WO2019207784A1 - スクロール圧縮機及び冷凍サイクル装置 - Google Patents
スクロール圧縮機及び冷凍サイクル装置 Download PDFInfo
- Publication number
- WO2019207784A1 WO2019207784A1 PCT/JP2018/017261 JP2018017261W WO2019207784A1 WO 2019207784 A1 WO2019207784 A1 WO 2019207784A1 JP 2018017261 W JP2018017261 W JP 2018017261W WO 2019207784 A1 WO2019207784 A1 WO 2019207784A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- scroll
- shell
- scroll compressor
- oil supply
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
Definitions
- the present invention relates to a scroll compressor and a refrigeration cycle apparatus in which an oil supply hole is provided in a thrust plate.
- the swing scroll and the fixed scroll each have a substantially symmetrical spiral body, and the swing scroll and the fixed scroll are housed in a frame having a refrigerant inlet for sucking refrigerant. ing.
- the swinging scroll in the frame performs a swinging motion, whereby the refrigerant sucked from the refrigerant suction port is compressed.
- the oscillating scroll oscillates while sliding on the thrust bearing surface.
- a thrust plate is disposed between the oscillating scroll and the frame. Has been.
- Patent Document 1 In such a scroll compressor, in order to reduce the sliding resistance of each sliding part, lubricating oil flows through each sliding part (for example, refer to Patent Document 1).
- the thrust bearing surface of an orbiting scroll is used for the purpose of improving the slidability between the scrolls of the orbiting scroll and the fixed scroll and reducing the leakage loss of refrigerant by improving the sealing performance during low-speed rotation.
- An oil supply hole is provided, and the thrust plate is provided with an oil supply hole, and a scroll compressor that secures the required amount of oil supplied to the spiral by intermittently supplying oil from the oil supply hole to the oil supply hole. It is disclosed.
- Patent Document 1 If the configuration of Patent Document 1 is adopted, a required amount of oil can be secured when the scroll compressor rotates at a low speed. However, the amount of oil supply during high-speed rotation becomes excessive, leading to a decrease in refrigeration capacity and performance as the amount of oil rises.
- the present invention is for solving the above-mentioned problems, while ensuring the required amount of oil supply at low speed rotation, while preventing increase in the oil supply amount at high speed rotation, the amount of oil rising can be adjusted, and the refrigerating capacity is improved. It is another object of the present invention to provide a scroll compressor and a refrigeration cycle device that improve performance.
- a scroll compressor includes a fixed scroll having a fixed-side spiral body, a swing scroll having a swing-side spiral body combined with the fixed-side spiral body of the fixed scroll, and a lower surface of the swing scroll.
- a working fluid that is supported between the fixed scroll and the orbiting scroll, and has an oil reservoir space formed inside the thrust plate.
- a scroll compressor having a compression chamber for sucking in, wherein the orbiting scroll is provided on a sliding surface that slides with the thrust plate, and includes an oil supply groove to which lubricating oil is supplied,
- the thrust plate has an oil supply hole that leads from the surface that slides with the orbiting scroll to the compression chamber, and the oil supply groove has an oil inflow portion into which lubricating oil flows;
- An oil outflow part that causes the lubricating oil that has passed through the part to flow out to the oil supply hole side, and the oil circulation part is positioned on the thrust plate in one rotation in which the swing scroll swings, A first rotation period in which lubricating oil is supplied to the oil supply hole via an oil circulation part; and the oil circulation part is located on the oil reservoir space and is supplied to the oil supply hole via the oil circulation part. And a second rotation period in which the amount of lubricating oil is less than the first rotation period.
- a refrigeration cycle apparatus includes the scroll compressor described above.
- the oil circulation portion extending in the rotation direction of the rocking scroll is formed between the oil inflow portion and the oil outflow portion in the oil supply groove.
- lubricating oil can be supplied to an oil supply hole via an oil distribution part in the 1st rotation period.
- the amount of lubricating oil supplied to the oil supply hole via the oil circulation part is reduced in the oil circulation part in the second rotation period and connected to the oil reservoir space inside the thrust plate, compared to the first rotation period. Therefore, the higher the rotation speed, the more limited the movement of the lubricating oil in the oil circulation portion that should reach the oil supply hole. For this reason, while ensuring the required amount of oil during low-speed rotation, the increase in oil amount during high-speed rotation can be prevented, the amount of oil rise can be adjusted, and the refrigeration capacity and performance can be improved at any rotational speed. be able to.
- FIG. 7 It is a schematic diagram which shows the positional relationship of the oil supply hole and oil supply groove
- FIG. 1 is a longitudinal sectional view showing a cross-sectional configuration example of a scroll compressor 100 according to Embodiment 1 of the present invention.
- the scroll compressor 100 includes a shell 1, a fixed scroll 31, a swing scroll 32, a main frame 2, a thrust plate 24, and the like. Further, the scroll compressor 100 includes a drive mechanism unit 4 including a motor and the like housed in the shell 1.
- the scroll compressor 100 is illustrated as a so-called vertical scroll compressor in which the fixed scroll 31 and the swing scroll 32 are disposed on the upper side in the shell 1 and the drive mechanism unit 4 is disposed on the lower side.
- the shell 1 forms a sealed space inside, and includes a main shell 11, an upper shell 12 provided on the upper portion of the main shell 11, and a lower shell 13 provided on the lower portion of the main shell 11. ing.
- a suction pipe 14 for sucking a working fluid such as a refrigerant gas to be compressed is connected to the main shell 11.
- a discharge pipe 15 for discharging a working fluid such as a compressed refrigerant gas is connected to the upper shell 12.
- the inside of the main shell 11 is a low pressure chamber 11a, and the inside of the upper shell 12 is a high pressure chamber 12a.
- the main frame 2 is fixed to the upper side of the main shell 11, and the subframe 5 holding the main shaft portion 61 is fixed to the lower side.
- the lower shell 13 is an oil sump for storing lubricating oil.
- the fixed scroll 31 includes a first substrate 311 and a first spiral body 312 as a fixed-side spiral body that is a spiral projection provided on one surface of the first substrate 311.
- the first substrate 311 is fixed to the upper side of the main frame 2 with a bolt or the like, and a discharge hole 351 for discharging a working fluid such as a compressed refrigerant gas or the like is formed in the center of the first substrate 311. ing.
- a discharge valve 36 is provided on the discharge hole 351 to prevent the refrigerant from flowing backward from the high pressure chamber 12a to the discharge hole 351 side.
- the swing scroll 32 includes a second substrate 321 and a second spiral body 322 as a swing side spiral body which is a spiral projection provided on one surface of the second substrate 321.
- the second substrate 321 is swingably supported in the main frame 2. That is, the other surface of the orbiting scroll 32 acts as a sliding surface 3211 that is a thrust bearing surface that slides on the main frame 2 via the thrust plate 24, and a load generated during operation is transmitted via the sliding surface 3211.
- the second spiral body 322 has substantially the same shape as the first spiral body 312 and is combined with the first spiral body 312 to combine the second spiral body 322 and the first spiral body 312 with each other. It is housed in the main frame 2 in a state.
- the orbiting scroll 32 has a hollow cylindrical portion 323 at the center of the other surface (sliding surface 3211 side).
- An eccentric shaft portion 62 provided at the upper end of the main shaft portion 61 is inserted into the cylindrical portion 323.
- the orbiting scroll 32 performs an orbiting motion as a revolving motion with respect to the fixed scroll 31 when the main shaft portion 61 rotates.
- the winding directions of the first spiral body 312 and the second spiral body 322 are opposite to each other.
- a compression chamber 34 is formed between the second spiral body 322 and the first spiral body 312.
- the fixed scroll 31 and the orbiting scroll 32 have front end surfaces of the first spiral body 312 and the second spiral body 322 in order to reduce refrigerant leakage from the front end surfaces of the first spiral body 312 and the second spiral body 322.
- seals 316 and 325 are provided with seals 316 and 325, respectively.
- the main frame 2 houses the orbiting scroll 32 and the fixed scroll 31 and is fixed to the upper part of the shell 1.
- the main frame 2 is provided with a refrigerant suction port through which the refrigerant sucked from the suction pipe 14 flows.
- the main frame 2 has a main bearing portion 22 that rotatably supports the upper portion of the main shaft portion 61.
- the thrust plate 24 is provided between the main frame 2 and the sliding surface 3211 of the orbiting scroll 32.
- the thrust plate 24 is formed in an annular shape and has an opening at the center so that the cylindrical portion 323 is inserted. (See FIG. 2). This opening is connected to an oil sump space 25 formed below and inside the thrust plate 24.
- the thrust plate 24 improves the slidability of the sliding surface 3211 when the orbiting scroll 32 revolves around the main frame 2.
- the orbiting scroll 32 is attached to the main frame 2 via the thrust plate 24. It is in a state of being supported in the axial direction. That is, the thrust plate 24 supports the lower surface of the swing scroll so as to be swingable.
- the Oldham ring 33 is disposed between the orbiting scroll 32 and the main frame 2, and transmits the rotational force of the main shaft portion 61 to the orbiting scroll 32 while restricting the rotation of the orbiting scroll 32.
- the Oldham ring 33 includes a first key portion 332 as a pair of Oldham keys protruding toward the surface facing the main frame 2 and a second key as a pair of Oldham keys protruding toward the surface facing the orbiting scroll 32. Part 333. Then, the second key portion 333 is fitted on the rocking scroll 32 side, and the first key portion 332 is fitted on the main frame 2 side.
- the sliding surface 3211 of the orbiting scroll 32 is provided with a second Oldham key groove 324 (see FIG. 3) extending in the radial direction for inserting the second key portion 333.
- a pair of second Oldham key grooves 324 are provided in line symmetry with respect to a predetermined radius of the orbiting scroll 32.
- a first Oldham key groove 215 extending in the radial direction for inserting the first key portion 332 is formed on the main frame 2 side.
- the second Oldham key groove 324 and the first Oldham key groove 215 are formed to extend in the radial direction, for example, at positions shifted in phase by 90 °.
- the 2nd key part 333 and the 1st key part 332 are provided in the position where the phase shifted 90 degrees, for example.
- the second key portion 333 is fitted in the second Oldham key groove 324 so as to be movable in the radial direction
- the first key portion 332 is fitted in the first Oldham key groove 215 so as to be movable in the radial direction.
- the second key portion 333 and the first key portion 332 move forward and backward in the second Oldham key groove 324 and the first Oldham key groove 215, respectively, and the rotational force of the drive mechanism portion 4 is controlled while restricting the rotation motion of the orbiting scroll 32. Is transmitted to the orbiting scroll 32 that revolves.
- the crankshaft 6 has a main shaft portion 61 and an eccentric shaft portion 62.
- the main shaft portion 61 is rotatably supported by a main bearing portion 22 provided in the main frame 2, and a lower portion of the main shaft portion 61 is rotatably supported by a sub bearing portion 51.
- the sub-bearing portion 51 is press-fitted and fixed in a bearing housing portion formed at the center portion of the sub-frame 5 provided at the lower portion in the shell 1.
- An eccentric shaft portion 62 is attached to the upper end of the main shaft portion 61 in an eccentric state with respect to the main shaft portion 61, and the cylindrical portion 323 of the orbiting scroll 32 is provided on the eccentric shaft portion 62 so as to be capable of revolving. .
- the sub-frame 5 is provided with a positive displacement oil pump 52.
- the oil pump 52 sucks the lubricating oil stored in the lower shell 13 and sends it to each sliding portion via an oil passage 63 formed inside the main shaft portion 61.
- An oil sump space 25 that is a space communicating with the oil passage 63 is formed between the outer peripheral side of the cylindrical portion 323 of the swing scroll 32 and the main frame 2, and the oil sump space 25 passes through the oil sump space 25.
- Lubricating oil supplied from the oil passage 63 is supplied.
- the oil reservoir space 25 communicates with the second Oldham key groove 324 of the swing scroll 32, and the lubricating oil in the oil reservoir space 25 is supplied to the second Oldham key groove 324.
- the main shaft portion 61 is provided with a first balance weight 64 and a second balance weight 65 for canceling an imbalance caused by the swing scroll 32 swinging.
- the first balance weight 64 is fixed to the upper portion of the main shaft portion 61 by shrink fitting, and the second balance weight 65 is fixed to the lower portion of the main shaft portion 61 integrally with the stator 41.
- the drive mechanism unit 4 is made of, for example, a motor, and includes a stator 41 fixed to the shell 1 and a rotor 42 fixed to the main shaft unit 61.
- the stator 41 and the rotor 42 are disposed, for example, below the first balance weight 64.
- the stator 41 is formed by winding a coil, for example, and is fixed to the main shell 11 by shrink fitting. Electric power is supplied to the stator 41 via a power supply terminal 82 provided on the main shell 11.
- the rotor 42 has, for example, a permanent magnet and is shrink-fitted and fixed to the main shaft portion 61. Then, when energization of the stator 41 is started, the rotor 42 and the main shaft portion 61 are rotated.
- working fluid such as refrigerant gas flows into the shell 1 through the suction pipe 14.
- a part of the working fluid such as the refrigerant gas flows into the compression chamber 34 to start the compression process.
- the compression chamber 34 moves to the center of the orbiting scroll 32 by the revolving motion of the orbiting scroll 32 to reduce the volume, and the refrigerant gas sucked into the compression chamber 34 is compressed.
- the compressed refrigerant passes through the discharge hole 38 of the fixed scroll 31, pushes the discharge valve 36 open, and flows into the high pressure chamber 12a. Then, it is discharged from the shell 1 through the discharge pipe 15.
- the remaining part of the refrigerant gas cools the drive mechanism 4 and the lubricating oil through a notch (not shown) of the steel plate of the stator 41.
- the main frame 2 supporting the sliding surface 3211 receives a load on the sliding surface 3211 generated by the pressure of the refrigerant gas in the compression chamber 34. Further, the centrifugal force generated in the first balance weight 64 and the second balance weight 65 and the load from the working fluid are received by the main bearing portion 22 and the auxiliary bearing portion 51. Further, the low-pressure refrigerant gas in the low-pressure chamber 11a and the high-pressure working fluid in the high-pressure chamber 12a are partitioned by the fixed scroll 31 and the main frame 2, and airtightness is maintained.
- the lubricating oil is supplied to the sliding portion where the parts slide. Specifically, the lubricating oil stored in the lower shell 13 flows from the lower part of the main shaft part 61 to the upper side of the main shaft part 61 by the oil pump 52, and from the upper end of the main shaft part 61 to the cylinder of the main shaft part 61 and the orbiting scroll 32. Supplied between the shape portion 323. The lubricating oil flows into the oil sump space 25 in the space on the outer peripheral side of the cylindrical portion 323 while lubricating the sliding portion between the main shaft portion 61 and the cylindrical portion 323 of the orbiting scroll 32.
- a part of the lubricating oil in the oil reservoir space 25 is supplied to the second Oldham key groove 324.
- the remaining part of the lubricating oil passes through an oil drain hole (not shown), is discharged to the outside of the main frame 2, and returns to the lower shell 13.
- the lubricating oil that has flowed into the compression chamber 34 is mixed with the working fluid in the compression chamber 34.
- the lubricating oil mixed with the working fluid in the compression chamber 34 adheres to the sliding portions of the first spiral body 312 and the second spiral body 322, improves the airtightness of the compression chamber 34 and suppresses wear.
- the lubricating oil flows into the compression chamber 34 through the thrust plate 24 and the swing scroll 32 in order to lubricate the lubrication portion between the fixed scroll 31 and the swing scroll 32.
- the scroll compressor 100 has a structure for supplying an appropriate amount of lubricating oil to the compression chamber 34.
- FIG. 2 is a plan view showing an example of a thrust plate 24 in the scroll compressor of FIG.
- an oil supply hole 24 a is formed in the thrust plate 24 placed on the main frame 2, and the oil supply hole 24 a communicates with the compression chamber 34 (see FIG. 1).
- the oil supply hole 24 a is formed in the vicinity of the other side opposite to one of a pair of second Oldham key grooves 324 connected to an oil inflow portion 91 described later. Therefore, when the lubricating oil is supplied to the oil supply hole 24a, the lubricating oil is accumulated in the oil supply hole 24a, and thereafter, the lubricating oil is supplied from the oil supply hole 24a to the compression chamber 34.
- the oil supply hole 24a is provided on the outer peripheral side of the thrust plate 24, and is exposed from the orbiting scroll 32 during a predetermined rotation period when the orbiting scroll 32 revolves. Lubricating oil is supplied to the compression chamber 34 from the oil supply hole 24a during this exposure period.
- the formation position of the oil supply hole 24a can be appropriately set as necessary.
- FIG. 3 is a plan view showing an example of a sliding surface 3211 as a thrust bearing surface in the scroll compressor of FIG.
- an oil supply groove 90 is formed on the sliding surface 3211.
- the oil supply groove 90 includes an oil inflow portion 91, an oil circulation portion 92, and an oil outflow portion 93.
- the oil inflow portion 91 is a portion into which the lubricating oil flows, and is connected to, for example, the second Oldham key groove 324 on the swing scroll 32 side. Then, the lubricating oil filled in the second Oldham key groove 324 flows into the oil inflow portion 91.
- the 2nd Oldham keyway 324 the 2nd key part 333 reciprocates.
- the space of the second Oldham key groove 324 connected to the oil inflow portion 91 is expanded or narrowed by the reciprocating motion of the second key portion 333.
- the second key portion 333 exhibits a pump function of pumping the lubricating oil, and the oil inflow portion 91 is filled in the second Oldham key groove 324.
- the lubricating oil that has been inflowed.
- the oil circulation part 92 has one side communicating with the oil inflow part 91 and is formed so as to extend from the oil inflow part 91 toward the rotation direction of the rocking scroll 32 (arrow R direction).
- the oil circulation portion 92 is formed in, for example, an arc shape, and the arc shape has a shape along the rotation trajectory of the rocking scroll 32. That is, the oil circulation part 92 is formed in an obtuse arc shape along the circumferential direction between the outer periphery and the inner periphery of the orbiting scroll 32.
- the oil outflow portion 93 communicates with the other side of the oil circulation portion 92 and causes the lubricating oil that has passed through the oil circulation portion 92 to flow out into the oil supply hole 24a.
- the oil outflow part 93 is provided, for example, at the tip of the arc-shaped oil circulation part 92.
- the oil outflow portion 93 is provided on the rotational direction (arrow R direction) side of the oil inflow portion 91.
- the oil outflow portion 93 is positioned on the oil supply hole 24a formed in the vicinity of the other side opposite to one of the pair of second Oldham key grooves 324 connected to the oil inflow portion 91, the oil circulation portion Lubricating oil flowing through 92 is supplied to the oil supply hole 24a.
- the oil supply groove 90 is formed so that the oil outflow portion 93 is positioned on the oil supply hole 24a during the first rotation period while the swing scroll 32 performs the swing motion of one rotation. .
- FIG. 4 is a schematic diagram showing the positional relationship between the oil supply hole 24a and the oil supply groove 90 when the orbiting scroll 32 rotates in the scroll compressor 100 of FIG.
- a predetermined rotational position of the orbiting scroll 32 is represented by a rotation period ⁇ , and the orbiting scroll 32 during one rotation in which ⁇ is 0 ° to 365 ° is rotated by 45 °. ing.
- the oil outflow portion 93 of the oil supply groove 90 is located on the oil supply hole 24a.
- a part of the oil circulation part 92 swings to the center side and is connected to the oil sump space 25 inside the thrust plate 24, and the amount of lubricating oil supplied to the oil supply hole 24a via the oil circulation part 92 is reduced. Less.
- the lubricating oil is not supplied to the oil supply hole 24 a and the lubricating oil is not supplied to the compression chamber 34.
- the lubricating oil is returned to the oil sump space 25 during the second rotation period.
- the oil supply hole 24a is exposed from the outer periphery of the orbiting scroll, and the oil supply hole 24a is connected to the compression chamber 34. Therefore, when the oil supply hole 24a is filled with oil, the oil filled in the oil supply hole 24a is supplied to the compression chamber 34 as lubricating oil.
- the oil outflow portion 93 of the oil supply groove 90 is positioned again on the oil supply hole 24a, and the oil outflow portion 93 and the oil supply hole 24a are connected to each other through the oil circulation portion 92.
- the lubricating oil reaches the outflow portion 93, the lubricating oil is filled from the oil outflow portion 93 into the oil supply hole 24a.
- the oil circulation portion 92 is located on the oil reservoir space 25 inside the thrust plate 24, and the amount of lubricating oil supplied to the oil supply hole 24a via the oil circulation portion 92 is the first amount.
- a second rotation period that is less than the rotation period. Therefore, the lubricating oil is intermittently supplied to the oil supply hole 24a within one rotation. Further, in the first rotation period in which the lubricating oil is supplied from the oil supply groove 90 to the oil supply hole 24a, whether or not the lubricating oil flows to the oil outflow portion 93 side and is supplied to the oil supply hole 24a is determined by the orbiting scroll. Depends on the rotational speed of 32.
- the lubricating oil in the oil circulation part 92 does not allow sufficient time for the movement to reach the oil outflow part 93 with respect to the rocking scroll 32 during high-speed rotation, and the oil outflow part in the oil circulation part 92 The movement of the lubricating oil up to 93 is limited.
- the oil supply groove 90 is formed in the oil supply groove 90 so as to extend in the rotation direction of the orbiting scroll 32, so that the required amount of oil at the time of low speed rotation is secured and the amount of oil supply at the time of high speed rotation is increased. Since the amount of oil rising can be adjusted, the refrigerating capacity can be improved and the performance can be improved. That is, when the oil supply hole is provided in the sliding surface 3211 of the orbiting scroll 32 and the oil supply hole is provided in the thrust plate 24 as in the prior art, the slidability is improved when the scroll compressor rotates at a low speed. Refrigerant leakage loss due to improved sealing performance can be reduced.
- the oil supply hole 24a and the oil supply groove 90 are arranged so that their positions overlap in a predetermined rotation period of the rotation period in which the rocking scroll 32 rotates once. Even in the first rotation period in which the positions overlap, an effect is obtained in which the reaction force is weakened so that the rotation trajectory of the orbiting scroll 32 prevents the oil flow in the oil supply groove 90. Therefore, the amount of oil rising can be adjusted without excessively supplying lubricating oil to the compression mechanism unit 3 during high-speed rotation.
- the oil outflow portion 93 of the oil supply groove 90 is formed so as to be positioned on the oil supply hole 24a during the first rotation period when the swing scroll 32 swings, Since the lubricating oil can be supplied from the oil supply groove 90 to the oil supply hole 24a, it is possible to prevent the lubricating oil from being insufficient during low-speed rotation.
