Nothing Special   »   [go: up one dir, main page]

WO2019245045A1 - 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 - Google Patents

冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 Download PDF

Info

Publication number
WO2019245045A1
WO2019245045A1 PCT/JP2019/024822 JP2019024822W WO2019245045A1 WO 2019245045 A1 WO2019245045 A1 WO 2019245045A1 JP 2019024822 W JP2019024822 W JP 2019024822W WO 2019245045 A1 WO2019245045 A1 WO 2019245045A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
refrigerant
concentration
composition
point
Prior art date
Application number
PCT/JP2019/024822
Other languages
English (en)
French (fr)
Inventor
板野 充司
一博 高橋
眸 黒木
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US17/254,425 priority Critical patent/US20210122960A1/en
Priority to CN201980041948.2A priority patent/CN112313305A/zh
Priority to EP19822496.6A priority patent/EP3812442A4/en
Publication of WO2019245045A1 publication Critical patent/WO2019245045A1/ja
Priority to US17/990,920 priority patent/US20230151256A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/11Ethers
    • C09K2205/112Halogenated ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234

Definitions

  • the present disclosure relates to a composition containing a refrigerant, its use, and a refrigerator having the same and a method of operating the refrigerator.
  • R410A is used as an air conditioning refrigerant for home air conditioners and the like.
  • R410A is difluoromethane (CH 2 F 2; R32) and pentafluoroethane (C 2 HF 5; R125) is a two-component mixed refrigerant with a near azeotropic composition.
  • Patent Documents 2 and 3 disclose refrigerant compositions containing trifluoroiodomethane (CF 3 I) as prior art documents related to the present disclosure.
  • the inventors of the present invention have made an independent study that, in the prior art, a superior coefficient of performance [Coefficient of Performance (COP)] and a refrigerating capacity [Refrigeration Capacity (Cooling Capacity, Capacity) that can be an alternative refrigerant to R410A] It has been conceived that a refrigerant composition having a sufficiently small GWP and having four types of nonflammable properties has not been developed. The present disclosure aims to solve such a unique problem.
  • COP Coefficient of Performance
  • Refrigeration Capacity Cooling Capacity, Capacity
  • a composition comprising a refrigerant,
  • the refrigerant contains trifluoroiodomethane (CF 3 I) and difluoromethane (R32), and the content of each of CF 3 I and R 32 in the refrigerant is 100 mass% of the total amount of CF 3 I and R 32, 48% by mass ⁇ CF 3 I ⁇ 46% by mass, 54% by mass ⁇ R32 ⁇ 52% by mass,
  • a composition comprising: 2.
  • a composition comprising a refrigerant is trifluoroiodomethane (CF 3 I), include difluoromethane (R32) and pentafluoroethane (R125), R32, R125 and CF 3 I of, x mass% to these criteria the sum, respectively,
  • the coordinates (x, y, z) are Point E (53.7, 11.0, 35.3), Point F (51.6, 0.0, 48.4) Point D (65.0.0.0, 35.0) and Point X (64.6.8.9, 26.5) are within the range of the figure surrounded by the line segments EF, FD, DX and XE connecting the four points (except on the line segment FD),
  • the line segment EF is Coordinates (x, -1.1255x 2 + 123.76x- 3389.3, 1.1255x 2 -124.76x
  • a composition comprising a refrigerant,
  • the refrigerant contains trifluoroiodomethane (CF 3 I) and trans-1,2-difluoroethylene (HFO-1132 (E)), and contains CF 3 I and HFO-1132 (E) in the refrigerant.
  • Amount the total amount of CF 3 I and HFO-1132 (E) is 100% by mass, and 68% by mass ⁇ CF 3 I ⁇ 62% by mass, 38% by mass ⁇ HFO-1132 (E) ⁇ 32% by mass,
  • a composition comprising: 4.
  • a composition comprising a refrigerant,
  • the refrigerant comprises trifluoroiodomethane (CF 3 I), difluoromethane (R32) and trans-1,2-difluoroethylene (HFO-1132 (E)), wherein HFO-1132 (E), CF 3 I and R32
  • HFO-1132 (E), CF 3 I and R32 In the three-component composition diagram in which the sum of HFO-1132 (E), CF 3 I and R32 is 100% by mass, assuming that the mass% based on the sum of these is x, y and z, respectively, the coordinates ( x, y, z) Point Y (32.5, 58.1, 9.4), Point J (0.0.77.2, 22.8) and Point H (0.0.35.0, 65.0) Within the range of the figure surrounded by the line segments JH, HY and YJ connecting the three points (except on the line segment JH), The line segment YJ is Coordinates (x, -0.0027x 2 -
  • a composition comprising a refrigerant,
  • the refrigerant contains trifluoroiodomethane (CF 3 I), difluoromethane (R32) and trifluoroethylene (HFO-1123), and is a mass% of HFO-1123, CF 3 I and R32 based on the sum of these.
  • a composition comprising a refrigerant includes difluoromethane (R32), pentafluoroethane (R125), trifluoroiodomethane (CF 3 I) and 2,3,3,3-tetrafluoroethylene (HFO-1234yf);
  • the total concentration of R32, R125, CF 3 I and HFO-1234yf is 100% by mass, and the concentration of HFO-1234yf is x% by mass
  • a refrigerant A having a composition ratio shown by (except on the line segment DF) (2) -1 12.6% by mass>x> 11.7% by mass, (2) -2 R32, R125 and CF 3 I concentration (concentration of R32 (wt%) / R125 concentration (wt%) / CF 3 I concentration (mass%)) is, Point G (-1.2222x 2 + 29.589x-123.98 / 20.5x 2 -510.15x + 3173.3 / 100-R1234yf-R32-R125), point D (1.2213x + 39.415 / 0.0 / 100-R1234yf-R32-R125), And a refrigerant B having a composition ratio indicated by a point F (0.7787x + 64.615 / 0.0 / 100-R1234yf-R32-R125), within the range of a triangle having vertices (excluding the line segment DF), A composition comprising one of the following.
  • a composition comprising a refrigerant,
  • the refrigerant is difluoromethane (R32), pentafluoroethane (R125), comprising trifluoroiodomethane (CF 3 I) and 1,3,3,3-tetrafluoropropene (HFO-1234ze),
  • the total concentration of R32, R125, CF 3 I and HFO-1234ze is 100% by mass, and the concentration of HFO-1234ze is x% by mass
  • the concentration of HFO-1234ze is x% by mass
  • Item 8 The composition according to any one of Items 1 to 7, further comprising a refrigerator oil, which is used as a working fluid for the refrigerator. 9. Item 10. The composition according to any one of Items 1 to 8 above, which is used as a substitute refrigerant for R410A. 10. Use of the composition according to any one of the above items 1 to 8 as a substitute refrigerant for R410A. 11. Item 10. A refrigerator comprising the composition according to any one of Items 1 to 9 above as a working fluid. 12. A method of operating the refrigerator, Item 10. An operation method including a step of circulating a composition according to any one of Items 1 to 9 as a working fluid in a refrigerator.
  • the refrigerant of the present disclosure has an excellent coefficient of performance and a refrigerating capacity that can be used as a substitute for R410A, has a sufficiently small GWP, and has four types of performances of noncombustibility. Therefore, the refrigerant of the present disclosure and the composition containing the same are useful, for example, as a working fluid for a refrigerator.
  • FIG. 4 is a diagram showing the composition of the refrigerant 2 of the present invention, which is inside (except on the line segment FD).
  • the sum of HFO-1132 (E), CF 3 I and R32 is 100% by mass, a figure surrounded by segments JH, HY and YJ connecting the three points Y, J and H respectively.
  • FIG. 3 is a diagram showing the composition of the refrigerant 5 of the present invention (excluding the line segment NL).
  • FIG. 3 is a diagram showing a composition of R32, R125, CF 3 I and 100% by weight of the total concentration of HFO-1234yf, the concentration of the HFO-1234yf as x wt%, represented by the total concentration of R32, R125 and CF 3 I (100-x) wt%
  • the composition of the refrigerant 6 of the present invention when X 9% by mass, that is, within the range of the quadrangle having the vertices of the points C, D, F, and E (except on the line segment DF)
  • FIG. 3 is a diagram showing a composition of R32, R125, CF 3 I and 100% by weight of the total concentration of HFO-1234yf, the concentration of the HFO-1234yf as x wt%, represented by the total concentration of R32, R125 and CF 3 I (100-x) wt%
  • FIG. 3 is a diagram showing a composition (excluding the above).
  • the composition of the refrigerant 6 of the present invention when X 12.1 mass% is within the range of the triangle having the points G, D, and F as vertices (except on the line segment DF). It is a figure which shows a composition.
  • the point D does not correspond to the refrigerant 6 of the present invention.
  • FIG. 3 is a diagram showing a composition of R32, R125, CF 3 I and 100% by weight of the total concentration of HFO-1234ze, the concentration of HFO-1234ze and x mass%, represented by the total concentration of R32, R125 and CF 3 I (100-x) wt%
  • the composition of the refrigerant 7 of the present invention when X 6% by mass, that is, within the range of a rectangle having points C, D, F, and E as vertices (except on the line segment DF)
  • FIG. 3 is a diagram showing a composition of R32, R125, CF 3 I and 100% by weight of the total concentration of HFO-1234ze, the concentration of HFO-1234ze and x mass%, represented by the total concentration of R32, R125 and CF 3 I (100-x) wt%
  • FIG. 3 is a diagram showing a composition (excluding the above).
  • the point D does not correspond to the refrigerant 7 of the present invention.
  • the present disclosure has been completed as a result of further research based on such findings.
  • the present disclosure includes the following embodiments.
  • the term “refrigerant” includes at least a compound with a refrigerant number (ASHRAE number) starting with R representing the type of refrigerant, which is defined by ISO817 (International Organization for Standardization), and the refrigerant number is still unknown. Even if not attached, those having the same properties as refrigerants are included.
  • Refrigerants are broadly classified into “fluorocarbon-based compounds” and “non-fluorocarbon-based compounds” in terms of compound structure.
  • the “fluorocarbon compound” includes chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), and hydrofluorocarbon (HFC). Examples of the “non-fluorocarbon compound” include propane (R290), propylene (R1270), butane (R600), isobutane (R600a), carbon dioxide (R744), and ammonia (R717).
  • composition containing a refrigerant includes (1) a refrigerant itself (including a mixture of refrigerants), and (2) further contains other components. At least a composition that can be used to obtain a working fluid for refrigerators, and (3) a working fluid for refrigerators containing refrigerator oil.
  • the composition of (2) is referred to as a “refrigerant composition” to distinguish it from the refrigerant itself (including a mixture of refrigerants).
  • the working fluid for a refrigerator of (3) is distinguished from the “refrigerant composition” and described as “a working fluid containing a refrigerator oil”.
  • the term "alternate”, when used in the context of "alternating" a first refrigerant with a second refrigerant, is designed to operate using the first refrigerant as a first type.
  • the second refrigerant can be used only through minor changes in components (at least one of refrigerating machine oil, gaskets, packing, expansion valves, dryers and other components) and equipment adjustments as necessary. Means that it can be operated under optimal conditions. That is, this type refers to operating the same equipment by “substituting” the refrigerant.
  • substitution substitution
  • drop-in substitution “nearly drop-in ( There can be “nealy drop in replacement” and "retrofit”.
  • the term “refrigerating machine” generally refers to a device that removes heat from an object or space to a temperature lower than the ambient outside air and maintains this low temperature.
  • the refrigerator refers to a conversion device that obtains energy from the outside, performs work, and converts energy to transfer heat from a lower temperature to a higher temperature.
  • non-flammable is defined as a WCF (Worst case of formation for for flammability) composition which is the most flammable composition among the allowable refrigerant concentrations in the US ANSI / ASHRAE34-2013 standard, and is determined to be “Class 1 (ie, WCF non-flammable)”. Or it is determined that ASHRAE is nonflammable.
  • WCF Wide case of formation for for flammability
  • the above-mentioned non-combustibility is determined based on a measuring device and a measuring method of a combustion test based on ASTM No. E681-2009.
  • the measurement is specifically performed as follows.
  • a 12-liter spherical glass flask as shown in Fig. 1 is used to enable visual and video recording of the combustion state.
  • gas is released from the upper lid.
  • the ignition method is generated by discharging from an electrode held at a height of 1/3 from the bottom.
  • the test conditions are as follows.
  • the refrigerant of the present disclosure can be roughly classified into Embodiments 1 to 7 (also referred to as refrigerants 1 to 7, respectively) when roughly classified according to each embodiment.
  • Each of the refrigerants 1 to 7 has an excellent coefficient of performance and a refrigerating capacity that can be used as a substitute refrigerant for R410A, has a sufficiently small GWP, and has four types of performances of noncombustibility. Therefore, the refrigerants 1 to 7 of the present disclosure and the composition containing the same are useful, for example, as a working fluid for a refrigerator.
  • the refrigerants 1 to 7 will be described.
  • the refrigerant of the present disclosure includes trifluoroiodomethane (CF 3 I) and difluoromethane (R32), the content of each of CF 3 I, R32 in the refrigerant is the total amount of CF 3 I and R32 100 48% by mass ⁇ CF 3 I ⁇ 46% by mass, 54% by mass ⁇ R32 ⁇ 52% by mass. That is, the refrigerant 1 is a mixed refrigerant.
  • Refrigerant 1 has an excellent coefficient of performance and a refrigerating capacity that can be used as a substitute for R410A, has a sufficiently small GWP, and has four types of non-combustible performance. Specifically, the coefficient of performance is 98% or more with respect to R32, the refrigerating capacity is 95% or more with respect to R32, and the GWP is 750 or less (especially 400 or less).
  • Coolant 1 comprises a CF 3 I and R32, the content of each of CF 3 I, R32 in the refrigerant, the amount of CF 3 I and R32 is 100 mass%, 48 mass% ⁇ CF 3 I ⁇ 46 weight %, 54% by mass ⁇ R32 ⁇ 52% by mass. Further, the total amount of CF 3 I and R32 in the entire refrigerant is preferably 99.5% by mass or more, more preferably 99.7% by mass or more, and most preferably 99.9% by mass or more. In addition, as components other than CF 3 I and R32 in the entire refrigerant, by-products and the like that can be inevitably contained when producing CF 3 I and R32 are exemplified.
  • Embodiment 6 Based on ANSI / ASHRAE34-2013, a leak test during storage, transportation, and use was simulated by REFPROP9.0, and the worst case of fractionation for flammability (WCFF) was determined in Embodiment 6.
  • Refrigerant 2 of the present disclosure includes trifluoroiodomethane (CF 3 I), difluoromethane (R32) and pentafluoroethane (R125), and the mass% of R32, R125 and CF 3 I based on the sum of these Is x, y and z, respectively, in a three-component composition diagram in which the sum of R32, R125 and CF 3 I is 100% by mass, the coordinates (x, y, z) are: Point E (53.7, 11.0, 35.3), Point F (51.6, 0.0, 48.4) Point D (65.0.0.0, 35.0) and Point X (64.6.8.9, 26.5) Are within the range of the figure surrounded by the line segments EF, FD, DX and XE connecting the four points (except on the line segment FD), The line segment EF is Coordinates (x, -1.1255x 2 + 123.76x- 3389
  • Refrigerant 2 has an excellent coefficient of performance and a refrigerating capacity that can be used as a substitute for R410A when the above requirements are satisfied, has a sufficiently small GWP, and has four types of nonflammable performance. Specifically, the coefficient of performance is 98% or more with respect to R32, the refrigerating capacity is 95% or more with respect to R32, and the GWP is 750 or less (especially 600 or less).
  • Refrigerant 2 R32, including R125 and CF 3 I, among them, preferably if the total amount of R32, R125 and CF 3 I in the entire refrigerant least 99.5 wt%, more preferably equal to or greater than 99.7 wt% , 99.9% by mass or more is most preferable.
  • Refrigerant 2 R32, including R125 and CF 3 I, among them, preferably if the total amount of R32, R125 and CF 3 I in the entire refrigerant least 99.5 wt%, more preferably equal to or greater than 99.7 wt% , 99.9% by mass or more is most preferable.
  • by-products and the like that can be inevitably included when R32, R125, and CF 3 I are produced are exemplified.
  • Refrigerant 3 of the present disclosure includes trifluoroiodomethane (CF 3 I) and trans-1,2-difluoroethylene (HFO-1132 (E)), and CF 3 I and HFO-1132 (E) in the refrigerant.
  • CF 3 I and HFO-1132 the total amount of (E) is 100 mass%, 68 mass% ⁇ CF 3 I ⁇ 62 wt%, 38 wt% ⁇ HFO-1132 (E) ⁇ 32 mass %. That is, the refrigerant 3 is a mixed refrigerant.
  • Refrigerant 3 has an excellent coefficient of performance and refrigeration capacity that can be used as an alternative refrigerant to R410A, has a sufficiently small GWP, and has four types of nonflammable performance. Specifically, the coefficient of performance is 100% or more (especially 105% or more) with respect to R410A, the refrigerating capacity is 65% or more with respect to R410A, the GWP is 1 or less, and it has WCF noncombustibility performance .
  • Coolant 3 comprises CF 3 I and HFO-1132 (E), CF 3 I in the refrigerant, the content of each of HFO-1132 (E) is, CF 3 I and HFO-1132 the total amount of (E) 100% by mass, 68% by mass ⁇ CF 3 I ⁇ 62% by mass, 38% by mass ⁇ HFO-1132 (E) ⁇ 32% by mass. Further, the total amount of CF 3 I and HFO-1132 (E) in the entire refrigerant is preferably at least 99.5% by mass, more preferably at least 99.7% by mass, and most preferably at least 99.9% by mass. In addition, as components other than CF 3 I and HFO-1132 (E) in the entire refrigerant, by-products and the like which can be inevitably contained when producing CF 3 I and HFO-1132 (E) are exemplified.
  • Refrigerant 4 of the present disclosure includes trifluoroiodomethane (CF 3 I), difluoromethane (R32) and trans-1,2-difluoroethylene (HFO-1132 (E)), and HFO-1132 (E), CF of 3 I and R32, x mass% to these criteria the sum respectively, when the y and z, HFO-1132 (E) , CF 3 I and the ternary diagram total of 100 wt% of R32
  • the coordinates (x, y, z) are Point Y (32.5, 58.1, 9.4), Point J (0.0.77.2, 22.8) and Point H (0.0.35.0, 65.0)
  • the line segment YJ is Coordinates (x, -0.0027x 2 -0.5002x + 77.2, 0.0027x 2 -
  • Refrigerant 4 has an excellent coefficient of performance and a refrigerating capacity that can be a substitute for R410A when the above requirements are satisfied, has a sufficiently small GWP, and has four types of performances of non-combustibility. Specifically, the coefficient of performance is 99% or more with respect to R32, the refrigeration capacity is 80% or more with respect to R32, and the GWP is 750 or less (especially 450 or less).
  • Refrigerant 4 includes HFO-1132 (E), CF 3 I and R32.
  • the total amount of HFO-1132 (E), CF 3 I and R 32 in the entire refrigerant is 99.5% by mass or more. , 99.7% by mass or more, more preferably 99.9% by mass or more.
  • components other than HFO-1132 (E), CF 3 I and R32 in the entire refrigerant by-products and the like inevitably contained when producing HFO-1132 (E), CF 3 I and R32 Is mentioned.
  • CF 3 I trifluoroiodomethane
  • R32 difluoromethane
  • HFO-1123 trifluoroethylene
  • HFO- 1123 HFO- 1123
  • CF 3 I and R32 trifluoroethylene
  • the coordinates (x, y, z) are: Point Z (41.6, 53.5, 4.9), Point N (0.0.77.2, 22.8) and Point L (0.0.35.0, 65.0) are within the range of the figure surrounded by the line segments ZN, NL and LZ respectively connecting the three points (except on the line segment NL),
  • the line segment ZN is Coordinates (x, -0.0007x 2 -0.5402x + 77.2 , 0.0007x 2 -0.4598x + 22.8)
  • Refrigerant 5 has an excellent coefficient of performance and a refrigerating capacity that can be used as a substitute for R410A when the above requirements are satisfied, has a sufficiently small GWP, and has four types of performances of non-combustibility. Specifically, the coefficient of performance is 99% or more with respect to R32, the refrigeration capacity is 80% or more with respect to R32, and the GWP is 750 or less (especially 450 or less).
  • Refrigerant 5 contains HFO-1123, CF 3 I and R32, and among them, the total amount of HFO-1123, CF 3 I and R32 in the entire refrigerant is preferably 99.5% by mass or more, more preferably 99.7% by mass or more. It is more preferable if the content is 99.9% by mass or more.
  • components other than HFO-1123, CF 3 I and R32 in the entire refrigerant by-products and the like which can be inevitably contained when producing HFO-1123, CF 3 I and R32 are exemplified.
  • Refrigerant 6 of the present disclosure includes difluoromethane (R32), pentafluoroethane (R125), trifluoroiodomethane (CF 3 I) and 2,3,3,3-tetrafluoroethylene (HFO-1234yf),
  • the total concentration of R32, R125, CF 3 I and HFO-1234yf is 100% by mass, and the concentration of HFO-1234yf is x% by mass
  • the total concentration of R32, R125 and CF 3 I is (100-x)% by mass, (1) -1 11.7 mass% ⁇ x ⁇ 6.0 mass%, (1) -2 R32, R125 and CF 3 I concentration (concentration of R32 (wt%) / R125 concentration (wt%) / CF 3 I concentration (mass%)) is, Point C (1.1753x + 41.14 / -0.2282x + 13.464 / 100-
