Nothing Special   »   [go: up one dir, main page]

WO2019208265A1 - Substrate treatment device and substrate treatment method - Google Patents

Substrate treatment device and substrate treatment method Download PDF

Info

Publication number
WO2019208265A1
WO2019208265A1 PCT/JP2019/015946 JP2019015946W WO2019208265A1 WO 2019208265 A1 WO2019208265 A1 WO 2019208265A1 JP 2019015946 W JP2019015946 W JP 2019015946W WO 2019208265 A1 WO2019208265 A1 WO 2019208265A1
Authority
WO
WIPO (PCT)
Prior art keywords
brush
substrate
wafer
rotation
processing apparatus
Prior art date
Application number
PCT/JP2019/015946
Other languages
French (fr)
Japanese (ja)
Inventor
中村 一樹
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2019208265A1 publication Critical patent/WO2019208265A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method for cleaning a substrate with a brush.
  • substrates to be processed include semiconductor substrates, FPD (Flat Panel Display) substrates such as liquid crystal display devices and organic EL (Electroluminescence) display devices, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, Examples include photomask substrates, ceramic substrates, solar cell substrates, and printed circuit boards.
  • the manufacturing process of a semiconductor device includes a process of forming a fine pattern on a surface of a semiconductor wafer (hereinafter simply referred to as “wafer”) by repeating processes such as film formation and etching. Since the surface of the wafer itself and the surface of the thin film formed on the wafer surface must be kept clean for microfabrication, the wafer is cleaned as necessary. For example, after a wafer or a thin film formed on the surface thereof is polished using a slurry (abrasive), the slurry remains on the wafer surface, and thus cleaning is required to remove it.
  • a slurry abrasive
  • a so-called scan brush apparatus has been used for wafer cleaning processing for removing slurry remaining on the wafer surface (for example, Patent Document 1). Specifically, the wafer held on the spin chuck is rotated at high speed, and a rotating brush is brought into contact with the rotating wafer surface to physically clean the wafer surface. At this time, the surface of the wafer is cleaned with the brush by moving the brush in the radial direction with respect to the wafer.
  • FIG. 10 is a schematic plan view showing a brush 918 for cleaning the surface 913 of the wafer W.
  • both the wafer W and the brush 918 are rotated clockwise.
  • one half of the brush 918 (the right half in FIG. 10) moves so as to run backward with respect to the rotation direction RD ⁇ b> 1 of the wafer W. Increases speed.
  • the other half of the brush 918 (the left half in FIG. 10) moves so as to follow the rotation direction RD1 of the wafer W, so the relative speed with respect to the wafer W is small.
  • the other half of the brush 918 has a lower cleaning efficiency than the one half.
  • the cleaning efficiency varies among the rotating brushes 918, there is a possibility that uneven cleaning occurs.
  • an object of the present invention is to provide a technique for reducing cleaning unevenness when cleaning a substrate with a rotating brush.
  • a first aspect is a substrate processing apparatus for processing a substrate, wherein the substrate holding unit that holds the substrate and the substrate held by the substrate holding unit are rotated about a first rotation axis.
  • a substrate rotation mechanism that allows the brush to come into contact with the surface of the substrate held by the substrate holder, and a brush rotation mechanism that rotates the brush around a second rotation axis parallel to the first rotation axis.
  • a brush moving mechanism for moving the brush in a radial direction relative to the substrate, and the brush moving mechanism moves the brush to the brush while the substrate is rotated once by the substrate rotating mechanism. Relative movement is made in the radial direction by a distance equal to or smaller than the turning radius.
  • the second aspect is the substrate processing apparatus according to the first aspect, wherein the brush rotation mechanism rotates the brush in a direction opposite to a rotation direction of the substrate by the substrate rotation mechanism.
  • a 3rd aspect is a substrate processing apparatus of the 2nd aspect, Comprising:
  • the said brush movement mechanism makes the rotation center of the said brush by the said brush rotation mechanism the position inside the rotation radius of the said brush from the peripheral edge of the said board
  • a fourth aspect is the substrate processing apparatus according to the third aspect, wherein the brush moving mechanism moves the brush from the center of the substrate to the peripheral edge of the substrate.
  • a fifth aspect is the substrate processing apparatus according to any one of the first to fourth aspects, wherein the number of rotations of the substrate by the substrate rotation mechanism is Rw (rpm), and the diameter of the brush is ⁇ b (mm).
  • the radial movement speed Vb (mm / sec) of the brush by the brush moving mechanism is ⁇ b ⁇ Rw / 120 or less.
  • a sixth aspect is a substrate processing method for processing a substrate, wherein: (a) a step of holding the substrate by a substrate holding unit; and (b) a step of holding the substrate held by the substrate holding unit by the step (a).
  • the step (e) is a step of relatively moving the brush in the radial direction by a distance equal to or smaller than the rotation radius of the brush while the substrate is rotated once by the step (b). .
  • the surface of the substrate is free from gaps at the portion of the brush that rotates automatically when the brush is moved relative to the substrate in the radial direction. Can be washed. Thereby, since the substrate can be effectively cleaned, the occurrence of uneven cleaning can be reduced.
  • the relative rotation speed of the substrate with respect to the substrate can be increased by rotating in the direction opposite to the rotation direction of the substrate. Therefore, the cleaning efficiency of the substrate can be increased.
  • the peripheral portion of the substrate can be cleaned with the radially outer half of the rotating brush with high cleaning efficiency.
  • the entire surface of the substrate can be cleaned.
  • the peripheral portion of the substrate can be cleaned with the radially outer half having high cleaning efficiency, occurrence of cleaning unevenness can be reduced.
  • the surface of the substrate is cleaned without a gap at a portion of the brush that is reverse to the rotation of the substrate. Can do. Thereby, since the substrate can be efficiently cleaned, the occurrence of uneven cleaning can be reduced.
  • FIG. 1 is a plan view showing a schematic configuration of a substrate processing apparatus 1 according to an embodiment. It is a schematic side view of the inside of the substrate processing apparatus 1 of the embodiment. It is a block diagram which shows the electrical constitution of the substrate processing apparatus 1 of embodiment. It is a figure which shows the flow of a process of the wafer W by the substrate processing apparatus 1 of embodiment.
  • 4 is a schematic plan view showing scanning movement of a brush 18 on a wafer W.
  • FIG. 6 is a schematic plan view showing a relative scan movement of the brush 18 as viewed from the wafer W.
  • FIG. FIG. 4 is a schematic plan view showing a first cleaning state of the brush 18.
  • FIG. 5 is a schematic plan view showing a second cleaning state of the brush 18.
  • 3 is a schematic plan view showing a brush 18 for cleaning a peripheral region 13A of a wafer W.
  • FIG. 5 is a schematic plan view showing a brush 918 for cleaning the surface 913 of the wafer W.
  • the expression indicating the shape not only represents the shape geometrically but also within a range where the same effect can be obtained.
  • a shape having unevenness and chamfering is also expressed.
  • FIG. 1 is a plan view showing a schematic configuration of a substrate processing apparatus 1 according to the embodiment.
  • FIG. 2 is an illustrative side view of the inside of the substrate processing apparatus 1 according to the embodiment.
  • the substrate processing apparatus 1 is a single-wafer type apparatus that processes semiconductor wafers W (hereinafter simply referred to as “wafers W”) one by one as an example of a substrate.
  • the substrate processing apparatus 1 includes a processing chamber 2 partitioned by a partition wall.
  • the substrate processing apparatus 1 includes a spin chuck 3, a surface nozzle 4, and a brush mechanism 6 in a processing chamber 2.
  • the spin chuck 3 rotates while holding the wafer W in a horizontal posture.
  • “Horizontal posture” refers to a state in which the wafer W is parallel to the horizontal plane.
  • the spin chuck 3 is an example of a substrate holding mechanism.
  • the spin chuck 3 includes, for example, a vacuum chuck.
  • the spin chuck 3 includes a spin shaft 7, an adsorption base 8, and a spin motor 9.
  • the spin shaft 7 extends in the vertical direction.
  • the suction base 8 is attached to the upper end of the spin shaft 7 and holds the wafer W in a horizontal posture by sucking the back surface 14 (lower surface) of the wafer W on the upper surface thereof.
  • the spin motor 9 has a rotation shaft coupled coaxially with the spin shaft 7. When the spin motor 9 is driven in a state where the back surface 14 of the wafer W is sucked and held by the suction base 8, the wafer W rotates around the first rotation axis A ⁇ b> 1 that is the center of the spin shaft 7.
  • the spin motor 9 is an example of a substrate rotation mechanism.
  • the direction orthogonal to the first rotation axis A1 is referred to as “radial direction”.
  • a direction toward the first rotation axis A1 in the radial direction is referred to as “radially inward”
  • a direction toward the opposite side to the first rotation axis A1 in the radial direction is referred to as “radially outward”.
  • the surface nozzle 4 is provided so that a processing liquid can be supplied to the surface 13 of the wafer W.
  • the surface 13 of the wafer W is a surface on which a device is formed, and is a surface (upper surface) facing upward in the vertical direction.
  • a processing liquid supply pipe 10 is connected to the surface nozzle 4.
  • a processing liquid from a processing liquid supply source (not shown) is supplied to the processing liquid supply pipe 10 via a processing liquid valve 12.
  • the surface nozzle 4 discharges the processing liquid supplied through the processing liquid supply pipe 10 toward the center of the surface 13 of the wafer W held by the spin chuck 3.
  • the processing liquid supplied to the surface nozzle 4 is, for example, pure water (Deionized Water: DIW).
  • the treatment liquid is not limited to pure water, and may be, for example, functional water such as carbonated water, ion water, ozone water, reduced water (hydrogen water), or magnetic water.
  • the treatment liquid may be a chemical liquid such as ammonia water or a mixed liquid of ammonia water and hydrogen peroxide water.
  • the brush mechanism 6 is configured to be able to clean the surface 13 of the wafer W.
  • the brush mechanism 6 includes a swing arm 16, an arm support shaft 17, and a brush 18.
  • the swing arm 16 is a member that extends in the horizontal direction above the position (holding position) of the wafer W held by the spin chuck 3.
  • the arm support shaft 17 is a member that extends outside the rotation range of the wafer W and extends in the vertical direction in plan view.
  • the upper end portion of the arm support shaft 17 is coupled to the lower surface of one end portion (base end portion) of the swing arm 16.
  • the brush 18 is attached to the tip of the swing arm 16 and cleans the surface 13 (upper surface) of the wafer W with the tip (lower end).
  • the brush 18 is made of, for example, a sponge material such as PVA (polyvinyl alcohol), and has a substantially drum shape that is rotationally symmetric about the vertical axis.
  • the arm support shaft 17 is coupled with a lift drive mechanism 19.
  • the arm support shaft 17 receives the driving force of the lifting drive mechanism 19.
  • the elevating drive mechanism 19 moves the arm support shaft 17 up and down to move the swing arm 16 up and down integrally with the arm support shaft 17.
  • a swing drive mechanism 20 is coupled to the arm support shaft 17.
  • the swing drive mechanism 20 swings the swing arm 16 around the arm support shaft 17 by reciprocating the arm support shaft 17.
  • the position of the swing arm 16 when the brush 18 processes the substrate is indicated by a two-dot chain line