- FIG. 5 is a plan view showing an example of the thrust plate 24 in the scroll compressor 100 according to the first modification of the present invention
- FIG. 6 is a slide as a thrust bearing surface in the scroll compressor 100 according to the first modification of the present invention. It is a top view which shows an example of the moving surface 3211,
- the modification 1 of the scroll compressor 100 is demonstrated with reference to FIG.5 and FIG.6. 5 and FIG. 6, parts having the same configuration as in FIG. 2 and FIG.
- two oil supply holes 24a of the thrust plate 24 and two oil supply grooves 90 of the orbiting scroll 32 are provided.
- the two oil supply holes 24a and the oil supply groove 90 are formed at positions that are rotationally symmetrical, for example. That is, two oil supply holes 24 a of the thrust plate 24 and two oil supply grooves 90 of the orbiting scroll 32 are provided symmetrically with respect to a predetermined radius of the thrust plate 24 and the orbiting scroll 32.
- the oil supply groove 90 and the two oil supply holes 24a are provided, so that the required amount of oil during low-speed rotation is ensured. Even when it is not possible, the required amount of oil can be secured as required. Even in this case, since the second rotation period exists, as in the first embodiment, it is possible to suppress an increase in the amount of oil rising and a decrease in performance due to excessive supply of lubricating oil during high-speed rotation. it can.
- this invention is not limited to the said embodiment and modification.
- Embodiment 1 and Modification 1 described above the case where the oil supply groove 90 of the orbiting scroll 32 has an arc shape has been described.
- the present invention is not limited to this shape, and the rotation direction (arrow Any one extending in the R direction) may be used.
- the oil circulation portion 92 may be, for example, a linear shape or an oval shape as long as the flow of the lubricating oil from the oil inflow portion 91 to the oil outflow portion 93 in the oil supply groove 90 is obstructed by the rotation trajectory of the orbiting scroll 32. Any shape such as a shape or a polygonal shape may be used.
- the modification 1 although illustrated about the case where the two oil supply grooves 90 and the oil supply hole 24a are provided, you may provide 3 or more multiple.
- the oil supply groove 90 communicates with the second Oldham key groove 324, and the case where the lubricating oil is supplied to the oil supply groove 90 through the second Oldham key groove 324 is illustrated.
- the shape is not limited to this.
- FIG. 7 is a schematic vertical sectional view of scroll compressor 100 according to Embodiment 2 of the present invention.
- FIG. 8 is an exploded perspective view of the main frame 2, the orbiting scroll 32, and the like of the scroll compressor 100 according to Embodiment 2 of the present invention.
- FIG. 9 is an enlarged view of the region of the alternate long and short dash line in FIG.
- the scroll compressor 100 in FIG. 7 is a so-called vertical scroll compressor that is used in a state in which the central axis of the crankshaft 6 is substantially perpendicular to the ground.
- the scroll compressor 100 includes a shell 1, a main frame 2, a compression mechanism unit 3, a drive mechanism unit 4, a subframe 5, a crankshaft 6, a bush 7, and a power feeding unit 8. .
- the side (upper side) on which the compression mechanism unit 3 is provided is oriented to one end U and the side (lower side) on which the drive mechanism unit 4 is provided to the other end L. explain.
- the shell 1 is a cylindrical casing made of a conductive member such as metal and closed at both ends, and includes a main shell 11, an upper shell 12, and a lower shell 13.
- the main shell 11 has a cylindrical shape, and a suction pipe 14 is connected to the side wall thereof by welding or the like.
- the suction pipe 14 is a pipe for introducing a refrigerant into the shell 1 and communicates with the main shell 11.
- the upper shell 12 is a substantially hemispherical first shell, and a part of the side wall thereof is connected to the upper end portion of the main shell 11 by welding or the like, and covers the upper opening of the main shell 11.
- a discharge pipe 15 is connected to the upper part of the upper shell 12 by welding or the like.
- the discharge pipe 15 is a pipe for discharging the refrigerant to the outside of the shell 1 and communicates with the internal space of the main shell 11.
- the lower shell 13 is a second shell having a substantially hemispherical shape, and a part of the side wall thereof is connected to the lower end portion of the main shell 11 by welding or the like through the connection shell 16, and the lower opening of the main shell 11 is opened. Covering.
- the shell 1 is supported by a fixing base 17 having a plurality of screw holes. A plurality of screw holes are formed in the fixing base 17, and the scroll compressor can be fixed to other members such as a casing of the outdoor unit by screwing screws into these screw holes.
- the main frame 2 is a hollow metal frame in which a cavity is formed, and is provided inside the shell 1.
- the main frame 2 includes a main body portion 21, a main bearing portion 22, and an oil return pipe 23.
- the main body 21 is fixed to the inner wall surface of the one end U of the main shell 11, and an accommodation space 211 is formed at the center along the longitudinal direction of the shell 1.
- the accommodation space 211 has a stepped shape in which one end U is open and the space narrows toward the other end L.
- An annular flat surface 212 is formed on one end U of the main body 21 so as to surround the accommodation space 211.
- a ring-shaped thrust plate 24 made of a steel plate material such as valve steel is disposed on the flat surface 212.
- the thrust plate 24 functions as a thrust bearing.
- a suction port 213 is formed at a position that does not overlap the thrust plate 24 on the outer end side of the flat surface 212.
- the suction port 213 is a space penetrating in the vertical direction of the main body 21, that is, the upper shell 12 side and the lower shell 13 side.
- the number of suction ports 213 is not limited to one, and a plurality of suction ports may be formed.
- An Oldham accommodating portion 214 is formed in a step portion on the other end side L from the flat surface 212 of the main frame 2.
- a first Oldham key groove 215 is formed in the Oldham accommodating portion 214.
- the first Oldham key groove 215 is formed so that a part of the outer end side is shaved on the inner end side of the flat surface 212. Therefore, when the main frame 2 is viewed from the one end side U, a part of the first Oldham key groove 215 overlaps the thrust plate 24.
- the first Oldham keyway 215 is formed so that a pair faces each other.
- the main bearing portion 22 is continuously formed on the other end side L of the main body portion 21, and a shaft hole 221 is formed therein.
- the shaft hole 221 penetrates in the vertical direction of the main bearing portion 22, and its one end U communicates with the accommodation space 211.
- the oil return pipe 23 is a pipe for returning the lubricating oil accumulated in the accommodation space 211 to the oil sump inside the lower shell 13, and is inserted and fixed in an oil drain hole formed through the inside and outside of the main frame 2. .
- Lubricating oil is refrigeration oil containing ester synthetic oil, for example.
- the lubricating oil is stored in the lower part of the shell 1, that is, in the lower shell 13, sucked up by an oil pump 52 described later, passes through an oil passage 63 in the crankshaft 6, and mechanically contacts the compression mechanism unit 3 and the like. Reduces wear between parts to be used, adjusts the temperature of sliding parts, and improves sealing performance.
- As the lubricating oil an oil having an appropriate viscosity as well as excellent lubrication characteristics, electrical insulation, stability, refrigerant solubility, low-temperature fluidity and the like is suitable.
- the compression mechanism unit 3 is a compression mechanism that compresses the refrigerant.
- the compression mechanism unit 3 is a scroll compression mechanism that includes a fixed scroll 31 and a swing scroll 32.
- the fixed scroll 31 is made of a metal such as cast iron, and includes a first substrate 311 and a first spiral body 312.
- the first substrate 311 has a disk shape, and a discharge port 313 is formed through the center in the vertical direction.
- the first substrate 311 is fixed to the main shell 11.
- the first spiral body 312 protrudes from the surface on the other end side L of the first substrate 311 to form a spiral wall, and its tip protrudes to the other end side L.
- the orbiting scroll 32 is made of a metal such as aluminum, and includes a second substrate 321, a second spiral body 322, a cylindrical portion 323, and a second Oldham keyway 324.
- the second substrate 321 is located on the one surface on which the first spiral body 312 is formed, the other surface in which at least a part of the outer peripheral region becomes the sliding surface 3211, and the outermost surface in the radial direction. And a side surface 3212 connecting the other surface, and the sliding surface 3211 is supported (supported) on the main frame 2 so as to be slidable on the thrust plate 24.
- the second substrate 321 is disposed between the fixed scroll 31 and the main frame 2 and has a gap with respect to the inner peripheral surface of the main shell 11.
- the second spiral body 322 projects from one surface of the second substrate 321 to form a spiral wall, and its tip projects to one end U.
- a seal member for suppressing leakage of the refrigerant is provided at the distal end portion of the first spiral body 312 of the fixed scroll 31 and the second spiral body 322 of the swing scroll 32.
- the cylindrical portion 323 is a cylindrical boss formed to protrude from the approximate center of the other surface of the second substrate 321 to the other end L.
- a rocking bearing for rotatably supporting a slider 71 described later a so-called journal bearing is provided so that its central axis is parallel to the central axis of the crankshaft 6. .
- the second Oldham key groove 324 is a long round groove formed on the other surface of the second substrate 321.
- the second Oldham keyway 324 is provided so that a pair faces each other.
- a line connecting the pair of second Oldham key grooves 324 is provided to be orthogonal to a line connecting the pair of first Oldham key grooves 215.
- the Oldham ring 33 is provided in the Oldham accommodating portion 214 of the main frame 2.
- the Oldham ring 33 includes a ring portion 331, a first key portion 332, and a second key portion 333.
- the ring part 331 has a ring shape.
- the first key portion 332 is formed so as to be opposed to the surface on the other end side L of the ring portion 331, and is accommodated in the pair of first Oldham key grooves 215 of the main frame 2.
- the second key portion 333 is formed so that a pair thereof faces the surface on one end side U of the ring portion 331, and is accommodated in the pair of second Oldham key grooves 324 of the orbiting scroll 32.
- the compression chamber 34 is formed by meshing the first spiral body 312 of the fixed scroll 31 and the second spiral body 322 of the swing scroll 32 with each other. Since the volume of the compression chamber 34 decreases in the radial direction from the outside toward the inside, the compression chamber 34 is gradually compressed by taking the refrigerant from the outer end side of the spiral body and moving it to the center side.
- the compression chamber 34 communicates with the discharge port 313 at the center of the fixed scroll 31.
- a muffler 35 having a discharge hole 351 is provided on the surface of one end U of the fixed scroll 31, and a discharge valve 36 that opens and closes the discharge hole 351 to prevent the refrigerant from flowing backward is provided.
- the refrigerant is composed of, for example, a halogenated hydrocarbon having a carbon double bond, a halogenated hydrocarbon having no carbon double bond, a hydrocarbon, or a mixture containing them.
- Halogenated hydrocarbons having a carbon double bond are HFC refrigerants and chlorofluorocarbon low GWP refrigerants having an ozone layer depletion coefficient of zero.
- Examples of the low GWP refrigerant include HFO refrigerant, and examples thereof include tetrafluoropropene such as HFO1234yf, HFO1234ze, and HFO1243zf whose chemical formula is represented by C3H2F4.
- Examples of the halogenated hydrocarbon having no carbon double bond include a refrigerant in which R32 (difluoromethane), R41, and the like represented by CH2F2 are mixed.
- Examples of the hydrocarbon include natural refrigerants such as propane and propylene.
- Examples of the mixture include a mixed refrigerant obtained by mixing R32, R41, and the like with HFO1234yf, HFO1234ze, HFO1243zf, and the like.
- the drive mechanism 4 is provided on the other end L of the main frame 2 inside the shell 1.
- the drive mechanism unit 4 includes a stator 41 and a rotor 42.
- the stator 41 is a stator formed by winding a winding around an iron core formed by laminating a plurality of electromagnetic steel plates, for example, via an insulating layer, and is formed in a ring shape.
- the stator 41 is fixedly supported inside the main shell 11 by shrink fitting or the like.
- the rotor 42 is a cylindrical rotor having a built-in permanent magnet inside an iron core formed by laminating a plurality of electromagnetic steel plates and having a through-hole penetrating in the vertical direction in the center, and is disposed in the internal space of the stator 41. ing.
- the subframe 5 is a metal frame and is provided on the other end side L of the drive mechanism 4 inside the shell 1.
- the subframe 5 is fixedly supported on the inner peripheral surface of the other end L of the main shell 11 by shrink fitting or welding.
- the sub frame 5 includes a sub bearing portion 51 and an oil pump 52.
- the sub bearing portion 51 is a ball bearing provided on the upper side of the center portion of the sub frame 5 and has a hole penetrating in the vertical direction at the center.
- the oil pump 52 is provided below the central portion of the sub-frame 5 and is disposed so that at least a part of the oil pump 52 is immersed in the lubricating oil stored in the oil reservoir of the shell 1.
- the crankshaft 6 is a long metal rod-like member and is provided inside the shell 1.
- the crankshaft 6 includes a main shaft portion 61, an eccentric shaft portion 62, and an oil passage 63.
- the main shaft portion 61 is a shaft constituting a main portion of the crankshaft 6, and is arranged so that the central axis thereof coincides with the central axis of the main shell 11.
- the main shaft portion 61 has a rotor 42 in contact with the outer surface thereof.
- the eccentric shaft part 62 is provided on one end side U of the main shaft part 61 so that the central axis is eccentric with respect to the central axis of the main shaft part 61.
- the oil passage 63 is vertically provided through the main shaft portion 61 and the eccentric shaft portion 62.
- one end side U of the main shaft portion 61 is inserted into the main bearing portion 22 of the main frame 2, and the other end side L is inserted and fixed to the sub bearing portion 51 of the subframe 5.
- the eccentric shaft portion 62 is disposed in the cylinder of the cylindrical portion 323, and the rotor 42 is disposed such that the outer peripheral surface thereof maintains a predetermined gap from the inner peripheral surface of the stator 41.
- a first balance weight 64 is provided at one end U of the main shaft portion 61, and a second balance weight 65 is provided at the other end L to cancel the unbalance caused by the swinging of the swing scroll 32.
- the bush 7 is made of a metal such as iron and is a connecting member that connects the orbiting scroll 32 and the crankshaft 6.
- the bush 7 is composed of two parts in the present embodiment, and includes a slider 71 and a balancer 72.
- the slider 71 is a cylindrical member in which a flange is formed, and is fitted into each of the eccentric shaft portion 62 and the cylindrical portion 323.
- the balancer 72 is a donut-shaped member having a weight portion 721 whose shape viewed from one end U is substantially C-shaped, and is rotated to cancel the centrifugal force of the orbiting scroll 32. It is provided eccentric to the center.
- the balancer 72 is fitted to the flange of the slider 71 by a method such as shrink fitting.
- the power supply unit 8 is a power supply member that supplies power to the scroll compressor, and is formed on the outer peripheral surface of the main shell 11 of the shell 1.
- the power supply unit 8 includes a cover 81, a power supply terminal 82, and a wiring 83.
- the cover 81 is a cover member having a bottomed opening.
- the power supply terminal 82 is made of a metal member, and one is provided inside the cover 81 and the other is provided inside the shell 1.
- One of the wires 83 is connected to the power supply terminal 82 and the other is connected to the stator 41.
- FIG. 10 is an enlarged view of a region indicated by a two-dot chain line in FIG. 9.
- the shell 1 includes a first inner wall surface 111, a first projecting portion 112 that projects from the first inner wall surface 111 and positions the fixed scroll 31, and the first projecting portion 112 on the upper shell 12 side. And a first positioning surface 113 that faces the surface. That is, the main shell 11 includes a stepped portion whose inner diameter increases toward the other end side L.
- the fixed scroll 31 is fixed to the first inner wall surface 111 by shrink fitting or the like while being positioned on the first positioning surface 113. This structure eliminates the need for a wall for fixing the fixed scroll 31 to the main frame 2 as in the prior art.
- the wall of the main frame 2 is not interposed between the side surface 3212 of the second substrate 321 of the swing scroll 32 and the inner wall surface of the main shell 11, and the side surface 3212 of the second substrate 321 and the inner wall surface of the main shell 11 are Are arranged to face each other. Therefore, the refrigerant intake space 37 provided between the first substrate 311 of the fixed scroll 31 and the thrust bearing of the main frame 2 in the main shell 11 and in which the orbiting scroll 32 is disposed can be expanded as compared with the conventional case. . Further, since the structure of the main frame 2 is simplified, the workability is improved and the weight can be reduced.
- it is a refrigeration cycle apparatus that includes the scroll compressor, the condenser, the expansion valve, and the evaporator according to the present embodiment and circulates the refrigerant, and includes a high-pressure refrigerant that increases the burden on the thrust bearing because it includes R32. Even when used, the reliability can be improved.
- the fixed scroll 31 is moved between the upper shell 12 and the first positioning surface 113 of the first projecting portion 112. It is comprised so that it may pinch
- the main frame 2 is also fixed to the second inner wall surface 114 by shrinkage fitting or the like in a state where the main frame 2 is positioned by the second positioning surface 116 of the second projecting portion 115 projecting from the second inner wall surface 114 of the shell 1. .
- FIG. 11 is a view of the main frame 2 as viewed from above.
- a ring-shaped protruding wall 216 that protrudes toward the upper shell 12 is formed at the outer end of the flat surface 212 of the main frame 2.
- the thrust plate 24 is arranged on the flat surface 212 inside the protruding wall 216 so as to cover a part of the first Oldham key groove 215.
- the height h of the protruding wall 216 from the flat surface 212 is set to be smaller than the thickness d of the thrust plate 24, so that the orbiting scroll 32 can slide with the thrust plate 24. .
- the thickness d of the thrust plate 24 is usually about 0.5 mm, but if a thickness d of about 0.6 mm is used, the spiral tip gap can be reduced, and the coolant can flow between the spiral tip and the substrate. Leakage into the adjacent compression space through the gap can be suppressed.
- convex portions or concave portions are formed on the thrust plate 24 and the projecting wall 216, and the convex portions and the concave portions are engaged so that rotation of the thrust plate 24 can be suppressed.
- the flat surface 212 and the thrust plate 24 of the main frame 2 are both ring-shaped, and the thrust plate 24 may rotate with respect to the flat surface 212 as the swing scroll 32 swings. The rotation is suppressed by engaging the convex portion with the concave portion.
- the convex portion includes a pair of protrusions 217 formed to protrude from the protrusion wall 216 in the direction of the thrust plate 24, and the concave portion includes a notch 241 formed on the outer peripheral portion of the thrust plate 24.
- the pair of protrusions 217 are provided so as to be engaged with opposite sides of the notch 241.
- a suction port 213 is disposed in a portion located between the pair of protrusions 217 of the main frame 2. That is, since the suction port 213 is arranged in the notch 241 portion, the refrigerant can be taken into the refrigerant take-in space 37 without being blocked by the thrust plate 24.
- the refrigerant sucked into the shell 1 from the suction pipe 14 reaches the refrigerant intake space 37 through the suction port 213 of the main frame 2 and swings with the fixed scroll 31. It is taken into a compression chamber 34 formed by the moving scroll 32. Then, the refrigerant is compressed by reducing the volume while moving from the outer peripheral portion toward the center along with the eccentric revolving motion of the orbiting scroll 32.
- the orbiting scroll 32 moves in the radial direction together with the bush 7 by its centrifugal force, and the side walls of the second spiral body 322 and the first spiral body 312 are in close contact with each other.
- the compressed refrigerant reaches the discharge hole 351 of the fixed scroll 31 from the discharge port 313 of the fixed scroll 31, and is discharged outside the shell 1 against the discharge valve 36.
- the main frame 2 supporting the sliding surface 3211 receives a load on the sliding surface 3211 generated by the pressure of the refrigerant in the compression chamber 34. Further, the centrifugal force generated in the first balance weight 64 and the second balance weight 65 and the load from the working fluid are received by the main bearing portion 22 and the auxiliary bearing portion 51. Further, the low-pressure refrigerant gas in the low-pressure chamber 11a and the high-pressure refrigerant in the high-pressure chamber 12a are partitioned by the fixed scroll 31 and the main frame 2, and airtightness is maintained.
- the lubricating oil is supplied to the sliding portion where the parts slide. Specifically, the lubricating oil stored in the lower shell 13 flows from the lower part of the main shaft part 61 to the upper side of the main shaft part 61 by the oil pump 52, and from the upper end of the main shaft part 61 to the cylinder of the main shaft part 61 and the orbiting scroll 32. Supplied between the shape portion 323. The lubricating oil flows into the oil sump space 25 in the space on the outer peripheral side of the cylindrical portion 323 while lubricating the sliding portion between the main shaft portion 61 and the cylindrical portion 323 of the orbiting scroll 32.
- a part of the lubricating oil in the oil reservoir space 25 is supplied to the second Oldham key groove 324.
- the remaining part of the lubricating oil passes through an oil drain hole (not shown), is discharged to the outside of the main frame 2, and returns to the lower shell 13.
- the lubricating oil flowing into the compression chamber 34 is mixed with the refrigerant in the compression chamber 34.
- the lubricating oil mixed with the refrigerant in the compression chamber 34 adheres to the sliding portions of the first spiral body 312 and the second spiral body 322 to improve the airtightness of the compression chamber 34 and suppress wear.
- the lubricating oil flows into the compression chamber 34 through the thrust plate 24 and the swing scroll 32 in order to lubricate the lubrication portion between the fixed scroll 31 and the swing scroll 32.
- the scroll compressor 100 has a structure for supplying an appropriate amount of lubricating oil to the compression chamber 34.
- an oil supply hole 24a is formed in the thrust plate 24 placed on the main frame 2, and the oil supply hole 24a communicates with the compression chamber 34 (see FIG. 7).
- the oil supply hole 24 a is formed in the vicinity of the other side opposite to one of a pair of second Oldham key grooves 324 connected to an oil inflow portion 91 described later. Therefore, when the lubricating oil is supplied to the oil supply hole 24a, the lubricating oil is accumulated in the oil supply hole 24a, and thereafter, the lubricating oil is supplied from the oil supply hole 24a to the compression chamber 34.
- the oil supply hole 24a is provided between the inner periphery and the outer periphery of the thrust plate 24, and is exposed from the orbiting scroll 32 during a predetermined rotation period when the orbiting scroll 32 revolves. Lubricating oil is supplied to the compression chamber 34 from the oil supply hole 24a during this exposure period.
- the formation position of the oil supply hole 24a can be appropriately set as necessary.
- an oil supply groove 90 is formed on the sliding surface 3211.
- the oil supply groove 90 includes an oil inflow portion 91, an oil circulation portion 92, and an oil outflow portion 93.
