-coating part (L).
First, a steel insert block member (M) shown in FIG. 1 having a length of 56 mm, a width of 66 mm, and a thickness of 5 mm is prepared, and then four through holes (h) provided at the corners of the member and injection are prepared. Using four steel cylindrical pins installed inside the molding die, the insert block member (M) is installed so as to be held inside the injection molding die and melted. The polyphenylene sulfide resin composition flows from the side F 1 side to the F 2 side, and a gate portion and a liquid escape portion are formed so that a weld portion is not formed. After injection molding, on the insert block member (M) Using an injection mold designed so that the lower surface is coated with a resin part having a thickness of 1 mm as shown in FIG. 2, pellets of the polyphenylene sulfide resin composition are injection molded to obtain a molded product (P). The
 気相式の冷熱衝撃試験機中で-40℃/1時間保持~170℃/1時間保持を冷熱サイクル1サイクルとする冷熱衝撃試験を実施し、クラックが発生して破断するまでのサイクル数を測定した。 A thermal shock test was conducted in a gas-phase type thermal shock tester with a temperature cycle of −40 ° C./1 hour to 170 ° C./1 hour held as one cycle of the thermal cycle. It was measured.
(測定法) ガス発生量(加熱時の重量減少率)
 リガク製示差熱天秤TG8120を用い、溶融混練して得られた樹脂組成物のペレットを10g計り取り、50℃から325℃まで20℃/minで昇温した後、325℃で3時間加熱を行い、加熱前後の重量減少率を測定した。
 なお、この重量減少率は加熱時にペレットから発生するガス発生量に相当する。このガス発生量は、金型メンテナンス性、表面外観性、機械的物性、成形性の観点からも少ないほど優れていることから、実用に際し、以下の評価基準に沿って分類した。
(Measurement method) Gas generation amount (weight reduction rate during heating)
Using a Rigaku differential thermal balance TG8120, 10 g of the resin composition pellets obtained by melt-kneading were weighed, heated from 50 ° C. to 325 ° C. at 20 ° C./min, and then heated at 325 ° C. for 3 hours. The weight loss rate before and after heating was measured.
This weight reduction rate corresponds to the amount of gas generated from the pellets during heating. Since this gas generation amount is more excellent in view of mold maintenance, surface appearance, mechanical properties and moldability, it was classified according to the following evaluation criteria in practical use.
◎(大変良い):2.0%以下の範囲
○(良い)  :2.0%超から2.2%以下の範囲
△(充分)  :2.2%超から2.5%以下の範囲
×(不充分) :2.5%超の範囲
◎ (very good): 2.0% or less range ○ (good): 2.0% to 2.2% range △ (sufficient): 2.2% to 2.5% range × (Insufficient): Over 2.5% range
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 なお、表1~4中の配合樹脂、材料の配合比率は質量部を表し、下記のものを用いた。
Figure JPOXMLDOC01-appb-T000009
In Tables 1 to 4, the compounding ratios of the blended resin and material represent parts by mass, and the followings were used.
ポリフェニレンスルフィド樹脂
(A-1) 以下の(製造例1)により製造したものを用いた。
Polyphenylene sulfide resin (A-1) The one produced by the following (Production Example 1) was used.
