WO2019208206A1 - Organic semiconductor device and method of manufacturing organic semiconductor device - Google Patents
Organic semiconductor device and method of manufacturing organic semiconductor device Download PDFInfo
- Publication number
- WO2019208206A1 WO2019208206A1 PCT/JP2019/015480 JP2019015480W WO2019208206A1 WO 2019208206 A1 WO2019208206 A1 WO 2019208206A1 JP 2019015480 W JP2019015480 W JP 2019015480W WO 2019208206 A1 WO2019208206 A1 WO 2019208206A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- substrate
- organic semiconductor
- electrode
- manufacturing
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 152
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 46
- 239000000758 substrate Substances 0.000 claims abstract description 169
- 239000004020 conductor Substances 0.000 claims abstract description 77
- 239000002313 adhesive film Substances 0.000 claims abstract description 57
- 239000012212 insulator Substances 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 68
- 238000000059 patterning Methods 0.000 claims description 16
- 238000005530 etching Methods 0.000 claims description 15
- 230000001070 adhesive effect Effects 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000000853 adhesive Substances 0.000 claims description 6
- 239000004820 Pressure-sensitive adhesive Substances 0.000 claims description 4
- 239000010408 film Substances 0.000 description 183
- 239000000463 material Substances 0.000 description 20
- 238000000576 coating method Methods 0.000 description 17
- 239000010409 thin film Substances 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- 229920005989 resin Polymers 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 238000004544 sputter deposition Methods 0.000 description 10
- 239000010931 gold Substances 0.000 description 9
- 238000007740 vapor deposition Methods 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 6
- 238000005266 casting Methods 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 239000011651 chromium Substances 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 230000004075 alteration Effects 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- FMZQNTNMBORAJM-UHFFFAOYSA-N tri(propan-2-yl)-[2-[13-[2-tri(propan-2-yl)silylethynyl]pentacen-6-yl]ethynyl]silane Chemical compound C1=CC=C2C=C3C(C#C[Si](C(C)C)(C(C)C)C(C)C)=C(C=C4C(C=CC=C4)=C4)C4=C(C#C[Si](C(C)C)(C(C)C)C(C)C)C3=CC2=C1 FMZQNTNMBORAJM-UHFFFAOYSA-N 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000737 Duralumin Inorganic materials 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 229920003208 poly(ethylene sulfide) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
Definitions
- the technology of the present disclosure relates to an organic semiconductor device and a method for manufacturing the organic semiconductor device.
- the following techniques are known as techniques relating to a method for manufacturing an organic semiconductor device having an organic semiconductor film.
- Japanese Patent Application Laid-Open No. 2004-335737 discloses a transfer body having at least a base material and a second electrode layer formed on the base material, a substrate, and a first electrode layer formed on the substrate.
- the preparation step of preparing a solar cell side substrate having at least the above, the transfer body and the solar cell side substrate are arranged so that the second electrode layer and the first electrode layer face each other, and the second electrode layer is the first electrode layer.
- a transfer step of transferring the film onto the electrode layer via a photoelectric conversion layer are provided.
- Japanese Patent Application Laid-Open No. 2012-99780 discloses a step of providing a substrate and a first electrode, a step of forming a semiconductor layer containing polyethylene glycol molecules on the substrate, and forming a conductive polymer layer on the first electrode.
- An organic semiconductor device such as an organic thin film transistor having an organic semiconductor film has an electrode made of a conductor film in contact with the organic semiconductor film.
- the electrode is formed, for example, by forming a metal film on the organic semiconductor film by sputtering or vapor deposition and patterning it.
- the metal atoms reach the organic semiconductor film with a relatively high energy, so that the organic semiconductor film may be altered.
- the patterning of the conductor film which comprises an electrode involves an etching process
- an organic-semiconductor film may change in quality by this etching process.
- the organic semiconductor film may be altered during the formation of the conductor film on the organic semiconductor film and the patterning of the conductor film.
- the technology of the present disclosure suppresses the alteration of the organic semiconductor film accompanying the formation of the conductor film on the organic semiconductor film.
- An organic semiconductor device manufacturing method includes: forming an organic semiconductor film on a first substrate; and forming a conductor film and a periphery of the conductor film on a second substrate different from the first substrate Forming an adhesive film made of an adhesive having an adhesive property extending to the first substrate and the second substrate, and contacting the organic semiconductor film and the conductor film with the adhesive film. Maintaining.
- the manufacturing method according to the technique of the present disclosure may include patterning a conductor film on the second substrate before bonding the first substrate and the second substrate.
- the patterning of the conductor film may include forming a mask having an opening on the surface of the conductor film, and etching a portion exposed from the opening of the conductor film.
- the patterning of the conductor film includes forming a mask having an opening on the surface of the adhesive film and forming the conductor film on a portion of the surface of the adhesive film exposed from the opening. May be.
- the first electrode, the insulating film, and the organic semiconductor film are stacked on the first substrate before the first substrate and the second substrate are bonded to each other. It may further include forming, and the second electrode and the third electrode made of the conductor film may be formed by patterning the conductor film.
- the bonding between the first substrate and the second substrate may be performed in a state where at least one of the first substrate and the second substrate is heated.
- the manufacturing method according to the technique of the present disclosure further includes performing a heat treatment on the structure including the organic semiconductor film, the conductor film, and the adhesive film after bonding the first substrate and the second substrate. Also good.
- the manufacturing method according to the technique of the present disclosure may further include removing the second substrate after bonding the first substrate and the second substrate.
- a semiconductor device includes an organic semiconductor film formed on a first substrate, a conductor film provided on the organic semiconductor film, the organic semiconductor film and the conductor film, and an organic semiconductor film A pressure-sensitive adhesive film made of an insulator that maintains a state in contact with the conductor film.
- the organic semiconductor device according to the technique of the present disclosure may further include a second substrate that is provided on the surface of the adhesive film and faces the first substrate.
- An organic semiconductor device includes a first electrode provided with an insulating film interposed between the organic semiconductor film, a second electrode and a third electrode which are made of a conductor film and are separated from each other. , May be included.
- FIGS. 1A to 1K are cross-sectional views illustrating an example of a method for manufacturing an organic semiconductor device according to a first embodiment of the technology of the present disclosure.
- a first substrate 11 made of an insulator or a semiconductor is prepared (FIG. 1A).
- a glass substrate, a resin substrate, a silicon substrate, or the like can be used as the first substrate 11.
- the first substrate 11 may have a plate shape or a flexible film shape.
- a conductor film constituting the gate electrode 20 is formed on the surface of the first substrate 11 by using, for example, a sputtering method.
- a metal such as Cr (chromium) can be used as the material of the conductor film.
- the conductor film is patterned using a photolithography technique and an etching technique. Thereby, the gate electrode 20 is formed on the surface of the first substrate 11 (FIG. 1A).
- a coating type insulating resin is applied to the surface of the first substrate 11 by using a coating method such as a spin coating method, a dip coating method, or a spray coating method, and then dried. Thereby, the gate insulating film 21 covering the gate electrode 20 is formed on the surface of the first substrate 11 (FIG. 1B).
- a fluororesin can be used as a coating type insulating resin that is a material of the gate insulating film 21.
- an organic semiconductor material coating solution is applied to the surface of the gate insulating film 21 by using, for example, an edge casting method.
- the organic semiconductor film 30 covering the gate electrode 20 through the gate insulating film 21 is formed (FIG. 1C).
- the coating solution for the organic semiconductor material for example, a solution obtained by dissolving TIPS pentacene (6,13-Bis (triisopropylsilylethynyl) pentacene) in toluene can be used.
- a cover member (not shown) that forms a space between the gate insulating film 21 is used.
- the space formed between the cover member and the gate insulating film 21 is filled with a coating solution of an organic semiconductor material, and the filled coating solution is dried to form the organic semiconductor film 30.
- the cover member regulates the flow of the coating solution of the organic semiconductor material applied to the surface of the gate insulating film 21 and further controls the drying of the coating solution. According to the edge cast method using such a cover member, an organic semiconductor film having good crystallinity can be formed. Note that details of a method for forming an organic semiconductor film by an edge casting method using a cover member are described in, for example, Japanese Patent Application Laid-Open No. 2014-179568.
- a second substrate 12 different from the first substrate 11 is prepared.
- a glass substrate, a resin substrate, a metal substrate, a silicon substrate, or the like can be used.
- the second substrate 12 may have a plate shape or a flexible film shape.
- PET, PEN, and polyimide can be particularly preferably used.
- an adhesive film 40 made of an insulator having an adhesive thickness of about 1 to 100 ⁇ m (typically about 10 ⁇ m) is formed on the surface of the second substrate 12 (FIG. 1D).
- a resin material having a viscosity of about 10 to 1000 [Pa ⁇ s] (typically about 100 [Pa ⁇ s]) can be used.
- a commercially available non-structural adhesive can be used, and for example, a spray glue 77 manufactured by 3M Corporation can be suitably used.
- the adhesive film 40 can be formed by, for example, applying a coating solution of the spray paste 77 on the surface of the second substrate 12 using a spray coating method and then drying it.
- the conductor film 50 constituting the drain electrode 51 and the source electrode 52 is formed on the surface of the adhesive film 40 by, eg, vapor deposition or sputtering (FIG. 1E).
- a material of the conductor film 50 for example, a metal such as Au (gold) can be used.
- a resist mask 60 is formed on the surface of the conductor film 50 (FIG. 1F).
- the resist mask 60 can be formed using a known photolithography technique. That is, a resist film having photosensitivity is formed on the surface of the conductor film 50, and the resist mask 60 is formed by subjecting the resist film to exposure processing and development processing.
- the resist mask 60 is patterned according to the pattern of the drain electrode 51 and the source electrode 52.
- the conductor film 50 is patterned by etching the conductor film 50 through the resist mask 60.
- a dry etching technique or a wet etching technique can be used for etching the conductor film 50.
- the drain electrode 51 and the source electrode 52 which are separated from each other are formed by etching the conductor film 50.
- the adhesive film 40 extends around the drain electrode 51 and the source electrode 52 (FIG. 1G). Thereafter, the resist mask 60 is removed (FIG. 1H).
- the first substrate 11 and the second substrate 12 are opposed so that 51 and the source electrode 52 face each other. Further, the relative positions of the first substrate 11 and the second substrate 12 are adjusted so that the gate electrode 20 is positioned between the drain electrode 51 and the source electrode 52 (FIG. 1I).
- the first substrate 11 and the second substrate 12 are bonded so that the drain electrode 51 and the source electrode 52 and the organic semiconductor film 30 are in contact (adhesion).