- the oil inflow portion 91 is a portion into which the lubricating oil flows, and is connected to, for example, the second Oldham key groove 324 on the swing scroll 32 side. Then, the lubricating oil filled in the second Oldham key groove 324 flows into the oil inflow portion 91.
- the 2nd Oldham keyway 324 the 2nd key part 333 reciprocates.
- the space of the second Oldham key groove 324 connected to the oil inflow portion 91 is expanded or narrowed by the reciprocating motion of the second key portion 333.
- the second key portion 333 exhibits a pump function of pumping the lubricating oil, and the oil inflow portion 91 is filled in the second Oldham key groove 324.
- the lubricating oil that has been inflowed.
- the oil circulation part 92 has one side communicating with the oil inflow part 91 and is formed so as to extend from the oil inflow part 91 toward the rotation direction of the rocking scroll 32 (arrow R direction).
- the oil circulation portion 92 is formed in, for example, an arc shape, and the arc shape has a shape along the rotation trajectory of the rocking scroll 32. That is, the oil circulation part 92 is formed in an obtuse arc shape along the circumferential direction between the outer periphery and the inner periphery of the orbiting scroll 32.
- the oil outflow portion 93 communicates with the other side of the oil circulation portion 92 and causes the lubricating oil that has passed through the oil circulation portion 92 to flow out into the oil supply hole 24a.
- the oil outflow part 93 is provided, for example, at the tip of the arc-shaped oil circulation part 92.
- the oil outflow portion 93 is provided on the rotational direction (arrow R direction) side of the oil inflow portion 91.
- the oil outflow portion 93 is positioned on the oil supply hole 24a formed in the vicinity of the other side opposite to one of the pair of second Oldham key grooves 324 connected to the oil inflow portion 91, the oil circulation portion Lubricating oil flowing through 92 is supplied to the oil supply hole 24a.
- the oil supply groove 90 is formed so that the oil outflow portion 93 is positioned on the oil supply hole 24a during the first rotation period while the swing scroll 32 performs the swing motion of one rotation.
- FIG. 12 is a schematic diagram showing the positional relationship between the oil supply hole 24a and the oil supply groove 90 when the orbiting scroll 32 rotates in the scroll compressor 100 of FIG.
- the predetermined rotation position of the orbiting scroll 32 is represented by a rotation period ⁇
- the orbiting scroll 32 during one rotation in which ⁇ is 0 ° to 365 ° is rotated by 45 °. ing.
- the oil outflow portion 93 of the oil supply groove 90 is located on the oil supply hole 24a.
- a part of the oil circulation part 92 swings to the center side and is connected to the oil sump space 25 inside the thrust plate 24, and the amount of lubricating oil supplied to the oil supply hole 24a via the oil circulation part 92 is reduced. Less.
- the lubricating oil is not supplied to the oil supply hole 24 a and the lubricating oil is not supplied to the compression chamber 34.
- the lubricating oil is returned to the oil sump space 25 during the second rotation period.
- the oil supply hole 24a is exposed from the outer periphery of the orbiting scroll, and the oil supply hole 24a is connected to the compression chamber 34. Therefore, when the oil supply hole 24a is filled with oil, the oil filled in the oil supply hole 24a is supplied to the compression chamber 34 as lubricating oil.
- the oil outflow portion 93 of the oil supply groove 90 is positioned again on the oil supply hole 24a, and the oil outflow portion 93 and the oil supply hole 24a are connected to each other through the oil circulation portion 92.
- the lubricating oil reaches the outflow portion 93, the lubricating oil is filled from the oil outflow portion 93 into the oil supply hole 24a.
- the lubricating oil in the oil circulation part 92 does not allow sufficient time for the movement to reach the oil outflow part 93 with respect to the rocking scroll 32 during high-speed rotation, and the oil outflow part in the oil circulation part 92 The movement of the lubricating oil up to 93 is limited.
- the oil supply groove 90 is formed in the oil supply groove 90 so as to extend in the rotation direction of the orbiting scroll 32, so that the required amount of oil at the time of low speed rotation is secured and the amount of oil supply at the time of high speed rotation is increased. Since the amount of oil rising can be adjusted, the refrigerating capacity can be improved and the performance can be improved.
- the fixed scroll 31 is fixed to the shell 1. Thereby, the rocking scroll 32 can be enlarged.
- the swinging scroll 32 that has been increased in size has a problem of the stability of the swinging operation.
- the swinging operation of the swing scroll 32 is related to the amount of lubricating oil supplied to the swing of the swing scroll 32.
- the amount of oil rising can be optimized, and the swing operation of the swing scroll 32 can be stabilized. That is, when the oil supply hole is provided in the sliding surface 3211 of the orbiting scroll 32 and the oil supply hole is provided in the thrust plate 24 as in the prior art, the slidability is improved when the scroll compressor rotates at a low speed. Refrigerant leakage loss due to improved sealing performance can be reduced.
- the amount of oil supply increases, so the amount of oil supply becomes excessive during high-speed rotation. As a result, the amount of oil rising during high-speed rotation increases, leading to a reduction in refrigeration capacity and performance.
- the oil supply hole 24a and the oil supply groove 90 are arranged so that their positions overlap in a predetermined rotation period of the rotation period in which the orbiting scroll 32 rotates once. Even during the first rotation period, the effect of weakening the reaction force is exhibited so that the rotation trajectory of the orbiting scroll 32 prevents the flow of oil in the oil supply groove 90. Therefore, the lubricating oil is not excessively supplied to the compression mechanism unit 3 at the time of high speed rotation, and the amount of oil rising can be appropriately adjusted even if the swing scroll 32 is enlarged.
- the oil outflow portion 93 of the oil supply groove 90 is formed so as to be positioned on the oil supply hole 24a during the first rotation period when the swing scroll 32 swings, Since the lubricating oil can be supplied from the oil supply groove 90 to the oil supply hole 24a, it is possible to prevent the lubricating oil from being insufficient during the low-speed rotation even if the swing scroll 32 is enlarged.
- the reaction force is weakened by the lubricating oil.
- the effect works, and the movement of the lubricating oil in the oil circulation part 92 can be more efficiently regulated.
- FIG. 13 is a diagram for explaining a method of manufacturing the main shell. Note that FIG. 13 illustrates a cross section of one wall of the main shell 11 in an easy-to-understand manner, and is different from actual dimensions and thicknesses.
- a cutting brush or the like is inserted from one end U of the main shell 11 as shown in (a), the inner wall surface is cut by a predetermined depth in the thickness direction, and the second as shown in (b).
- a step is formed by the inner wall surface 114 and the second protrusion 115.
- the thickness of the main shell 11 is, for example, 4 to 6 mm, and the height of the protrusion, that is, the depth of cutting by cutting, is, for example, about 0.3 mm.
- the inner wall surface 111 is formed by cutting the inner wall surface by a predetermined depth in the thickness direction with a cutting brush or the like on the second inner wall surface 114 that is a predetermined distance away from the second protrusion 115 in the direction of the upper shell 12 ( As shown in c), a step is formed by the first inner wall surface 111 and the first protrusion 112. For this reason, the inner diameter r1 of the first inner wall surface 111 is larger than the inner diameter r2 of the second inner wall surface 114.
- the first protrusion 112 is formed in the direction of the upper shell 12 relative to the second protrusion 115, and the inner wall surface of the first protrusion 112 also serves as the second inner wall surface 114. Note that the second protrusion 115 may be formed after the first protrusion 112 is formed.
- connection portion (the first inner wall surface 111 side of the first positioning surface 113) of the first protrusion 112 with the first inner wall surface 111, and the second protrusion 115.
- Dent 1131 having a shape recessed in the direction of the lower shell 13 by processing the outer diameter with a rhombus insert or the like on the connecting portion with the second inner wall surface 114 (on the second inner wall surface 114 side of the second positioning surface 116), 1161 are formed.
- the dents 1131 and 1161 are so-called pussies that remove a curved surface that is likely to be generated in the connecting portion by cutting.
- connection portion between the first inner wall surface 111 and the first positioning surface 113 is not a right angle, and a radius is likely to be formed. If a rounded portion is formed in the portion, even if the fixed scroll 31 is disposed on the first projecting portion 112, it floats without contacting the first positioning surface 113, and the positioning accuracy is lowered. On the other hand, by forming the recess 1131, the fixed scroll 31 reliably contacts the first positioning surface 113, so that the positioning accuracy can be increased. The same applies to the recess 1161, and the positioning accuracy of the main frame 2 can be increased.
- the recesses 1131 and 1161 are recessed in the direction of the lower shell 13, compared with the case where the recesses are formed in the radial direction of the main shell, it is possible to suppress a decrease in the thickness of the main shell 11. Can be suppressed.
- the main frame 2 is inserted from one end side U of the main shell 11 formed as described above.
- the main frame 2 is in surface contact with the second positioning surface 116 of the second protrusion 115 and is positioned in the height direction.
- the main frame 2 is fixed to the second inner wall surface 114 by shrink fitting, arc spot welding, or the like.
- the bush 7 is attached to the eccentric shaft portion 62, and the Oldham ring 33, the swing scroll 32, and the like are disposed.
- the fixed scroll 31 is inserted from one end U of the main shell 11.
- the fixed scroll 31 is in surface contact with the first positioning surface 113 of the first protrusion 112 and is positioned in the height direction.
- the fixed scroll 31 is fixed with respect to the orbiting scroll 32 until the fixed scroll 31 is fixed to the first inner wall surface 111.
- the fixed scroll 31 is rotatable, and the positional relationship between the first spiral body 312 and the second spiral body 322 is shifted, and there is a possibility that a variation in compression or a defective compression occurs in each scroll compressor product.
- the fixed scroll 31 is rotated to adjust the phase so that the positional relationship of the first spiral body 312 with respect to the second spiral body 322 of the orbiting scroll 32 is predetermined, and then the fixed scroll 31 is moved to the first inner wall surface 111. Fix by shrink fitting or arc spot welding.
- the main shell 11 and the upper shell 12 are fixed by welding, arc spot welding, or the like.
- the fixed scroll 31 is inserted into the upper shell 12 so as to be pressed against the first positioning surface 113, and the fixed scroll 31 is fixed to the main shell 11 while maintaining the state.
- the variation in the height of the intake space 37 is suppressed, the positional accuracy is increased, and the fixed scroll 31 is prevented from shifting in the vertical direction when the scroll compressor is driven.
- the first protrusion 112 only needs to be positioned at least for manufacturing the fixed scroll 31, the fixed scroll 31 comes into contact with the first positioning surface 113 after the fixed scroll 31 is fixed to the first inner wall surface 111. It is not essential to be. The same applies to the relationship between the main frame 2 and the second protrusion 115.
- the main frame 2 that slidably holds the orbiting scroll 32, the fixed scroll 31 that forms the compression chamber 34 together with the orbiting scroll 32, and the shell 1 that houses the fixed scroll 31 are provided.
- the shell 1 has a first inner wall surface 111 and a first protrusion 112 that protrudes from the first inner wall surface 111 and on which the fixed scroll 31 is positioned.
- the fixed scroll 31 is fixed to the first inner wall surface 111. Therefore, the side surface 3212 located on the outermost side in the radial direction of the orbiting scroll 32 and the inner wall surface of the shell 1 face each other, and the main frame 2 is connected to the side surface 3212 of the second substrate 321 and the inner wall surface of the main shell 11. It becomes a structure which does not interpose between.
- the fixed scroll 31 can be disposed in the shell 1 without forming a peripheral wall for fixing the fixed scroll 31 in the main frame 2, and the refrigerant intake space 37 in which the swing scroll 32 is disposed is enlarged. be able to.
- the sliding area can be increased and the surface pressure due to the thrust load can be reduced.
- the wall for fixing the fixed scroll 31 to the main frame 2 becomes unnecessary, the processing time of the main frame 2 can be shortened and weight reduction can also be achieved.
- the shell 1 further includes a second inner wall surface 114 and a second projecting portion 115 that protrudes from the second inner wall surface 114 and is positioned on the main frame 2.
- the main frame 2 is fixed to the second inner wall surface 114. Has been. Therefore, both the fixed scroll 31 and the main frame 2 can be fixed to the shell 1 by a similar method in a series of manufacturing steps, and manufacturing can be facilitated.
- the second inner wall surface 114 is formed on the inner wall surface of the first protrusion 112. That is, the inner wall surface of the first protrusion 112 also serves as the second inner wall surface 114. Therefore, the 1st protrusion part 112 and the 2nd protrusion part 115 can be formed with few processes. Also, the inner diameter r1 of the first inner wall surface 111 is formed larger than the inner diameter r2 of the second inner wall surface 114, and the shell 1 is an upper covering the main shell 11 having both ends opened and the opening on one end side of the main shell 11.
- the first positioning surface 113 is formed in the direction of the upper shell 12 relative to the sliding surface 3211 of the swing scroll 32 that slides on the main frame 2, and the second positioning surface 116 is lower than the sliding surface 3211. It is formed in 13 directions. Therefore, after the main frame 2 is inserted and fixed to the main shell 11 from the one end side U, the main shell 11 can be sequentially inserted and fixed in the same posture, so that the assembly is facilitated. be able to.
- Depressions 1131 and 1161 are formed in the direction of the lower shell at the connection portion of the first protrusion 112 with the first inner wall surface 111 and the connection portion of the second protrusion 115 with the second inner wall surface 114. Therefore, the contact between the first positioning surface 113 and the fixed scroll 31 and the contact between the second positioning surface 116 and the main frame 2 can be kept good, and the positioning accuracy can be increased.
- the outer diameter of the upper shell 12 is smaller than the inner diameter on one end side of the main shell 11, and the upper shell 12 sandwiches the fixed scroll 31 between the first protrusions 112. Therefore, the fixed scroll 31 can be pressed so as to be surely brought into contact with the first positioning surface 113. Further, the vertical movement of the fixed scroll 31 with respect to the main shell 11 can be suppressed.
- the main frame 2 has a thrust plate 24 that slides with a sliding surface 3211 on a flat surface 212 that faces the orbiting scroll 32, and an outer end of the flat surface 212 of the main frame 2 has an upper shell 12.
- a protruding wall 216 protruding in the direction is formed, and the height h of the protruding wall 216 from the flat surface 212 is smaller than the thickness d of the thrust plate 24. Therefore, the orbiting scroll 32 can be slid on the thrust plate 24 without interfering with the main frame 2.
- the thrust plate 24 and the protruding wall 216 are formed with a convex portion or a concave portion, and the convex portion and the concave portion are engaged so that rotation of the thrust plate can be suppressed.
- the protrusions are a pair of protrusions 217 formed protruding from the protrusion wall 216 in the direction of the thrust plate 24, the recesses are notches 241 formed in the outer peripheral portion of the thrust plate, and the pair of protrusions 217 are It is provided in the notch 241. Therefore, the thrust plate 24 can be prevented from rotating with respect to the flat surface 212 of the main frame 2.
- a suction port 213 is formed between the pair of protrusions 217 of the frame so as to penetrate in the direction of the upper shell 12 and the direction of the lower shell 13. Therefore, the suction port 213 can be prevented from being blocked by the thrust plate 24, and the refrigerant can be stably supplied to the refrigerant intake space 37.
- a refrigeration cycle apparatus that includes a scroll compressor, a condenser, an expansion valve, and an evaporator, and circulates a refrigerant.
- a high-pressure refrigerant containing, for example, R32 may be used as the refrigerant.
- R32 the burden on the thrust bearing increases, but in the present embodiment, the diameter of the second substrate 321 and the thrust plate 24 of the orbiting scroll 32 is increased to increase the sliding area. Since it can be increased, the burden on the thrust bearing can be reduced and the reliability can be improved.
- FIG. 14 is a cross-sectional view of the scroll compressor 100 according to Modification 2 of the present invention, and FIG.
- portions having the same configuration as that of the scroll compressor 100 of FIGS. 7 to 13 are denoted by the same reference numerals and description thereof is omitted.
- the main shell 11A has a stepped shape including a first straight pipe portion 117A, a second straight pipe portion 118A, and a connecting portion 119A.
- the first straight pipe portion 117A is provided on one end side U of the main shell 11A.
- the second straight pipe portion 118A has an outer diameter R2 that is smaller than the outer diameter R1 of the first straight pipe portion 117A, and is provided on the other end side L of the first straight pipe portion 117A.
- the connecting portion 119A changes such that the outer wall surface diameter increases from the second straight pipe portion 118A toward the first straight pipe portion 117A, and connects the first straight pipe portion 117A and the second straight pipe portion 118A. It is out.
- the second inner wall surface 114A is formed on the inner wall surface of the connecting portion 119A. That is, the outer wall surface of the connecting portion 119 ⁇ / b> A has a shape whose outer diameter changes, but the inner wall has a flat surface along the central axis of the crankshaft 6.
- the second inner wall surface 114A is formed to be flush with the inner walls of the first straight pipe portion 117A, the second straight pipe portion 118A, and the connecting portion 119A.
- a second projecting portion 115A projects from the second inner wall surface 114A on the other end side L of the connecting portion 19, and a second positioning surface 116A is formed on one end side U of the second projecting portion 115A.
- 11A is fixed to the second inner wall surface 114A while being positioned by the second protrusion 115A.
- the first inner wall surface 111A is formed on the inner wall surface of the first straight pipe portion 117A.
- FIG. 16 is a view for explaining a method of manufacturing the main shell according to the second modification of the present invention.
- FIG. 16 shows a cross section of one wall of the main shell 11A in an easy-to-understand manner, and is different from actual dimensions and thicknesses.
- a press machine is inserted from one end side U of the main shell 11A formed in a cylindrical shape as shown in (a), and press processing or the like is performed on the main shell 11A, whereby the first straight pipe as shown in (b).
- a stepped shape including a portion 117A, a second straight pipe portion 118A, and a connecting portion 119A is formed.
- a cutting brush or the like is inserted from one end U of the main shell 11A, and a part of the inner wall surfaces of the connecting portion 119A and the second straight pipe portion 118A are cut in the thickness direction, whereby the second inner wall surface 114A. And the level
- the inner diameter r3 of the connecting portion 119A and the second straight pipe portion 118A after cutting is made smaller than the inner diameter r4 of the first straight pipe portion 117A.
- the inner wall surface of the first straight pipe portion 117A by a predetermined depth in the thickness direction from one end side U of the main shell 11A with a cutting brush or the like, the first inner wall surface 111A and the first projecting portion A step due to 112A is formed.
- the main frame 2, the fixed scroll 31 and the like are sequentially arranged.
- the cutting for forming two steps on the inner wall surface can be performed independently by the first straight pipe portion 117A, the second straight pipe portion 118A, and the connecting portion 119A.
- the cutting amount of 11A is only in the range indicated by the dotted line in FIG. 16C, and the time for cutting can be shortened.
- the thickness of the first straight pipe portion 117A portion of the first inner wall surface 111A and the thickness of the second straight pipe portion 118A portion of the second inner wall surface 114A can be made comparable, and the main shell is obtained by cutting. It can suppress that thickness of 11A becomes thin locally.
- the inner wall surface r3 of the cutting portion may be cut so as to be substantially the same as the inner wall surface r4 of the inner wall surface of the first straight pipe portion 117A. That is, the second inner wall surface 114A may be formed by making the inner wall surfaces of the first straight pipe portion 117A, the second straight pipe portion 118A, and the connecting portion 119A flush with each other. Since these steps are flush with each other, there is no level difference, so that the main frame 2 can be smoothly inserted from the one end U of the main shell 11A.
- the connecting part 119A and the second straight pipe part 118A may be slightly cut to be flush with each other.
- the main shell 11A includes a first straight pipe portion 117A, a second straight pipe portion 118A having an outer diameter R2 smaller than the outer diameter R1 of the first straight pipe portion 117A, and a first straight pipe portion 117A.
- a connecting portion 119A for connecting the second straight pipe portion 118A, and at least a part of the second inner wall surface 114A is formed on the inner wall of the connecting portion 119A. Therefore, by cutting the inner wall surface of the connecting portion 119A, the entire second protruding portion 115A or a part thereof can be formed, and the amount to be cut is reduced compared to the case of the normal cylindrical main shell 11A. Can be facilitated.
- first inner wall surface 111A is formed on the inner wall of the first straight pipe portion 117A
- second inner wall surface 114A is formed on the inner walls of the second straight pipe portion 118A and the connecting portion 119A. Therefore, the first protruding portion 112A is cut by cutting a part of the inner wall surface of the first straight pipe portion 117A, and the second protruding portion 115A is cut by cutting the inner wall surfaces of the connecting portion 119A and the second straight pipe portion 118A. Can be formed. Therefore, the depth of cutting to form the first protruding portion 112A and the second protruding portion 115A can be made substantially the same, and the thickness of the cut first straight pipe portion 117A can be suppressed from becoming too thin.
- the second inner wall surface 114A has a sufficient length, and the fixing strength with the main frame 2 can be increased.
- the inner diameter r3 of the second inner wall surface 114A is smaller than the inner diameter r4 of the first straight pipe portion 117A, and thus has a step shape.
- the step is slight and the shape of the inner wall surface of the connecting portion 119A is tapered. Therefore, when the main frame 2 is inserted from the one end side U of the main shell 11A, the smooth insertion does not suppress the smooth insertion. Therefore, it is possible to easily perform the manufacturing while reducing the amount of shaving to form the second inner wall surface 114A.
- ⁇ Modification 3> 17 is a cross-sectional view of the scroll compressor 100 according to the third modification of the present invention.
- the inner diameter of the upper shell 12B is set larger than the outer diameter on one end side of the main shell 11B, and the fixed scroll 31B is positioned on the one end side U of the main shell 11B, and the upper shell 12B It is fixed to the inner wall surface. That is, a step is formed by the main shell 11B and the upper shell 12B, the inner wall surface of the upper shell 12B is the first inner wall surface 111B, the one end U of the main shell 11B is the first protrusion 112B, and the one end of the main shell 11B.
- the end surface on the side U also serves as the first positioning surface 113B.
- the fixed scroll 31B can be fixed by screwing to the upper shell 12B, spot welding with the upper shell 12B with a laser or the like, or screwing to the end surface of one end U of the main shell 11B.
- the upper shell 12B is provided so as to be at least partially inscribed in the main shell 11B.
- a protruding wall 314B protruding to the other end L is formed on the outer end portion of the first substrate 311B of the fixed scroll 31B.
- the projecting wall 314B is a projecting piece for positioning the fixed scroll 31B in the radial direction with respect to the main shell 11B.