  • the position of the swing arm 16 when the brush 18 is retracted to the standby position is indicated by a solid line. ing.
  • a brush rotating shaft 25 extending in the vertical direction is rotatably provided at the tip of the swing arm 16.
  • a brush holder 32 is attached to the lower end portion of the brush rotation shaft 25 via a holder attachment portion 31.
  • the brush 18 is attached below the brush holder 32.
  • the brush rotation shaft 25 is connected to a brush rotation mechanism 26 (brush rotation mechanism) for rotating the brush 18 inside the swing arm 16.
  • the brush rotation mechanism 26 includes, for example, a pulley 27 that is coupled to the brush rotation shaft 25 so as to be integrally rotatable, a pulley 28 that is driven by a motor 29, and a belt 30 that is stretched between the pair of pulleys 27 and 28. including.
  • the brush rotation mechanism 26 rotates the central axis parallel to the vertical direction of the brush 18 as the second rotation axis A2.
  • the second rotation axis A2 is a straight line extending in the vertical direction, and is parallel to the first rotation axis A1.
  • FIG. 3 is a block diagram illustrating an electrical configuration of the substrate processing apparatus 1 according to the embodiment.
  • the substrate processing apparatus 1 includes a control unit 45 (control means) including a microcomputer. Connected to the control unit 45 is a recipe input key 46 for the user to input a processing recipe (various conditions for processing the wafer W). Further, the spin motor 9, the processing liquid valve 12, the lift drive mechanism 19, the swing drive mechanism 20, the brush rotation mechanism 26, and the like are connected to the control unit 45 as control targets.
  • FIG. 4 is a diagram illustrating a processing flow of the wafer W by the substrate processing apparatus 1 according to the embodiment.
  • the user Prior to the processing of the wafer W, the user operates the recipe input key 46 to set the pressing amount of the brush 18 against the surface 13 of the wafer W (step S101).
  • the amount of pressing refers to the amount of elastic deformation of the brush 18 when the cleaning surface (lower surface) of the brush 18 is pressed against the surface 13 of the wafer W.
  • the control unit 45 controls the spin motor 9 so that the spin chuck 3 holds the wafer W in the first position. It is rotated in the rotation direction RD1 (in this case, clockwise when viewed from above the wafer W) around one rotation axis A1 (step S103).
  • the control unit 45 opens the processing liquid valve 12
  • supply of the processing liquid from the surface nozzle 4 to the surface 13 of the wafer W is started (step S104).
  • the control unit 45 controls the brush rotation mechanism 26 to rotate the brush 18 in the rotation direction RD2 around the second rotation axis A2 (here, counterclockwise when viewed from above the wafer W) (step S105).
  • the control unit 45 rotates the brush 18 in the rotational direction RD2 opposite to the rotational direction RD1 of the wafer W in plan view.
  • the relative rotation speed of the brush 18 with respect to the wafer W can be increased.
  • the cleaning efficiency of the wafer W can be increased.
  • a disk-shaped semiconductor wafer having a diameter of 300 mm is used as the wafer W, and this wafer W is rotated by the spin chuck 3 at a rotation speed of, for example, 50 to 150 rpm (preferably 100 rpm). Is done.
  • the rotation speed of the wafer W is 50 to 150 rpm
  • the brush 18 is rotated by the brush rotation mechanism 26 at a rotation speed of about 100 rpm, for example.
  • the control unit 45 controls the elevating drive mechanism 19 and the swing drive mechanism 20 so that the lower surface of the brush 18 is centered on the surface 13 of the wafer W (first rotation axis). A1) is brought into contact (step S106). More specifically, the elevating drive mechanism 19 is controlled so that the lower end of the brush 18 is disposed at a position higher than the surface 13 of the wafer W held by the spin chuck 3. Next, the swing drive mechanism 20 is controlled to rotate the swing arm 16, whereby the brush 18 is moved horizontally and placed on the center of the wafer W. Thereafter, the elevation drive mechanism 19 is controlled, and the brush 18 is moved to a height position corresponding to the pressing amount set by the recipe input key 46. As a result, the surface 13 of the wafer W is pressed against the brush 18.
  • the control unit 45 controls the swing drive mechanism 20 to scan the brush 18 to the peripheral edge of the wafer W (step S107). Specifically, the center of the brush 18 moves from the center of the wafer W (first rotation axis A1) in the moving direction SD1 that is radially outward, and the radius of the brush 18 from the design peripheral end surface of the wafer W Move to a position inward in the radial direction.
  • the swing arm 16 rotates around the arm support shaft 17, so that the brush 18 attached to the tip of the swing arm 16 scans. Therefore, the scanning movement direction of the brush 18 is not completely parallel to the radial direction, but is a combined direction of the radial direction and the rotation direction AR1.
  • control unit 45 controls the elevation drive mechanism 19 and the swing drive mechanism 20 to retract the brush 18 to the standby position (step S108). Further, until the brush 18 moves to the standby position, the control unit 45 controls the brush rotation mechanism 26 to stop the rotation of the brush 18 (step S109). Furthermore, when the control unit 45 closes the processing liquid valve 12, the supply of the processing liquid from the surface nozzle 4 is stopped.
  • control unit 45 controls the spin motor 9 to rotate the wafer W at a high speed (for example, 3000 rpm) (step S110). Thereby, the processing liquid adhering to the wafer W is shaken off, and the wafer W is dried.
  • a high speed for example, 3000 rpm
  • control unit 45 controls the spin motor 9 to stop the rotation of the wafer W (step S111). Then, after the wafer W is stopped, the processed wafer W is unloaded from the processing chamber 2 (step S112).
  • FIG. 5 is a schematic plan view showing the scanning movement of the brush 18 on the wafer W.
  • FIG. 5 As the relative speed between the wafer W and the brush 18 is increased, the cleaning efficiency is improved.
  • the wafer 18 is scanned and moved while rotating the brush 18.
  • FIG. 6 is a schematic plan view showing the relative scanning movement of the brush 18 as viewed from the wafer W.
  • the brush 18 scans and moves on the rotating wafer W, the brush 18 moves relatively spirally with respect to the wafer W.
  • the entire surface 13 of the wafer W may be moved so that the brush 18 traces without a gap.
  • the rotating brush 18 has a portion having a high relative speed and a portion having a low relative speed with respect to the rotating wafer W. This point will be described in detail below.
  • FIG. 7 is a schematic plan view showing a first cleaning state of the brush 18.
  • FIG. 8 is a schematic plan view showing a second cleaning state of the brush 18. 7 and 8 show a state in which the brush 18 moves from a position L1 indicated by a solid line to a position L2 indicated by a two-dot chain line.
  • the left half of the brush 18 rotates so as to run backward in the rotation direction RD1 of the wafer W.
  • the right half of the brush 18 rotates so as to follow the rotation direction RD1 of the wafer W.
  • the moving speed Vb (mm / sec) of the brush 18 in the radial direction is set so that the entire surface 13 of the wafer W is cleaned with the half of the brush 18 in the radial direction.
  • the scan movement direction of the brush 18 is not completely parallel to the radial direction, but is a combined direction of the radial direction and the rotation direction AR1.
  • the moving speed Vb in the radial direction is considered in order to consider cleaning at the radially outer portion of the brush 18.
  • the wafer W moves outward in the radial direction of the brush 18 larger than the radius of the brush 18 while the wafer W rotates once.
  • the cleaning area WA1 that is cleaned by the radially outer half of the brush 18 that has high cleaning efficiency and the non-cleaning area WA2 that is not cleaned by the portion have a diameter. It will occur alternately toward the outside of the direction.
  • Equation 2 Vb ⁇ 60 / Rw> ⁇ b / 2
  • Equation 4 Equation 4 is derived.
  • Vb ⁇ b ⁇ Rw / 120 (Formula 4)
  • Equation 6 Vb ⁇ 60 / Rw ⁇ ⁇ b / 2
  • the control unit 45 controls the swing drive mechanism 20 so that the moving speed Vb of the brush 18 radially outward satisfies Expression 6, so that the brush 18 having high cleaning efficiency can be radially outward.
  • the side half the surface 13 of the wafer W can be cleaned without gaps. Therefore, the surface 13 of the wafer W can be effectively cleaned, and the occurrence of cleaning unevenness can be reduced.
  • FIG. 9 is a schematic plan view showing the brush 18 for cleaning the peripheral region 13A of the wafer W.
  • the peripheral region 13 ⁇ / b> A is an annular region on the surface 13 of the wafer W that is on the inner side of the peripheral edge of the wafer W by the radius ( ⁇ b / 2) of the brush 18.
  • the inner region 13B of the surface 13 of the wafer W excluding the peripheral region 13A is scanned in the radially outward direction of the brush 18 and the radially outward half of the brush 18 and the radially inward side. Washed in both halves.
  • the peripheral region 13A is a region that is cleaned only by the radially outer half of the brush 18 (here, the left half). Therefore, the cleaning efficiency of the peripheral region 13A is likely to be relatively reduced with respect to the inner region 13B.
  • the radially outer half of the brush 18 rotates in a direction reverse to the rotation direction RD1 of the wafer W, thereby increasing the cleaning efficiency. For this reason, the peripheral region 13A can be appropriately cleaned.
  • the wafer W is moved from the center of the wafer W to the periphery of the wafer W in step S107.
  • the wafer W may be moved from the peripheral edge toward the center.
  • the brush 18 may be reciprocated radially outward and radially inward.
  • the scan movement start position of the brush 18 is the center of the wafer W (rotation axis A1) in step S107.
  • the scan movement may be started from a position other than the center of the wafer W.
  • the position upstream of the center of the wafer W in the movement direction SD1 may be moved from the upstream position to the peripheral edge via the center of the wafer W.
  • step S107 the brush 18 is scanned and moved in the direction opposite to the rotation direction RD1 of the wafer W.
  • the rotation direction of the brush 18 may be reversed during the scanning movement.
  • the brush 18 may be rotated in the same direction as the rotation direction RD1 of the wafer W.
  • the relationship between the rotational speed Rw of the wafer W, the diameter ⁇ b of the brush 18 and the moving speed Vb satisfies Expression 6, the occurrence of cleaning unevenness in the inner region 13B of the wafer W can be reduced.
  • each brush 18 also controls movement (for example, movement from the center of the wafer W to the outside in the radial direction) and rotation (rotation opposite to the rotation direction of the wafer W in plan view). Should be done.
  • the shape of the surface (contact surface) that contacts the wafer W of the brush 18 is a perfect circle, but may be other shapes (elliptical or polygonal). Even in a case other than a true circle, while the wafer W makes one rotation around the first rotation axis A1, the brush 18 is rotated with a radius of rotation (the radius of an arc drawn by the outermost surface of the contact surface rotating around the second rotation axis A2. It is preferable to move in the radial direction by a distance equal to or smaller than the minimum turning radius.
  • the swing drive mechanism 20 rotates the swing arm 16 around the arm support shaft 17 to rotate the brush 18 in the radial direction (strictly speaking, the combined direction of the radial direction and the rotational direction RD1). Move.
  • a brush moving mechanism for moving the brush 18 linearly in the radial direction for example, may be provided.
  • Substrate Processing Device 3 Spin Chuck (Substrate Holding Unit) 9 Spin motor (substrate rotation mechanism) 13 Surface 13A Peripheral area 13B Inner area 18 Brush 20 Oscillation drive mechanism (brush moving mechanism) 26 Brush rotation mechanism (Brush rotation mechanism) 31 Holder mounting part 32 Brush holder 45 Control part A1 1st rotation axis A2 2nd rotation axis RD1, RD2 Rotation direction SD1 Movement direction Vb Movement speed W Wafer WA1 Cleaning area WA2 Non-cleaning area

