Nothing Special   »   [go: up one dir, main page]

WO2019202877A1 - 人工皮革用基体および人工皮革 - Google Patents

人工皮革用基体および人工皮革 Download PDF

Info

Publication number
WO2019202877A1
WO2019202877A1 PCT/JP2019/009890 JP2019009890W WO2019202877A1 WO 2019202877 A1 WO2019202877 A1 WO 2019202877A1 JP 2019009890 W JP2019009890 W JP 2019009890W WO 2019202877 A1 WO2019202877 A1 WO 2019202877A1
Authority
WO
WIPO (PCT)
Prior art keywords
artificial leather
fiber
elastic body
biomass
polymer elastic
Prior art date
Application number
PCT/JP2019/009890
Other languages
English (en)
French (fr)
Inventor
宮原駿一
小出現
西村誠
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2019202877A1 publication Critical patent/WO2019202877A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/4383Composite fibres sea-island
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof

Definitions

  • the present invention relates to an artificial leather substrate and artificial leather made of a fiber entangled body made of ultrafine fibers and a polymer elastic body, and an artificial artificial material containing a component derived from biomass resources that contributes to carbon neutral in order to reduce the environmental load.
  • the present invention relates to a leather substrate and artificial leather.
  • Natural leather-like artificial leather mainly composed of fiber entanglement composed of ultrafine fibers and polymer elastic body has superior characteristics compared to natural leather, such as high durability and uniform quality. As well as being used in various fields such as vehicle interior materials, interiors and shoes and clothing.
  • Patent Document 1 a method for manufacturing a base for artificial leather using a material having a low environmental load has been disclosed.
  • the present invention is to solve the above-mentioned problems, and the substrate for artificial leather according to the present invention comprises a fiber entangled body composed of ultrafine fibers having an average single fiber diameter of 0.1 ⁇ m or more and 10 ⁇ m or less, and a polymer elasticity.
  • a substrate for artificial leather comprising a body, wherein the biomass plastic degree of the artificial leather substrate defined by ISO 16620 (2015) is 5% or more and 100% or less.
  • the biomass plasticity of the artificial leather substrate is 15% or more.
  • the biomass plasticity of the artificial leather substrate is 25% or more.
  • the biomass plasticity of the ultrafine fiber and the biomass plasticity of the polymer elastic body are both 5% or more and 100% or less, more preferably 10% or more and 100% or less. is there.
  • the ultrafine fiber is made of polyester.
  • the polymer elastic body is polyurethane.
  • the polyurethane is a polyurethane having a polycarbonate diol derived from a biomass raw material as a reaction component.
  • the tensile strength of the artificial leather substrate when wet is 10 N / cm or more and 200 N / cm or less.
  • an artificial leather comprising the artificial leather substrate.
  • the present invention it is possible to contribute to the reduction of environmental burden by contributing to carbon neutral, and the tensile strength when wet by using components derived from biomass resources, which has been a problem in the base for artificial leather, etc. It is possible to obtain a substrate for artificial leather having physical properties comparable to those of a substrate for artificial leather consisting only of components derived from fossil resources while suppressing the deterioration of physical properties.
  • the base body for artificial leather of the present invention is a base body for artificial leather composed of a fiber entangled body made of ultrafine fibers having an average single fiber diameter of 0.1 ⁇ m or more and 10 ⁇ m or less, and a polymer elastic body, and is defined by ISO 16620 (2015). It is a base for artificial leather having a biomass plasticity of 5% or more and 100% or less. Details will be described below.
  • Fiber entangled body As the fibers constituting the fiber entangled body used in the present invention, synthetic fibers are preferably used from the viewpoint of excellent durability, particularly mechanical strength, heat resistance and light resistance, and polyester fibers and polyamide fibers are particularly preferable. Used.
  • the synthetic fiber When a synthetic fiber is used as a fiber constituting the fiber entangled body, the synthetic fiber preferably contains a component derived from biomass resources.
  • a component derived from biomass resources when a polyester fiber is used as a synthetic fiber, a component derived from biomass resources may be used as a dicarboxylic acid or an ester-forming derivative thereof, or a biomass resource as a diol.
  • the component derived from may be used, it is preferable to use the component derived from biomass resources for both dicarboxylic acid or its ester-forming derivative, and diol from a viewpoint of reduction of environmental impact.
  • examples of the dicarboxylic acid or ester-forming derivative thereof include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid (for example, 2,6-naphthalenedicarboxylic acid), diphenyldicarboxylic acid (for example, Diphenyl-4,4'-dicarboxylic acid), oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanediic acid Aliphatic dicarboxylic acids such as acids, alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 5-sulfoisophthalic acid salt (5-sulfoisophthalic acid lithium salt, 5-sulfoisophthalic acid potassium salt, 5-sulfoisophthalic
  • aromatic dicarboxylic acid or its ester-forming derivative because high mechanical properties can be obtained.
  • terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid are preferably used because the mechanical properties of the fiber are good. Is done.
  • ester-forming derivative refers to a compound having a functional group capable of reacting with a hydroxyl group or an equivalent thereof to form an ester bond, and the above-mentioned lower alkyl ester of dicarboxylic acid, acid anhydride, It means an acyl chloride, and for example, methyl ester, ethyl ester, hydroxyethyl ester and the like are preferably used.
  • diol examples include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, cyclohexanedimethanol, diethylene glycol, 2-methyl-1,3. -Propanediol, polyoxyalkylene glycol (polyethylene glycol, etc.) having a molecular weight of 500 to 20000, bisphenol A-ethylene oxide adduct, etc. can be used.
  • hydroxycarboxylic acid may be used.
  • nylon 6 nylon 66, nylon 56, nylon 610, nylon 11, nylon 12, copolymer nylon, and the like can be used, but raw materials derived from biomass resources are economically advantageous.
  • Nylon 56, nylon 610, and nylon 11 are preferably used from the viewpoints of the fiber properties and the physical properties of the fibers.
  • the polymers forming the fibers include inorganic particles such as titanium oxide particles, lubricants, pigments, heat stabilizers, ultraviolet rays depending on various purposes.
  • An absorbent, a conductive agent, a heat storage agent, an antibacterial agent, and the like can be contained.
  • the average single fiber diameter of the ultrafine fibers constituting the fiber entangled body is 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the average single fiber diameter of the ultrafine fibers is preferably 1 ⁇ m or more and 6 ⁇ m or less, and more preferably 1.5 ⁇ m or more and 4 ⁇ m or less.
  • the average single fiber diameter was obtained by taking a scanning electron microscope (SEM) photograph of the cross section of the artificial leather substrate, selecting 50 circular or nearly elliptical fibers at random, measuring the single fiber diameter, and measuring 50 single fibers. Calculate by calculating the arithmetic mean. In the case of adopting an irregularly shaped ultrafine fiber, first, the cross-sectional area of the single fiber is measured, and the equivalent fiber diameter is calculated to obtain the single fiber diameter.
  • a fiber entangled body consists of a fiber which has an average single fiber diameter of 0.1 micrometer or more and 10 micrometers or less, it can be called an entangled body which consists of an ultrafine fiber.
  • the fiber entangled body used in the present invention preferably has a bioplastic degree specified by ISO 16620 (2015) of 5% or more and 100% or less.
  • the biomass plasticity is measured as follows.
  • B Based on ISO 16620-2, for each isolated component (corresponding to each monomer), the bio-based carbon content in the total carbon of the component is measured.
  • the biomass plasticity is calculated from the component ratio of the isolated component (each monomer) in (B) and the sample (each polymer). For example, when polyethylene terephthalate is taken as an example, when 80 mol% of terephthalic acid residues are derived from biomass resources and 60 mol% of ethylene glycol residues are derived from biomass resources, the biomass plasticity of the polyethylene terephthalate is 74%. It becomes. Further, the biomass plasticity of a composition of 80% by weight of polymer having a biomass plasticity of ⁇ and a polymer having a biomass plasticity of ⁇ is obtained as 0.8 ⁇ ⁇ + 0.2 ⁇ ⁇ .
  • each polymer is difficult to isolate into components (corresponding to each polymer) such as polyurethane
  • identification of whether the component is derived from biomass resources or fossil resources is performed according to the following procedure.
  • This method is suitable and convenient for use when all components are derived from biomass resources or all from fossil resources. Therefore, when components can be isolated, they should be measured by the above method.
  • the component ratio of the components (corresponding to the respective monomers) constituting the sample (each polymer) is identified.
  • Biomass resource-derived components (each monomer) can be specified based on the above (1) and (2).
  • the biobase carbon content rate is calculated in all combinations in which each component is derived from a biomass resource or a fossil resource, and a combination when the biobase carbon content rate becomes the value of (1) is adopted.
  • the biomass plasticity of the fiber entangled body is preferably 15% or more, and more preferably 25% or more, from the viewpoint of reducing the environmental load.
  • a method of extracting and isolating the fiber entangled body using a solvent in which the fiber entangled body is soluble, or a polymer from the substrate for artificial leather It can be appropriately employed depending on the constituent components of the artificial leather substrate such as a method of removing the polymer elastic body using a solvent in which the elastic body is soluble.
  • a method of removing components other than the fiber entangled body from the artificial leather substrate for example, a method of extracting a component containing a polymer elastic body using N, N-dimethylformamide heated to 60 ° C. or more and 100 ° C. or less. Can be used.
  • polymer elastic body Since the polymer elastic body constituting the artificial leather substrate of the present invention is used as a binder for gripping the fiber entangled body made of ultrafine fibers constituting the artificial leather substrate, the flexible texture of the artificial leather substrate of the present invention
  • examples of the polymer elastic body used include polyurethane, SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), and acrylic resin.
  • polyurethane it is preferable to use polyurethane as a main component.
  • polyurethane it is possible to obtain a substrate for artificial leather having a solid tactile sensation, a leather-like appearance, and physical properties that can withstand actual use.
  • the main component here means that the mass of polyurethane is more than 50 mass% with respect to the mass of the whole polymer elastic body.
  • polyurethane in the present invention, either an organic solvent-based polyurethane used in a state dissolved in an organic solvent or a water-dispersed polyurethane used in a state dispersed in water can be employed.
  • a polyurethane obtained by a reaction of a polymer diol, an organic diisocyanate and a chain extender is preferably used.
  • the polymer elastic body used in the present invention preferably contains a component derived from biomass resources from the viewpoint of reducing the environmental load.
  • a component derived from biomass resources when polyurethane is used as the polymer elastic body, among components, it is relatively easy to procure raw materials derived from biomass resources. It is preferable to use it.
  • the polymer diol used is at least selected from polymer diols such as polyester diol, polyether diol, polycarbonate diol, or polyester polyether diol having an average molecular weight of 500 to 3000. Although one type of polymer diol can be used, it is preferable to include a polycarbonate diol excellent in hydrolysis resistance.
  • the polymer diol may be composed only of a biomass resource-derived component or a copolymer of a biomass resource-derived polymer diol and a fossil resource-derived polymer diol. Good. From the viewpoint of reducing the environmental burden, it is preferable that the amount of polymer diol derived from biomass resources is larger than the amount of polymer diol derived from fossil resources.
  • the isocyanate used includes aromatic diisocyanates such as aromatics such as 4,4′-diphenylmethane diisocyanate, alicyclics such as isophorone diisocyanate, and aliphatic diisocyanates such as hexamethylene diisocyanate, etc. And at least one diisocyanate selected from aromatic diisocyanates such as aromatics such as 4,4′-diphenylmethane diisocyanate, alicyclics such as isophorone diisocyanate, and aliphatic diisocyanates such as hexamethylene diisocyanate, etc. And at least one diisocyanate selected from aromatic diisocyanates such as aromatics such as 4,4′-diphenylmethane diisocyanate, alicyclics such as isophorone diisocyanate, and aliphatic diisocyanates such as hexamethylene diisocyanate, etc. And at least one diisocyanate selected from aromatic
  • the chain extender used is at least one kind having two or more active hydrogen atoms such as water, ethylene glycol, butanediol, ethylenediamine and 4,4′-diaminodiphenylmethane. These are low molecular compounds. From the viewpoint of reducing the environmental burden, it is preferable to use a chain extender containing a component derived from biomass resources.
  • pigments such as carbon black
  • flame retardants such as phosphorus-based, halogen-based and inorganic-based materials, and phenol-based, sulfur-based, and phosphorus-based oxidation materials
  • UV absorbers such as inhibitors, benzotriazoles, benzophenones, salicylates, cyanoacrylates and oxalic acid anilides, light stabilizers such as hindered amines and benzoates, hydrolysis stabilizers such as polycarbodiimides, A plasticizer, an antistatic agent, a surfactant, a coagulation modifier, a dye, and the like can be contained.
  • the content of the polymer elastic body in the artificial leather substrate can be appropriately adjusted in consideration of the type of polymer elastic body to be used, the method for producing the polymer elastic body, the texture and physical properties.
  • the content of the polymer elastic body is preferably 10% by mass or more and 60% by mass or less, more preferably 15% by mass or more and 45% by mass or less, and still more preferably 20% by mass with respect to the mass of the fiber entangled body. It is 40 mass% or less.
  • the content of the polymer elastic body is less than 10% by mass, the bond between the fibers due to the polymer elastic body becomes weak, and the wear resistance of the artificial leather substrate tends to be inferior.
  • the content of the elastic polymer exceeds 60% by mass, the texture of the artificial leather substrate tends to be hard.
  • the polymer elastic body used in the present invention preferably has a biomass plasticity defined by ISO 16620 (2015) of 5% or more and 100% or less.
  • the biomass plasticity is measured by the above-described method, and is preferably 15% or more, and more preferably 25% or more, from the viewpoint of reducing the environmental load.
  • a method for extracting and isolating the polymer elastic body using a solvent in which the polymer elastic body is soluble, or a substrate for artificial leather The method can be appropriately employed depending on the constituent components of the substrate for artificial leather, such as a method of removing the ultrafine fibers using a solvent in which the ultrafine fibers are soluble.
  • the polymer elastic body can be extracted and isolated with an organic solvent such as N, N-dimethylformamide.