- the projecting wall 314B is disposed so that the outer wall surface is in contact with the inner wall surface of the main shell 11B and is fixed by shrink fitting. ing.
- the inner diameter of the upper shell 12B is larger than the outer diameter on one end side of the main shell 11B, and the first positioning surface 113B is formed at the end of the main shell 11B on the upper shell 12B side.
- FIG. 19 is a cross-sectional view of a scroll compressor 100 according to Modification 4 of the present invention.
- the first projecting portion 112C is formed in a projecting shape projecting from the first inner wall surface 111C, and the fixed scroll 31C is positioned on the first projecting portion 112C. Therefore, the first protrusion 112C can be easily formed.
- the first projecting portion 112C can be formed by cutting the first inner wall surface 111C by bonding, or can be formed by adhering a previously formed protruding member to the inner wall surface.
- the first positioning surface 113C is tapered on the first protrusion 112C, and the inclined surface 315C is also formed on the first substrate 311C of the fixed scroll 31C so that the inclined surfaces are in contact with each other. Therefore, the positioning accuracy of the fixed scroll 31C with respect to the main shell 11C can be increased.
- the vertical scroll compressor has been described in the above embodiment, it can also be applied to a horizontal scroll compressor.
- the side on which the compression mechanism portion is provided can be viewed as one end side and the side on which the drive mechanism portion is provided as the other end side with reference to the main frame.
- the present invention is not limited to the low-pressure shell type scroll compressor, and can be applied to a high-pressure shell type scroll compressor in which the pressure in the space in the main shell in which the drive mechanism unit is disposed is higher than the pressure in the refrigerant intake space.
- the load on the thrust bearing since the load on the thrust bearing is small, it is desirable to adopt a structure in which the displacement amount is increased as shown in FIG. 13 described later or a structure in which the compressor is reduced in size as shown in FIG.
- the main shell 11 is not limited to a cylindrical shape, and may be a polygonal cylinder or the like. Further, in the above-described embodiment, the spiral body has an effect that the refrigerant intake space 37 between the first substrate 311 of the fixed scroll 31 and the thrust bearing of the main frame 2 in the main shell 11 can be expanded as compared with the related art. Although the conventional design is the same, the sliding substrate is increased in diameter by increasing the diameters of the second substrate 321 and the thrust plate 24 of the orbiting scroll 32, and the thrust load is reduced. Absent.
- FIG. 20 is a cross-sectional view of a scroll compressor 100 according to Modification 5 of the present invention.
- the diameter of the second substrate 321D of the orbiting scroll 32D is the same as the present embodiment, but the first spiral body 312D of the fixed scroll 31D is further connected to the end of the first substrate 311D.
- the centrifugal force due to the orbiting motion of the orbiting scroll 32D increases due to the weight increase or the like. Therefore, it is necessary to offset the centrifugal force by increasing the volume or weight of the weight portion 721D of the balancer 72D.
- the design freedom of the main frame 2D is increased, so that a large accommodation space 211D of the main body 21D of the main frame 2D is secured. can do.
- the balancer 72D having the weight portion 721D having a large volume can be used by enlarging the accommodation space 211D, the centrifugal force of the orbiting scroll 32D, which has become larger due to weighting or the like, is canceled out.
- the radial load acting on the second spiral body 322 can be reduced. Therefore, the reliability of the orbiting scroll 32 can be improved, and the sliding loss between the second spiral body 322 of the orbiting scroll 32 and the first spiral body 312 of the fixed scroll 31 can be reduced.
- the reliability of the orbiting scroll 32 is ensured when the scroll compressor 100 is accelerated (high speed rotation), and the scroll rotation is high when the scroll compressor 100 is accelerated (high speed rotation).
- the sliding loss between the second spiral body 322 of the orbiting scroll 32 and the first spiral body 312 of the fixed scroll 31 can be reduced by the numbering, and the reliability of the scroll compressor 100 can be improved while ensuring reliability and performance.
- Refrigerating capacity can be expanded by increasing the speed (higher rotation speed).
- the speed of the scroll compressor 100 is increased (high rotation speed)
- the amount of oil supply becomes excessive, leading to a decrease in refrigeration capacity and a decrease in performance as the amount of oil rising increases.
- the oil supply groove 90 is provided, the reliability of the orbiting scroll 32 can be ensured, the spiral sliding loss can be suppressed, and the refrigerating capacity and the performance can be prevented from decreasing due to the increase in the amount of oil rising.
- the refrigerating capacity can be expanded by increasing the speed of the compressor 100 (higher rotation speed).
- the thrust sliding surface of the swing scroll 32 (and the radial width of the thrust plate 24) can be designed to be larger.
- the design freedom degree of the shape of the oil distribution part 92 increases.
- the oil circulation part 92 can be formed in a linear shape, an elliptical shape, a polygonal shape, or the like. Further, the selection range of the number of the oil supply groove 90 and the oil supply hole 24a is widened. From these design degrees of freedom, the effect of the oil supply groove 90 is more effectively exhibited.
- FIG. 21 is a cross-sectional view of the scroll compressor 100 according to Modification 6 of the present invention.
- the size of the orbiting scroll 32 remains the same, and the shell 1E, that is, the main shell 11E, the upper shell 12E, and the like may have a smaller inner diameter than the conventional one. Thereby, compared with the past, the amount of displacement is equivalent and a small scroll compressor is realizable.
- the first protrusion 112 and the first positioning surface 113 can adopt various shapes and manufacturing methods as long as the fixed scroll 31 can be accurately positioned.
- the first protrusion 112 only needs to be able to position the fixed scroll 31, and thus may be configured by at least two or more protrusions formed on the inner wall surface of the main shell 11. Further, the first protrusion 112 may be formed by hitting from the outside of the main shell 11. A convex portion may be formed on the first positioning surface 113 and fitted into a concave portion formed on the fixed scroll 31 to suppress the rotation of the fixed scroll 31 with respect to the main shell 11.
- FIG. 22 is a cross-sectional view of the scroll compressor 100 according to Modification 7 of the present invention.
- the projections or recesses formed on the thrust plate 24F and the projection wall 216F project in the direction of the projection wall 216F on the thrust plate 24F to form a pair of projections 242F, and the projection wall 216F is notched.
- 218F may be formed, and a pair of protrusions 242F may be disposed in the notch 218F.
- rotation of the thrust plate 24F can be suppressed.
- the thrust plate 24 is not limited to an annular shape, and may have a C shape, and a suction port 213 having a large opening area may be disposed at a portion where the thrust plate 24 is cut. Thereby, the area of the suction port 213 can be expanded. At this time, if the area of the suction port 213 is increased, a part of the suction port 213 may be blocked by the swing scroll 32 depending on the timing of the swing of the swing scroll 32. In this case, if the suction port 213 is not blocked by the swing scroll 32 at the timing when the refrigerant is taken in by the fixed scroll 31 and the swing scroll 32, the influence of the suction port 213 being blocked can be reduced.
- the thrust plate 24 is not essential, and the flat surface 212 of the main frame 2 may slide with the orbiting scroll 32.
- a convex portion (or concave portion) is formed on the inner wall surface of the main shell 11 in a direction along the central axis of the crankshaft 6, and a concave portion (or convex portion) that engages with the convex portion (or concave portion) of the main frame 2 and the fixed scroll 31. May be formed. Thereby, since the phase of the first spiral body 312 of the fixed scroll 31 and the second spiral body 322 of the swing scroll 32 can be matched, the phase is adjusted by rotating the fixed scroll 31 with respect to the swing scroll 32. The step of performing can be omitted.
- FIG. 23 is a refrigerant circuit diagram showing a refrigeration cycle apparatus 101 to which the scroll compressor 100 according to Embodiment 3 of the present invention is applied.
- the refrigeration cycle apparatus 101 includes a scroll compressor 100, a condenser 102, an expansion valve 103, and an evaporator 104.
- the scroll compressor 100, the condenser 102, the expansion valve 103, and the evaporator 104 are connected by a refrigerant pipe to form a refrigeration cycle circuit. Then, the refrigerant flowing out of the evaporator 104 is sucked into the scroll compressor 100 and becomes high temperature and pressure. The high-temperature and high-pressure refrigerant is condensed in the condenser 102 to become a liquid.
- the refrigerant that has become liquid is decompressed and expanded by the expansion valve 103 to become a low-temperature and low-pressure gas-liquid two-phase, and the gas-liquid two-phase refrigerant is heat-exchanged in the evaporator 104.
- the scroll compressor 100 according to Embodiments 1 and 2 can be applied to such a refrigeration cycle apparatus 101.
- the refrigeration cycle apparatus 101 include an air conditioner, a refrigeration apparatus, or a water heater.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Compressor (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
スクロール圧縮機は、固定スクロールと、揺動スクロールと、スラストプレートと、を備え、スラストプレートの内側に油溜り空間が形成され、固定スクロールと揺動スクロールとの間に圧縮室が形成され、揺動スクロールは、油供給溝を備え、スラストプレートは、給油穴を有し、油供給溝は、潤滑油が流入する油流入部と、一方側が油流入部に通じ、油流入部から揺動スクロールの回転方向へ延びる油流通部と、油流通部の他方側に通じ、給油穴上に位置したときに油流通部を通った潤滑油を給油穴側へ流出させる油流出部と、を備え、揺動スクロールが揺動する1回転の中に、油流通部がスラストプレート上に位置し、油流通部を介して給油穴に潤滑油が供給される第1の回転期間と、油流通部が油溜り空間上に位置し、油流通部を介して給油穴に供給される潤滑油の量が第1の回転期間よりも少なくなる第2の回転期間と、を含む。
Description
本発明は、スラストプレートに給油穴が設けられたスクロール圧縮機及び冷凍サイクル装置に関する。
従来のスクロール圧縮機は、揺動スクロールと固定スクロールは互いに概ね対称形状の渦巻体をそれぞれ有しており、揺動スクロールと固定スクロールとは冷媒を吸入する冷媒吸入口を備えたフレームに収納されている。そして、フレーム内において揺動スクロールが揺動運動を行うことにより、冷媒吸入口から吸入された冷媒が圧縮される。この際、揺動スクロールはスラスト軸受面において摺動しながら揺動運動するものであり、揺動スクロールの摺動性を改善するために、揺動スクロールとフレームとの間にはスラストプレートが配置されている。
このようなスクロール圧縮機において、各摺動部位の摺動抵抗を軽減するために、各摺動部位には潤滑油が流通するようになっている(例えば、特許文献1参照)。特許文献1には、低速回転時に、揺動スクロールと固定スクロールとの渦巻体同士の摺動性の改善及びシール性の向上による冷媒漏れ損失の低減を目的として、揺動スクロールのスラスト軸受面に油供給穴が設けられているとともに、スラストプレートに給油穴が設けられており、油供給穴から給油穴へ間欠的に給油を行うことで渦巻部への必要給油量を確保するスクロール圧縮機が開示されている。
特許文献1の構成を採用すれば、スクロール圧縮機の低速回転時における必要給油量を確保できる。しかしながら、高速回転時における給油量が過大となり、油上がり量の増加に伴い冷凍能力低下及び性能低下を招いてしまう。
本発明は、上記課題を解決するためのものであり、低速回転時の必要給油量を確保しながら、高速回転時の給油量の増加を防止し、油上がり量が調整でき、冷凍能力の向上及び性能の向上を図るスクロール圧縮機及び冷凍サイクル装置を提供することを目的とする。
本発明に係るスクロール圧縮機は、固定側渦巻体を有する固定スクロールと、前記固定スクロールの前記固定側渦巻体に組み合わされる揺動側渦巻体を有する揺動スクロールと、前記揺動スクロールの下面を揺動可能に支持し、中心部に開口部を有するスラストプレートと、を備え、前記スラストプレートの内側に油溜り空間が形成され、前記固定スクロールと前記揺動スクロールとの間に圧縮する作動流体を吸入するための圧縮室が形成されるスクロール圧縮機であって、前記揺動スクロールは、前記スラストプレートと摺動する摺動面に設けられ、潤滑油が供給される油供給溝を備え、前記スラストプレートは、前記揺動スクロールと摺動する面から前記圧縮室へ通じる給油穴を有し、前記油供給溝は、潤滑油が流入する油流入部と、一方側が前記油流入部に通じ、前記油流入部から前記揺動スクロールの回転方向へ延びる油流通部と、前記油流通部の他方側に通じ、前記給油穴上に位置したときに前記油流通部を通った潤滑油を前記給油穴側へ流出させる油流出部と、を備え、前記揺動スクロールが揺動する1回転の中に、前記油流通部が前記スラストプレート上に位置し、前記油流通部を介して前記給油穴に潤滑油が供給される第1の回転期間と、前記油流通部が前記油溜り空間上に位置し、前記油流通部を介して前記給油穴に供給される潤滑油の量が前記第1の回転期間よりも少なくなる第2の回転期間と、を含むものである。
本発明に係る冷凍サイクル装置は、上記のスクロール圧縮機を備えたものである。
本発明に係るスクロール圧縮機及び冷凍サイクル装置によれば、油供給溝において油流入部と油流出部との間に揺動スクロールの回転方向へ延びる油流通部が形成される。そして、第1の回転期間に油流通部を介して給油穴に潤滑油が供給できる。また、第2の回転期間に油流通部がスラストプレートの内側の油溜り空間につながって油流通部を介して給油穴に供給される潤滑油の量が第1の回転期間よりも少なくなる。よって、回転速度が高速回転になるほど、給油穴に至るべき油流通部における潤滑油の移動が制限される。このため、低速回転時の必要給油量を確保しながら、高速回転時の給油量増加を防止し、油上がり量が調整でき、どのような回転速度であっても冷凍能力向上及び性能向上を図ることができる。