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

The present invention provides technology for reducing uneven cleaning when a substrate is cleaned with a rotating brush. A substrate treatment device 1 is provided with: a spin chuck 3 which holds a wafer W; a spin motor 9 which rotates the wafer W held by the spin chuck 3 about a first rotation axis A1; a brush 18 which is able to come into contact with a front surface 13 of the wafer W held by the spin chuck 3; a brush rotation mechanism 26 which rotates the brush 18 about a second rotation axis A2 parallel to the first rotation axis A1; and a rocking drive mechanism 20 which radially moves the brush 18 with respect to the wafer W. The rocking drive mechanism 20 radially moves the brush 18 by a distance equal to or smaller than a radius of rotation (=φb/2) of the brush 18 while the wafer W is rotated once by the spin motor 9.

Description

基板処理装置および基板処理方法Substrate processing apparatus and substrate processing method
 この発明は、基板をブラシで洗浄処理する基板処理装置および基板処理方法に関する。処理対象となる基板には、例えば、半導体基板、液晶表示装置および有機EL(Electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板、プリント基板などが含まれる。 The present invention relates to a substrate processing apparatus and a substrate processing method for cleaning a substrate with a brush. Examples of substrates to be processed include semiconductor substrates, FPD (Flat Panel Display) substrates such as liquid crystal display devices and organic EL (Electroluminescence) display devices, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, Examples include photomask substrates, ceramic substrates, solar cell substrates, and printed circuit boards.
 半導体装置の製造工程には、半導体ウエハ(以下、単に「ウエハ」と称する。)の表面に成膜やエッチングなどの処理を繰り返して微細パターンを形成していく工程が含まれる。微細加工のためにはウエハ自体の表面およびウエハ表面に形成された薄膜の表面を清浄に保つ必要があるから、必要に応じてウエハの洗浄が行われる。たとえば、ウエハやその表面上に形成された薄膜を、スラリー(研磨剤)を用いて研磨した後には、スラリーがウエハ表面に残留しているから、これを除去するための洗浄が必要である。 The manufacturing process of a semiconductor device includes a process of forming a fine pattern on a surface of a semiconductor wafer (hereinafter simply referred to as “wafer”) by repeating processes such as film formation and etching. Since the surface of the wafer itself and the surface of the thin film formed on the wafer surface must be kept clean for microfabrication, the wafer is cleaned as necessary. For example, after a wafer or a thin film formed on the surface thereof is polished using a slurry (abrasive), the slurry remains on the wafer surface, and thus cleaning is required to remove it.
 ウエハ表面に残留しているスラリーの除去のためのウエハ洗浄処理には、従来から、いわゆるスキャンブラシ装置が用いられている(例えば、特許文献1)。具体的には、スピンチャックに保持されたウエハを高速に回転させるとともに、その回転するウエハの表面に自転するブラシを当接させて、ウエハの表面を物理的に洗浄するものである。このとき、ウエハに対してブラシを径方向に移動させることによって、ウエハの表面がブラシで洗浄される。 Conventionally, a so-called scan brush apparatus has been used for wafer cleaning processing for removing slurry remaining on the wafer surface (for example, Patent Document 1). Specifically, the wafer held on the spin chuck is rotated at high speed, and a rotating brush is brought into contact with the rotating wafer surface to physically clean the wafer surface. At this time, the surface of the wafer is cleaned with the brush by moving the brush in the radial direction with respect to the wafer.
特開平11-57632号公報Japanese Patent Laid-Open No. 11-57632
 図10は、ウエハWの表面913を洗浄するブラシ918を示す概略平面図である。図10では、ウエハWおよびブラシ918は、ともに右回りに回転している。図10に示すように、ブラシ918を回転させると、ブラシ918の一方側半分(図10では右側半分)は、ウエハWの回転方向RD1に対して逆行するように移動するため、ウエハWに対する相対速度が大きくなる。これに対して、ブラシ918の他方側半分(図10では左側半分)は、ウエハWの回転方向RD1に対して順行するように移動するため、ウエハWに対する相対速度が小さい。このため、ブラシ918の他方側半分は、一方側半分よりも洗浄効率が低くなる。このように、回転するブラシ918において洗浄効率にばらつきがあるため、洗浄ムラが発生する虞があった。 FIG. 10 is a schematic plan view showing a brush 918 for cleaning the surface 913 of the wafer W. FIG. In FIG. 10, both the wafer W and the brush 918 are rotated clockwise. As shown in FIG. 10, when the brush 918 is rotated, one half of the brush 918 (the right half in FIG. 10) moves so as to run backward with respect to the rotation direction RD <b> 1 of the wafer W. Increases speed. On the other hand, the other half of the brush 918 (the left half in FIG. 10) moves so as to follow the rotation direction RD1 of the wafer W, so the relative speed with respect to the wafer W is small. For this reason, the other half of the brush 918 has a lower cleaning efficiency than the one half. As described above, since the cleaning efficiency varies among the rotating brushes 918, there is a possibility that uneven cleaning occurs.
 そこで、本発明は、回転するブラシで基板を洗浄する際の洗浄ムラを低減する技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a technique for reducing cleaning unevenness when cleaning a substrate with a rotating brush.
 上記課題を解決するため、第1態様は、基板を処理する基板処理装置であって、基板を保持する基板保持部と、前記基板保持部に保持された前記基板を第1回転軸線回りに回転させる基板回転機構と、前記基板保持部に保持された前記基板の表面に当接可能なブラシと、前記ブラシを前記第1回転軸線に平行な第2回転軸線まわりに回転させるブラシ回転機構と、前記ブラシを前記基板に対して径方向に相対的に移動させるブラシ移動機構と、を備え、前記ブラシ移動機構は、前記基板が前記基板回転機構により1回転する間に、前記ブラシを前記ブラシの回転半径と同じかそれよりも小さい距離だけ前記径方向に相対移動させる。 In order to solve the above problems, a first aspect is a substrate processing apparatus for processing a substrate, wherein the substrate holding unit that holds the substrate and the substrate held by the substrate holding unit are rotated about a first rotation axis. A substrate rotation mechanism that allows the brush to come into contact with the surface of the substrate held by the substrate holder, and a brush rotation mechanism that rotates the brush around a second rotation axis parallel to the first rotation axis. A brush moving mechanism for moving the brush in a radial direction relative to the substrate, and the brush moving mechanism moves the brush to the brush while the substrate is rotated once by the substrate rotating mechanism. Relative movement is made in the radial direction by a distance equal to or smaller than the turning radius.
 第2態様は、第1態様の基板処理装置であって、前記ブラシ回転機構は、前記基板回転機構による前記基板の回転方向とは反対まわりの方向に前記ブラシを回転させる。 The second aspect is the substrate processing apparatus according to the first aspect, wherein the brush rotation mechanism rotates the brush in a direction opposite to a rotation direction of the substrate by the substrate rotation mechanism.
 第3態様は、第2態様の基板処理装置であって、前記ブラシ移動機構は、前記ブラシ回転機構による前記ブラシの回転中心が前記基板の周端から前記ブラシの回転半径だけ内側の位置となるように、前記ブラシを移動させる。 A 3rd aspect is a substrate processing apparatus of the 2nd aspect, Comprising: The said brush movement mechanism makes the rotation center of the said brush by the said brush rotation mechanism the position inside the rotation radius of the said brush from the peripheral edge of the said board | substrate. As described above, the brush is moved.
 第4態様は、第3態様の基板処理装置であって、前記ブラシ移動機構は、前記ブラシを、前記基板の中心から前記基板の周端までの間を移動させる。 A fourth aspect is the substrate processing apparatus according to the third aspect, wherein the brush moving mechanism moves the brush from the center of the substrate to the peripheral edge of the substrate.
 第5態様は、第1態様から第4態様のいずれか1つの基板処理装置であって、前記基板回転機構による前記基板の回転数をRw(rpm)、前記ブラシの直径をφb(mm)としたとき、前記ブラシ移動機構による前記ブラシの前記径方向外方への移動速度Vb(mm/sec)が、φb×Rw/120以下である。 A fifth aspect is the substrate processing apparatus according to any one of the first to fourth aspects, wherein the number of rotations of the substrate by the substrate rotation mechanism is Rw (rpm), and the diameter of the brush is φb (mm). In this case, the radial movement speed Vb (mm / sec) of the brush by the brush moving mechanism is φb × Rw / 120 or less.
 第6態様は、基板を処理する基板処理方法であって、(a) 基板を基板保持部で保持する工程と、(b) 前記工程(a)によって前記基板保持部に保持された前記基板を第1回転軸線まわりに回転させる工程と、(c) 前記工程(b)によって回転する前記基板の表面にブラシを当接させる工程と、(d) 前記工程(c)によって前記基板の表面に当接する前記ブラシを前記第1回転軸線に平行な第2回転軸線まわりに回転させる工程と、(e) 前記工程(d)によって回転する前記ブラシを径方向に相対的に移動させる工程と、を含み、前記工程(e)は、前記工程(b)によって前記基板が1回転する間に、前記ブラシを前記ブラシの回転半径と同じかそれよりも小さい距離だけ前記径方向に相対移動させる工程である。 A sixth aspect is a substrate processing method for processing a substrate, wherein: (a) a step of holding the substrate by a substrate holding unit; and (b) a step of holding the substrate held by the substrate holding unit by the step (a). A step of rotating around the first rotation axis, a step of contacting a brush against the surface of the substrate rotated by the step (b), and a step of contacting the surface of the substrate by the step (c). Rotating the brush in contact around a second rotation axis parallel to the first rotation axis; and (e) 工程 moving the brush rotated in the step (d) relatively in the radial direction. The step (e) is a step of relatively moving the brush in the radial direction by a distance equal to or smaller than the rotation radius of the brush while the substrate is rotated once by the step (b). .
 第1、5態様の基板処理装置によると、ブラシを基板に対して径方向に相対移動させたときに、自転するブラシにおける、基板の回転に対して逆行する部分で、基板の表面を隙間無く洗浄することができる。これにより、基板を効果的に洗浄することができるため、洗浄ムラの発生を低減することができる。 According to the substrate processing apparatus of the first and fifth aspects, the surface of the substrate is free from gaps at the portion of the brush that rotates automatically when the brush is moved relative to the substrate in the radial direction. Can be washed. Thereby, since the substrate can be effectively cleaned, the occurrence of uneven cleaning can be reduced.
 第2態様の基板処理装置によると、基板の回転方向とは反対まわりの方向に回転させることにより、基板に対する基板の相対的な回転速度を大きくすることができる。これにより、基板の洗浄効率を高めることができる。 According to the substrate processing apparatus of the second aspect, the relative rotation speed of the substrate with respect to the substrate can be increased by rotating in the direction opposite to the rotation direction of the substrate. Thereby, the cleaning efficiency of the substrate can be increased.
 第3態様の基板処理装置によると、基板の周縁部分を、回転するブラシにおける洗浄効率が高い径方向外方側半分で洗浄することができる。 According to the substrate processing apparatus of the third aspect, the peripheral portion of the substrate can be cleaned with the radially outer half of the rotating brush with high cleaning efficiency.
 第4態様の基板処理装置によると、基板の全面を洗浄することができる。また、基板の周縁部を、洗浄効率が高い径方向外方側半分で洗浄することができるため、洗浄ムラの発生を低減することができる。 According to the substrate processing apparatus of the fourth aspect, the entire surface of the substrate can be cleaned. In addition, since the peripheral portion of the substrate can be cleaned with the radially outer half having high cleaning efficiency, occurrence of cleaning unevenness can be reduced.
 第6態様の基板処理方法によると、ブラシを基板に対して径方向に相対移動させたときに、ブラシのうちの基板の回転に対して逆行する部分で、基板の表面を隙間無く洗浄することができる。これにより、基板を効率よく洗浄することができるため、洗浄ムラの発生を低減することができる。 According to the substrate processing method of the sixth aspect, when the brush is moved relative to the substrate in the radial direction, the surface of the substrate is cleaned without a gap at a portion of the brush that is reverse to the rotation of the substrate. Can do. Thereby, since the substrate can be efficiently cleaned, the occurrence of uneven cleaning can be reduced.
 また、本願明細書に開示される技術に関連する目的と、特徴と、局面と、利点とは、以下に示される詳細な説明と添付図面とによって、さらに明白となる。 Further, objects, features, aspects, and advantages related to the technology disclosed in the present specification will become more apparent from the detailed description and the accompanying drawings shown below.