  • an organic solvent such as N, N-dimethylformamide.
  • a solvent for dissolving fibers in the case of polyester, 1,1,1,3,3,3-hexafluoro-2-propanol or ortho
  • a method of removing fibers using chlorophenol or the like, or a method of decomposing and extracting a water-dispersed polymer elastic body with N, N-dimethylformamide heated to 60 ° C. or more and 100 ° C. or less can be used.
  • the base for artificial leather of the present invention has a biomass plasticity specified by ISO 16620 (2015) of 5% or more and 100% or less. From the viewpoint of reducing the environmental load, the biomass plasticity is preferably 10% or more, more preferably 15% or more, and most preferably 25% or more.
  • the biomass plasticity of the artificial leather substrate in the present invention is determined by the above-described method.
  • the degree of biomass plastics of the elastic body is obtained and calculated by the following [Equation 1].
  • the fiber entanglement is in the form of a nonwoven fabric.
  • a non-woven fabric By using a non-woven fabric, a uniform and elegant appearance and texture can be obtained when the surface is raised.
  • non-woven fabric either a long-fiber non-woven fabric or a short-fiber non-woven fabric can be used, but a short-fiber non-woven fabric is a preferred embodiment because it has a large number of napped fibers on the product surface and an easy appearance is obtained.
  • the fiber length of the ultrafine fibers when using the short fiber nonwoven fabric is preferably 25 mm or more and 90 mm or less. By setting the fiber length to 90 mm or less, good quality and texture can be obtained, and by setting the fiber length to 25 mm or more, a base for artificial leather having excellent wear resistance can be obtained.
  • the fiber length is more preferably 35 mm or more and 80 mm or less, and further preferably 40 mm or more and 70 mm or less.
  • the basis weight of the fiber entangled body constituting the substrate for artificial leather is measured in accordance with JIS L1913 (2010) 6.2, and is preferably in the range of 50 g / m 2 to 400 g / m 2 , more preferably 80 g / m. in the range of 2 or more 300 g / m 2 or less.
  • the basis weight of the fiber entangled body is less than 50 g / m 2 , the artificial leather substrate becomes paper-like and has a poor texture.
  • the basis weight of the fiber entangled body exceeds 400 g / m 2 , the texture of the artificial leather substrate tends to be hard.
  • the substrate for artificial leather of the present invention is also a preferred embodiment in which a woven fabric is laminated on the inside or one side of the fiber entangled body and entangled and integrated for the purpose of improving the strength and shape stability.
  • Filaments, spun yarns, innovative spun yarns, mixed composite yarns of filaments and spun yarns, etc. can be used as the types of fibers constituting the woven fabric used when the fabrics are entangled and integrated.
  • the structure has many fluffs on the surface and the nonwoven fabric is entangled with the woven fabric, it is disadvantageous if the fluffs fall off and are exposed on the surface. Therefore, it is more preferable to use a filament, and it is preferable to use a multifilament as the filament. .
  • the fiber diameter of the single fiber constituting the woven fabric is preferably 1 ⁇ m or more and 50 ⁇ m or less.
  • the fiber diameter of the single fiber 50 ⁇ m or less an artificial leather base having excellent flexibility can be obtained, and by making the fiber diameter of the single fiber 1 ⁇ m or more, the form stability of the product as the base body for artificial leather Will improve.
  • the total fineness of the yarns constituting the woven fabric is measured according to JIS L1013 (2010) 8.3b (simple method), and is preferably 30 dtex or more and 170 dtex or less.
  • a substrate for artificial leather excellent in flexibility can be obtained.
  • the total fineness is set to 30 dtex or more, the shape stability of the product as the artificial leather substrate is improved.
  • the total fineness of the multifilaments of the warp and the weft is preferably the same.
  • the component of the fiber constituting the woven fabric is preferably the same component as the component of the fiber entangled body, and from the viewpoint of reducing the environmental load, it is preferable to contain a component derived from biomass resources.
  • the substrate for artificial leather of the present invention preferably has a thickness measured by the JIS L1913 (2010) 6.1A method in the range of 0.2 mm to 1.2 mm.
  • the thickness of the artificial leather substrate is more preferably from 0.3 mm to 1.1 mm, still more preferably from 0.4 mm to 1 mm.
  • the substrate for artificial leather of the present invention preferably has a tensile strength when wet measured by JIS L1913 (2010) 6.3.2 in the range of 10 N / cm to 200 N / cm. If the tensile strength of the artificial leather substrate when wet is 10 N / cm or less, the durability during actual use may be poor, and processability such as breakage may occur during dyeing. It is not preferable. Further, if it is 200 N / cm or more, molding processability may be poor.
  • the wet tensile strength of the artificial leather substrate is preferably 15 N / cm or more, more preferably 26 N / cm or more, and most preferably 32 N / cm or more, while the upper limit is preferably 180 N / cm.
  • biomass resource-derived raw materials are produced from raw materials obtained by fermenting biomass resources, so compared to fossil resource-derived raw materials, the content of isomers of raw material chemicals tends to be higher.
  • the biomass plasticity is increased, the crystallinity and orientation of the polymer tend to decrease due to the influence of isomers. For this reason, the physical properties of the resultant artificial leather substrate tend to be lowered, and the tensile strength when wet is particularly affected.
  • the base material for artificial leather of the present invention is manufactured using a biomass resource-derived raw material in which the content of isomers and impurities is reduced so that the tensile strength when wet can be maintained even when the biomass plasticity is increased.
  • the content of isomers and impurities of the biomass resource-derived raw material is preferably 1000 ppm or less, more preferably 500 ppm or less, with respect to 100% by mass of the biomass plastic.
  • the identification of the isomers and impurities of the biomass resource-derived raw material and the measurement of the content can be measured using a known method such as GC-MS or NMR.
  • a known method such as GC-MS or NMR.
  • the fiber entangled body is made of polyester, after the polyester is thermally decomposed in an aqueous ammonia solution, the isomers and impurities can be identified and their contents can be measured by GC-MS measurement.
  • either or both of the polymer and the polymer elastic body constituting the fiber entangled body are derived from biomass resources of the polymer contained in 100% by mass of the polymer constituting the fiber entangled body or polymer elastic body.
  • the content of raw material isomers and impurities is 1000 ppm or less.
  • it is 800 ppm or less, More preferably, it is 500 ppm or less.
  • both the fiber entangled body and the polymer elastic body satisfy this.
  • the substrate for artificial leather of the present invention is also preferably used as a suede-like artificial leather having napped surfaces.
  • napping may be provided only on one side of the artificial leather, and it is allowed to be provided on both sides.
  • the napped form in the case of having napped on the surface has napped length and directional flexibility to the extent that a so-called finger mark is generated, leaving a mark when the napped direction changes when traced with a finger from the viewpoint of design effect It is preferable.
  • the surface raised length is preferably 100 ⁇ m or more, and more preferably 150 ⁇ m or more.
  • the surface length of the surface of the artificial leather is measured by taking an SEM image of the cross section of the artificial leather upside down at a magnification of 50 times, measuring the height of the raised portion (layer consisting of ultrafine fibers) at 10 points, and calculating the average value. Calculate by calculating.
  • the napped coverage of the ultrafine fibers on the napped surface is 70% or more and 100% or less.
  • the napping coverage is 70% or more, preferably 75% or more, more preferably 80% or more, it becomes dense napping, has an elegant surface appearance, and has an extremely soft surface touch. Since the exposed polymer elastic body is small, deterioration of the polymer elastic body in the vicinity of the surface layer due to wetting is suppressed, and as a result, dropping of fibers and a decrease in strength of artificial leather can be suppressed.
  • the napped coverage is increased to an observation magnification of 30 to 70 times so that the presence of napped fibers can be seen by SEM (scanning electron microscope) on the napped surface, and the napped portion per total area of 4 mm 2 using image analysis software
  • the total area ratio was calculated and used as the napped coverage.
  • the ratio of the total area can be calculated by binarizing the captured SEM image using image analysis software “ImageJ” with the raised portion and the non-raised portion set to the threshold value 100.
  • image was manually edited and the portion was calculated as a non-napped portion.
  • the above-mentioned image analysis software “ImageJ” is exemplified, but if the image analysis system includes image processing software having a function of calculating the area ratio of a prescribed pixel, the image analysis software It is not limited to “ImageJ”. Note that the image processing software “ImageJ” is common software and was developed by the National Institutes of Health. The image processing software “ImageJ” has a function of specifying a necessary region for the captured image and performing pixel analysis.
  • ultrafine fiber expression type fibers As a means for obtaining ultrafine fibers constituting the fiber entangled body, it is preferable to use ultrafine fiber expression type fibers. After the ultrafine fiber expression type fiber is entangled in advance to obtain a nonwoven fabric, the nonwoven fabric formed by entanglement of the ultrafine fiber bundle can be obtained by ultrafinening the fibers.
  • the ultrafine fiber-expressing type fiber two components having different solvent solubility (two or three components when the island fiber is a core-sheath composite fiber) are used as a sea component and an island component, and the sea component is a solvent. It is possible to use sea-island type composite fibers that use island components as ultrafine fibers by dissolving and removing them, etc., and when removing sea components, an appropriate gap is provided between island components, that is, between ultrafine fibers inside the fiber bundle. Therefore, it is preferable from the viewpoint of the texture and surface quality of the artificial leather substrate.
  • sea-island type composite fiber a polymer inter-array is used in which a sea-island type composite base is used, and two components of the sea component and the island component (3 components if the island fiber is a core-sheath composite fiber) are mutually aligned and spun.
  • the method used is preferable from the viewpoint that ultrafine fibers having a uniform single fiber fineness can be obtained.
  • polyethylene, polypropylene, polystyrene, copolymerized polyester copolymerized with sodium sulfoisophthalic acid or polyethylene glycol, and polylactic acid can be used. From this viewpoint, polystyrene and copolyester are preferably used.
  • the fiber entangled body preferably takes the form of a nonwoven fabric, and as described above, either a short fiber nonwoven fabric or a long fiber nonwoven fabric can be used.
  • the fiber entangled fabric is a short fiber nonwoven fabric, it faces the thickness direction of the artificial leather substrate. This is preferable because the number of fibers is larger than that of the long-fiber non-woven fabric, and a high density feeling can be obtained on the surface of the artificial leather substrate when raised.
  • the obtained ultrafine fiber-expressing fiber is preferably crimped and cut into a predetermined length to obtain raw cotton.
  • a known method can be used for crimping or cutting.
  • the obtained raw cotton is made into a fiber web with a cross wrapper or the like and entangled to obtain a short fiber nonwoven fabric.
  • a method for entanglement of the fiber web to obtain a short fiber nonwoven fabric needle punching, water jet punching, or the like can be used.
  • the obtained short fiber nonwoven fabric and the woven fabric are laminated and entangled and integrated.
  • the fabric is laminated on one or both sides of the short fiber nonwoven fabric, or the fabric is sandwiched between a plurality of short fiber nonwoven webs, and then needle punching or water jet Short fiber nonwoven fabric and textile fibers can be entangled by punching or the like.
  • Apparent density of the short-fiber nonwoven fabric composed of the composite fiber after needle punching or water jet punching is preferably 0.15 g / cm 3 or more 0.45 g / cm 3 or less.
  • the apparent density preferably 0.15 g / cm 3 or more, the artificial leather base material can have sufficient form stability and dimensional stability.
  • the apparent density is preferably 0.45 g / cm 3 or less, a sufficient space for applying the polymer elastic body can be maintained.
  • the fiber entangled body can be impregnated with an aqueous solution of a water-soluble resin and dried to give the water-soluble resin.
  • a water-soluble resin By adding a water-soluble resin to the fiber entangled body, the fiber is fixed and the dimensional stability is improved.
  • the obtained fiber entanglement is treated with a solvent to express an ultrafine fiber having an average single fiber diameter of 0.1 ⁇ m to 10 ⁇ m.
  • the ultrafine fiber-expressing fiber is a sea-island type composite fiber
  • the solvent for dissolving and removing the sea component when the sea component is polyethylene, polypropylene, and polystyrene, an organic solvent such as toluene or trichloroethylene can be used. Further, when the sea component is a copolyester or polylactic acid, an aqueous alkali solution such as sodium hydroxide can be used. When the sea component is a water-soluble thermoplastic polyvinyl alcohol resin, hot water can be used.
  • the fiber entangled body is impregnated with a solvent solution of a polymer elastic body and solidified to give a polymer elastic body to obtain a substrate for artificial leather.
  • a method of fixing the polymer elastic body to the fiber entangled body there is a method of impregnating the fiber entangled body with the solution of the polymer elastic body and then wet coagulation or dry coagulation, depending on the type of the polymer elastic body to be used. These methods can be selected as appropriate.
  • the artificial leather substrate is preferably cut in half in the thickness direction from the viewpoint of production efficiency.
  • the surface of the artificial leather base or the half-finished artificial leather base can be subjected to raising treatment to obtain a suede-like artificial leather.
  • the raising treatment can be performed by a grinding method using sandpaper or a roll sander.
  • a silicone-based lubricant is added to the sheet after impregnating and solidifying the polymer entangled body with a polymer elastic body. It is preferable to apply 0.01 mass% or more and 3.0 mass% or less with respect to the mass of this. By applying 0.01% by mass or more, the surface of the polymer elastic body coagulated material is covered with a silicone-based lubricant, thereby improving the releasability of the polymer elastic body and the ultrafine fibers during the napping layer forming process. It becomes easy to disperse the fibers and form a uniform raised layer.
  • silicone lubricant is 0.1% by mass or more and 2.0% by mass or less with respect to the mass of the sheet-like material.
  • silicone-based lubricant manufactured by Toray Cortex Co., Ltd.
  • Silicone lubricant can be applied by impregnating the sheet with a silicone oil solution or by spraying it with a spray, but in order to apply it more uniformly, the silicone oil solution is impregnated with the sheet.
  • the method is preferred.
  • the artificial leather is preferably subjected to a dyeing process.