以下、図面に基づいて本発明の実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、断面図の図面においては、視認性に鑑みて適宜ハッチングを省略している。さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1に係るスクロール圧縮機100の断面構成例を示す縦断面図である。スクロール圧縮機100は、シェル1、固定スクロール31、揺動スクロール32、メインフレーム2、スラストプレート24等を備えている。また、スクロール圧縮機100は、シェル1内に収容されたモータ等からなる駆動機構部4を備えている。スクロール圧縮機100は、シェル1内において固定スクロール31及び揺動スクロール32が上側に配置され、駆動機構部4が下側に配置されたいわゆる縦型のスクロール圧縮機について例示している。
図1は、本発明の実施の形態1に係るスクロール圧縮機100の断面構成例を示す縦断面図である。スクロール圧縮機100は、シェル1、固定スクロール31、揺動スクロール32、メインフレーム2、スラストプレート24等を備えている。また、スクロール圧縮機100は、シェル1内に収容されたモータ等からなる駆動機構部4を備えている。スクロール圧縮機100は、シェル1内において固定スクロール31及び揺動スクロール32が上側に配置され、駆動機構部4が下側に配置されたいわゆる縦型のスクロール圧縮機について例示している。
シェル1は、内部に密閉空間を形成するものであり、メインシェル11と、メインシェル11の上部に設けられたアッパーシェル12と、メインシェル11の下部に設けられたロアシェル13と、を有している。メインシェル11には、圧縮する冷媒ガス等の作動流体を吸入するための吸入管14が接続されている。アッパーシェル12には、圧縮後の冷媒ガス等の作動流体を吐出するための吐出管15が接続されている。また、メインシェル11の内部は低圧室11aになっており、アッパーシェル12の内部は高圧室12aになっている。メインシェル11の上部側にはメインフレーム2が固定されており、下部側には主軸部61を保持するサブフレーム5が固定されている。ロアシェル13は潤滑油を貯留する油溜めになっている。
固定スクロール31は、第1基板311と、第1基板311の一方の面に設けられた渦巻状突起である固定側渦巻体としての第1渦巻体312とを備えている。第1基板311はメインフレーム2の上側にボルト等によって固定されており、第1基板311の中央部には、圧縮され高圧になった冷媒ガス等の作動流体を吐出する吐出孔351が形成されている。また、吐出孔351上には高圧室12aから吐出孔351側へ冷媒が逆流するのを防止するための吐出弁36が設けられている。
揺動スクロール32は、第2基板321と、第2基板321の一方の面に設けられた渦巻状突起である揺動側渦巻体としての第2渦巻体322と、を備えている。第2基板321はメインフレーム2内に揺動可能に支持されている。すなわち、揺動スクロール32の他方の面はスラストプレート24を介してメインフレーム2に摺動するスラスト軸受面である摺動面3211として作用し、運転中に生じる荷重が摺動面3211を介してメインフレーム2において支持される。第2渦巻体322は、第1渦巻体312と実質的に同一形状を有しており、第1渦巻体312に組み合わされて第2渦巻体322と第1渦巻体312とを互いに組み合わされた状態でメインフレーム2内に収納されている。また、揺動スクロール32は、他方の面(摺動面3211側)の中心部に中空円筒形状の筒状部323を有している。筒状部323には、主軸部61の上端に設けられた偏心軸部62が挿入される。そして、揺動スクロール32は、主軸部61が回転した際に固定スクロール31に対して公転運動として揺動運動を行う。
固定スクロール31と揺動スクロール32とが組み合わされた状態では、第1渦巻体312と第2渦巻体322の巻方向が互いに逆となる。そして、第2渦巻体322と第1渦巻体312との間に圧縮室34が形成されている。なお、固定スクロール31及び揺動スクロール32には、第1渦巻体312及び第2渦巻体322の先端面からの冷媒漏れを低減するため、第1渦巻体312及び第2渦巻体322の先端面にそれぞれシール316、325が設けられている。
メインフレーム2は、揺動スクロール32と固定スクロール31とを収納するものであり、シェル1の上部に固定されている。メインフレーム2には、吸入管14から吸入した冷媒を流入させるための冷媒吸入口が設けられている。また、メインフレーム2は主軸部61の上部を回転可能に支持する主軸受部22を有している。
スラストプレート24は、メインフレーム2と揺動スクロール32の摺動面3211の間に設けられており、円環状に形成され筒状部323が挿入されるように中心部に開口部を有している(図2参照)。この開口部は、スラストプレート24の下方かつ内側に形成される油溜り空間25につながる。スラストプレート24は、揺動スクロール32がメインフレーム2に公転運転する際に、摺動面3211の摺動性を改善するものであり、揺動スクロール32はスラストプレート24を介してメインフレーム2に軸方向に支持された状態になっている。つまり、スラストプレート24は、揺動スクロールの下面を揺動可能に支持している。
オルダムリング33は、揺動スクロール32とメインフレーム2との間に配置されており、揺動スクロール32の自転運動を規制しながら主軸部61の回転力を揺動スクロール32に伝達するものである。オルダムリング33は、メインフレーム2に対向する面側に突出した1対のオルダムキーとしての第1キー部332と、揺動スクロール32に対向する面側に突出した1対のオルダムキーとしての第2キー部333と、を有している。そして、第2キー部333が揺動スクロール32側に嵌め込まれ、第1キー部332はメインフレーム2側に嵌め込まれる。
具体的には、揺動スクロール32の摺動面3211には、第2キー部333を挿入するための径方向に延びる第2オルダムキー溝324(図3参照)が設けられている。第2オルダムキー溝324は、揺動スクロール32の所定の半径に対して線対称に一対設けられている。また、メインフレーム2側には、第1キー部332を挿入するための径方向に延びる第1オルダムキー溝215が形成されている。第2オルダムキー溝324と第1オルダムキー溝215とは、例えば位相が90°ずれた位置に径方向に延びて形成されている。同様に、第2キー部333と第1キー部332とは、例えば位相が90°ずれた位置に設けられている。そして、第2キー部333は第2オルダムキー溝324に径方向に移動可能に嵌め合わされ、第1キー部332が第1オルダムキー溝215に径方向に移動可能に嵌め合わされる。すると、第2キー部333及び第1キー部332が、それぞれ第2オルダムキー溝324及び第1オルダムキー溝215内を進退し、揺動スクロール32の自転運動を規制しながら駆動機構部4の回転力を公転する揺動スクロール32に伝達する。
クランクシャフト6は、主軸部61と、偏心軸部62と、を有する。主軸部61は、シェル1内において、上部がメインフレーム2に設けられた主軸受部22によって回転自在に支持されており、主軸部61の下部は副軸受部51によって回転自在に支持されている。なお、副軸受部51は、シェル1内の下部に設けられたサブフレーム5の中央部に形成された軸受収納部に圧入され固定されている。主軸部61の上端には偏心軸部62が主軸部61に対し偏心した状態で取付けられており、偏心軸部62には揺動スクロール32の筒状部323が公転運動可能に設けられている。
また、サブフレーム5には、容積型のオイルポンプ52が設けられている。オイルポンプ52は、ロアシェル13に貯留された潤滑油を吸引し、主軸部61の内部に形成された通油路63を介して各摺動部に送るものである。なお、揺動スクロール32の筒状部323の外周側とメインフレーム2との間には、通油路63に通じる空間である油溜り空間25が形成されており、油溜り空間25には通油路63から供給される潤滑油が供給される。また、油溜り空間25は揺動スクロール32の第2オルダムキー溝324に通じており、油溜り空間25の潤滑油は第2オルダムキー溝324に供給される。
また、主軸部61には、揺動スクロール32が揺動することにより生じるアンバランスを相殺するための第1バランスウェイト64及び第2バランスウェイト65が設けられている。第1バランスウェイト64は主軸部61の上部に焼き嵌めによって固定され、第2バランスウェイト65は主軸部61の下部にステータ41と一体的に固定される。
駆動機構部4は、例えばモータからなっており、シェル1に固定されたステータ41と、主軸部61に固定されたロータ42と、を備えている。ステータ41及びロータ42は、例えば第1バランスウェイト64の下部に配置されている。ステータ41は、例えばコイルが巻線されたものであって、メインシェル11に焼き嵌め固定されている。このステータ41には、メインシェル11に設けられた給電端子82を介して電力が供給される。ロータ42は、例えば永久磁石を有するものであり、主軸部61に焼き嵌め固定されている。そして、ステータ41へ通電が開始されることにより、ロータ42及び主軸部61が回転するようになっている。
次に、図1を参照してスクロール圧縮機100の動作について説明する。外部から給電端子82に電力が供給された際に、ステータ41のコイルに電流が流れて磁界が発生する。この磁界は、ロータ42を回転させるように働いてロータ42にトルクが発生し、ロータ42及び主軸部61が回転駆動する。主軸部61が回転駆動すると偏心軸部62から揺動スクロール32へ回転力が伝達され、揺動スクロール32がオルダムリング33により自転運動を規制されながら公転運動を行う。なお、ロータ42が回転する際に、第1バランスウェイト64及び第2バランスウェイト65により揺動スクロール32の偏心公転運動に対するバランスが保たれている。
一方、冷媒ガス等の作動流体は、吸入管14を介してシェル1内に流入される。この冷媒ガス等の作動流体の一部は、圧縮室34内へ流れて圧縮過程が開始される。この際、揺動スクロール32の公転運動により圧縮室34は揺動スクロール32の中心へ移動して体積が縮小されて行き、圧縮室34に吸入された冷媒ガスは圧縮されて行く。圧縮された冷媒は固定スクロール31の吐出孔38を通り、吐出弁36を押し開けて高圧室12aに流入する。そして、吐出管15を介してシェル1から吐出される。なお、冷媒ガスの残りの一部は、ステータ41の鋼板の切り欠き(図示せず)を通って駆動機構部4及び潤滑油を冷却する。
この際、摺動面3211を支持するメインフレーム2が圧縮室34内の冷媒ガスの圧力により発生する摺動面3211への荷重を受けている。また、第1バランスウェイト64と第2バランスウェイト65に生じる遠心力及び作動流体からの荷重は、主軸受部22及び副軸受部51で受けている。さらに、低圧室11a内の低圧冷媒ガスと高圧室12a内の高圧作動流体とは、固定スクロール31及びメインフレーム2により仕切られており、気密性が保たれている。
また、スクロール圧縮機100が動作する際、部品同士が摺動する摺動部位に潤滑油が供給される。具体的には、ロアシェル13に貯留されている潤滑油はオイルポンプ52により通油路63を主軸部61の下部から上側へ流れ、主軸部61の上端から主軸部61と揺動スクロール32の筒状部323との間に供給される。そして、潤滑油は、主軸部61と揺動スクロール32の筒状部323との摺動部分を潤滑しながら、筒状部323の外周側の空間にある油溜り空間25に流れる。油溜り空間25の潤滑油のうち一部の潤滑油は、第2オルダムキー溝324へ供給される。一方、残りの一部の潤滑油は、図示しない排油穴を通り、メインフレーム2の外側に排出されてロアシェル13に戻る。
圧縮室34に流入した潤滑油は、圧縮室34の作動流体と混合する。そして、圧縮室34で作動流体と混合した潤滑油は、第1渦巻体312及び第2渦巻体322の摺動部位に付着し、圧縮室34の気密性を向上させるとともに摩耗を抑制する。
このように、潤滑油は、固定スクロール31と揺動スクロール32との潤滑部位を潤滑するために、スラストプレート24及び揺動スクロール32を介して圧縮室34内へ流入される。この際、圧縮室34内へ流入される潤滑油の給油量が足りない場合には摩耗等による不具合が生じてしまい、給油量が過多の場合にはスクロール圧縮機100としての性能低下を招いてしまう。そこで、スクロール圧縮機100は適切な給油量の潤滑油を圧縮室34に供給する構造を有している。
図2は、図1のスクロール圧縮機におけるスラストプレート24の一例を示す平面図である。図2に示すように、メインフレーム2に載置されたスラストプレート24には給油穴24aが形成されており、給油穴24aは圧縮室34(図1参照)に通じている。給油穴24aは、後述の油流入部91につながった一対の第2オルダムキー溝324のうちの一方とは反対側の他方の近傍に形成されている。したがって、給油穴24aに潤滑油が供給された際には給油穴24aに潤滑油が溜まり、その後、給油穴24aから圧縮室34に潤滑油が供給される。給油穴24aは、スラストプレート24の外周側に設けられており、揺動スクロール32が公転運動した際に所定の回転期間において揺動スクロール32から露出する。この露出期間に給油穴24aから圧縮室34に潤滑油が供給される。この給油穴24aの形成位置は必要に応じて適宜設定することができる。
図3は、図1のスクロール圧縮機におけるスラスト軸受面としての摺動面3211の一例を示す平面図である。図3に示すように、摺動面3211には油供給溝90が形成されている。油供給溝90は、油流入部91、油流通部92、油流出部93を備えている。油流入部91は、潤滑油が流入する部位であって、例えば揺動スクロール32側の第2オルダムキー溝324に接続されている。そして、油流入部91には第2オルダムキー溝324内に充填されている潤滑油が流入される。ここで、第2オルダムキー溝324では、第2キー部333が往復運動を行う。このため、油流入部91につながった第2オルダムキー溝324の空間は、第2キー部333が往復運動を行うことにより、広がったり狭められたりする。油流入部91につながった第2オルダムキー溝324の空間が狭められるときに、第2キー部333が潤滑油を圧送するポンプ機能を発揮し、油流入部91に第2オルダムキー溝324内に充填されている潤滑油が流入される。
油流通部92は、一方側が油流入部91に通じており、油流入部91から揺動スクロール32の回転方向(矢印R方向)へ向かって延びるように形成されている。ここで、油流通部92は、例えば円弧状に形成されており、この円弧形状は、揺動スクロール32の回転軌道に沿った形状を有している。すなわち、油流通部92は、揺動スクロール32の外周と内周との間に周方向に沿った鈍角の円弧状に形成されている。揺動スクロール32が揺動運動している際に、油流通部92を流れる潤滑油は相対的に反力が弱まって揺動運動の回転方向(矢印R方向)への流れが抑制される。
油流出部93は、油流通部92の他方側に通じており、油流通部92を通った潤滑油を給油穴24aへ流出させるものである。油流出部93は、例えば円弧形状の油流通部92の先端部分に設けられている。言い換えれば、油流出部93は、油流入部91よりも回転方向(矢印R方向)側に設けられている。そして、油流出部93が油流入部91につながった一対の第2オルダムキー溝324のうちの一方とは反対側の他方の近傍に形成された給油穴24a上に位置した際に、油流通部92を流通する潤滑油が給油穴24aへ供給される。ここで、油供給溝90は、揺動スクロール32が1回転の揺動運動をする中に、第1の回転期間において、油流出部93が給油穴24a上に位置するように形成されている。
図4は、図1のスクロール圧縮機100において揺動スクロール32が回転した際の給油穴24aと油供給溝90との位置関係を示す模式図である。なお、図4において、揺動スクロール32の所定の回転位置を回転期間θで表し、θが0°から365°までとなる1回転の間の揺動スクロール32が45°ずつ回転した状態を示している。はじめに、回転期間θ=0°~135°の第2の回転期間において、給油穴24a上に油供給溝90の油流出部93が位置している。しかし、油流通部92の一部分が中心側に揺動してスラストプレート24の内側の油溜り空間25とつながっており、油流通部92を介して給油穴24aに供給される潤滑油の量が少なくなる。たとえば、第2の回転期間では、給油穴24aに潤滑油が供給されず、圧縮室34に潤滑油が供給されない。たとえば、第2の回転期間では、潤滑油が油溜り空間25に戻される。
回転期間θ=135°~180°付近において、給油穴24aが揺動スクロール外周から露出し、給油穴24aが圧縮室34とつながる。そのため、給油穴24aに油が充填されている場合は、給油穴24aに充填されている油が潤滑油として圧縮室34に供給される。
回転期間θ=180°~315°の第1の回転期間において、油流通部92の全てはスラストプレート24上に位置して油溜り空間25とつながっておらず、第2オルダムキー溝324を介して、油流入部91に流入した潤滑油が油流通部92を流れる。また、このとき油流通部92を移動する潤滑油の移動方向が揺動スクロール32の回転方向が概ね一致するため、潤滑油の移動に対して反力が弱まり、相対的に油流出部93へ向かう油の流れの搬送作用が抑制される。そして、回転期間θ=315°付近において、再び給油穴24a上に油供給溝90の油流出部93が位置し、油流出部93と給油穴24aとがつながり、油流通部92を通って油流出部93まで潤滑油が到達している場合は、油流出部93から給油穴24aに潤滑油が充填される。
このように、揺動スクロール32が1回転する期間において、潤滑油が給油穴24aに供給される第1の回転期間と、潤滑油が油供給溝90から給油穴24aに供給され難くなる第2の回転期間と、潤滑油が給油穴24aを介して圧縮室34に供給される第3の回転期間と、が存在する。すなわち、揺動スクロール32が揺動する1回転の中に、油流通部92の全てがスラストプレート24上に位置し、油流通部92を介して給油穴24aに潤滑油が供給される第1の回転期間と、油流通部92の少なくとも一部分がスラストプレート24の内側の油溜り空間25上に位置し、油流通部92を介して給油穴24aに供給される潤滑油の量が第1の回転期間よりも少なくなる第2の回転期間と、を含んでいる。したがって、給油穴24aには1回転のうちで間欠的に潤滑油が供給されることになる。さらに、潤滑油が油供給溝90から給油穴24aに供給される第1の回転期間において、潤滑油が油流出部93側に流れて給油穴24aに供給されるか否かは、揺動スクロール32の回転速度に依存する。
スクロール圧縮機100の低速回転時においては、揺動スクロール32が1回転するのに必要な時間が高速回転時に比べて長い。よって、揺動スクロール32の油供給溝90を介してスラストプレート24の給油穴24aに油を搬送する時間が充分に有り、かつ、揺動スクロール32の回転速度が遅い。このため揺動スクロール32の回転軌道による油供給溝90(油流通部92)内の油の流れを妨げる効果が低く、揺動スクロール32の油供給溝90を介してスラストプレート24の給油穴24aへ油が供給される。
一方、スクロール圧縮機100の高速回転時においては、揺動スクロール32が1回転するのに必要な時間が低速回転時に比べて短い。すなわち、高速回転時のθ=180°~315°のときに、油流入部91から油流通部92にかけての流路がスラストプレート24上に形成され、潤滑油が油流通部92から油流出部93に向かう。しかし、油流通部92内の潤滑油は、高速回転時の揺動スクロール32の揺動に対し、油流出部93にまで至る移動時間を十分かせげず、油流通部92内での油流出部93にまで至る潤滑油の移動が制限される。そして、θ=0°になると、油流入部91から油流通部92にかけての流路がスラストプレート24の内径よりも内側に来て、潤滑油が油流通部92から油溜り空間25に落下するので、潤滑油の供給量が増加しない。よって、揺動スクロール32の油供給溝90を介してスラストプレート24の給油穴24aに油を供給される時間が充分に無く、かつ、スクロールの回転速度が速い。このため、揺動スクロール32の回転軌道による油供給溝90(油流通部92)内の油の流れを妨げる効果が高く、揺動スクロール32の油供給溝90を介してスラストプレート24の給油穴24aへの油の供給が抑制される。
このように、油供給溝90に揺動スクロール32の回転方向に延びる油流通部92が形成されていることにより、低速回転時の必要給油量を確保しながら、高速回転時の給油量の増加を防止し、油上がり量が調整できるため、冷凍能力の向上及び性能の向上を図ることができる。すなわち、従来のように、揺動スクロール32の摺動面3211に油供給穴が設けられるとともに、スラストプレート24に給油穴が設けられている場合、スクロール圧縮機の低速回転時に摺動性改善及びシール性向上による冷媒漏れ損失を低減させることができる。しかしながら、従来では、回転速度が大きくなるほど給油量が増加してしまうため、高速回転時においては給油量が過大になる。その結果、高速回転時に油上がり量が増加してしまい、冷凍能力低下及び性能低下を招いてしまう。
一方、上述したスクロール圧縮機100においては、給油穴24aと油供給溝90が、揺動スクロール32が1回転する回転期間のうち所定の回転期間で位置が重複するよう配置される。この位置が重複している第1の回転期間においても揺動スクロール32の回転軌道が油供給溝90内の油の流れを妨げるように反力が弱まる効果が発揮される構成となっている。したがって、高速回転時に過剰に潤滑油が圧縮機構部3に供給されることがなく、油上がり量を調整することができる。
さらに、油供給溝90の油流出部93が、揺動スクロール32が揺動運動した際の第1の回転期間において、給油穴24a上に位置するように形成されている場合、低速回転時において油供給溝90から給油穴24aへ潤滑油を供給することができるため、低速回転時において潤滑油が不足することを防止することができる。
また、図3に示すように、油流通部92が、円弧状に形成され、特に揺動スクロール32の回転軌道に沿って形成されている場合、潤滑油に反力が弱まる効果が働き、油流通部92内における潤滑油の移動をより効率的に規制することができる。
<変形例1>
図5は、本発明の変形例1に係るスクロール圧縮機100におけるスラストプレート24の一例を示す平面図、図6は、本発明の変形例1に係るスクロール圧縮機100におけるスラスト軸受面としての摺動面3211の一例を示す平面図であり、図5及び図6を参照してスクロール圧縮機100の変形例1について説明する。なお、図5及び図6において、図2及び図3と同一の構成を有する部位には同一の符号を付してその説明を省略する。
図5は、本発明の変形例1に係るスクロール圧縮機100におけるスラストプレート24の一例を示す平面図、図6は、本発明の変形例1に係るスクロール圧縮機100におけるスラスト軸受面としての摺動面3211の一例を示す平面図であり、図5及び図6を参照してスクロール圧縮機100の変形例1について説明する。なお、図5及び図6において、図2及び図3と同一の構成を有する部位には同一の符号を付してその説明を省略する。
図5及び図6のスラストプレート24の給油穴24aと揺動スクロール32の油供給溝90が、それぞれ2個ずつ設けられている。この2つの給油穴24aと油供給溝90とは、それぞれ例えば回転対称になる位置に形成されている。すなわち、スラストプレート24の給油穴24a及び揺動スクロール32の油供給溝90は、スラストプレート24及び揺動スクロール32の所定の半径に対して線対称にそれぞれ2個設けられている。
上記変形例1によれば、油供給溝90及び給油穴24aが2つ設けられていることにより、圧縮室34への給油量を増加させることができるため、低速回転時の必要給油量が確保できない場合等も必要に応じて必要給油量を確保することができる。この場合であっても、第2の回転期間が存在するため、実施の形態1と同様、高速回転時に過剰な潤滑油が供給されることによる油上がり量の増加及び性能低下を抑制することができる。
なお、本発明は、上記実施の形態及び変形例に限定されない。たとえば、上記実施の形態1及び変形例1において、揺動スクロール32の油供給溝90が円弧形状で構成されている場合について説明したが、この形状に限定されるものではなく、回転方向(矢印R方向)へ向かって延びているものであればよい。言い換えれば、油流通部92は、油供給溝90における油流入部91から油流出部93までの潤滑油の流れが揺動スクロール32の回転軌道に妨げられるものであれば、例えば直線形状、楕円形状もしくは多角形状等のどのような形状でもよい。また、変形例1において、2つの油供給溝90及び給油穴24aが設けられている場合について例示しているが、3つ以上の複数個設けられていてもよい。
さらに、図3において、油供給溝90が第2オルダムキー溝324に通じており、潤滑油が第2オルダムキー溝324を介して油供給溝90に供給される場合について例示しているが、潤滑油が油供給溝90に供給される経路が形成されていればこの形状に限定されない。
実施の形態2.
以下、実施の形態2について説明する。図7は、本発明の実施の形態2に係るスクロール圧縮機100の縦概略断面図である。図8は、本発明の実施の形態2に係るスクロール圧縮機100のメインフレーム2、揺動スクロール32等の分解斜視図である。図9は、図7の一点鎖線の領域の拡大図である。なお、図7のスクロール圧縮機100は、クランクシャフト6の中心軸が地面に対して略垂直の状態で使用される、いわゆる縦型のスクロール圧縮機である。
以下、実施の形態2について説明する。図7は、本発明の実施の形態2に係るスクロール圧縮機100の縦概略断面図である。図8は、本発明の実施の形態2に係るスクロール圧縮機100のメインフレーム2、揺動スクロール32等の分解斜視図である。図9は、図7の一点鎖線の領域の拡大図である。なお、図7のスクロール圧縮機100は、クランクシャフト6の中心軸が地面に対して略垂直の状態で使用される、いわゆる縦型のスクロール圧縮機である。
スクロール圧縮機100は、シェル1と、メインフレーム2と、圧縮機構部3と、駆動機構部4と、サブフレーム5と、クランクシャフト6と、ブッシュ7と、給電部8と、を備えている。以下では、メインフレーム2を基準として、圧縮機構部3が設けられている側(上側)を一端側U、駆動機構部4が設けられている側(下側)を他端側Lと方向づけて説明する。
シェル1は、金属などの導電性部材からなる両端が閉塞された筒状の筐体であり、メインシェル11と、アッパーシェル12と、ロアシェル13と、を備えている。メインシェル11は、円筒状を呈し、その側壁には吸入管14が溶接等により接続されている。吸入管14は、冷媒をシェル1内に導入する管であり、メインシェル11内と連通している。アッパーシェル12は、略半球状を呈する第1シェルであり、その側壁の一部がメインシェル11の上端部において溶接等により接続され、メインシェル11の上側の開口を覆っている。アッパーシェル12の上部には、吐出管15が溶接等により接続されている。吐出管15は、冷媒をシェル1外に吐出する管であり、メインシェル11の内部空間と連通している。ロアシェル13は、略半球状を呈する第2シェルであり、その側壁の一部がメインシェル11の下端部において、連結シェル16を介して溶接等により接続され、メインシェル11の下側の開口を覆っている。なお、シェル1は、複数のネジ穴を備える固定台17によって支持されている。固定台17には、複数のネジ穴が形成されており、それらのネジ穴にネジをねじ込むことによって、スクロール圧縮機を室外機の筐体等の他の部材に固定可能になっている。