(製造例1) ポリフェニレンスルフィド樹脂(a-1)の製造
[工程1]
 圧力計、温度計、コンデンサ、デカンタ、精留塔を連結した撹拌翼付き150リットルオートクレーブにp-ジクロロベンゼン(以下、「p-DCB」と略記する。)33.222kg(226モル)、NMP3.420kg(34.5モル)、47.23質量%NaSH水溶液27.300kg(NaSHとして230モル)、及び49.21質量%NaOH水溶液18.533g(NaOHとして228モル)を仕込み、撹拌しながら窒素雰囲気下で173℃まで5時間掛けて昇温して、水27.300kgを留出させた後、オートクレーブを密閉した。脱水時に共沸により留出したp-DCBはデカンターで分離して、随時オートクレーブ内に戻した。脱水終了後のオートクレーブ内は微粒子状の無水硫化ナトリウム組成物がp-DCB中に分散した状態であった。この組成物中のNMP含有量は0.079kg(0.8モル)であったことから、仕込んだNMPの98モル%(33.7モル)がNMPの開環体(4-(メチルアミノ)酪酸)のナトリウム塩(以下、「SMAB」と略記する。)に加水分解されていることが示された。オートクレーブ内のSMAB量は、オートクレーブ中に存在する硫黄原子1モル当たり0.147モルであった。仕込んだNaSHとNaOHが全量、無水NaSに変わる場合の理論脱水量は27.921gであることから、オートクレーブ内の残水量878g(48.8モル)の内、609g(33.8モル)はNMPとNaOHとの加水分解反応に消費されて、水としてオートクレーブ内に存在せず、残りの269g(14.9モル)は水、あるいは結晶水の形でオートクレーブ内に残留していることを示していた。オートクレーブ内の水分量はオートクレーブ中に存在する硫黄原子1モル当たり0.065モルであった。
(Production Example 1) Production of polyphenylene sulfide resin (a-1) [Step 1]
In a 150 liter autoclave with a stirring blade connected to a pressure gauge, thermometer, condenser, decanter, and rectifying column, 33.222 kg (226 mol) of p-dichlorobenzene (hereinafter abbreviated as “p-DCB”), NMP3. 420 kg (34.5 mol), 47.33% by weight NaSH aqueous solution 27.300 kg (230 mol as NaSH), and 49.21 wt% NaOH aqueous solution 18.533 g (228 mol as NaOH) were charged and stirred under a nitrogen atmosphere Then, the temperature was raised to 173 ° C. over 5 hours to distill 27.300 kg of water, and then the autoclave was sealed. The p-DCB distilled azeotropically during dehydration was separated with a decanter and returned to the autoclave as needed. After completion of the dehydration, the finely divided anhydrous sodium sulfide composition was dispersed in p-DCB in the autoclave. Since the NMP content in this composition was 0.079 kg (0.8 mol), 98 mol% (33.7 mol) of the charged NMP was an NMP ring-opened product (4- (methylamino)). It was shown to be hydrolyzed to the sodium salt of butyric acid (hereinafter abbreviated as “SMAB”). The amount of SMAB in the autoclave was 0.147 mol per mol of sulfur atoms present in the autoclave. When the total amount of NaSH and NaOH charged is changed to anhydrous Na 2 S, the theoretical dehydration amount is 27.921 g, so 609 g (33.8 mol) of the remaining water amount in the autoclave is 878 g (48.8 mol). Is consumed in the hydrolysis reaction of NMP and NaOH and does not exist in the autoclave as water, and the remaining 269 g (14.9 mol) remains in the autoclave in the form of water or crystal water. Was showing. The amount of water in the autoclave was 0.065 mol per mol of sulfur atoms present in the autoclave.
[工程2]
 上記脱水工程終了後に、内温を160℃に冷却し、NMP46.343kg(467.5モル)を仕込み、185℃まで昇温した。オートクレーブ内の水分量は、工程2で仕込んだNMP1モル当たり0.025モルであった。ゲージ圧が0.00MPaに到達した時点で、精留塔を連結したバルブを開放し、内温200℃まで1時間掛けて昇温した。この際、精留塔出口温度が110℃以下になる様に冷却とバルブ開度で制御した。留出したp-DCBと水の混合蒸気はコンデンサーで凝縮し、デカンターで分離して、p-DCBはオートクレーブへ戻した。留出水量は228g(12.7モル)であった。
[Step 2]
After the dehydration step, the internal temperature was cooled to 160 ° C., NMP46.343 kg (467.5 mol) was charged, and the temperature was raised to 185 ° C. The amount of water in the autoclave was 0.025 mol per 1 mol of NMP charged in step 2. When the gauge pressure reached 0.00 MPa, the valve connected to the rectifying column was opened, and the temperature was raised to an internal temperature of 200 ° C. over 1 hour. At this time, the cooling and the valve opening were controlled so that the rectification tower outlet temperature was 110 ° C. or lower. The distilled vapor of p-DCB and water was condensed by a condenser and separated by a decanter, and p-DCB was returned to the autoclave. The amount of distilled water was 228 g (12.7 mol).