  • the dyeing process include immersion dyeing such as liquid dyeing using a jigger dyeing machine or liquid dyeing machine, thermosol dyeing using a continuous dyeing machine, roller printing, screen printing, ink jet printing, sublimation, and the like.
  • immersion dyeing such as liquid dyeing using a jigger dyeing machine or liquid dyeing machine
  • thermosol dyeing using a continuous dyeing machine
  • roller printing screen printing, ink jet printing, sublimation, and the like.
  • printing on a napped surface by printing, vacuum sublimation printing, or the like can be used.
  • it is preferable to use a liquid dyeing machine because a soft texture can be obtained.
  • various resin finishing processes can be performed after dyeing.
  • the degree of biomass plastics of dyed artificial leather it can be calculated by extracting and measuring fiber entangled bodies and / or polymer elastic bodies from dyed artificial leather using the procedure described above. it can.
  • the artificial leather can be given a design on its surface as necessary.
  • post-processing such as drilling such as perforation, embossing, laser processing, pin sonic processing, and print processing can be performed.
  • Biomass plastic degree of substrate for artificial leather The calculation was performed according to the following procedures (1) to (5).
  • (1) The weight (W) of the artificial leather substrate is measured.
  • (3) The mass ratio ((W ⁇ w1) / W) of the polymer elastic body in the artificial leather base is calculated from the results of (2).
  • (4) By the above method the biomass plasticity is measured for each of the fiber entangled body and the polymer elastic body.
  • the biomass plasticity of the substrate for artificial leather is calculated by the calculation of [Formula 1].
  • a fiber entangled body and a polymer elastic body are isolated from a substrate for artificial leather.
  • the contents of impurities and isomers were determined, and the contents of isomers and impurities of the biomass resource-derived raw material of the polymer contained in 100% by mass of the polymer derived from biomass resources were calculated.
  • N, N-dimethylformamide-PVA Polyvinyl alcohol [Production of raw cotton A] Polyethylene terephthalate (PET A) made of ethylene glycol derived from sugarcane molasses and terephthalic acid derived from biomass resources (manufactured by Gevo) as an island component (PET A.
  • the bio-based carbon content based on ISO 16620-2 of the ultrafine fiber obtained by removing polystyrene from the raw cotton A is 100%, and the components measured by elemental analysis and GC-MS are components derived from ethylene glycol. And the component derived from terephthalic acid in a mass ratio of 31:69. From the above results, the calculated biomass plasticity was 100%.
  • Raw cotton B except that polyethylene terephthalate (PET B. content of isomers and impurities: 150 ppm) consisting of ethylene glycol derived from biomass resources and terephthalic acid derived from fossil resources was used as the island component.
  • PET B. content of isomers and impurities: 150 ppm consisting of ethylene glycol derived from biomass resources and terephthalic acid derived from fossil resources was used as the island component.
  • Raw cotton B was obtained in the same manner as in production of A.
  • the bio-based carbon content based on ISO 16620-2 of the ultrafine fiber obtained by removing polystyrene from the raw cotton B is 20%, and the components measured by elemental analysis and GC-MS are components derived from ethylene glycol.
  • the component derived from terephthalic acid in a mass ratio of 31:69. From the above results, the calculated biomass plasticity was 31%.
  • PET A content of isomers and impurities: 250 ppm
  • PET A content of isomers and impurities: 250 ppm
  • IV intrinsic viscosity
  • sea components Using a polystyrene having a melt flow rate (MFR) of 18 and using a sea-island type die having a number of islands of 36 islands / hole, a spinning temperature of 285 ° C., and an island component / sea component mass ratio of 55/45 After melt spinning, it is stretched 3.5 times, subjected to crimping processing using an indentation type crimping machine, then cut into a length of 51 mm and a sea-island type composite fiber having a single fiber fineness of 3.2 dtex.
  • MFR melt flow rate
  • the bio-based carbon content based on ISO 16620-2 of the ultrafine fiber obtained by removing polystyrene from the raw cotton E is 100%, and the components measured by elemental analysis and GC-MS are components derived from ethylene glycol. And the component derived from terephthalic acid in a mass ratio of 31:69. From the above results, the calculated biomass plasticity was 100%.
  • Raw cotton other than using polyethylene terephthalate (PET D. Content of isomers and impurities: 800 ppm) with an intrinsic viscosity (IV) of ethylene glycol derived from biomass resources and terephthalic acid derived from biomass resources as the island component Raw cotton F was obtained in the same manner as in production of A.
  • the bio-based carbon content based on ISO 16620-2 of the ultrafine fiber obtained by removing polystyrene from the raw cotton F is 100%, and the components measured by elemental analysis and GC-MS are components derived from ethylene glycol. And the component derived from terephthalic acid in a mass ratio of 31:69. From the above results, the calculated biomass plasticity was 100%.
  • Raw cotton except that polyethylene terephthalate (PET E. Content of isomers and impurities: 1200 ppm) consisting of ethylene glycol derived from biomass and terephthalic acid derived from biomass is used as the island component.
  • PET E. Content of isomers and impurities: 1200 ppm consisting of ethylene glycol derived from biomass and terephthalic acid derived from biomass is used as the island component.
  • Raw cotton G was obtained in the same manner as in the manufacture of A.
  • the bio-based carbon content based on ISO 16620-2 of the ultrafine fiber obtained by removing polystyrene from the raw cotton F is 100%, and the components measured by elemental analysis and GC-MS are components derived from ethylene glycol.
  • the component derived from terephthalic acid in a mass ratio of 31:69. From the above results, the calculated biomass plasticity was 100%.
  • a solution of polymer elastic body A in an amount of% was obtained.
  • the polymer elastic body A obtained by distilling off DMF from the polymer elastic body A solution has a bio-based carbon content based on ISO 16620-2 of 37%, and is measured by elemental analysis and GC-MS.
  • the component derived from the component derived from 4,4′-diphenylmethane diisocyanate was in a mass ratio of 35: 2: 37: 3: 23. From the above results, the calculated biomass plasticity was 38%.
  • polymer elastic body B A polymer elastic body B solution having a resin concentration of 30% by mass was obtained in the same manner as in the production of the polymer elastic body A, except that 1,10-decanediol was derived from petroleum raw materials.
  • the polymer elastic body B obtained by distilling off DMF from the solution of the polymer elastic body B has a bio-based carbon content based on ISO 16620-2 of 0%, and is measured by elemental analysis and GC-MS.
  • the components derived from 1,10-decanediol, 1,4-butanediol, 3-methyl-pentanediol, 1,6-hexanediol, ethylene glycol The component derived from the component derived from 4,4′-diphenylmethane diisocyanate was in a mass ratio of 35: 2: 37: 3: 23. From the above results, the calculated biomass plasticity was 0%.
  • polymer elastic body C A polymer elastic body having a resin concentration of 30% by mass in the same manner as the production of the polymer elastic body A, except that a biomass raw material-derived 1,10-decanediol having an isomer content and an impurity content of 800 ppm was used. A solution of B was obtained. The polymer elastic body C obtained by distilling off DMF from the polymer elastic body C solution has a bio-based carbon content based on ISO 16620-2 of 37%, and is measured by elemental analysis and GC-MS.
  • the components derived from 1,10-decanediol, 1,4-butanediol, 3-methyl-pentanediol, 1,6-hexanediol, ethylene glycol The component derived from the component derived from 4,4′-diphenylmethane diisocyanate was in a mass ratio of 35: 2: 37: 3: 23. From the above results, the calculated biomass plasticity was 38%.
  • Example 1 Using raw cotton A as raw cotton, through a card and cross wrapping process, a laminated fiber web is formed, needle punched with a punch number of 2400 pieces / cm 2 , a thickness of 2.3 mm, and a density of 0.24 g An intertwined sheet (felt) of / cm 3 was obtained.
  • the entangled sheet obtained as described above was shrunk with hot water at a temperature of 96 ° C., and then impregnated with a 12% by mass PVA aqueous solution having a saponification degree of 88%, based on the solid fiber content.
  • the sheet was squeezed with a target amount of 30% by mass and dried while migrating PVA with hot air at a temperature of 140 ° C. for 10 minutes to obtain a sheet with PVA.
  • the sheet with PVA thus obtained is immersed in trichlorethylene, and squeezing and compressing with a mangle is performed 10 times to dissolve and remove sea components and compress the sheet with PVA.
  • a sheet with seawater-free PVA formed by entanglement of the provided ultrafine fiber bundle was obtained.
  • the compressed sheet with deseased PVA obtained as described above is impregnated in a DMF solution of polymer elastic body A having a solid content adjusted to 13% by mass, and a target weight of 34% by mass with respect to the fiber content of the solids is obtained.
  • the polymer elastic body was coagulated in an aqueous solution having a DMF concentration of 30% by mass. Then, PVA and DMF are removed with hot water, dried with hot air at a temperature of 120 ° C. for 10 minutes, and the average short fiber diameter of the ultrafine fibers is 4.4 ⁇ m, the thickness is 1.7 mm, the fiber entangled body and the polymer A base for artificial leather having an elastic body mass ratio of 75:25 was obtained.
  • the polymer elastic body was extracted from the obtained artificial leather substrate using DMF, and the biomass plasticity of the fiber entangled body and the polymer elastic body was measured.
  • the fiber entangled body was 100% and the polymer elastic body was 38. %Met.
  • the biomass plasticity of the artificial leather substrate calculated from the above results was 85%, and the environmental load was low.
  • the tensile strength when wet was 26 N / cm, and it had strength.
  • Example 2 An artificial leather substrate was obtained in the same manner as in Example 1 except that the raw cotton B was used as the raw cotton.
  • the polymer elastic body was extracted from the obtained artificial leather substrate using DMF and the biomass plasticity of the fiber entangled body and the polymer elastic body was measured, the fiber entangled body was 31% and the polymer elastic body was 38%. %Met.
  • the biomass plasticity of the artificial leather substrate calculated from the above results was 33%, which was inferior to the artificial leather substrate of Example 1 but had a low environmental load.
  • the tensile strength when wet was 33 N / cm, and it had strength.
  • Example 3 An artificial leather substrate was obtained in the same manner as in Example 1 except that the raw cotton C was used as the raw cotton.
  • the polymer elastic body was extracted from the obtained artificial leather substrate using DMF, and the biomass plasticity of the fiber entangled body and the polymer elastic body was measured.
  • the fiber entangled body was 0%, and the polymer elastic body was 38%. %Met.
  • the biomass plasticity of the artificial leather substrate calculated from the above results was 10%, which was inferior to the artificial leather substrate of Example 1 but had a low environmental load.
  • the tensile strength when wet was 38 N / cm, and it had strength.
  • Example 4 An artificial leather substrate was obtained in the same manner as in Example 1 except that the raw cotton D was used as the raw cotton.
  • the polymer elastic body was extracted from the obtained artificial leather substrate using DMF, and the biomass plasticity of the fiber entangled body and the polymer elastic body was measured.
  • the fiber entangled body was 40%, and the polymer elastic body was 38%. %Met.
  • the biomass plasticity of the artificial leather substrate calculated from the above results was 40%, which was inferior to the artificial leather substrate of Example 1 but had a low environmental load. Moreover, the tensile strength when wet was 32 N / cm, and it had strength.
  • Example 5 An artificial leather base having an average short fiber diameter of 2.0 ⁇ m of ultrafine fibers was obtained in the same manner as in Example 1 except that the raw cotton E was used as the raw cotton.
  • the polymer elastic body was extracted from the obtained artificial leather substrate using DMF, and the biomass plasticity of the fiber entangled body and the polymer elastic body was measured.
  • the fiber entangled body was 100% and the polymer elastic body was 38. %Met.
  • the biomass plasticity of the artificial leather substrate calculated from the above results was 85%, and the environmental load was low. Moreover, the tensile strength when wet was 25 N / cm and had strength.
  • Example 6 An artificial leather substrate was obtained in the same manner as in Example 1 except that the raw cotton F was used as the raw cotton and the polymer elastic body C was used as the polymer elastic body.
  • the polymer elastic body was extracted from the obtained artificial leather substrate using DMF, and the biomass plasticity of the fiber entangled body and the polymer elastic body was measured.
  • the fiber entangled body was 100% and the polymer elastic body was 38. %Met.
  • the biomass plasticity of the artificial leather substrate calculated from the above results was 85%, and the environmental load was low. Moreover, the tensile strength when wet was 14 N / cm, and it had strength.
  • Example 7 An artificial leather substrate was obtained in the same manner as in Example 1 except that the raw cotton F was used as the raw cotton and the polymer elastic body C was used as the polymer elastic body.
  • the polymer elastic body was extracted from the obtained artificial leather substrate using DMF, and the biomass plasticity of the fiber entangled body and the polymer elastic body was measured.
  • the fiber entangled body was 100% and the polymer elastic body was 38. %Met.
  • the biomass plasticity of the artificial leather substrate calculated from the above results was 85%, and the environmental load was low, but the tensile strength when wet was 9 N / cm, which was slightly inferior to the strength when wet. It was a thing.
  • Example 8 An artificial leather substrate was obtained in the same manner as in Example 1 except that the raw cotton B was used as the raw cotton and the high molecular elastic body B was used as the high molecular elastic body.
  • the polymer elastic body was extracted from the obtained artificial leather substrate using DMF and the biomass plasticity of the fiber entangled body and the polymer elastic body was measured, the fiber entangled body was 31% and the polymer elastic body was 0%. %Met.
  • the biomass plasticity of the artificial leather substrate calculated from the above results was 23%, which was inferior to the artificial leather substrate of Example 1 but had a low environmental load.
  • the tensile strength when wet was 36 N / cm, and it had strength.
  • Example 1 An artificial leather substrate was obtained in the same manner as in Example 1 except that the raw cotton C was used as the raw cotton, and the polymer elastic body B was used as the polymer elastic body.
  • the polymer elastic body was extracted from the obtained artificial leather substrate using DMF and the biomass plasticity of the fiber entangled body and the polymer elastic body was measured, the fiber entangled body was 0% and the polymer elastic body was 0. %Met.
  • the biomass plasticity of the substrate for artificial leather calculated from the above results was 0%, and the environmental load was high. Moreover, the tensile strength when wet was 40 N / cm, and it had strength.
  • the artificial leather base of the present invention is a natural leather-like artificial leather base containing components derived from biomass resources that contribute to carbon neutral in order to reduce environmental burdens. It can be used in various fields such as building materials, and is particularly suitable for interior materials for vehicles that are highly environmentally friendly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