メインフレーム2は、空洞が形成された中空な金属製のフレームであり、シェル1の内部に設けられている。メインフレーム2は、本体部21と、主軸受部22と、返油管23と、を備えている。本体部21は、メインシェル11の一端側Uの内壁面に固定されており、その中央にはシェル1の長手方向に沿って収容空間211が形成されている。収容空間211は、一端側Uが開口しているとともに、他端側Lに向かって空間が狭くなる段差状になっている。本体部21の一端側Uには、収容空間211を囲むように環状の平坦面212が形成されている。平坦面212には、バルブ鋼などの鋼板系材料からなるリング状のスラストプレート24が配置されている。よって、本実施の形態では、スラストプレート24がスラスト軸受として機能する。また、平坦面212の外端側のスラストプレート24と重ならない位置には、吸入ポート213が形成されている。吸入ポート213は、本体部21の上下方向、すなわちアッパーシェル12側とロアシェル13側に貫通する空間である。吸入ポート213は、一つに限らず、複数形成されていても良い。
メインフレーム2の平坦面212よりも他端側Lの段差部分には、オルダム収容部214が形成されている。オルダム収容部214には、第1オルダムキー溝215が形成されている。第1オルダムキー溝215は、外端側の一部が平坦面212の内端側を削るように形成されている。そのため、メインフレーム2を一端側Uから見たときに、第1オルダムキー溝215の一部は、スラストプレート24と重なる。第1オルダムキー溝215は、一対が対向するように形成されている。主軸受部22は、本体部21の他端側Lに連続して形成され、その内部には軸孔221が形成されている。軸孔221は、主軸受部22の上下方向に貫通し、その一端側Uが収容空間211と連通している。返油管23は、収容空間211に溜まった潤滑油をロアシェル13の内側の油溜めに戻すための管であり、メインフレーム2に内外に貫通して形成された排油孔に挿入固定されている。
潤滑油は、例えば、エステル系合成油を含む冷凍機油である。潤滑油は、シェル1の下部、すなわちロアシェル13に貯留されており、後述するオイルポンプ52で吸い上げられて、クランクシャフト6内の通油路63を通り、圧縮機構部3等の機械的に接触するパーツ同士の摩耗低減、摺動部の温度調節、シール性を改善する。潤滑油としては、潤滑特性、電気絶縁性、安定性、冷媒溶解性、低温流動性などに優れるとともに、適度な粘度の油が好適である。
圧縮機構部3は、冷媒を圧縮する圧縮機構である。圧縮機構部3は、固定スクロール31と、揺動スクロール32と、を備えたスクロール圧縮機構である。固定スクロール31は、鋳鉄等の金属からなり、第1基板311と、第1渦巻体312と、を備えている。第1基板311は、円盤状を呈しており、その中央には上下方向に貫通して吐出ポート313が形成されている。第1基板311は、メインシェル11に固定されている。第1渦巻体312は、第1基板311の他端側Lの面から突出して渦巻状の壁を形成しており、その先端は他端側Lに突出している。揺動スクロール32は、アルミニウム等の金属からなり、第2基板321と、第2渦巻体322と、筒状部323と、第2オルダムキー溝324と、を備えている。第2基板321は、第1渦巻体312が形成された一方の面と、外周領域の少なくとも一部が摺動面3211となる他方の面と、径方向の最外部に位置し、一方の面と他方の面とを接続する側面3212と、を備えた円盤状を呈し、その摺動面3211がスラストプレート24に摺動可能に、メインフレーム2に支持(支承)されている。第2基板321は、固定スクロール31とメインフレーム2との間に配置され、メインシェル11の内周面に対して空隙を有している。第2渦巻体322は、第2基板321の一方の面から突出して渦巻状の壁を形成しており、その先端は一端側Uに突出している。なお、固定スクロール31の第1渦巻体312と、揺動スクロール32の第2渦巻体322の先端部には、冷媒の漏れを抑制するためのシール部材が設けられている。筒状部323は、第2基板321の他方の面の略中央から他端側Lに突出して形成された円筒状のボスである。筒状部323の内周面には、後述するスライダ71を回転自在に支持する揺動軸受、いわゆるジャーナル軸受が、その中心軸がクランクシャフト6の中心軸と平行になるように設けられている。第2オルダムキー溝324は、第2基板321の他方の面に形成された長丸形状の溝である。第2オルダムキー溝324は、一対が対向するように設けられている。一対の第2オルダムキー溝324を結ぶ線は、一対の第1オルダムキー溝215を結ぶ線に対して、直交するように設けられている。
メインフレーム2のオルダム収容部214には、オルダムリング33が設けられている。オルダムリング33は、リング部331と、第1キー部332と、第2キー部333と、を備えている。リング部331は、リング状である。第1キー部332は、リング部331の他端側Lの面に一対が対向するように形成されており、メインフレーム2の一対の第1オルダムキー溝215に収容される。第2キー部333は、リング部331の一端側Uの面に一対が対向するように形成されており、揺動スクロール32の一対の第2オルダムキー溝324に収容される。クランクシャフト6の回転によって揺動スクロール32が公転旋回する際に、第1キー部332は第1オルダムキー溝215、第2キー部333は第2オルダムキー溝324でスライドすることにより、オルダムリング33は、揺動スクロール32が自転することを防止する。
これら固定スクロール31の第1渦巻体312と、揺動スクロール32の第2渦巻体322と、を互いに噛み合わせることにより圧縮室34が形成される。圧縮室34は、半径方向において、外側から内側へ向かうに従って容積が縮小するものであるため、冷媒を渦巻体の外端側から取り入れて、中央側に移動させることで徐々に圧縮される。圧縮室34は、固定スクロール31の中央部において、吐出ポート313と連通する。固定スクロール31の一端側Uの面には、吐出孔351を有するマフラー35が設けられているとともに、吐出孔351を所定に開閉し、冷媒の逆流を防止する吐出弁36が設けられている。
冷媒は、例えば、組成中に、炭素の二重結合を有するハロゲン化炭化水素、炭素の二重結合を有しないハロゲン化炭化水素、炭化水素、又は、それらを含む混合物からなる。炭素の二重結合を有するハロゲン化炭化水素は、オゾン層破壊係数がゼロであるHFC冷媒、フロン系低GWP冷媒である。低GWP冷媒としては、例えばHFO冷媒があり、化学式がC3H2F4で表されるHFO1234yf、HFO1234ze、HFO1243zf等のテトラフルオロプロペンが例示される。炭素の二重結合を有しないハロゲン化炭化水素は、CH2F2で表されるR32(ジフルオロメタン)、R41等が混合された冷媒が例示される。炭化水素は、自然冷媒であるプロパンやプロピレン等が例示される。混合物は、HFO1234yf、HFO1234ze、HFO1243zf等に、R32、R41等を混合した混合冷媒が例示される。
駆動機構部4は、シェル1内部のメインフレーム2の他端側Lに設けられている。駆動機構部4はステータ41と、ロータ42と、を備えている。ステータ41は、例えば電磁鋼板を複数積層してなる鉄心に、絶縁層を介して巻線を巻回してなる固定子で、リング状に形成されている。ステータ41は、焼き嵌め等によりメインシェル11内部に固着支持されている。ロータ42は、電磁鋼板を複数積層してなる鉄心の内部に永久磁石を内蔵するとともに、中央に上下方向に貫通する貫通穴を有する円筒状の回転子であり、ステータ41の内部空間に配置されている。
サブフレーム5は、金属製のフレームであり、シェル1内部の内部に駆動機構部4の他端側Lに設けられている。サブフレーム5は、焼き嵌め、又は溶接等によってメインシェル11の他端側Lの内周面に固着支持されている。サブフレーム5は、副軸受部51と、オイルポンプ52と、を備えている。副軸受部51は、サブフレーム5の中央部上側に設けられたボールベアリングであり、中央に上下方向に貫通する孔を有している。オイルポンプ52は、サブフレーム5の中央部下側に設けられており、シェル1の油溜めに貯留された潤滑油に少なくとも一部が浸漬するように配置されている。
クランクシャフト6は、長尺な金属製の棒状部材であり、シェル1の内部に設けられている。クランクシャフト6は、主軸部61と、偏心軸部62と、通油路63と、を備えている。主軸部61は、クランクシャフト6の主要部を構成する軸であり、その中心軸がメインシェル11の中心軸と一致するように配置されている。主軸部61は、その外表面にはロータ42が接触固定されている。偏心軸部62は、その中心軸が主軸部61の中心軸に対して偏心するように主軸部61の一端側Uに設けられている。通油路63は、主軸部61及び偏心軸部62の内部に上下に貫通して設けられている。このクランクシャフト6は、主軸部61の一端側Uがメインフレーム2の主軸受部22内に挿入され、他端側Lがサブフレーム5の副軸受部51に挿入固定される。これにより、偏心軸部62は筒状部323の筒内に配置され、ロータ42は、その外周面がステータ41の内周面と所定の隙間を保って配置される。また、主軸部61の一端側Uには第1バランスウェイト64、他端側Lには第2バランスウェイト65が、揺動スクロール32の搖動によるアンバランスを相殺するために設けられている。
ブッシュ7は、鉄等の金属からなり、揺動スクロール32とクランクシャフト6を接続する接続部材である。ブッシュ7は、本実施の形態では2パーツで構成され、スライダ71と、バランサ72と、を備える。スライダ71は、鍔が形成された筒状の部材であり、偏心軸部62及び筒状部323のそれぞれに嵌入されている。バランサ72は、図8に示すように一端側Uから見た形状が略C状を呈するウエイト部721を備えたドーナツ状の部材であり、揺動スクロール32の遠心力を相殺するために、回転中心に対して偏芯して設けられている。バランサ72は、例えばスライダ71の鍔に焼嵌め等の方法により、嵌合されている。
給電部8は、スクロール圧縮機に給電する給電部材であり、シェル1のメインシェル11の外周面に形成されている。給電部8は、カバー81と、給電端子82と、配線83と、を備えている。カバー81は、有底開口のカバー部材である。給電端子82は、金属部材からなり、一方がカバー81の内部に設けられ、他方がシェル1の内部に設けられている。配線83は、一方が給電端子82と接続され、他方がステータ41と接続されている。
次に、シェル1と圧縮機構部3の関係について、図9及び図10を参照してさらに詳しく説明する。図10は、図9の二点鎖線の領域の拡大図である。
図10に示すように、シェル1は、第1内壁面111と、第1内壁面111から突出し、固定スクロール31を位置決めする第1突出部112と、第1突出部112においてアッパーシェル12の側に向いている第1位置決め面113と、を有している。つまり、メインシェル11は、他端側Lに向かって内径が大きくなる段状の部分を備えている。そして、固定スクロール31は、第1位置決め面113で位置決めされた状態で、第1内壁面111に焼嵌め等により固定されている。この構造により、従来のように固定スクロール31をネジ固定するための壁がメインフレーム2に不要になる。すなわち、揺動スクロール32の第2基板321の側面3212とメインシェル11の内壁面との間にメインフレーム2の壁が介在せず、第2基板321の側面3212とメインシェル11の内壁面とが対向して配置される構造となる。そのため、メインシェル11内における固定スクロール31の第1基板311とメインフレーム2のスラスト軸受との間に設けられ、揺動スクロール32が配置される冷媒取込空間37を従来よりも広げることができる。また、メインフレーム2の構造が簡素化されるため、加工性が良くなるとともに、軽量化を図ることができる。
冷媒取込空間37が広がることで種々のメリットを得ることができる。例えば、本実施の形態のような、駆動機構部4が配置されたメインシェル11内の空間及び冷媒取込空間37の圧力が冷媒取込空間37の圧力よりも低くなる、いわゆる低圧シェル構造では、圧縮された冷媒の圧力によって揺動スクロール32の第2基板321がスラストプレート24に押し付けられるため、摺動箇所でのスラスト荷重が発生する。そこで、渦巻体等は従来設計のままで、揺動スクロール32の第2基板321及びスラストプレート24の直径を大きくし、摺動面積を大きくする構造にすることで、スラスト荷重を低減することが可能となる。そのため、本実施の形態のスクロール圧縮機、凝縮器、膨張弁、及び蒸発器を備え、冷媒を循環させる冷凍サイクル装置であって、R32を含むためにスラスト軸受にかかる負担が大きくなる高圧冷媒を使用した場合であっても、信頼性を高めることができる。
また、図9に示すように、アッパーシェル12の外径をメインシェル11の一端側よりも小さくすることで、固定スクロール31をアッパーシェル12と第1突出部112の第1位置決め面113とで挟むように構成している。これにより、製造時にアッパーシェル12で固定スクロール31を第1位置決め面113に押し付けることができ、固定スクロール31の位置決め精度を高めることができる。また、輸送時やスクロール圧縮機の駆動中に発生しうる振動等による固定スクロール31の上下方向の位置ズレを抑制することができる。なお、アッパーシェル12の外壁面の少なくとも一部がメインシェル11の内壁面に内接する状態であると、メインシェル11とアッパーシェル12の溶接等による固定強度が高まり、固定スクロール31の上下方向の位置ズレを抑制できるため、さらに望ましい。
なお、メインフレーム2も、シェル1の第2内壁面114から突出する第2突出部115の第2位置決め面116で位置決めされた状態で、第2内壁面114に焼嵌め等により固定されている。
図11は、メインフレーム2を上から見た図である。メインフレーム2の平坦面212の外端部には、アッパーシェル12方向に突出するリング状の突壁216が形成されている。スラストプレート24は、突壁216の内側の平坦面212に、第1オルダムキー溝215の一部を覆って配置されている。図9に示すように、突壁216の平坦面212からの高さhは、スラストプレート24の厚みdより小さく設定されているため、揺動スクロール32をスラストプレート24と摺動させることができる。なお、スラストプレート24の厚みdを調整することで、一方のスクロールの基板と、他方のスクロールの渦巻体との間隔である渦巻先端隙間を好適な範囲に設定することも可能である。例えば、スラストプレート24の厚みdは、通常0.5mm程度であるが、厚みdが0.6mm程度のものを使用すれば、渦巻先端隙間を小さくすることができ、冷媒が渦巻先端と基板の隙間を通って、隣の圧縮空間に漏れることを抑制できる。
ここで、スラストプレート24及び突壁216には、凸部又は凹部が形成されており、スラストプレート24の回転を抑止可能に凸部と凹部とが係合している。これは、メインフレーム2の平坦面212及びスラストプレート24は、ともにリング状であることで、揺動スクロール32の揺動に伴ってスラストプレート24が平坦面212に対して回転する場合があるためであり、凹部に凸部を係止することで、その回転を抑制する。本実施の形態では、凸部は、突壁216からスラストプレート24の方向に突出して形成された一対の突部217、凹部は、スラストプレート24の外周部分に形成された切欠き241で構成され、一対の突部217を切欠き241の対向する辺にそれぞれ係止するように設けている。なお、メインフレーム2の一対の突部217の間に位置する部分には、吸入ポート213が配置されている。すなわち、切欠き241部分に吸入ポート213を配置しているため、冷媒をスラストプレート24によって遮られることなく、冷媒取込空間37に取り込むことができる。
次に、スクロール圧縮機100の動作について説明する。給電部8の給電端子82に通電すると、ステータ41とロータ42とにトルクが発生し、これに伴ってクランクシャフト6が回転する。クランクシャフト6の回転は、偏心軸部62及びブッシュ7を介して揺動スクロール32に伝えられる。回転駆動力が伝達された揺動スクロール32は、オルダムリング33により自転を規制され、固定スクロール31に対して偏心公転運動する。その際、揺動スクロール32の他方の面が、スラストプレート24と摺動する。
揺動スクロール32の揺動運動に伴い、吸入管14からシェル1の内部に吸入された冷媒は、メインフレーム2の吸入ポート213を通って冷媒取込空間37に到達し、固定スクロール31と揺動スクロール32とで形成される圧縮室34に取り込まれる。そして、冷媒は、揺動スクロール32の偏心公転運動に伴い、外周部から中心方向に移動しながら体積を減じられて圧縮される。揺動スクロール32の偏心公転運転時、揺動スクロール32は自身の遠心力により、ブッシュ7と共に径方向に移動し、第2渦巻体322と第1渦巻体312の側壁面同士が密接する。圧縮された冷媒は、固定スクロール31の吐出ポート313から固定スクロール31の吐出孔351に至り、吐出弁36に逆らってシェル1の外部に吐出される。
この際、摺動面3211を支持するメインフレーム2が圧縮室34内の冷媒の圧力により発生する摺動面3211への荷重を受けている。また、第1バランスウェイト64と第2バランスウェイト65に生じる遠心力及び作動流体からの荷重は、主軸受部22及び副軸受部51で受けている。さらに、低圧室11a内の低圧冷媒ガスと高圧室12a内の高圧冷媒とは、固定スクロール31及びメインフレーム2により仕切られており、気密性が保たれている。
また、スクロール圧縮機100が動作する際、部品同士が摺動する摺動部位に潤滑油が供給される。具体的には、ロアシェル13に貯留されている潤滑油はオイルポンプ52により通油路63を主軸部61の下部から上側へ流れ、主軸部61の上端から主軸部61と揺動スクロール32の筒状部323との間に供給される。そして、潤滑油は、主軸部61と揺動スクロール32の筒状部323との摺動部分を潤滑しながら、筒状部323の外周側の空間にある油溜り空間25に流れる。油溜り空間25の潤滑油のうち一部の潤滑油は、第2オルダムキー溝324へ供給される。一方、残りの一部の潤滑油は、図示しない排油穴を通り、メインフレーム2の外側に排出されてロアシェル13に戻る。
圧縮室34に流入した潤滑油は、圧縮室34の冷媒と混合する。そして、圧縮室34で冷媒と混合した潤滑油は、第1渦巻体312及び第2渦巻体322の摺動部位に付着し、圧縮室34の気密性を向上させるとともに摩耗を抑制する。
このように、潤滑油は、固定スクロール31と揺動スクロール32との潤滑部位を潤滑するために、スラストプレート24及び揺動スクロール32を介して圧縮室34内へ流入される。この際、圧縮室34内へ流入される潤滑油の給油量が足りない場合には摩耗等による不具合が生じてしまい、給油量が過多の場合にはスクロール圧縮機100としての性能低下を招いてしまう。そこで、スクロール圧縮機100は適切な給油量の潤滑油を圧縮室34に供給する構造を有している。
図11に示すように、メインフレーム2に載置されたスラストプレート24には給油穴24aが形成されており、給油穴24aは圧縮室34(図7参照)に通じている。給油穴24aは、後述の油流入部91につながった一対の第2オルダムキー溝324のうちの一方とは反対側の他方の近傍に形成されている。したがって、給油穴24aに潤滑油が供給された際には給油穴24aに潤滑油が溜まり、その後、給油穴24aから圧縮室34に潤滑油が供給される。給油穴24aは、スラストプレート24の内周と外周との間に設けられており、揺動スクロール32が公転運動した際に所定の回転期間において揺動スクロール32から露出する。この露出期間に給油穴24aから圧縮室34に潤滑油が供給される。この給油穴24aの形成位置は必要に応じて適宜設定することができる。
実施の形態1での図3に示すように、摺動面3211には油供給溝90が形成されている。油供給溝90は、油流入部91、油流通部92、油流出部93を備えている。油流入部91は、潤滑油が流入する部位であって、例えば揺動スクロール32側の第2オルダムキー溝324に接続されている。そして、油流入部91には第2オルダムキー溝324内に充填されている潤滑油が流入される。ここで、第2オルダムキー溝324では、第2キー部333が往復運動を行う。このため、油流入部91につながった第2オルダムキー溝324の空間は、第2キー部333が往復運動を行うことにより、広がったり狭められたりする。油流入部91につながった第2オルダムキー溝324の空間が狭められるときに、第2キー部333が潤滑油を圧送するポンプ機能を発揮し、油流入部91に第2オルダムキー溝324内に充填されている潤滑油が流入される。
油流通部92は、一方側が油流入部91に通じており、油流入部91から揺動スクロール32の回転方向(矢印R方向)へ向かって延びるように形成されている。ここで、油流通部92は、例えば円弧状に形成されており、この円弧形状は、揺動スクロール32の回転軌道に沿った形状を有している。すなわち、油流通部92は、揺動スクロール32の外周と内周との間に周方向に沿った鈍角の円弧状に形成されている。揺動スクロール32が揺動運動している際に、油流通部92を流れる潤滑油は相対的に反力が弱まって揺動運動の回転方向(矢印R方向)への流れが抑制される。
油流出部93は、油流通部92の他方側に通じており、油流通部92を通った潤滑油を給油穴24aへ流出させるものである。油流出部93は、例えば円弧形状の油流通部92の先端部分に設けられている。言い換えれば、油流出部93は、油流入部91よりも回転方向(矢印R方向)側に設けられている。そして、油流出部93が油流入部91につながった一対の第2オルダムキー溝324のうちの一方とは反対側の他方の近傍に形成された給油穴24a上に位置した際に、油流通部92を流通する潤滑油が給油穴24aへ供給される。ここで、油供給溝90は、揺動スクロール32が1回転の揺動運動するうち、第1の回転期間において、油流出部93が給油穴24a上に位置するように形成されている。
図12は、図7のスクロール圧縮機100において揺動スクロール32が回転した際の給油穴24aと油供給溝90との位置関係を示す模式図である。なお、図12において、揺動スクロール32の所定の回転位置を回転期間θで表し、θが0°から365°までとなる1回転の間の揺動スクロール32が45°ずつ回転した状態を示している。はじめに、回転期間θ=0°~135°の第2の回転期間において、給油穴24a上に油供給溝90の油流出部93が位置している。しかし、油流通部92の一部分が中心側に揺動してスラストプレート24の内側の油溜り空間25とつながっており、油流通部92を介して給油穴24aに供給される潤滑油の量が少なくなる。たとえば、第2の回転期間では、給油穴24aに潤滑油が供給されず、圧縮室34に潤滑油が供給されない。たとえば、第2の回転期間では、潤滑油が油溜り空間25に戻される。
回転期間θ=135°~180°付近において、給油穴24aが揺動スクロール外周から露出し、給油穴24aが圧縮室34とつながる。そのため、給油穴24aに油が充填されている場合は、給油穴24aに充填されている油が潤滑油として圧縮室34に供給される。
回転期間θ=180°~315°の第1の回転期間において、油流通部92の全てはスラストプレート24上に位置して油溜り空間25とつながっておらず、第2オルダムキー溝324を介して、油流入部91に流入した潤滑油が油流通部92を流れる。また、このとき油流通部92を移動する潤滑油の移動方向が揺動スクロール32の回転方向が概ね一致するため、潤滑油の移動に対して反力が弱まり、相対的に油流出部93へ向かう油の流れの搬送作用が抑制される。そして、回転期間θ=315°付近において、再び給油穴24a上に油供給溝90の油流出部93が位置し、油流出部93と給油穴24aとがつながり、油流通部92を通って油流出部93まで潤滑油が到達している場合は、油流出部93から給油穴24aに潤滑油が充填される。
このように、揺動スクロール32が1回転する期間において、潤滑油が給油穴24aに供給される第1の回転期間と、潤滑油が油供給溝90から給油穴24aに供給され難くなる第2の回転期間と、潤滑油が給油穴24aを介して圧縮室34に供給される第3の回転期間と、が存在する。したがって、給油穴24aには1回転のうちで間欠的に潤滑油が供給されることになる。さらに、潤滑油が油供給溝90から給油穴24aに供給される第1の回転期間において、潤滑油が油流出部93側に流れて給油穴24aに供給されるか否かは、揺動スクロール32の回転速度に依存する。
スクロール圧縮機100の低速回転時においては、揺動スクロール32が1回転するのに必要な時間が高速回転時に比べて長い。よって、揺動スクロール32の油供給溝90を介してスラストプレート24の給油穴24aに油を搬送する時間が充分に有り、かつ、揺動スクロール32の回転速度が遅い。このため揺動スクロール32の回転軌道による油供給溝90(油流通部92)内の油の流れを妨げる効果が低く、揺動スクロール32の油供給溝90を介してスラストプレート24の給油穴24aへ油が供給される。
一方、スクロール圧縮機100の高速回転時においては、揺動スクロール32が1回転するのに必要な時間が低速回転時に比べて短い。すなわち、高速回転時のθ=180°~315°のときに、油流入部91から油流通部92にかけての流路がスラストプレート24上に形成され、潤滑油が油流通部92から油流出部93に向かう。しかし、油流通部92内の潤滑油は、高速回転時の揺動スクロール32の揺動に対し、油流出部93にまで至る移動時間を十分かせげず、油流通部92内での油流出部93にまで至る潤滑油の移動が制限される。そして、θ=0°になると、油流入部91から油流通部92にかけての流路がスラストプレート24の内径よりも内側に来て、潤滑油が油流通部92から油溜り空間25に落下するので、潤滑油の供給量が増加しない。よって、揺動スクロール32の油供給溝90を介してスラストプレート24の給油穴24aに油を供給される時間が充分に無く、かつ、スクロールの回転速度が速い。このため、揺動スクロール32の回転軌道による油供給溝90(油流通部92)内の油の流れを妨げる効果が高く、揺動スクロール32の油供給溝90を介してスラストプレート24の給油穴24aへの油の供給が抑制される。
このように、油供給溝90に揺動スクロール32の回転方向に延びる油流通部92が形成されていることにより、低速回転時の必要給油量を確保しながら、高速回転時の給油量の増加を防止し、油上がり量が調整できるため、冷凍能力の向上及び性能の向上を図ることができる。ここで、実施の形態2では、固定スクロール31がシェル1に固定されている。これにより、揺動スクロール32が大型化できる。大型化した揺動スクロール32は、揺動動作の安定性が課題となる。揺動スクロール32の揺動動作には、揺動スクロール32の摺動に作用する潤滑油の給油量が関係する。そこで、本発明の低速回転時の必要給油量を確保しながら、高速回転時の給油量の増加を防止し、油上がり量が調整できる構成を採用することにより、低速回転時から高速回転時までの油上がり量が最適化でき、揺動スクロール32の揺動動作が安定化できる。すなわち、従来のように、揺動スクロール32の摺動面3211に油供給穴が設けられるとともに、スラストプレート24に給油穴が設けられている場合、スクロール圧縮機の低速回転時に摺動性改善及びシール性向上による冷媒漏れ損失を低減させることができる。しかしながら、従来では、回転速度が大きくなるほど給油量が増加してしまうため、高速回転時においては給油量が過大になる。その結果、高速回転時に油上がり量が増加してしまい、冷凍能力低下及び性能低下を招いてしまう。
一方、上述したスクロール圧縮機100においては、給油穴24aと油供給溝90が、揺動スクロール32が1回転する回転期間のうち所定の回転期間で位置が重複するよう配置され、この位置が重複している第1の回転期間においても揺動スクロール32の回転軌道が油供給溝90内の油の流れを妨げるように反力が弱まる効果が発揮される構成となっている。したがって、高速回転時に過剰に潤滑油が圧縮機構部3に供給されることがなく、揺動スクロール32が大型化しても油上がり量を適切に調整することができる。
さらに、油供給溝90の油流出部93が、揺動スクロール32が揺動運動した際の第1の回転期間において、給油穴24a上に位置するように形成されている場合、低速回転時において油供給溝90から給油穴24aへ潤滑油を供給することができるため、揺動スクロール32が大型化しても低速回転時において潤滑油が不足することを防止することができる。