  • a refrigerant A having a composition ratio shown by (except on the line segment DF) (2) -1 12.6% by mass> x ⁇ 11.7% by mass, (2) -2 R32, R125 and CF 3 I concentration (concentration of R32 (wt%) / R125 concentration (wt%) / CF 3 I concentration (mass%)) is, Point G (-1.2222x 2 + 29.589x-123.98 / 20.5x 2 -510.15x + 3173.3 / 100-R1234yf-R32-R125), point D (1.2213x + 39.415 / 0.0 / 100-R1234yf-R32-R125),
  • Refrigerant 6 satisfies the above requirements in each case where the concentration x of HFO-1234yf is (1) 11.7% by mass ⁇ x ⁇ 6.0% by mass, and (2) 12.6% by mass> x ⁇ 11.7% by mass. , It has an excellent coefficient of performance and a refrigerating capacity that can be used as a substitute for R410A, has a sufficiently small GWP, and has four types of performances of noncombustibility. Specifically, the coefficient of performance is 100% or more with respect to R410A, the refrigerating capacity is 100% or more with respect to R410A, and the GWP is 750 or less.
  • Refrigerant 6 including R32, R125, CF 3 I and HFO-1234yf, among which, the total amount of R32, R125, CF 3 I and HFO-1234yf in the entire refrigerant preferably equal to or greater than 99.5 wt%, 99.7 It is more preferably at least 9 mass%, most preferably at least 99.9 mass%.
  • the components other than R32, R125, CF 3 I and HFO-1234yf in the entire refrigerant like R32, R125, CF 3 byproducts that may be included inevitably in the production of I and HFO-1234yf Can be
  • points A, B, C, D, E, F, and G classified according to the range of x will be described.
  • the technical meanings of points A, B, C, D, E, F, and G are as follows.
  • the concentration at each point describes a value obtained in an example of Embodiment 6 (refrigerant 6) described later.
  • B: GWP 750 and R32 concentration (% by mass) is 0.0% by mass
  • C: Composition ratio of 100% refrigeration capacity for R410A (100% refrigeration capacity for R410A), GWP 750
  • E WCF incombustible composition ratio
  • GWP 750
  • F Composition ratio that makes WCF non-combustible
  • R125 concentration (% by mass) is 0.0% by mass
  • the CF3I concentration of point C from the (100-R1234yf-R32-R125 ) or more, R32, R125 and CF 3 the total concentration of I (100-x) and third diagram component composition point of C (the R32
  • the concentration (% by mass) / the concentration of R125 (% by mass) / the concentration of CF 3 I (% by mass) is represented by (1.1753x + 41.14 / -0.2282x + 13.464 / 100-R1234yf-R32-R125) .
  • the refrigeration capacity for R410A is 100% or more in a region closer to the vertex of R32 than the approximate straight line.
  • WCF becomes non-combustible in a region closer to the vertex of CF 3 I than the approximate straight line.
  • Nonflammability limit (specifying line segment EF) First has identified incombustible limit of binary mixed refrigerant flammable refrigerant (R32,1234yf) and incombustible refrigerant (CF 3 I, R125).
  • the nonflammability limit of the binary mixed refrigerant was determined based on a measuring device and a measuring method of a combustion test based on ASTM No. E681-2009 (details are described above).
  • Table 7 shows the details of points E and F.
  • the line segment EF is a regression line connecting these two points E and F.
  • ⁇ Embodiment 7 The refrigerant 7 of the present disclosure, difluoromethane (R32), pentafluoroethane (R125), comprising trifluoroiodomethane (CF 3 I) and 1,3,3,3-tetrafluoropropene (HFO-1234ze),
  • the total concentration of R32, R125, CF 3 I and HFO-1234ze is 100% by mass, and the concentration of HFO-1234ze is x% by mass
  • the concentration of HFO-1234ze is x% by mass
  • the concentration x of the HFO-1234ze is (1) 8.3% by mass ⁇ x ⁇ 4.0% by mass, and (2) the concentration of the HFO-1234ze is 8.9% by mass> x ⁇ 8.3% by mass, the above requirements are satisfied.
  • It has an excellent coefficient of performance and a refrigerating capacity that can be used as a substitute for R410A, has a sufficiently small GWP, and has four types of performances of noncombustibility. Specifically, the coefficient of performance is 100% or more with respect to R410A, the refrigerating capacity is 100% or more with respect to R410A, and the GWP is 750 or less.
  • Refrigerant 7 contains R32, R125, CF 3 I and HFO-1234ze, and among them, the total amount of R32, R125, CF 3 I and HFO-1234ze in the entire refrigerant is preferably 99.5% by mass or more, preferably 99.7% by mass. It is more preferably at least 9 mass%, most preferably at least 99.9 mass%.
  • the components other than R32, R125, CF 3 I and HFO-1234ze across the refrigerant like R32, R125, CF 3 byproducts that may be included inevitably in the production of I and HFO-1234ze Can be
  • points A, B, C, D, E, F, and G classified according to the range of x will be described.
  • the technical meanings of points A, B, C, D, E, F, and G are as follows.
  • the concentration at each point is a value obtained in an example of Embodiment 7 (refrigerant 7) described later.
  • B: GWP 750 and R32 concentration (% by mass) is 0.0% by mass
  • C: Composition ratio of 100% refrigeration capacity for R410A (100% refrigeration capacity for R410A), GWP 750
  • E WCF incombustible composition ratio
  • GWP 750
  • F Composition ratio that makes WCF non-combustible
  • R125 concentration (% by mass) is 0.0% by mass
  • the CF 3 I concentration at point C is (100-R1234ze-R32-R125). From the above, the point C on the ternary composition diagram where the total concentration of R32, R125 and CF 3 I is (100-x) the concentration of R32 (wt%) / R125 concentration (wt%) / CF 3 I concentration (mass%)) is, (0.0435x 2 + 1.4652x + 42.543 / -0.3726x + 13.462 / 100-R1234ze-R32- R125).
  • the GWP is 750 or less in a region closer to the vertex of CF 3 I than the straight line.
  • the refrigeration capacity for R410A is 100% or more in a region on the vertex side of R32 with respect to the approximate straight line.
  • WCF becomes non-combustible in a region on the vertex side of CF3I from the approximate straight line.
  • Nonflammability limit (specifying line segment EF) First has identified incombustible limit of binary mixed refrigerant flammable refrigerant (R32,1234ze) and incombustible refrigerant (CF 3 I, R125).
  • the nonflammability limit of the binary mixed refrigerant was determined based on a measuring device and a measuring method of a combustion test based on ASTM No. E681-2009 (details are described above).
  • the flammable refrigerant 1234ze and incombustible refrigerant CF 3 I, 1234ze 80.0 wt%
  • CF 3 I 20.0 wt %
  • Table 14 shows the details of points E and F.
  • the line segment EF is a regression line connecting these two points E and F.
  • the refrigerant of the present disclosure can be preferably used as a working fluid in a refrigerator.
  • compositions of the present disclosure are suitable for use as an alternative refrigerant to R410A.
  • the refrigerant composition of the present disclosure includes at least the refrigerant of the present disclosure, and can be used for the same applications as the refrigerant of the present disclosure. Further, the refrigerant composition of the present disclosure can be used to obtain a working fluid for a refrigerator by further mixing at least with a refrigerator oil.
  • the refrigerant composition of the present disclosure further contains at least one other component in addition to the refrigerant of the present disclosure.
  • the refrigerant composition of the present disclosure may contain at least one of the following other components as necessary.
  • the refrigerant compositions of the present disclosure are preferably substantially free of refrigerating machine oil.
  • the refrigerant composition of the present disclosure has a refrigerating machine oil content of preferably 0 to 1% by mass, more preferably 0 to 0.1% by mass, based on the entire refrigerant composition.
  • the 2.1 refrigerant composition of the water present disclosure may include trace amounts of water.
  • the water content of the refrigerant composition is preferably from 0 to 0.1% by mass, more preferably from 0 to 0.075% by mass, and more preferably from 0 to 0.05% by mass, based on the whole refrigerant. More preferably, it is particularly preferably 0 to 0.025% by mass. Since the refrigerant composition contains a trace amount of water, the intramolecular double bond of the unsaturated fluorocarbon compound that can be contained in the refrigerant is stabilized, and the oxidation of the unsaturated fluorocarbon compound is less likely to occur. In addition, the stability of the refrigerant composition is improved.
  • the lower limit of the water content is about 0.001% by mass.
  • adjusting the water content in the range of 0.001 to 0.1% by mass, 0.001 to 0.075% by mass, 0.001 to 0.05% by mass, and 0.001 to 0.025% by mass. can be.
  • the tracer is added to the refrigerant composition of the present disclosure at a detectable concentration so that if the refrigerant composition of the present disclosure undergoes dilution, contamination, or any other change, the change can be tracked.
  • the refrigerant composition of the present disclosure may contain one kind alone or two or more kinds as tracers.
  • the tracer is not particularly limited, and can be appropriately selected from commonly used tracers.
  • a compound that cannot be an impurity that is inevitably mixed into the refrigerant of the present disclosure is selected as a tracer.
  • hydrofluorocarbon, hydrochlorofluorocarbon, chlorofluorocarbon, hydrochlorocarbon, fluorocarbon, deuterated hydrocarbon, deuterated hydrofluorocarbon, perfluorocarbon, fluoroether, brominated compound, iodinated compound, alcohol, Aldehydes, ketones, nitrous oxide (N 2 O) and the like can be mentioned.
  • hydrofluorocarbon, hydrochlorofluorocarbon, chlorofluorocarbon, hydrochlorocarbon, fluorocarbon and fluoroether are particularly preferred.
  • FC-14 tetrafluoromethane, CF 4
  • HCC-40 chloromethane, CH 3 Cl
  • HFC-23 trifluoromethane, CHF 3
  • HFC-41 fluoromethane, CH 3 Cl
  • HFC-125 penentafluoroethane, CF 3 CHF 2
  • HFC-134a (1,1,1,2-tetrafluoroethane, CF 3 CH 2 F)
  • HFC-134 1,1,2,2-tetrafluoroethane, CHF 2
  • HFC-143a 1,1,1-trifluoroethane, CF 3 CH 3
  • HFC-143 (1,1,2-trifluoroethane, CHF 2 CH 2 F)
  • HFC-152a 1,1-difluoroethane, CHF 2 CH 3
  • HFC-152 (1,2-difluoroethane, CH 2 FCH 2 F)
  • HFC-161 fluoroethane
  • the tracer compound may be present in the refrigerant composition at a total concentration of about 10 parts per million (ppm) to about 1000 ppm.
  • the tracer compound is present in the refrigerant composition at a total concentration of about 30 ppm to about 500 ppm, and most preferably, the tracer compound is present in the refrigerant composition at a total concentration of about 50 ppm to about 300 ppm.
  • the refrigerant composition of the present disclosure may contain one type of ultraviolet fluorescent dye alone, or two or more types thereof.
  • the ultraviolet fluorescent dye is not particularly limited, and may be appropriately selected from commonly used ultraviolet fluorescent dyes.
  • the ultraviolet fluorescent dye examples include naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene, and fluorescein, and derivatives thereof.
  • the ultraviolet fluorescent dye one or both of naphthalimide and coumarin are particularly preferred.
  • the refrigerant composition of the present disclosure may contain one type alone or two or more types as stabilizers.
  • the stabilizer is not particularly limited, and can be appropriately selected from commonly used stabilizers.
  • Examples of the stabilizer include nitro compounds, ethers and amines.
  • nitro compound examples include aliphatic nitro compounds such as nitromethane and nitroethane, and aromatic nitro compounds such as nitrobenzene and nitrostyrene.
  • ethers examples include 1,4-dioxane.
  • amines examples include 2,2,3,3,3-pentafluoropropylamine and diphenylamine.
  • the content ratio of the stabilizer is not particularly limited, and is usually preferably 0.01 to 5% by mass, and more preferably 0.05 to 2% by mass, based on the whole refrigerant.
  • the refrigerant composition of the present disclosure may contain one kind alone or two or more kinds as a polymerization inhibitor.
  • the polymerization inhibitor is not particularly limited, and can be appropriately selected from commonly used polymerization inhibitors.
  • Examples of the polymerization inhibitor include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, benzotriazole and the like.
  • the content of the polymerization inhibitor is not particularly limited, and is usually preferably 0.01 to 5% by mass, and more preferably 0.05 to 2% by mass, based on the entire refrigerant.
  • Refrigeration oil-containing working fluid contains at least the refrigerant or the refrigerant composition of the present disclosure and refrigeration oil, and is used as a working fluid in a refrigerator.
  • the refrigerating machine oil-containing working fluid of the present disclosure is obtained by mixing a refrigerating machine oil used in a compressor of a refrigerator with a refrigerant or a refrigerant composition.
  • the working fluid containing the refrigerating machine oil generally contains 10 to 50% by mass of the refrigerating machine oil.
  • composition of the present disclosure may contain one kind alone or two or more kinds as refrigerating oil.
  • the refrigerating machine oil is not particularly limited, and can be appropriately selected from commonly used refrigerating machine oils. At that time, if necessary, a refrigerating machine oil which is more excellent in terms of the miscibility with the mixture and the action of improving the stability and the like of the mixture can be appropriately selected.
  • the base oil of the refrigerator oil for example, at least one selected from the group consisting of polyalkylene glycol (PAG), polyol ester (POE) and polyvinyl ether (PVE) is preferable.
  • PAG polyalkylene glycol
  • POE polyol ester
  • PVE polyvinyl ether
  • Refrigeration oil may further contain additives in addition to the base oil.
  • the additive may be at least one selected from the group consisting of an antioxidant, an extreme pressure agent, an acid scavenger, an oxygen scavenger, a copper deactivator, a rust inhibitor, an oil agent, and an antifoaming agent. .
  • those having a kinematic viscosity at 40 ° C of 5 to 400 cSt are preferable in terms of lubrication.
  • the refrigerating machine oil-containing working fluid of the present disclosure may further include at least one additive as necessary.
  • the additives include the following compatibilizers.
  • the refrigerating machine oil-containing working fluid of the present disclosure may contain one type alone or two or more types as a compatibilizer.
  • the compatibilizer is not particularly limited, and can be appropriately selected from commonly used compatibilizers.
  • compatibilizer examples include polyoxyalkylene glycol ether, amide, nitrile, ketone, chlorocarbon, ester, lactone, aryl ether, fluoroether, 1,1,1-trifluoroalkane and the like.
  • polyoxyalkylene glycol ether is particularly preferred.
  • the method of operating the refrigerator of the present disclosure is a method of operating the refrigerator using the refrigerant of the present disclosure.
  • the operation method of the refrigerator of the present disclosure includes a step of circulating the refrigerant of the present disclosure in the refrigerator.
  • the refrigeration capacity of the mixed refrigerant was determined by performing a refrigeration cycle theoretical calculation of the mixed refrigerant under the following conditions using the National Institute of Science and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0). Evaporation temperature 5 °C Condensing temperature 45 ° C Superheat temperature 5K Supercooling temperature 5K Compressor efficiency 70%
  • COP (refrigerating capacity or heating capacity) / power consumption
  • Example 1 of Comparative Example 1 (refrigerant 1) and Comparative Example R32 and CF 3 I are shown by mass% (mass%) shown in Table 15 based on the sum of these.
  • Refrigerant 1 having a predetermined composition, has an excellent coefficient of performance and a refrigerating capacity that can be used as a substitute for R410A, has a sufficiently small GWP, and has four types of performances of noncombustibility.
  • the refrigerant mixtures of Examples 1 to 3, which are specific examples of the refrigerant 1 have a coefficient of performance of 98% or more with respect to R32, a refrigeration capacity of 95% or more with respect to R32, and a GWP of It was 750 or less (especially 400 or less), and it was found to have ASHRAE non-combustibility.
  • Example 2 of Embodiment 2 (refrigerant 2) and Comparative Examples R32, R125, and CF 3 I were mixed at the mass% (mass%) shown in Table 16 based on the sum of them to prepare a mixed refrigerant.
  • Refrigerant 2 having a predetermined composition, has an excellent coefficient of performance and refrigeration capacity that can be used as an alternative refrigerant to R410A, has a sufficiently small GWP, and has four types of performances of non-combustibility.
  • the refrigerant mixtures of Examples 4 to 9, which are specific examples of the refrigerant 2 have a coefficient of performance of 98% or more with respect to R32, a refrigeration capacity of 95% or more with respect to R32, and a GWP of It was 750 or less (especially 600 or less), which proved to have WCF incombustibility.
  • Example and Comparative Example of Embodiment 3 (Refrigerant 3) A mixed refrigerant was prepared by mixing HFO-1132 (E) and CF 3 I at the mass% (mass%) shown in Table 17 based on the sum of these. .
  • Refrigerant 3 having a predetermined composition, has an excellent coefficient of performance and a refrigerating capacity that can be used as a substitute for R410A, has a sufficiently small GWP, and has four types of performances of noncombustibility.
  • the refrigerant mixtures of Examples 10 to 14, which are specific examples of the refrigerant 3 have a coefficient of performance of 100% or more (particularly 105% or more) with respect to R410A, and a refrigeration capacity of 65% with respect to R410A.
  • the GWP is 1 or less, and it has been found that it has the performance of non-combustibility of WCF.
  • Example 4 of Embodiment 4 (refrigerant 4) and Comparative Example R32, HFO-1132 (E), and CF 3 I were mixed at the mass% (mass%) shown in Table 18 based on the sum of these refrigerants. Prepared.
  • Refrigerant 4 having a predetermined composition, has an excellent coefficient of performance and a refrigerating capacity that can be used as a substitute for R410A, has a sufficiently small GWP, and has four types of performances of non-combustibility.
  • the refrigerant mixtures of Examples 15 to 19, which are specific examples of the refrigerant 4 have a coefficient of performance of 99% or more with respect to R32, a refrigeration capacity of 80% or more with respect to R32, and a GWP of It was 750 or less (especially 450 or less), which proved to have WCF non-combustibility.
  • Example 5 of Embodiment 5 (refrigerant 5) and Comparative Example R32, HFO-1123 and CF 3 I were mixed at the mass% (mass%) shown in Table 19 based on the sum of them to prepare a mixed refrigerant.
  • Refrigerant 5 having a predetermined composition, has an excellent coefficient of performance and a refrigerating capacity that can be used as a substitute for R410A, has a sufficiently small GWP, and has four types of performances of noncombustibility.
  • the mixed refrigerants of Examples 20 to 24, which are specific examples of the refrigerant 5 have a coefficient of performance of 99% or more with respect to R32, a refrigeration capacity of 80% or more with respect to R32, and a GWP of It was 750 or less (especially 450 or less), which proved to have WCF non-combustibility.
  • Refrigerant 6 satisfies the above requirements in each case where the concentration x of HFO-1234yf is (1) 11.7% by mass ⁇ x ⁇ 6.0% by mass, and (2) 12.6% by mass> x ⁇ 11.7% by mass. , It has an excellent coefficient of performance and a refrigerating capacity that can be used as a substitute for R410A, has a sufficiently small GWP, and has four types of performances of noncombustibility. Specifically, the mixed refrigerant of the example in the above table which is a specific example of the refrigerant 6 has a coefficient of performance of 100% or more with respect to R410A, the refrigeration capacity is 100% or more with respect to R410A, and GWP. Is 750 or less, which indicates that it has WCF incombustibility.
  • the concentration x of the HFO-1234ze is (1) 8.3% by mass ⁇ x ⁇ 4.0% by mass, and (2) the concentration of the HFO-1234ze is 8.9% by mass> x ⁇ 8.3% by mass, the above requirements are satisfied.
  • It has an excellent coefficient of performance and a refrigerating capacity that can be used as a substitute for R410A, has a sufficiently small GWP, and has four types of performances of noncombustibility.
  • the mixed refrigerant of the example in the above table which is a specific example of the refrigerant 7, has a coefficient of performance of 100% or more with respect to R410A, a refrigeration capacity of 100% or more with respect to R410A, and GWP. Is 750 or less, which indicates that it has WCF incombustibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本開示は、R410Aの代替冷媒となり得る優れた成績係数と冷凍能力とを有し、GWPが十分に小さく、かつ不燃という四種の性能を兼ね備える混合冷媒を提供する。 本開示は、具体的には、冷媒を含む組成物であって、 前記冷媒がトリフルオロヨードメタン(CF3I)及びジフルオロメタン(R32)を含み、前記冷媒中におけるCF3I、R32のそれぞれの含有量が、CF3I及びR32の総量を100質量%とし、48質量%≧CF3I≧46質量%、54質量%≧R32≧52質量%である、 ことを特徴とする組成物を提供する。