本発明は、極細繊維からなる繊維絡合体と高分子弾性体からなる人工皮革用基体であって、カーボンニュートラルに寄与するバイオマス資源由来の成分を含む天然皮革調の人工皮革用基体に関するものである。 本発明の人工皮革用基体は、平均単繊維直径が0.1μm以上10μm以下の極細繊維からなる繊維絡合体と高分子弾性体とからなる人工皮革用基体であって、ISO16620(2015)で規定されるバイオマスプラスチック度が、5%以上100%以下である、人工皮革用基体である。

Description

人工皮革用基体および人工皮革
 本発明は、極細繊維からなる繊維絡合体と高分子弾性体からなる人工皮革用基体および人工皮革に関し、また環境負荷の低減のために、カーボンニュートラルに寄与するバイオマス資源由来の成分を含有する人工皮革用基体および人工皮革に関するものである。
 主として極細繊維からなる繊維絡合体と高分子弾性体からなる天然皮革調の人工皮革は、耐久性の高さや品質の均一性などの天然皮革対比で優れた特徴を有しており、衣料用素材としてのみならず、車両内装材、インテリアや靴および衣料など様々な分野で使用される。
 これらの人工皮革の多くは原料として石油等の化石資源から得られる成分を用いているが、石油は将来的には枯渇の懸念があり、さらに製造工程及び焼却廃棄時に大量の二酸化炭素を排出することから、地球規模での温暖化など一連の問題を招いている。このような状況の中、再生原材料や環境負荷の低い材料に大きな注目が集まっている。
 そのような状況を鑑みて、環境負荷の低い材料を使用した人工皮革用基体を製造する方法が開示されている(特許文献1参照。)。
国際公開2014/034780号パンフレット
 特許文献1が開示する方法のように、人工皮革用基体を構成する成分の一部にバイオマス資源由来の成分を含有させることは可能であるが、人工皮革用基体におけるバイオマス資源由来の成分の割合としては不十分なものであった。さらに、人工皮革用基体を構成する成分のバイオマス資源由来の原料比率を高めた場合、化石資源由来の原料を用いた場合と比較して耐久性が低くなるなど、物性面や風合い面での課題があった。また、人工皮革用基体は複合材料であるがゆえに、人工皮革用基体からバイオマス資源由来の成分の割合を算出することは困難であった。
 すなわち本発明は、上記の課題を解決せんとするものであって、本発明の人工皮革用基体は、平均単繊維直径が0.1μm以上10μm以下の極細繊維からなる繊維絡合体と高分子弾性体とからなる人工皮革用基体であって、前記人工皮革用基体のISO16620(2015)で規定されるバイオマスプラスチック度が5%以上100%以下である、人工皮革用基体である。
 本発明の好ましい態様によれば、前記人工皮革用基体のバイオマスプラスチック度は15%以上である。
 本発明の好ましい態様によれば、前記人工皮革用基体のバイオマスプラスチック度は25%以上である。
 本発明の好ましい態様によれば、前記極細繊維のバイオマスプラスチック度と前記高分子弾性体のバイオマスプラスチック度とが、いずれも5%以上100%以下であり、より好ましくは10%以上100%以下である。
 本発明の好ましい態様によれば、前記極細繊維はポリエステルからなる。
 本発明の好ましい態様によれば、前記高分子弾性体はポリウレタンである。
 本発明の好ましい態様によれば、前記ポリウレタンはバイオマス原料由来のポリカーボネートジオールを反応成分としたポリウレタンである。
 本発明の好ましい態様によれば、前記人工皮革用基体の湿潤時の引張強さは10N/cm以上200N/cm以下である。
 本発明の好ましい態様によれば、前記人工皮革用基体からなる人工皮革である。
 本発明によれば、カーボンニュートラルに寄与して環境負荷の低減に資することができるとともに、人工皮革用基体において問題であったバイオマス資源由来の成分を使用することによる湿潤時の引張強さなどの物性面の低下を抑制して、化石資源由来の成分のみからなる人工皮革用基体と較べても遜色の無い物性を有する人工皮革用基体を得ることができる。
 本発明の人工皮革用基体は、平均単繊維直径が0.1μm以上10μm以下の極細繊維からなる繊維絡合体と高分子弾性体からなる人工皮革用基体であって、ISO16620(2015)で規定されるバイオマスプラスチック度が5%以上100%以下である、人工皮革用基体である。以下に、詳細について説明する。
 [繊維絡合体]
 本発明で用いられる繊維絡合体を構成する繊維としては、優れた耐久性、特には機械的強度、耐熱性および耐光性の観点から、合成繊維が好ましく用いられ、特にポリエステル繊維やポリアミド繊維が好ましく用いられる。
 繊維絡合体を構成する繊維として合成繊維を用いた場合には、合成繊維がバイオマス資源由来の成分を含有することが好ましい。
 バイオマス資源由来の成分としては、合成繊維としてポリエステル繊維を用いた場合には、その構成成分であるジカルボン酸またはそのエステル形成性誘導体としてバイオマス資源由来の成分を用いてもよいし、ジオールとしてバイオマス資源由来の成分を用いてもよいが、環境負荷の低減の観点からは、ジカルボン酸またはそのエステル形成性誘導体とジオールの両方にバイオマス資源由来の成分を用いることが好ましい。
 合成繊維としてポリエステル繊維を用いる場合に、用いられるジカルボン酸またはそのエステル形成性誘導体としては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸(例えば、2,6-ナフタレンジカルボン酸)、ジフェニルジカルボン酸(例えば、ジフェニル-4,4’-ジカルボン酸)などの芳香族ジカルボン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸などの脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸などの脂環式ジカルボン酸、5-スルホイソフタル酸塩(5-スルホイソフタル酸リチウム塩、5-スルホイソフタル酸カリウム塩、5-スルホイソフタル酸ナトリウム塩など)などの親水性基を有した芳香族ジカルボン酸、ならびに、これらのエステル形成性誘導体などをあげることができる。中では芳香族ジカルボン酸またはそのエステル形成性誘導体を用いることが高い機械的特性を獲得できることから望ましく、特に、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸が繊維の機械物性が良好であることから好ましく採用される。
 本発明でいう「エステル形成性誘導体」とは、水酸基またはこれの等価物と反応してエステル結合を形成しうる官能基を有する化合物をいい、上記したジカルボン酸の低級アルキルエステル、酸無水物、アシル塩化物などを意味し、例えば、メチルエステル、エチルエステル、ヒドロキシエチルエステルなどが好ましく用いられる。
 また、ジオールとしては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール、ジエチレングリコール、2-メチル-1,3-プロパンジオール、分子量が500以上20000以下のポリオキシアルキレングリコール(ポリエチレングリコールなど)、ビスフェノールA-エチレンオキサイド付加物などを用いることができる。
 また、目的に応じて、ヒドロキシカルボン酸を用いても構わない。
 合成繊維としてポリアミド繊維を用いる場合には、ナイロン6、ナイロン66、ナイロン56、ナイロン610、ナイロン11、ナイロン12および共重合ナイロン等を用いることができるが、バイオマス資源由来の原料を経済的に有利に得られることや繊維の物性の点から、ナイロン56、ナイロン610、ナイロン11が好ましく用いられる。
 繊維絡合体を構成する繊維として合成繊維を用いた場合には、繊維を形成するポリマーには、種々の目的に応じて、酸化チタン粒子等の無機粒子、潤滑剤、顔料、熱安定剤、紫外線吸収剤、導電剤、蓄熱剤および抗菌剤等を含有することができる。
 繊維絡合体を構成する極細繊維の平均単繊維直径は、0.1μm以上10μm以下であることが重要である。平均単繊維直径を、10μm以下とすることにより、緻密でタッチの柔らかい表面品位に優れた人工皮革用基体が得られる。一方、平均単繊維直径を0.1μm以上とすることにより、染色後の発色性や堅牢度に優れた効果を奏する。極細繊維の平均単繊維直径は、好ましくは1μm以上6μm以下であり、より好ましくは1.5μm以上4μm以下である。
 平均単繊維直径は、人工皮革用基体断面の走査型電子顕微鏡(SEM)写真を撮影し、円形または円形に近い楕円形の繊維をランダムに50本選び、単繊維直径を測定して50本の算術平均値を計算することにより算出する。異形断面の極細繊維を採用した場合には、まず単繊維の断面積を測定し、円相当径を算出することによって単繊維直径を求める。なお、繊維絡合体が0.1μm以上10μm以下の平均単繊維直径を有する繊維からなる場合は極細繊維からなる絡合体ということができる。
 本発明に用いられる繊維絡合体は、ISO16620(2015)で規定されるバイオプラスチック度が5%以上100%以下であることが好ましい。本発明においてバイオマスプラスチック度は以下のように測定する。
(A)試料(各ポリマー)から試料を構成する成分(各々のモノマーに対応)のうち、解重合などの手段を用いて単離可能な成分を単離する。例えば、ポリエチレンテレフタレートを例にとると、テレフタル酸とエチレングリコールが単離可能な成分に相当する。
(B)ISO16620-2に基づき、単離した各成分(各々のモノマーに対応)について、成分の全炭素中のバイオベース炭素含有率を測定する。なお、各成分においては、炭素原子の放射線同位体量から当該成分がバイオマス資源由来のものであるか、化石資源由来のものであるかを知ることができる。
(C)前記(B)および試料(各ポリマー)における単離した成分(各々のモノマー)の成分比より、バイオマスプラスチック度を算出する。例えば、ポリエチレンテレフタレートを例にとるとテレフタル酸残基の80モル%がバイオマス資源由来であり、エチレングリコール残基の60モル%がバイオマス資源由来である場合、当該ポリエチレンテレフタレートのバイオマスプラスチック度は74%となる。また、バイオマスプラスチック度がαであるポリマー80重量%とバイオマスプラスチック度がβであるポリマーの組成物のバイオマスプラスチック度は、0.8×α+0.2×βとして求められる。
 なお、試料(各ポリマー)がポリウレタンなど、成分(各々のポリマーに対応)への単離が難しい場合には、成分がバイオマス資源由来あるいは化石資源由来であるかの同定は以下の手順により行うが、成分が全てバイオマス資源由来または全て化石資源由来の場合に適して簡便に用いられる方法であるため、成分の単離が可能な場合には、前記の方法で測定されるべきである。
(1)ISO16620-2に基づき、試料(各ポリマー)を構成する成分(各々のモノマーに対応)の全炭素中のバイオベース炭素含有率を測定する。
(2)試料(各ポリマー)を構成する成分(各々のモノマーに対応)の成分比を同定する。なお、試料を構成する成分の同定には、GC-MSやNMR、元素分析等、公知の方法を用いることができる。
(3)上記(1)、(2)に基づいてバイオマス資源由来の成分(各々のモノマー)を特定することができる。なお、各成分がバイオマス資源由来または化石資源由来である全ての組み合わせにおいてバイオベース炭素含有率を算出し、バイオベース炭素含有率が(1)の値となる際の組み合わせを採用することとする。
 繊維絡合体のバイオマスプラスチック度は、環境負荷の低減の観点から、15%以上であることが好ましく、25%以上であることがさらに好ましい。
 人工皮革用基体から繊維絡合体のバイオマスプラスチック度を測定する際には、繊維絡合体が可溶の溶媒を用いて繊維絡合体を抽出し、単離する方法や、人工皮革用基体から高分子弾性体が可溶の溶媒を用いて高分子弾性体を除去する方法など人工皮革用基体の構成成分に応じて適宜採用することができる。
 人工皮革用基体から繊維絡合体以外の成分を除去する方法としては、例えば、60℃以上100℃以下に加熱したN,N-ジメチルホルムアミドを用いて高分子弾性体を含む成分を抽出する手法を用いることができる。
 [高分子弾性体]
 本発明の人工皮革用基体を構成する高分子弾性体は、人工皮革用基体を構成する極細繊維からなる繊維絡合体を把持するバインダーとして用いられるため、本発明の人工皮革用基体の柔軟な風合いを考慮すると、用いられる高分子弾性体としては、ポリウレタン、SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)およびアクリル樹脂等が挙げられる。中でも、ポリウレタンを主成分として用いることが好ましい態様である。ポリウレタンを用いることにより、充実感のある触感、皮革様の外観および実使用に耐える物性を備えた人工皮革用基体を得ることができる。また、ここでいう主成分とは、高分子弾性体全体の質量に対してポリウレタンの質量が50質量%より多いことをいう。