- a stack including the gate electrode 20, the gate insulating film 21, and the organic semiconductor film 30 formed on the first substrate 11 is formed as an adhesive film 40 extending around the conductor film 50, and the drain electrode 51 and the source electrode 52 and cover together. Due to the adhesiveness of the adhesive film 40, the drain electrode 51, the source electrode 52, and the organic semiconductor film 30 are kept in contact with each other (FIG. 1J).
- the adhesiveness of the drain electrode 51 and the source electrode 52 and the organic semiconductor film 30 can be improved.
- the adhesive film 40 has thermoplasticity
- the first substrate 11 and the second substrate 12 are bonded together while at least one of the first substrate 11 and the second substrate 12 is heated. Also good.
- the fluidity of the adhesive film 40 having thermoplasticity is increased by heating, and the function of the adhesive film 40 to maintain the state in which the drain electrode 51 and the source electrode 52 and the organic semiconductor film 30 are in contact (adhered) is promoted.
- the organic semiconductor device 1 is completed.
- the structure including the organic semiconductor film 30, the drain electrode 51, the source electrode 52, and the adhesive film 40 may be subjected to heat treatment. Thereby, the contact state between the organic semiconductor film 30 and the drain electrode 51 and the source electrode 52 becomes good, and the contact resistance can be reduced.
- the second substrate 12 may be peeled off from the adhesive film 40 as shown in FIG. 1K.
- the organic semiconductor device 1 includes a gate insulating film 21 between the organic semiconductor film 30 formed on the first substrate 11 and the organic semiconductor film 30. Covering the organic semiconductor film 30, the drain electrode 51 and the source electrode 52 provided between the gate electrode 20, the drain electrode 51 and the source electrode 52 provided on the surface of the organic semiconductor film 30, the organic semiconductor film 30, A pressure-sensitive adhesive film that maintains a state in which the drain electrode 51 and the source electrode 52 are in contact with each other.
- the organic semiconductor device 1 may further include a second substrate 12 provided on the surface of the adhesive film 40 and facing the first substrate 11 as shown in FIG. 1J. The second substrate 12 functions as a protective film that protects the surface of the adhesive film 40.
- the organic semiconductor device 1 according to the present embodiment has a so-called top contact / bottom gate type organic thin film transistor.
- the conductor film 50 (the drain electrode 51 and the source electrode 52) and the organic semiconductor are bonded together by bonding the first substrate 11 and the second substrate 12.
- the electrode formation on the organic semiconductor film 30 is completed by bringing the film 30 into contact (contact). Further, the state in which the conductor film 50 (the drain electrode 51 and the source electrode 52) and the organic semiconductor film 30 are in contact (adhered) by the adhesive film 40 is maintained. Therefore, the formation of the electrode does not involve a process of causing metal atoms having a relatively high energy to collide with the surface of the organic semiconductor film 30 such as sputtering and vapor deposition, and the conductor film 50 on the organic semiconductor film 30 can be formed. Formation (electrode formation) is possible.
- the patterning of the conductor film 50 is performed before the first substrate 11 and the second substrate 12 are bonded to each other. This is performed on the conductor film 50 formed thereon. Therefore, the organic semiconductor film 30 is not affected by the etching process when the conductor film 50 is patterned. Therefore, it is possible to suppress the alteration of the organic semiconductor film 30 due to the formation of the conductor film 50 (the drain electrode 51 and the source electrode 52).
- the conductor film 50 is patterned by etching through the resist mask 60 is illustrated (FIGS. 1F and 1G), but the patterning of the conductor film 50 is performed by, for example, FIGS. It can also be performed by the method shown in FIG. 2C. That is, a resist mask 70 having openings 71 corresponding to the pattern of the drain electrode 51 and the source electrode 52 is formed on the surface of the adhesive film 40 formed on the second substrate 12 (FIG. 2A). Next, the conductor film 50 is formed on the surface of the adhesive film 40 via the resist mask 70 by vapor deposition or sputtering.
- the conductor film 50 covers the surface of the resist mask 70 and the exposed portion of the adhesive film 40 in the opening 71 of the resist mask 70 (FIG. 2B). Next, the resist mask 70 is removed together with the conductor film 50 covering the surface (FIG. 2C). Thereby, the conductor film 50 is patterned, and the drain electrode 51 and the source electrode 52 are formed on the surface of the adhesive film 40.
- the gate electrode 20 is formed by patterning the conductor film formed on the first substrate 11 and the gate insulating film 21 is formed using a coating type insulating resin is illustrated.
- a silicon substrate provided with conductivity that functions as the first substrate 11 may be used as the gate electrode 20
- a thermal oxide film formed on the surface of the silicon substrate may be used as the gate insulating film 21.
- the organic semiconductor device 1 can be used as a bottom contact / top gate type organic thin film transistor by inverting the top and bottom.
- FIGS. 4A to 4G are cross-sectional views illustrating an example of a method for manufacturing an organic semiconductor device according to the second embodiment of the technology of the present disclosure.
- a first substrate 11 made of an insulator or a semiconductor is prepared (FIG. 4A).
- an organic semiconductor material coating solution is applied to the surface of the first substrate 11 using, for example, an edge casting method, and dried. Thereby, the organic semiconductor film 30 is formed on the surface of the first substrate 11 (FIG. 4A).
- a coating type insulating resin 21 a constituting the gate insulating film 21 is applied to the surface of the organic semiconductor film 30 by using a coating method such as a spin coating method, a dip coating method, or a spray coating method.
- a fluororesin can be used as the insulating resin 21a.
- the conductor film 20a constituting the gate electrode 20 is formed on the surface of the insulating resin 21a by using, for example, a sputtering method.
- a metal such as Cr (chromium) can be used as the material of the conductor film 20a.
- the conductive film 20a and the insulating resin 21a are patterned using a photolithography technique and an etching technique. Thereby, the gate insulating film 21 and the gate electrode 20 are formed on the surface of the organic semiconductor film 30 (FIG. 4C).
- a second substrate 12 different from the first substrate 11 is prepared (FIG. 4D).
- the second substrate 12 a glass substrate, a resin substrate, a silicon substrate, or the like can be used.
- the second substrate 12 may have a plate shape or a flexible film shape.
- a material of the second substrate 12 for example, PET can be used.
- an adhesive film 40 is formed on the surface of the second substrate 12, a conductor film is formed on the surface of the adhesive film 40, and the conductor is patterned, whereby the drain electrode 51 is formed on the surface of the adhesive film 40.
- the source electrode 52 is formed (FIG. 4D).
- the material of the adhesive film 40, the film formation method, the material of the drain electrode 51 and the source electrode 52, the film formation method, and the patterning method are the same as those in the first embodiment.
- the first substrate 11 and the second substrate 12 are opposed so that 51 and the source electrode 52 face each other. Further, the relative positions of the first substrate 11 and the second substrate 12 are adjusted so that the gate electrode 20 is positioned between the drain electrode 51 and the source electrode 52 (FIG. 4E).
- the first substrate 11 and the second substrate 12 are bonded so that the drain electrode 51 and the source electrode 52 and the organic semiconductor film 30 are in contact (adhesion).
- a stack including the gate electrode 20, the gate insulating film 21, and the organic semiconductor film 30 formed on the first substrate 11 is formed as an adhesive film 40 extending around the conductor film 50, and the drain electrode 51 and the source electrode 52 and cover together. Due to the adhesiveness of the adhesive film 40, the drain electrode 51, the source electrode 52, and the organic semiconductor film 30 are maintained in contact with each other (FIG. 4F).
- the adhesiveness of the drain electrode 51 and the source electrode 52 and the organic semiconductor film 30 can be improved.
- the adhesive film 40 has thermoplasticity, even if the first substrate 11 and the second substrate 12 are bonded together while at least one of the first substrate 11 and the second substrate 12 is heated. Good. The fluidity of the adhesive film 40 having thermoplasticity is increased by heating, and the function of the adhesive film 40 to maintain the state in which the drain electrode 51 and the source electrode 52 and the organic semiconductor film 30 are in contact (adhered) is promoted.
- the organic semiconductor device 1A according to the second embodiment of the technique of the present disclosure is completed.
- the structure including the organic semiconductor film 30, the drain electrode 51, the source electrode 52, and the adhesive film 40 be subjected to heat treatment after the first substrate 11 and the second substrate 12 are bonded to each other. Thereby, the contact state between the organic semiconductor film 30 and the drain electrode 51 and the source electrode 52 becomes good, and the contact resistance can be reduced.
- the second substrate 12 may be peeled from the adhesive film 40 as shown in FIG. 4G.
- the organic semiconductor device 1A includes a gate insulation between the organic semiconductor film 30 formed on the first substrate 11 and the organic semiconductor film 30.
- the organic semiconductor film covers the gate electrode 20 provided with the film 21 interposed therebetween, the drain electrode 51 and the source electrode 52 provided on the surface of the organic semiconductor film 30, the organic semiconductor film 30, the drain electrode 51, and the source electrode 52.
- 30 and the pressure-sensitive adhesive film 40 that maintains the state in which the drain electrode 51 and the source electrode 52 are in contact with (adhered to) each other.
- the organic semiconductor device 1A may further include a second substrate 12 provided on the surface of the adhesive film 40 and facing the first substrate 11, as shown in FIG. 4F.
- the second substrate 12 functions as a protective film that protects the surface of the adhesive film 40.
- the organic semiconductor device 1A according to the present embodiment has a so-called top contact / top gate type organic thin film transistor.
- the conductor film 50 is bonded by bonding the first substrate 11 and the second substrate 12 as in the manufacturing method according to the first embodiment.
- electrode formation on organic semiconductor film 30 is completed.
- the state in which the conductor film 50 (the drain electrode 51 and the source electrode 52) and the organic semiconductor film 30 are in contact (adhered) by the adhesive film 40 is maintained. Therefore, formation of the conductor film 50 on the organic semiconductor film 30 is not accompanied by a process of causing metal atoms having relatively high energy to collide with the surface of the organic semiconductor film 30 such as sputtering and vapor deposition.
- Electrode formation is possible. Further, the patterning of the conductor film 50 is performed on the conductor film 50 formed on the second substrate 12 before the first substrate 11 and the second substrate 12 are bonded together. Therefore, the organic semiconductor film 30 is not affected by the etching process when the conductor film 50 is patterned. Therefore, it is possible to suppress the alteration of the organic semiconductor film 30 due to the formation of the conductor film 50 (the drain electrode 51 and the source electrode 52).
- the organic semiconductor device 1A can be used as a bottom contact / bottom gate type organic thin film transistor by inverting the top and bottom.
- n-type silicon substrate having a length of 20 mm, a width of 20 mm, and a thickness of 0.5 mm was prepared.
- the silicon substrate has conductivity, and functions as the first substrate 11 as well as the gate electrode 20.
- a thermal oxide film having a thickness of about 300 nm functioning as the gate insulating film 21 was formed on the surface of the silicon substrate by heat treatment.