また、実施の形態1の図3に示すように、油流通部92が、円弧状に形成され、特に揺動スクロール32の回転軌道に沿って形成されている場合、潤滑油に反力が弱まる効果が働き、油流通部92内における潤滑油の移動をより効率的に規制することができる。
本実施の形態のスクロール圧縮機100の製造方法、特にメインシェル11の加工と固定スクロール31等の配置について、図13を参照してさらに詳しく説明する。図13は、メインシェルの一製造方法について説明するための図である。なお、図13は、メインシェル11の一つの壁の断面をわかりやすく図示したものであり、実際の寸法や厚みとは異なる。
まず、(a)のようなメインシェル11の一端側Uから切削用のブラシ等を挿入して、内壁面を厚み方向に所定の深さだけ切削加工して、(b)のように第2内壁面114及び第2突出部115による段差を形成する。メインシェル11の厚みは、例えば4~6mmであり、突出部の高さ、すなわち切削加工による削り深さは、例えば0.3mm前後である。次に、第2突出部115からアッパーシェル12の方向に所定距離離れた第2内壁面114において、切削用のブラシ等で内壁面を厚み方向に所定の深さだけ切削加工することで、(c)のように第1内壁面111及び第1突出部112による段差を形成する。このため、第1内壁面111の内径r1は、第2内壁面114の内径r2よりも大きくなる。また、第1突出部112は、第2突出部115よりもアッパーシェル12の方向に形成され、その内壁面は第2内壁面114を兼ねた構成となる。なお、第1突出部112を形成した後で、第2突出部115を形成するようにしても良い。
また、(b)(c)の切削加工後に、第1突出部112における第1内壁面111との接続部分(第1位置決め面113の第1内壁面111の側)、及び第2突出部115における第2内壁面114との接続部分(第2位置決め面116の第2内壁面114の側)に、菱形インサート等で外径加工することで、ロアシェル13の方向に凹んだ形状の凹み1131、1161をそれぞれ形成する。凹み1131、1161は、切削加工によって上記接続部分に生じやすい曲面を除去する、いわゆるヌスミである。すなわち、切削加工を行うと、第1内壁面111と第1位置決め面113との接続部分が直角ではなく、アールが形成されやすい。当該部分にアールが形成されると、固定スクロール31を第1突出部112に配置しても、第1位置決め面113に接触せずに浮いてしまい、位置決めの精度が低くなる。これに対して、凹み1131を形成することで、固定スクロール31が第1位置決め面113に確実に接触するため、位置決め精度を高めることができる。凹み1161についても同様で、メインフレーム2の位置決め精度を高めることができる。なお、凹み1131、1161をロアシェル13の方向に凹む形状とすることで、凹みをメインシェルの径方向に形成する場合と比較して、メインシェル11の肉厚減少を抑制できるため、強度の低下を抑制することができる。
次に、上記のように形成されたメインシェル11の一端側Uから、メインフレーム2を挿入する。メインフレーム2は、第2突出部115の第2位置決め面116に面で接触し、高さ方向の位置決めがされる。その状態で、メインフレーム2を第2内壁面114に焼嵌めやアークスポット溶接等により固定する。そして、メインフレーム2の軸孔221にクランクシャフト6を挿入したのち、偏心軸部62にブッシュ7を取り付け、さらにオルダムリング33や揺動スクロール32等を配置する。
次いで、メインシェル11の一端側Uから、固定スクロール31を挿入する。固定スクロール31は、第1突出部112の第1位置決め面113に面で接触し、高さ方向に位置決めがされる。なお、本実施の形態では、固定スクロール31の周方向の位置決めをする従来のネジのような部材がないため、固定スクロール31を第1内壁面111に固定するまでは揺動スクロール32に対して固定スクロール31が回転可能であり、第1渦巻体312と第2渦巻体322の位置関係がずれて、スクロール圧縮機の製品ごとに圧縮ばらつきや圧縮不良が発生するおそれがある。そこで、揺動スクロール32の第2渦巻体322に対する第1渦巻体312の位置関係が所定となるように固定スクロール31を回転させて位相を調整したのち、固定スクロール31を第1内壁面111に焼嵌めやアークスポット溶接等により固定する。
最後に、メインシェル11の一端側Uから、アッパーシェル12を挿入したのち、メインシェル11とアッパーシェル12を溶接やアークスポット溶接等により固定する。その際、アッパーシェル12で固定スクロール31を第1位置決め面113に押付けるように挿入し、かつその状態を維持して固定スクロール31をメインシェル11に固定することで、スクロール圧縮機ごとの冷媒取込空間37の高さのばらつきを抑制し、位置精度を高めるとともに、スクロール圧縮機の駆動時に固定スクロール31が上下方向にずれることを抑制する。ただし、第1突出部112は、少なくとも固定スクロール31の製造上の位置決めさえできれば良いので、固定スクロール31を第1内壁面111への固定後に、固定スクロール31が第1位置決め面113と接触していることは必須ではない。メインフレーム2と第2突出部115との関係についても同様である。
以上のような製造方法により、従来のようにメインフレーム2と固定スクロール31をネジ等で接続する方法と同等に、メインフレーム2、固定スクロール31及び揺動スクロール32の位置精度を実現しつつ、冷媒取込空間37を拡大することができる。また、ネジ等を使わないため、製造を容易化することができる。
本実施の形態では、揺動スクロール32を摺動自在に保持するメインフレーム2と、揺動スクロール32とともに圧縮室34を形成する固定スクロール31と、固定スクロール31を収容したシェル1と、を備え、シェル1は、第1内壁面111と、第1内壁面111から突出し、固定スクロール31が位置決めされる第1突出部112と、を有し、固定スクロール31は、第1内壁面111に固定されているため、揺動スクロール32の径方向の最外部に位置する側面3212とシェル1の内壁面とが対向し、メインフレーム2が第2基板321の側面3212とメインシェル11の内壁面との間に介在しない構造となる。したがって、固定スクロール31を固定するための周壁をメインフレーム2に形成することなく、固定スクロール31をシェル1内へ配置することができ、揺動スクロール32を配置する冷媒取込空間37を拡大することができる。これにより、例えば、揺動スクロール32の第2基板321及びスラストプレート24の直径を大きくすることで、摺動面積を大きくし、スラスト荷重による面圧を低減することが可能となる。また、メインフレーム2に固定スクロール31を固定するための壁が必要なくなるため、メインフレーム2の加工時間を短縮化することができるとともに、軽量化を図ることもできる。
シェル1は、第2内壁面114と、第2内壁面114から突出し、メインフレーム2に位置決めされる第2突出部115と、をさらに有し、メインフレーム2は、第2内壁面114に固定されている。したがって、固定スクロール31もメインフレーム2も一連の製造工程にて同様の方法でシェル1に固定することができ、製造を容易化できる。
第2内壁面114は、第1突出部112の内壁面に形成されている。つまり、第1突出部112の内壁面は、第2内壁面114を兼ねている。したがって、少ない工程で第1突出部112及び第2突出部115を形成することができる。また、第1内壁面111の内径r1は、第2内壁面114の内径r2よりも大きく形成され、シェル1は、両端が開口したメインシェル11と、メインシェル11の一端側の開口を覆うアッパーシェル12と、メインシェル11の他端側の開口を覆うロアシェル13と、を備え、第1突出部112のアッパーシェル12の側に、固定スクロール31を位置決めする第1位置決め面113が形成され、第1位置決め面113が形成され、第2突出部115のアッパーシェル12の側に、メインフレーム2を位置決めする第2位置決め面116が形成されている。したがって、メインシェル11に固定スクロール31及びメインフレーム2を同様の方法で固定することができるため、組立を容易化することができる。
また、第1位置決め面113は、メインフレーム2と摺動する揺動スクロール32の摺動面3211よりもアッパーシェル12の方向に形成され、第2位置決め面116は、摺動面3211よりもロアシェル13の方向に形成されている。したがって、メインフレーム2を一端側Uからメインシェル11に挿入固定後、メインシェル11をそのままの体勢で順次、揺動スクロール32や固定スクロール31を挿入固定することができるため、組立を容易化することができる。
第1突出部112における第1内壁面111との接続部分及び第2突出部115における第2内壁面114との接続部分には、ロアシェルの方向に凹み1131、1161が形成されている。したがって、第1位置決め面113と固定スクロール31の接触、及び第2位置決め面116とメインフレーム2の接触を良好に保つことができ、位置決め精度を高めることができる。
アッパーシェル12の外径は、メインシェル11の一端側の内径よりも小さく、アッパーシェル12は、固定スクロール31を第1突出部112とで挟んでいる。したがって、固定スクロール31を第1位置決め面113に確実に接触させるように押し付けることができる。また、固定スクロール31のメインシェル11に対する上下方向の移動を抑制できる。
メインフレーム2は、揺動スクロール32と対向する平坦面212に、摺動面3211と摺動するスラストプレート24を有し、メインフレーム2の平坦面212の外端部には、アッパーシェル12の方向に突出する突壁216が形成されており、突壁216の平坦面212からの高さhは、スラストプレート24の厚みdより小さい。したがって、揺動スクロール32がメインフレーム2に干渉することなく、スラストプレート24に摺動させることができる。
また、スラストプレート24及び突壁216には、凸部又は凹部が形成されており、スラストプレートの回転を抑止可能に凸部と凹部とが係合している。凸部は、突壁216からスラストプレート24の方向に突出して形成された一対の突部217、凹部は、スラストプレートの外周部分に形成された切欠き241であり、一対の突部217は、切欠き241に設けられている。したがって、スラストプレート24がメインフレーム2の平坦面212に対して回転することを抑制することができる。また、フレームの一対の突部217の間には、アッパーシェル12の方向とロアシェル13の方向とに貫通して吸入ポート213が形成されている。したがって、吸入ポート213がスラストプレート24によって塞がれることを抑制でき、冷媒取込空間37に冷媒を安定して供給することができる。
スクロール圧縮機、凝縮器、膨張弁、及び蒸発器を備え、冷媒を循環させる冷凍サイクル装置であって、冷媒に例えばR32などを含む高圧冷媒を使用してもよい。R32などを含む高圧冷媒を使用した場合、スラスト軸受にかかる負担が大きくなるが、本実施の形態では、揺動スクロール32の第2基板321及びスラストプレート24の直径を大きくし、摺動面積を大きくすることも可能であるため、スラスト軸受にかかる負担を軽減でき、信頼性を高めることができる。
<変形例2>
図14は、本発明の変形例2に係るスクロール圧縮機100の断面図、図15は、図14の二点鎖線の領域の拡大図である。以下の実施の形態等では、図7~図13のスクロール圧縮機100と同一の構成を有する部位には同一の符号を付してその説明を省略する。
図14は、本発明の変形例2に係るスクロール圧縮機100の断面図、図15は、図14の二点鎖線の領域の拡大図である。以下の実施の形態等では、図7~図13のスクロール圧縮機100と同一の構成を有する部位には同一の符号を付してその説明を省略する。
変形例2では、メインシェル11Aは、第1直管部117Aと、第2直管部118Aと、連結部119Aと、を備えた段付き形状となっている。第1直管部117Aは、メインシェル11Aの一端側Uに設けられている。第2直管部118Aは、第1直管部117Aの外径R1よりも外径R2が小さく、第1直管部117Aよりも他端側Lに設けられている。連結部119Aは、外壁面が第2直管部118Aから第1直管部117Aに向かって拡径するように変化しており、第1直管部117Aと第2直管部118Aとをつないでいる。
そして、図15からわかるように、第2内壁面114Aの少なくとも一部は、連結部119Aの内壁面に形成されている。すなわち、連結部119Aの外壁面は、外径が変化する形状であるが、内壁はクランクシャフト6の中心軸に沿ったフラットな面を有する。特に、第2内壁面114Aは、第1直管部117A、第2直管部118A及び連結部119Aのそれぞれの内壁に跨るように、かつ面一に形成されている。その連結部19よりも他端側L側の第2内壁面114Aからは第2突出部115Aが突出し、第2突出部115Aの一端側Uは第2位置決め面116Aが形成されており、メインシェル11Aが第2突出部115Aで位置決めされた状態で、第2内壁面114Aに固定されている。また、第1内壁面111Aは、第1直管部117Aの内壁面に形成されている。
本実施の形態のスクロール圧縮機100のメインシェル11Aの加工方法について、図16を参照してさらに詳しく説明する。図16は、本発明の変形例2に係るメインシェルの一製造方法について説明するための図である。なお、図16は、メインシェル11Aの一つの壁の断面をわかりやすく図示したものであり、実際の寸法や厚みとは異なる。
まず、(a)のような円筒状に形成されたメインシェル11Aの一端側Uからプレス機を挿入し、メインシェル11Aにプレス加工等を行うことで、(b)のように第1直管部117Aと、第2直管部118Aと、連結部119Aと、を備えた段付き形状に形成する。次に、メインシェル11Aの一端側Uから切削用のブラシ等を挿入して、連結部119A及び第2直管部118Aの一部の内壁面を厚み方向に切削加工し、第2内壁面114A及び第2突出部115Aによる段差を形成する。ここでは、第1直管部117Aは削らないことにより、切削後の連結部119A及び第2直管部118Aの内径r3を、第1直管部117Aの内径r4よりも小さくする。次いで、メインシェル11Aの一端側Uから切削用のブラシ等で第1直管部117Aの内壁面を厚み方向に所定の深さだけ切削加工することで、第1内壁面111A及び第1突出部112Aによる段差を形成する。そして、本実施の形態と同様に、凹み1131A、1161A等を形成したのち、メインフレーム2や固定スクロール31等を順次配置する。この製造方法では、内壁面に2つの段差を形成するための切削は、第1直管部117Aと、第2直管部118A及び連結部119Aとで独立して行うことができるため、メインシェル11Aの切削量は、図16(c)の点線で示す範囲のみとなり、切削による時間を短縮することができる。また、第1内壁面111Aにおける第1直管部117A部分の厚みと、第2内壁面114Aにおける第2直管部118A部分の厚みを同程度にすることができ、切削したことにより、メインシェル11Aの厚みが局所的に薄くなることを抑制できる。
なお、第2内壁面114Aを作成する際に、切削部分の内壁面の内径r3を第1直管部117Aの内壁面の内径r4とほぼ同じになるように切削してもよい。すなわち、第1直管部117A、第2直管部118A及び連結部119Aの各々の内壁面を面一にすることで、第2内壁面114Aを形成しても良い。これらを面一にすることで、段差がなくなるため、メインシェル11Aの一端側Uからのメインフレーム2の挿入をスムーズに行うことができる。連結部119A及び第2直管部118Aの内壁面を第1直管部117Aの内壁面の内径r4とほぼ同じになるように切削することが製造誤差上困難な場合は、連結部119A及び第2直管部118Aの内壁面を切削する際に、第1直管部117Aの内壁面も僅かに削ることで面一にしても構わない。
この変形例では、メインシェル11Aは、第1直管部117Aと、第1直管部117Aの外径R1よりも外径R2が小さい第2直管部118Aと、第1直管部117Aと第2直管部118Aとを連結する連結部119Aと、を備え、第2内壁面114Aの少なくとも一部は、連結部119Aの内壁に形成されている。したがって、連結部119Aの内壁面を削ることで第2突出部115A全体又はその一部を形成することができ、通常の円筒形状のメインシェル11Aの場合と比較して削る量が削減され、製造を容易化することができる。
また、第1内壁面111Aは、第1直管部117Aの内壁に形成され、第2内壁面114Aは、第2直管部118A及び連結部119Aの内壁に形成されている。したがって、第1直管部117Aの一部の内壁面を削ることで第1突出部112Aを、連結部119Aと第2直管部118Aの一部の内壁面を削ることで第2突出部115Aを形成することができる。そのため、第1突出部112A及び第2突出部115Aを形成するために切削する深さを同程度にすることができ、切削された第1直管部117Aの厚みが薄くなりすぎることを抑制できる。また、第2内壁面114Aが十分な長さとなり、メインフレーム2との固定強度を高めることができる。なお、第2内壁面114Aの内径r3は、第1直管部117Aの内径r4よりも小さくなるため段差状となるが、その段差は僅かであるとともに、連結部119Aの内壁面の形状はテーパ状になっているため、メインフレーム2をメインシェル11Aの一端側Uから挿入する際にその段差によってスムーズな挿入が抑制されることはない。よって、第2内壁面114Aを形成するために削る量は削減しつつ、製造を容易に行うことができる。
<変形例3>
図17は、本発明の変形例3に係るスクロール圧縮機100の断面図、図18は、図17の二点鎖線の領域の拡大図である。
図17は、本発明の変形例3に係るスクロール圧縮機100の断面図、図18は、図17の二点鎖線の領域の拡大図である。
変形例3では、アッパーシェル12Bの内径は、メインシェル11Bの一端側の外径よりも大きく設定されおり、固定スクロール31Bは、メインシェル11Bの一端側Uで位置決めされた状態で、アッパーシェル12Bの内壁面に固定されている。すなわち、メインシェル11Bとアッパーシェル12Bとによって段差が形成され、アッパーシェル12Bの内壁面が第1内壁面111Bを、メインシェル11Bの一端側Uが第1突出部112Bを、メインシェル11Bの一端側Uの端面が第1位置決め面113Bを兼ねている。このため、第1突出部112Bを形成するためにメインシェル11Bの内壁面を切削等する必要がなくなり、製造を容易化することができる。なお、固定スクロール31Bは、アッパーシェル12Bにネジ止めしたり、アッパーシェル12Bとレーザー等でスポット溶接したり、メインシェル11Bの一端側Uの端面にネジ止めしたりする等により固定できる。また、メインシェル11Bとアッパーシェル12Bを溶接することを考慮すると、アッパーシェル12Bはメインシェル11Bに少なくとも一部が内接するように設けられるのが望ましい。
また、図18に示すように、固定スクロール31Bの第1基板311Bの外端部には、他端側Lに突出する突出壁314Bが形成されている。突出壁314Bは、メインシェル11Bに対する固定スクロール31Bの径方向の位置決めをするための突片であり、その外壁面がメインシェル11Bの内壁面に接触するように配置され、かつ焼嵌めにより固定している。これにより、固定スクロール31Bを第1位置決め面113Bに配置した際に、固定スクロール31Bがメインシェル11Bに対して径方向にずれることを抑制することができる。
この変形例では、アッパーシェル12Bの内径は、メインシェル11Bの一端側の外径よりも大きく、第1位置決め面113Bは、メインシェル11Bのアッパーシェル12Bの側の端部に形成されていることで、第1突出部112Bを形成するためにメインシェル11Bの内壁面を切削等する必要がなくなり、製造を容易化することができる。
<変形例4>
図19は、本発明の変形例4に係るスクロール圧縮機100の断面図である。
図19は、本発明の変形例4に係るスクロール圧縮機100の断面図である。
変形例4では、第1突出部112Cを第1内壁面111Cから突出する突起状に形成し、その第1突出部112Cに固定スクロール31Cを位置決めしている。そのため、第1突出部112Cを容易に形成することができる。この第1突出部112Cは、第1内壁面111Cに切削により形成できるほか、あらかじめ形成された突起状の部材を内壁面に接着等することにより、形成することができる。また、第1位置決め面113Cを第1突出部112Cにテーパ状に形成するとともに、固定スクロール31Cの第1基板311Cにも傾斜面315Cを形成し、傾斜面同士で接触させている。そのため、メインシェル11Cに対する固定スクロール31Cの位置決め精度を高めることができる。
なお、本発明は、上記実施の形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。
例えば、上記実施の形態では、縦型スクロール圧縮機について説明したが、横型のスクロール圧縮機にも適用できる。その際、横型のスクロール圧縮機においても、メインフレームを基準として、圧縮機構部が設けられている側を一端側、駆動機構部が設けられている側を他端側と方向づけて見ることができる。また、低圧シェル方式のスクロール圧縮機に限らず、駆動機構部が配置されたメインシェル内の空間の圧力が冷媒取込空間の圧力よりも高くなる高圧シェル方式のスクロール圧縮機にも適用できる。高圧シェル方式では、スラスト軸受における荷重が小さいため、後述する図13のように、押しのけ量を大きくする構造や、図14のように圧縮機の小型化する構造を採用するのが望ましい。
メインシェル11は、円筒状に限らず、多角筒等であっても良い。また、上記実施の形態では、メインシェル11内における固定スクロール31の第1基板311とメインフレーム2のスラスト軸受との間の冷媒取込空間37を従来よりも広げることができる効果により、渦巻体等は従来設計のままで、揺動スクロール32の第2基板321及びスラストプレート24の直径を大きくすることで、摺動面積を大きくし、スラスト荷重を低減する構成としたが、これに限られない。
図20は、本発明の変形例5に係るスクロール圧縮機100の断面図である。例えば、図20のように、揺動スクロール32Dの第2基板321Dを大径化する点は本実施の形態と同じだが、さらに固定スクロール31Dの第1渦巻体312Dを第1基板311Dの端部付近まで形成するとともに、揺動スクロール32Dの第2渦巻体322Dを第2基板321Dの端部付近まで形成しても良い。これにより、スクロールによる冷媒の最大取込量、いわゆる押しのけ量を増加させることができるため、圧縮比を高めることができ、スクロール圧縮機の性能を高めることができる。なお、低GWP冷媒であるFO冷媒、特にHFO1234yfは、密度が低い冷媒であるため、押しのけ量を大きくすることが望ましい。そのため、図13の構成と組み合わせることで、サイズアップを抑制しつつ、性能の高いスクロール圧縮機を実現できる。
なお、揺動スクロール32Dの第2渦巻体322Dや第2基板321Dを大きくした場合、重量化等により揺動スクロール32Dの揺動運動による遠心力が大きくなる。そのため、バランサ72Dのウエイト部721Dの体積ないし重量を大きくしてその遠心力を相殺する必要がある。これに対して、本発明では、メインフレーム2においてネジ止めするための壁をなくしたことで、メインフレーム2Dの設計自由度も高まるため、メインフレーム2Dの本体部21Dの収容空間211Dを大きく確保することができる。収容空間211Dを大きくすることで、体積の大きなウエイト部721Dを有するバランサ72Dを使用することできるため、重量化等により大きくなった揺動スクロール32Dの遠心力を相殺して、揺動スクロール32の第2渦巻体322に作用する径方向の荷重を低減できる。よって、揺動スクロール32の信頼性を向上できるとともに、揺動スクロール32の第2渦巻体322と固定スクロール31の第1渦巻体312との間の摺動損失を低減できる。
上記の構造であるので、スクロール圧縮機100の増速(高速回転数化)時の揺動スクロール32の信頼性確保と、スクロール圧縮機100の増速(高速回転数化)時のスクロール高回転数化による揺動スクロール32の第2渦巻体322と固定スクロール31の第1渦巻体312との間の摺動損失抑制と、が実現でき、信頼性と性能を確保しながらスクロール圧縮機100の増速(高回転数化)による冷凍能力の拡大が図れる。
ただし、スクロール圧縮機100を増速(高回転数化)すると、給油量が過大となり、油上がり量の増加に伴い冷凍能力低下及び性能低下を招く。しかしながら、油供給溝90を備えるので、揺動スクロール32の信頼性の確保と、渦巻摺動損失の抑制と、油上がり量増加に伴う冷凍能力低下及び性能低下の抑制と、が実現でき、スクロール圧縮機100の増速(高回転数化)による冷凍能力の拡大が図れる。
また、上記の構造であるので、揺動スクロール32のスラスト摺動面(及びスラストプレート24の径方向幅)をより大きく設計できる。これにより、油流通部92の形状の設計自由度が高まる。たとえば、油流通部92は、直線形状、楕円形状、多角形形状などに形成できる。また、油供給溝90及び給油穴24aについては、個数の選択幅が広がる。これらの設計自由度から、油供給溝90の効果がより効果的に発揮させられる。
図21は、本発明の変形例6に係るスクロール圧縮機100の断面図である。図21のように、揺動スクロール32のサイズはそのままで、シェル1E、すなわち、メインシェル11Eやアッパーシェル12E等は従来よりも小さい内径のものを使用しても良い。これにより、従来と比較して押しのけ量は同等で、小型のスクロール圧縮機を実現することができる。
第1突出部112及び第1位置決め面113は、固定スクロール31を精度良く位置決めできるものであれば、様々な形状や製法を採用可能である。例えば、第1突出部112は、固定スクロール31を位置決めできれば良いので、メインシェル11の内壁面に形成された少なくとも2箇所以上の突起で構成されていても良い。また、メインシェル11の外側から叩打することにより第1突出部112を形成しても良い。第1位置決め面113に凸部を形成し、固定スクロール31に形成された凹部と嵌合させることで、メインシェル11に対する固定スクロール31の回転を抑制するようにしても良い。
図22は、本発明の変形例7に係るスクロール圧縮機100の断面図である。スラストプレート24F及び突壁216Fに形成される凸部又は凹部は、図22のように、スラストプレート24Fに突壁216Fの方向に突出して一対の突部242Fを形成し、突壁216Fに切欠き218Fを形成し、切欠き218Fに一対の突部242Fを配置するようにしても良い。これにより、第1の実施の形態と同様に、スラストプレート24Fの回転を抑止することができる。
スラストプレート24は、円環状に限らず、C状とし、そのスラストプレート24が切れた部分に開口面積の大きな吸入ポート213を配置しても良い。これにより、吸入ポート213の面積を広げることができる。その際、吸入ポート213の面積を広げると、揺動スクロール32の搖動のタイミングによっては、揺動スクロール32によって、吸入ポート213の一部が塞がれる場合がある。この場合には、固定スクロール31と揺動スクロール32とで冷媒を取り込むタイミングでは揺動スクロール32で吸入ポート213を塞がない位置関係とすれば、吸入ポート213が塞がれる影響を少なくできる。
スラストプレート24は必須ではなく、メインフレーム2の平坦面212が揺動スクロール32と摺動する構成でも良い。
メインシェル11の内壁面に、クランクシャフト6の中心軸に沿う方向に凸部(又は凹部)、メインフレーム2及び固定スクロール31にその凸部(又は凹部)に係合する凹部(又は凸部)を形成してもよい。これにより、固定スクロール31の第1渦巻体312と、揺動スクロール32の第2渦巻体322の位相を合わせることができるため、揺動スクロール32に対して固定スクロール31を回転させて位相を調整する工程を省略することができる。
実施の形態3.