実施形態に係る基板処理装置1の概略構成を示す平面図である。1 is a plan view showing a schematic configuration of a substrate processing apparatus 1 according to an embodiment. 実施形態の基板処理装置1における内部の図解的な側面図である。It is a schematic side view of the inside of the substrate processing apparatus 1 of the embodiment. 実施形態の基板処理装置1の電気的構成を示すブロック図である。It is a block diagram which shows the electrical constitution of the substrate processing apparatus 1 of embodiment. 実施形態の基板処理装置1によるウエハWの処理の流れを示す図である。It is a figure which shows the flow of a process of the wafer W by the substrate processing apparatus 1 of embodiment. ウエハW上におけるブラシ18のスキャン移動を示す概略平面図である。4 is a schematic plan view showing scanning movement of a brush 18 on a wafer W. FIG. ウエハWから見たブラシ18の相対的なスキャン移動を示す概略平面図である。6 is a schematic plan view showing a relative scan movement of the brush 18 as viewed from the wafer W. FIG. ブラシ18の第1の洗浄状況を示す概略平面図である。FIG. 4 is a schematic plan view showing a first cleaning state of the brush 18. ブラシ18の第2の洗浄状況を示す概略平面図である。FIG. 5 is a schematic plan view showing a second cleaning state of the brush 18. ウエハWの周縁領域13Aを洗浄するブラシ18を示す概略平面図である。3 is a schematic plan view showing a brush 18 for cleaning a peripheral region 13A of a wafer W. FIG. ウエハWの表面913を洗浄するブラシ918を示す概略平面図である。5 is a schematic plan view showing a brush 918 for cleaning the surface 913 of the wafer W. FIG.
 以下、添付の図面を参照しながら、本発明の実施形態について説明する。なお、この実施形態に記載されている構成要素はあくまでも例示であり、本発明の範囲をそれらのみに限定する趣旨のものではない。図面においては、理解容易のため、必要に応じて各部の寸法や数が誇張又は簡略化して図示されている場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, the component described in this embodiment is an illustration to the last, and is not a thing of the meaning which limits the scope of the present invention only to them. In the drawings, the size and number of each part may be exaggerated or simplified as necessary for easy understanding.
 相対的または絶対的な位置関係を示す表現(例えば「一方向に」「一方向に沿って」「平行」「直交」「中心」「同心」「同軸」等)は、特に断らない限り、その位置関係を厳密に表すのみならず、公差もしくは同程度の機能が得られる範囲で相対的に角度または距離に関して変位された状態も表すものとする。 Unless otherwise specified, expressions that indicate relative or absolute positional relationships (eg, “in one direction”, “along one direction”, “parallel”, “orthogonal”, “center”, “concentric”, “coaxial”, etc.) Not only the positional relationship is strictly expressed, but also a state of relative displacement with respect to an angle or a distance within a range where a tolerance or a similar function can be obtained.
 等しい状態であることを示す表現(例えば「同一」「等しい」「均質」等)は、特に断らない限り、定量的に厳密に等しい状態を表すのみならず、公差もしくは同程度の機能が得られる差が存在する状態も表すものとする。 Expressions indicating equal states (for example, “same”, “equal”, “homogeneous”, etc.), unless otherwise specified, not only represent quantitatively exactly equal states but also provide tolerances or similar functions. It shall also represent a state where there is a difference.
 形状を示す表現(例えば、「四角形状」または「円筒形状」等)は、特に断らない限り、幾何学的に厳密にその形状を表すのみならず、同程度の効果が得られる範囲で、例えば凹凸や面取り等を有する形状も表すものとする。 Unless otherwise specified, the expression indicating the shape (for example, “square shape” or “cylindrical shape”) not only represents the shape geometrically but also within a range where the same effect can be obtained. A shape having unevenness and chamfering is also expressed.
 <1. 実施形態>
 図1は、実施形態に係る基板処理装置1の概略構成を示す平面図である。図2は、実施形態の基板処理装置1における内部の図解的な側面図である。基板処理装置1は、基板の一例として半導体ウエハW(以下、単に「ウエハW」と称する。)を1枚ずつ処理する枚葉型の装置である。基板処理装置1は、隔壁で区画された処理室2を備えている。基板処理装置1は、処理室2内に、スピンチャック3、表面ノズル4およびブラシ機構6を備えている。
<1. Embodiment>
FIG. 1 is a plan view showing a schematic configuration of a substrate processing apparatus 1 according to the embodiment. FIG. 2 is an illustrative side view of the inside of the substrate processing apparatus 1 according to the embodiment. The substrate processing apparatus 1 is a single-wafer type apparatus that processes semiconductor wafers W (hereinafter simply referred to as “wafers W”) one by one as an example of a substrate. The substrate processing apparatus 1 includes a processing chamber 2 partitioned by a partition wall. The substrate processing apparatus 1 includes a spin chuck 3, a surface nozzle 4, and a brush mechanism 6 in a processing chamber 2.
 スピンチャック3は、ウエハWを水平姿勢に保持して回転させる。「水平姿勢」とは、ウエハWが水平面に対して平行な状態をいう。スピンチャック3は、基板保持機構の一例である。 The spin chuck 3 rotates while holding the wafer W in a horizontal posture. “Horizontal posture” refers to a state in which the wafer W is parallel to the horizontal plane. The spin chuck 3 is an example of a substrate holding mechanism.
 スピンチャック3は、例えば、真空吸着式のチャックを備えている。スピンチャック3は、スピン軸7、吸着ベース8、スピンモータ9を備えている。スピン軸7は、鉛直方向に延びている。吸着ベース8は、スピン軸7の上端に取り付けられており、その上面にてウエハWの裏面14(下面)を吸着することにより、ウエハWを水平姿勢にて保持する。スピンモータ9は、スピン軸7と同軸に結合された回転軸を有する。ウエハWの裏面14が吸着ベース8に吸着保持された状態で、スピンモータ9が駆動されると、ウエハWがスピン軸7の中心である第1回転軸線A1まわりに回転する。スピンモータ9は、基板回転機構の一例である。 The spin chuck 3 includes, for example, a vacuum chuck. The spin chuck 3 includes a spin shaft 7, an adsorption base 8, and a spin motor 9. The spin shaft 7 extends in the vertical direction. The suction base 8 is attached to the upper end of the spin shaft 7 and holds the wafer W in a horizontal posture by sucking the back surface 14 (lower surface) of the wafer W on the upper surface thereof. The spin motor 9 has a rotation shaft coupled coaxially with the spin shaft 7. When the spin motor 9 is driven in a state where the back surface 14 of the wafer W is sucked and held by the suction base 8, the wafer W rotates around the first rotation axis A <b> 1 that is the center of the spin shaft 7. The spin motor 9 is an example of a substrate rotation mechanism.
 なお、以下の説明では、第1回転軸線A1に直交する方向を「径方向」という。また、径方向において第1回転軸線A1に向かう方向を「径方向内方」といい、径方向において第1回転軸線A1側とは反対側に向かう方向を「径方向外方」という。 In the following description, the direction orthogonal to the first rotation axis A1 is referred to as “radial direction”. In addition, a direction toward the first rotation axis A1 in the radial direction is referred to as “radially inward”, and a direction toward the opposite side to the first rotation axis A1 in the radial direction is referred to as “radially outward”.
 表面ノズル4は、ウエハWの表面13に処理液を供給可能に設けられている。ウエハWの表面13は、ここでは、デバイスが形成される側の面であって、鉛直方向上向きの面(上面)である。表面ノズル4には処理液供給管10が接続されている。処理液供給管10には、処理液バルブ12を介して、図示しない処理液供給源からの処理液が供給される。表面ノズル4は、処理液供給管10を通して供給される処理液を、スピンチャック3に保持されたウエハWの表面13の中央に向けて吐出する。 The surface nozzle 4 is provided so that a processing liquid can be supplied to the surface 13 of the wafer W. Here, the surface 13 of the wafer W is a surface on which a device is formed, and is a surface (upper surface) facing upward in the vertical direction. A processing liquid supply pipe 10 is connected to the surface nozzle 4. A processing liquid from a processing liquid supply source (not shown) is supplied to the processing liquid supply pipe 10 via a processing liquid valve 12. The surface nozzle 4 discharges the processing liquid supplied through the processing liquid supply pipe 10 toward the center of the surface 13 of the wafer W held by the spin chuck 3.
 表面ノズル4に供給される処理液としては、例えば、純水(Deionized Water:DIW)である。ただし、処理液は、純水に限定されるものではなく、例えば、炭酸水、イオン水、オゾン水、還元水(水素水)または磁気水などの機能水であってもよい。また、処理液は、アンモニア水またはアンモニア水と過酸化水素水との混合液などの薬液であってもよい。 The processing liquid supplied to the surface nozzle 4 is, for example, pure water (Deionized Water: DIW). However, the treatment liquid is not limited to pure water, and may be, for example, functional water such as carbonated water, ion water, ozone water, reduced water (hydrogen water), or magnetic water. Further, the treatment liquid may be a chemical liquid such as ammonia water or a mixed liquid of ammonia water and hydrogen peroxide water.
 ブラシ機構6は、ウエハWの表面13を洗浄可能に構成されている。ブラシ機構6は、揺動アーム16、アーム支持軸17およびブラシ18を備えている。揺動アーム16は、スピンチャック3によって保持されているウエハWの位置(保持位置)よりも上方で水平方向に延びる部材である。アーム支持軸17は、平面視において、ウエハWの回転範囲外に配置された、鉛直方向に延びる部材である。アーム支持軸17の上端部は、揺動アーム16の一端部(基端部)の下面に結合されている。ブラシ18は、揺動アーム16の先端に取り付けられており、先端部(下端部)でウエハWの表面13(上面)を洗浄する。ブラシ18は、たとえば、PVA(ポリビニルアルコール)などのスポンジ材で構成されており、鉛直軸線まわりに回転対称な略鼓状に形成されている。 The brush mechanism 6 is configured to be able to clean the surface 13 of the wafer W. The brush mechanism 6 includes a swing arm 16, an arm support shaft 17, and a brush 18. The swing arm 16 is a member that extends in the horizontal direction above the position (holding position) of the wafer W held by the spin chuck 3. The arm support shaft 17 is a member that extends outside the rotation range of the wafer W and extends in the vertical direction in plan view. The upper end portion of the arm support shaft 17 is coupled to the lower surface of one end portion (base end portion) of the swing arm 16. The brush 18 is attached to the tip of the swing arm 16 and cleans the surface 13 (upper surface) of the wafer W with the tip (lower end). The brush 18 is made of, for example, a sponge material such as PVA (polyvinyl alcohol), and has a substantially drum shape that is rotationally symmetric about the vertical axis.
 アーム支持軸17には、昇降駆動機構19が結合されている。アーム支持軸17には、昇降駆動機構19の駆動力が入力される。昇降駆動機構19は、アーム支持軸17を上下動させることにより、このアーム支持軸17と一体的に揺動アーム16を上下動させる。 The arm support shaft 17 is coupled with a lift drive mechanism 19. The arm support shaft 17 receives the driving force of the lifting drive mechanism 19. The elevating drive mechanism 19 moves the arm support shaft 17 up and down to move the swing arm 16 up and down integrally with the arm support shaft 17.
 また、アーム支持軸17には揺動駆動機構20が結合されている。揺動駆動機構20は、アーム支持軸17を往復移動させることにより、アーム支持軸17まわりに揺動アーム16を揺動させる。図1では、ブラシ18が基板を処理するときの揺動アーム16の位置を二点鎖線で示しており、ブラシ18が待機位置に退避しているときの揺動アーム16の位置を実線で示している。 Further, a swing drive mechanism 20 is coupled to the arm support shaft 17. The swing drive mechanism 20 swings the swing arm 16 around the arm support shaft 17 by reciprocating the arm support shaft 17. In FIG. 1, the position of the swing arm 16 when the brush 18 processes the substrate is indicated by a two-dot chain line, and the position of the swing arm 16 when the brush 18 is retracted to the standby position is indicated by a solid line. ing.
 揺動アーム16の先端部には、鉛直方向に延びるブラシ回転軸25が回転可能に設けられている。ブラシ回転軸25の下端部には、ホルダ取付部31を介して、ブラシホルダ32が取り付けられている。ブラシ18は、ブラシホルダ32の下方に取り付けられている。 A brush rotating shaft 25 extending in the vertical direction is rotatably provided at the tip of the swing arm 16. A brush holder 32 is attached to the lower end portion of the brush rotation shaft 25 via a holder attachment portion 31. The brush 18 is attached below the brush holder 32.
 また、ブラシ回転軸25には、揺動アーム16の内部において、ブラシ18を回転させるためのブラシ自転機構26(ブラシ回転機構)が連結されている。ブラシ自転機構26は、例えば、ブラシ回転軸25と一体回転可能に連結されたプーリ27と、モータ29により駆動されるプーリ28と、この一対のプーリ27,28間に掛け渡されたベルト30とを含む。ブラシ自転機構26は、ブラシ18の鉛直方向に平行な中心軸を第2回転軸線A2として回転させる。第2回転軸線A2は、鉛直方向に延びる直線であり、第1回転軸線A1に平行である。 The brush rotation shaft 25 is connected to a brush rotation mechanism 26 (brush rotation mechanism) for rotating the brush 18 inside the swing arm 16. The brush rotation mechanism 26 includes, for example, a pulley 27 that is coupled to the brush rotation shaft 25 so as to be integrally rotatable, a pulley 28 that is driven by a motor 29, and a belt 30 that is stretched between the pair of pulleys 27 and 28. including. The brush rotation mechanism 26 rotates the central axis parallel to the vertical direction of the brush 18 as the second rotation axis A2. The second rotation axis A2 is a straight line extending in the vertical direction, and is parallel to the first rotation axis A1.