[工程3]
 工程3開始時のオートクレーブ内水分量は41g(2.3モル)で、工程2で仕込んだNMP1モル当たり0.005モルで、オートクレーブ中に存在する硫黄原子1モル当たり0.010モルであった。オートクレーブ内のSMAB量は工程1と同じく、オートクレーブ中に存在する硫黄原子1モル当たり0.147モルであった。次いで、内温200℃から230℃まで3時間掛けて昇温し、230℃で1時間撹拌した後、250℃まで昇温し、1時間撹拌した。内温200℃時点のゲージ圧は0.03MPaで、最終ゲージ圧は0.40MPaであった。冷却後、得られたスラリーの内、650gを3リットルの水に注いで80℃で1時間撹拌した後、濾過した。このケーキを再び3リットルの温水で1時間撹拌し、洗浄した後、濾過した。この操作を4回繰り返した。このケーキを再び3リットルの温水と、酢酸を加え、pH4.0に調整した後、1時間撹拌し、洗浄した後、濾過した。このケーキを再び3リットルの温水で1時間撹拌し、洗浄した後、濾過した。この操作を2回繰り返した。熱風乾燥機を用いて120℃で一晩乾燥して白色の粉末状のPPS樹脂(A-1)を得た。このポリマーの300℃における溶融粘度は41Pa・sであった。非ニュートン指数は1.07であった。
[Step 3]
The water content in the autoclave at the start of Step 3 was 41 g (2.3 mol), 0.005 mol per mol of NMP charged in Step 2, and 0.010 mol per mol of sulfur atoms present in the autoclave. . The amount of SMAB in the autoclave was 0.147 mol per mol of sulfur atoms present in the autoclave, as in Step 1. Next, the temperature was raised from an internal temperature of 200 ° C. to 230 ° C. over 3 hours, stirred at 230 ° C. for 1 hour, then heated to 250 ° C. and stirred for 1 hour. The gauge pressure at an internal temperature of 200 ° C. was 0.03 MPa, and the final gauge pressure was 0.40 MPa. After cooling, 650 g of the obtained slurry was poured into 3 liters of water, stirred at 80 ° C. for 1 hour, and then filtered. The cake was again stirred with 3 liters of warm water for 1 hour, washed and filtered. This operation was repeated 4 times. The cake was again adjusted to pH 4.0 by adding 3 liters of warm water and acetic acid, stirred for 1 hour, washed, and then filtered. The cake was again stirred with 3 liters of warm water for 1 hour, washed and filtered. This operation was repeated twice. Drying at 120 ° C. overnight using a hot air drier gave white powdery PPS resin (A-1). The melt viscosity of this polymer at 300 ° C. was 41 Pa · s. The non-Newton index was 1.07.
(a-2) 以下の(製造例2)で製造したものを用いた。
(製造例2)
 「次いで、内温200℃から230℃まで3時間掛けて昇温し、230℃で1時間撹拌した後、250℃まで昇温し、1時間撹拌した。」とする部分を「次いで、内温200℃から230℃まで3時間掛けて昇温し、230℃で1.5時間撹拌した後、250℃まで昇温し、1時間撹拌した。」としたこと以外は製造例1と同様にして、白色の粉末状のPPS樹脂(以下、A-2)を得た。得られたポリマーの溶融粘度は73Pa・s、非ニュートン指数が1.07であった。
(A-2) The product produced in the following (Production Example 2) was used.
(Production Example 2)
“Then, the temperature was raised from 200 ° C. to 230 ° C. over 3 hours, stirred at 230 ° C. for 1 hour, then heated to 250 ° C. and stirred for 1 hour.” The temperature was raised from 200 ° C. to 230 ° C. over 3 hours, stirred at 230 ° C. for 1.5 hours, then heated to 250 ° C. and stirred for 1 hour. ” A white powdery PPS resin (hereinafter referred to as A-2) was obtained. The resulting polymer had a melt viscosity of 73 Pa · s and a non-Newtonian index of 1.07.
(a-3) 以下の(製造例3)で製造したものを用いた。 (A-3) The one produced in the following (Production Example 3) was used.