<冷凍サイクル装置101>
図23は、本発明の実施の形態3に係るスクロール圧縮機100を適用した冷凍サイクル装置101を示す冷媒回路図である。
<冷凍サイクル装置101>
図23は、本発明の実施の形態3に係るスクロール圧縮機100を適用した冷凍サイクル装置101を示す冷媒回路図である。
図23に示すように、冷凍サイクル装置101は、スクロール圧縮機100、凝縮器102、膨張弁103及び蒸発器104を備える。これらスクロール圧縮機100、凝縮器102、膨張弁103及び蒸発器104が冷媒配管で接続されて冷凍サイクル回路を形成している。そして、蒸発器104から流出した冷媒は、スクロール圧縮機100に吸入されて高温高圧となる。高温高圧となった冷媒は、凝縮器102において凝縮されて液体になる。液体となった冷媒は、膨張弁103で減圧膨張されて低温低圧の気液二相となり、気液二相の冷媒が蒸発器104において熱交換される。
実施の形態1、2のスクロール圧縮機100は、このような冷凍サイクル装置101に適用できる。なお、冷凍サイクル装置101としては、たとえば空気調和装置、冷凍装置又は給湯器等が挙げられる。
1、1E シェル、2、2D メインフレーム、3 圧縮機構部、4 駆動機構部、5 サブフレーム、6 クランクシャフト、7 ブッシュ、8 給電部、11、11A、11B、11C、11E メインシェル、11a 低圧室、12、12B、12E アッパーシェル、12a 高圧室、13 ロアシェル、14 吸入管、15 吐出管、16 連結シェル、17 固定台、19 連結部、21、21D 本体部、22 主軸受部、23 返油管、24、24F スラストプレート、24a 給油穴、25 油溜り空間、31、31B、31C、31D 固定スクロール、32、32D 揺動スクロール、33 オルダムリング、34 圧縮室、35 マフラー、36 吐出弁、37 冷媒取込空間、38 吐出孔、41 ステータ、42 ロータ、51 副軸受部、52 オイルポンプ、61 主軸部、62 偏心軸部、63 通油路、64 第1バランスウェイト、65 第2バランスウェイト、71 スライダ、72、72D バランサ、81 カバー、82 給電端子、83 配線、90 油供給溝、91 油流入部、92 油流通部、93 油流出部、100 スクロール圧縮機、101 冷凍サイクル装置、102 凝縮器、103 膨張弁、104 蒸発器、111、111A、111B、111C 第1内壁面、112、112A、112B、112C 第1突出部、113、113B、113C 第1位置決め面、114、114A 第2内壁面、115、115A 第2突出部、116、116A 第2位置決め面、117A 第1直管部、118A 第2直管部、119A 連結部、211、211D 収容空間、212 平坦面、213 吸入ポート、214 オルダム収容部、215 第1オルダムキー溝、216、216F 突壁、217 突部、218F 切欠き、221 軸孔、241 切欠き、242F 突部、311、311B、311C、311D 第1基板、312、312D 第1渦巻体、313 吐出ポート、314B 突出壁、315C 傾斜面、316 シール、321、321D 第2基板、322、322D 第2渦巻体、323 筒状部、324 第2オルダムキー溝、325 シール、331 リング部、332 第1キー部、333 第2キー部、351 吐出孔、721、721D ウエイト部、1131、1131A 凹み、1161 凹み、1161A 凹み、3211 摺動面、3212 側面。
Claims (29)
- 固定側渦巻体を有する固定スクロールと、
前記固定スクロールの前記固定側渦巻体に組み合わされる揺動側渦巻体を有する揺動スクロールと、
前記揺動スクロールの下面を揺動可能に支持し、中心部に開口部を有するスラストプレートと、
を備え、
前記スラストプレートの内側に油溜り空間が形成され、
前記固定スクロールと前記揺動スクロールとの間に圧縮する作動流体を吸入するための圧縮室が形成されるスクロール圧縮機であって、
前記揺動スクロールは、前記スラストプレートと摺動する摺動面に設けられ、潤滑油が供給される油供給溝を備え、
前記スラストプレートは、前記揺動スクロールと摺動する面から前記圧縮室へ通じる給油穴を有し、
前記油供給溝は、
潤滑油が流入する油流入部と、
一方側が前記油流入部に通じ、前記油流入部から前記揺動スクロールの回転方向へ延びる油流通部と、
前記油流通部の他方側に通じ、前記給油穴上に位置したときに前記油流通部を通った潤滑油を前記給油穴側へ流出させる油流出部と、
を備え、
前記揺動スクロールが揺動する1回転の中に、
前記油流通部が前記スラストプレート上に位置し、前記油流通部を介して前記給油穴に潤滑油が供給される第1の回転期間と、
前記油流通部が前記油溜り空間上に位置し、前記油流通部を介して前記給油穴に供給される潤滑油の量が前記第1の回転期間よりも少なくなる第2の回転期間と、
を含むスクロール圧縮機。 - 前記油供給溝の油流出部は、前記第1の回転期間において、前記給油穴上に位置するように形成されている請求項1に記載のスクロール圧縮機。
- 前記油流通部は、円弧状に形成されている請求項1又は2に記載のスクロール圧縮機。
- 前記油流通部は、前記揺動スクロールの回転軌道に沿って形成されている請求項3に記載のスクロール圧縮機。
- 前記油流通部は、前記揺動スクロールの外周と内周との間に周方向に沿った鈍角の円弧状に形成されている請求項3又は4に記載のスクロール圧縮機。
- 前記揺動スクロールを摺動自在に保持するフレームと、
前記フレームと前記揺動スクロールの間に設けられ、前記揺動スクロールの自転運動を規制するオルダムリングと、
をさらに備え、
前記オルダムリングは、前記揺動スクロール側に突出したオルダムキーを備え、
前記揺動スクロールは、前記オルダムキーが嵌め込まれるオルダムキー溝を有し、
前記油流入部は、前記オルダムキー溝に通じており、前記オルダムキー溝内の潤滑油が流入されるものである請求項1~5のいずれか1項に記載のスクロール圧縮機。 - 前記オルダムキー溝は、前記揺動スクロールの所定の半径に対して線対称に一対設けられ、
前記給油穴は、前記油流入部につながった前記一対のオルダムキー溝のうちの一方とは反対側の他方の近傍に形成されている請求項6に記載のスクロール圧縮機。 - 前記スラストプレートの前記給油穴及び前記揺動スクロールの前記油供給溝は、それぞれ複数個設けられている請求項1~7のいずれか1項に記載のスクロール圧縮機。
- 前記スラストプレートの前記給油穴及び前記揺動スクロールの前記油供給溝は、それぞれ2個設けられている請求項8に記載のスクロール圧縮機。
- 前記スラストプレートの前記給油穴及び前記揺動スクロールの前記油供給溝は、前記スラストプレート及び前記揺動スクロールの所定の半径に対して線対称にそれぞれ2個設けられている請求項9に記載のスクロール圧縮機。
- 前記揺動スクロールを摺動自在に保持するフレームと、
前記フレーム及び前記固定スクロールを収容したシェルと、
をさらに備え、
前記シェルは、第1内壁面と、前記第1内壁面から突出して前記固定スクロールを位置決めする第1突出部と、を有し、
前記固定スクロールは、前記第1内壁面に固定されている請求項1~10のいずれか1項に記載のスクロール圧縮機。 - 前記揺動スクロールは、径方向の最外部に位置する側面を備え、前記側面と前記シェルの内壁面とが対向している請求項11に記載のスクロール圧縮機。
- 前記シェルは、第2内壁面と、前記第2内壁面から突出して前記フレームを位置決めする第2突出部と、をさらに有し、
前記フレームは、前記第2内壁面に固定されている請求項11又は12に記載のスクロール圧縮機。 - 前記第2内壁面は、前記第1突出部の内壁面に形成されている請求項13に記載のスクロール圧縮機。
- 前記第1内壁面の内径は、前記第2内壁面の内径よりも大きく形成されている請求項13又は14に記載のスクロール圧縮機。
- 前記シェルは、両端が開口したメインシェルと、前記メインシェルの一端側の開口を覆う第1シェルと、前記メインシェルの他端側の開口を覆う第2シェルと、を備え、
前記第1突出部の前記第1シェルの側に、前記固定スクロールを位置決めする第1位置決め面が形成され、
前記第2突出部の前記第1シェルの側に、前記フレームを位置決めする第2位置決め面が形成されている請求項13に記載のスクロール圧縮機。 - 前記第1位置決め面は、前記フレームと摺動する前記揺動スクロールの摺動面よりも前記第1シェルの方向に形成され、
前記第2位置決め面は、前記摺動面よりも前記第2シェルの方向に形成されている請求項16に記載のスクロール圧縮機。 - 前記メインシェルは、第1直管部と、前記第1直管部の外径よりも外径が小さい第2直管部と、前記第1直管部と前記第2直管部とを連結する連結部と、を備え、
前記第2内壁面の少なくとも一部は、前記連結部の内壁に形成されている請求項13に記載のスクロール圧縮機。 - 前記第1内壁面は、前記第1直管部の内壁に形成され、
前記第2内壁面は、前記第2直管部の少なくとも一部及び前記連結部の内壁に形成されている請求項18に記載のスクロール圧縮機。 - 前記第2内壁面の内径は、前記第1直管部の内径よりも小さく形成されている請求項18又は19に記載のスクロール圧縮機。
- 前記第1突出部における前記第1内壁面との接続部分、及び前記第2突出部における前記第2内壁面との接続部分の少なくとも一方には、前記第2シェルの方向に凹みが形成されている請求項16~20のいずれか1項に記載のスクロール圧縮機。
- 前記第1シェルの外径は、前記メインシェルの前記一端側の内径よりも小さく形成され、
前記第1シェルは、前記固定スクロールを前記第1突出部とで挟んでいる請求項16~21のいずれか1項に記載のスクロール圧縮機。 - 前記第1シェルの内径は、前記メインシェルの前記一端側の外径よりも大きく形成され、
前記第1位置決め面は、前記メインシェルの前記第1シェルの側の端部に形成されている請求項16~21のいずれか1項に記載のスクロール圧縮機。 - 前記フレームは、前記揺動スクロールと対向する平坦面に、前記摺動面と摺動する前記スラストプレートを有し、
前記フレームの前記平坦面の外端部には、前記第1シェルの方向に突出する突壁が形成されており、
前記突壁の前記平坦面からの高さは、前記スラストプレートの厚みより小さい請求項16に記載のスクロール圧縮機。 - 前記スラストプレート及び前記突壁には、凸部又は凹部が形成されており、
前記スラストプレートの回転を抑止可能に前記凸部と前記凹部とが係合している請求項24に記載のスクロール圧縮機。 - 前記凸部は、一対の突部であり、
前記凹部は、切欠きであり、
前記一対の突部は、前記切欠きに設けられている請求項25に記載のスクロール圧縮機。 - 前記フレームには、前記一対の突部の間の部分に吸入ポートが貫通して形成されている請求項26に記載のスクロール圧縮機。
- 請求項1~27のいずれか1項に記載のスクロール圧縮機を備えた冷凍サイクル装置。
- 前記スクロール圧縮機、凝縮器、膨張弁、及び蒸発器を備え、作動流体として冷媒を循環させる冷凍サイクル装置であって、
前記冷媒は、R32又はHFO冷媒を含む請求項28に記載の冷凍サイクル装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880092033.XA CN112041561A (zh) | 2018-04-27 | 2018-04-27 | 涡旋压缩机以及制冷循环装置 |
JP2020515447A JP6903228B2 (ja) | 2018-04-27 | 2018-04-27 | スクロール圧縮機及び冷凍サイクル装置 |
PCT/JP2018/017261 WO2019207784A1 (ja) | 2018-04-27 | 2018-04-27 | スクロール圧縮機及び冷凍サイクル装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/017261 WO2019207784A1 (ja) | 2018-04-27 | 2018-04-27 | スクロール圧縮機及び冷凍サイクル装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019207784A1 true WO2019207784A1 (ja) | 2019-10-31 |
Family
ID=68293987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/017261 WO2019207784A1 (ja) | 2018-04-27 | 2018-04-27 | スクロール圧縮機及び冷凍サイクル装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6903228B2 (ja) |
CN (1) | CN112041561A (ja) |
WO (1) | WO2019207784A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH025779A (ja) * | 1988-06-22 | 1990-01-10 | Mitsubishi Electric Corp | 密閉型スクロール圧縮機 |
JPH0315686A (ja) * | 1989-06-13 | 1991-01-24 | Sanyo Electric Co Ltd | スクロール圧縮機 |
JPH09112474A (ja) * | 1995-10-17 | 1997-05-02 | Daikin Ind Ltd | 冷媒圧縮機 |
JP2002303278A (ja) * | 2001-02-26 | 2002-10-18 | Scroll Technol | スクロールコンプレッサおよびその組み立て方法 |
JP2006220117A (ja) * | 2005-02-14 | 2006-08-24 | Mitsubishi Heavy Ind Ltd | スクロール型圧縮機および空気調和装置 |
JP2015071950A (ja) * | 2013-10-01 | 2015-04-16 | ダイキン工業株式会社 | 圧縮機 |
WO2015177851A1 (ja) * | 2014-05-19 | 2015-11-26 | 三菱電機株式会社 | スクロール圧縮機 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH086703B2 (ja) * | 1988-08-01 | 1996-01-29 | ダイキン工業株式会社 | 開放形圧縮機 |
JPH0874753A (ja) * | 1994-09-01 | 1996-03-19 | Mitsubishi Heavy Ind Ltd | スクロール型圧縮機 |
US6687992B2 (en) * | 2002-01-14 | 2004-02-10 | Delphi Technologies, Inc. | Assembly method for hermetic scroll compressor |
US6984115B1 (en) * | 2004-11-02 | 2006-01-10 | Chyn Tec. International Co., Ltd. | Axial sealing structure of scroll compressor |
JP2006241993A (ja) * | 2005-02-28 | 2006-09-14 | Mitsubishi Heavy Ind Ltd | スクロール型圧縮機 |
US7878775B2 (en) * | 2008-01-17 | 2011-02-01 | Bitzer Kuhlmaschinenbau Gmbh | Scroll compressor with housing shell location |
JP5201113B2 (ja) * | 2008-12-03 | 2013-06-05 | 株式会社豊田自動織機 | スクロール型圧縮機 |
KR101059880B1 (ko) * | 2011-03-09 | 2011-08-29 | 엘지전자 주식회사 | 스크롤 압축기 |
JP5839913B2 (ja) * | 2011-09-22 | 2016-01-06 | 三菱電機株式会社 | 流体機械及び流体機械の製造方法 |
EP3130805A4 (en) * | 2014-04-09 | 2018-01-10 | Mitsubishi Electric Corporation | Scroll compressor |
JP6986998B2 (ja) * | 2018-03-12 | 2021-12-22 | 三菱電機株式会社 | スクロール圧縮機、冷凍装置及び空調装置 |
-
2018
- 2018-04-27 WO PCT/JP2018/017261 patent/WO2019207784A1/ja active Application Filing
- 2018-04-27 CN CN201880092033.XA patent/CN112041561A/zh active Pending
- 2018-04-27 JP JP2020515447A patent/JP6903228B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH025779A (ja) * | 1988-06-22 | 1990-01-10 | Mitsubishi Electric Corp | 密閉型スクロール圧縮機 |
JPH0315686A (ja) * | 1989-06-13 | 1991-01-24 | Sanyo Electric Co Ltd | スクロール圧縮機 |
JPH09112474A (ja) * | 1995-10-17 | 1997-05-02 | Daikin Ind Ltd | 冷媒圧縮機 |
JP2002303278A (ja) * | 2001-02-26 | 2002-10-18 | Scroll Technol | スクロールコンプレッサおよびその組み立て方法 |
JP2006220117A (ja) * | 2005-02-14 | 2006-08-24 | Mitsubishi Heavy Ind Ltd | スクロール型圧縮機および空気調和装置 |
JP2015071950A (ja) * | 2013-10-01 | 2015-04-16 | ダイキン工業株式会社 | 圧縮機 |
WO2015177851A1 (ja) * | 2014-05-19 | 2015-11-26 | 三菱電機株式会社 | スクロール圧縮機 |
Non-Patent Citations (2)
Title |
---|
6 June 2016 (2016-06-06), Retrieved from the Internet <URL:https://www.j-platpat.inpit.go.jp/web/tokujisu/tkbs/TKBS_GM101_Top.action> [retrieved on 20180726] * |
vol. 4, 26 July 2018 (2018-07-26), Retrieved from the Internet <URL:https://www.j-platpat.inpit.go.jp/web/tokujisu/tkbs/TKBS_GM101_Top.action> * |
Also Published As
Publication number | Publication date |
---|---|
CN112041561A (zh) | 2020-12-04 |
JPWO2019207784A1 (ja) | 2021-02-12 |
JP6903228B2 (ja) | 2021-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6678762B2 (ja) | スクロール圧縮機、冷凍サイクル装置およびシェル | |
KR870001396B1 (ko) | 스크롤형 유체(體流) 기계 | |
US20190203709A1 (en) | Motor-operated compressor | |
EP3824186B1 (en) | Scroll compressor | |
JP2016173045A (ja) | ローリングシリンダ式容積型流体機械 | |
JP6678811B2 (ja) | スクロール圧縮機および冷凍サイクル装置 | |
JP6057535B2 (ja) | 冷媒圧縮機 | |
JP7118177B2 (ja) | スクロール圧縮機 | |
CN113396285B (zh) | 旋转式压缩机、旋转式压缩机的制造方法及制冷循环装置 | |
WO2019207784A1 (ja) | スクロール圧縮機及び冷凍サイクル装置 | |
WO2017168631A1 (ja) | スクロール圧縮機、および冷凍サイクル装置 | |
JP2021076085A (ja) | スクロール圧縮機 | |
WO2018131088A1 (ja) | 圧縮機 | |
JP7433697B2 (ja) | スクロール圧縮機及び当該スクロール圧縮機を使用した冷凍サイクル装置 | |
JP7076537B2 (ja) | スクロール圧縮機 | |
JP7321384B2 (ja) | スクロール圧縮機 | |
JP7459306B2 (ja) | スクロール圧縮機の製造方法およびスクロール圧縮機 | |
WO2021014641A1 (ja) | スクロール圧縮機 | |
WO2023100304A1 (ja) | スクロール圧縮機 | |
JP7313570B2 (ja) | スクロール圧縮機 | |
WO2023188422A1 (ja) | 圧縮機およびアッパーシェル | |
JPWO2019207785A1 (ja) | スクロール圧縮機 | |
JP7361585B2 (ja) | スクロール圧縮機及びスクロール圧縮機の製造方法 | |
JP5304679B2 (ja) | 圧縮機 | |
WO2021245754A1 (ja) | スクロール圧縮機及び冷凍サイクル装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18916381 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020515447 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18916381 Country of ref document: EP Kind code of ref document: A1 |