 図3は、実施形態の基板処理装置1の電気的構成を示すブロック図である。基板処理装置1は、マイクロコンピュータを含む制御部45(制御手段)を備えている。この制御部45には、使用者によって処理レシピ(ウエハWの処理のための各種条件)を入力するためのレシピ入力キー46が接続されている。さらに、制御部45には、スピンモータ9、処理液バルブ12、昇降駆動機構19、揺動駆動機構20、ブラシ自転機構26などが制御対象として接続されている。 FIG. 3 is a block diagram illustrating an electrical configuration of the substrate processing apparatus 1 according to the embodiment. The substrate processing apparatus 1 includes a control unit 45 (control means) including a microcomputer. Connected to the control unit 45 is a recipe input key 46 for the user to input a processing recipe (various conditions for processing the wafer W). Further, the spin motor 9, the processing liquid valve 12, the lift drive mechanism 19, the swing drive mechanism 20, the brush rotation mechanism 26, and the like are connected to the control unit 45 as control targets.
 図4は、実施形態の基板処理装置1によるウエハWの処理の流れを示す図である。ウエハWの処理に先立ち、使用者によって、レシピ入力キー46が操作されて、ウエハWの表面13に対するブラシ18の押し付け量が設定される(ステップS101)。押し付け量とは、ウエハWの表面13にブラシ18の洗浄面(下面)を押し付けたときのブラシ18の弾性変形量をいう。 FIG. 4 is a diagram illustrating a processing flow of the wafer W by the substrate processing apparatus 1 according to the embodiment. Prior to the processing of the wafer W, the user operates the recipe input key 46 to set the pressing amount of the brush 18 against the surface 13 of the wafer W (step S101). The amount of pressing refers to the amount of elastic deformation of the brush 18 when the cleaning surface (lower surface) of the brush 18 is pressed against the surface 13 of the wafer W.
 処理室2内に、ウエハWが搬入され、そのウエハWがスピンチャック3に保持されると(ステップS102)、制御部45がスピンモータ9を制御することにより、スピンチャック3がウエハWを第1回転軸線A1まわりの回転方向RD1(ここでは、ウエハW上方から見て時計回り)に回転させる(ステップS103)。次いで、制御部45が処理液バルブ12を開くことにより、表面ノズル4からウエハWの表面13へ処理液の供給が開始される(ステップS104)。また、制御部45がブラシ自転機構26を制御することにより、ブラシ18を第2回転軸線A2まわりの回転方向RD2(ここでは、ウエハW上方から見て反時計回り)に回転させる(ステップS105)。このように、本実施形態では、制御部45は、平面視においてブラシ18をウエハWの回転方向RD1とは反対まわりの回転方向RD2に回転させる。このように、ブラシ18をウエハWの回転方向R1に対して逆である反対回りの方向に回転させることにより、ウエハWに対するブラシ18の相対的な回転速度を大きくすることができる。これにより、ウエハWの洗浄効率を高めることができる。 When the wafer W is loaded into the processing chamber 2 and is held by the spin chuck 3 (step S102), the control unit 45 controls the spin motor 9 so that the spin chuck 3 holds the wafer W in the first position. It is rotated in the rotation direction RD1 (in this case, clockwise when viewed from above the wafer W) around one rotation axis A1 (step S103). Next, when the control unit 45 opens the processing liquid valve 12, supply of the processing liquid from the surface nozzle 4 to the surface 13 of the wafer W is started (step S104). Further, the control unit 45 controls the brush rotation mechanism 26 to rotate the brush 18 in the rotation direction RD2 around the second rotation axis A2 (here, counterclockwise when viewed from above the wafer W) (step S105). . Thus, in the present embodiment, the control unit 45 rotates the brush 18 in the rotational direction RD2 opposite to the rotational direction RD1 of the wafer W in plan view. In this way, by rotating the brush 18 in the opposite direction that is opposite to the rotation direction R1 of the wafer W, the relative rotation speed of the brush 18 with respect to the wafer W can be increased. Thereby, the cleaning efficiency of the wafer W can be increased.
 本実施例では、例えば直径300mmの円板状の半導体ウエハが、ウエハWとして用いられており、このウエハWは、スピンチャック3により、たとえば50~150rpm(好ましくは、100rpm)の回転速度で回転される。また、ウエハWの回転速度が50~150rpmである場合に、ブラシ18は、ブラシ自転機構26によって、例えば100rpm程度の回転速度で回転される。ウエハWおよびブラシ18の回転速度をこのように設定することにより、ウエハWに供給された処理液に十分な遠心力を作用させて、ウエハWの周縁部に処理液を十分に供給することができ、ウエハWの表面13に対してブラシ18による良好な洗浄処理を行うことができる。 In this embodiment, for example, a disk-shaped semiconductor wafer having a diameter of 300 mm is used as the wafer W, and this wafer W is rotated by the spin chuck 3 at a rotation speed of, for example, 50 to 150 rpm (preferably 100 rpm). Is done. When the rotation speed of the wafer W is 50 to 150 rpm, the brush 18 is rotated by the brush rotation mechanism 26 at a rotation speed of about 100 rpm, for example. By setting the rotational speeds of the wafer W and the brush 18 in this way, a sufficient centrifugal force is applied to the processing liquid supplied to the wafer W, so that the processing liquid can be sufficiently supplied to the peripheral portion of the wafer W. It is possible to perform a good cleaning process with the brush 18 on the surface 13 of the wafer W.
 ウエハWおよびブラシ18の回転が開始されると、制御部45が昇降駆動機構19および揺動駆動機構20を制御することにより、ブラシ18の下面をウエハWの表面13の中心(第1回転軸線A1)に当接させる(ステップS106)。より詳細には、昇降駆動機構19が制御されて、ブラシ18の下端がスピンチャック3に保持されたウエハWの表面13よりも高い位置に配される。次いで、揺動駆動機構20が制御されて、揺動アーム16が旋回することにより、ブラシ18が水平移動してウエハWの中心上に配される。その後、昇降駆動機構19が制御されて、ブラシ18がレシピ入力キー46で設定された押し付け量に応じた高さ位置に移動される。これにより、ブラシ18にウエハWの表面13が押し付けられる。 When the rotation of the wafer W and the brush 18 is started, the control unit 45 controls the elevating drive mechanism 19 and the swing drive mechanism 20 so that the lower surface of the brush 18 is centered on the surface 13 of the wafer W (first rotation axis). A1) is brought into contact (step S106). More specifically, the elevating drive mechanism 19 is controlled so that the lower end of the brush 18 is disposed at a position higher than the surface 13 of the wafer W held by the spin chuck 3. Next, the swing drive mechanism 20 is controlled to rotate the swing arm 16, whereby the brush 18 is moved horizontally and placed on the center of the wafer W. Thereafter, the elevation drive mechanism 19 is controlled, and the brush 18 is moved to a height position corresponding to the pressing amount set by the recipe input key 46. As a result, the surface 13 of the wafer W is pressed against the brush 18.
 ブラシ18がウエハWに当接されると、制御部45が揺動駆動機構20を制御することにより、ブラシ18をウエハWの周縁部までスキャン移動させる(ステップS107)。具体的には、ブラシ18の中心が、ウエハWの中心(第1回転軸線A1)から径方向外方である移動方向SD1に移動して、ウエハWの設計上の周端面からブラシ18の半径分だけ径方向内方の位置まで移動する。なお、本実施形態では、図1に示すように、アーム支持軸17を中心に揺動アーム16が回転することで、揺動アーム16の先端部に取り付けられたブラシ18がスキャン移動する。したがって、ブラシ18のスキャン移動の方向は、径方向と完全に平行ではなく、径方向と回転方向AR1の合成方向である。 When the brush 18 comes into contact with the wafer W, the control unit 45 controls the swing drive mechanism 20 to scan the brush 18 to the peripheral edge of the wafer W (step S107). Specifically, the center of the brush 18 moves from the center of the wafer W (first rotation axis A1) in the moving direction SD1 that is radially outward, and the radius of the brush 18 from the design peripheral end surface of the wafer W Move to a position inward in the radial direction. In the present embodiment, as shown in FIG. 1, the swing arm 16 rotates around the arm support shaft 17, so that the brush 18 attached to the tip of the swing arm 16 scans. Therefore, the scanning movement direction of the brush 18 is not completely parallel to the radial direction, but is a combined direction of the radial direction and the rotation direction AR1.
 ブラシ18がウエハWの周縁部まで移動すると、制御部45は、昇降駆動機構19および揺動駆動機構20を制御することにより、ブラシ18を待機位置に退避させる(ステップS108)。また、ブラシ18が待機位置に移動するまでの間に、制御部45がブラシ自転機構26を制御してブラシ18の回転を停止させる(ステップS109)。さらに、制御部45が処理液バルブ12を閉じることにより、表面ノズル4からの処理液の供給が停止される。 When the brush 18 moves to the peripheral edge of the wafer W, the control unit 45 controls the elevation drive mechanism 19 and the swing drive mechanism 20 to retract the brush 18 to the standby position (step S108). Further, until the brush 18 moves to the standby position, the control unit 45 controls the brush rotation mechanism 26 to stop the rotation of the brush 18 (step S109). Furthermore, when the control unit 45 closes the processing liquid valve 12, the supply of the processing liquid from the surface nozzle 4 is stopped.
 続いて、制御部45がスピンモータ9を制御して、ウエハWを高速(例えば、3000rpm)で回転させる(ステップS110)。これにより、ウエハWに付着している処理液が振り切られ、ウエハWが乾燥する。 Subsequently, the control unit 45 controls the spin motor 9 to rotate the wafer W at a high speed (for example, 3000 rpm) (step S110). Thereby, the processing liquid adhering to the wafer W is shaken off, and the wafer W is dried.
 ウエハWの高速回転が所定時間にわたって継続されると、制御部45はスピンモータ9を制御してウエハWの回転を停止させる(ステップS111)。そして、ウエハWが静止した後、その処理済のウエハWが処理室2から搬出される(ステップS112)。 When the high-speed rotation of the wafer W is continued for a predetermined time, the control unit 45 controls the spin motor 9 to stop the rotation of the wafer W (step S111). Then, after the wafer W is stopped, the processed wafer W is unloaded from the processing chamber 2 (step S112).
 <移動速度Vbについて>
 ここで、ステップS107におけるブラシ18のスキャン移動時における移動速度について説明する。図5は、ウエハW上におけるブラシ18のスキャン移動を示す概略平面図である。ウエハWとブラシ18の相対速度が大きい程、洗浄効率が向上する。相対速度を大きくするため、本実施形態では、ブラシ18を自転させながらウエハW上をスキャン移動させる。
<About moving speed Vb>
Here, the moving speed during the scanning movement of the brush 18 in step S107 will be described. FIG. 5 is a schematic plan view showing the scanning movement of the brush 18 on the wafer W. FIG. As the relative speed between the wafer W and the brush 18 is increased, the cleaning efficiency is improved. In this embodiment, in order to increase the relative speed, the wafer 18 is scanned and moved while rotating the brush 18.
 図6は、ウエハWから見たブラシ18の相対的なスキャン移動を示す概略平面図である。回転するウエハW上をブラシ18がスキャン移動した場合、ブラシ18は、ウエハWに対して相対的にらせん状に移動する。ウエハWの表面13全部をブラシ18で洗浄するためには、ウエハWの表面13全部をブラシ18が隙間無くなぞるように移動させればよい。但し、回転するブラシ18においては、回転するウエハWに対して相対速度が高い部分と、相対速度が低い部分とが発生する。この点について、以下詳細に説明する。 FIG. 6 is a schematic plan view showing the relative scanning movement of the brush 18 as viewed from the wafer W. When the brush 18 scans and moves on the rotating wafer W, the brush 18 moves relatively spirally with respect to the wafer W. In order to clean the entire surface 13 of the wafer W with the brush 18, the entire surface 13 of the wafer W may be moved so that the brush 18 traces without a gap. However, the rotating brush 18 has a portion having a high relative speed and a portion having a low relative speed with respect to the rotating wafer W. This point will be described in detail below.
 図7は、ブラシ18の第1の洗浄状況を示す概略平面図である。図8は、ブラシ18の第2の洗浄状況を示す概略平面図である。図7および図8では、ブラシ18が、実線で示す位置L1から、二点鎖線で示す位置L2に移動する様子を示している。 FIG. 7 is a schematic plan view showing a first cleaning state of the brush 18. FIG. 8 is a schematic plan view showing a second cleaning state of the brush 18. 7 and 8 show a state in which the brush 18 moves from a position L1 indicated by a solid line to a position L2 indicated by a two-dot chain line.