- TIPS pentacene was dissolved in toluene to prepare an organic semiconductor material coating solution.
- concentration of TIPS pentacene in the coating solution was 1% by mass.
- the coating liquid was applied to the surface of the thermal oxide film formed on the surface of the silicon substrate and dried to form an organic semiconductor film on the surface of the thermal oxide film. .
- a PET (polyethylene terephthalate) film functioning as the second substrate 12 was prepared.
- a spray paste 77 functioning as the adhesive film 40 was applied by a spray coating method and dried to form the adhesive film 40 on the surface of the PET film.
- a resist mask having two square openings each having a side of 1 mm corresponding to the pattern of the drain electrode and the source electrode was formed on the surface of the adhesive film 40.
- Au gold
- the drain electrode and the source electrode are brought into contact with the organic semiconductor film by bonding a silicon substrate functioning as the first substrate 11 and a PET film functioning as the second substrate 12 using a heating laminator ( Close contact).
- a heating laminator Close contact
- an organic thin film transistor was fabricated in which the drain electrode and the source electrode were patterned by photolithography and etching.
- an organic thin film transistor was produced in which a drain electrode and a source electrode were formed by sputtering Au through a mask formed on the surface of an organic semiconductor film.
- an organic thin film transistor was fabricated in which an Au film was formed on the surface of an organic semiconductor film by vapor deposition, and the Au film was patterned by photolithography and etching to form a drain electrode and a source electrode.
- each of the organic thin film transistors according to the first and second examples and the organic thin film transistors according to the first and second comparative examples was confirmed. It was confirmed that the organic thin film transistors according to the first and second examples each operate as a transistor. On the other hand, the organic thin film transistors according to the first and second comparative examples did not operate as transistors. About the organic thin-film transistor which concerns on a 1st comparative example, it is estimated that the organic-semiconductor film changed in quality by sputtering of Au. Regarding the organic thin film transistor according to the second comparative example, it is presumed that the organic semiconductor film has been altered by photolithography and etching when the Au film is patterned.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Thin Film Transistor (AREA)
Abstract
Provided is a method of manufacturing an organic semiconductor device that includes: forming an organic semiconductor film on a first substrate; forming, on a second substrate that is different from the first substrate, a conductor film and an adhesive film which comprises an insulator having adhesiveness that extends around the conductor film; and bonding the first substrate and the second substrate to maintain a state in which the organic semiconductor film is in contact with the conductor film by the adhesive film.
Description
本開示の技術は、有機半導体装置及び有機半導体装置の製造方法に関する。
The technology of the present disclosure relates to an organic semiconductor device and a method for manufacturing the organic semiconductor device.
有機半導体膜を有する有機半導体装置の製造方法に関する技術として、以下の技術が知られている。
The following techniques are known as techniques relating to a method for manufacturing an organic semiconductor device having an organic semiconductor film.
例えば、特開2004-335737号公報には、基材と、上記基材上に形成された第2電極層とを少なくとも有する転写体、及び基板と、上記基板上に形成された第1電極層とを少なくとも有する太陽電池側基板を調製する調製工程と、上記転写体及び太陽電池側基板を、第2電極層と第1電極層とが対向するように配置し、第2電極層を第1電極層上へ光電変換層を介して転写させる転写工程と、を含む有機薄膜太陽電池の製造方法が記載されている。
For example, Japanese Patent Application Laid-Open No. 2004-335737 discloses a transfer body having at least a base material and a second electrode layer formed on the base material, a substrate, and a first electrode layer formed on the substrate. The preparation step of preparing a solar cell side substrate having at least the above, the transfer body and the solar cell side substrate are arranged so that the second electrode layer and the first electrode layer face each other, and the second electrode layer is the first electrode layer. And a transfer step of transferring the film onto the electrode layer via a photoelectric conversion layer.
特開2012-99780号公報には、基板と第1電極とを提供する工程と、ポリエチレングリコール分子を含有する半導体層を基板上に形成する工程と、導電高分子層を第1電極上に形成する工程と、導電高分子層に半導体層を貼り付けるように、基板と前記半導体層を導電高分子層上に置く工程と、基板を取り除く工程と、有機光電薄膜素子が形成されるように、第2電極を前記半導体層上に形成する工程と、を含む有機光電薄膜素子の製造方法が記載されている。
Japanese Patent Application Laid-Open No. 2012-99780 discloses a step of providing a substrate and a first electrode, a step of forming a semiconductor layer containing polyethylene glycol molecules on the substrate, and forming a conductive polymer layer on the first electrode. A step of placing the substrate and the semiconductor layer on the conductive polymer layer, a step of removing the substrate, and an organic photoelectric thin film element so as to attach the semiconductor layer to the conductive polymer layer. Forming a second electrode on the semiconductor layer, and a method for producing an organic photoelectric thin film element.
有機半導体膜を有する有機薄膜トランジスタ等の有機半導体装置は、有機半導体膜と接する導電体膜からなる電極を有する。電極は、例えば、スパッタまたは蒸着により金属膜を有機半導体膜上に成膜し、パターニングすることで形成される。しかしながら、スパッタ及び蒸着による金属膜の成膜においては、金属原子が、比較的高いエネルギーを持って有機半導体膜に到達することから、有機半導体膜が変質するおそれがある。また、金属粒子を溶媒中に分散させた導電性インクを用いて電極を形成する手法も存在するが、導電性インクに含まれる溶媒によって有機半導体膜が変質するおそれがある。また、電極を構成する導電体膜のパターニングがエッチング処理を伴う場合、このエッチング処理によって有機半導体膜が変質するおそれがある。このように、従来の有機半導体装置の製造方法によれば、有機半導体膜上への導電体膜の成膜時及び導電体膜のパターニング時に有機半導体膜を変質させるおそれがあった。
An organic semiconductor device such as an organic thin film transistor having an organic semiconductor film has an electrode made of a conductor film in contact with the organic semiconductor film. The electrode is formed, for example, by forming a metal film on the organic semiconductor film by sputtering or vapor deposition and patterning it. However, in forming a metal film by sputtering and vapor deposition, the metal atoms reach the organic semiconductor film with a relatively high energy, so that the organic semiconductor film may be altered. There is also a method of forming an electrode using a conductive ink in which metal particles are dispersed in a solvent, but the organic semiconductor film may be altered by the solvent contained in the conductive ink. Moreover, when the patterning of the conductor film which comprises an electrode involves an etching process, there exists a possibility that an organic-semiconductor film may change in quality by this etching process. Thus, according to the conventional method for manufacturing an organic semiconductor device, there is a possibility that the organic semiconductor film may be altered during the formation of the conductor film on the organic semiconductor film and the patterning of the conductor film.
本開示の技術は、有機半導体膜上への導電体膜の形成に伴う有機半導体膜の変質を抑制する。
The technology of the present disclosure suppresses the alteration of the organic semiconductor film accompanying the formation of the conductor film on the organic semiconductor film.
本開示の技術に係る有機半導体装置の製造方法は、第1の基板に有機半導体膜を形成することと、第1の基板とは異なる第2の基板に、導電体膜及び導電体膜の周囲に延在する粘着性を有する絶縁体からなる粘着膜を形成することと、第1の基板と第2の基板とを貼り合わせ、粘着膜によって有機半導体膜と導電体膜とが接触した状態を維持することと、を含む。
An organic semiconductor device manufacturing method according to a technique of the present disclosure includes: forming an organic semiconductor film on a first substrate; and forming a conductor film and a periphery of the conductor film on a second substrate different from the first substrate Forming an adhesive film made of an adhesive having an adhesive property extending to the first substrate and the second substrate, and contacting the organic semiconductor film and the conductor film with the adhesive film. Maintaining.
本開示の技術に係る製造方法は、第1の基板と第2の基板とを貼り合わせる前に、第2の基板上で導電体膜をパターニングすることを含んでいてもよい。導電体膜のパターニングは、導電体膜の表面に開口部を有するマスクを形成することと、導電体膜の、開口部から露出した部分をエッチングすることと、含んでいてもよい。また、導電体膜のパターニングは、粘着膜の表面に開口部を有するマスクを形成することと、粘着膜の表面の、開口部から露出した部分に導電体膜を形成することと、を含んでいてもよい。
The manufacturing method according to the technique of the present disclosure may include patterning a conductor film on the second substrate before bonding the first substrate and the second substrate. The patterning of the conductor film may include forming a mask having an opening on the surface of the conductor film, and etching a portion exposed from the opening of the conductor film. The patterning of the conductor film includes forming a mask having an opening on the surface of the adhesive film and forming the conductor film on a portion of the surface of the adhesive film exposed from the opening. May be.
本開示の技術に係る製造方法は、第1の基板と第2の基板とを貼り合わせる前に、第1の電極、絶縁膜及び有機半導体膜が積層された積層体を第1の基板上に形成することを更に含んでいてもよく、導電体膜のパターニングによって導電体膜からなる互いに分離した第2の電極及び第3の電極を形成してもよい。
In the manufacturing method according to the technique of the present disclosure, the first electrode, the insulating film, and the organic semiconductor film are stacked on the first substrate before the first substrate and the second substrate are bonded to each other. It may further include forming, and the second electrode and the third electrode made of the conductor film may be formed by patterning the conductor film.
第1の基板と第2の基板との貼り合わせを、第1の基板及び第2の基板の少なくとも一方を加熱した状態で行ってもよい。
The bonding between the first substrate and the second substrate may be performed in a state where at least one of the first substrate and the second substrate is heated.
本開示の技術に係る製造方法は、第1の基板と第2の基板とを貼り合わせた後に、有機半導体膜、導電体膜及び粘着膜を含む構造体に熱処理を行うことを更に含んでいてもよい。
The manufacturing method according to the technique of the present disclosure further includes performing a heat treatment on the structure including the organic semiconductor film, the conductor film, and the adhesive film after bonding the first substrate and the second substrate. Also good.
本開示の技術に係る製造方法は、第1の基板と第2の基板とを貼り合わせた後に、第2の基板を除去することを更に含んでいてもよい。
The manufacturing method according to the technique of the present disclosure may further include removing the second substrate after bonding the first substrate and the second substrate.
本開示の技術に係る半導体装置は、第1の基板に形成された有機半導体膜と、有機半導体膜上に設けられた導電体膜と、有機半導体膜及び導電体膜を覆い、有機半導体膜と導電体膜とが接触した状態を維持する絶縁体からなる粘着性を有する粘着膜と、を含む。
A semiconductor device according to the technology of the present disclosure includes an organic semiconductor film formed on a first substrate, a conductor film provided on the organic semiconductor film, the organic semiconductor film and the conductor film, and an organic semiconductor film A pressure-sensitive adhesive film made of an insulator that maintains a state in contact with the conductor film.