(製造例3)
 圧力計、温度計、コンデンサを連結した撹拌翼および底弁付き150リットルオートクレーブに、フレーク状硫化ソーダ(60.3重量%NaS)19.413kgと、NMP45.0kgを仕込んだ。窒素気流下攪拌しながら209℃まで昇温して、水4.644kgを留出させた(残存する水分量は硫化ソーダ1モル当り1.13モル)。その後、オートクレーブを密閉して180℃まで冷却し、パラジクロロベンゼン22.185kg、1,2,4-トリクロロベンゼン0.027kg及びNMP18.0kgを仕込んだ。液温150℃で窒素ガスを用いてゲージ圧で0.1MPaに加圧して昇温を開始した。液温240℃で2時間保持したのち、液温260℃で3時間攪拌しつつ反応を進め、オートクレーブ上部を散水することにより冷却した。次に降温させると共にオートクレーブ上部の冷却を止めた。オートクレーブ上部を冷却中、液温が下がらないように一定に保持した。反応中の最高圧力は、0.85MPaであった。反応後、冷却し、温度170℃の時点でシュウ酸・2水和物0.284kg(2.25モル)をNMP0.663kgに含む溶液を加圧注入した。30分間撹拌後、冷却し、100℃で底弁を開き、反応スラリーを150リットル平板ろ過機に移送し120℃で加圧ろ過したのち、NMP16kgを加え、加圧ろ過した。ろ過後、撹拌翼付き150リットル真空乾燥機を用いて、減圧下150℃で2時間撹拌してNMPを除去し、白色の粉末状のPPS樹脂(A-3)を得た。 このポリマーの300℃における溶融粘度は77Pa・sであった。非ニュートン指数は1.25であった。
(Production Example 3)
A 150-liter autoclave with a pressure gauge, a thermometer, a condenser connected to a stirring blade and a bottom valve was charged with flaky sodium sulfide (60.3% by weight Na 2 S) (19.413 kg) and NMP (45.0 kg). While stirring under a nitrogen stream, the temperature was raised to 209 ° C. to distill 4.644 kg of water (the amount of water remaining was 1.13 mol per mol of sodium sulfide). The autoclave was then sealed and cooled to 180 ° C., and charged with 22.185 kg of paradichlorobenzene, 0.027 kg of 1,2,4-trichlorobenzene and 18.0 kg of NMP. The temperature was raised by pressurizing to 0.1 MPa with a gauge pressure using nitrogen gas at a liquid temperature of 150 ° C. After maintaining at a liquid temperature of 240 ° C. for 2 hours, the reaction was allowed to proceed with stirring at a liquid temperature of 260 ° C. for 3 hours, and the upper part of the autoclave was sprinkled to cool. Next, the temperature was lowered and cooling of the upper part of the autoclave was stopped. The upper part of the autoclave was kept constant during cooling to prevent the liquid temperature from dropping. The maximum pressure during the reaction was 0.85 MPa. After the reaction, the mixture was cooled, and at a temperature of 170 ° C., a solution containing 0.284 kg (2.25 mol) of oxalic acid dihydrate in 0.663 kg of NMP was injected under pressure. After stirring for 30 minutes, the mixture was cooled, the bottom valve was opened at 100 ° C., the reaction slurry was transferred to a 150 liter flat plate filter and pressure filtered at 120 ° C., and 16 kg of NMP was added, followed by pressure filtration. After filtration, the mixture was stirred for 2 hours at 150 ° C. under reduced pressure using a 150 liter vacuum dryer equipped with a stirring blade to remove NMP to obtain a white powdery PPS resin (A-3). The melt viscosity of this polymer at 300 ° C. was 77 Pa · s. The non-Newton index was 1.25.
エポキシ樹脂
(b-1):ビスフェノールA型エポキシ樹脂 DIC株式会社製「エピクロン7050」(エポキシ当量1900〔g/eq.〕)なお、本発明においてエポキシ樹脂のエポキシ当量はJIS K7236(2001)に準拠して測定した値をいう。
(b-2):クレゾールノボラック型エポキシ樹脂 DIC株式会社製「エピクロンN-695P」(エポキシ当量210〔g/eq.〕)
(b-3):ビスフェノールA型エポキシ樹脂 DIC株式会社製「エピクロンHM-101」(エポキシ当量3900〔g/eq.〕)
(b-4):ビスフェノールA型エポキシ樹脂 ジャパンエポキシレジン株式会社製「エピコート1009」(エポキシ当量2900〔g/eq.〕)
Epoxy resin (b-1): Bisphenol A type epoxy resin “Epiclon 7050” manufactured by DIC Corporation (epoxy equivalent 1900 [g / eq.]) In the present invention, the epoxy equivalent of the epoxy resin conforms to JIS K7236 (2001). This is the value measured.
(B-2): Cresol novolac-type epoxy resin “Epiclon N-695P” (epoxy equivalent 210 [g / eq.]) Manufactured by DIC Corporation
(B-3): Bisphenol A type epoxy resin “Epiclon HM-101” manufactured by DIC Corporation (epoxy equivalent 3900 [g / eq.])