 図7および図8に示す例では、平面視において、ブラシ18の左側半分は、ウエハWの回転方向RD1に逆行するように回転する。これに対して、平面視において、ブラシ18の右側半分は、ウエハWの回転方向RD1に順行するように回転する。このため、ブラシ18の左側半分は、ブラシ18の右側半分に比べて、ウエハWに対する相対速度が大きくなるため、洗浄効率相対的に高くなる。したがって、ウエハWの洗浄効率を向上するためには、ウエハWの表面13全体を、ブラシ18の径方向外方側半分で洗浄することが望ましい。そこで、ウエハWの表面13全体が、ブラシ18の径方向外方側半分で洗浄されるように、ブラシ18の径方向外方の移動速度Vb(mm/sec)が設定される。なお、ブラシ18のスキャン移動の方向は、上述したように、径方向と完全に平行ではなく、径方向と回転方向AR1の合成方向である。ここでは、ブラシ18の径方向外方部分で洗浄することを検討するため、径方向の移動速度Vbのみを考慮する。 7 and 8, in the plan view, the left half of the brush 18 rotates so as to run backward in the rotation direction RD1 of the wafer W. On the other hand, in the plan view, the right half of the brush 18 rotates so as to follow the rotation direction RD1 of the wafer W. For this reason, since the relative speed with respect to the wafer W is larger in the left half of the brush 18 than in the right half of the brush 18, the cleaning efficiency is relatively high. Therefore, in order to improve the cleaning efficiency of the wafer W, it is desirable to clean the entire surface 13 of the wafer W with the outer half of the brush 18 in the radial direction. Therefore, the moving speed Vb (mm / sec) of the brush 18 in the radial direction is set so that the entire surface 13 of the wafer W is cleaned with the half of the brush 18 in the radial direction. Note that, as described above, the scan movement direction of the brush 18 is not completely parallel to the radial direction, but is a combined direction of the radial direction and the rotation direction AR1. Here, only the moving speed Vb in the radial direction is considered in order to consider cleaning at the radially outer portion of the brush 18.
 図7に示す例では、ウエハWが1回転する間に、ブラシ18の径方向外方へブラシ18の半径よりも大きく移動する。図7に示す例の場合、ウエハWの表面13において、洗浄効率が高いブラシ18の径方向外方側半分で洗浄される洗浄領域WA1と、当該部分で洗浄されない非洗浄領域WA2とが、径方向外方に向けて交互に発生することとなる。 In the example shown in FIG. 7, the wafer W moves outward in the radial direction of the brush 18 larger than the radius of the brush 18 while the wafer W rotates once. In the case of the example shown in FIG. 7, on the surface 13 of the wafer W, the cleaning area WA1 that is cleaned by the radially outer half of the brush 18 that has high cleaning efficiency and the non-cleaning area WA2 that is not cleaned by the portion have a diameter. It will occur alternately toward the outside of the direction.
 ここで、ウエハWの回転速度をRw(rpm)、ブラシ18の直径をφb(mm)とすると、ウエハWが1回転する時間は、60/Rw(sec)である。したがって、図7の場合の移動速度Vbについては、式1が成立する。 Here, when the rotation speed of the wafer W is Rw (rpm) and the diameter of the brush 18 is φb (mm), the time for one rotation of the wafer W is 60 / Rw (sec). Therefore, Expression 1 is established for the moving speed Vb in the case of FIG.
 Vb×60/Rw>φb/2(式1)
 式1を変形すると、式2が導き出される。
Vb × 60 / Rw> φb / 2 (Formula 1)
By transforming Equation 1, Equation 2 is derived.
 Vb>φb×R/120(式2)
 図8に示す例では、ウエハWが1回転するまでの時間60/Rw(sec)の間に、ブラシ18が径方向外方へブラシ18の半径(=φb/2)分だけ移動する。この場合、ウエハWの表面13を、洗浄効率が高いブラシ18の径方向外方側半分で重複しないように洗浄することができる。図8の場合の移動速度Vbについては、式3が成立する。
Vb> φb × R / 120 (Formula 2)
In the example shown in FIG. 8, the brush 18 moves radially outward by the radius of the brush 18 (= φb / 2) during the time 60 / Rw (sec) until the wafer W rotates once. In this case, the surface 13 of the wafer W can be cleaned so as not to overlap with the radially outer half of the brush 18 having high cleaning efficiency. For the movement speed Vb in the case of FIG.
 Vb×60/Rw=φb/2(式3)
 式3を変形すると、式4が導き出される。
Vb × 60 / Rw = φb / 2 (Formula 3)
By transforming Equation 3, Equation 4 is derived.
 Vb=φb×Rw/120(式4)
 ウエハWが1回転するまでの時間60/Rw(sec)の間におけるブラシ18の径方向外方への移動量(=Vb×60/Rw)が、ブラシ18の半径(=φb/2)と同じかそれよりも小さくすることによって、非洗浄領域WA2が発生することを抑制することができる。これを数式で表すと、式5で表される。
Vb = φb × Rw / 120 (Formula 4)
The movement amount (= Vb × 60 / Rw) of the brush 18 in the radial direction during the time 60 / Rw (sec) until the wafer W makes one rotation is the radius (= φb / 2) of the brush 18. By making it the same or smaller, it is possible to suppress the occurrence of the non-cleaning area WA2. When this is expressed by an equation, it is expressed by equation 5.
 Vb×60/Rw≦φb/2(式5)
 式5を変形すると、式6が導き出される。
Vb × 60 / Rw ≦ φb / 2 (Formula 5)
By transforming Equation 5, Equation 6 is derived.
 Vb≦φb×Rw/120(式6)
 このように制御部45は、ブラシ18の径方向外方への移動速度Vbが式6を満たすように、揺動駆動機構20を制御することによって、洗浄効率の高いブラシ18の径方向外方側半分で、ウエハWの表面13を隙間無く洗浄することができる。したがって、ウエハWの表面13を効果的に洗浄することができ、洗浄ムラの発生を低減することができる。
Vb ≦ φb × Rw / 120 (Formula 6)
As described above, the control unit 45 controls the swing drive mechanism 20 so that the moving speed Vb of the brush 18 radially outward satisfies Expression 6, so that the brush 18 having high cleaning efficiency can be radially outward. With the side half, the surface 13 of the wafer W can be cleaned without gaps. Therefore, the surface 13 of the wafer W can be effectively cleaned, and the occurrence of cleaning unevenness can be reduced.
 <周縁領域の洗浄について>
 図9は、ウエハWの周縁領域13Aを洗浄するブラシ18を示す概略平面図である。周縁領域13Aは、ここでは、ウエハWの表面13のうち、ウエハWの周端からブラシ18の半径(φb/2)分だけ内側の環状領域をいう。ウエハWの表面13のうちの周縁領域13Aを除いた内側領域13Bは、ブラシ18の径方向外方へ向けたスキャン移動によって、ブラシ18の径方向外方側半分、および、径方向内方側半分の双方で洗浄される。
<About cleaning of peripheral area>
FIG. 9 is a schematic plan view showing the brush 18 for cleaning the peripheral region 13A of the wafer W. As shown in FIG. Here, the peripheral region 13 </ b> A is an annular region on the surface 13 of the wafer W that is on the inner side of the peripheral edge of the wafer W by the radius (φb / 2) of the brush 18. The inner region 13B of the surface 13 of the wafer W excluding the peripheral region 13A is scanned in the radially outward direction of the brush 18 and the radially outward half of the brush 18 and the radially inward side. Washed in both halves.
 内側領域13Bに対して、周縁領域13Aは、ブラシ18の径方向外方側半分(ここでは、左側半分)だけで洗浄される領域となっている。したがって、周縁領域13Aは、内側領域13Bに対して相対的に洗浄効率が低下しやすい。しかしながら、本実施形態では、上述したように、ブラシ18の径方向外方側半分は、ウエハWの回転方向RD1に対して逆行する方向に回転することで、洗浄効率が高くなっている。このため、周縁領域13Aについても、適切に洗浄することが可能である。 With respect to the inner region 13B, the peripheral region 13A is a region that is cleaned only by the radially outer half of the brush 18 (here, the left half). Therefore, the cleaning efficiency of the peripheral region 13A is likely to be relatively reduced with respect to the inner region 13B. However, in the present embodiment, as described above, the radially outer half of the brush 18 rotates in a direction reverse to the rotation direction RD1 of the wafer W, thereby increasing the cleaning efficiency. For this reason, the peripheral region 13A can be appropriately cleaned.
 上記説明では、ステップS107において、ウエハWの中心からウエハWの周縁部に移動させている。しかしながら、ウエハWの周縁部から中心に向けて移動させてもよい。また、ブラシ18を径方向外方及び径方向内方に往復移動させてもよい。 In the above description, the wafer W is moved from the center of the wafer W to the periphery of the wafer W in step S107. However, the wafer W may be moved from the peripheral edge toward the center. Further, the brush 18 may be reciprocated radially outward and radially inward.
 上記説明では、ステップS107において、ブラシ18のスキャン移動開始位置を、ウエハWの中心(回転軸線A1)としている。しかしながら、ウエハWの中心以外の位置からスキャン移動を開始してもよい。例えば、ウエハWの中心よりも移動方向SD1の上流側の位置として、その上流位置からウエハWの中心を経由して周縁部まで移動させてもよい。このように、ブラシ18をウエハWの中心を経由させて移動させることによって、ウエハWの中心を良好に洗浄することができる。 In the above description, the scan movement start position of the brush 18 is the center of the wafer W (rotation axis A1) in step S107. However, the scan movement may be started from a position other than the center of the wafer W. For example, the position upstream of the center of the wafer W in the movement direction SD1 may be moved from the upstream position to the peripheral edge via the center of the wafer W. Thus, by moving the brush 18 via the center of the wafer W, the center of the wafer W can be cleaned well.
 上記説明では、ステップS107において、ブラシ18をウエハWの回転方向RD1とは逆方向に回転させてスキャン移動させている。しかしながら、スキャン移動の途中でブラシ18の回転方向を逆転させてもよい。例えば、内側領域13Bについては、ブラシ18をウエハWの回転方向RD1と同一回りの方向に回転させてもよい。この場合においても、ウエハWの回転速度Rw、ブラシ18の直径φb及び移動速度Vbの関係が、式6を満たす場合、ウエハWの内側領域13Bにおいて、洗浄ムラの発生を軽減することができる。ただし、周縁領域13Aについては、ブラシ18を、ウエハWの回転方向RD1とは反対回り(回転方向RD2)に回転させることが望ましい。 In the above description, in step S107, the brush 18 is scanned and moved in the direction opposite to the rotation direction RD1 of the wafer W. However, the rotation direction of the brush 18 may be reversed during the scanning movement. For example, for the inner region 13B, the brush 18 may be rotated in the same direction as the rotation direction RD1 of the wafer W. Even in this case, if the relationship between the rotational speed Rw of the wafer W, the diameter φb of the brush 18 and the moving speed Vb satisfies Expression 6, the occurrence of cleaning unevenness in the inner region 13B of the wafer W can be reduced. However, for the peripheral region 13A, it is desirable to rotate the brush 18 in the direction opposite to the rotation direction RD1 of the wafer W (rotation direction RD2).
 上記説明では、単一のブラシ18だけを備えているが、ウエハWの表面13する複数のブラシを備えていてもよい。各ブラシについても、ブラシ18と同様に、移動(例えば、ウエハWの中心から径方向外方までの移動)および回転(平面視において、ウエハWの回転方向とは反対回りの回転)などの制御が行われるとよい。 In the above description, only a single brush 18 is provided, but a plurality of brushes on the surface 13 of the wafer W may be provided. As with the brush 18, each brush also controls movement (for example, movement from the center of the wafer W to the outside in the radial direction) and rotation (rotation opposite to the rotation direction of the wafer W in plan view). Should be done.
 上記説明では、ブラシ18のウエハWに接する面(接触面)の形状を真円形としているが、その他の形状(楕円形、多角形型)であってもよい。真円形以外の場合においても、ウエハWが第1回転軸線A1まわりに1回転する間に、ブラシ18を回転半径(第2回転軸線A2まわりに回転する接触面の最外部が描く円弧の半径。最小回転半径)と同じかそれよりも小さい距離だけ径方向に移動させるとよい。 In the above description, the shape of the surface (contact surface) that contacts the wafer W of the brush 18 is a perfect circle, but may be other shapes (elliptical or polygonal). Even in a case other than a true circle, while the wafer W makes one rotation around the first rotation axis A1, the brush 18 is rotated with a radius of rotation (the radius of an arc drawn by the outermost surface of the contact surface rotating around the second rotation axis A2. It is preferable to move in the radial direction by a distance equal to or smaller than the minimum turning radius.
 また、上記説明では、揺動駆動機構20が揺動アーム16をアーム支持軸17まわりに回転させることにより、ブラシ18を径方向(厳密には、径方向と回転方向RD1の合成方向)に回転移動させる。このようなブラシ移動機構の代わりに、ブラシ18を例えば径方向に直線的に移動させるブラシ移動機構を設けてもよい。 In the above description, the swing drive mechanism 20 rotates the swing arm 16 around the arm support shaft 17 to rotate the brush 18 in the radial direction (strictly speaking, the combined direction of the radial direction and the rotational direction RD1). Move. Instead of such a brush moving mechanism, a brush moving mechanism for moving the brush 18 linearly in the radial direction, for example, may be provided.
 この発明は詳細に説明されたが、上記の説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。上記各実施形態及び各変形例で説明した各構成は、相互に矛盾しない限り適宜組み合わせたり、省略したりすることができる。 Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention. The configurations described in the above embodiments and modifications can be appropriately combined or omitted as long as they do not contradict each other.
 1 基板処理装置
 3 スピンチャック(基板保持部)
 9 スピンモータ(基板回転機構)
 13 表面
 13A 周縁領域
 13B 内側領域
 18 ブラシ
 20 揺動駆動機構(ブラシ移動機構)
 26 ブラシ自転機構(ブラシ回転機構)
 31 ホルダ取付部
 32 ブラシホルダ
 45 制御部
 A1 第1回転軸線
 A2 第2回転軸線
 RD1,RD2 回転方向
 SD1 移動方向
 Vb 移動速度
 W ウエハ
 WA1 洗浄領域
 WA2 非洗浄領域
1 Substrate Processing Device 3 Spin Chuck (Substrate Holding Unit)
9 Spin motor (substrate rotation mechanism)
13 Surface 13A Peripheral area 13B Inner area 18 Brush 20 Oscillation drive mechanism (brush moving mechanism)
26 Brush rotation mechanism (Brush rotation mechanism)
31 Holder mounting part 32 Brush holder 45 Control part A1 1st rotation axis A2 2nd rotation axis RD1, RD2 Rotation direction SD1 Movement direction Vb Movement speed W Wafer WA1 Cleaning area WA2 Non-cleaning area