本開示の技術に係る有機半導体装置は、粘着膜の表面に設けられ、第1の基板と対向する第2の基板を更に含んでいてもよい。
The organic semiconductor device according to the technique of the present disclosure may further include a second substrate that is provided on the surface of the adhesive film and faces the first substrate.
本開示の技術に係る有機半導体装置は、有機半導体膜との間に絶縁膜を挟んで設けられた第1の電極と、導電体膜からなる互いに分離した第2の電極及び第3の電極と、を含んでいてもよい。
An organic semiconductor device according to a technique of the present disclosure includes a first electrode provided with an insulating film interposed between the organic semiconductor film, a second electrode and a third electrode which are made of a conductor film and are separated from each other. , May be included.
本開示の技術によれば、有機半導体膜上への導電体膜の形成に伴う有機半導体膜の変質を抑制することが可能となる。
According to the technique of the present disclosure, it is possible to suppress the deterioration of the organic semiconductor film accompanying the formation of the conductor film on the organic semiconductor film.
以下、本開示の技術の実施形態について図面を参照しつつ説明する。尚、各図面において、実質的に同一又は等価な構成要素又は部分には同一の参照符号を付している。
Hereinafter, embodiments of the technology of the present disclosure will be described with reference to the drawings. In the drawings, substantially the same or equivalent components or parts are denoted by the same reference numerals.
[第1の実施形態]
図1A~図1Kは、本開示の技術の第1の実施形態に係る有機半導体装置の製造方法の一例を示す断面図である。 [First Embodiment]
1A to 1K are cross-sectional views illustrating an example of a method for manufacturing an organic semiconductor device according to a first embodiment of the technology of the present disclosure.
図1A~図1Kは、本開示の技術の第1の実施形態に係る有機半導体装置の製造方法の一例を示す断面図である。 [First Embodiment]
1A to 1K are cross-sectional views illustrating an example of a method for manufacturing an organic semiconductor device according to a first embodiment of the technology of the present disclosure.
はじめに、絶縁体または半導体からなる第1の基板11を用意する(図1A)。第1の基板11として、ガラス基板、樹脂基板及びシリコン基板等を用いることが可能である。第1の基板11は、板状であってもよいし、可撓性を有するフィルム状であってもよい。
First, a first substrate 11 made of an insulator or a semiconductor is prepared (FIG. 1A). As the first substrate 11, a glass substrate, a resin substrate, a silicon substrate, or the like can be used. The first substrate 11 may have a plate shape or a flexible film shape.
次に、例えば、スパッタ法を用いて、第1の基板11の表面にゲート電極20を構成する導電体膜を形成する。導電体膜の材料として例えば、Cr(クロム)等の金属を用いることが可能である。次に、フォトリソグラフィ技術及びエッチング技術を用いて、上記導電体膜をパターニングする。これにより、第1の基板11の表面にゲート電極20が形成される(図1A)。
Next, a conductor film constituting the gate electrode 20 is formed on the surface of the first substrate 11 by using, for example, a sputtering method. For example, a metal such as Cr (chromium) can be used as the material of the conductor film. Next, the conductor film is patterned using a photolithography technique and an etching technique. Thereby, the gate electrode 20 is formed on the surface of the first substrate 11 (FIG. 1A).
次に、例えばスピンコート法、ディップコート法、スプレー塗布法などの塗布法を用いて、塗布型の絶縁性樹脂を第1の基板11の表面に塗布し、乾燥させる。これにより、第1の基板11の表面に、ゲート電極20を覆うゲート絶縁膜21が形成される(図1B)。ゲート絶縁膜21の材料となる塗布型の絶縁性樹脂として、フッ素樹脂を用いることが可能である。
Next, a coating type insulating resin is applied to the surface of the first substrate 11 by using a coating method such as a spin coating method, a dip coating method, or a spray coating method, and then dried. Thereby, the gate insulating film 21 covering the gate electrode 20 is formed on the surface of the first substrate 11 (FIG. 1B). A fluororesin can be used as a coating type insulating resin that is a material of the gate insulating film 21.
次に、例えば、エッジキャスト法を用いて、有機半導体材料の塗布液をゲート絶縁膜21の表面に塗布する。これにより、ゲート絶縁膜21を介してゲート電極20を覆う有機半導体膜30を形成する(図1C)。有機半導体材料の塗布液として、例えば、トルエンに、TIPSペンタセン(6,13-Bis(triisopropylsilylethynyl)pentacene)を溶解したものを用いることができる。エッジキャスト法では、ゲート絶縁膜21との間に空間を形成するカバー部材(図示せず)を用いる。このカバー部材とゲート絶縁膜21との間に形成された空間に、有機半導体材料の塗布液を充填して、充填した塗布液を乾燥させることにより有機半導体膜30が形成される。カバー部材は、ゲート絶縁膜21の表面に塗布された有機半導体材料の塗布液の流動を規制し、更に塗布液の乾燥を制御する。このようなカバー部材を用いるエッジキャスト法によれば、良好な結晶性を有する有機半導体膜を形成することが可能となる。なお、カバー部材を用いたエッジキャスト法による有機半導体膜の形成方法の詳細は、例えば、特開2014-179568号公報に記載されている。
Next, an organic semiconductor material coating solution is applied to the surface of the gate insulating film 21 by using, for example, an edge casting method. Thereby, the organic semiconductor film 30 covering the gate electrode 20 through the gate insulating film 21 is formed (FIG. 1C). As the coating solution for the organic semiconductor material, for example, a solution obtained by dissolving TIPS pentacene (6,13-Bis (triisopropylsilylethynyl) pentacene) in toluene can be used. In the edge casting method, a cover member (not shown) that forms a space between the gate insulating film 21 is used. The space formed between the cover member and the gate insulating film 21 is filled with a coating solution of an organic semiconductor material, and the filled coating solution is dried to form the organic semiconductor film 30. The cover member regulates the flow of the coating solution of the organic semiconductor material applied to the surface of the gate insulating film 21 and further controls the drying of the coating solution. According to the edge cast method using such a cover member, an organic semiconductor film having good crystallinity can be formed. Note that details of a method for forming an organic semiconductor film by an edge casting method using a cover member are described in, for example, Japanese Patent Application Laid-Open No. 2014-179568.
次に、第1の基板11とは別の第2の基板12を用意する。第2の基板12として、ガラス基板、樹脂基板、金属基板及びシリコン基板等を用いることが可能である。第2の基板12は、板状であってもよいし、可撓性を有するフィルム状であってもよい。第2の基板12の材料として、例えば、アクリル、ポリカーボネート、PET、PEN、PVC、TAC、ポリエチレン、ポリプロピレン、ポリイミド、ポリスチレン、PPS、PTFE,PEEK,PES、アラミド、ポリオレフィン等の樹脂、及び、鉄、ステンレス、銅、ニッケル、アルミまたはアルミ合金、ジュラルミン、チタン合金等の金属を用いることが可能である。上記の材料のうち、PET、PEN、ポリイミドを特に好適も用いることが可能である。
Next, a second substrate 12 different from the first substrate 11 is prepared. As the second substrate 12, a glass substrate, a resin substrate, a metal substrate, a silicon substrate, or the like can be used. The second substrate 12 may have a plate shape or a flexible film shape. As the material of the second substrate 12, for example, acrylic, polycarbonate, PET, PEN, PVC, TAC, polyethylene, polypropylene, polyimide, polystyrene, PPS, PTFE, PEEK, PES, resin such as aramid, polyolefin, iron, A metal such as stainless steel, copper, nickel, aluminum, an aluminum alloy, duralumin, or a titanium alloy can be used. Of the above materials, PET, PEN, and polyimide can be particularly preferably used.
次に、第2の基板12の表面に、粘着性を有する厚さ1~100μm程度(典型的には10μm程度)の絶縁体からなる粘着膜40を形成する(図1D)。粘着膜40の材料として、例えば、10~1000[Pa・s]程度(典型的には100[Pa・s]程度)の粘度を有する樹脂材料を用いることができる。そのような樹脂材料として、例えば非構造用接着剤として市販されているものを用いることができ、例えばスリーエム社製のスプレーのり77を好適に用いることができる。粘着膜40は、例えばスプレー塗布法を用いて、スプレーのり77の塗布液を、第2の基板12の表面に塗布した後、乾燥させることで形成することができる。
Next, an adhesive film 40 made of an insulator having an adhesive thickness of about 1 to 100 μm (typically about 10 μm) is formed on the surface of the second substrate 12 (FIG. 1D). As the material of the adhesive film 40, for example, a resin material having a viscosity of about 10 to 1000 [Pa · s] (typically about 100 [Pa · s]) can be used. As such a resin material, for example, a commercially available non-structural adhesive can be used, and for example, a spray glue 77 manufactured by 3M Corporation can be suitably used. The adhesive film 40 can be formed by, for example, applying a coating solution of the spray paste 77 on the surface of the second substrate 12 using a spray coating method and then drying it.
次に、例えば、蒸着法またはスパッタ法により、粘着膜40の表面に、ドレイン電極51及びソース電極52を構成する導電体膜50を形成する(図1E)。導電体膜50の材料として、例えばAu(金)等の金属を用いることが可能である。
Next, the conductor film 50 constituting the drain electrode 51 and the source electrode 52 is formed on the surface of the adhesive film 40 by, eg, vapor deposition or sputtering (FIG. 1E). As a material of the conductor film 50, for example, a metal such as Au (gold) can be used.
次に、導電体膜50の表面にレジストマスク60を形成する(図1F)。レジストマスク60は、公知のフォトリソグラフィ技術を用いて形成することが可能である。すなわち、導電体膜50の表面に感光性を有するレジスト膜を形成し、レジスト膜に対して露光処理及び現像処理を施すことでレジストマスク60が形成される。レジストマスク60は、ドレイン電極51及びソース電極52のパターンに応じてパターニングされる。
Next, a resist mask 60 is formed on the surface of the conductor film 50 (FIG. 1F). The resist mask 60 can be formed using a known photolithography technique. That is, a resist film having photosensitivity is formed on the surface of the conductor film 50, and the resist mask 60 is formed by subjecting the resist film to exposure processing and development processing. The resist mask 60 is patterned according to the pattern of the drain electrode 51 and the source electrode 52.