 本発明においてポリウレタンを用いる場合には、有機溶剤に溶解した状態で使用する有機溶剤系ポリウレタンと、水に分散した状態で使用する水分散型ポリウレタンのどちらも採用することができる。また、ポリウレタンとしては、ポリマージオールと有機ジイソシアネートと鎖伸長剤との反応により得られるポリウレタンが好ましく用いられる。
 本発明に用いられる高分子弾性体は、環境負荷の低減の観点から、バイオマス資源由来の成分を含有することが好ましい。バイオマス資源由来の成分としては、高分子弾性体としてポリウレタンを用いた場合には、その構成成分のうち、バイオマス資源由来の原料の調達が比較的容易である、ポリマージオールにバイオマス資源由来の成分を用いることが好ましい。
 高分子弾性体としてポリウレタンを用いる場合に、用いられるポリマージオールとしては、平均分子量500以上3000以下のポリエステルジオール、ポリエーテルジオール、ポリカーボネートジオール、あるいはポリエステルポリエーテルジオールなどのポリマージオールなどから選ばれた少なくとも1種類のポリマージオールを用いることができるが、耐加水分解性に優れるポリカーボネートジオールを含むことが好ましい。ポリマージオールにバイオマス資源由来の成分を用いる場合、ポリマージオールがバイオマス資源由来の成分のみから構成されても、バイオマス資源由来のポリマージオールと化石資源由来のポリマージオールとの共重合体から構成されてもよい。環境負荷の低減の観点からは、バイオマス資源由来のポリマージオールの量が化石資源由来のポリマージオール対比で多いことが好ましい。
 高分子弾性体としてポリウレタンを用いる場合に、用いられるイソシアネートとしては、4,4’-ジフェニルメタンジイソシアネートなどの芳香族系、イソホロンジイソシアネートなどの脂環族系およびヘキサメチレンジイソシアネートなどの脂肪族系のジイソシアネートなどから選ばれた少なくとも1種類のジイソシアネートが挙げられる。
 高分子弾性体としてポリウレタンを用いる場合に、用いられる鎖伸長剤としては、水、エチレングリコール、ブタンジオール、エチレンジアミンおよび4,4’-ジアミノジフェニルメタンなどの2個以上の活性水素原子を有する少なくとも1種類の低分子化合物が挙げられる。環境負荷の低減の観点からは、バイオマス資源由来の成分を含有する鎖伸長剤を使用することが好ましい。
 また、高分子弾性体には、目的に応じて各種の添加剤、例えば、カーボンブラックなどの顔料、リン系、ハロゲン系および無機系などの難燃剤、フェノール系、イオウ系およびリン系などの酸化防止剤、ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系、シアノアクリレート系およびオキザリックアシッドアニリド系などの紫外線吸収剤、ヒンダードアミン系やベンゾエート系などの光安定剤、ポリカルボジイミドなどの耐加水分解安定剤、可塑剤、耐電防止剤、界面活性剤、凝固調整剤および染料などを含有させることができる。
 人工皮革用基体における高分子弾性体の含有量は、使用する高分子弾性体の種類、高分子弾性体の製造方法および風合や物性を考慮して、適宜調整することができる。高分子弾性体の含有量は、繊維絡合体の質量に対して好ましくは10質量%以上60質量%以下であり、より好ましくは15質量%以上45質量%以下であり、さらに好ましくは20質量%以上40質量%以下である。高分子弾性体の含有量が10質量%未満では、繊維間の高分子弾性体による結合が弱くなり、人工皮革用基体の耐磨耗性に劣る傾向がある。また、高分子弾性体の含有量が60質量%を超えると、人工皮革用基体の風合いが硬くなる傾向がある。
 本発明に用いられる高分子弾性体は、ISO16620(2015)で規定されるバイオマスプラスチック度が5%以上100%以下であることが好ましい。バイオマスプラスチック度は前述の方法で測定され、環境負荷の低減の観点から、15%以上であることがより好ましく、25%以上であることがさらに好ましい。
 人工皮革用基体から高分子弾性体のバイオマスプラスチック度を測定する際には、高分子弾性体が可溶の溶媒を用いて高分子弾性体を抽出し、単離する方法や、人工皮革用基体から極細繊維が可溶の溶媒を用いて極細繊維を除去する方法など人工皮革用基体の構成成分に応じて適宜採用することができる。
 高分子弾性体として、有機溶剤系の高分子弾性体を用いる場合には、N,N-ジメチルホルムアミド等の有機溶媒により高分子弾性体を抽出し、単離することができる。高分子弾性体として、水分散型の高分子弾性体を用いる場合には、繊維を溶解する溶媒(ポリエステルの場合、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールやオルソクロロフェノール等)を用いて繊維を除去する手法や、60℃以上100℃以下に加熱したN,N-ジメチルホルムアミドにより水分散型の高分子弾性体を分解・抽出する手法を用いることができる。
 [人工皮革用基体]
 本発明の人工皮革用基体は、ISO16620(2015)で規定されるバイオマスプラスチック度が、5%以上100%以下であることが重要である。環境負荷の低減の観点から、バイオマスプラスチック度は、10%以上であることが好ましく、15%以上であることが更に好ましく、25%以上であることが最も好ましい。
 本発明の人工皮革用基体は繊維絡合体と高分子弾性体からなるものであるため、本発明における人工皮革用基体のバイオマスプラスチック度は、前述の方法により繊維絡合体のバイオマスプラスチック度と高分子弾性体のバイオマスプラスチック度をそれぞれ求め、以下の[式1]により算出されるものである。
 (人工皮革用基体のバイオマスプラスチック度)
   =(人工皮革用基体における繊維絡合体の質量比)×(繊維絡合体のバイオマスプラスチック度)+(人工皮革用基体における高分子弾性体の質量比)×(高分子弾性体のバイオマスプラスチック度)   ・・・[式1] 。
 本発明の人工皮革用基体は、その中において繊維絡合体が不織布の形態をなしていることが好ましい。不織布とすることにより、表面を起毛した際に均一で優美な外観や風合いを得ることができる。
 不織布の形態としては、長繊維不織布および短繊維不織布のいずれも用いられるが、製品面の立毛本数が多く優美な外観を得やすいことから、短繊維不織布であることが好ましい態様である。
 短繊維不織布を用いた際の極細繊維の繊維長は、好ましくは25mm以上90mm以下である。繊維長を90mm以下とすることにより、良好な品位と風合いとなり、繊維長を25mm以上とすることにより、耐摩耗性に優れた人工皮革用基体とすることができる。繊維長は、より好ましくは35mm以上80mm以下であり、さらに好ましくは40mm以上70mm以下である。
 人工皮革用基体を構成する繊維絡合体の目付は、JIS L1913(2010)6.2で測定され、50g/m以上400g/m以下の範囲であることが好ましく、さらに好ましくは80g/m以上300g/m以下の範囲である。繊維絡合体の目付が50g/m未満では、人工皮革用基体がペーパーライクとなり風合いに乏しいものとなる。また、繊維絡合体の目付が400g/mを超えると、人工皮革用基体の風合いが硬くなる傾向がある。
 本発明の人工皮革用基体は、強度や形態安定性を向上させる目的で、繊維絡合体の内部もしくは片側に織物を積層し絡合一体化させることも好ましい態様である。
 織物を絡合一体化させる場合に使用する織物を構成する繊維の種類としては、フィラメント、紡績糸、革新紡績糸、フィラメントと紡績糸の混合複合糸などを用いることができるが、紡績糸はその構造上表面に毛羽が多数存在し不織布と織物を絡合する際、その毛羽が脱落し表面に露出すると欠点となるため、フィラメントを用いることがより好ましく、フィラメントとしてはマルチフィラメントを用いることが好ましい。
 織物を構成する繊維の単繊維の繊維径は、1μm以上50μm以下であることが好ましい。単繊維の繊維径を50μm以下とすることにより、柔軟性に優れた人工皮革用基体が得られ、単繊維の繊維径を1μm以上とすることにより、人工皮革用基体としての製品の形態安定性が向上する。
 織物を構成する糸条の総繊度は、JIS L1013(2010)8.3b(簡便法)で測定され、30dtex以上170dtex以下が好ましい。繊度を170dtex以下とすることにより、柔軟性に優れた人工皮革用基体が得られ、総繊度を30dtex以上とすることにより、人工皮革用基体としての製品の形態安定性が向上する。このとき、経糸と緯糸のマルチフィラメントの総繊度は同じ総繊度とすることが好ましい。
 織物を構成する繊維の成分としては、繊維絡合体の構成成分と同成分とすることが好ましく、環境負荷の低減の観点からは、バイオマス資源由来の成分を含有することが好ましい。
 本発明の人工皮革用基体は、JIS L1913(2010)6.1A法で測定される厚みが、0.2mm以上1.2mm以下の範囲であることが好ましい。人工皮革用基体の厚みが0.2mmより小さくなると、製造時の加工性が悪くなり、厚みが1.2mmより大きくなると、人工皮革用基体の柔軟性を損ねる傾向を示す。人工皮革用基体の厚みは、0.3mm以上1.1mm以下であることがより好ましく、さらに好ましくは0.4mm以上1mm以下である。
 本発明の人工皮革用基体は、JIS L1913(2010)6.3.2法で測定される湿潤時の引張強さが、10N/cm以上200N/cm以下の範囲であることが好ましい。人工皮革用基体の湿潤時の引張強さが10N/cm以下であると、実使用時の耐久性に乏しくなる可能性や、また、染色時に破断等の加工性不良が生じる可能性があるため好ましくない。また、200N/cm以上であると成型加工性に乏しいものとなる可能性がある。人工皮革用基体の湿潤時の引張強さは、下限として好ましくは15N/cm以上、さらに好ましくは26N/cm以上、最も好ましくは32N/cm以上であり、一方、上限として好ましくは180N/cmであり、更に好ましく150N/cm以下である。一般的にバイオマス資源由来原料はバイオマス資源を発酵させて得られる原料から生産されるものであることから、化石資源由来原料に比べ、原料化学物質の異性体の含有率は高くなる傾向にあり、バイオマスプラスチック度を上げると、異性体の影響によってポリマーの結晶性や配向度は低下傾向となる。そのため、結果的に得られる人工皮革用基体の物理特性は低下する傾向にあり、特に湿潤時の引張強さは顕著に影響を受ける。本発明の人工皮革用基体はバイオマスプラスチック度を上げても湿潤時引張強力を保持できるように、異性体や不純物の含有量を低下させたバイオマス資源由来原料を用いて製造するものである。
 バイオマス資源由来原料の異性体や不純物の含有量はバイオマスプラスチック100質量%に対し、1000ppm以下であることが好ましく、さらに好ましくは500ppm以下である。
 バイオマス資源由来原料の異性体や不純物の同定および含有量の測定は、GC-MSやNMR等、公知の方法を用いて測定することができる。例えば、繊維絡合体がポリエステルからなる場合には、ポリエステルをアンモニア水溶液中で加熱分解したのちに、GC-MS測定によって異性体や不純物の同定およびその含有量を測定することができる。
 本発明においては、繊維絡合体を構成するポリマーおよび高分子弾性体の何れかまたはその両方において、当該繊維絡合体または高分子弾性体を構成するポリマー100質量%に含まれる当該ポリマーのバイオマス資源由来原料の異性体や不純物の含有量は1000ppm以下である。好ましくは、800ppm以下であり、さらに好ましくは500ppm以下である。好ましくは繊維絡合体および高分子弾性体が共にこれを充足することである。ポリマー100質量%に含まれる当該ポリマーのバイオマス資源由来原料の異性体や不純物の含有量を1000ppm以下とすることで、人工皮革用基体としたときの湿潤時の引張強さが劇的に改善され、化石資源由来原料を用いたものと較べて遜色の無い人工皮革用基体として得ることができる。この理由は定かでは無いが、異性体や不純物が繊維絡合体あるいは高分子弾性体においてポリマーの結晶性や配向度を低下させ、さらに欠陥を為し、湿潤時に水分子によって脆化が引き起こされているのではないかと推察される。
 [人工皮革]
 本発明の人工皮革用基体は、表面に立毛を有する、スエード調の人工皮革として用いることも好ましい態様である。スエード調の人工皮革とする場合、立毛は人工皮革の片面のみに有していてもよく、両面に有することも許容される。表面に立毛を有する場合の立毛形態は、意匠効果の観点から指でなぞったときに立毛の方向が変わることで跡が残る、いわゆるフィンガーマークが発する程度の立毛長と方向柔軟性を備えていることが好ましい。より具体的には、表面の立毛長は100μm以上であることが好ましく、150μm以上であることがより好ましい。一方で、400μm以下であることが好ましく、350μm以下であることがより好ましい態様である。表面の立毛長は、人工皮革の立毛を逆立てた状態で人工皮革の断面を倍率50倍でSEM撮影し、立毛部(極細繊維のみからなる層)の高さを10点測定して平均値を計算することにより算出する。