(B-4): Bisphenol A type epoxy resin “Epicoat 1009” manufactured by Japan Epoxy Resin Co., Ltd. (epoxy equivalent 2900 [g / eq.])
ポリオレフィン樹脂
(c-1):エチレン/メチルアクリレート/グリシジルメタクリレート(67/27/6質量%)共重合体 住友化学工業株式会社製「ボンドファースト7M」(エポキシ当量2369〔g/eq.〕)。なお、本発明においてポリオレフィン樹脂のエポキシ当量は、原料中の各成分及びその比率を元にした算出値である。なお、原料中の各成分及びその比率は納入仕様書、カタログ等から確認できる。
(c-2):エチレン/メチルアクリレート/グリシジルメタクリレート(70/27/3質量%)共重合体 住友化学工業株式会社製「ボンドファースト7L」(エポキシ当量4738〔g/eq.〕)
(c-3):エチレン/グリシジルメタクリレート(88/12質量%)共重合体 住友化学工業株式会社製「ボンドファーストE」(エポキシ当量1185〔g/eq.〕)
(c-4):エチレン-1-オクテン共重合体 ダウケミカル株式会社製「エンゲージ8842」
(c-5):エチレン/無水マレイン酸/アクリル酸エチル共重合体 住友化学工業株式会社製「ボンダインAX8390」
(c-6):ポリエステルエラストマー 東洋紡株式会社製「ペルプレンP150B」(芳香族ポリエステルおよび脂肪族ポリエーテルからなる共重合体)
Polyolefin resin (c-1): ethylene / methyl acrylate / glycidyl methacrylate (67/27/6 mass%) copolymer “Bond First 7M” (epoxy equivalent 2369 [g / eq.]) Manufactured by Sumitomo Chemical Co., Ltd. In the present invention, the epoxy equivalent of the polyolefin resin is a calculated value based on each component in the raw material and its ratio. In addition, each component in the raw material and its ratio can be confirmed from delivery specifications, catalogs, etc.
(C-2): ethylene / methyl acrylate / glycidyl methacrylate (70/27/3 mass%) copolymer “Bond First 7L” (epoxy equivalent 4738 [g / eq.]) Manufactured by Sumitomo Chemical Co., Ltd.
(C-3): ethylene / glycidyl methacrylate (88/12% by mass) copolymer “Bond First E” (epoxy equivalent 1185 [g / eq.]) Manufactured by Sumitomo Chemical Co., Ltd.
(C-4): Ethylene-1-octene copolymer “engage 8842” manufactured by Dow Chemical Co., Ltd.
(C-5): Ethylene / maleic anhydride / ethyl acrylate copolymer “Bondaine AX8390” manufactured by Sumitomo Chemical Co., Ltd.
(C-6): Polyester elastomer “Perprene P150B” manufactured by Toyobo Co., Ltd. (a copolymer comprising an aromatic polyester and an aliphatic polyether)
無機充填剤
(d-1):ガラス繊維(繊維径10μm、長さ3mmのガラス繊維チョップドストランド)
(d-2):ガラスフレーク(日本板硝子株式会社製「REFG-301」平均厚さ5μm、平均粒径160〔μm〕)
Inorganic filler (d-1): Glass fiber (glass fiber chopped strand having a fiber diameter of 10 μm and a length of 3 mm)
(D-2): Glass flakes (“REFG-301” manufactured by Nippon Sheet Glass Co., Ltd., average thickness 5 μm, average particle size 160 [μm])
その他
(e-1):モンタン酸カルシウム(クラリアントジャパン株式会社製「CaV-102」)
(e-2):エチレンジアミン・ステアリン酸・セバシン酸重縮合物 共栄社化学株式会社製「ライトアマイドWH-255」
Other (e-1): Calcium montanate (“CaV-102” manufactured by Clariant Japan Co., Ltd.)