次に、レジストマスク60を介して導電体膜50をエッチングすることで導電体膜50をパターニングする。導電体膜50のエッチングは、ドライエッチング技術またはウェットエッチング技術を用いることが可能である。導電体膜50のエッチングにより、互いに分離したドレイン電極51及びソース電極52が形成される。ドレイン電極51及びソース電極52の周囲には粘着膜40が延在した状態となる(図1G)。その後、レジストマスク60を除去する(図1H)。
Next, the conductor film 50 is patterned by etching the conductor film 50 through the resist mask 60. For etching the conductor film 50, a dry etching technique or a wet etching technique can be used. The drain electrode 51 and the source electrode 52 which are separated from each other are formed by etching the conductor film 50. The adhesive film 40 extends around the drain electrode 51 and the source electrode 52 (FIG. 1G). Thereafter, the resist mask 60 is removed (FIG. 1H).
次に、第1の基板11上に形成されたゲート電極20、ゲート絶縁膜21及び有機半導体膜30を含む積層体と、第2の基板12上に粘着膜40を介して形成されたドレイン電極51及びソース電極52とが向かい合うように第1の基板11及び第2の基板12を対向させる。また、ドレイン電極51とソース電極52との間にゲート電極20が位置するように、第1の基板11と第2の基板12との相対位置を調整する(図1I)。
Next, a stacked body including the gate electrode 20, the gate insulating film 21, and the organic semiconductor film 30 formed on the first substrate 11, and a drain electrode formed on the second substrate 12 via the adhesive film 40. The first substrate 11 and the second substrate 12 are opposed so that 51 and the source electrode 52 face each other. Further, the relative positions of the first substrate 11 and the second substrate 12 are adjusted so that the gate electrode 20 is positioned between the drain electrode 51 and the source electrode 52 (FIG. 1I).
次に、ドレイン電極51及びソース電極52と有機半導体膜30とが接触(密着)するように第1の基板11と第2の基板12とを貼り合わせる。導電体膜50の周囲に延在する粘着膜40が、第1の基板11上に形成されたゲート電極20、ゲート絶縁膜21及び有機半導体膜30を含む積層体を、ドレイン電極51及びソース電極52とともに覆う。粘着膜40の粘着性によって、ドレイン電極51及びソース電極52と、有機半導体膜30とが接触(密着)した状態が維持される(図1J)。
Next, the first substrate 11 and the second substrate 12 are bonded so that the drain electrode 51 and the source electrode 52 and the organic semiconductor film 30 are in contact (adhesion). A stack including the gate electrode 20, the gate insulating film 21, and the organic semiconductor film 30 formed on the first substrate 11 is formed as an adhesive film 40 extending around the conductor film 50, and the drain electrode 51 and the source electrode 52 and cover together. Due to the adhesiveness of the adhesive film 40, the drain electrode 51, the source electrode 52, and the organic semiconductor film 30 are kept in contact with each other (FIG. 1J).
第1の基板11と第2の基板12とを貼り合わせる際に、第1の基板11及び第2の基板12の少なくとも一方を、他方の側に押し付ける押圧力を加えることが好ましい。これにより、ドレイン電極51及びソース電極52と有機半導体膜30との密着性を高めることができる。また、粘着膜40が熱可塑性を有する場合、第1の基板11及び第2の基板12の少なくとも一方を加熱した状態で、第1の基板11と第2の基板12との貼り合わせを行ってもよい。加熱により熱可塑性を有する粘着膜40の流動性が高まり、粘着膜40の、ドレイン電極51及びソース電極52と有機半導体膜30とが接触(密着)した状態を維持する機能が促進される。
When the first substrate 11 and the second substrate 12 are bonded together, it is preferable to apply a pressing force that presses at least one of the first substrate 11 and the second substrate 12 to the other side. Thereby, the adhesiveness of the drain electrode 51 and the source electrode 52 and the organic semiconductor film 30 can be improved. When the adhesive film 40 has thermoplasticity, the first substrate 11 and the second substrate 12 are bonded together while at least one of the first substrate 11 and the second substrate 12 is heated. Also good. The fluidity of the adhesive film 40 having thermoplasticity is increased by heating, and the function of the adhesive film 40 to maintain the state in which the drain electrode 51 and the source electrode 52 and the organic semiconductor film 30 are in contact (adhered) is promoted.
以上の各工程を経ることにより、有機半導体装置1が完成する。なお、第1の基板11と第2の基板12とを貼り合わせた後に、有機半導体膜30、ドレイン電極51、ソース電極52及び粘着膜40を含む構造体に熱処理を施してもよい。これにより有機半導体膜30と、ドレイン電極51及びソース電極52との接触状態が良好となり、接触抵抗を小さくすることができる。また、必要に応じて、図1Kに示すように、第2の基板12を粘着膜40から剥離してもよい。第2の基板12を粘着膜40から剥離する場合、剥離が容易となるように、第2の基板12と粘着膜40との接着力をコントロールしておくことが好ましい。第2の基板12と粘着膜40との接着力のコントロールは、例えば、第2の基板12に表面処理を施すこと等によって行うことができる。
Through the above steps, the organic semiconductor device 1 is completed. Note that after the first substrate 11 and the second substrate 12 are bonded together, the structure including the organic semiconductor film 30, the drain electrode 51, the source electrode 52, and the adhesive film 40 may be subjected to heat treatment. Thereby, the contact state between the organic semiconductor film 30 and the drain electrode 51 and the source electrode 52 becomes good, and the contact resistance can be reduced. Further, as necessary, the second substrate 12 may be peeled off from the adhesive film 40 as shown in FIG. 1K. When the second substrate 12 is peeled from the adhesive film 40, it is preferable to control the adhesive force between the second substrate 12 and the adhesive film 40 so as to facilitate the peeling. Control of the adhesive force between the second substrate 12 and the adhesive film 40 can be performed, for example, by subjecting the second substrate 12 to a surface treatment.
本開示の技術の実施形態に係る有機半導体装置1は、図1Kに示すように、第1の基板11に形成された有機半導体膜30と、有機半導体膜30との間にゲート絶縁膜21を挟んで設けられたゲート電極20と、有機半導体膜30の表面に設けられたドレイン電極51及びソース電極52と、有機半導体膜30、ドレイン電極51及びソース電極52を覆い、有機半導体膜30と、ドレイン電極51及びソース電極52とが接触(密着)した状態を維持する粘着膜40と、を有する。また、有機半導体装置1は、図1Jに示すように、粘着膜40の表面に設けられ、第1の基板11と対向する第2の基板12を更に含み得る。第2の基板12は、粘着膜40の表面を保護する保護膜として機能する。本実施形態に係る有機半導体装置1は、所謂トップコンタクト・ボトムゲート型の有機薄膜トランジスタの形態を有する。
As shown in FIG. 1K, the organic semiconductor device 1 according to the embodiment of the technology of the present disclosure includes a gate insulating film 21 between the organic semiconductor film 30 formed on the first substrate 11 and the organic semiconductor film 30. Covering the organic semiconductor film 30, the drain electrode 51 and the source electrode 52 provided between the gate electrode 20, the drain electrode 51 and the source electrode 52 provided on the surface of the organic semiconductor film 30, the organic semiconductor film 30, A pressure-sensitive adhesive film that maintains a state in which the drain electrode 51 and the source electrode 52 are in contact with each other. Moreover, the organic semiconductor device 1 may further include a second substrate 12 provided on the surface of the adhesive film 40 and facing the first substrate 11 as shown in FIG. 1J. The second substrate 12 functions as a protective film that protects the surface of the adhesive film 40. The organic semiconductor device 1 according to the present embodiment has a so-called top contact / bottom gate type organic thin film transistor.
本開示の技術の第1の実施形態に係る製造方法によれば、第1の基板11と第2の基板12との貼り合わせによって導電体膜50(ドレイン電極51及びソース電極52)と有機半導体膜30とを接触(密着)させることで、有機半導体膜30上への電極形成が完了する。また、粘着膜40によって導電体膜50(ドレイン電極51及びソース電極52)と有機半導体膜30とが接触(密着)した状態が維持される。従って、電極形成において、スパッタ及び蒸着のような有機半導体膜30の表面に比較的高いエネルギーを持った金属原子を衝突させる処理を伴うことがなく、有機半導体膜30上への導電体膜50の形成(電極の形成)が可能である。
According to the manufacturing method according to the first embodiment of the technology of the present disclosure, the conductor film 50 (the drain electrode 51 and the source electrode 52) and the organic semiconductor are bonded together by bonding the first substrate 11 and the second substrate 12. The electrode formation on the organic semiconductor film 30 is completed by bringing the film 30 into contact (contact). Further, the state in which the conductor film 50 (the drain electrode 51 and the source electrode 52) and the organic semiconductor film 30 are in contact (adhered) by the adhesive film 40 is maintained. Therefore, the formation of the electrode does not involve a process of causing metal atoms having a relatively high energy to collide with the surface of the organic semiconductor film 30 such as sputtering and vapor deposition, and the conductor film 50 on the organic semiconductor film 30 can be formed. Formation (electrode formation) is possible.
また、本開示の技術第1の実施形態に係る製造方法によれば、導電体膜50のパターニングは、第1の基板11と第2の基板12とを貼り合わせる前に、第2の基板12上に形成された導電体膜50に対して行われる。従って、導電体膜50をパターニングする際のエッチング処理による影響が、有機半導体膜30に及ぶことはない。従って、導電体膜50(ドレイン電極51及びソース電極52)の形成に伴う有機半導体膜30の変質を抑制することが可能である。
Moreover, according to the manufacturing method according to the first embodiment of the present disclosure, the patterning of the conductor film 50 is performed before the first substrate 11 and the second substrate 12 are bonded to each other. This is performed on the conductor film 50 formed thereon. Therefore, the organic semiconductor film 30 is not affected by the etching process when the conductor film 50 is patterned. Therefore, it is possible to suppress the alteration of the organic semiconductor film 30 due to the formation of the conductor film 50 (the drain electrode 51 and the source electrode 52).
なお、上記の実施形態では、レジストマスク60を介したエッチングにより導電体膜50のパターニングを行う場合を例示したが(図1F、図1G)、導電体膜50のパターニングは、例えば、図2A~図2Cに示す方法によって行うことも可能である。すなわち、第2の基板12上に形成した粘着膜40の表面に、ドレイン電極51及びソース電極52のパターンに応じた開口部71を有するレジストマスク70を形成する(図2A)。次に、蒸着法またはスパッタ法によって、粘着膜40の表面に、レジストマスク70を介して導電体膜50を形成する。導電体膜50は、レジストマスク70の表面、及び粘着膜40の、レジストマスク70の開口部71において露出した部分を覆う(図2B)。次に、レジストマスク70を、その表面を覆う導電体膜50とともに除去する(図2C)。これにより、導電体膜50がパターニングされ、粘着膜40の表面にドレイン電極51及びソース電極52が形成される。
In the above embodiment, the case where the conductor film 50 is patterned by etching through the resist mask 60 is illustrated (FIGS. 1F and 1G), but the patterning of the conductor film 50 is performed by, for example, FIGS. It can also be performed by the method shown in FIG. 2C. That is, a resist mask 70 having openings 71 corresponding to the pattern of the drain electrode 51 and the source electrode 52 is formed on the surface of the adhesive film 40 formed on the second substrate 12 (FIG. 2A). Next, the conductor film 50 is formed on the surface of the adhesive film 40 via the resist mask 70 by vapor deposition or sputtering. The conductor film 50 covers the surface of the resist mask 70 and the exposed portion of the adhesive film 40 in the opening 71 of the resist mask 70 (FIG. 2B). Next, the resist mask 70 is removed together with the conductor film 50 covering the surface (FIG. 2C). Thereby, the conductor film 50 is patterned, and the drain electrode 51 and the source electrode 52 are formed on the surface of the adhesive film 40.