 本発明において、スエード調の人工皮革として用いる場合は、立毛面における極細繊維の立毛被覆率が70%以上100%以下であることが好ましい。立毛被覆率を70%以上、好ましくは75%以上、さらに好ましくは80%以上とすることにより、緻密な立毛となり、優雅な表面外観で、かつ極めてソフトな表面タッチであるだけでなく、表面に露出する高分子弾性体が少ないため、湿潤による表層付近の高分子弾性体の劣化が抑制され、結果として繊維の脱落や人工皮革の強度低下を抑制することができる。
 立毛被覆率は、立毛面について、SEM(走査型電子顕微鏡)により立毛繊維の存在がわかるように観察倍率30倍~70倍に拡大し、画像分析ソフトを用いて合計面積4mmあたりの立毛部分の総面積の比率を算出し、立毛被覆率とした。総面積の比率は、撮影したSEM画像について、画像分析ソフトウェア「ImageJ」を用い、立毛部分と非立毛部分を閾値100に設定して2値化処理することで算出できる。また、立毛被覆率の算出において、立毛ではない物質が立毛として算出され立毛被覆率に大きく影響している場合、手動で画像を編集しその部分を非立毛部分として算出した。
 画像分析システムとしては、前記の画像分析ソフトウェア「ImageJ」が例示されるが、画像分析システムは、規定の画素の面積比率を計算する機能を有する画像処理ソフトウェアからなることであれば、画像分析ソフトウェア「ImageJ」に限らない。なお、画像処理ソフトウェア「ImageJ」が通用のソフトウェアであり、アメリカ国立衛生研究所により開発された。該画像処理ソフトウェア「ImageJ」は、取り込んだ画像に対し、必要な領域を特定し、画素分析を行う機能を有している。
 [人工皮革用基体の製造方法]
 次に、本発明の人工皮革用基体の製造方法について説明する。
 本発明において、繊維絡合体を構成する極細繊維を得る手段としては、極細繊維発現型繊維を用いることが好ましい態様である。極細繊維発現型繊維をあらかじめ絡合し不織布とした後に、繊維の極細化を行うことによって、極細繊維束が絡合してなる不織布を得ることができる。
 極細繊維発現型繊維としては、溶剤溶解性の異なる2成分(島繊維が芯鞘複合繊維の場合は2または3成分)の熱可塑性樹脂を海成分と島成分とし、前記の海成分を、溶剤などを用いて溶解除去することによって島成分を極細繊維とする海島型複合繊維を用いることが、海成分を除去する際に島成分間、すなわち繊維束内部の極細繊維間に適度な空隙を付与することができるため、人工皮革用基体の風合いや表面品位の観点から好ましい。
 海島型複合繊維としては、海島型複合用口金を用い、海成分と島成分の2成分(島繊維が芯鞘複合繊維の場合は3成分)を相互配列して紡糸する高分子相互配列体を用いる方式が、均一な単繊維繊度の極細繊維が得られるという観点から好ましい。
 海島型複合繊維の海成分としては、ポリエチレン、ポリプロピレン、ポリスチレン、ナトリウムスルホイソフタル酸やポリエチレングリコールなどを共重合した共重合ポリエステル、およびポリ乳酸などを用いることができるが、製糸性や易溶出性等の観点から、ポリスチレンや共重合ポリエステルが好ましく用いられる。
 また、繊維絡合体は不織布の形態をとることが好ましく、前述のように短繊維不織布でも長繊維不織布でも用いることができるが、短繊維不織布であると、人工皮革用基体の厚さ方向を向く繊維が長繊維不織布に比べて多くなり、起毛した際の人工皮革用基体の表面に高い緻密感を得ることができるため好ましい。
 繊維絡合体として短繊維不織布を用いる場合には、得られた極細繊維発現型繊維に、好ましくは捲縮加工を施し、所定長にカット加工して原綿を得る。捲縮加工やカット加工は、公知の方法を用いることができる。
 次に、得られた原綿を、クロスラッパー等により繊維ウエブとし、絡合させることにより短繊維不織布を得る。繊維ウエブを絡合させ短繊維不織布を得る方法としては、ニードルパンチ処理やウォータージェットパンチ処理等を用いることができる。
 さらに、人工皮革用基体が織物を含む場合には、得られた短繊維不織布と織物を積層し、そして絡合一体化させる。短繊維不織布と織物の絡合一体化には、短繊維不織布の片面もしくは両面に織物を積層するか、あるいは複数枚の短繊維不織布ウエブの間に織物を挟んだ後に、ニードルパンチ処理やウォータージェットパンチ処理等によって短繊維不織布と織物の繊維同士を絡ませることができる。
 ニードルパンチ処理あるいはウォータージェットパンチ処理後の複合繊維(極細繊維発現型繊維)からなる短繊維不織布の見掛け密度は、0.15g/cm以上0.45g/cm以下であることが好ましい。見掛け密度を好ましくは0.15g/cm以上とすることにより、人工皮革基材が十分な形態安定性と寸法安定性が得られる。一方、見掛け密度を好ましくは0.45g/cm以下とすることにより、高分子弾性体を付与するための十分な空間を維持することができる。
 次に、前記の繊維絡合体に水溶性樹脂の水溶液を含浸し、乾燥することにより水溶性樹脂を付与することもできる。繊維絡合体に水溶性樹脂を付与することにより、繊維が固定されて寸法安定性が向上される。
 極細繊維発現型繊維を用いる場合には、得られた繊維絡合体を溶剤で処理して、単繊維の平均単繊維径が0.1μm以上10μm以下の極細繊維を発現させる。
 極細繊維発現型繊維が海島型複合繊維の場合、海成分を溶解除去する溶剤としては、海成分がポリエチレン、ポリプロピレンおよびポリスチレンの場合には、トルエンやトリクロロエチレンなどの有機溶剤を用いることができる。また、海成分が共重合ポリエステルやポリ乳酸の場合には、水酸化ナトリウムなどのアルカリ水溶液を用いることができる。また、海成分が水溶性熱可塑性ポリビニルアルコール系樹脂の場合には、熱水を用いることができる。
 次に、繊維絡合体に高分子弾性体の溶剤液を含浸し固化して、高分子弾性体を付与し、人工皮革用基体とする。高分子弾性体を繊維絡合体に固定する方法としては、高分子弾性体の溶液を繊維絡合体に含浸させた後、湿式凝固または乾式凝固する方法があり、使用する高分子弾性体の種類により適宜これらの方法を選択することができる。
 人工皮革用基体は、製造効率の観点から、厚み方向に半裁することも好ましい態様である。
 [人工皮革の製造方法]
 人工皮革用基体あるいは半裁された人工皮革用基体の表面に、起毛処理を施しスエード調の人工皮革とすることができる。起毛処理は、サンドペーパーやロールサンダーなどを用いて、研削する方法などにより施すことができる。
 本発明において起毛処理を施す場合には、極細繊維の立毛被覆率を前述の範囲に調整するため、繊維絡合体に高分子弾性体を含浸凝固した後のシートに、シリコーン系滑剤をシート状物の質量に対し0.01質量%以上3.0質量%以下付与することが好ましい。0.01質量%以上付与することで、高分子弾性体凝固物の表面をシリコーン系滑剤で覆うことにより、立毛層の形成工程時に高分子弾性体と極細繊維の離型性を向上し、極細繊維を分散させ、均一な立毛層を形成しやすくなる。一方、3.0質量%を超えるとシリコーンの滑り効果により立毛を形成し難くなる。シリコーン系滑剤のより好ましい範囲は、シート状物の質量に対し、0.1質量%以上2.0質量%以下である。シリコーン系滑剤は、例えば、東レコーテックス社製“SM7036EX”を用いることができる。
 シリコーン系滑剤の付与方法は、シリコーンオイル液にシートを含浸する方法や、スプレーによって噴射して付与する方法があるが、より均一に付与するためにはシリコーンオイル液にシートを含浸して付与する方法が好ましい。
 上記の人工皮革は、染色処理を施すことが好ましい。この染色処理としては、例えば、ジッガー染色機や液流染色機を用いた液流染色処理、連続染色機を用いたサーモゾル染色処理等の浸染処理、あるいはローラー捺染、スクリーン捺染、インクジェット方式捺染、昇華捺染および真空昇華捺染等による立毛面への捺染処理等を用いることができる。中でも、柔軟な風合いが得られることから、液流染色機を用いることが好ましい。また、必要に応じて、染色後に各種の樹脂仕上げ加工を施すことができる。
 染色された人工皮革のバイオマスプラスチック度を算出する際にも、前述の手順を用いて染色された人工皮革から繊維絡合体および/または高分子弾性体を抽出し、測定することで算出することができる。
 また、上記の人工皮革には、必要に応じてその表面に意匠性を施すことができる。例えば、パーフォレーション等の穴開け加工、エンボス加工、レーザー加工、ピンソニック加工、およびプリント加工等の後加工処理を施すことができる。
 次に、実施例を挙げて本発明の人工皮革用基体とその製造方法について説明する。なお、特段の記載がない事項については、前記の方法に従って測定を実施したものである。
 <評価方法>
 A.人工皮革用基体のバイオマスプラスチック度:
 以下の(1)~(5)の手順により、算出した。
(1)人工皮革用基体の重量(W)を測定する。
(2)人工皮革用基体から、繊維絡合体と高分子弾性体を単離し繊維絡合体の重量(w1)を測定することにより、人工皮革基体における繊維絡合体の質量比(w1/W)を算出する。
(3)(2)の結果から人工皮革基体における高分子弾性体の質量比((W-w1)/W)を算出する。
(4)前記の方法により、繊維絡合体と高分子弾性体の各々についてバイオマスプラスチック度を測定する。
(5)前記の[式1]の計算により、人工皮革用基体のバイオマスプラスチック度を算出する。
 B.バイオマス資源由来のポリマー100質量%に含まれる当該ポリマーのバイオマス資源由来原料の異性体や不純物の含有量:
 以下の(1)~(2)の手順により、算出した。
(1)人工皮革用基体から、繊維絡合体と高分子弾性体を単離する。
(2)繊維絡合体および高分子弾性体の各々0.1gについて、GC-MS(Hewlett Packard社製5890 seriesII、注入口:スプリット/スプリットレス注入口、検出器:水素炎イオン化検出器)において次の設定条件で測定し、不純物および異性体の含有量を求め、バイオマス資源由来のポリマー100質量%に含まれる当該ポリマーのバイオマス資源由来原料の異性体や不純物の含有量を算出した。
・インジェクタ温度:220℃
・カラムヘッド圧:20psi
・キャリアガス:ヘリウム
・試料導入量:1.0μl
・ディテクタ温度:220℃
・ガス流量:水素40ml/分,空気400ml/分,窒素40ml/分
・オーブン昇温開始温度:60℃
・オーブン昇温停止温度:220℃
・オーブン昇温速度:20℃/分。
 C.人工皮革用基体の湿潤時の引張強さ:
 人工皮革用基体から幅が20mmで、長さが200mmの試験片を切り出し、JIS L 1913(2010)6.3.2において、インストロン型引張試験機で、つかみ間隔を100mmとし、引張速度を200mm/分として引っ張り、破断時の強さを湿潤時の引張強さとした。
 <化学物質の表記>
・DMF:N,N-ジメチルホルムアミド
・PVA:ポリビニルアルコール
 [原綿Aの製造]
 島成分としてサトウキビの廃糖蜜由来のエチレングリコールとバイオマス資源由来のテレフタル酸(Gevo社製)からなる固有粘度(IV)が0.73のポリエチレンテレフタレート(PET A。異性体及び不純物の含有量:250ppm)を用い、また海成分としてメルトフローレート(MFR)が2.2のポリスチレンを用い、島数が16島/ホールの海島型複合用口金を用いて、紡糸温度が285℃で、島成分/海成分質量比率を80/20として溶融紡糸した後、2.7倍に延伸し、押し込み型捲縮機を用いて捲縮加工処理を施し、その後、51mmの長さにカットして単繊維繊度が4.2dtexの海島型複合繊維の原綿Aを得た。この原綿Aからポリスチレンを除去して得られた極細繊維のISO16620-2に基づくバイオベース炭素含有率は100%であり、また、元素分析およびGC-MSにより計測した成分は、エチレングリコール由来の成分とテレフタル酸由来の成分が質量比31:69であった。以上の結果より、算出したバイオマスプラスチック度は100%であった。
 [原綿Bの製造]
 島成分としてバイオマス資源由来のエチレングリコールと化石資源由来のテレフタル酸からなる固有粘度(IV)が0.73のポリエチレンテレフタレート(PET B。異性体及び不純物の含有量:150ppm)を用いた以外は原綿Aの製造と同様にして、原綿Bを得た。この原綿Bからポリスチレンを除去して得られた極細繊維のISO16620-2に基づくバイオベース炭素含有率は20%であり、また、元素分析およびGC-MSにより計測した成分は、エチレングリコール由来の成分とテレフタル酸由来の成分が質量比31:69であった。以上の結果より、算出したバイオマスプラスチック度は31%であった。
 [原綿Cの製造]
 島成分として化石資源由来のエチレングリコールと化石資源由来のテレフタル酸からなる固有粘度(IV)が0.73のポリエチレンテレフタレート(PET C。異性体及び不純物の含有量:50ppm)を用いた以外は原綿Aの製造と同様にして、原綿Cを得た。この原綿Cからポリスチレンを除去して得られた極細繊維のISO16620-2に基づくバイオベース炭素含有率は0%であり、また、元素分析およびGC-MSにより計測した成分は、エチレングリコール由来の成分とテレフタル酸由来の成分が質量比31:69であった。以上の結果より、算出したバイオマスプラスチック度は0%であった。
 [原綿Dの製造]
 島成分としてバイオマス資源由来のブチレングリコールと化石資源由来のテレフタル酸からなる固有粘度(IV)が0.73のポリブチレンテレフタレート(PBT A。異性体及び不純物の含有量:200ppm)を用いた以外は原綿Aの製造と同様にして、原綿Dを得た。この原綿Dからポリスチレンを除去して得られた極細繊維のISO16620-2に基づくバイオベース炭素含有率は33%であり、また、元素分析およびGC-MSにより計測した成分は、ブチレングリコール由来の成分とテレフタル酸由来の成分が質量比40:60であった。以上の結果より、算出したバイオマスプラスチック度は40%であった。
 [原綿Eの製造]
 島成分としてバイオマス資源由来のエチレングリコールとバイオマス資源由来のテレフタル酸からなる固有粘度(IV)が0.73のポリエチレンテレフタレート(PET A:異性体及び不純物の含有量:250ppm)を用い、また海成分としてメルトフローレート(MFR)が18のポリスチレンを用い、島数が36島/ホールの海島型複合用口金を用いて、紡糸温度が285℃で、島成分/海成分質量比率を55/45として溶融紡糸した後、3.5倍に延伸し、押し込み型捲縮機を用いて捲縮加工処理を施し、その後、51mmの長さにカットして単繊維繊度が3.2dtexの海島型複合繊維の原綿Eを得た。この原綿Eからポリスチレンを除去して得られた極細繊維のISO16620-2に基づくバイオベース炭素含有率は100%であり、また、元素分析およびGC-MSにより計測した成分は、エチレングリコール由来の成分とテレフタル酸由来の成分が質量比31:69であった。以上の結果より、算出したバイオマスプラスチック度は100%であった。
 [原綿Fの製造]
 島成分としてバイオマス資源由来のエチレングリコールとバイオマス資源由来のテレフタル酸からなる固有粘度(IV)が0.73のポリエチレンテレフタレート(PET D。異性体及び不純物の含有量:800ppm)を用いた以外は原綿Aの製造と同様にして、原綿Fを得た。この原綿Fからポリスチレンを除去して得られた極細繊維のISO16620-2に基づくバイオベース炭素含有率は100%であり、また、元素分析およびGC-MSにより計測した成分は、エチレングリコール由来の成分とテレフタル酸由来の成分が質量比31:69であった。以上の結果より、算出したバイオマスプラスチック度は100%であった。
 [原綿Gの製造]
 島成分としてバイオマス資源由来のエチレングリコールとバイオマス資源由来のテレフタル酸からなる固有粘度(IV)が0.73のポリエチレンテレフタレート(PET E。異性体及び不純物の含有量:1200ppm)を用いた以外は原綿Aの製造と同様にして、原綿Gを得た。この原綿Fからポリスチレンを除去して得られた極細繊維のISO16620-2に基づくバイオベース炭素含有率は100%であり、また、元素分析およびGC-MSにより計測した成分は、エチレングリコール由来の成分とテレフタル酸由来の成分が質量比31:69であった。以上の結果より、算出したバイオマスプラスチック度は100%であった。
 [高分子弾性体Aの製造]
 攪拌機および温度計を備えた四つ口フラスコに、バイオマス原料由来の1,10-デカンジオール(異性体及び不純物の含有量:400ppm)と石油原料由来の1,4-ブタンジオールからなる共重合ポリカーボネートジオール(数平均分子量2,000、モル%比:91/9)100質量部、石油原料由来の3-メチル-ペンタンジオールと石油原料由来の1,6-ヘキサンジオールからなる共重合ポリカーボネートジオール(数平均分子量2,000、モル%比:50/50)100質量部、バイオマス原料由来のエチレングリコール7.6質量部、石油原料由来の4,4’-ジフェニルメタンジイソシアネート61.6質量部およびDMF628質量部を仕込み、乾燥窒素雰囲気、70℃の条件下で15時間反応させ、樹脂濃度30質量%の高分子弾性体Aの溶液を得た。この高分子弾性体Aの溶液からDMFを留去して得られた高分子弾性体AのISO16620-2に基づくバイオベース炭素含有率は37%であり、また、元素分析およびGC-MSにより計測した成分は、1,10-デカンジオール由来の成分と、1,4-ブタンジオール由来の成分と、3-メチル-ペンタンジオール由来の成分と、1,6-ヘキサンジオール由来の成分と、エチレングリコール由来の成分と、4,4’-ジフェニルメタンジイソシアネート由来の成分とが、質量比35:2:37:3:23であった。以上の結果より、算出したバイオマスプラスチック度は38%であった。
 [高分子弾性体Bの製造]
 1,10-デカンジオールとして石油原料由来のものを用いた以外は、高分子弾性体Aの製造と同様にして、樹脂濃度30質量%の高分子弾性体Bの溶液を得た。この高分子弾性体Bの溶液からDMFを留去して得られた高分子弾性体BのISO16620-2に基づくバイオベース炭素含有率は0%であり、また、元素分析およびGC-MSにより計測した成分は、1,10-デカンジオール由来の成分と、1,4-ブタンジオール由来の成分と、3-メチル-ペンタンジオール由来の成分と、1,6-ヘキサンジオール由来の成分と、エチレングリコール由来の成分と、4,4’-ジフェニルメタンジイソシアネート由来の成分とが、質量比35:2:37:3:23であった。以上の結果より、算出したバイオマスプラスチック度は0%であった。
 [高分子弾性体Cの製造]
 バイオマス原料由来の1,10-デカンジオールとして異性体及び不純物の含有量が800ppmのものを用いた以外は、高分子弾性体Aの製造と同様にして、樹脂濃度30質量%の高分子弾性体Bの溶液を得た。この高分子弾性体Cの溶液からDMFを留去して得られた高分子弾性体CのISO16620-2に基づくバイオベース炭素含有率は37%であり、また、元素分析およびGC-MSにより計測した成分は、1,10-デカンジオール由来の成分と、1,4-ブタンジオール由来の成分と、3-メチル-ペンタンジオール由来の成分と、1,6-ヘキサンジオール由来の成分と、エチレングリコール由来の成分と、4,4’-ジフェニルメタンジイソシアネート由来の成分とが、質量比35:2:37:3:23であった。以上の結果より、算出したバイオマスプラスチック度は38%であった。
 [実施例1]
 原綿として原綿Aを用いて、カードとクロスラッパー工程を経て、積層繊維ウエブを形成し、2400本/cmのパンチ本数でニードルパンチを施して、厚みが2.3mmで、密度が0.24g/cmの絡合シート(フェルト)を得た。
 上記のようにして得られた絡合シートを96℃の温度の熱水で収縮させた後、これに鹸化度が88%で、12質量%のPVA水溶液を含浸させ、固形分の繊維分に対する目標付量30質量%で絞り、温度140℃の熱風で10分間PVAをマイグレーションさせながら乾燥させ、PVA付シートを得た。次に、このようにして得られたPVA付シートをトリクロロエチレンに浸漬させて、マングルによる搾液と圧縮を10回行うことによって、海成分の溶解除去とPVA付シートの圧縮処理を行い、PVAが付与された極細繊維束が絡合してなる脱海PVA付シートを得た。
 上記のようにして得られた脱海PVA付圧縮シートを、固形分濃度を13質量%に調整した高分子弾性体AのDMF溶液に含浸させ、固形分の繊維分に対する目標付量34質量%で絞り、DMF濃度30質量%の水溶液中で高分子弾性体を凝固せしめた。その後、PVAおよびDMFを熱水で除去し、120℃の温度の熱風で10分間乾燥させて、極細繊維の平均短繊維直径が4.4μmで、厚みが1.7mm、繊維絡合体と高分子弾性体の質量比が75:25の人工皮革用基体を得た。得られた人工皮革用基体からDMFを用いて高分子弾性体を抽出し、繊維絡合体および高分子弾性体のバイオマスプラスチック度を測定したところ、繊維絡合体が100%、高分子弾性体が38%であった。以上の結果より算出した人工皮革用基体のバイオマスプラスチック度は85%であり、環境負荷の低いものであった。また、湿潤時の引張強さは26N/cmであり、強度を有するものであった。
 [実施例2]
 原綿として原綿Bを用いた以外は実施例1と同様にして、人工皮革基体を得た。得られた人工皮革用基体からDMFを用いて高分子弾性体を抽出し、繊維絡合体および高分子弾性体のバイオマスプラスチック度を測定したところ、繊維絡合体が31%、高分子弾性体が38%であった。以上の結果より算出した人工皮革用基体のバイオマスプラスチック度は33%であり、実施例1の人工皮革用基体には劣るものの環境負荷の低いものであった。また、湿潤時の引張強さは33N/cmであり、強度を有するものであった。
 [実施例3]
 原綿として原綿Cを用いた以外は実施例1と同様にして、人工皮革基体を得た。得られた人工皮革用基体からDMFを用いて高分子弾性体を抽出し、繊維絡合体および高分子弾性体のバイオマスプラスチック度を測定したところ、繊維絡合体が0%、高分子弾性体が38%であった。以上の結果より算出した人工皮革用基体のバイオマスプラスチック度は10%であり、実施例1の人工皮革用基体には劣るものの環境負荷の低いものであった。また、湿潤時の引張強さは38N/cmであり、強度を有するものであった。
 [実施例4]
 原綿として原綿Dを用いた以外は実施例1と同様にして、人工皮革基体を得た。得られた人工皮革用基体からDMFを用いて高分子弾性体を抽出し、繊維絡合体および高分子弾性体のバイオマスプラスチック度を測定したところ、繊維絡合体が40%、高分子弾性体が38%であった。以上の結果より算出した人工皮革用基体のバイオマスプラスチック度は40%であり、実施例1の人工皮革用基体には劣るものの環境負荷の低いものであった。また、湿潤時の引張強さは32N/cmであり、強度を有するものであった。
 [実施例5]
 原綿として原綿Eを用いた以外は実施例1と同様にして、極細繊維の平均短繊維直径が2.0μmである人工皮革基体を得た。得られた人工皮革用基体からDMFを用いて高分子弾性体を抽出し、繊維絡合体および高分子弾性体のバイオマスプラスチック度を測定したところ、繊維絡合体が100%、高分子弾性体が38%であった。以上の結果より算出した人工皮革用基体のバイオマスプラスチック度は85%であり、環境負荷の低いものであった。また、湿潤時の引張強さは25N/cmであり、強度を有するものであった。
 [実施例6]
 原綿として原綿Fを用い、高分子弾性体として高分子弾性体Cを用いた以外は実施例1と同様にして、人工皮革基体を得た。得られた人工皮革用基体からDMFを用いて高分子弾性体を抽出し、繊維絡合体および高分子弾性体のバイオマスプラスチック度を測定したところ、繊維絡合体が100%、高分子弾性体が38%であった。以上の結果より算出した人工皮革用基体のバイオマスプラスチック度は85%であり、環境負荷の低いものであった。また、湿潤時の引張強さは14N/cmであり、強度を有するものであった。
 [実施例7]
 原綿として原綿Fを用い、高分子弾性体として高分子弾性体Cを用いた以外は実施例1と同様にして、人工皮革基体を得た。得られた人工皮革用基体からDMFを用いて高分子弾性体を抽出し、繊維絡合体および高分子弾性体のバイオマスプラスチック度を測定したところ、繊維絡合体が100%、高分子弾性体が38%であった。以上の結果より算出した人工皮革用基体のバイオマスプラスチック度は85%であり、環境負荷の低いものであったが、湿潤時の引張強さは9N/cmであり、やや湿潤時の強度に劣るものであった。
 [実施例8]
 原綿として原綿Bを用い、高分子弾性体として高分子弾性体Bを用いた以外は実施例1と同様にして、人工皮革基体を得た。得られた人工皮革用基体からDMFを用いて高分子弾性体を抽出し、繊維絡合体および高分子弾性体のバイオマスプラスチック度を測定したところ、繊維絡合体が31%、高分子弾性体が0%であった。以上の結果より算出した人工皮革用基体のバイオマスプラスチック度は23%であり、実施例1の人工皮革用基体には劣るものの環境負荷の低いものであった。また、湿潤時の引張強さは36N/cmであり、強度を有するものであった。
 [比較例1]
 原綿として原綿Cを用い、高分子弾性体として高分子弾性体Bを用いた以外は実施例1と同様にして、人工皮革基体を得た。得られた人工皮革用基体からDMFを用いて高分子弾性体を抽出し、繊維絡合体および高分子弾性体のバイオマスプラスチック度を測定したところ、繊維絡合体が0%、高分子弾性体が0%であった。以上の結果より算出した人工皮革用基体のバイオマスプラスチック度は0%であり、環境負荷の高いものであった。また、湿潤時の引張強さは40N/cmであり、強度を有するものであった。
Figure JPOXMLDOC01-appb-T000001
 本発明の人工皮革用基体は、環境負荷の低減のために、カーボンニュートラルに寄与するバイオマス資源由来の成分を含む天然皮革調の人工皮革用基体であり、車両用内装材、家具インテリア用素材、建築材料など様々な分野で使用でき、特に環境配慮志向の高い車両用内装材において好適に用いられる。