Claims (6)

  1.  基板を処理する基板処理装置であって、
     基板を保持する基板保持部と、
     前記基板保持部に保持された前記基板を第1回転軸線回りに回転させる基板回転機構と、
     前記基板保持部に保持された前記基板の表面に当接可能なブラシと、
     前記ブラシを前記第1回転軸線に平行な第2回転軸線まわりに回転させるブラシ回転機構と、
     前記ブラシを前記基板に対して径方向に相対的に移動させるブラシ移動機構と、
    を備え、
     前記ブラシ移動機構は、前記基板が前記基板回転機構により1回転する間に、前記ブラシを前記ブラシの回転半径と同じかそれよりも小さい距離だけ前記径方向に相対移動させる、基板処理装置。
    A substrate processing apparatus for processing a substrate,
    A substrate holder for holding the substrate;
    A substrate rotation mechanism for rotating the substrate held by the substrate holding portion around a first rotation axis;
    A brush capable of contacting the surface of the substrate held by the substrate holding unit;
    A brush rotation mechanism for rotating the brush around a second rotation axis parallel to the first rotation axis;
    A brush moving mechanism for moving the brush relative to the substrate in the radial direction;
    With
    The substrate processing apparatus, wherein the brush moving mechanism relatively moves the brush in the radial direction by a distance equal to or smaller than a rotation radius of the brush while the substrate rotates once by the substrate rotation mechanism.
  2.  請求項1の基板処理装置であって、
     前記ブラシ回転機構は、前記基板回転機構による前記基板の回転方向とは反対回りの方向に前記ブラシを回転させる、基板処理装置。
    The substrate processing apparatus of claim 1,
    The substrate processing apparatus, wherein the brush rotation mechanism rotates the brush in a direction opposite to a rotation direction of the substrate by the substrate rotation mechanism.
  3.  請求項2の基板処理装置であって、
     前記ブラシ移動機構は、前記ブラシ回転機構による前記ブラシの回転中心が前記基板の周端から前記ブラシの回転半径だけ内側の位置となるように、前記ブラシを移動させる、基板処理装置。
    The substrate processing apparatus according to claim 2,
    The substrate processing apparatus, wherein the brush moving mechanism moves the brush so that a rotation center of the brush by the brush rotation mechanism is located at an inner position by a rotation radius of the brush from a peripheral edge of the substrate.
  4.  請求項3の基板処理装置であって、
     前記ブラシ移動機構は、前記ブラシを、前記基板の中心から前記基板の周端までの間を移動させる、基板処理装置。
    The substrate processing apparatus according to claim 3, wherein
    The brush moving mechanism is a substrate processing apparatus that moves the brush from a center of the substrate to a peripheral edge of the substrate.
  5.  請求項1から請求項4のいずれか1項の基板処理装置であって、
     前記基板回転機構による前記基板の回転数をRw(rpm)、前記ブラシの直径をφb(mm)としたとき、
     前記ブラシ移動機構による前記ブラシの前記径方向外方への移動速度Vb(mm/sec)が、φb×Rw/120以下である、基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 4, wherein:
    When the rotation speed of the substrate by the substrate rotation mechanism is Rw (rpm) and the diameter of the brush is φb (mm),
    The substrate processing apparatus, wherein a moving speed Vb (mm / sec) of the brush in the radial direction by the brush moving mechanism is φb × Rw / 120 or less.
  6.  基板を処理する基板処理方法であって、
    (a) 基板を基板保持部で保持する工程と、
    (b) 前記工程(a)によって前記基板保持部に保持された前記基板を第1回転軸線回りに回転させる工程と、
    (c) 前記工程(b)によって回転する前記基板の表面にブラシを当接させる工程と、
    (d) 前記工程(c)によって前記基板の表面に当接する前記ブラシを前記第1回転軸線に平行な第2回転軸線まわりに回転させる工程と、
    (e) 前記工程(d)によって回転する前記ブラシを径方向に相対的に移動させる工程と、
    を含み、
    前記工程(e)は、前記工程(b)によって前記基板が1回転する間に、前記ブラシを前記ブラシの回転半径と同じかそれよりも小さい距離だけ前記径方向に相対移動させる工程である、基板処理方法。
    A substrate processing method for processing a substrate, comprising:
    (a) a step of holding the substrate by the substrate holding unit;
    (b) rotating the substrate held by the substrate holding part in the step (a) around a first rotation axis;
    (c) contacting the brush with the surface of the substrate rotated by the step (b);
    (d) rotating the brush in contact with the surface of the substrate in the step (c) around a second rotation axis parallel to the first rotation axis;
    (e) a step of relatively moving the rotating brush in the radial direction in the step (d);
    Including
    The step (e) is a step of relatively moving the brush in the radial direction by a distance equal to or smaller than a rotation radius of the brush while the substrate is rotated once by the step (b). Substrate processing method.
PCT/JP2019/015946 2018-04-27 2019-04-12 Substrate treatment device and substrate treatment method WO2019208265A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-086228 2018-04-27
JP2018086228A JP2019192849A (en) 2018-04-27 2018-04-27 Substrate processing apparatus and substrate processing method

Publications (1)

Publication Number Publication Date
WO2019208265A1 true WO2019208265A1 (en) 2019-10-31

Family

ID=68295450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015946 WO2019208265A1 (en) 2018-04-27 2019-04-12 Substrate treatment device and substrate treatment method

Country Status (3)

Country Link
JP (1) JP2019192849A (en)
TW (1) TW201946141A (en)
WO (1) WO2019208265A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111632948A (en) * 2020-06-11 2020-09-08 东莞市日和自动化设备有限公司 High-speed rotating cleaning machine for crystal plate
CN116065222A (en) * 2023-03-09 2023-05-05 苏州智程半导体科技股份有限公司 Wafer electroplating clamp moving device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198345A (en) * 2000-12-27 2002-07-12 Super Silicon Kenkyusho:Kk Cleaning method of semiconductor wafer
JP2009049432A (en) * 2008-11-17 2009-03-05 Shibaura Mechatronics Corp Brush washing apparatus and brush washing method
WO2018056328A1 (en) * 2016-09-26 2018-03-29 株式会社Screenホールディングス Substrate processing method, substrate processing device, and recording medium
JP2018137257A (en) * 2017-02-20 2018-08-30 グローバルウェーハズ・ジャパン株式会社 Scrubbing cleaning method and scrubbing cleaning apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198345A (en) * 2000-12-27 2002-07-12 Super Silicon Kenkyusho:Kk Cleaning method of semiconductor wafer
JP2009049432A (en) * 2008-11-17 2009-03-05 Shibaura Mechatronics Corp Brush washing apparatus and brush washing method
WO2018056328A1 (en) * 2016-09-26 2018-03-29 株式会社Screenホールディングス Substrate processing method, substrate processing device, and recording medium
JP2018137257A (en) * 2017-02-20 2018-08-30 グローバルウェーハズ・ジャパン株式会社 Scrubbing cleaning method and scrubbing cleaning apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111632948A (en) * 2020-06-11 2020-09-08 东莞市日和自动化设备有限公司 High-speed rotating cleaning machine for crystal plate
CN116065222A (en) * 2023-03-09 2023-05-05 苏州智程半导体科技股份有限公司 Wafer electroplating clamp moving device

Also Published As

Publication number Publication date
TW201946141A (en) 2019-12-01
JP2019192849A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
JP5615650B2 (en) Substrate processing method and substrate processing apparatus
JP4976949B2 (en) Substrate processing equipment
CN106952858B (en) Substrate holding and rotating device, substrate processing device, and substrate processing method
TWI626090B (en) Substrate holding/rotating device, substrate processing apparatus including the same, and substrate processing method
JP6256828B2 (en) Substrate processing method and substrate processing apparatus
CN107851573B (en) Substrate processing method and substrate processing apparatus
JP6718714B2 (en) Substrate processing method and substrate processing apparatus
US20150340251A1 (en) Substrate processing method and substrate processing apparatus
JP7290695B2 (en) Cleaning equipment for ultrasonic cleaning equipment and cleaning tools
WO2019208265A1 (en) Substrate treatment device and substrate treatment method
JP6143589B2 (en) Substrate processing equipment
KR20020061451A (en) Dry cleaning apparatus
US6543079B1 (en) Wafer cleaning apparatus
CN108213016B (en) Wafer cleaning device and wafer cleaning method
JP2010080583A (en) Device and method for processing substrate
JP4988621B2 (en) Substrate processing equipment
JP4988615B2 (en) Substrate processing equipment
JP2007273611A (en) Apparatus and method for processing substrate
JP2009194090A (en) Substrate processing method and substrate processing apparatus
KR101934883B1 (en) semiconductor fabricating method and apparatus
JP2002075943A (en) Substrate processor, and substrate processing method
WO2020189072A1 (en) Substrate processing method and substrate processing device
JP2009238938A (en) Substrate processing apparatus
JP5143933B2 (en) Substrate processing apparatus and substrate processing method
JP2020088120A (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793875

Country of ref document: EP

Kind code of ref document: A1