また、上記の実施形態では、第1の基板11上に成膜された導電体膜のパターニングによってゲート電極20を形成し、塗布型の絶縁性樹脂を用いてゲート絶縁膜21形成する場合を例示したが、この態様に限定されるものではない。例えば、第1の基板11として機能する導電性が付与されたシリコン基板をゲート電極20とし、このシリコン基板の表面に形成された熱酸化膜をゲート絶縁膜21としてもよい。
In the above embodiment, the case where the gate electrode 20 is formed by patterning the conductor film formed on the first substrate 11 and the gate insulating film 21 is formed using a coating type insulating resin is illustrated. However, it is not limited to this aspect. For example, a silicon substrate provided with conductivity that functions as the first substrate 11 may be used as the gate electrode 20, and a thermal oxide film formed on the surface of the silicon substrate may be used as the gate insulating film 21.
また、有機半導体装置1は、図3に示すように、上下を反転させることで、ボトムコンタクト・トップゲート型の有機薄膜トランジスタとして使用することも可能である。
Further, as shown in FIG. 3, the organic semiconductor device 1 can be used as a bottom contact / top gate type organic thin film transistor by inverting the top and bottom.
[第2の実施形態]
図4A~図4Gは、本開示の技術の第2の実施形態に係る有機半導体装置の製造方法の一例を示す断面図である。 [Second Embodiment]
4A to 4G are cross-sectional views illustrating an example of a method for manufacturing an organic semiconductor device according to the second embodiment of the technology of the present disclosure.
図4A~図4Gは、本開示の技術の第2の実施形態に係る有機半導体装置の製造方法の一例を示す断面図である。 [Second Embodiment]
4A to 4G are cross-sectional views illustrating an example of a method for manufacturing an organic semiconductor device according to the second embodiment of the technology of the present disclosure.
はじめに、絶縁体または半導体からなる第1の基板11を用意する(図4A)。次に、例えば、エッジキャスト法を用いて、有機半導体材料の塗布液を第1の基板11の表面に塗布し、乾燥させる。これにより、第1の基板11の表面に有機半導体膜30が形成される(図4A)。
First, a first substrate 11 made of an insulator or a semiconductor is prepared (FIG. 4A). Next, an organic semiconductor material coating solution is applied to the surface of the first substrate 11 using, for example, an edge casting method, and dried. Thereby, the organic semiconductor film 30 is formed on the surface of the first substrate 11 (FIG. 4A).
次に、例えば、スピンコート法、ディップコート法、スプレー塗布法などの塗布法を用いて、ゲート絶縁膜21を構成する塗布型の絶縁性樹脂21aを有機半導体膜30の表面に塗布する。絶縁性樹脂21aとして、フッ素樹脂を用いることが可能である。続いて、例えば、スパッタ法を用いて、絶縁性樹脂21aの表面にゲート電極20を構成する導電体膜20aを形成する。導電体膜20aの材料として例えば、Cr(クロム)等の金属を用いることが可能である。
Next, a coating type insulating resin 21 a constituting the gate insulating film 21 is applied to the surface of the organic semiconductor film 30 by using a coating method such as a spin coating method, a dip coating method, or a spray coating method. A fluororesin can be used as the insulating resin 21a. Subsequently, the conductor film 20a constituting the gate electrode 20 is formed on the surface of the insulating resin 21a by using, for example, a sputtering method. For example, a metal such as Cr (chromium) can be used as the material of the conductor film 20a.
次に、フォトリソグラフィ技術及びエッチング技術を用いて、導電体膜20a及び絶縁性樹脂21aをパターニングする。これにより、有機半導体膜30の表面に、ゲート絶縁膜21及びゲート電極20が形成される(図4C)。
Next, the conductive film 20a and the insulating resin 21a are patterned using a photolithography technique and an etching technique. Thereby, the gate insulating film 21 and the gate electrode 20 are formed on the surface of the organic semiconductor film 30 (FIG. 4C).
次に、第1の基板11とは別の第2の基板12を用意する(図4D)。第2の基板12として、ガラス基板、樹脂基板及びシリコン基板等を用いることが可能である。第2の基板12は、板状であってもよいし、可撓性を有するフィルム状であってもよい。第2の基板12の材料として、例えばPETを用いることができる。次に、第2の基板12の表面に、粘着膜40を形成し、粘着膜40の表面に導電体膜を形成し、上記導電体をパターニングすることで、粘着膜40の表面にドレイン電極51及びソース電極52を形成する(図4D)。粘着膜40の材料、成膜方法、並びにドレイン電極51及びソース電極52の材料、成膜方法及びパターニング方法は、第1の実施形態と同様である。
Next, a second substrate 12 different from the first substrate 11 is prepared (FIG. 4D). As the second substrate 12, a glass substrate, a resin substrate, a silicon substrate, or the like can be used. The second substrate 12 may have a plate shape or a flexible film shape. As a material of the second substrate 12, for example, PET can be used. Next, an adhesive film 40 is formed on the surface of the second substrate 12, a conductor film is formed on the surface of the adhesive film 40, and the conductor is patterned, whereby the drain electrode 51 is formed on the surface of the adhesive film 40. Then, the source electrode 52 is formed (FIG. 4D). The material of the adhesive film 40, the film formation method, the material of the drain electrode 51 and the source electrode 52, the film formation method, and the patterning method are the same as those in the first embodiment.
次に、第1の基板11上に形成されたゲート電極20、ゲート絶縁膜21及び有機半導体膜30を含む積層体と、第2の基板12上に粘着膜40を介して形成されたドレイン電極51及びソース電極52とが向かい合うように第1の基板11及び第2の基板12を対向させる。また、ドレイン電極51とソース電極52との間にゲート電極20が位置するように、第1の基板11と第2の基板12との相対位置を調整する(図4E)。
Next, a stacked body including the gate electrode 20, the gate insulating film 21, and the organic semiconductor film 30 formed on the first substrate 11, and a drain electrode formed on the second substrate 12 via the adhesive film 40. The first substrate 11 and the second substrate 12 are opposed so that 51 and the source electrode 52 face each other. Further, the relative positions of the first substrate 11 and the second substrate 12 are adjusted so that the gate electrode 20 is positioned between the drain electrode 51 and the source electrode 52 (FIG. 4E).
次に、ドレイン電極51及びソース電極52と有機半導体膜30とが接触(密着)するように第1の基板11と第2の基板12とを貼り合わせる。導電体膜50の周囲に延在する粘着膜40が、第1の基板11上に形成されたゲート電極20、ゲート絶縁膜21及び有機半導体膜30を含む積層体を、ドレイン電極51及びソース電極52とともに覆う。粘着膜40の粘着性により、ドレイン電極51及びソース電極52と、有機半導体膜30とが接触(密着)した状態が維持される(図4F)。
Next, the first substrate 11 and the second substrate 12 are bonded so that the drain electrode 51 and the source electrode 52 and the organic semiconductor film 30 are in contact (adhesion). A stack including the gate electrode 20, the gate insulating film 21, and the organic semiconductor film 30 formed on the first substrate 11 is formed as an adhesive film 40 extending around the conductor film 50, and the drain electrode 51 and the source electrode 52 and cover together. Due to the adhesiveness of the adhesive film 40, the drain electrode 51, the source electrode 52, and the organic semiconductor film 30 are maintained in contact with each other (FIG. 4F).
第1の基板11と第2の基板12とを貼り合わせる際に、第1の基板11及び第2の基板12の少なくとも一方を、他方の側に押し付ける押圧力を加えることが好ましい。これにより、ドレイン電極51及びソース電極52と有機半導体膜30との密着性を高めることができる。また、粘着膜40が熱可塑性を有する場合、第1の基板11及び第2の基板12の少なくとも一方を加熱した状態で第1の基板11と第2の基板12との貼り合わせを行ってもよい。加熱により熱可塑性を有する粘着膜40の流動性が高まり、粘着膜40の、ドレイン電極51及びソース電極52と有機半導体膜30とが接触(密着)した状態を維持する機能が促進される。
When the first substrate 11 and the second substrate 12 are bonded together, it is preferable to apply a pressing force that presses at least one of the first substrate 11 and the second substrate 12 to the other side. Thereby, the adhesiveness of the drain electrode 51 and the source electrode 52 and the organic semiconductor film 30 can be improved. Further, when the adhesive film 40 has thermoplasticity, even if the first substrate 11 and the second substrate 12 are bonded together while at least one of the first substrate 11 and the second substrate 12 is heated. Good. The fluidity of the adhesive film 40 having thermoplasticity is increased by heating, and the function of the adhesive film 40 to maintain the state in which the drain electrode 51 and the source electrode 52 and the organic semiconductor film 30 are in contact (adhered) is promoted.
以上の各工程を経ることにより、本開示の技術の第2の実施形態に係る有機半導体装置1Aが完成する。なお、第1の基板11と第2の基板12とを貼り合わせた後に、有機半導体膜30、ドレイン電極51、ソース電極52及び粘着膜40を含む構造体に熱処理を施すことが好ましい。これにより有機半導体膜30と、ドレイン電極51及びソース電極52との接触状態が良好となり、接触抵抗を小さくすることができる。また、必要に応じて、図4Gに示すように、第2の基板12を粘着膜40から剥離してもよい。
Through the above steps, the organic semiconductor device 1A according to the second embodiment of the technique of the present disclosure is completed. Note that it is preferable that the structure including the organic semiconductor film 30, the drain electrode 51, the source electrode 52, and the adhesive film 40 be subjected to heat treatment after the first substrate 11 and the second substrate 12 are bonded to each other. Thereby, the contact state between the organic semiconductor film 30 and the drain electrode 51 and the source electrode 52 becomes good, and the contact resistance can be reduced. In addition, as necessary, the second substrate 12 may be peeled from the adhesive film 40 as shown in FIG. 4G.