(E-2): Ethylenediamine / stearic acid / sebacic acid polycondensate “Right Amide WH-255” manufactured by Kyoeisha Chemical Co., Ltd.
h・・・貫通穴
M・・・インサートブロック部材
P・・・成形品
L・・・非被覆部
・・・溶融樹脂の流動方向(ゲート部側)
・・・溶融樹脂の流動方向(液逃げ部側)
h: Through hole M ... Insert block member P ... Molded product L ... Uncoated part F 1 ... Flow direction of molten resin (gate part side)
F 2 ... Flow direction of molten resin (liquid escape part side)

Claims (9)

  1.  ポリアリーレンスルフィド樹脂(A)とエポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とガラス繊維(D1)とガラスフレーク(D2)とを配合してなるポリアリーレンスルフィド樹脂組成物であって、
     ポリアリーレンスルフィド樹脂(A)100質量部に対して、ガラス繊維(D1)が10質量部以上から350質量部以下の範囲であり、ガラスフレーク(D2)が1質量部以上から250質量部以下の範囲であり、
     ポリアリーレンスルフィド樹脂組成物1g中における、エポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とが有するエポキシ基の合計の割合が25〔μmol〕以上から300〔μmol〕以下の範囲であり、さらにエポキシ樹脂(B)のエポキシ当量が、100〔g/eq.〕以上から2400〔g/eq.〕以下の範囲であることを特徴とするポリアリーレンスルフィド樹脂組成物。
    A polyarylene sulfide resin composition comprising a polyarylene sulfide resin (A), an epoxy resin (B), an epoxy group-containing polyolefin (C), glass fibers (D1) and glass flakes (D2),
    With respect to 100 parts by mass of the polyarylene sulfide resin (A), the glass fiber (D1) is in the range of 10 parts by mass to 350 parts by mass, and the glass flake (D2) is 1 part by mass to 250 parts by mass. Range,
    In 1 g of the polyarylene sulfide resin composition, the total proportion of epoxy groups of the epoxy resin (B) and the epoxy group-containing polyolefin (C) is in the range of 25 [μmol] to 300 [μmol], The epoxy equivalent of the epoxy resin (B) is 100 [g / eq. ] 2400 [g / eq. ] A polyarylene sulfide resin composition characterized by being in the following range.
  2.  ポリアリーレンスルフィド樹脂組成物1g中における、エポキシ樹脂(B)が有するエポキシ基の割合が20〔μmol〕以上から250〔μmol〕以下の範囲であり、エポキシ基含有ポリオレフィン(C)が有するエポキシ基の割合が5〔μmol〕以上から50〔μmol〕以下の範囲である、請求項1記載のポリアリーレンスルフィド樹脂組成物。 In 1 g of the polyarylene sulfide resin composition, the epoxy group ratio of the epoxy resin (B) is in the range of 20 [μmol] to 250 [μmol], and the epoxy group-containing polyolefin (C) has an epoxy group content. The polyarylene sulfide resin composition according to claim 1, wherein the ratio is in the range of 5 [μmol] to 50 [μmol].
  3.  前記エポキシ基含有ポリオレフィン(C)のエポキシ当量が1200〔g/eq.〕以上から5000〔g/eq.〕以下の範囲である請求項1記載のポリアリーレンスルフィド樹脂組成物。 The epoxy equivalent of the epoxy group-containing polyolefin (C) is 1200 [g / eq. ] From 5000 [g / eq. The polyarylene sulfide resin composition according to claim 1, which has the following range.
  4.  溶融混練物である、請求項1記載のポリアリーレンスルフィド樹脂組成物。 The polyarylene sulfide resin composition according to claim 1, which is a melt-kneaded product.
  5.  前記請求項1~4の何れか一項記載のポリアリーレンスルフィド樹脂組成物を溶融成形してなる成形品。 A molded product obtained by melt-molding the polyarylene sulfide resin composition according to any one of claims 1 to 4.
  6.  請求項5記載の成形品と、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とが接着してなる複合成形品。 A composite molded product obtained by bonding the molded product according to claim 5 and a cured product of a curable resin composition containing an epoxy resin.
  7.  ポリアリーレンスルフィド樹脂(A)とエポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とガラス繊維(D1)とガラスフレーク(D2)とを溶融混練するポリアリーレンスルフィド樹脂組成物の製造方法であって、
     ポリアリーレンスルフィド樹脂(A)100質量部に対して、ガラス繊維(D1)が10質量部以上から350質量部以下の範囲であり、ガラスフレーク(D2)が1質量部以上から250質量部以下の範囲であり、
     ポリアリーレンスルフィド樹脂組成物1g中における、エポキシ樹脂(B)とエポキシ基含有ポリオレフィン(C)とが有するエポキシ基の合計の割合が25〔μmol〕以上から300〔μmol〕以下の範囲であり、さらにエポキシ樹脂(B)のエポキシ当量が、100〔g/eq.〕以上から2400〔g/eq.〕以下の範囲であることを特徴とするポリアリーレンスルフィド樹脂組成物の製造方法。
    A method for producing a polyarylene sulfide resin composition comprising melt-kneading a polyarylene sulfide resin (A), an epoxy resin (B), an epoxy group-containing polyolefin (C), glass fibers (D1), and glass flakes (D2). ,
    With respect to 100 parts by mass of the polyarylene sulfide resin (A), the glass fiber (D1) is in the range of 10 parts by mass to 350 parts by mass, and the glass flake (D2) is 1 part by mass to 250 parts by mass. Range,
    In 1 g of the polyarylene sulfide resin composition, the total proportion of epoxy groups of the epoxy resin (B) and the epoxy group-containing polyolefin (C) is in the range of 25 [μmol] to 300 [μmol], The epoxy equivalent of the epoxy resin (B) is 100 [g / eq. ] 2400 [g / eq. ] The manufacturing method of the polyarylene sulfide resin composition characterized by being in the following range.
  8.  請求項5記載の成形品と、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とを接着する複合成形品の製造方法。 A method for producing a composite molded article, wherein the molded article according to claim 5 is bonded to a cured product of a curable resin composition containing an epoxy resin.
  9.  請求項5記載の成形品に、エポキシ樹脂を含む硬化性樹脂組成物を接触させた後、該硬化性樹脂組成物を硬化する工程を含む、複合成形品の製造方法。 A method for producing a composite molded article comprising a step of bringing the curable resin composition containing an epoxy resin into contact with the molded article according to claim 5 and then curing the curable resin composition.
PCT/JP2019/016595 2018-04-25 2019-04-18 Polyarylene sulfide resin composition, molded article, composite molded article, and method for producing foregoing WO2019208377A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020516280A JPWO2019208377A1 (en) 2018-04-25 2019-04-18 Polyarylene sulfide resin composition, molded product, composite molded product and method for producing them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-084009 2018-04-25
JP2018084009 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019208377A1 true WO2019208377A1 (en) 2019-10-31

Family

ID=68295216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016595 WO2019208377A1 (en) 2018-04-25 2019-04-18 Polyarylene sulfide resin composition, molded article, composite molded article, and method for producing foregoing

Country Status (2)

Country Link
JP (1) JPWO2019208377A1 (en)
WO (1) WO2019208377A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193079A1 (en) * 2020-03-27 2021-09-30 Dic株式会社 Resin composition for molding, and molded body
JP2021172675A (en) * 2020-04-20 2021-11-01 東レ株式会社 Polyphenylene sulfide resin composition and molding
JPWO2022190723A1 (en) * 2021-03-09 2022-09-15
JP7484509B2 (en) 2020-07-09 2024-05-16 東レ株式会社 Method for joining molded articles made of polyphenylene sulfide resin composition, and method for manufacturing molded articles including joints

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129014A (en) * 2000-10-20 2002-05-09 Toray Ind Inc Polyphenylene sulfide resin composition and its molded article
JP2002235002A (en) * 2001-02-08 2002-08-23 Polyplastics Co Heat resistant polyarylene sulfide resin composition having improved adhesion property with epoxy resin, and conjugated molded article with epoxy resin
JP2005306926A (en) * 2004-04-19 2005-11-04 Toray Ind Inc Polyphenylene sulfide resin composition and molded article
JP2009030030A (en) * 2007-06-27 2009-02-12 Toray Ind Inc Polyphenylene sulfide resin composition and molding made therefrom
WO2013141363A1 (en) * 2012-03-23 2013-09-26 Dic株式会社 Polyarylene sulfide resin composition and molded body
JP2014065774A (en) * 2012-09-25 2014-04-17 Tosoh Corp Fire-retardant polyarylene sulfide resin composition and complex comprising the same
WO2014103814A1 (en) * 2012-12-27 2014-07-03 ポリプラスチックス株式会社 Resin composition and tabular insert-molded body
JP2015066735A (en) * 2013-09-27 2015-04-13 東レ株式会社 Composite molding formed by joining molded article formed of polyphenylene sulfide resin composition and metal foil, and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129014A (en) * 2000-10-20 2002-05-09 Toray Ind Inc Polyphenylene sulfide resin composition and its molded article
JP2002235002A (en) * 2001-02-08 2002-08-23 Polyplastics Co Heat resistant polyarylene sulfide resin composition having improved adhesion property with epoxy resin, and conjugated molded article with epoxy resin
JP2005306926A (en) * 2004-04-19 2005-11-04 Toray Ind Inc Polyphenylene sulfide resin composition and molded article
JP2009030030A (en) * 2007-06-27 2009-02-12 Toray Ind Inc Polyphenylene sulfide resin composition and molding made therefrom
WO2013141363A1 (en) * 2012-03-23 2013-09-26 Dic株式会社 Polyarylene sulfide resin composition and molded body
JP2014065774A (en) * 2012-09-25 2014-04-17 Tosoh Corp Fire-retardant polyarylene sulfide resin composition and complex comprising the same
WO2014103814A1 (en) * 2012-12-27 2014-07-03 ポリプラスチックス株式会社 Resin composition and tabular insert-molded body
JP2015066735A (en) * 2013-09-27 2015-04-13 東レ株式会社 Composite molding formed by joining molded article formed of polyphenylene sulfide resin composition and metal foil, and method for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193079A1 (en) * 2020-03-27 2021-09-30 Dic株式会社 Resin composition for molding, and molded body
JP7004119B1 (en) * 2020-03-27 2022-01-21 Dic株式会社 Resin composition for molding and molded body
JP2021172675A (en) * 2020-04-20 2021-11-01 東レ株式会社 Polyphenylene sulfide resin composition and molding
JP7424181B2 (en) 2020-04-20 2024-01-30 東レ株式会社 Polyphenylene sulfide resin composition and molded article
JP7484509B2 (en) 2020-07-09 2024-05-16 東レ株式会社 Method for joining molded articles made of polyphenylene sulfide resin composition, and method for manufacturing molded articles including joints
JPWO2022190723A1 (en) * 2021-03-09 2022-09-15
WO2022190723A1 (en) * 2021-03-09 2022-09-15 Dic株式会社 Polyarylene sulfide resin composition, molded article, and methods respectively for producing said polyarylene sulfide resin composition and molded article
JP7311051B2 (en) 2021-03-09 2023-07-19 Dic株式会社 Polyarylene sulfide resin composition, molded article and method for producing the same

Also Published As

Publication number Publication date
JPWO2019208377A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
JP5618025B2 (en) Polyarylene sulfide resin composition and molded article
WO2019208377A1 (en) Polyarylene sulfide resin composition, molded article, composite molded article, and method for producing foregoing
JP6624204B2 (en) Polyarylene sulfide resin composition, molded article and manufacturing method
WO2018016411A1 (en) Polyarylene sulfide resin composition, molded article, and production methods
US11911974B2 (en) Metal/resin composite structure and method for manufacturing same
WO2017069109A1 (en) Polyarylene sulfide resin composition, molded product, and methods for producing said composition and product
KR20230161420A (en) Polyphenylene sulfide resin composition and molded products made therefrom
JP2018100365A (en) Polyarylene sulfide resin composition, molded article and production method
JP2018065965A (en) Polyarylene sulfide resin composition, molded article and production method
JP7497568B2 (en) Polyarylene sulfide resin composition, molded article, composite molded article, and methods for producing the same
JP2017066344A (en) Polyarylene sulfide resin composition, molded article and manufacturing method
JP6753470B2 (en) Polyarylene sulfide resin composition, molded product and manufacturing method
JP6886584B2 (en) Composite molded product and its manufacturing method
JP6886583B2 (en) Polyarylene sulfide resin composition, molded article and manufacturing method
US20240150577A1 (en) Polyarylene sulfide resin composition, polyarylene sulfide resin composition manufacturing method, molded article, and molded article manufacturing method
US20230287214A1 (en) Polyarylene sulfide resin composition, molded article, and methods for producing said polyarylene sulfide resin composition and molded article
US20230040667A1 (en) Composite structure and manufacturing method thereof
KR102488363B1 (en) Polyarylene sulfide resin composition, molded article, composite molded article, and manufacturing method thereof
WO2020116434A1 (en) Resin composition and molded body thereof
JP6315255B2 (en) Polyarylene sulfide resin composition and molded article thereof
JP2017125215A (en) Polyarylene sulfide resin composition and molded body thereof
WO2024080093A1 (en) Poly(arylene sulfide) resin composition, molded article, and production methods therefor
WO2017033279A1 (en) Poly(arylene sulfide) resin composition and molded object thereof
CN115989201A (en) Polyarylene sulfide resin composition, molded article, and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516280

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793115

Country of ref document: EP

Kind code of ref document: A1