Claims (10)

  1.  平均単繊維直径が0.1μm以上、10μm以下の極細繊維からなる繊維絡合体と高分子弾性体とからなる人工皮革用基体であって、ISO16620(2015)で規定されるバイオマスプラスチック度が5%以上、100%以下である、人工皮革用基体。
  2.  前記人工皮革用基体のバイオマスプラスチック度が15%以上である、請求項1に記載の人工皮革用基体。
  3.  前記人工皮革用基体のバイオマスプラスチック度が25%以上である、請求項1に記載の人工皮革用基体。
  4.  前記繊維絡合体のバイオマスプラスチック度と、前記高分子弾性体のバイオマスプラスチック度とが、いずれも5%以上、100%以下である、請求項1に記載の人工皮革用基体。
  5.  前記繊維絡合体のバイオマスプラスチック度と、前記高分子弾性体のバイオマスプラスチック度とが、いずれも10%以上、100%以下である、請求項1に記載の人工皮革用基体。
  6.  前記極細繊維がポリエステルである、請求項1~5のいずれかに記載の人工皮革用基体。
  7.  前記高分子弾性体がポリウレタンである、請求項1~6のいずれかに記載の人工皮革用基体。
  8.  前記ポリウレタンが、バイオマス原料由来のポリカーボネートジオールを反応成分としたポリウレタンである、請求項7に記載の人工皮革用基体。
  9.  湿潤時の引張強さが10N/cm以上、200N/cm以下である、請求項1~8のいずれかに記載の人工皮革用基体。
  10.  請求項1~9のいずれかに記載の人工皮革用基体からなる、人工皮革。
PCT/JP2019/009890 2018-04-18 2019-03-12 人工皮革用基体および人工皮革 WO2019202877A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-079642 2018-04-18
JP2018079642A JP2019189948A (ja) 2018-04-18 2018-04-18 人工皮革用基体および人工皮革

Publications (1)

Publication Number Publication Date
WO2019202877A1 true WO2019202877A1 (ja) 2019-10-24

Family

ID=68239142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009890 WO2019202877A1 (ja) 2018-04-18 2019-03-12 人工皮革用基体および人工皮革

Country Status (3)

Country Link
JP (1) JP2019189948A (ja)
TW (1) TW201943794A (ja)
WO (1) WO2019202877A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112899879A (zh) * 2021-01-18 2021-06-04 万华新材料有限公司 一种环保超纤基布的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102585642B1 (ko) * 2020-11-25 2023-10-06 정성돈 셀룰로오스 기반의 원단에 사용되는 생분해성 함침제 조성물과 이를 이용한 생분해성 대체가죽의 제조방법 및 생분해성 대체가죽

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150038A (ja) * 2007-11-30 2009-07-09 Toray Coatex Co Ltd 植物由来成分からなる合成皮革
JP2011226047A (ja) * 2010-04-02 2011-11-10 Honda Motor Co Ltd バイオポリウレタン樹脂を用いてなる合成擬革
JP2014001475A (ja) * 2012-06-18 2014-01-09 Seiren Co Ltd 合成皮革
WO2014034780A1 (ja) * 2012-08-31 2014-03-06 東レ株式会社 人工皮革用基体
JP2016074917A (ja) * 2010-03-31 2016-05-12 三菱化学株式会社 バイオマス資源由来ポリウレタン及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150038A (ja) * 2007-11-30 2009-07-09 Toray Coatex Co Ltd 植物由来成分からなる合成皮革
JP2016074917A (ja) * 2010-03-31 2016-05-12 三菱化学株式会社 バイオマス資源由来ポリウレタン及びその製造方法
JP2011226047A (ja) * 2010-04-02 2011-11-10 Honda Motor Co Ltd バイオポリウレタン樹脂を用いてなる合成擬革
JP2014001475A (ja) * 2012-06-18 2014-01-09 Seiren Co Ltd 合成皮革
WO2014034780A1 (ja) * 2012-08-31 2014-03-06 東レ株式会社 人工皮革用基体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112899879A (zh) * 2021-01-18 2021-06-04 万华新材料有限公司 一种环保超纤基布的制备方法

Also Published As

Publication number Publication date
JP2019189948A (ja) 2019-10-31
TW201943794A (zh) 2019-11-16

Similar Documents

Publication Publication Date Title
JP6733673B2 (ja) 皮革様布帛
JP5958060B2 (ja) シート状物およびその製造方法
JP6007900B2 (ja) シート状物およびその製造方法
JP2014025165A (ja) シート状物の製造方法
KR102090355B1 (ko) 시트상물 및 그 시트상물의 제조 방법
JP2013112905A (ja) シート状物
KR102131678B1 (ko) 시트상물의 제조 방법 및 이 제조 방법으로부터 얻어지는 시트상물
JPWO2021125029A1 (ja) シート状物およびその製造方法
JP6277591B2 (ja) シート状物およびその製造方法
WO2019202877A1 (ja) 人工皮革用基体および人工皮革
JP6583276B2 (ja) シート状物とその製造方法
KR102375461B1 (ko) 복합 시트상물 및 그의 제조 방법
KR102708132B1 (ko) 시트형물의 제조 방법
JPWO2013099618A1 (ja) 複合繊維、人工皮革用基体および人工皮革
JP7567300B2 (ja) 人工皮革
JP6645432B2 (ja) シート状物およびその製造方法
JP7404970B2 (ja) 人工皮革およびその製造方法
WO2020040201A1 (ja) シート状物
JP6094096B2 (ja) 複合繊維およびそれを用いてなる人工皮革用基体
JP6065440B2 (ja) 人工皮革
WO2022044945A1 (ja) 人工皮革
JP2014019983A (ja) シート状物およびその製造方法
JP2024128360A (ja) 人工皮革およびその製造方法ならびに乗物用内装材
JP2009052166A (ja) シート状物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788572

Country of ref document: EP

Kind code of ref document: A1