本開示の技術の第2の実施形態に係る有機半導体装置1Aは、図4Gに示すように、第1の基板11に形成された有機半導体膜30と、有機半導体膜30との間にゲート絶縁膜21を挟んで設けられたゲート電極20と、有機半導体膜30の表面に設けられたドレイン電極51及びソース電極52と、有機半導体膜30、ドレイン電極51及びソース電極52を覆い、有機半導体膜30とドレイン電極51及びソース電極52とが接触(密着)した状態を維持する粘着膜40と、を有する。また、有機半導体装置1Aは、図4Fに示すように、粘着膜40の表面に設けられ、第1の基板11と対向する第2の基板12を更に含み得る。第2の基板12は、粘着膜40の表面を保護する保護膜として機能する。本実施形態に係る有機半導体装置1Aは、所謂トップコンタクト・トップゲート型の有機薄膜トランジスタの形態を有する。
As shown in FIG. 4G, the organic semiconductor device 1A according to the second embodiment of the technology of the present disclosure includes a gate insulation between the organic semiconductor film 30 formed on the first substrate 11 and the organic semiconductor film 30. The organic semiconductor film covers the gate electrode 20 provided with the film 21 interposed therebetween, the drain electrode 51 and the source electrode 52 provided on the surface of the organic semiconductor film 30, the organic semiconductor film 30, the drain electrode 51, and the source electrode 52. 30 and the pressure-sensitive adhesive film 40 that maintains the state in which the drain electrode 51 and the source electrode 52 are in contact with (adhered to) each other. Moreover, the organic semiconductor device 1A may further include a second substrate 12 provided on the surface of the adhesive film 40 and facing the first substrate 11, as shown in FIG. 4F. The second substrate 12 functions as a protective film that protects the surface of the adhesive film 40. The organic semiconductor device 1A according to the present embodiment has a so-called top contact / top gate type organic thin film transistor.
本開示の技術の第2の実施形態に係る製造方法によれば、第1の実施形態に係る製造方法と同様、第1の基板11と第2の基板12との貼り合わせによって導電体膜50(ドレイン電極51及びソース電極52)と有機半導体膜30とを接触(密着)させることで、有機半導体膜30上への電極形成が完了する。また、粘着膜40によって導電体膜50(ドレイン電極51及びソース電極52)と有機半導体膜30とが接触(密着)した状態が維持される。従って、スパッタ法及び蒸着法のような、有機半導体膜30の表面に比較的高いエネルギーを持った金属原子を衝突させる処理を伴うことがなく、有機半導体膜30上への導電体膜50の形成(電極の形成)が可能である。また、導電体膜50のパターニングは、第1の基板11と第2の基板12とを貼り合わせる前に、第2の基板12上に形成された導電体膜50に対して行われる。従って、導電体膜50をパターニングする際のエッチング処理による影響が、有機半導体膜30に及ぶことはない。従って、導電体膜50(ドレイン電極51及びソース電極52)の形成に伴う有機半導体膜30の変質を抑制することが可能である。
According to the manufacturing method according to the second embodiment of the technology of the present disclosure, the conductor film 50 is bonded by bonding the first substrate 11 and the second substrate 12 as in the manufacturing method according to the first embodiment. By forming (drain electrode 51 and source electrode 52) and organic semiconductor film 30 in contact (adhesion), electrode formation on organic semiconductor film 30 is completed. Further, the state in which the conductor film 50 (the drain electrode 51 and the source electrode 52) and the organic semiconductor film 30 are in contact (adhered) by the adhesive film 40 is maintained. Therefore, formation of the conductor film 50 on the organic semiconductor film 30 is not accompanied by a process of causing metal atoms having relatively high energy to collide with the surface of the organic semiconductor film 30 such as sputtering and vapor deposition. (Electrode formation) is possible. Further, the patterning of the conductor film 50 is performed on the conductor film 50 formed on the second substrate 12 before the first substrate 11 and the second substrate 12 are bonded together. Therefore, the organic semiconductor film 30 is not affected by the etching process when the conductor film 50 is patterned. Therefore, it is possible to suppress the alteration of the organic semiconductor film 30 due to the formation of the conductor film 50 (the drain electrode 51 and the source electrode 52).
なお、有機半導体装置1Aは、図5に示すように、上下を反転させることで、ボトムコンタクト・ボトムゲート型の有機薄膜トランジスタとして使用することも可能である。
As shown in FIG. 5, the organic semiconductor device 1A can be used as a bottom contact / bottom gate type organic thin film transistor by inverting the top and bottom.
[実施例]
以下において、本開示の技術の実施例について説明する。 [Example]
Hereinafter, examples of the technology of the present disclosure will be described.
以下において、本開示の技術の実施例について説明する。 [Example]
Hereinafter, examples of the technology of the present disclosure will be described.
縦20mm、横20mm、厚さ0.5mmのn型のシリコン基板を用意した。シリコン基板は、導電性を有しており、第1の基板11として機能すると共にゲート電極20としても機能する。次に、熱処理によりシリコン基板の表面に、ゲート絶縁膜21として機能する厚さ300nm程度の熱酸化膜を形成した。
An n-type silicon substrate having a length of 20 mm, a width of 20 mm, and a thickness of 0.5 mm was prepared. The silicon substrate has conductivity, and functions as the first substrate 11 as well as the gate electrode 20. Next, a thermal oxide film having a thickness of about 300 nm functioning as the gate insulating film 21 was formed on the surface of the silicon substrate by heat treatment.
次に、トルエンにTIPSペンタセンを溶解して、有機半導体材料の塗布液を調製した。塗布液におけるTIPSペンタセンの濃度を1質量%とした。次に、エッジキャスト法を用いて、シリコン基板の表面に形成された熱酸化膜の表面に、上記の塗布液を塗布し、乾燥させることで、熱酸化膜の表面に有機半導体膜を形成した。
Next, TIPS pentacene was dissolved in toluene to prepare an organic semiconductor material coating solution. The concentration of TIPS pentacene in the coating solution was 1% by mass. Next, using the edge casting method, the coating liquid was applied to the surface of the thermal oxide film formed on the surface of the silicon substrate and dried to form an organic semiconductor film on the surface of the thermal oxide film. .
次に、第2の基板12として機能するPET(ポリエチレンテレフタラート)フィルムを用意した。次に、粘着膜40として機能するスプレーのり77を、スプレー塗布法によって塗布し、乾燥させ、PETフィルムの表面に粘着膜40を形成した。次に、ドレイン電極及びソース電極のパターンに対応した、1辺が1mmの正方形の2つ開口部を有するレジストマスクを、粘着膜40の表面に形成した。次に、上記のレジストマスクを介してAu(金)のスパッタリングを行った後、上記のレジストマスクを除去することで、粘着膜40の表面にドレイン電極及びソース電極を形成した。
Next, a PET (polyethylene terephthalate) film functioning as the second substrate 12 was prepared. Next, a spray paste 77 functioning as the adhesive film 40 was applied by a spray coating method and dried to form the adhesive film 40 on the surface of the PET film. Next, a resist mask having two square openings each having a side of 1 mm corresponding to the pattern of the drain electrode and the source electrode was formed on the surface of the adhesive film 40. Next, after Au (gold) was sputtered through the resist mask, the drain mask and the source electrode were formed on the surface of the adhesive film 40 by removing the resist mask.
次に、加熱ラミネータを用いて、第1の基板11として機能するシリコン基板と、第2の基板12として機能するPETフィルムを貼り合わせることで、ドレイン電極及びソース電極と有機半導体膜とを接触(密着)させた。以上の各工程を経ることにより、第1の実施例に係る有機薄膜トランジスタが完成した。
Next, the drain electrode and the source electrode are brought into contact with the organic semiconductor film by bonding a silicon substrate functioning as the first substrate 11 and a PET film functioning as the second substrate 12 using a heating laminator ( Close contact). Through the above steps, the organic thin film transistor according to the first example was completed.
第2の実施例として、ドレイン電極及びソース電極のパターニングを、フォトリソグラフィ及びエッチングによって行った有機薄膜トランジスタを作製した。
As a second example, an organic thin film transistor was fabricated in which the drain electrode and the source electrode were patterned by photolithography and etching.
第1の比較例として、有機半導体膜の表面に形成したマスクを介したAuのスパッタリングによりドレイン電極及びソース電極を形成した有機薄膜トランジスタを作製した。
As a first comparative example, an organic thin film transistor was produced in which a drain electrode and a source electrode were formed by sputtering Au through a mask formed on the surface of an organic semiconductor film.
第2の比較例として、蒸着法によって有機半導体膜の表面にAu膜を形成し、フォトリソグラフィ及びエッチングによるAu膜のパターニングを行ってドレイン電極及びソース電極を形成した有機薄膜トランジスタを作製した。
As a second comparative example, an organic thin film transistor was fabricated in which an Au film was formed on the surface of an organic semiconductor film by vapor deposition, and the Au film was patterned by photolithography and etching to form a drain electrode and a source electrode.
第1及び第2の実施例に係る有機薄膜トランジスタ、並びに第1及び第2の比較例に係る有機薄膜トランジスタの各々について動作確認を行った。第1及び第2の実施例に係る有機薄膜トランジスタについては、それぞれトランジスタとして動作することが確認された。一方、第1及び第2の比較例に係る有機薄膜トランジスタについては、それぞれトランジスタとして動作しなかった。第1の比較例に係る有機薄膜トランジスタについては、Auのスパッタリングにより有機半導体膜が変質したものと推測される。第2の比較例に係る有機薄膜トランジスタについては、Au膜をパターニングする際のフォトリソグラフィ及びエッチングにより、有機半導体膜が変質したものと推測される。
The operation of each of the organic thin film transistors according to the first and second examples and the organic thin film transistors according to the first and second comparative examples was confirmed. It was confirmed that the organic thin film transistors according to the first and second examples each operate as a transistor. On the other hand, the organic thin film transistors according to the first and second comparative examples did not operate as transistors. About the organic thin-film transistor which concerns on a 1st comparative example, it is estimated that the organic-semiconductor film changed in quality by sputtering of Au. Regarding the organic thin film transistor according to the second comparative example, it is presumed that the organic semiconductor film has been altered by photolithography and etching when the Au film is patterned.
2018年4月27日に出願された日本国特許出願2018-086754号の開示は、その全体が参照により本明細書に取り込まれる。
The entire disclosure of Japanese Patent Application No. 2018-086754 filed on April 27, 2018 is incorporated herein by reference.
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.