Description

冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
 本開示は、冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法に関する。
 家庭用エアコン等の空調用冷媒として現在、R410Aが用いられている。R410Aは、ジフルオロメタン(CH2F2;R32)とペンタフルオロエタン(C2HF5;R125)との2成分混合冷媒であり、擬似共沸組成物である。
 しかし、R410Aの地球温暖化係数(GWP)は2088であり、地球温暖化への懸念の高まりからGWPが675のR32がより多く使用されつつある。このため、R410Aに代替可能な低GWP混合冷媒が種々提案されている(特許文献1)。
 また、本開示に関連する先行文献として、特許文献2、3等には、トリフルオロヨードメタン(CF3I)を含む冷媒組成物が開示されている。
国際公開第2015/141678号 特開2009-24152号公報 特開平8-277389号公報
 本発明者らは、独自の検討により、従来技術においては、R410Aの代替冷媒となり得る優れた成績係数[Coefficient of Performance(COP)]と冷凍能力[Refrigeration Capacity(Cooling Capacity、Capacityと表記されることもある)]とを有し、GWPが十分に小さく、かつ不燃という四種の性能を兼ね備える冷媒組成物の開発には至っていないと着想するに至った。本開示はかかる独自の課題を解決することを目的とするものである。
1.冷媒を含む組成物であって、
 前記冷媒がトリフルオロヨードメタン(CF3I)及びジフルオロメタン(R32)を含み、前記冷媒中におけるCF3I、R32のそれぞれの含有量が、CF3I及びR32の総量を100質量%とし、48質量%≧CF3I≧46質量%、54質量%≧R32≧52質量%である、
ことを特徴とする組成物。
2.冷媒を含む組成物であって、
 前記冷媒がトリフルオロヨードメタン(CF3I)、ジフルオロメタン(R32)及びペンタフルオロエタン(R125)を含み、R32、R125及びCF3Iの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、R32、R125及びCF3Iの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点E(53.7, 11.0, 35.3)、
  点F(51.6, 0.0, 48.4)
  点D(65.0. 0.0, 35.0)及び
  点X(64.6. 8.9, 26.5)
の4点をそれぞれ結ぶ線分EF、FD、DX及びXEで囲まれる図形の範囲内(但し、前記線分FD上は除く)にあり、
 前記線分EFは、
  座標(x, -1.1255x2+123.76x-3389.3, 1.1255x2-124.76x+3489.3)で表わされ、且つ、前記線分FD、DX及びXEが直線である、
ことを特徴とする組成物。
3.冷媒を含む組成物であって、
 前記冷媒がトリフルオロヨードメタン(CF3I)及びトランス-1,2-ジフルオロエチレン(HFO-1132(E))を含み、前記冷媒中におけるCF3I、HFO-1132(E)のそれぞれの含有量が、CF3I及びHFO-1132(E)の総量を100質量%とし、68質量%≧CF3I≧62質量%、38質量%≧HFO-1132(E)≧32質量%である、
ことを特徴とする組成物。
4.冷媒を含む組成物であって、
 前記冷媒がトリフルオロヨードメタン(CF3I)、ジフルオロメタン(R32)及びトランス-1,2-ジフルオロエチレン(HFO-1132(E))を含み、HFO-1132(E)、CF3I 及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、CF3I 及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点Y(32.5, 58.1, 9.4)、
  点J(0.0. 77.2, 22.8)及び
  点H(0.0. 35.0, 65.0)
の3点をそれぞれ結ぶ線分JH、HY及びYJで囲まれる図形の範囲内(但し、前記線分JH上は除く)にあり、
 前記線分YJは、
  座標(x, -0.0027x2-0.5002x+77.2, 0.0027x2-0.4998x+22.8)で表わされ、且つ、前記線分JH及びHYが直線である、
ことを特徴とする組成物。
5.冷媒を含む組成物であって、
 前記冷媒がトリフルオロヨードメタン(CF3I)、ジフルオロメタン(R32)及びトリフルオロエチレン(HFO-1123)を含み、HFO-1123、CF3I 及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1123、CF3I 及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点Z(41.6, 53.5, 4.9)、
  点N(0.0. 77.2, 22.8)及び
  点L(0.0. 35.0, 65.0)
の3点をそれぞれ結ぶ線分ZN、NL及びLZで囲まれる図形の範囲内(但し、前記線分NL上は除く)にあり、
 前記線分ZNは、
  座標(x, -0.0007x2-0.5402x+77.2, 0.0007x2-0.4598x+22.8)で表わされ、且つ、前記線分NL及びLZが直線である、
ことを特徴とする組成物。
6.冷媒を含む組成物であって、
 前記冷媒が、ジフルオロメタン(R32)、ペンタフルオロエタン(R125)、トリフルオロヨードメタン(CF3I)及び2,3,3,3-テトラフルオロエチレン(HFO-1234yf)を含み、
 R32、R125、CF3I及びHFO-1234yfの総濃度を100質量%、HFO-1234yfの濃度をx質量%とし、
 R32、R125及びCF3Iの総濃度が(100-x)質量%で示される3成分組成図において、
(1)-1 11.7質量%≧x≧6.0質量%であり、
(1)-2 R32、R125及びCF3Iの濃度(R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))が、
点C(1.1753x+41.14/-0.2282x+13.464/100-R1234yf-R32-R125)、点D(0.0247x2+0.563x+43.733/0.0/100-R1234yf-R32-R125)、点F(-0.8069x+64.948/0.0/100-R1234yf-R32-R125)、及び点E(-0.8247x+64.54/0.1581x+8.96/100-R1234yf-R32-R125)、を頂点とする四角形又は三角形の範囲内(但し、前記線分DF上は除く)で示される組成比を有する冷媒A、
(2)-1 12.6質量%>x>11.7質量%であり、
(2)-2 R32、R125及びCF3Iの濃度(R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))が、
点G(-1.2222x2+29.589x-123.98/20.5x2-510.15x+3173.3/100-R1234yf-R32-R125)、点D(1.2213x+39.415/0.0/100-R1234yf-R32-R125)、及び点F(0.7787x+64.615/0.0/100-R1234yf-R32-R125)、を頂点とする三角形の範囲内(但し、前記線分DF上は除く)で示される組成比を有する冷媒B、
の一種を含むことを特徴とする組成物。
7.冷媒を含む組成物であって、
 前記冷媒が、ジフルオロメタン(R32)、ペンタフルオロエタン(R125)、トリフルオロヨードメタン(CF3I)及び1,3,3,3‐テトラフルオロプロペン(HFO-1234ze)を含み、
 R32、R125、CF3I及びHFO-1234zeの総濃度を100質量%、HFO-1234zeの濃度をx質量%とし、
 R32、R125及びCF3Iの総濃度が(100-x)質量%で示される3成分組成図において、
(1)-1 8.3質量%≧x≧4.0質量%であり、
(1)-2 R32、R125及びCF3Iの濃度(R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))が、
点C(0.0435x2+1.4652x+42.543/-0.3726x+13.406/100-R1234ze-R32-R125)、点D(0.097x2+0.6802x+44.628/0.0/100-R1234ze-R32-R125)、点F(-0.8143x+64.967/0.0/100-R1234ze-R32-R125)、及び点E(-0.0061x2-0.7393x+64.254/0.1631x+8.9386/100-R1234ze-R32-R125)を頂点とする四角形又は三角形の範囲内(但し、前記線分DF上は除く)で示される組成比を有する冷媒A、
(2)-1 8.9質量%>x>8.3質量%であり、
(2)-2 R32、R125及びCF3Iの濃度(R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))が、
点G(0.1667x+56.3/2.7778x2-64.944x+357.98/100-R1234ze-R32-R125)、点D(1.5625x2-24.938x+155.98/0.0/100-R1234ze-R32-R125)、及び点F(-0.6667x+63.733/0.0/100-R1234ze-R32-R125)、を頂点とする三角形の範囲内(但し、前記線分DF上は除く)で示される組成比を有する冷媒B、
の一種を含むことを特徴とする組成物。
8.さらに、冷凍機油を含有し、冷凍機用作動流体として用いられる、上記項1~7のいずれかに記載の組成物。
9.R410Aの代替冷媒として用いられる、上記項1~8のいずれかに記載の組成物。
10.上記項1~8のいずれかに記載の組成物の、R410Aの代替冷媒としての使用。
11.上記項1~9のいずれかに記載の組成物を作動流体として含む、冷凍機。
12.冷凍機の運転方法であって、
 上記項1~9のいずれかに記載の組成物を作動流体として冷凍機において循環させる工程を含む運転方法。
 本開示の冷媒は、R410Aの代替冷媒となり得る優れた成績係数と冷凍能力とを有し、GWPが十分に小さく、かつ不燃という四種の性能を兼ね備える。よって、本開示の冷媒及びそれ含む組成物は、例えば冷凍機用作動流体として有用である。
冷媒の不燃性試験に用いた装置の模式図である。 R32、R125及びCF3Iの総和が100質量%となる3成分組成図において、点E、F、D及びXの4点をそれぞれ結ぶ線分EF、FD、DX及びXEで囲まれる図形の範囲内(但し、前記線分FD上は除く)である本願発明の冷媒2の組成を示す図である。 HFO-1132(E)、CF3I 及びR32の総和が100質量%となる3成分組成図において、点Y、J及びHの3点をそれぞれ結ぶ線分JH、HY及びYJで囲まれる図形の範囲内(但し、前記線分JH上は除く)である本願発明の冷媒4の組成を示す図である。 HFO-1123、CF3I 及びR32の総和が100質量%となる3成分組成図において、点Z、N及びLの3点をそれぞれ結ぶ線分ZN、NL及びLZで囲まれる図形の範囲内(但し、前記線分NL上は除く)である本願発明の冷媒5の組成を示す図である。 R32、R125、CF3I及びHFO-1234yfの総濃度を100質量%、HFO-1234yfの濃度をx質量%とし、R32、R125及びCF3Iの総濃度が(100-x)質量%で示される3成分組成図において、X=6質量%の場合の本願発明の冷媒6の組成、すなわち点C、D、F及びEを頂点とする四角形の範囲内(但し、線分DF上を除く)である組成を示す図である。 R32、R125、CF3I及びHFO-1234yfの総濃度を100質量%、HFO-1234yfの濃度をx質量%とし、R32、R125及びCF3Iの総濃度が(100-x)質量%で示される3成分組成図において、X=9質量%の場合の本願発明の冷媒6の組成、すなわち点C、D、F及びEを頂点とする四角形の範囲内(但し、線分DF上を除く)である組成を示す図である。 R32、R125、CF3I及びHFO-1234yfの総濃度を100質量%、HFO-1234yfの濃度をx質量%とし、R32、R125及びCF3Iの総濃度が(100-x)質量%で示される3成分組成図において、X=11.7質量%の場合の本願発明の冷媒6の組成、すなわち点C(=E=G)、D及びFを頂点とする三角形の範囲内(但し、線分DF上を除く)である組成を示す図である。 R32、R125、CF3I及びHFO-1234yfの総濃度を100質量%、HFO-1234yfの濃度をx質量%とし、R32、R125及びCF3Iの総濃度が(100-x)質量%で示される3成分組成図において、X=12.1質量%の場合の本願発明の冷媒6の組成、すなわち点G、D及びFを頂点とする三角形の範囲内(但し、線分DF上を除く)である組成を示す図である。 R32、R125、CF3I及びHFO-1234yfの総濃度を100質量%、HFO-1234yfの濃度をx質量%とし、R32、R125及びCF3Iの総濃度が(100-x)質量%で示される3成分組成図において、X=12.6質量%の場合に組成が点D(=F=G)に収束することを示す図である。ここで、点Dは本願発明の冷媒6には該当しない。 R32、R125、CF3I及びHFO-1234zeの総濃度を100質量%、HFO-1234zeの濃度をx質量%とし、R32、R125及びCF3Iの総濃度が(100-x)質量%で示される3成分組成図において、X=4質量%の場合の本願発明の冷媒7の組成、すなわち点C、D、F及びEを頂点とする四角形の範囲内(但し、線分DF上を除く)である組成を示す図である。 R32、R125、CF3I及びHFO-1234zeの総濃度を100質量%、HFO-1234zeの濃度をx質量%とし、R32、R125及びCF3Iの総濃度が(100-x)質量%で示される3成分組成図において、X=6質量%の場合の本願発明の冷媒7の組成、すなわち点C、D、F及びEを頂点とする四角形の範囲内(但し、線分DF上を除く)である組成を示す図である。 R32、R125、CF3I及びHFO-1234zeの総濃度を100質量%、HFO-1234zeの濃度をx質量%とし、R32、R125及びCF3Iの総濃度が(100-x)質量%で示される3成分組成図において、X=8.3質量%の場合の本願発明の冷媒7の組成、すなわち点C(=E=G)、D及びFを頂点とする三角形の範囲内(但し、線分DF上を除く)である組成を示す図である。 R32、R125、CF3I及びHFO-1234zeの総濃度を100質量%、HFO-1234zeの濃度をx質量%とし、R32、R125及びCF3Iの総濃度が(100-x)質量%で示される3成分組成図において、X=8.6質量%の場合の本願発明の冷媒7の組成、すなわち点G、D及びFを頂点とする三角形の範囲内(但し、線分DF上を除く)である組成を示す図である。 R32、R125、CF3I及びHFO-1234zeの総濃度を100質量%、HFO-1234zeの濃度をx質量%とし、R32、R125及びCF3Iの総濃度が(100-x)質量%で示される3成分組成図において、X=8.9質量%の場合に組成が点D(=F=G)に収束することを示す図である。ここで、点Dは本願発明の冷媒7には該当しない。
 本発明者らは、上記の課題を解決すべく、鋭意研究を行った結果、トリフルオロヨードメタン(CF3I)を含む特定組成の冷媒が上記特性を有することを見出した。
 本開示は、かかる知見に基づきさらに研究を重ねた結果完成されたものである。本開示は、以下の実施形態を含む。
 <用語の定義>
 本開示において用語「冷媒」には、ISO817(国際標準化機構)で定められた、冷媒の種類を表すRで始まる冷媒番号(ASHRAE番号)が付された化合物が少なくとも含まれ、さらに冷媒番号が未だ付されていないとしても、それらと同等の冷媒としての特性を有するものが含まれる。冷媒は、化合物の構造の面で、「フルオロカーボン系化合物」と「非フルオロカーボン系化合物」とに大別される。「フルオロカーボン系化合物」には、クロロフルオロカーボン(CFC)、ハイドロクロロフルオロカーボン(HCFC)及びハイドロフルオロカーボン(HFC)が含まれる。「非フルオロカーボン系化合物」としては、プロパン(R290)、プロピレン(R1270)、ブタン(R600)、イソブタン(R600a)、二酸化炭素(R744)及びアンモニア(R717)等が挙げられる。
 本開示において、用語「冷媒を含有する組成物」には、(1)冷媒そのもの(冷媒の混合物を含む)と、(2)その他の成分をさらに含み、少なくとも冷凍機油と混合することにより冷凍機用作動流体を得るために用いることのできる組成物と、(3)冷凍機油を含有する冷凍機用作動流体とが少なくとも含まれる。本明細書においては、これら三態様のうち、(2)の組成物のことを、冷媒そのもの(冷媒の混合物を含む)と区別して「冷媒組成物」と表記する。また、(3)の冷凍機用作動流体のことを「冷媒組成物」と区別して「冷凍機油含有作動流体」と表記する。
 本開示において、用語「代替」は、第一の冷媒を第二の冷媒で「代替」するという文脈で用いられる場合、第一の類型として、第一の冷媒を使用して運転するために設計された機器において、必要に応じてわずかな部品(冷凍機油、ガスケット、パッキン、膨張弁、ドライヤその他の部品のうち少なくとも一種)の変更及び機器調整のみを経るだけで、第二の冷媒を使用して、最適条件下で運転することができることを意味する。すなわち、この類型は、同一の機器を、冷媒を「代替」して運転することを指す。この類型の「代替」の態様としては、第二の冷媒への置き換えの際に必要とされる変更乃至調整の度合いが小さい順に、「ドロップイン(drop in)代替」、「ニアリー・ドロップイン(nealy drop in)代替」及び「レトロフィット(retrofit)」があり得る。
 第二の類型として、第二の冷媒を用いて運転するために設計された機器を、第一の冷媒の既存用途と同一の用途のために、第二の冷媒を搭載して用いることも、用語「代替」に含まれる。この類型は、同一の用途を、冷媒を「代替」して提供することを指す。
 本開示において用語「冷凍機(refrigerating machine)」とは、物あるいは空間の熱を奪い去ることにより、周囲の外気よりも低い温度にし、かつこの低温を維持する装置全般のことをいう。言い換えれば、冷凍機は温度の低い方から高い方へ熱を移動させるために、外部からエネルギーを得て仕事を行いエネルギー変換する変換装置のことをいう。
 本開示において、不燃とは、米国ANSI/ASHRAE34-2013規格において冷媒許容濃度のうち最も燃えやすい組成であるWCF(Worst case of formulation for flammability)組成が「クラス1(すなわちWCF不燃)」と判断されるか、又はASHRAE不燃と判断されることを意味する。
 なお、上記不燃は、ASTM E681-2009に基づく燃焼試験の測定装置及び測定方法に基づいて判定する。測定は具体的には以下の通り行う。
 燃焼の状態が目視および録画撮影できるように内容積12リットルの図1に示す球形ガラスフラスコを使用し、ガラスフラスコは燃焼により過大な圧力が発生した際には上部のふたからガスが開放されるようにする。着火方法は底部から1/3の高さに保持された電極からの放電により発生させる。試験条件は以下の通りとする。
<試験条件>
試験容器:280 mmφ球形(内容積:12リットル)
試験温度: 60℃±3℃
圧力 :101.3 kPa±0.7 kPa
水分 :乾燥空気1 gにつき0.0088 g±0.0005 g
2元冷媒組成物/空気混合比:1 vol.%刻み±0.2 vol.%
2元冷媒組成物混合: ±0.1 質量%
点火方法:交流放電、電圧15kV、電流30mA、ネオン変圧器
電極間隔:6.4 mm (1/4 inch)
スパーク:0.4 秒 ±0.05 秒
判定基準:
・着火点を中心に90度以上火炎が広がった場合 = 燃焼(伝播)
・着火点を中心に90度未満の火炎の広がりだった場合 = 火炎伝播なし(不燃)
 1.冷媒
 1.1 冷媒成分
 本開示の冷媒は、実施形態ごとに大別すると、実施形態1~7(それぞれ冷媒1~7ともいう)に分けることができる。冷媒1~7は、いずれもR410Aの代替冷媒となり得る優れた成績係数と冷凍能力とを有し、GWPが十分に小さく、かつ不燃という四種の性能を兼ね備える。よって、本開示の冷媒1~7及びそれ含む組成物は、例えば冷凍機用作動流体として有用である。以下、冷媒1~7について説明する。
<実施形態1:冷媒1>
 本開示の冷媒1は、トリフルオロヨードメタン(CF3I)及びジフルオロメタン(R32)を含み、前記冷媒中におけるCF3I、R32のそれぞれの含有量が、CF3I及びR32の総量を100質量%とし、48質量%≧CF3I≧46質量%、54質量%≧R32≧52質量%である、ことを特徴とする。すなわち、冷媒1は混合冷媒である。
 冷媒1は、R410Aの代替冷媒となり得る優れた成績係数と冷凍能力とを有し、GWPが十分に小さく、かつ不燃という四種の性能を兼ね備える。具体的には、成績係数はR32に対して98%以上であり、冷凍能力はR32に対して95%以上であり、GWPは750以下(特に400以下)であり、ASHRAE不燃の性能を兼ね備える。
 冷媒1は、CF3I及びR32を含み、冷媒中におけるCF3I、R32のそれぞれの含有量が、CF3I及びR32の総量を100質量%とし、48質量%≧CF3I≧46質量%、54質量%≧R32≧52質量%である。また、冷媒全体におけるCF3I及びR32の合計量が99.5質量%以上であれば好ましく、99.7質量%以上であればより好ましく、99.9質量%以上であれば最も好ましい。なお、冷媒全体におけるCF3I及びR32以外の成分としては、CF3I及びR32を製造する際に不可避的に含まれ得る副生成物などが挙げられる。
 なお、CF3IとR32のASHRAE不燃限界は、以下の手順で確認した。
 ANSI/ASHRAE34-2013に基づいて貯蔵、輸送、使用時の漏洩試験をREFPROP9.0によりシミュレーションを行い、WCFF (Worst case of fractionation for flammability:最も燃え易い混合組成)が、実施形態6で求め方を説明しているCF3IとR32の不燃限界組成(CF3I/R32)=(35mass%/65mass%)になる初期混合組成を求めた。その結果、初期混合組成は(CF3I/R32)=(46mass%/54mass%)であり、この混合組成がASHRAE不燃限界となる。
<実施形態2:冷媒2>
 本開示の冷媒2は、トリフルオロヨードメタン(CF3I)、ジフルオロメタン(R32)及びペンタフルオロエタン(R125)を含み、R32、R125及びCF3Iの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、R32、R125及びCF3Iの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点E(53.7, 11.0, 35.3)、
  点F(51.6, 0.0, 48.4)
  点D(65.0. 0.0, 35.0)及び
  点X(64.6. 8.9, 26.5)
の4点をそれぞれ結ぶ線分EF、FD、DX及びXEで囲まれる図形の範囲内(但し、前記線分FD上は除く)にあり、
 前記線分EFは、
  座標(x, -1.1255x2+123.76x-3389.3, 1.1255x2-124.76x+3489.3)で表わされ、且つ、前記線分FD、DX及びXEが直線である、
ことを特徴とする。すなわち、冷媒2は混合冷媒である。
 冷媒2は、上記要件が満たされる場合、R410Aの代替冷媒となり得る優れた成績係数と冷凍能力とを有し、GWPが十分に小さく、かつ不燃という四種の性能を兼ね備える。具体的には、成績係数はR32に対して98%以上であり、冷凍能力はR32に対して95%以上であり、GWPは750以下(特に600以下)であり、WCF不燃の性能を兼ね備える。
 冷媒2は、R32、R125及びCF3Iを含むが、その中でも、冷媒全体におけるR32、R125及びCF3Iの合計量が99.5質量%以上であれば好ましく、99.7質量%以上であればより好ましく、99.9質量%以上であれば最も好ましい。なお、冷媒全体におけるR32、R125及びCF3I以外の成分としては、R32、R125及びCF3Iを製造する際に不可避的に含まれ得る副生成物などが挙げられる。
<実施形態3:冷媒3>
 本開示の冷媒3は、トリフルオロヨードメタン(CF3I)及びトランス-1,2-ジフルオロエチレン(HFO-1132(E))を含み、前記冷媒中におけるCF3I、HFO-1132(E)のそれぞれの含有量が、CF3I及びHFO-1132(E)の総量を100質量%とし、68質量%≧CF3I≧62質量%、38質量%≧HFO-1132(E)≧32質量%である、ことを特徴とする。すなわち、冷媒3は混合冷媒である。
 冷媒3は、R410Aの代替冷媒となり得る優れた成績係数と冷凍能力とを有し、GWPが十分に小さく、かつ不燃という四種の性能を兼ね備える。具体的には、成績係数はR410Aに対して100%以上(特に105%以上)であり、冷凍能力はR410Aに対して65%以上であり、GWPは1以下であり、WCF不燃の性能を兼ね備える。
 冷媒3は、CF3I及びHFO-1132(E)を含み、冷媒中におけるCF3I、HFO-1132(E)のそれぞれの含有量が、CF3I及びHFO-1132(E)の総量を100質量%とし、68質量%≧CF3I≧62質量%、38質量%≧HFO-1132(E)≧32質量%である。また、冷媒全体におけるCF3I及びHFO-1132(E)の合計量が99.5質量%以上であれば好ましく、99.7質量%以上であればより好ましく、99.9質量%以上であれば最も好ましい。なお、冷媒全体におけるCF3I及びHFO-1132(E)以外の成分としては、CF3I及びHFO-1132(E)を製造する際に不可避的に含まれ得る副生成物などが挙げられる。
<実施形態4:冷媒4>
 本開示の冷媒4は、トリフルオロヨードメタン(CF3I)、ジフルオロメタン(R32)及びトランス-1,2-ジフルオロエチレン(HFO-1132(E))を含み、HFO-1132(E)、CF3I 及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、CF3I 及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点Y(32.5, 58.1, 9.4)、
  点J(0.0. 77.2, 22.8)及び
  点H(0.0. 35.0, 65.0)
の3点をそれぞれ結ぶ線分JH、HY及びYJで囲まれる図形の範囲内(但し、前記線分JH上は除く)にあり、
 前記線分YJは、
  座標(x, -0.0027x2-0.5002x+77.2, 0.0027x2-0.4998x+22.8)で表わされ、且つ、前記線分JH及びHYが直線である、
ことを特徴とする。すなわち、冷媒4は混合冷媒である。
 冷媒4は、上記要件が満たされる場合、R410Aの代替冷媒となり得る優れた成績係数と冷凍能力とを有し、GWPが十分に小さく、かつ不燃という四種の性能を兼ね備える。具体的には、成績係数はR32に対して99%以上であり、冷凍能力はR32に対して80%以上であり、GWPは750以下(特に450以下)であり、WCF不燃の性能を兼ね備える。
 冷媒4は、HFO-1132(E)、CF3I 及びR32を含むが、その中でも、冷媒全体におけるHFO-1132(E)、CF3I 及びR32の合計量が99.5質量%以上であれば好ましく、99.7質量%以上であればより好ましく、99.9質量%以上であれば最も好ましい。なお、冷媒全体におけるHFO-1132(E)、CF3I 及びR32以外の成分としては、HFO-1132(E)、CF3I 及びR32を製造する際に不可避的に含まれ得る副生成物などが挙げられる。
<実施形態5:冷媒5>
 本開示の冷媒5は、トリフルオロヨードメタン(CF3I)、ジフルオロメタン(R32)及びトリフルオロエチレン(HFO-1123)を含み、HFO-1123、CF3I 及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1123、CF3I 及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点Z(41.6, 53.5, 4.9)、
  点N(0.0. 77.2, 22.8)及び
  点L(0.0. 35.0, 65.0)
の3点をそれぞれ結ぶ線分ZN、NL及びLZで囲まれる図形の範囲内(但し、前記線分NL上は除く)にあり、
 前記線分ZNは、
  座標(x, -0.0007x2-0.5402x+77.2, 0.0007x2-0.4598x+22.8)で表わされ、且つ、前記線分NL及びLZが直線である、ことを特徴とする。すなわち、冷媒5は混合冷媒である。
 冷媒5は、上記要件が満たされる場合、R410Aの代替冷媒となり得る優れた成績係数と冷凍能力とを有し、GWPが十分に小さく、かつ不燃という四種の性能を兼ね備える。具体的には、成績係数はR32に対して99%以上であり、冷凍能力はR32に対して80%以上であり、GWPは750以下(特に450以下)であり、WCF不燃の性能を兼ね備える。
 冷媒5は、HFO-1123、CF3I 及びR32を含むが、その中でも、冷媒全体におけるHFO-1123、CF3I 及びR32の合計量が99.5質量%以上であれば好ましく、99.7質量%以上であればより好ましく、99.9質量%以上であれば最も好ましい。なお、冷媒全体におけるHFO-1123、CF3I 及びR32以外の成分としては、HFO-1123、CF3I 及びR32を製造する際に不可避的に含まれ得る副生成物などが挙げられる。
<実施形態6:冷媒6>
 本開示の冷媒6は、ジフルオロメタン(R32)、ペンタフルオロエタン(R125)、トリフルオロヨードメタン(CF3I)及び2,3,3,3-テトラフルオロエチレン(HFO-1234yf)を含み、
 R32、R125、CF3I及びHFO-1234yfの総濃度を100質量%、HFO-1234yfの濃度をx質量%とし、
 R32、R125及びCF3Iの総濃度が(100-x)質量%で示される3成分組成図において、
(1)-1 11.7質量%≧x≧6.0質量%であり、
(1)-2 R32、R125及びCF3Iの濃度(R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))が、
点C(1.1753x+41.14/-0.2282x+13.464/100-R1234yf-R32-R125)、点D(0.0247x2+0.563x+43.733/0.0/100-R1234yf-R32-R125)、点F(-0.8069x+64.948/0.0/100-R1234yf-R32-R125)、及び点E(-0.8247x+64.54/0.1581x+8.96/100-R1234yf-R32-R125)、を頂点とする四角形又は三角形の範囲内(但し、前記線分DF上は除く)で示される組成比を有する冷媒A、
(2)-1 12.6質量%>x≧11.7質量%であり、
(2)-2 R32、R125及びCF3Iの濃度(R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))が、
点G(-1.2222x2+29.589x-123.98/20.5x2-510.15x+3173.3/100-R1234yf-R32-R125)、点D(1.2213x+39.415/0.0/100-R1234yf-R32-R125)、及び点F(0.7787x+64.615/0.0/100-R1234yf-R32-R125)、を頂点とする三角形の範囲内(但し、前記線分DF上は除く)で示される組成比を有する冷媒B、
の一種を含むことを特徴とする。すなわち、冷媒6は混合冷媒である。
 冷媒6は、HFO-1234yfの濃度xが(1)11.7質量%≧x≧6.0質量%の場合、(2)12.6質量%>x≧11.7質量%の場合のそれぞれにおいて上記各要件が満たされる場合、R410Aの代替冷媒となり得る優れた成績係数と冷凍能力とを有し、GWPが十分に小さく、かつ不燃という四種の性能を兼ね備える。具体的には、成績係数はR410Aに対して100%以上であり、冷凍能力はR410Aに対して100%以上であり、GWPは750以下であり、WCF不燃の性能を兼ね備える。
 冷媒6は、R32、R125、CF3I及びHFO-1234yfを含むが、その中でも、冷媒全体におけるR32、R125、CF3I及びHFO-1234yfの合計量が99.5質量%以上であれば好ましく、99.7質量%以上であればより好ましく、99.9質量%以上であれば最も好ましい。なお、冷媒全体におけるR32、R125、CF3I及びHFO-1234yf以外の成分としては、R32、R125、CF3I及びHFO-1234yfを製造する際に不可避的に含まれ得る副生成物などが挙げられる。
 以下、xの範囲で場合分けをした点A、B、C、D、E、F、Gの求め方について説明する。なお、点A、B、C、D、E、F、Gの技術的意味は次の通りである。また、各点の濃度は、後述の実施形態6(冷媒6)の実施例で求めた値を記載している。
A:GWP=750であってCF3Iの濃度(質量%)が0.0質量%の組成比
B:GWP=750であってR32の濃度(質量%)が0.0質量%の組成比
C:R410Aに対して冷凍能力100%(対R410A冷凍能力100%)になる組成比であって、GWP=750の組成比
D:R410Aに対して冷凍能力100%(対R410A冷凍能力100%)になる組成比であって、R125の濃度(質量%)が0.0質量%の組成比
E:WCF不燃になる組成比であって、GWP=750の組成比
F:WCF不燃になる組成比であって、R125の濃度(質量%)が0.0質量%の組成比
G:R410Aに対して冷凍能力100%(対R410A冷凍能力100%)になる組成比であって、WCF不燃になる組成比
 (1)点C、D、E、F、Gの求め方
 (1-1)点Cについて
 11.7質量%≧x≧6.0質量%
 HFO-1234yfの濃度が6.0質量%とき、R32、R125及びCF3Iの総濃度を(100-x)質量%とする三成分組成図上の点Cは、
R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))=(48.2/12.1/33.7)であり、
 HFO-1234yfの濃度が9.0質量%とき、R32、R125及びCF3Iの総濃度を(100-x)質量%とする三成分組成図上の点Cは、
R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))=(51.7/11.4/27.9)であり、
 HFO-1234yfの濃度が11.7質量%とき、R32、R125及びCF3Iの総濃度を(100-x)質量%とする三成分組成図上の点Cは、
(R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))=(54.9/10.8/22.6)であることから、
 R32、R125、CF3I及びHFO-1234yfの総濃度を100質量%としたときの、R32の濃度をy質量%とすると、xy座標にプロットした上記の3点から求められる回帰直線の式は、
y=1.1753x+41.14
で表される。
 また、R125の濃度をy質量%とすると、同様に求められる回帰直線の式は、
y=-0.2282x+13.464
で表される。
 よって、点CのCF3I濃度は(100-R1234yf-R32-R125)で
 以上より、R32、R125及びCF3Iの総濃度を(100-x)とする三成分組成図上の点C(R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))は、(1.1753x+41.14/-0.2282x+13.464/100-R1234yf-R32-R125)で表される。
 12.6質量%≧x>11.7質量%
 Xの範囲が上記の場合についても同様に計算した。下記表1に各xの濃度範囲ごとの点Cの結果(R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))を示す。
Figure JPOXMLDOC01-appb-T000001
 (1-2)点D、E、F及びGについて
 以下、点Cの場合と同様にして、点D、E、F及びGを求めた。結果を下記表2~5に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 R32、R125及びCF3I の総濃度を(100-x)とする三成分組成図上において、GWP=7500となる点の集合は、HFO-1234yf=xとした場合にxの関数として提示している点Aと点Bを結んだ直線で示される。例えば、図5~9の三成分組成図上において、該直線よりもCF3Iの頂点側の領域において、GWPは750以下となる。
 また、R32、R125及びCF3Iの総濃度を(100-x)とする三成分組成図上において、R410Aに対して冷凍能力100%となる点の集合は、HFO-1234yf=xとした場合にxの関数として示される点Cと点Dとを結んだ直線に近似される。例えば、図5~9の三成分組成図上において、該近似直線よりもR32の頂点側の領域において、R410Aに対する冷凍能力は100%以上となる。
 また、R32、R125及びCF3Iの総濃度を(100-x)とする三成分組成図上において、WCF不燃となる点の集合は、HFO-1234yf=xとした場合にxの関数として示される点Eと点Fとを結んだ直線に近似される。例えば、図5~9の三成分組成図上において、該近似直線よりもCF3Iの頂点側の領域において、WCF不燃となる。
 不燃限界(線分EFの特定)
 先ずは、可燃性冷媒(R32,1234yf)と不燃性冷媒(CF3I、R125)との2元混合冷媒の不燃限界を特定した。
 2元混合冷媒の不燃限界は、ASTM E681-2009に基づく燃焼試験の測定装置及び測定方法に基づいて求めた(詳細は前述の通り)。
 その結果、可燃性冷媒R32と不燃性冷媒CF3Iとの混合冷媒では、R32=65.0重量%、CF3I=35.0重量%から火炎伝播は認められなくなり、この組成を不燃限界とした。また、可燃性冷媒R32と不燃性冷媒R125では、R32=63.0重量%、R125=37.0重量%、可燃性冷媒1234yfと不燃性冷媒CF3Iでは、1234yf=80.0重量%、CF3I=20.0重量%、可燃性冷媒1234yfと不燃性冷媒R125では、1234yf=79.0重量%、R125=21.0重量%からそれぞれ火炎伝播は認められなくなり、これらの組成を不燃限界とした。表6に結果をまとめた。
Figure JPOXMLDOC01-appb-T000006
 不燃限界を示す点E、Fは、
R32相当の可燃冷媒濃度=R32+(63/37)*(21/79)*R1234yfR32相当の不燃冷媒濃度=(63/37)*R125+(65/35)*CF3Iとの関係において、R32相当の可燃冷媒濃度-不燃冷媒濃度<0 の場合は不燃
R32相当の可燃冷媒濃度-不燃冷媒濃度>0 の場合は可燃と判断して特定した。
 表7に点E、Fの詳細を示す。線分EFはこれらの点E、Fの二点を結ぶ回帰線である。
Figure JPOXMLDOC01-appb-T000007
<実施形態7:冷媒7>
 本開示の冷媒7は、ジフルオロメタン(R32)、ペンタフルオロエタン(R125)、トリフルオロヨードメタン(CF3I)及び1,3,3,3‐テトラフルオロプロペン(HFO-1234ze)を含み、
 R32、R125、CF3I及びHFO-1234zeの総濃度を100質量%、HFO-1234zeの濃度をx質量%とし、
 R32、R125及びCF3Iの総濃度が(100-x)質量%で示される3成分組成図において、
(1)-1 8.3質量%≧x≧4.0質量%であり、
(1)-2 R32、R125及びCF3Iの濃度(R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))が、
点C(0.0435x2+1.4652x+42.543/-0.3726x+13.406/100-R1234ze-R32-R125)、点D(0.097x2+0.6802x+44.628/0.0/100-R1234ze-R32-R125)、点F(-0.8143x+64.967/0.0/100-R1234ze-R32-R125)、及び点E(-0.0061x2-0.7393x+64.254/0.1631x+8.9386/100-R1234ze-R32-R125)を頂点とする四角形又は三角形の範囲内(但し、前記線分DF上は除く)で示される組成比を有する冷媒A、
(2)-1 8.9質量%>x≧8.3質量%であり、
(2)-2 R32、R125及びCF3Iの濃度(R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))が、
点G(0.1667x+56.3/2.7778x2-64.944x+357.98/100-R1234ze-R32-R125)、点D(1.5625x2-24.938x+155.98/0.0/100-R1234ze-R32-R125)、及び点F(-0.6667x+63.733/0.0/100-R1234ze-R32-R125)、を頂点とする三角形の範囲内(但し、前記線分DF上は除く)で示される組成比を有する冷媒B、
の少なくとも一種を含むことを特徴とする。すなわち、冷媒7は混合冷媒である。
 冷媒7は、HFO-1234zeの濃度xが(1)8.3質量%≧x≧4.0質量%の場合、(2)8.9質量%>x≧8.3質量%の場合のそれぞれにおいて上記各要件が満たされる場合、R410Aの代替冷媒となり得る優れた成績係数と冷凍能力とを有し、GWPが十分に小さく、かつ不燃という四種の性能を兼ね備える。具体的には、成績係数はR410Aに対して100%以上であり、冷凍能力はR410Aに対して100%以上であり、GWPは750以下であり、WCF不燃の性能を兼ね備える。
 冷媒7は、R32、R125、CF3I及びHFO-1234zeを含むが、その中でも、冷媒全体におけるR32、R125、CF3I及びHFO-1234zeの合計量が99.5質量%以上であれば好ましく、99.7質量%以上であればより好ましく、99.9質量%以上であれば最も好ましい。なお、冷媒全体におけるR32、R125、CF3I及びHFO-1234ze以外の成分としては、R32、R125、CF3I及びHFO-1234zeを製造する際に不可避的に含まれ得る副生成物などが挙げられる。
 以下、xの範囲で場合分けをした点A、B、C、D、E、F、Gの求め方について説明する。なお、点A、B、C、D、E、F、Gの技術的意味は次の通りである。また、各点の濃度は、後述の実施形態7(冷媒7)の実施例で求めた値を記載している。
A:GWP=750であってCF3Iの濃度(質量%)が0.0質量%の組成比
B:GWP=750であってR32の濃度(質量%)が0.0質量%の組成比
C:R410Aに対して冷凍能力100%(対R410A冷凍能力100%)になる組成比であって、GWP=750の組成比
D:R410Aに対して冷凍能力100%(対R410A冷凍能力100%)になる組成比であって、R125の濃度(質量%)が0.0質量%の組成比
E:WCF不燃になる組成比であって、GWP=750の組成比
F:WCF不燃になる組成比であって、R125の濃度(質量%)が0.0質量%の組成比
G:R410Aに対して冷凍能力100%(対R410A冷凍能力100%)になる組成比であって、WCF不燃になる組成比
 (1)点C、D、E、F、Gの求め方
 (1-1)点Cについて
 8.3質量%≧x≧4.0質量%
 HFO-1234zeの濃度が4.0質量%とき、R32、R125及びCF3Iの総濃度を(100-x)質量%とする三成分組成図上の点Cは、
R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))=(49.1/11.9/35.0)であり、
 HFO-1234yfの濃度が6.0質量%とき、R32、R125及びCF3Iの総濃度を(100-x)質量%とする三成分組成図上の点Cは、
R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))=(52.9/11.2/29.9)であり、
 HFO-1234yfの濃度が8.3質量%とき、R32、R125及びCF3Iの総濃度を(100-x)質量%とする三成分組成図上の点Cは、
(R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))=(57.7/10.3/23.7)であることから、
 R32、R125、CF3I及びHFO-1234zeの総濃度を100質量%としたときの、R32の濃度をy質量%とすると、xy座標にプロットした上記の3点から求められる回帰直線の式は、
y=0.0435x2+1.4652x+42.543
で表される。
 また、R125の濃度をy質量%とすると、同様に求められる回帰直線の式は、
y=-0.3726x+13.462
で表される。
 よって、点CのCF3I濃度は(100-R1234ze-R32-R125)で
 以上より、R32、R125及びCF3Iの総濃度を(100-x)とする三成分組成図上の点C(R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))は、(0.0435x2+1.4652x+42.543/-0.3726x+13.462/100-R1234ze-R32-R125)で表される。
 8.9質量%≧x>8.3質量%
 Xの範囲が上記の場合についても同様に計算した。下記表8に各xの濃度範囲ごとの点Cの結果(R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))を示す。
Figure JPOXMLDOC01-appb-T000008
 (1-2)点D、E、F及びGについて
 以下、点Cの場合と同様にして、点D、E、F及びGを求めた。結果を下記表9~12に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 R32、R125及びCF3I の総濃度を(100-x)とする三成分組成図上において、GWP=7500となる点の集合は、HFO-1234ze=xとした場合にxの関数として提示している点Aと点Bを結んだ直線で示される。例えば、図10~14の三成分組成図上において、該直線よりもCF3Iの頂点側の領域において、GWPは750以下となる。
 また、R32、R125及びCF3Iの総濃度を(100-x)とする三成分組成図上において、R410Aに対して冷凍能力100%となる点の集合は、HFO-1234ze=xとした場合にxの関数として示される点Cと点Dとを結んだ直線に近似される。例えば、図10~14の三成分組成図上において、該近似直線よりもR32の頂点側の領域において、R410Aに対する冷凍能力は100%以上となる。
 また、R32、R125及びCF3Iの総濃度を(100-x)とする三成分組成図上において、WCF不燃となる点の集合は、HFO-1234ze=xとした場合にxの関数として示される点Eと点Fとを結んだ直線に近似される。例えば、図10~14の三成分組成図上において、該近似直線よりもCF3Iの頂点側の領域において、WCF不燃となる。
 不燃限界(線分EFの特定)
 先ずは、可燃性冷媒(R32,1234ze)と不燃性冷媒(CF3I、R125)との2元混合冷媒の不燃限界を特定した。
 2元混合冷媒の不燃限界は、ASTM E681-2009に基づく燃焼試験の測定装置及び測定方法に基づいて求めた(詳細は前述の通り)。
 その結果、可燃性冷媒R32と不燃性冷媒CF3Iとの混合冷媒では、R32=65.0重量%、CF3I=35.0重量%から火炎伝播は認められなくなり、この組成を不燃限界とした。また、可燃性冷媒R32と不燃性冷媒R125では、R32=63.0重量%、R125=37.0重量%、可燃性冷媒1234zeと不燃性冷媒CF3Iでは、1234ze=80.0重量%、CF3I=20.0重量%、可燃性冷媒1234zeと不燃性冷媒R125では、1234yf=79.0重量%、R125=21.0重量%からそれぞれ火炎伝播は認められなくなり、これらの組成を不燃限界とした。表13に結果をまとめた。
Figure JPOXMLDOC01-appb-T000013
 不燃限界を示す点E、Fは、
R32相当の可燃冷媒濃度=R32+(63/37)*(21/79)*R1234zeR32相当の不燃冷媒濃度=(63/37)*R125+(65/35)*CF3Iとの関係において、R32相当の可燃冷媒濃度-不燃冷媒濃度<0 の場合は不燃
R32相当の可燃冷媒濃度-不燃冷媒濃度>0 の場合は可燃と判断して特定した。
 表14に点E、Fの詳細を示す。線分EFはこれらの点E、Fの二点を結ぶ回帰線である。
Figure JPOXMLDOC01-appb-T000014
 1.2 用途
 本開示の冷媒は、冷凍機における作動流体として好ましく使用することができる。
 本開示の組成物は、R410Aの代替冷媒としての使用に適している。
 2. 冷媒組成物
 本開示の冷媒組成物は、本開示の冷媒を少なくとも含み、本開示の冷媒と同じ用途のために使用することができる。また、本開示の冷媒組成物は、さらに少なくとも冷凍機油と混合することにより冷凍機用作動流体を得るために用いることができる。
 本開示の冷媒組成物は、本開示の冷媒に加え、さらに少なくとも一種のその他の成分を含有する。本開示の冷媒組成物は、必要に応じて、以下のその他の成分のうち少なくとも一種を含有していてもよい。上述の通り、本開示の冷媒組成物を、冷凍機における作動流体として使用するに際しては、通常、少なくとも冷凍機油と混合して用いられる。したがって、本開示の冷媒組成物は、好ましくは冷凍機油を実質的に含まない。具体的には、本開示の冷媒組成物は、冷媒組成物全体に対する冷凍機油の含有量が好ましくは0~1質量%であり、より好ましくは0~0.1質量%である。
 2.1 
 本開示の冷媒組成物は微量の水を含んでもよい。冷媒組成物における含水割合は、冷媒全体に対して、0~0.1質量%であることが好ましく、0~0.075質量%であることがより好ましく、0~0.05質量%であることが更に好ましく、0~0.025質量%であることが特に好ましい。
 冷媒組成物が微量の水分を含むことにより、冷媒中に含まれ得る不飽和のフルオロカーボン系化合物の分子内二重結合が安定化され、また、不飽和のフルオロカーボン系化合物の酸化も起こりにくくなるため、冷媒組成物の安定性が向上する。水分を含むことによる上記効果を得る観点では、含水割合の下限値は0.001質量%程度である。例えば、0.001~0.1質量%、0.001~0.075質量%、0.001~0.05質量%、0.001~0.025質量%の範囲で含水割合を調整することができる。
 2.2 トレーサー
 トレーサーは、本開示の冷媒組成物が希釈、汚染、その他何らかの変更があった場合、その変更を追跡できるように検出可能な濃度で本開示の冷媒組成物に添加される。
 本開示の冷媒組成物は、トレーサーとして、一種を単独で含有してもよいし、二種以上を含有してもよい。
 トレーサーとしては、特に限定されず、一般に用いられるトレーサーの中から適宜選択することができる。好ましくは、本開示の冷媒に不可避的に混入する不純物とはなり得ない化合物をトレーサーとして選択する。
 トレーサーとしては、例えば、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、フルオロカーボン、重水素化炭化水素、重水素化ハイドロフルオロカーボン、パーフルオロカーボン、フルオロエーテル、臭素化化合物、ヨウ素化化合物、アルコール、アルデヒド、ケトン、亜酸化窒素(N2O)等が挙げられる。トレーサーとしては、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、フルオロカーボン及びフルオロエーテルが特に好ましい。
 上記トレーサーとしては、具体的には、以下の化合物が好ましい。
FC-14(テトラフルオロメタン、CF4
HCC-40(クロロメタン、CH3Cl)
HFC-23(トリフルオロメタン、CHF3
HFC-41(フルオロメタン、CH3Cl)
HFC-125(ペンタフルオロエタン、CF3CHF2
HFC-134a(1,1,1,2-テトラフルオロエタン、CF3CH2F)
HFC-134(1,1,2,2‐テトラフルオロエタン、CHF2CHF2
HFC-143a(1,1,1‐トリフルオロエタン、CF3CH3
HFC-143(1,1,2‐トリフルオロエタン、CHF2CH2F)
HFC-152a(1,1‐ジフルオロエタン、CHF2CH3
HFC-152(1,2-ジフルオロエタン、CH2FCH2F)
HFC-161(フルオロエタン、CH3CH2F)
HFC-245fa(1,1,1,3,3―ペンタフルオロプロパン、CF3CH2CHF2)HFC-236fa(1,1,1,3,3,3‐ヘキサフルオロプロパン、CF3CH2CF3)HFC-236ea(1,1,1,2,3,3-ヘキサフルオロプロパン、CF3CHFCHF2)HFC-227ea(1,1,1,2,3,3,3‐ヘプタフルオロプロパン、CF3CHFCF3)HCFC-22(クロロジフルオロメタン、CHClF2
HCFC-31(クロロフルオロメタン、CH2ClF)
CFC-1113(クロロトリフルオロエチレン、CF2=CClF)
HFE-125(トリフルオロメチル-ジフルオロメチルエーテル、CF3OCHF2)HFE-134a(トリフルオロメチル-フルオロメチルエーテル、CF3OCH2F)HFE-143a(トリフルオロメチル-メチルエーテル、CF3OCH3
HFE-227ea(トリフルオロメチル-テトラフルオロエチルエーテル、CF3OCHFCF3)HFE-236fa(トリフルオロメチル-トリフルオロエチルエーテル、CF3OCH2CF3
 トレーサー化合物は、約10重量百万分率(ppm)~約1000ppmの合計濃度で冷媒組成物中に存在し得る。好ましくは、トレーサー化合物は約30ppm~約500ppmの合計濃度で冷媒組成物中に存在し、最も好ましくは、トレーサー化合物は約50ppm~約300ppmの合計濃度で冷媒組成物中に存在する。
 2.3 紫外線蛍光染料
 本開示の冷媒組成物は、紫外線蛍光染料として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 紫外線蛍光染料としては、特に限定されず、一般に用いられる紫外線蛍光染料の中から適宜選択することができる。
 紫外線蛍光染料としては、例えば、ナフタルイミド、クマリン、アントラセン、フェナントレン、キサンテン、チオキサンテン、ナフトキサンテン及びフルオレセイン、並びにこれらの誘導体が挙げられる。紫外線蛍光染料としては、ナフタルイミド及びクマリンのいずれか又は両方が特に好ましい。
 2.4 安定剤
 本開示の冷媒組成物は、安定剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 安定剤としては、特に限定されず、一般に用いられる安定剤の中から適宜選択することができる。
 安定剤としては、例えば、ニトロ化合物、エーテル類及びアミン類等が挙げられる。
 ニトロ化合物としては、例えば、ニトロメタン及びニトロエタン等の脂肪族ニトロ化合物、並びにニトロベンゼン及びニトロスチレン等の芳香族ニトロ化合物等が挙げられる。
 エーテル類としては、例えば、1,4-ジオキサン等が挙げられる。
 アミン類としては、例えば、2,2,3,3,3-ペンタフルオロプロピルアミン、ジフェニルアミン等が挙げられる。
 その他にも、ブチルヒドロキシキシレン、ベンゾトリアゾール等が挙げられる。
 安定剤の含有割合は、特に限定されず、冷媒全体に対して、通常、0.01~5質量%とすることが好ましく、0.05~2質量%とすることがより好ましい。
 2.5 重合禁止剤
 本開示の冷媒組成物は、重合禁止剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 重合禁止剤としては、特に限定されず、一般に用いられる重合禁止剤の中から適宜選択することができる。
 重合禁止剤としては、例えば、4-メトキシ-1-ナフトール、ヒドロキノン、ヒドロキノンメチルエーテル、ジメチル-t-ブチルフェノール、2,6-ジ-tert-ブチル-p-クレゾール、ベンゾトリアゾール等が挙げられる。
 重合禁止剤の含有割合は、特に限定されず、冷媒全体に対して、通常、0.01~5質量%とすることが好ましく、0.05~2質量%とすることがより好ましい。
 3. 冷凍機油含有作動流体
 本開示の冷凍機油含有作動流体は、本開示の冷媒又は冷媒組成物と、冷凍機油とを少なくとも含み、冷凍機における作動流体として用いられる。具体的には、本開示の冷凍機油含有作動流体は、冷凍機の圧縮機において使用される冷凍機油と、冷媒又は冷媒組成物とが互いに混じり合うことにより得られる。冷凍機油含有作動流体には冷凍機油は一般に10~50質量%含まれる。
 3.1 冷凍機油
 本開示の組成物は、冷凍機油として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 冷凍機油としては、特に限定されず、一般に用いられる冷凍機油の中から適宜選択することができる。その際には、必要に応じて、前記混合物との相溶性(miscibility)及び前記混合物の安定性等を向上する作用等の点でより優れている冷凍機油を適宜選択することができる。
 冷凍機油の基油としては、例えば、ポリアルキレングリコール(PAG)、ポリオールエステル(POE)及びポリビニルエーテル(PVE)からなる群より選択される少なくとも一種が好ましい。
 冷凍機油は、基油に加えて、さらに添加剤を含んでいてもよい。添加剤は、酸化防止剤、極圧剤、酸捕捉剤、酸素捕捉剤、銅不活性化剤、防錆剤、油性剤及び消泡剤からなる群より選択される少なくとも一種であってもよい。
 冷凍機油として、40℃における動粘度が5~400 cStであるものが、潤滑の点で好ましい。
 本開示の冷凍機油含有作動流体は、必要に応じて、さらに少なくとも一種の添加剤を含んでもよい。添加剤としては例えば以下の相溶化剤等が挙げられる。
 3.2 相溶化剤
 本開示の冷凍機油含有作動流体は、相溶化剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 相溶化剤としては、特に限定されず、一般に用いられる相溶化剤の中から適宜選択することができる。
 相溶化剤としては、例えば、ポリオキシアルキレングリコールエーテル、アミド、ニトリル、ケトン、クロロカーボン、エステル、ラクトン、アリールエーテル、フルオロエーテルおよび1,1,1-トリフルオロアルカン等が挙げられる。相溶化剤としては、ポリオキシアルキレングリコールエーテルが特に好ましい。
 4.冷凍機の運転方法
 本開示の冷凍機の運転方法は、本開示の冷媒を用いて冷凍機を運転する方法である。
 具体的には、本開示の冷凍機の運転方法は、本開示の冷媒を冷凍機において循環させる工程を含む。
 以上、実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 以下に、実施例を挙げてさらに詳細に説明する。ただし、本開示は、これらの実施例に限定されるものではない。
 実施例及び比較例において、混合冷媒のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,特許文献1に記載)から、そのGWPを1と想定した。また、混合冷媒の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度   5℃
凝縮温度   45℃
過熱温度   5K
過冷却温度  5K
圧縮機効率  70%
 また、混合冷媒の成績係数(COP)は、次式により求めた。
 COP =(冷凍能力又は暖房能力)/消費電力量
 実施形態1(冷媒1)の実施例及び比較例
 R32とCF3Iを、これらの総和を基準として表15に示した質量%(mass%)で混合した混合冷媒を調製した。
Figure JPOXMLDOC01-appb-T000015
 冷媒1は、所定の組成を具備することにより、R410Aの代替冷媒となり得る優れた成績係数と冷凍能力とを有し、GWPが十分に小さく、かつ不燃という四種の性能を兼ね備える。具体的には、冷媒1の具体例である実施例1~3の混合冷媒は、成績係数はR32に対して98%以上であり、冷凍能力はR32に対して95%以上であり、GWPは750以下(特に400以下)であり、ASHRAE不燃の性能を兼ね備えることが分かった。
 実施形態2(冷媒2)の実施例及び比較例
 R32とR125とCF3Iを、これらの総和を基準として表16に示した質量%(mass%)で混合した混合冷媒を調製した。
Figure JPOXMLDOC01-appb-T000016
 冷媒2は、所定の組成を具備することにより、R410Aの代替冷媒となり得る優れた成績係数と冷凍能力とを有し、GWPが十分に小さく、かつ不燃という四種の性能を兼ね備える。具体的には、冷媒2の具体例である実施例4~9の混合冷媒は、成績係数はR32に対して98%以上であり、冷凍能力はR32に対して95%以上であり、GWPは750以下(特に600以下)であり、WCF不燃の性能を兼ね備えることが分かった。
 実施形態3(冷媒3)の実施例及び比較例
 HFO-1132(E)とCF3Iを、これらの総和を基準として表17に示した質量%(mass%)で混合した混合冷媒を調製した。
Figure JPOXMLDOC01-appb-T000017
 冷媒3は、所定の組成を具備することにより、R410Aの代替冷媒となり得る優れた成績係数と冷凍能力とを有し、GWPが十分に小さく、かつ不燃という四種の性能を兼ね備える。具体的には、冷媒3の具体例である実施例10~14の混合冷媒は、成績係数はR410Aに対して100%以上(特に105%以上)であり、冷凍能力はR410Aに対して65%以上であり、GWPは1以下であり、WCF不燃の性能を兼ね備えることが分かった。
 実施形態4(冷媒4)の実施例及び比較例
 R32とHFO-1132(E)とCF3Iを、これらの総和を基準として表18に示した質量%(mass%)で混合した混合冷媒を調製した。
Figure JPOXMLDOC01-appb-T000018
 冷媒4は、所定の組成を具備することにより、R410Aの代替冷媒となり得る優れた成績係数と冷凍能力とを有し、GWPが十分に小さく、かつ不燃という四種の性能を兼ね備える。具体的には、冷媒4の具体例である実施例15~19の混合冷媒は、成績係数はR32に対して99%以上であり、冷凍能力はR32に対して80%以上であり、GWPは750以下(特に450以下)であり、WCF不燃の性能を兼ね備えることが分かった。
 実施形態5(冷媒5)の実施例及び比較例
 R32とHFO-1123とCF3Iを、これらの総和を基準として表19に示した質量%(mass%)で混合した混合冷媒を調製した。
Figure JPOXMLDOC01-appb-T000019
 冷媒5は、所定の組成を具備することにより、R410Aの代替冷媒となり得る優れた成績係数と冷凍能力とを有し、GWPが十分に小さく、かつ不燃という四種の性能を兼ね備える。具体的には、冷媒5の具体例である実施例20~24の混合冷媒は、成績係数はR32に対して99%以上であり、冷凍能力はR32に対して80%以上であり、GWPは750以下(特に450以下)であり、WCF不燃の性能を兼ね備えることが分かった。
 実施形態6(冷媒6)の実施例及び比較例
 R32とR125とHFO-1234yfとCF3Iを、これらの総和を基準として表20(R1234yf=6mass%)、表21(R1234yf=9mass%)、表22(R1234yf=11.7mass%)、表23(R1234yf=12.1mass%)及び表24(R1234yf=12.6mass%)に示した質量%(mass%)で混合した混合冷媒を調製した。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 冷媒6は、HFO-1234yfの濃度xが(1)11.7質量%≧x≧6.0質量%の場合、(2)12.6質量%>x≧11.7質量%の場合のそれぞれにおいて上記各要件が満たされる場合、R410Aの代替冷媒となり得る優れた成績係数と冷凍能力とを有し、GWPが十分に小さく、かつ不燃という四種の性能を兼ね備える。具体的には、冷媒6の具体例である上記表中の実施例の混合冷媒は、成績係数はR410Aに対して100%以上であり、冷凍能力はR410Aに対して100%以上であり、GWPは750以下であり、WCF不燃の性能を兼ね備えることが分かった。
 実施形態7(冷媒7)の実施例及び比較例
 R32とR125とHFO-1234zeとCF3Iを、これらの総和を基準として表25(R1234ze=4mass%)、表26(R1234ze=6mass%)、表27(R1234ze=8.3mass%)、表28(R1234ze=8.6mass%)及び表29(R1234ze=8.9mass%)に示した質量%(mass%)で混合した混合冷媒を調製した。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
 冷媒7は、HFO-1234zeの濃度xが(1)8.3質量%≧x≧4.0質量%の場合、(2)8.9質量%>x≧8.3質量%の場合のそれぞれにおいて上記各要件が満たされる場合、R410Aの代替冷媒となり得る優れた成績係数と冷凍能力とを有し、GWPが十分に小さく、かつ不燃という四種の性能を兼ね備える。具体的には、冷媒7の具体例である上記表中の実施例の混合冷媒は、成績係数はR410Aに対して100%以上であり、冷凍能力はR410Aに対して100%以上であり、GWPは750以下であり、WCF不燃の性能を兼ね備えることが分かった。
1:Ignition source
2:Sample inlet
3:Springs
4:12-liter glass flask
5:Electrodes
6:Stirrer
7:Insulated chamber
A:GWP=750であってCF3Iの濃度(質量%)が0.0質量%の組成比
B:GWP=750であってR32の濃度(質量%)が0.0質量%の組成比
C:R410Aに対して冷凍能力100%(対R410A冷凍能力100%)になる組成比であって、GWP=750の組成比
D:R410Aに対して冷凍能力100%(対R410A冷凍能力100%)になる組成比であって、R125の濃度(質量%)が0.0質量%の組成比
E:WCF不燃になる組成比であって、GWP=750の組成比
F:WCF不燃になる組成比であって、R125の濃度(質量%)が0.0質量%の組成比
G:R410Aに対して冷凍能力100%(対R410A冷凍能力100%)になる組成比であって、WCF不燃になる組成比

Claims (12)

  1.  冷媒を含む組成物であって、
     前記冷媒がトリフルオロヨードメタン(CF3I)及びジフルオロメタン(R32)を含み、前記冷媒中におけるCF3I、R32のそれぞれの含有量が、CF3I及びR32の総量を100質量%とし、48質量%≧CF3I≧46質量%、54質量%≧R32≧52質量%である、
    ことを特徴とする組成物。
  2.  冷媒を含む組成物であって、
     前記冷媒がトリフルオロヨードメタン(CF3I)、ジフルオロメタン(R32)及びペンタフルオロエタン(R125)を含み、R32、R125及びCF3Iの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、R32、R125及びCF3Iの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点E(53.7, 11.0, 35.3)、
      点F(51.6, 0.0, 48.4)
      点D(65.0. 0.0, 35.0)及び
      点X(64.6. 8.9, 26.5)
    の4点をそれぞれ結ぶ線分EF、FD、DX及びXEで囲まれる図形の範囲内(但し、前記線分FD上は除く)にあり、
     前記線分EFは、
      座標(x, -1.1255x2+123.76x-3389.3, 1.1255x2-124.76x+3489.3)で表わされ、且つ、前記線分FD、DX及びXEが直線である、
    ことを特徴とする組成物。
  3.  冷媒を含む組成物であって、
     前記冷媒がトリフルオロヨードメタン(CF3I)及びトランス-1,2-ジフルオロエチレン(HFO-1132(E))を含み、前記冷媒中におけるCF3I、HFO-1132(E)のそれぞれの含有量が、CF3I及びHFO-1132(E)の総量を100質量%とし、68質量%≧CF3I≧62質量%、38質量%≧HFO-1132(E)≧32質量%である、
    ことを特徴とする組成物。
  4.  冷媒を含む組成物であって、
     前記冷媒がトリフルオロヨードメタン(CF3I)、ジフルオロメタン(R32)及びトランス-1,2-ジフルオロエチレン(HFO-1132(E))を含み、HFO-1132(E)、CF3I 及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、CF3I 及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点Y(32.5, 58.1, 9.4)、
      点J(0.0. 77.2, 22.8)及び
      点H(0.0. 35.0, 65.0)
    の3点をそれぞれ結ぶ線分JH、HY及びYJで囲まれる図形の範囲内(但し、前記線分JH上は除く)にあり、
     前記線分YJは、
      座標(x, -0.0027x2-0.5002x+77.2, 0.0027x2-0.4998x+22.8)で表わされ、且つ、前記線分JH及びHYが直線である、
    ことを特徴とする組成物。
  5.  冷媒を含む組成物であって、
     前記冷媒がトリフルオロヨードメタン(CF3I)、ジフルオロメタン(R32)及びトリフルオロエチレン(HFO-1123)を含み、HFO-1123、CF3I 及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1123、CF3I 及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点Z(41.6, 53.5, 4.9)、
      点N(0.0. 77.2, 22.8)及び
      点L(0.0. 35.0, 65.0)
    の3点をそれぞれ結ぶ線分ZN、NL及びLZで囲まれる図形の範囲内(但し、前記線分NL上は除く)にあり、
     前記線分ZNは、
      座標(x, -0.0007x2-0.5402x+77.2, 0.0007x2-0.4598x+22.8)で表わされ、且つ、前記線分NL及びLZが直線である、
    ことを特徴とする組成物。
  6.  冷媒を含む組成物であって、
     前記冷媒が、ジフルオロメタン(R32)、ペンタフルオロエタン(R125)、トリフルオロヨードメタン(CF3I)及び2,3,3,3-テトラフルオロエチレン(HFO-1234yf)を含み、
     R32、R125、CF3I及びHFO-1234yfの総濃度を100質量%、HFO-1234yfの濃度をx質量%とし、
     R32、R125及びCF3Iの総濃度が(100-x)質量%で示される3成分組成図において、
    (1)-1 11.7質量%≧x≧6.0質量%であり、
    (1)-2 R32、R125及びCF3Iの濃度(R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))が、
    点C(1.1753x+41.14/-0.2282x+13.464/100-R1234yf-R32-R125)、点D(0.0247x2+0.563x+43.733/0.0/100-R1234yf-R32-R125)、点F(-0.8069x+64.948/0.0/100-R1234yf-R32-R125)、及び点E(-0.8247x+64.54/0.1581x+8.96/100-R1234yf-R32-R125)、を頂点とする四角形又は三角形の範囲内(但し、前記線分DF上は除く)で示される組成比を有する冷媒A、
    (2)-1 12.6質量%>x>11.7質量%であり、
    (2)-2 R32、R125及びCF3Iの濃度(R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))が、
    点G(-1.2222x2+29.589x-123.98/20.5x2-510.15x+3173.3/100-R1234yf-R32-R125)、点D(1.2213x+39.415/0.0/100-R1234yf-R32-R125)、及び点F(0.7787x+64.615/0.0/100-R1234yf-R32-R125)、を頂点とする三角形の範囲内(但し、前記線分DF上は除く)で示される組成比を有する冷媒B、
    の一種を含むことを特徴とする組成物。
  7.  冷媒を含む組成物であって、
     前記冷媒が、ジフルオロメタン(R32)、ペンタフルオロエタン(R125)、トリフルオロヨードメタン(CF3I)及び1,3,3,3‐テトラフルオロプロペン(HFO-1234ze)を含み、
     R32、R125、CF3I及びHFO-1234zeの総濃度を100質量%、HFO-1234zeの濃度をx質量%とし、
     R32、R125及びCF3Iの総濃度が(100-x)質量%で示される3成分組成図において、
    (1)-1 8.3質量%≧x≧4.0質量%であり、
    (1)-2 R32、R125及びCF3Iの濃度(R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))が、
    点C(0.0435x2+1.4652x+42.543/-0.3726x+13.406/100-R1234ze-R32-R125)、点D(0.097x2+0.6802x+44.628/0.0/100-R1234ze-R32-R125)、点F(-0.8143x+64.967/0.0/100-R1234ze-R32-R125)、及び点E(-0.0061x2-0.7393x+64.254/0.1631x+8.9386/100-R1234ze-R32-R125)を頂点とする四角形又は三角形の範囲内(但し、前記線分DF上は除く)で示される組成比を有する冷媒A、
    (2)-1 8.9質量%>x>8.3質量%であり、
    (2)-2 R32、R125及びCF3Iの濃度(R32の濃度(質量%)/R125の濃度(質量%)/CF3Iの濃度(質量%))が、
    点G(0.1667x+56.3/2.7778x2-64.944x+357.98/100-R1234ze-R32-R125)、点D(1.5625x2-24.938x+155.98/0.0/100-R1234ze-R32-R125)、及び点F(-0.6667x+63.733/0.0/100-R1234ze-R32-R125)、を頂点とする三角形の範囲内(但し、前記線分DF上は除く)で示される組成比を有する冷媒B、
    の一種を含むことを特徴とする組成物。
  8.  さらに、冷凍機油を含有し、冷凍機用作動流体として用いられる、請求項1~7のいずれかに記載の組成物。
  9.  R410Aの代替冷媒として用いられる、請求項1~8のいずれかに記載の組成物。
  10.  請求項1~8のいずれかに記載の組成物の、R410Aの代替冷媒としての使用。
  11.  請求項1~9のいずれかに記載の組成物を作動流体として含む、冷凍機。
  12.  冷凍機の運転方法であって、
     請求項1~9のいずれかに記載の組成物を作動流体として冷凍機において循環させる工程を含む運転方法。
PCT/JP2019/024822 2018-06-22 2019-06-21 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 WO2019245045A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/254,425 US20210122960A1 (en) 2018-06-22 2019-06-21 Composition containing refrigerant, use thereof, refrigerator having same, and operation method for said refrigerator
CN201980041948.2A CN112313305A (zh) 2018-06-22 2019-06-21 含有冷媒的组合物、其用途、以及具有其的冷冻机及该冷冻机的运转方法
EP19822496.6A EP3812442A4 (en) 2018-06-22 2019-06-21 COMPOSITION WITH REFRIGERANT, USE THEREOF, REFRIGERATOR CONTAINS, AND METHOD OF OPERATION FOR SAID REFRIGERATOR
US17/990,920 US20230151256A1 (en) 2018-06-22 2022-11-21 Composition containing refrigerant, use thereof, refrigerator having same, and operation method for said refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-119328 2018-06-22
JP2018119328 2018-06-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/254,425 A-371-Of-International US20210122960A1 (en) 2018-06-22 2019-06-21 Composition containing refrigerant, use thereof, refrigerator having same, and operation method for said refrigerator
US17/990,920 Division US20230151256A1 (en) 2018-06-22 2022-11-21 Composition containing refrigerant, use thereof, refrigerator having same, and operation method for said refrigerator

Publications (1)

Publication Number Publication Date
WO2019245045A1 true WO2019245045A1 (ja) 2019-12-26

Family

ID=68836083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024822 WO2019245045A1 (ja) 2018-06-22 2019-06-21 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法

Country Status (5)

Country Link
US (2) US20210122960A1 (ja)
EP (1) EP3812442A4 (ja)
JP (4) JP6617849B1 (ja)
CN (1) CN112313305A (ja)
WO (1) WO2019245045A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030511A1 (ja) * 2020-08-03 2022-02-10 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
WO2024090387A1 (ja) * 2022-10-27 2024-05-02 Agc株式会社 熱サイクル用作動媒体及び熱サイクルシステム用組成物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6897814B2 (ja) * 2019-06-19 2021-07-07 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP7354271B2 (ja) * 2019-10-18 2023-10-02 三菱電機株式会社 冷凍サイクル装置
JP7463954B2 (ja) 2020-11-30 2024-04-09 株式会社富士通ゼネラル 冷凍サイクル装置
CN113025280B (zh) * 2021-03-12 2022-11-15 冰轮环境技术股份有限公司 一种替代r507a的混合制冷剂
WO2022266620A1 (en) * 2021-06-16 2022-12-22 Honeywell International Inc. Heat transfer compositions. methods and systems
CN113444494A (zh) * 2021-07-07 2021-09-28 国节新辉科技(浙江)有限公司 一种替代r32的制冷剂及其制备方法
EP4442787A1 (en) 2021-12-03 2024-10-09 Agc Inc. Working medium
CN114891483B (zh) * 2022-06-09 2023-05-02 珠海格力电器股份有限公司 一种混合制冷剂和空调系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277389A (ja) * 1995-04-06 1996-10-22 Matsushita Electric Ind Co Ltd 混合作動流体およびそれを用いたヒートポンプ装置
JPH0959612A (ja) * 1995-08-30 1997-03-04 Matsushita Electric Ind Co Ltd トリフルオロイオドメタンを含む混合作動流体およびそれを用いた冷凍サイクル装置
JP2000178543A (ja) * 1998-12-14 2000-06-27 Daikin Ind Ltd 共沸乃至共沸様組成物
JP2009024152A (ja) 2007-06-20 2009-02-05 Daikin Ind Ltd 温暖化係数が低いトリフルオロヨードメタンとジフルオロメタンの不燃性組成物
JP2011502207A (ja) * 2007-10-31 2011-01-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ヨードトリフルオロメタンを含む組成物およびそれらの使用
US20110252801A1 (en) * 2010-04-15 2011-10-20 E.I. Du Pont Nemours And Company Compositions comprising z-1,2-difluoroethylene and uses thereof
US8070355B2 (en) * 2006-09-15 2011-12-06 E. I. Du Pont De Nemours And Company Method of detecting leaks of fluoroolefin compositions and sensors used therefor
JP2012229422A (ja) * 2006-03-30 2012-11-22 E I Du Pont De Nemours & Co フルオロオレフィンを含む組成物
WO2015141678A1 (ja) 2014-03-18 2015-09-24 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2018022949A2 (en) * 2016-07-29 2018-02-01 Honeywell International Inc. Heat transfer compositions, methods and systems
WO2018022888A1 (en) * 2016-07-29 2018-02-01 Honeywell International Inc. Heat transfer compositions, methods and systems
JP2018104566A (ja) * 2016-12-27 2018-07-05 パナソニック株式会社 冷凍サイクル用作動媒体および冷凍サイクルシステム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5611210A (en) * 1993-03-05 1997-03-18 Ikon Corporation Fluoroiodocarbon blends as CFC and halon replacements
US7074751B2 (en) * 2004-04-16 2006-07-11 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and trifluoroiodomethane
CA2591130A1 (en) 2004-12-21 2006-06-29 Honeywell International Inc. Stabilized iodocarbon compositions
US8961811B2 (en) * 2010-04-15 2015-02-24 E I Du Pont De Nemours And Company Compositions comprising E-1,2-difluoroethylene and uses thereof
WO2015125884A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
JP6354616B2 (ja) * 2014-02-20 2018-07-11 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
MY178665A (en) 2014-02-20 2020-10-20 Asahi Glass Co Ltd Composition for heat cycle system, and heat cycle system
EP3305869B1 (en) * 2015-06-01 2022-09-14 AGC Inc. Working medium for heat cycle, composition for heat cycle system, and heat cycle system
JP6788820B2 (ja) * 2016-02-18 2020-11-25 パナソニックIpマネジメント株式会社 冷凍サイクル用作動媒体および冷凍サイクルシステム
CN109689832B (zh) * 2016-07-29 2021-12-28 霍尼韦尔国际公司 热传递组合物、方法和系统
US10301521B2 (en) * 2016-07-29 2019-05-28 Honeywell International Inc. Heat transfer methods, systems and compositions
CN112805352A (zh) * 2018-10-01 2021-05-14 Agc株式会社 热循环系统用组合物及热循环系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277389A (ja) * 1995-04-06 1996-10-22 Matsushita Electric Ind Co Ltd 混合作動流体およびそれを用いたヒートポンプ装置
JPH0959612A (ja) * 1995-08-30 1997-03-04 Matsushita Electric Ind Co Ltd トリフルオロイオドメタンを含む混合作動流体およびそれを用いた冷凍サイクル装置
JP2000178543A (ja) * 1998-12-14 2000-06-27 Daikin Ind Ltd 共沸乃至共沸様組成物
JP2012229422A (ja) * 2006-03-30 2012-11-22 E I Du Pont De Nemours & Co フルオロオレフィンを含む組成物
US8070355B2 (en) * 2006-09-15 2011-12-06 E. I. Du Pont De Nemours And Company Method of detecting leaks of fluoroolefin compositions and sensors used therefor
JP2009024152A (ja) 2007-06-20 2009-02-05 Daikin Ind Ltd 温暖化係数が低いトリフルオロヨードメタンとジフルオロメタンの不燃性組成物
JP2011502207A (ja) * 2007-10-31 2011-01-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ヨードトリフルオロメタンを含む組成物およびそれらの使用
US20110252801A1 (en) * 2010-04-15 2011-10-20 E.I. Du Pont Nemours And Company Compositions comprising z-1,2-difluoroethylene and uses thereof
WO2015141678A1 (ja) 2014-03-18 2015-09-24 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2018022949A2 (en) * 2016-07-29 2018-02-01 Honeywell International Inc. Heat transfer compositions, methods and systems
WO2018022888A1 (en) * 2016-07-29 2018-02-01 Honeywell International Inc. Heat transfer compositions, methods and systems
JP2018104566A (ja) * 2016-12-27 2018-07-05 パナソニック株式会社 冷凍サイクル用作動媒体および冷凍サイクルシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3812442A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030511A1 (ja) * 2020-08-03 2022-02-10 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP2022028641A (ja) * 2020-08-03 2022-02-16 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP7137104B2 (ja) 2020-08-03 2022-09-14 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
WO2024090387A1 (ja) * 2022-10-27 2024-05-02 Agc株式会社 熱サイクル用作動媒体及び熱サイクルシステム用組成物

Also Published As

Publication number Publication date
EP3812442A4 (en) 2022-08-10
CN112313305A (zh) 2021-02-02
US20210122960A1 (en) 2021-04-29
US20230151256A1 (en) 2023-05-18
JP2020002380A (ja) 2020-01-09
JP6927264B2 (ja) 2021-08-25
JP2021075733A (ja) 2021-05-20
JP2020002354A (ja) 2020-01-09
JP7137103B2 (ja) 2022-09-14
EP3812442A1 (en) 2021-04-28
JP2021167428A (ja) 2021-10-21
JP7132532B2 (ja) 2022-09-07
JP6617849B1 (ja) 2019-12-11

Similar Documents

Publication Publication Date Title
JP6555456B1 (ja) 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP6617849B1 (ja) 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
US11365335B2 (en) Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
JP6835258B2 (ja) 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP6504298B2 (ja) 冷媒を含有する組成物及びその応用
JP6835257B2 (ja) 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
WO2019124404A1 (ja) 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP6249067B2 (ja) フッ素化炭化水素の混合物を含有する組成物及びその製造方法
JP2020125475A (ja) 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
JP2024102129A (ja) 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
WO2020256122A1 (ja) 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
WO2020213697A1 (ja) 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP2020122134A (ja) 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
AU2018392046B2 (en) Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
WO2020256100A1 (ja) 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP2022028641A (ja) 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019822496

Country of ref document: EP