1、1A 有機半導体装置
11 第1の基板
12 第2の基板
20 ゲート電極
20a 導電体膜
21 ゲート絶縁膜
21a 絶縁性樹脂
30 有機半導体膜
40 粘着膜
50 導電体膜
51 ドレイン電極
52 ソース電極
60、70 レジストマスク
71 開口部 1, 1AOrganic semiconductor device 11 First substrate 12 Second substrate 20 Gate electrode 20a Conductor film 21 Gate insulating film 21a Insulating resin 30 Organic semiconductor film 40 Adhesive film 50 Conductor film 51 Drain electrode 52 Source electrode 60, 70 resist mask 71 opening
11 第1の基板
12 第2の基板
20 ゲート電極
20a 導電体膜
21 ゲート絶縁膜
21a 絶縁性樹脂
30 有機半導体膜
40 粘着膜
50 導電体膜
51 ドレイン電極
52 ソース電極
60、70 レジストマスク
71 開口部 1, 1A
Claims (11)
- 第1の基板に有機半導体膜を形成することと、
前記第1の基板とは異なる第2の基板に、導電体膜及び前記導電体膜の周囲に延在する粘着性を有する絶縁体からなる粘着膜を形成することと、
前記第1の基板と前記第2の基板とを貼り合わせ、前記粘着膜によって前記有機半導体膜と前記導電体膜とが接触した状態を維持することと、
を含む有機半導体装置の製造方法。 Forming an organic semiconductor film on the first substrate;
Forming a pressure-sensitive adhesive film made of a conductive film and an adhesive insulator extending around the conductive film on a second substrate different from the first substrate;
Bonding the first substrate and the second substrate, maintaining the state in which the organic semiconductor film and the conductor film are in contact with each other by the adhesive film;
A method for manufacturing an organic semiconductor device comprising: - 前記第1の基板と前記第2の基板とを貼り合わせる前に、前記第2の基板上で前記導電体膜をパターニングすることを含む
請求項1に記載の製造方法。 The manufacturing method according to claim 1, further comprising: patterning the conductor film on the second substrate before bonding the first substrate and the second substrate. - 前記導電体膜のパターニングは、
前記導電体膜の表面に開口部を有するマスクを形成することと、
前記導電体膜の、前記開口部から露出した部分をエッチングすることと、
を含む請求項2に記載の製造方法。 The patterning of the conductor film is
Forming a mask having an opening on the surface of the conductive film;
Etching a portion of the conductor film exposed from the opening;
The manufacturing method of Claim 2 containing this. - 前記導電体膜のパターニングは、
前記粘着膜の表面に開口部を有するマスクを形成することと、
前記粘着膜の表面の、前記開口部から露出した部分に前記導電体膜を形成することと、
を含む請求項2に記載の製造方法。 The patterning of the conductor film is
Forming a mask having an opening on the surface of the adhesive film;
Forming the conductor film on a portion of the surface of the adhesive film exposed from the opening;
The manufacturing method of Claim 2 containing this. - 前記第1の基板と前記第2の基板とを貼り合わせる前に、第1の電極、絶縁膜及び前記有機半導体膜が積層された積層体を前記第1の基板上に形成することを更に含み、
前記導電体膜のパターニングによって前記導電体膜からなる互いに分離した第2の電極及び第3の電極を形成する
請求項2から請求項4のいずれか1項に記載の製造方法。 The method further includes forming a stacked body in which the first electrode, the insulating film, and the organic semiconductor film are stacked on the first substrate before bonding the first substrate and the second substrate together. ,
The manufacturing method according to any one of claims 2 to 4, wherein the second electrode and the third electrode which are made of the conductor film and are separated from each other are formed by patterning the conductor film. - 前記第1の基板と前記第2の基板との貼り合わせを、前記第1の基板及び前記第2の基板の少なくとも一方を加熱した状態で行う
請求項1から請求項5のいずれか1項に記載の製造方法。 The bonding of the first substrate and the second substrate is performed in a state where at least one of the first substrate and the second substrate is heated. The manufacturing method as described. - 前記第1の基板と前記第2の基板とを貼り合わせた後に、前記有機半導体膜、前記導電体膜及び前記粘着膜を含む構造体に熱処理を行うことを更に含む
請求項1から請求項6のいずれか1項に記載の製造方法。 The method further includes performing a heat treatment on the structure including the organic semiconductor film, the conductor film, and the adhesive film after the first substrate and the second substrate are bonded to each other. The manufacturing method of any one of these. - 前記第1の基板と前記第2の基板とを貼り合わせた後に、前記第2の基板を除去することを更に含む
請求項1から請求項7のいずれか1項に記載の製造方法。 The manufacturing method according to claim 1, further comprising removing the second substrate after bonding the first substrate and the second substrate. - 第1の基板に形成された有機半導体膜と、
前記有機半導体膜上に設けられた導電体膜と、
前記有機半導体膜及び前記導電体膜を覆い、前記有機半導体膜と前記導電体膜とが接触した状態を維持する絶縁体からなる粘着性を有する粘着膜と、
を含む有機半導体装置。 An organic semiconductor film formed on the first substrate;
A conductor film provided on the organic semiconductor film;
An adhesive film having an adhesive property that covers the organic semiconductor film and the conductor film and is made of an insulator that maintains a state where the organic semiconductor film and the conductor film are in contact with each other;
Organic semiconductor device including - 前記粘着膜の表面に設けられ、前記第1の基板と対向する第2の基板を更に含む
請求項9に記載の有機半導体装置。 The organic semiconductor device according to claim 9, further comprising a second substrate provided on a surface of the adhesive film and facing the first substrate. - 前記有機半導体膜との間に絶縁膜を挟んで設けられた第1の電極と、
前記導電体膜からなる互いに分離した第2の電極及び第3の電極と、
を含む請求項9または請求項10に記載の有機半導体装置。 A first electrode provided with an insulating film interposed between the organic semiconductor film,
A second electrode and a third electrode made of the conductive film, which are separated from each other;
The organic-semiconductor device of Claim 9 or Claim 10 containing this.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-086754 | 2018-04-27 | ||
JP2018086754A JP2021132050A (en) | 2018-04-27 | 2018-04-27 | Organic semiconductor device and method for manufacturing organic semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019208206A1 true WO2019208206A1 (en) | 2019-10-31 |
Family
ID=68294655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/015480 WO2019208206A1 (en) | 2018-04-27 | 2019-04-09 | Organic semiconductor device and method of manufacturing organic semiconductor device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021132050A (en) |
WO (1) | WO2019208206A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005166894A (en) * | 2003-12-02 | 2005-06-23 | Canon Inc | Organic thin film transistor, manufacturing method and manufacturing device therefor |
JP2005210086A (en) * | 2003-12-26 | 2005-08-04 | Semiconductor Energy Lab Co Ltd | Semiconductor device and its manufacturing method |
JP2005532690A (en) * | 2002-07-02 | 2005-10-27 | モトローラ・インコーポレイテッド | Integrated circuit having field effect transistor and manufacturing method |
JP2007115805A (en) * | 2005-10-19 | 2007-05-10 | Sony Corp | Method of manufacturing semiconductor device |
JP2009123839A (en) * | 2007-11-13 | 2009-06-04 | Seiko Epson Corp | Method of manufacturing semiconductor device, method of manufacturing electrooptical device, and method of manufacturing electronic equipment |
JP2011210972A (en) * | 2010-03-30 | 2011-10-20 | Toppan Printing Co Ltd | Field-effect transistor, method of manufacturing the same, and image display apparatus |
JP2014082386A (en) * | 2012-10-17 | 2014-05-08 | Tokyo Electron Ltd | Organic transistor and manufacturing method of the same |
-
2018
- 2018-04-27 JP JP2018086754A patent/JP2021132050A/en active Pending
-
2019
- 2019-04-09 WO PCT/JP2019/015480 patent/WO2019208206A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005532690A (en) * | 2002-07-02 | 2005-10-27 | モトローラ・インコーポレイテッド | Integrated circuit having field effect transistor and manufacturing method |
JP2005166894A (en) * | 2003-12-02 | 2005-06-23 | Canon Inc | Organic thin film transistor, manufacturing method and manufacturing device therefor |
JP2005210086A (en) * | 2003-12-26 | 2005-08-04 | Semiconductor Energy Lab Co Ltd | Semiconductor device and its manufacturing method |
JP2007115805A (en) * | 2005-10-19 | 2007-05-10 | Sony Corp | Method of manufacturing semiconductor device |
JP2009123839A (en) * | 2007-11-13 | 2009-06-04 | Seiko Epson Corp | Method of manufacturing semiconductor device, method of manufacturing electrooptical device, and method of manufacturing electronic equipment |
JP2011210972A (en) * | 2010-03-30 | 2011-10-20 | Toppan Printing Co Ltd | Field-effect transistor, method of manufacturing the same, and image display apparatus |
JP2014082386A (en) * | 2012-10-17 | 2014-05-08 | Tokyo Electron Ltd | Organic transistor and manufacturing method of the same |
Also Published As
Publication number | Publication date |
---|---|
JP2021132050A (en) | 2021-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6897734B2 (en) | Transfer substrate | |
EP3136445B1 (en) | A method for forming apparatus comprising two dimensional material | |
CN101944477A (en) | Manufacturing method for flexible semiconductor device | |
JP2007067390A (en) | Manufacturing method of semiconductor device and manufacturing apparatus of semiconductor device | |
JP2009272523A (en) | Thin-film transistor, and method of manufacturing the same | |
JP2013026546A (en) | Substrate for thin film device and method of manufacturing thin film device | |
WO2012046428A1 (en) | Method for producing semiconductor device | |
JP2975766B2 (en) | Method for manufacturing flexible thin film solar cell | |
WO2019208206A1 (en) | Organic semiconductor device and method of manufacturing organic semiconductor device | |
JP2004072049A (en) | Organic tft element and method of manufacturing same | |
US20100101713A1 (en) | Printing mold and manufacturing method thereof, and method of forming thin film pattern using the same | |
JP2014082386A (en) | Organic transistor and manufacturing method of the same | |
JP2010040693A (en) | Method for forming pattern | |
US9129882B2 (en) | Method of fabricating graphene nano device | |
JP2007027525A (en) | Method of manufacturing semiconductor device, semiconductor device, and method of forming insulation film | |
Shang et al. | An Inherent Multifunctional Sellotape Substrate for High‐Performance Flexible and Wearable Organic Single‐Crystal Nanowire Array‐Based Transistors | |
US10438814B2 (en) | Method for manufacturing wiring pattern, method for manufacturing transistor, and member for transfer | |
KR20190066224A (en) | Method of detaching a thin film electrode using thermal expansion coefficient | |
JP2015205452A (en) | Method for producing functional element, printing device | |
TWI683357B (en) | Semiconductor apparatus manufacturing method | |
US20080230771A1 (en) | Thin film transistor and method for manufacturing the same | |
JP2017224739A (en) | Active element, and manufacturing method of active element | |
JP6792134B2 (en) | Semiconductor devices and their manufacturing methods | |
TWI473213B (en) | Method for making flexible semiconductor device | |
JP2005056620A (en) | Heater device in semiconductor wafer, and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19794035 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19794035 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |