WO2019244606A1 - 車両用電源装置 - Google Patents
車両用電源装置 Download PDFInfo
- Publication number
- WO2019244606A1 WO2019244606A1 PCT/JP2019/021898 JP2019021898W WO2019244606A1 WO 2019244606 A1 WO2019244606 A1 WO 2019244606A1 JP 2019021898 W JP2019021898 W JP 2019021898W WO 2019244606 A1 WO2019244606 A1 WO 2019244606A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- voltage
- state
- control unit
- conversion unit
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/20—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/03—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/52—Drive Train control parameters related to converters
- B60L2240/529—Current
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/92—Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present invention relates to a power supply device for a vehicle.
- Patent Literature 1 discloses a so-called xEV power supply system such as an EV, a HEV, a PEV, etc., in order to improve the low-temperature startability of a vehicle and expand the capacity of a low-voltage power supply.
- a power supply system including a battery and a medium-voltage 42V battery having a medium voltage higher than a low voltage is disclosed.
- a 42V system battery and a 14V system battery can exchange power with a high voltage battery via a separate DCDC converter.
- each DCDC converter needs to be an insulation type.
- a transformer is mounted on each DCDC converter. This may increase the size of the power supply system due to the use of two transformers.
- An advantage of some aspects of the invention is to provide a vehicle power supply system including a high-voltage first battery and a second battery having a lower output voltage than the first battery. It is an object of the present invention to realize a configuration capable of satisfactorily charging a third battery having an output voltage lower than that of a second battery, in a smaller and simpler manner.
- a power supply device for a vehicle which is one of the present invention, A first battery for high voltage; A first conductive path serving as a charge / discharge path for the first battery; A second battery that outputs a voltage lower than the output voltage of the first battery; A second conductive path serving as a charge / discharge path for the second battery; A third battery that outputs a voltage lower than the output voltage of the second battery; A third conductive path serving as a charge / discharge path for the third battery;
- a vehicle power supply device used in a vehicle power supply system comprising: A first voltage conversion unit configured as an isolated DCDC converter and performing a first step-down operation of stepping down a voltage applied to the first conductive path and applying an output voltage to the second conductive path; A second voltage converter configured as a non-insulated DCDC converter and performing a second step-down operation of stepping down a voltage applied to the second conductive path and applying an output voltage to the third conductive path; Is provided.
- the vehicle power supply device charges the second battery and the third battery by respectively reducing the high voltage applied to the power supply path (first conductive path) to the high-voltage load by the two insulated DCDC converters. Instead, the high voltage of the first conductive path is stepped down by an insulation type DCDC converter (first voltage converter) to apply an intermediate voltage to the second conductive path, and charge the second battery via the second conductive path. Then, the third battery is charged by lowering the intermediate voltage of the second conductive path by a non-insulated DCDC converter (second voltage converter). As described above, in charging the second battery and the third battery based on the power of the first battery that outputs a high voltage, one of the voltage converters (the second voltage converter) is configured as a non-insulated DCDC converter.
- the second voltage conversion unit is configured to generate the low voltage of the third conductive path by using the medium voltage applied to the second conductive path as the input voltage, the input voltage is suppressed, and the non-insulated type is used. The problem is unlikely to occur even with the DCDC converter of the above.
- the second battery battery having a lower output voltage than the first battery
- the third battery battery having a lower output voltage than the second battery
- FIG. 2 is a circuit diagram illustrating a vehicle power supply system including the vehicle power supply device according to the first embodiment.
- 3 is a flowchart illustrating control of a first control unit and a second control unit in the vehicle power supply device according to the first embodiment.
- 5 is a flowchart illustrating control of the first control unit and the second control unit when the state of charge of the first battery is abnormal in the vehicle power supply device according to the first embodiment.
- 5 is a flowchart illustrating control of the first control unit and the second control unit when the state of the first voltage conversion unit is abnormal in the vehicle power supply device according to the first embodiment.
- a power supply device for a vehicle includes a first control unit that controls an operation of a first voltage conversion unit, and a second control unit that controls an operation of a second voltage conversion unit.
- the current is reduced by the step-down operation of the first voltage converter. Is supplied, if the step-down operation of the second voltage converter is performed, the charging speed of the second battery must be reduced. This problem is remarkable when the state of charge of the second battery is in a predetermined low state, and the low state of the second battery is difficult to be eliminated when the step-down operation of the second voltage converter is performed.
- a power supply device for a vehicle includes a first control unit that controls an operation of a first voltage conversion unit, and a second control unit that controls an operation of a second voltage conversion unit.
- the state of charge of the battery is the second predetermined state
- the value of the current output from the first voltage converter to the second conductive path is set to be smaller than a predetermined target current value of the first voltage converter.
- the step-down operation of the first voltage converter is controlled so as to increase the voltage
- the second controller is configured to switch the third voltage from the second voltage converter to the third conductive path when the state of charge of the third battery is a predetermined second lowering state.
- the step-down operation of the second voltage converter may be controlled so that the value of the current output to the second voltage converter is larger than a predetermined target current value of the second voltage converter.
- the state of charge of the third battery is reduced.
- the charging current from the second voltage converter is increased, and the charge current from the second voltage converter is also increased.
- the charging of the third battery can be promoted to eliminate the second reduced state earlier, and the discharge of the second battery can be excessively advanced or the charging speed can be reduced due to the promotion of the charging. It is possible to prevent the temperature from being too low.
- a power supply device for a vehicle includes a first control unit that controls an operation of a first voltage conversion unit, and a second control unit that controls an operation of a second voltage conversion unit.
- the state of charge of one battery is in a predetermined abnormal state
- the operation of the first voltage converter is stopped
- the second controller is configured to stop the operation of the second battery at least when the operation of the first voltage converter is stopped.
- the second voltage converter performs a boosting operation of boosting the voltage applied to the third conductive path and applying an output voltage to the second conductive path. You may.
- the state of charge of the first battery is abnormal. In some cases, it is desirable to stop the operation of the first voltage converter. However, when the operation of the first voltage conversion unit is stopped in this way, there is a problem that the second battery cannot be charged even if the state of charge of the second battery is lowered and deviates from a normal state. Therefore, in the above configuration, when the operation of the first voltage converter is stopped and the state of charge of the second battery is not the predetermined normal state, the second voltage converter is caused to perform the boosting operation. . With this configuration, even if the above situation occurs, the shortage of charge of the second battery can be eliminated at an early stage by using the power of the third battery.
- the power supply device for a vehicle includes a first control unit that controls an operation of the first voltage conversion unit; A second control unit that controls the operation of the second voltage conversion unit, wherein the first control unit stops the operation of the first voltage conversion unit when the state of charge of the first battery is in a predetermined abnormal state.
- the second control unit is configured to determine whether the state of charge of the third battery is a predetermined low level state when the state of charge of the second battery is a predetermined normal state at least when the operation of the first voltage conversion unit is stopped. If so, the step-down operation of the second voltage converter is controlled so that the value of the current output from the second voltage converter becomes larger than a predetermined target current value of the second voltage converter. Is also good.
- the state of charge of the first battery is abnormal. In some cases, it is desirable to stop the operation of the first voltage converter. However, even in such a case, when the state of charge of the third battery is reduced, it is desirable to increase the charge current from the second voltage converter to promote the charge of the third battery. If such an operation is performed when it is not, the second battery may be excessively discharged. However, as in the above configuration, when the operation of the first voltage converter is stopped and the state of charge of the third battery is a predetermined low level state, the state of charge of the second battery is a predetermined normal state. If the output current of the second voltage converter is increased on the condition that there is a certain condition, the state of charge of the second battery is excessively deteriorated due to promotion of charging of the third battery when the operation of the first voltage converter is stopped. Can be avoided.
- the power supply device for a vehicle includes a first control unit that controls an operation of the first voltage conversion unit; A second control unit that controls an operation of the second voltage conversion unit; and an abnormality detection unit that detects an abnormality of the first voltage conversion unit.
- the second control unit uses the abnormality detection unit to detect an abnormality of the first voltage conversion unit. Is detected, if the state of charge of the second battery is not the predetermined normal state, the voltage applied to the third conductive path is boosted by the second voltage converter and the output voltage is applied to the second conductive path.
- a configuration may be employed in which a boosting operation is performed.
- the first voltage converter is abnormal.
- the second voltage converter is caused to perform the boosting operation when the state of charge of the second battery is not the predetermined normal state when the abnormality of the first voltage converter is detected.
- a power supply device for a vehicle includes a first control unit that controls an operation of a first voltage conversion unit, a second control unit that controls an operation of a second voltage conversion unit, and detects an abnormality of the first voltage conversion unit.
- An abnormality detection unit that performs the operation of the third battery when the state of charge of the second battery is a predetermined normal state when the abnormality of the first voltage conversion unit is detected by the abnormality detection unit. If the state of charge is a predetermined low level state, the value of the current output from the second voltage converter is set to be larger than a predetermined target current value of the second voltage converter.
- a configuration for controlling the step-down operation may be employed.
- the first voltage converter In a configuration in which the second battery is charged by the first step-down operation of the first voltage converter and the third battery is charged by the second step-down operation of the second voltage converter, the first voltage converter is abnormal. In addition, the charging operation by the first voltage converter cannot be expected. However, even in such a case, when the state of charge of the third battery is reduced, it is desirable to increase the charge current from the second voltage converter to promote the charge of the third battery. If such an operation is performed when it is not, the second battery may be discharged excessively in a situation where the current cannot be sufficiently supplied to the second battery.
- the state of charge of the second battery is a predetermined normal state. If the output current of the second voltage converter is increased under the condition, the charge state of the second battery is excessively deteriorated due to promoting the charging of the third battery when the first voltage converter is abnormal. Such a situation can be avoided.
- the vehicle Ca shown in FIG. 1 is a vehicle in which power for rotating wheels is generated by a traveling motor that receives power supply from the first battery 10, and is a so-called xEV vehicle such as an electric vehicle, a hybrid vehicle, or a plug-in hybrid vehicle.
- the vehicle power supply system 100 is a power supply system mounted on the vehicle Ca, and includes a first battery 10 for high voltage, a first conductive path 17 serving as a charge / discharge path for the first battery 10, and an output of the first battery 10.
- the power supply device 1 can supply power to three systems of a first conductive path 17 of a high voltage system, a second conductive path 18 of a medium pressure system, and a third conductive path 19 of a low voltage system. Have been.
- the output voltage (for example, about 200 V) of the first battery 10 is applied to the first conductive path 17, and the output voltage (for example, about 48 V) of the second battery 11 is applied to the second conductive path 18.
- An output voltage (for example, about 12 V) of the third battery 12 is applied to the third conductive path 19, and an electrical load connected to the first conductive path 17, the second conductive path 18, and the third conductive path 19 Can be powered.
- the output voltage when the second battery 11 is fully charged is lower than the output voltage when the first battery 10 is fully charged.
- the output voltage of the third battery 12 when it is fully charged is lower than the output voltage of the second battery 11 when it is fully charged.
- the output voltage of the first battery 10 means a potential difference between the high-potential terminal of the first battery 10 and the ground
- the output voltage of the second battery 11 is a potential difference between the high-potential terminal of the second battery 11 and the ground
- the output voltage of the third battery 12 means the potential difference between the high potential terminal of the third battery 12 and the ground.
- the first conductive path 17 is electrically connected to the high potential side terminal of the first battery 10.
- the first battery 10 is a battery that can supply power to a high-voltage load (such as the motor 30 in the example of FIG. 1).
- the first battery 10 is an assembled battery formed by combining a plurality of cells such as a lithium ion battery or a nickel hydride battery in series, and can output a voltage of about 200 V.
- the voltage of the first battery 10 is not limited to 200V, and may be about 300V.
- the low-potential-side conductive path 20 is electrically connected to the low-potential-side terminal of the first battery 10.
- the low-potential-side conductive path 20 is, for example, a conductive path that functions as a ground portion and is maintained at a predetermined ground potential (for example, 0 V).
- PCA PCU (Power Control Unit) 32 is connected to the first conductive path 17 as an electric load.
- a motor 30 is electrically connected to the PCU 32, and an engine 31 is connected to the motor 30.
- the PCU 32 is a circuit unit including an inverter circuit that performs conversion between DC power and an AC drive signal subjected to predetermined control, and can supply AC power to the motor 30. Further, the motor 30 is used as a starting source for starting the engine 31.
- S An SMR (system main relay) 33 is connected to the first conductive path 17 between the first battery 10 and the PCU 32 and the low-potential-side conductive path 20.
- the SMR 33 has a first relay 33A, a second relay 33B, and a third relay 33C.
- the first relay 33A, the second relay 33B, and the third relay 33C are relay switches.
- the first relay 33A is provided on the first conductive path 17, and the second relay 33B is provided on the low potential side conductive path 20.
- the third relay 33C has a resistor connected in series, and is electrically connected to the first conductive path 17 in parallel with the first relay 33A.
- the first relay 33A, the second relay 33B, and the third relay 33C are turned on and off under the control of a predetermined control device.
- the first voltage converter 13 is connected to the first conductive path 17 between the SMR 33 and the PCU 32 and to the low-potential-side conductive path 20.
- the first voltage converter 13 is a known insulated step-down DCDC converter having a transformer and capable of stepping down.
- the second voltage path 13 is electrically connected to the second conductive path 18.
- the first voltage conversion unit 13 uses the first conductive path 17 as an input-side conductive path, uses the second conductive path 18 as an output-side conductive path, reduces the input voltage applied to the first conductive path 17, and reduces the input voltage to the second conductive path 17.
- a step-down operation may be performed to apply an output voltage to path 18.
- the first voltage converter 13 can supply power to a first load 34 described later while charging a second battery 11 described later based on the power from the first battery 10.
- the output voltage of the first voltage converter 13 is a voltage that is equal to or slightly higher than the charging voltage (for example, 48 V) when the second battery 11 is fully charged.
- the step-down operation operation of stepping down the voltage applied to the first conductive path 17 and applying a predetermined output voltage to the second conductive path 18
- the first step-down operation is the first step-down operation.
- the second battery 11, the first load 34, which is an electric load, and the second voltage converter 14 are electrically connected to the second conductive path 18.
- the second battery 11 may be composed of, for example, cells of the same type as the first battery 10 and different in number to be combined in series, and may output a voltage of about 48V. Further, the second battery 11 is configured separately from the first battery 10. The second battery 11 has a high potential side terminal connected to the second conductive path 18 and a low potential side terminal kept at the ground potential (0 V).
- the first load 34 operates by the electric power supplied through the second conductive path 18.
- the first load 34 is a device that requires relatively large power, an auxiliary device and an electronic device that are newly added with the evolution of the xEV vehicle, and includes, for example, a motor of an electric power steering, a compressor of an air conditioner, and the like. is there.
- the second voltage converter 14 has no transformer and is a known non-isolated bidirectional DCDC converter that can perform both step-down and step-up. For example, even if it is a synchronous rectification type DCDC converter, Alternatively, a DC-DC converter of a diode rectification system may be used.
- a second conductive path 18 is electrically connected to one side of the second voltage conversion unit 14, and a third conductive path 19 is electrically connected to the other side.
- the second voltage conversion unit 14 can perform a step-down operation of stepping down the voltage applied to the second conductive path 18 and applying an output voltage to the third conductive path 19.
- step-down operation (step-down operation of stepping down the voltage applied to the second conductive path 18 and applying the output voltage to the third conductive path 19) performed by the second voltage conversion unit 14 in this manner is equivalent to the step-down operation of the second step-down operation.
- the output voltage applied to the second voltage converter 14 and the third conductive path 19 at the time of the second step-down operation is, for example, a voltage approximately equal to or slightly higher than the charging voltage of the third battery 12 at the time of full charge.
- the second voltage converter 14 can also perform a boosting operation of boosting the voltage applied to the third conductive path 19 and applying an output voltage to the second conductive path 18.
- the output voltage applied by the second voltage conversion unit 14 to the second conductive path 18 during the boosting operation is, for example, a voltage approximately equal to or slightly higher than the charging voltage of the first battery 10 at the time of full charge.
- the third battery 12 and the second load 35 as an electric load are electrically connected to the third conductive path 19.
- the third battery 12 for example, a known lead storage battery conventionally used as an on-vehicle storage battery can be used, and a voltage of about 12V can be output.
- the third battery 12 has a terminal on the high potential side connected to the third conductive path 19 and a terminal on the low potential side kept at the ground potential (0 V).
- the second load 35 operates by the electric power supplied through the third conductive path 19.
- the second load 35 is, for example, an auxiliary device such as a motor used for a wiper and a low-voltage load such as various electronic devices.
- the power supply device 1 includes a first control unit 15, a second control unit 16, and a BMU (battery management unit).
- the first control unit 15 and the second control unit 16 may be shared by a common control device or may be realized by separate control devices. This will be described as a representative example.
- the first control unit 15 is configured as, for example, a microcomputer, and includes a CPU, a ROM, a RAM, a nonvolatile memory, and the like.
- the first control unit 15 calculates the duty of the PWM signal D1 to be given to the first voltage conversion unit 13 based on the state of charge of the second battery 11 and the third battery 12 (hereinafter, also referred to as SOC (State of Charge)).
- SOC State of Charge
- the first control unit 15 is configured to be able to acquire the voltage value V2, the current value A2, and the like of the second conductive path 18 to which the second battery 11 is connected, and based on these acquired values.
- the SOC of the second battery 11 is monitored by obtaining the SOC of the second battery 11.
- various known methods can be adopted.
- the second control unit 16 is configured as, for example, a microcomputer, and includes a CPU, a ROM, a RAM, a nonvolatile memory, and the like.
- the second control unit 16 calculates the duty of the PWM signal D2 to be given to the second voltage conversion unit 14 based on the SOC of the third battery 12 or the second battery 11, and reduces the duty of the predetermined value obtained by the calculation.
- the configuration is such that the set PWM signal D2 is output to the second voltage converter 14, and the operation of the second voltage converter 14 can be controlled.
- the second control unit 16 is configured to be able to acquire the voltage value V3, the current value A3, and the like of the third conductive path 19 to which the third battery 12 is connected, and based on these acquired values.
- the SOC of the third battery 12 can be monitored.
- various known methods can be adopted.
- the BMU 36 is configured to be able to acquire the voltage value V1, the current value A1, and the like of each cell of the first battery 10, and detects the SOC of the first battery 10 based on these acquired values.
- Various known methods can be adopted as a method for the BMU 36 to detect the SOC of the first battery 10.
- the operation start conditions of the first control unit 15 and the second control unit 16 are, for example, switching of the ignition signal from off to on and the like, and may be other operation start conditions.
- the control of FIG. 2 is a control that is repeated when the control of FIGS. 3 and 4 is not executed.
- at least one of the first control unit 15 and the second control unit 16 determines whether the SOC of the second battery 11 is in a predetermined low state (S1).
- the state that the SOC of the second battery 11 is in the predetermined reduced state means that the current SOC of the second battery 11 obtained based on the voltage value V2 of the second conductive path 18, the current value A2, and the like, This means that the second battery 11 is in a state lower than a predetermined ratio with respect to a fully charged state.
- step S1 a case where the SOC of the second battery 11 monitored by the first control unit 15 is equal to or less than a predetermined second SOC threshold is an example of “a case where the state of charge of the second battery 11 is a predetermined low state”.
- step S2 the process of step S2 is performed when the SOC of the second battery 11 is equal to or less than the second SOC threshold
- step S3 the process of step S3 is performed when the SOC of the second battery 11 exceeds the second SOC threshold.
- the first control unit 15 and the second control unit 16 determine that the SOC of the second battery 11 is equal to or less than the second SOC threshold in step S1, increase the output current from the first voltage conversion unit 13 in step S2. , So that the output current from the second voltage converter 14 is reduced.
- the target current value (first target current value It1) of the first voltage conversion unit 13 is determined in advance, and the first voltage conversion unit 13 normally charges the second battery 11 when charging the second battery 11.
- the first controller 15 performs the first voltage conversion so that the output current from the first voltage converter 13 becomes the first target current value It1.
- the step-down operation (first step-down operation) of the section 13 is controlled.
- a target current value (second target current value It2) of the second voltage conversion unit 14 is determined in advance, and a normal step-down operation is performed on the second voltage conversion unit 14 when the third battery 12 is charged. If the control is to be performed (other than steps S2 and S4), the second control unit 16 lowers the voltage of the second voltage conversion unit 14 so that the output current from the second voltage conversion unit 14 becomes the second target current value It2. The operation (second step-down operation) is controlled.
- the first control unit 15 When it is determined in step S1 that the SOC of the second battery 11 is equal to or less than the second SOC threshold (when the state of charge of the second battery 11 is in a predetermined reduced state), the first control unit 15 The first voltage is set such that the value of the current output from the one-voltage converter 13 to the second conductive path 18 is larger than a predetermined target current value (first target current value It1) of the first voltage converter 13.
- the second control unit 16 controls the step-down operation of the conversion unit 13, and sets the value of the current output from the second voltage conversion unit 14 to the third conductive path 19 to a predetermined target current of the second voltage conversion unit 14.
- the step-down operation of the second voltage converter 14 is controlled to be smaller than the value (second target current value It2).
- step S3 If the first control unit 15 and the second control unit 16 determine in step S1 that the SOC of the second battery 11 is not equal to or lower than the second SOC threshold, whether the SOC of the third battery 12 is in a predetermined reduced state in step S2 A determination is made (S3).
- the state that the SOC of the third battery 12 is in the predetermined reduced state means that the current SOC of the third battery 12 obtained based on the voltage value V3 of the third conductive path 19, the current value A3, and the like. , Means that the third battery 12 is in a state lower than a predetermined ratio with respect to a fully charged state.
- step S3 when the SOC of the third battery 12 is equal to or less than the third SOC threshold, the process of step S4 is performed, and when the SOC of the third battery 12 exceeds the third SOC threshold, the process of FIG. I do.
- the output current from the first voltage conversion unit 13 is increased in step S4. , So that the output current from the second voltage converter 14 is increased.
- the first control unit 15 sets the value of the current output from the first voltage conversion unit 13 to the second conductive path 18 to a predetermined target current value (first target value) of the first voltage conversion unit 13.
- the step-down operation of the first voltage converter 13 is controlled so as to be larger than the current value It1), and the second controller 16 changes the value of the current output from the second voltage converter 14 to the third conductive path 19.
- the step-down operation of the second voltage converter 14 is controlled so as to be larger than a predetermined target current value (second target current value It2) of the second voltage converter 14.
- the control of FIG. 2 ends, and the first control unit 15 and the second control The unit 16 returns to the normal operation. Then, the control of FIG. 2 is performed again while the first control unit 15 and the second control unit 16 are performing the normal operation.
- the first control unit 15 performs the step-down operation of the first voltage conversion unit 13 so that the value of the current output from the first voltage conversion unit 13 to the second conductive path 18 becomes the first target current value It1.
- the second control unit 16 controls the step-down operation of the second voltage conversion unit 14 so that the value of the current output from the second voltage conversion unit 14 to the third conductive path 19 becomes the second target current value It2. Control. Note that the first control unit 15 and the second control unit 16 perform the first voltage conversion unit 13 when the charging voltage of the second battery 11 exceeds the first threshold value and the charging voltage of the third battery exceeds the second threshold value. The operation of the second voltage converter 14 may be stopped.
- the control in FIG. 3 is a control that is started when a predetermined condition is satisfied while the control in FIG. 2 is repeated.
- the predetermined condition is a condition that “either the first battery 10 or the first voltage converter 13 is in an abnormal state”.
- the first control unit 15 and the second control unit 16 determine whether the first battery 10 is in an abnormal state.
- the BMU 36 detects the SOC of the first battery 10 by a known method based on the acquired voltage value V1 and current value A1 of each unit cell of the first battery 10.
- the BMU 36 determines that the SOC of the first battery 10 is equal to or less than the first SOC threshold, the BMU 36 outputs an abnormal state notification signal R1 to the first control unit 15.
- the first control unit 15 determines whether or not the abnormal state notification signal R1 has been input in step S11, and when the abnormal state notification signal R1 has been input (the state of charge of the first battery 10 is a predetermined abnormal state (SOC Is less than or equal to the first SOC threshold), the operation of the first voltage converter 13 is stopped in step S12.
- step S12 the first control unit 15 and the second control unit 16 determine whether or not the SOC of the second battery 11 is equal to or less than the second SOC threshold in step S13, and in step S13, the SOC of the second battery 11 is determined. Is determined to be equal to or less than the second SOC threshold (when the state of charge of the second battery 11 is not the predetermined normal state), the process proceeds to step S14, and the second voltage conversion unit 14 performs a boosting operation.
- the step-up operation instruction signal L3 is output from the first control unit 15 to the second control unit 16 while steps S13 and S14 are repeated, and the second control unit 16 responds to the second step-up operation instruction signal L3.
- the voltage conversion unit 14 performs a boosting operation.
- step In S15 it is determined whether or not the SOC of the third battery 12 is equal to or less than the third SOC threshold (S15).
- the first control unit 15 and the second control unit 16 determine that the SOC of the third battery 12 is equal to or less than the third SOC threshold in step S15 (when the state of charge of the third battery 12 is a predetermined low level state).
- step S16 The second voltage such that the value of the current output from the second voltage conversion unit 14 in step S16 is larger than a predetermined target current value (second target current value It2) of the second voltage conversion unit 14.
- the step-down operation of the converter 14 is controlled. This control is repeated until the SOC of the third battery 12 exceeds the third SOC threshold.
- the control in FIG. 3 ends. Note that, in step S11, the control of FIG. 3 is also terminated when it is determined that the SOC of the first battery 10 is not less than or equal to the first SOC threshold.
- the control in FIG. 4 is, for example, control started after the control in FIG.
- the first control unit 15 determines whether the first voltage conversion unit 13 is in an abnormal state.
- the first control unit 15 determines whether the first voltage conversion unit 13 is in an abnormal state.
- the first control unit 15 corresponds to an example of the abnormality detection unit.
- step S21 When the first control unit 15 and the second control unit 16 determine that the first voltage conversion unit 13 is in an abnormal state in step S21, whether the SOC of the second battery 11 is equal to or less than the second SOC threshold in step S22. If it is determined in step S22 that the SOC of the second battery 11 is equal to or less than the second SOC threshold (if the state of charge of the second battery 11 is not a predetermined normal state), the process proceeds to step S23, and the second voltage The converter 14 performs the boosting operation. For example, the step-up operation instruction signal L3 is output from the first control unit 15 to the second control unit 16 while steps S22 and S23 are repeated, and the second control unit 16 responds to the second step-up operation instruction signal L3. The voltage conversion unit 14 performs a boosting operation.
- the first control unit 15 and the second control unit 16 determine that the SOC of the second battery 11 is not less than or equal to the second SOC threshold in step S22 (when the state of charge of the second battery 11 is a predetermined normal state)
- the first control unit 15 and the second control unit 16 determine that the SOC of the third battery 12 is equal to or less than the third SOC threshold in step S24 (when the state of charge of the third battery 12 is a predetermined low level state).
- the second voltage such that the value of the current output from the second voltage converter 14 in step S25 is larger than a predetermined target current value (second target current value It2) of the second voltage converter 14.
- step-down operation of the converter 14 is controlled. This control is repeated until the SOC of the third battery 12 exceeds the third SOC threshold.
- the control in FIG. 4 ends. Note that, in step S21, the control of FIG. 4 is also terminated when it is determined that the first voltage converter 13 is not in an abnormal state.
- the above-described vehicular power supply device 1 reduces the high voltage applied to the power supply path (first conductive path 17) to the high-voltage load by the two insulated DCDC converters to reduce the high voltage applied to the second battery 11 and the third battery.
- the high voltage of the first conductive path 17 is stepped down by an insulation type DCDC converter (first voltage converter 13) to apply an intermediate voltage to the second conductive path 18,
- the second battery 11 is charged via the second battery 18, and the intermediate voltage of the second conductive path 18 is reduced by a non-insulated DCDC converter (second voltage converter 14) to reduce the voltage of the third battery. It is configured to charge.
- the second voltage conversion unit 14 when the second battery 11 and the third battery 12 are charged based on the power of the first battery 10 that outputs a high voltage, one of the voltage conversion units (the second voltage conversion unit 14) is non-insulated. Since it can be configured as a DCDC converter, it is easier to reduce the size and weight as compared with a configuration in which the second battery 11 and the third battery 12 are charged directly by two insulated DCDC converters. Further, since the second voltage converter 14 is configured to generate the low voltage of the third conductive path 19 by using the medium voltage applied to the second conductive path 18 as the input voltage, the input voltage is suppressed, Problems are less likely to occur even as a non-insulated DCDC converter.
- the second battery 11 (a battery whose output voltage is lower than the first battery 10) and the third battery 12 (the output voltage lower than the second battery 11) (A battery with low power consumption) can be realized more compactly and easily.
- the second voltage converter 14 is not connected to the first conductive path 17. For this reason, when performing maintenance on the second voltage converter 14, the third battery 12, the second load 35, and the like, the maintenance can be performed in a form that is not easily affected by the high voltage of the first conductive path 17, and the maintenance work can be performed. Easy to do.
- the vehicle power supply device 1 of the present configuration includes a first control unit 15 that controls the operation of the first voltage conversion unit 13 and a second control unit 16 that controls the operation of the second voltage conversion unit 14.
- the first control unit 15 sets the value of the current output from the first voltage conversion unit 13 to a predetermined target value of the first voltage conversion unit 13.
- the step-down operation of the first voltage conversion unit 13 is controlled so as to be larger than the current value
- the second control unit 16 controls the second voltage conversion unit when the state of charge of the second battery 11 is a predetermined low state.
- An operation is performed to control the step-down operation of the second voltage conversion unit so that the value of the current output from the second voltage conversion unit is smaller than a predetermined target current value of the second voltage conversion unit.
- the first voltage converter 13 Even if the current is supplied by the step-down operation, if the step-down operation of the second voltage converter 14 is performed, the charging speed of the second battery 11 must be reduced. This problem becomes remarkable when the state of charge of the second battery 11 is in a predetermined low state, and the low state of the second battery 11 is difficult to be eliminated when the step-down operation of the second voltage conversion unit 14 is performed. .
- the current output from the first voltage converter 13 to the second conductive path 18 is increased, and the second voltage conversion is performed. If the current output from the unit 14 to the third conductive path 19 is reduced, the charging of the second battery 11 can be prioritized while maintaining the output to the third conductive path 19, and the second battery 11 It is easy to eliminate the decline state.
- the first control unit 15 converts the value of the current output from the first voltage conversion unit 13 into a predetermined first voltage conversion state.
- the step-down operation of the first voltage conversion unit 13 is controlled so as to be larger than the target current value of the unit 13, and the second control unit 16 determines when the state of charge of the third battery 12 is a predetermined second reduction state. Operates to control the step-down operation of the second voltage converter 14 so that the value of the current output from the second voltage converter 14 becomes larger than a predetermined target current value of the second voltage converter 14. I do.
- the charging of the third battery 12 is performed.
- the charging current from the second voltage converter 14 is increased so that the reduction in the state of charge of the third battery 12 can be easily eliminated at an early stage. May be promoted too much, or the charging speed of the second battery 11 may decrease.
- the state of charge of the third battery 12 is the second predetermined state of decrease, the charge current from the first voltage converter 13 is increased, and the charge current from the second voltage converter 14 is increased. If is also increased, the charging of the third battery 12 is promoted, the second reduced state can be eliminated earlier, and the discharge on the second battery 11 side progresses excessively due to such promotion of charging. Or that the charging speed is too low.
- the first control unit 15 stops the operation of the first voltage conversion unit 13 when the state of charge of the first battery 10 is a predetermined abnormal state, and the second control unit 16 performs at least the first voltage conversion
- the voltage applied to the third conductive path 19 is boosted by the second voltage converter 14 to It operates so as to perform a boosting operation of applying an output voltage to the two conductive paths 18.
- the charging of the first battery 10 is performed.
- the state is an abnormal state
- the second voltage converter 14 is caused to perform the boosting operation. I have to. In this way, even if the above situation occurs, the insufficient charge of the second battery 11 can be eliminated at an early stage by using the power of the third battery 12.
- the first control unit 15 stops the operation of the first voltage conversion unit 13 when the state of charge of the first battery 10 is a predetermined abnormal state, and the second control unit 16 performs at least the first voltage conversion
- the state of charge of the second battery 11 is a predetermined normal state
- the state of charge of the third battery 12 is a predetermined low level state
- the second voltage converter 14 It operates to control the step-down operation of the second voltage conversion unit 14 so that the value of the current output from the second voltage conversion unit 14 becomes larger than a predetermined target current value of the second voltage conversion unit 14.
- the charging of the first battery 10 is performed.
- the state is an abnormal state
- it is desirable to increase the charging current from the second voltage converter 14 to promote the charging of the third battery 12 but the second battery 12 If such an operation is performed when the battery 11 is not in a normal state, the second battery 11 may be excessively discharged.
- the state of charge of the second battery 11 is at a predetermined level. If the output current of the second voltage converter 14 is increased on condition that the second battery 11 is normal, the charging of the third battery 12 is promoted when the operation of the first voltage converter 13 is stopped. Can be avoided.
- the second controller 16 controls the second voltage converter 14. Then, an operation is performed to increase the voltage applied to the third conductive path 19 and perform a boosting operation of applying an output voltage to the second conductive path 18.
- the first voltage converter 13 Is abnormal, the charging state of the second battery 11 is reduced, and even if the state deviates from the normal state, the charging current cannot be normally supplied by the first voltage conversion unit 13 so that the second battery 11 cannot be quickly returned to the normal state. There is a fear. Therefore, in the above configuration, when the abnormality of the first voltage converter 13 is detected and the state of charge of the second battery 11 is not the predetermined normal state, the second voltage converter 14 is caused to perform the boosting operation. ing. In this way, even if the above situation occurs, the insufficient charge of the second battery 11 can be eliminated at an early stage by using the power of the third battery 12.
- the vehicle power supply device 1 of the present configuration includes a first control unit 15 that controls the operation of the first voltage conversion unit 13, a second control unit 16 that controls the operation of the second voltage conversion unit 14, An abnormality detection unit 40 that detects an abnormality of the voltage conversion unit 13, wherein the second control unit 16 controls the state of charge of the second battery 11 when the abnormality detection unit 40 detects an abnormality of the first voltage conversion unit 13. Is a predetermined normal state, and if the state of charge of the third battery 12 is a predetermined low level state, the value of the current output from the second voltage converter 14 is changed to a predetermined value of the second voltage converter 14. In this configuration, the step-down operation of the second voltage converter 14 is controlled so as to be larger than the target current value.
- the first voltage converter 13 Is abnormal, the charging operation by the first voltage conversion unit 13 cannot be expected.
- the state of charge of the third battery 12 is reduced, it is desirable to increase the charging current from the second voltage converter 14 to promote the charging of the third battery 12, but the second battery 12 If such an operation is performed when the battery 11 is not in a normal state, there is a possibility that the second battery 11 is excessively discharged in a situation where the current cannot be sufficiently supplied to the second battery 11.
- the state of charge of the second battery 11 is a predetermined normal state. If the output current of the second voltage converter 14 is increased on condition that the second battery 11 is in the state, the charging of the third battery 12 is promoted when the first voltage converter 13 is abnormal. It is possible to avoid a situation in which the state deteriorates too much.
- the vehicle power supply system 100 includes three batteries (a first battery, a second battery, and a third battery), but may further include another battery having a different output voltage. In this case, it is preferable that another battery having a different voltage is connected to the second battery via another voltage converter.
- the operation start condition of the first control unit and the second control unit is described as switching of the ignition signal from OFF to ON. May be switched from a state where the power is not turned on to a state where the power is turned on.
- the first control unit and the second control unit are illustrated as being configured as individual information processing devices (individual microcomputers or the like). (A microcomputer or the like).
- the first battery and the second battery are separated from each other.
- a plurality of cells are combined in series to form a 248V battery, an intermediate tap is provided in the battery, and the 200V first battery and the 48V And the second battery may be integrated.
- the same single battery is used for the first battery and the second battery.
- a 48V second battery is configured as a battery of a different type from the single battery configuring the 200V first battery. You may.
- the state of charge of the second battery that is in the predetermined reduced state may be a state in which the output voltage of the second battery is equal to or lower than the threshold voltage.
- the state of charge of the third battery being the predetermined second lowered state may be a state in which the output voltage of the third battery is equal to or lower than the threshold voltage.
- the state of charge of the first battery being a predetermined abnormal state may be a state in which the output voltage of the third battery is equal to or lower than the threshold voltage.
- the case where the state of charge of the second battery is not the predetermined normal state may be the case where the output voltage of the second battery is equal to or lower than the threshold voltage.
- the state of charge of the third battery being a predetermined low level state may be a state in which the charge voltage of the third battery is equal to or lower than the threshold voltage.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
高圧用の第1バッテリよりも出力電圧の低い第2バッテリ及び第2バッテリよりも出力電圧が低い第3バッテリを良好に充電し得る構成を、より小型且つ簡易に実現する。 車両用電源装置(1)は、高圧用の第1バッテリ(10)を備えた車両用電源システム(100)に用いられ、第1導電路(17)に印加された電圧を降圧して第2導電路(18)に出力電圧を印加する第1降圧動作を行う絶縁型の第1電圧変換部(13)と、第2導電路(18)に印加された電圧を降圧して第3導電路(19)に出力電圧を印加する第2降圧動作を行う非絶縁型の第2電圧変換部(14)と、を備える。
Description
本発明は、車両用電源装置に関するものである。
特許文献1には、EV、HEV、PEV等の、所謂xEVの電源システムにおいて、車両の低温始動性を向上させ、低電圧電源の容量の拡大を目的として、高圧バッテリ、低電圧である14V系バッテリに加えて、低電圧より大きい中電圧である42V系バッテリを備える電源システムが開示されている。
この電源システムは42V系バッテリ、及び14V系バッテリが個別のDCDCコンバータを介して高圧バッテリと電力のやり取りを行うことができる。
この電源システムは42V系バッテリ、及び14V系バッテリが個別のDCDCコンバータを介して高圧バッテリと電力のやり取りを行うことができる。
この電源システムは42V系バッテリ、及び14V系バッテリがそれぞれ個別のDCDCコンバータを介して高圧バッテリと電力のやり取りを行うため、各DCDCコンバータは絶縁型である必要がある。この場合、各DCDCコンバータにはトランスが搭載されることになる。これにより、この電源システムは2つのトランスが用いられることによってシステムのサイズが大きくなるおそれがある。
本発明は上述した課題の少なくとも一つを解決するためになされたものであり、高圧用の第1バッテリを備えた車両用電源システムにおいて、第1バッテリよりも出力電圧の低い第2バッテリ及び第2バッテリよりも出力電圧が低い第3バッテリを良好に充電し得る構成を、より小型且つ簡易に実現することを目的とするものである。
本発明の一つである車両用電源装置は、
高圧用の第1バッテリと、
前記第1バッテリの充放電経路となる第1導電路と、
前記第1バッテリの出力電圧よりも低い電圧を出力する第2バッテリと、
前記第2バッテリの充放電経路となる第2導電路と、
前記第2バッテリの出力電圧よりも低い電圧を出力する第3バッテリと、
前記第3バッテリの充放電経路となる第3導電路と、
を備えた車両用電源システムに用いられる車両用電源装置であって、
絶縁型のDCDCコンバータとして構成され、前記第1導電路に印加された電圧を降圧して前記第2導電路に出力電圧を印加する第1降圧動作を行う第1電圧変換部と、
非絶縁型のDCDCコンバータとして構成され、前記第2導電路に印加された電圧を降圧して前記第3導電路に出力電圧を印加する第2降圧動作を行う第2電圧変換部と、
を備える。
高圧用の第1バッテリと、
前記第1バッテリの充放電経路となる第1導電路と、
前記第1バッテリの出力電圧よりも低い電圧を出力する第2バッテリと、
前記第2バッテリの充放電経路となる第2導電路と、
前記第2バッテリの出力電圧よりも低い電圧を出力する第3バッテリと、
前記第3バッテリの充放電経路となる第3導電路と、
を備えた車両用電源システムに用いられる車両用電源装置であって、
絶縁型のDCDCコンバータとして構成され、前記第1導電路に印加された電圧を降圧して前記第2導電路に出力電圧を印加する第1降圧動作を行う第1電圧変換部と、
非絶縁型のDCDCコンバータとして構成され、前記第2導電路に印加された電圧を降圧して前記第3導電路に出力電圧を印加する第2降圧動作を行う第2電圧変換部と、
を備える。
上記車両用電源装置は、高圧用負荷への電力供給経路(第1導電路)に印加される高電圧を2つの絶縁型DCDCコンバータによってそれぞれ降圧して第2バッテリ及び第3バッテリを充電するのではなく、第1導電路の高電圧を絶縁型のDCDCコンバータ(第1電圧変換部)によって降圧して第2導電路に中電圧を印加し、第2導電路を介して第2バッテリを充電する構成を採用した上で、この第2導電路の中電圧を非絶縁型のDCDCコンバータ(第2電圧変換部)によって降圧して第3バッテリを充電する構成となっている。
このように、高電圧を出力する第1バッテリの電力に基づいて第2バッテリ及び第3バッテリを充電するにあたり、一方の電圧変換部(第2電圧変換部)を非絶縁型のDCDCコンバータとして構成可能であるため、2つの絶縁型のDCDCコンバータによって直接的に第2バッテリ及び第3バッテリを充電する構成と比較して、小型化及び軽量化を図りやすくなる。また、第2電圧変換部は、第2導電路に印加される中電圧を入力電圧とする形で第3導電路の低電圧を生成する構成であるため、入力電圧が抑えられ、非絶縁型のDCDCコンバータとしても問題が生じにくい。
このように、高電圧を出力する第1バッテリの電力に基づいて第2バッテリ及び第3バッテリを充電するにあたり、一方の電圧変換部(第2電圧変換部)を非絶縁型のDCDCコンバータとして構成可能であるため、2つの絶縁型のDCDCコンバータによって直接的に第2バッテリ及び第3バッテリを充電する構成と比較して、小型化及び軽量化を図りやすくなる。また、第2電圧変換部は、第2導電路に印加される中電圧を入力電圧とする形で第3導電路の低電圧を生成する構成であるため、入力電圧が抑えられ、非絶縁型のDCDCコンバータとしても問題が生じにくい。
ゆえに、高圧用の第1バッテリを備えた車両用電源システムにおいて、第2バッテリ(第1バッテリよりも出力電圧の低いバッテリ)及び第3バッテリ(第2バッテリよりも出力電圧が低いバッテリ)を良好に充電し得る構成を、より小型且つ簡易に実現し得る。
ここで、本発明の望ましい一例を示す。ただし、本発明は以下の例に限定されない。
本発明の車両用電源装置は、第1電圧変換部の動作を制御する第1制御部と、第2電圧変換部の動作を制御する第2制御部とを備え、第1制御部は、第2バッテリの充電状態が所定の低下状態であるときに、第1電圧変換部から第2導電路に出力される電流の値を予め定められた第1電圧変換部の目標電流値よりも大きくするように第1電圧変換部の降圧動作を制御し、第2制御部は、第2バッテリの充電状態が所定の低下状態であるときに、第2電圧変換部から第3導電路に出力される電流の値を予め定められた第2電圧変換部の目標電流値よりも小さくするように第2電圧変換部の降圧動作を制御する構成であってもよい。
第1電圧変換部の第1降圧動作によって第2バッテリを充電し、第2電圧変換部の第2降圧動作によって第3バッテリを充電する構成のものでは、第1電圧変換部の降圧動作によって電流を供給しても第2電圧変換部の降圧動作がなされていると第2バッテリの充電速度は低下せざるを得ない。この問題は、第2バッテリの充電状態が所定の低下状態となっているときに顕著となり、第2電圧変換部の降圧動作がなされていると第2バッテリの低下状態は解消されにくい。しかし、上記構成のように、第2バッテリの充電状態が所定の低下状態であるときに、第1電圧変換部から第2導電路に出力される電流を大きくし、第2電圧変換部から第3導電路に出力される電流を小さくすれば、第3導電路への出力を維持しつつ第2バッテリの充電を優先することができ、より早期に第2バッテリの低下状態を解消しやすい。
本発明の車両用電源装置は、第1電圧変換部の動作を制御する第1制御部と、第2電圧変換部の動作を制御する第2制御部とを備え、第1制御部は、第3バッテリの充電状態が所定の第2低下状態であるときに、第1電圧変換部から第2導電路に出力される電流の値を予め定められた第1電圧変換部の目標電流値よりも大きくするように第1電圧変換部の降圧動作を制御し、第2制御部は、第3バッテリの充電状態が所定の第2低下状態であるときに、第2電圧変換部から第3導電路に出力される電流の値を予め定められた第2電圧変換部の目標電流値よりも大きくするように第2電圧変換部の降圧動作を制御する構成であってもよい。
第1電圧変換部の第1降圧動作によって第2バッテリを充電し、第2電圧変換部の第2降圧動作によって第3バッテリを充電する構成のものでは、第3バッテリの充電状態が低下した場合、第2電圧変換部からの充電電流を大きくすることで第3バッテリの充電状態の低下を早期に解消しやすくなるが、このようにすると、第2バッテリの放電が促進されすぎたり、第2バッテリの充電速度が低下したりする虞がある。しかし、上記構成のように、第3バッテリの充電状態が所定の第2低下状態であるときに、第1電圧変換部から充電電流を大きくし、第2電圧変換部からの充電電流も大きくすれば、第3バッテリの充電を促進して第2低下状態をより早期に解消することができるとともに、このような充電促進に起因して第2バッテリ側の放電が進行しすぎたり、充電速度が低下しすぎたりすることを抑制することができる。
本発明の車両用電源装置は、第1電圧変換部の動作を制御する第1制御部と、第2電圧変換部の動作を制御する第2制御部とを備え、第1制御部は、第1バッテリの充電状態が所定の異常状態であるときに、第1電圧変換部の動作を停止し、第2制御部は、少なくとも第1電圧変換部の動作が停止している場合において第2バッテリの充電状態が所定の正常状態でない場合に、第2電圧変換部に、第3導電路に印加された電圧を昇圧して第2導電路に出力電圧を印加する昇圧動作を行わせる構成であってもよい。
第1電圧変換部の第1降圧動作によって第2バッテリを充電し、第2電圧変換部の第2降圧動作によって第3バッテリを充電する構成のものでは、第1バッテリの充電状態が異常状態であるときには第1電圧変換部の動作を停止することが望ましい。しかし、このように第1電圧変換部の動作を停止してしまうと、第2バッテリの充電状態が低下して正常状態から外れたとしても第2バッテリを充電できないという問題がある。そこで、上記構成では、第1電圧変換部の動作が停止している場合において第2バッテリの充電状態が所定の正常状態でない場合に、第2電圧変換部に昇圧動作を行わせるようにしている。このようにすれば、上記事態が生じたとしても第3バッテリの電力を利用して第2バッテリの充電不足を早期に解消することができる。
本発明の車両用電源装置は、第1電圧変換部の動作を制御する第1制御部と、
第2電圧変換部の動作を制御する第2制御部とを備え、第1制御部は、第1バッテリの充電状態が所定の異常状態であるときに、第1電圧変換部の動作を停止し、第2制御部は、少なくとも第1電圧変換部の動作が停止している場合において第2バッテリの充電状態が所定の正常状態である場合、第3バッテリの充電状態が所定の低レベル状態であれば、第2電圧変換部から出力される電流の値を予め定められた第2電圧変換部の目標電流値よりも大きくするように第2電圧変換部の降圧動作を制御する構成であってもよい。
第2電圧変換部の動作を制御する第2制御部とを備え、第1制御部は、第1バッテリの充電状態が所定の異常状態であるときに、第1電圧変換部の動作を停止し、第2制御部は、少なくとも第1電圧変換部の動作が停止している場合において第2バッテリの充電状態が所定の正常状態である場合、第3バッテリの充電状態が所定の低レベル状態であれば、第2電圧変換部から出力される電流の値を予め定められた第2電圧変換部の目標電流値よりも大きくするように第2電圧変換部の降圧動作を制御する構成であってもよい。
第1電圧変換部の第1降圧動作によって第2バッテリを充電し、第2電圧変換部の第2降圧動作によって第3バッテリを充電する構成のものでは、第1バッテリの充電状態が異常状態であるときには第1電圧変換部の動作を停止することが望ましい。しかし、このような場合でも、第3バッテリの充電状態が低下したときには第2電圧変換部からの充電電流を大きくして第3バッテリの充電を促進することが望ましいが、第2バッテリが正常状態でないときにこのような動作を行ってしまうと、第2バッテリが放電されすぎてしまう虞がある。しかし、上記構成のように、第1電圧変換部の動作が停止している場合において第3バッテリの充電状態が所定の低レベル状態である場合、第2バッテリの充電状態が所定の正常状態であることを条件として第2電圧変換部の出力電流を大きくすれば、第1電圧変換部の動作停止時に第3バッテリの充電を促進することに起因して第2バッテリの充電状態が悪化しすぎてしまうような事態を回避することができる。
本発明の車両用電源装置は、第1電圧変換部の動作を制御する第1制御部と、
第2電圧変換部の動作を制御する第2制御部と、第1電圧変換部の異常を検出する異常検出部とを備え、第2制御部は、異常検出部によって第1電圧変換部の異常が検出された場合において第2バッテリの充電状態が所定の正常状態でない場合に、第2電圧変換部に、第3導電路に印加された電圧を昇圧して第2導電路に出力電圧を印加する昇圧動作を行わせる構成であってもよい。
第2電圧変換部の動作を制御する第2制御部と、第1電圧変換部の異常を検出する異常検出部とを備え、第2制御部は、異常検出部によって第1電圧変換部の異常が検出された場合において第2バッテリの充電状態が所定の正常状態でない場合に、第2電圧変換部に、第3導電路に印加された電圧を昇圧して第2導電路に出力電圧を印加する昇圧動作を行わせる構成であってもよい。
第1電圧変換部の第1降圧動作によって第2バッテリを充電し、第2電圧変換部の第2降圧動作によって第3バッテリを充電する構成のものでは、第1電圧変換部が異常である場合、第2バッテリの充電状態が低下して正常状態から外れても第1電圧変換部によって充電電流を正常に供給できないため第2バッテリを迅速に正常状態に戻せない虞がある。そこで、上記構成では、第1電圧変換部の異常が検出された場合において第2バッテリの充電状態が所定の正常状態でない場合に、第2電圧変換部に昇圧動作を行わせるようにしている。このようにすれば、上記事態が生じたとしても第3バッテリの電力を利用して第2バッテリの充電不足を早期に解消することができる。
本発明の車両用電源装置は、第1電圧変換部の動作を制御する第1制御部と、第2電圧変換部の動作を制御する第2制御部と、第1電圧変換部の異常を検出する異常検出部とを備え、第2制御部は、異常検出部によって第1電圧変換部の異常が検出された場合において第2バッテリの充電状態が所定の正常状態である場合、第3バッテリの充電状態が所定の低レベル状態であれば、第2電圧変換部から出力される電流の値を予め定められた第2電圧変換部の目標電流値よりも大きくするように第2電圧変換部の降圧動作を制御する構成であってもよい。
第1電圧変換部の第1降圧動作によって第2バッテリを充電し、第2電圧変換部の第2降圧動作によって第3バッテリを充電する構成のものでは、第1電圧変換部が異常である場合、第1電圧変換部による充電動作は期待できなくなる。しかし、このような場合でも、第3バッテリの充電状態が低下したときには第2電圧変換部からの充電電流を大きくして第3バッテリの充電を促進することが望ましいが、第2バッテリが正常状態でないときにこのような動作を行ってしまうと、第2バッテリへの電流供給が十分に行えない状況下で第2バッテリが放電されすぎてしまう虞がある。しかし、上記構成のように、第1電圧変換部の異常が検出された場合において第3バッテリの充電状態が所定の低レベル状態である場合、第2バッテリの充電状態が所定の正常状態であることを条件として第2電圧変換部の出力電流を大きくすれば、第1電圧変換部の異常時に第3バッテリの充電を促進することに起因して第2バッテリの充電状態が悪化しすぎてしまうような事態を回避することができる。
<実施例1>
以下、本発明を具体化した実施例1について説明する。
図1で示す車両Caは、第1バッテリ10から電力供給を受ける走行用モータによって車輪を回転させる動力が発生する車両であり、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車などの所謂xEV車両となっている。車両用電源システム100は、車両Caに搭載される電源システムであり、高圧用の第1バッテリ10と、第1バッテリ10の充放電経路となる第1導電路17と、第1バッテリ10の出力電圧よりも低い電圧を出力する第2バッテリ11と、第2バッテリ11の充放電経路となる第2導電路18と、第2バッテリ11の出力電圧よりも低い電圧を出力する第3バッテリ12と、第3バッテリ12の充放電経路となる第3導電路19と、車両用電源装置1(以下、電源装置1ともいう)とを備える。
以下、本発明を具体化した実施例1について説明する。
図1で示す車両Caは、第1バッテリ10から電力供給を受ける走行用モータによって車輪を回転させる動力が発生する車両であり、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車などの所謂xEV車両となっている。車両用電源システム100は、車両Caに搭載される電源システムであり、高圧用の第1バッテリ10と、第1バッテリ10の充放電経路となる第1導電路17と、第1バッテリ10の出力電圧よりも低い電圧を出力する第2バッテリ11と、第2バッテリ11の充放電経路となる第2導電路18と、第2バッテリ11の出力電圧よりも低い電圧を出力する第3バッテリ12と、第3バッテリ12の充放電経路となる第3導電路19と、車両用電源装置1(以下、電源装置1ともいう)とを備える。
図1のように、電源装置1は、高圧系の第1導電路17、中圧系の第2導電路18、及び低圧系の第3導電路19の三系統に電力を供給し得る構成とされている。
電源装置1は、第1導電路17に第1バッテリ10の出力電圧(例えば200V程度)が印加され、第2導電路18に第2バッテリ11の出力電圧(例えば48V程度)が印加され、第3導電路19に第3バッテリ12の出力電圧(例えば12V程度)が印加される構成とされ、第1導電路17、第2導電路18、及び第3導電路19に接続された電気的負荷に電力を供給し得る。第2バッテリ11の満充電時の出力電圧は第1バッテリ10の満充電時の出力電圧よりも低い。また、第3バッテリ12の満充電時の出力電圧は第2バッテリ11の満充電時の出力電圧よりも低い。なお、第1バッテリ10の出力電圧は、第1バッテリ10の高電位側端子とグラウンドとの電位差を意味し、第2バッテリ11の出力電圧は、第2バッテリ11の高電位側端子とグラウンドとの電位差を意味し、第3バッテリ12の出力電圧は、第3バッテリ12の高電位側端子とグラウンドとの電位差を意味する。
第1導電路17は、第1バッテリ10の高電位側端子が電気的に接続されている。第1バッテリ10は、高圧用の負荷(図1の例ではモータ30など)に電力を供給し得るバッテリである。第1バッテリ10は、例えば、リチウムイオン電池又はニッケル水素電池等の単電池を複数直列に組み合わせて構成される組電池であり、およそ200Vの電圧を出力することができる。第1バッテリ10の電圧は200Vに限らず、300V程度であってもよい。また、第1バッテリ10の低電位側端子には、低電位側導電路20が電気的に接続されている。低電位側導電路20は、例えばグラウンド部として機能し、所定のグラウンド電位(例えば0V)に保たれる導電路である。
第1導電路17には電気的負荷としてPCU(パワーコントロールユニット)32が接続されている。PCU32にはモータ30が電気的に接続され、モータ30にはエンジン31が接続されている。PCU32は、直流電力と所定の制御がなされた交流駆動信号との間の変換を行うインバータ回路を含む回路ユニットであり、モータ30に交流電力を供給することができる。また、モータ30はエンジン31を始動させるための始動源として用いられる。
第1バッテリ10とPCU32との間の第1導電路17、及び低電位側導電路20にはSMR(システムメインリレー)33が接続されている。SMR33は、第1リレー33A、第2リレー33B、及び第3リレー33Cを有している。第1リレー33A、第2リレー33B、及び第3リレー33Cはリレースイッチである。第1リレー33Aは第1導電路17に設けられ、第2リレー33Bは低電位側導電路20に設けられている。第3リレー33Cは抵抗が直列に接続されており、第1リレー33Aと並列に第1導電路17に電気的に接続されている。第1リレー33A、第2リレー33B、及び第3リレー33Cは、所定の制御装置の制御によってオンオフが切り替えられる。
また、SMR33とPCU32との間の第1導電路17、及び低電位側導電路20には第1電圧変換部13が接続されている。第1電圧変換部13は、トランスを有し、降圧が可能な公知の絶縁型降圧DCDCコンバータである。第1電圧変換部13には第2導電路18が電気的に接続されている。第1電圧変換部13は、第1導電路17を入力側導電路とし、第2導電路18を出力側導電路とし、第1導電路17に印加された入力電圧を降圧して第2導電路18に出力電圧を印加するように降圧動作を行い得る。これにより、第1電圧変換部13は後述する第2バッテリ11を第1バッテリ10からの電力に基づいて充電しつつ、後述する第1負荷34に電力を供給することができる。なお、第1電圧変換部13の出力電圧は、第2バッテリ11の満充電時の充電電圧(例えば48V)と同程度又はこれよりも少し高い電圧である。本構成では、第1電圧変換部13によって行われる降圧動作(第1導電路17に印加された電圧を降圧して第2導電路18に所定の出力電圧を印加する動作)が第1降圧動作の一例に相当する。
第2導電路18には、第2バッテリ11、電気的負荷である第1負荷34、及び第2電圧変換部14が電気的に接続されている。
第2バッテリ11は、例えば、第1バッテリ10と同種の単電池を用い、直列に組み合わせる個数が異なるもので構成することができ、およそ48Vの電圧を出力することができる。また、第2バッテリ11は第1バッテリ10と別体の構成となっている。第2バッテリ11は高電位側端子が第2導電路18に接続されており、低電位側端子がグラウンド電位(0V)に保たれている。
第1負荷34は、第2導電路18を介して供給される電力によって動作する。第1負荷34は、比較的大電力を必要とする機器及びxEV車両の進化に伴って新しく追加される補機及び電子機器等であり、例えば、電動パワーステアリングのモータや、エアコンのコンプレッサ等である。
第2電圧変換部14はトランスを有しておらず、降圧及び昇圧の双方を実行することができる公知の非絶縁型の双方向DCDCコンバータであり、例えば同期整流方式のDCDCコンバータであってもよく、ダイオード整流方式のDCDCコンバータであってもよい。第2電圧変換部14の一方側には第2導電路18が電気的に接続され、他方側には第3導電路19が電気的に接続されている。第2電圧変換部14は、第2導電路18に印加された電圧を降圧して第3導電路19に出力電圧を印加する降圧動作を行い得る。なお、第2電圧変換部14がこのように行う降圧動作(第2導電路18に印加された電圧を降圧して第3導電路19に出力電圧を印加する降圧動作)が第2降圧動作の一例に相当する。第2降圧動作のときに第2電圧変換部14第3導電路19に印加する出力電圧は、例えば満充電時の第3バッテリ12の充電電圧と同程度又はこれよりも少し高い電圧である。更に、第2電圧変換部14は、第3導電路19に印加された電圧を昇圧して第2導電路18に出力電圧を印加する昇圧動作も行い得る。昇圧動作のときに第2電圧変換部14が第2導電路18に印加する出力電圧は、例えば満充電時の第1バッテリ10の充電電圧と同程度又はこれよりも少し高い電圧である。このように構成されるため、第2電圧変換部14が第2降圧動作を行うときには、後述する第3バッテリ12を第2バッテリ11からの電力に基づいて充電しつつ、後述する第2負荷35にも電力を供給することができる。また、第2電圧変換部14が昇圧動作を行うときには、第2バッテリ11を第3バッテリ12からの電力に基づいて充電しつつ、第1負荷34にも電力を供給することができる。
第3導電路19には、第3バッテリ12、及び電気的負荷である第2負荷35が電気的に接続されている。
第3バッテリ12は、例えば、従来から車載用蓄電池として用いられる公知の鉛蓄電池を用いることができ、およそ12Vの電圧を出力することができる。第3バッテリ12は高電位側の端子が第3導電路19に接続されており、低電位側の端子がグラウンド電位(0V)に保たれている。
第2負荷35は、第3導電路19を介して供給される電力によって動作する。第2負荷35は、例えば、ワイパーに用いられるモータ等の補機及び各種電子機器等の低圧用の負荷である。
また、電源装置1は、第1制御部15、第2制御部16、及びBMU(バッテリマネジメントユニット)36を備えている。なお、第1制御部15と第2制御部16は共通の制御装置によって兼用されてもよく、別々の制御装置によって実現されてもよいが、以下では、別々の制御装置によって実現される場合を代表例として説明する。
第1制御部15は、例えば、マイクロコンピュータとして構成されており、CPU、ROM、RAM、不揮発性メモリ等を具備している。第1制御部15は、第2バッテリ11や第3バッテリ12の充電状態(以下、SOC(State of Charge)ともいう)に基づいて第1電圧変換部13に与えるPWM信号D1のデューティを演算するとともに、演算で得られた所定の値のデューティに設定されたPWM信号D1を第1電圧変換部13に出力し、第1電圧変換部13の動作を制御し得る構成となっている。また、第1制御部15は、第2バッテリ11が接続された第2導電路18の電圧の値V2や電流の値A2等を取得し得る構成となっており、これら取得した値に基づいて第2バッテリ11のSOCを得ることによって第2バッテリ11のSOCを監視する。第1制御部15が第2バッテリ11のSOCを検出する方法は、公知の様々な方法を採用し得る。
第2制御部16は、例えば、マイクロコンピュータとして構成されており、CPU、ROM、RAM、不揮発性メモリ等を具備している。第2制御部16は、第3バッテリ12や第2バッテリ11のSOCに基づいて第2電圧変換部14に与えるPWM信号D2のデューティを演算するとともに、演算で得られた所定の値のデューティに設定されたPWM信号D2を第2電圧変換部14に出力し、第2電圧変換部14の動作を制御し得る構成となっている。また、第2制御部16は、第3バッテリ12が接続された第3導電路19の電圧の値V3や電流の値A3等を取得し得る構成となっており、これら取得した値に基づいて第3バッテリ12のSOCを得ることによって第3バッテリ12のSOCを監視し得る。第2制御部16が第3バッテリ12のSOCを検出する方法は、公知の様々な方法を採用し得る。
BMU36は、第1バッテリ10の各単電池の電圧の値V1や電流の値A1等を取得し得る構成となっており、これら取得した値に基づいて第1バッテリ10のSOCを検出する。BMU36が第1バッテリ10のSOCを検出する方法は、公知の様々な方法を採用し得る。
次に、第1制御部15及び第2制御部16によって実行される制御について、図2等を参照しつつ説明する。第1制御部15及び第2制御部16の動作開始条件は、例えばイグニッション信号のオフからオンへの切り替わり等であり、これ以外の動作開始条件であってもよい。
図2の制御は、図3及び図4の制御が実行されないときに繰り返される制御である。図2の制御では、第1制御部15及び第2制御部16の少なくともいずれかが、第2バッテリ11のSOCが所定の低下状態であるか判定する(S1)。ここで第2バッテリ11のSOCが所定の低下状態であるとは、第2導電路18の電圧の値V2や電流の値A2等に基づいて得られた現在の第2バッテリ11のSOCが、第2バッテリ11が満充電された状態に対して所定の割合より低い状態であることを意味する。具体的には、第1制御部15によって監視される第2バッテリ11のSOCが所定の第2SOC閾値以下である場合を「第2バッテリ11の充電状態が所定の低下状態である場合」の一例とし、ステップS1では、第2バッテリ11のSOCが第2SOC閾値以下である場合にステップS2の処理を行い、第2バッテリ11のSOCが第2SOC閾値を超える場合にステップS3の処理を行う。
第1制御部15及び第2制御部16は、ステップS1において第2バッテリ11のSOCが第2SOC閾値以下であると判定した場合、ステップS2において第1電圧変換部13からの出力電流を大きくし、第2電圧変換部14からの出力電流を小さくするように制御を行う。なお、本構成では、予め第1電圧変換部13の目標電流値(第1目標電流値It1)が定められており、第2バッテリ11を充電する際に第1電圧変換部13に対して通常の降圧動作を行わせる場合(ステップS2、S4以外のとき)には、第1電圧変換部13からの出力電流が第1目標電流値It1となるように第1制御部15が第1電圧変換部13の降圧動作(第1降圧動作)を制御する。また、予め第2電圧変換部14の目標電流値(第2目標電流値It2)が定められており、第3バッテリ12を充電する際に第2電圧変換部14に対して通常の降圧動作を行わせる場合(ステップS2、S4以外のとき)には、第2電圧変換部14からの出力電流が第2目標電流値It2となるように第2制御部16が第2電圧変換部14の降圧動作(第2降圧動作)を制御する。一方、ステップS1において第2バッテリ11のSOCが第2SOC閾値以下であると判定した場合(第2バッテリ11の充電状態が所定の低下状態であるとき)には、第1制御部15は、第1電圧変換部13から第2導電路18に出力される電流の値を予め定められた第1電圧変換部13の目標電流値(第1目標電流値It1)よりも大きくするように第1電圧変換部13の降圧動作を制御し、第2制御部16は、第2電圧変換部14から第3導電路19に出力される電流の値を予め定められた第2電圧変換部14の目標電流値(第2目標電流値It2)よりも小さくするように第2電圧変換部14の降圧動作を制御する。
第1制御部15及び第2制御部16は、ステップS1において第2バッテリ11のSOCが第2SOC閾値以下でないと判定した場合、ステップS2において第3バッテリ12のSOCが所定の低下状態であるか判定する(S3)。ここで、第3バッテリ12のSOCが所定の低下状態であるとは、第3導電路19の電圧の値V3や電流の値A3等に基づいて得られた現在の第3バッテリ12のSOCが、第3バッテリ12が満充電された状態に対して所定の割合より低い状態であることを意味する。具体的には、第2制御部16によって監視される第3バッテリ12のSOCが所定の第3SOC閾値以下である場合を「第3バッテリ12の充電状態が所定の第2低下状態である場合」の一例とし、ステップS3では、第3バッテリ12のSOCが第3SOC閾値以下である場合にステップS4の処理を行い、第3バッテリ12のSOCが第3SOC閾値を超える場合に図2の処理を終了する。
第1制御部15及び第2制御部16は、ステップS3において第3バッテリ12のSOCが第3SOC閾値以下であると判定した場合、ステップS4において第1電圧変換部13からの出力電流を大きくし、第2電圧変換部14からの出力電流を大きくするように制御を行う。具体的には、第1制御部15は、第1電圧変換部13から第2導電路18に出力される電流の値を予め定められた第1電圧変換部13の目標電流値(第1目標電流値It1)よりも大きくするように第1電圧変換部13の降圧動作を制御し、第2制御部16は、第2電圧変換部14から第3導電路19に出力される電流の値を予め定められた第2電圧変換部14の目標電流値(第2目標電流値It2)よりも大きくするように第2電圧変換部14の降圧動作を制御する。
第1制御部15及び第2制御部16は、ステップS3において第3バッテリ12のSOCが第3SOC閾値以下でないと判定した場合、図2の制御を終了し、第1制御部15及び第2制御部16は通常動作にもどる。そして、第1制御部15及び第2制御部16が通常動作を行っている状態で図2の制御を再び行う。通常動作では、第1制御部15は、第1電圧変換部13から第2導電路18に出力される電流の値を第1目標電流値It1とするように第1電圧変換部13の降圧動作を制御し、第2制御部16は、第2電圧変換部14から第3導電路19に出力される電流の値を第2目標電流値It2とするように第2電圧変換部14の降圧動作を制御する。なお、第1制御部15及び第2制御部16は、第2バッテリ11の充電電圧が第1閾値を超え、第3バッテリの充電電圧が第2閾値を超えた場合に第1電圧変換部13及び第2電圧変換部14の動作を停止させるようにしてもよい。
次に、図3の制御を説明する。図3の制御は、図2の制御が繰り替えられているときに所定条件が成立した場合に開始される制御である。所定条件は、「第1バッテリ10又は第1電圧変換部13のいずれかが異常状態である」という条件である。図2の制御が繰り返されているときに所定条件が成立した場合、第1制御部15及び第2制御部16は、第1バッテリ10が異常状態であるか否かを判定する。本構成では、BMU36は、取得した第1バッテリ10の各単電池の電圧の値V1や電流の値A1に基づいて公知の方法で第1バッテリ10のSOCを検出する。そして、BMU36は、第1バッテリ10のSOCが第1SOC閾値以下であると判定した場合、異常状態通知信号R1を第1制御部15に出力するようになっている。第1制御部15は、ステップS11において異常状態通知信号R1が入力されたか否かを判定し、異常状態通知信号R1が入力された場合(第1バッテリ10の充電状態が所定の異常状態(SOCが第1SOC閾値以下の状態)となった場合)、ステップS12において第1電圧変換部13の動作を停止する。
第1制御部15及び第2制御部16は、ステップS12の後、ステップS13において第2バッテリ11のSOCが第2SOC閾値以下であるか否かを判定し、ステップS13において第2バッテリ11のSOCが第2SOC閾値以下であると判定した場合(第2バッテリ11の充電状態が所定の正常状態でない場合)、ステップS14に進み、第2電圧変換部14に昇圧動作を行わせる。例えば、ステップS13、S14が繰り返される間に第1制御部15から第2制御部16に昇圧動作指示信号L3が出力され、第2制御部16は、この昇圧動作指示信号L3に応じて第2電圧変換部14に昇圧動作を行わせる。
第1制御部15及び第2制御部16は、ステップS13において第2バッテリ11のSOCが第2SOC閾値以下でないと判定した場合(第2バッテリ11の充電状態が所定の正常状態である場合)ステップS15において第3バッテリ12のSOCが第3SOC閾値以下であるか否か判定する(S15)。第1制御部15及び第2制御部16は、ステップS15において第3バッテリ12のSOCが第3SOC閾値以下であると判定した場合(第3バッテリ12の充電状態が所定の低レベル状態である場合)、ステップS16において第2電圧変換部14から出力される電流の値を予め定められた第2電圧変換部14の目標電流値(第2目標電流値It2)よりも大きくするように第2電圧変換部14の降圧動作を制御する。この制御は、第3バッテリ12のSOCが第3SOC閾値を超えるまで繰り返される。第1制御部15及び第2制御部16は、ステップS15において第3バッテリ12のSOCが第3SOC閾値以下でないと判定した場合、図3の制御を終了する。なお、ステップS11において、第1バッテリ10のSOCが第1SOC閾値以下でないと判定した場合にも図3の制御を終了する。
次に、図4の制御を説明する。図4の制御は、例えば図3の制御の後に開始される制御である。第1制御部15(又は第2制御部16)は、ステップS21において、第1電圧変換部13が異常状態であるか否かを判定する。ステップS21での異常状態の判定方法は様々であり、例えば、第1電圧変換部13の出力電圧が所定電圧範囲外である場合を異常状態と判定してもよく、第1電圧変換部13からの出力電流が所定電流範囲外である場合を異常状態と判定してもよい。この構成では、例えば、第1制御部15が異常検出部の一例に相当する。
第1制御部15及び第2制御部16は、ステップS21において第1電圧変換部13が異常状態であると判定した場合、ステップS22において第2バッテリ11のSOCが第2SOC閾値以下であるか否かを判定し、ステップS22において第2バッテリ11のSOCが第2SOC閾値以下であると判定した場合(第2バッテリ11の充電状態が所定の正常状態でない場合)、ステップS23に進み、第2電圧変換部14に昇圧動作を行わせる。例えば、ステップS22、S23が繰り返される間に第1制御部15から第2制御部16に昇圧動作指示信号L3が出力され、第2制御部16は、この昇圧動作指示信号L3に応じて第2電圧変換部14に昇圧動作を行わせる。
第1制御部15及び第2制御部16は、ステップS22において第2バッテリ11のSOCが第2SOC閾値以下でないと判定した場合(第2バッテリ11の充電状態が所定の正常状態である場合)ステップS24において第3バッテリ12のSOCが第3SOC閾値以下であるか否か判定する。第1制御部15及び第2制御部16は、ステップS24において第3バッテリ12のSOCが第3SOC閾値以下であると判定した場合(第3バッテリ12の充電状態が所定の低レベル状態である場合)、ステップS25において第2電圧変換部14から出力される電流の値を予め定められた第2電圧変換部14の目標電流値(第2目標電流値It2)よりも大きくするように第2電圧変換部14の降圧動作を制御する。この制御は、第3バッテリ12のSOCが第3SOC閾値を超えるまで繰り返される。第1制御部15及び第2制御部16は、ステップS24において第3バッテリ12のSOCが第3SOC閾値以下でないと判定した場合、図4の制御を終了する。なお、ステップS21において、第1電圧変換部13が異常状態でないと判定した場合にも図4の制御を終了する。
次に、本構成の効果を例示する。
上述した車両用電源装置1は、高圧用負荷への電力供給経路(第1導電路17)に印加される高電圧を2つの絶縁型DCDCコンバータによってそれぞれ降圧して第2バッテリ11及び第3バッテリ12を充電するのではなく、第1導電路17の高電圧を絶縁型のDCDCコンバータ(第1電圧変換部13)によって降圧して第2導電路18に中電圧を印加し、第2導電路18を介して第2バッテリ11を充電する構成を採用した上で、この第2導電路18の中電圧を非絶縁型のDCDCコンバータ(第2電圧変換部14)によって降圧して第3バッテリを充電する構成となっている。このように、高電圧を出力する第1バッテリ10の電力に基づいて第2バッテリ11及び第3バッテリ12を充電するにあたり、一方の電圧変換部(第2電圧変換部14)を非絶縁型のDCDCコンバータとして構成可能であるため、2つの絶縁型のDCDCコンバータによって直接的に第2バッテリ11及び第3バッテリ12を充電する構成と比較して、小型化及び軽量化を図りやすくなる。また、第2電圧変換部14は、第2導電路18に印加される中電圧を入力電圧とする形で第3導電路19の低電圧を生成する構成であるため、入力電圧が抑えられ、非絶縁型のDCDCコンバータとしても問題が生じにくい。
上述した車両用電源装置1は、高圧用負荷への電力供給経路(第1導電路17)に印加される高電圧を2つの絶縁型DCDCコンバータによってそれぞれ降圧して第2バッテリ11及び第3バッテリ12を充電するのではなく、第1導電路17の高電圧を絶縁型のDCDCコンバータ(第1電圧変換部13)によって降圧して第2導電路18に中電圧を印加し、第2導電路18を介して第2バッテリ11を充電する構成を採用した上で、この第2導電路18の中電圧を非絶縁型のDCDCコンバータ(第2電圧変換部14)によって降圧して第3バッテリを充電する構成となっている。このように、高電圧を出力する第1バッテリ10の電力に基づいて第2バッテリ11及び第3バッテリ12を充電するにあたり、一方の電圧変換部(第2電圧変換部14)を非絶縁型のDCDCコンバータとして構成可能であるため、2つの絶縁型のDCDCコンバータによって直接的に第2バッテリ11及び第3バッテリ12を充電する構成と比較して、小型化及び軽量化を図りやすくなる。また、第2電圧変換部14は、第2導電路18に印加される中電圧を入力電圧とする形で第3導電路19の低電圧を生成する構成であるため、入力電圧が抑えられ、非絶縁型のDCDCコンバータとしても問題が生じにくい。
ゆえに、高圧用の第1バッテリ10を備えた車両用電源システム100において、第2バッテリ11(第1バッテリ10よりも出力電圧の低いバッテリ)及び第3バッテリ12(第2バッテリ11よりも出力電圧が低いバッテリ)を良好に充電し得る構成を、より小型且つ簡易に実現し得る。
また、本構成の車両用電源装置1は、第2電圧変換部14が第1導電路17に接続されていない。このため、第2電圧変換部14、第3バッテリ12、第2負荷35などをメンテナンスするときに、第1導電路17の高電圧の影響を受けにくい形でメンテナンスすることができ、メンテナンス作業を行いやすい。
また、本構成の車両用電源装置1は、第1電圧変換部13の動作を制御する第1制御部15と、第2電圧変換部14の動作を制御する第2制御部16とを備え、第1制御部15は、第2バッテリ11の充電状態が所定の低下状態であるときに、第1電圧変換部13から出力される電流の値を予め定められた第1電圧変換部13の目標電流値よりも大きくするように第1電圧変換部13の降圧動作を制御し、第2制御部16は、第2バッテリ11の充電状態が所定の低下状態であるときに、第2電圧変換部14から出力される電流の値を予め定められた第2電圧変換部14の目標電流値よりも小さくするように第2電圧変換部14の降圧動作を制御するように動作する。
第1電圧変換部13の第1降圧動作によって第2バッテリ11を充電し、第2電圧変換部14の第2降圧動作によって第3バッテリ12を充電する構成のものでは、第1電圧変換部13の降圧動作によって電流を供給しても第2電圧変換部14の降圧動作がなされていると第2バッテリ11の充電速度は低下せざるを得ない。この問題は、第2バッテリ11の充電状態が所定の低下状態となっているときに顕著となり、第2電圧変換部14の降圧動作がなされていると第2バッテリ11の低下状態は解消されにくい。しかし、上記構成のように、第2バッテリ11の充電状態が所定の低下状態であるときに、第1電圧変換部13から第2導電路18に出力される電流を大きくし、第2電圧変換部14から第3導電路19に出力される電流を小さくすれば、第3導電路19への出力を維持しつつ第2バッテリ11の充電を優先することができ、より早期に第2バッテリ11の低下状態を解消しやすい。
また、第1制御部15は、第3バッテリ12の充電状態が所定の第2低下状態であるときに、第1電圧変換部13から出力される電流の値を予め定められた第1電圧変換部13の目標電流値よりも大きくするように第1電圧変換部13の降圧動作を制御し、第2制御部16は、第3バッテリ12の充電状態が所定の第2低下状態であるときに、第2電圧変換部14から出力される電流の値を予め定められた第2電圧変換部14の目標電流値よりも大きくするように第2電圧変換部14の降圧動作を制御するように動作する。
第1電圧変換部13の第1降圧動作によって第2バッテリ11を充電し、第2電圧変換部14の第2降圧動作によって第3バッテリ12を充電する構成のものでは、第3バッテリ12の充電状態が低下した場合、第2電圧変換部14からの充電電流を大きくすることで第3バッテリ12の充電状態の低下を早期に解消しやすくなるが、このようにすると、第2バッテリ11の放電が促進されすぎたり、第2バッテリ11の充電速度が低下したりする虞がある。しかし、上記構成のように、第3バッテリ12の充電状態が所定の第2低下状態であるときに、第1電圧変換部13から充電電流を大きくし、第2電圧変換部14からの充電電流も大きくすれば、第3バッテリ12の充電を促進して第2低下状態をより早期に解消することができるとともに、このような充電促進に起因して第2バッテリ11側の放電が進行しすぎたり、充電速度が低下しすぎたりすることを抑制することができる。
また、第1制御部15は、第1バッテリ10の充電状態が所定の異常状態であるときに、第1電圧変換部13の動作を停止し、第2制御部16は、少なくとも第1電圧変換部13の動作が停止している場合において第2バッテリ11の充電状態が所定の正常状態でない場合には第2電圧変換部14に、第3導電路19に印加された電圧を昇圧して第2導電路18に出力電圧を印加する昇圧動作を行わせるように動作する。
第1電圧変換部13の第1降圧動作によって第2バッテリ11を充電し、第2電圧変換部14の第2降圧動作によって第3バッテリ12を充電する構成のものでは、第1バッテリ10の充電状態が異常状態であるときには第1電圧変換部13の動作を停止することが望ましい。しかし、このように第1電圧変換部13の動作を停止してしまうと、第2バッテリ11の充電状態が低下して正常状態から外れたとしても第2バッテリ11を充電できないという問題がある。そこで、上記構成では、第1電圧変換部13の動作が停止している場合において第2バッテリ11の充電状態が所定の正常状態でない場合に、第2電圧変換部14に昇圧動作を行わせるようにしている。このようにすれば、上記事態が生じたとしても第3バッテリ12の電力を利用して第2バッテリ11の充電不足を早期に解消することができる。
また、第1制御部15は、第1バッテリ10の充電状態が所定の異常状態であるときに、第1電圧変換部13の動作を停止し、第2制御部16は、少なくとも第1電圧変換部13の動作が停止している場合において第2バッテリ11の充電状態が所定の正常状態である場合、第3バッテリ12の充電状態が所定の低レベル状態であれば、第2電圧変換部14から出力される電流の値を予め定められた第2電圧変換部14の目標電流値よりも大きくするように第2電圧変換部14の降圧動作を制御するように動作する。
第1電圧変換部13の第1降圧動作によって第2バッテリ11を充電し、第2電圧変換部14の第2降圧動作によって第3バッテリ12を充電する構成のものでは、第1バッテリ10の充電状態が異常状態であるときには第1電圧変換部13の動作を停止することが望ましい。しかし、このような場合でも、第3バッテリ12の充電状態が低下したときには第2電圧変換部14からの充電電流を大きくして第3バッテリ12の充電を促進することが望ましいが、第2バッテリ11が正常状態でないときにこのような動作を行ってしまうと、第2バッテリ11が放電されすぎてしまう虞がある。しかし、上記構成のように、第1電圧変換部13の動作が停止している場合において第3バッテリ12の充電状態が所定の低レベル状態である場合、第2バッテリ11の充電状態が所定の正常状態であることを条件として第2電圧変換部14の出力電流を大きくすれば、第1電圧変換部13の動作停止時に第3バッテリ12の充電を促進することに起因して第2バッテリ11の充電状態が悪化しすぎてしまうような事態を回避することができる。
また、第2制御部16は、異常検出部40によって第1電圧変換部13の異常が検出された場合において第2バッテリ11の充電状態が所定の正常状態でない場合には第2電圧変換部14に、第3導電路19に印加された電圧を昇圧して第2導電路18に出力電圧を印加する昇圧動作を行わせるように動作する。
第1電圧変換部13の第1降圧動作によって第2バッテリ11を充電し、第2電圧変換部14の第2降圧動作によって第3バッテリ12を充電する構成のものでは、第1電圧変換部13が異常である場合、第2バッテリ11の充電状態が低下して正常状態から外れても第1電圧変換部13によって充電電流を正常に供給できないため第2バッテリ11を迅速に正常状態に戻せない虞がある。そこで、上記構成では、第1電圧変換部13の異常が検出された場合において第2バッテリ11の充電状態が所定の正常状態でない場合に、第2電圧変換部14に昇圧動作を行わせるようにしている。このようにすれば、上記事態が生じたとしても第3バッテリ12の電力を利用して第2バッテリ11の充電不足を早期に解消することができる。
また、本構成の車両用電源装置1は、第1電圧変換部13の動作を制御する第1制御部15と、第2電圧変換部14の動作を制御する第2制御部16と、第1電圧変換部13の異常を検出する異常検出部40とを備え、第2制御部16は、異常検出部40によって第1電圧変換部13の異常が検出された場合において第2バッテリ11の充電状態が所定の正常状態である場合、第3バッテリ12の充電状態が所定の低レベル状態であれば、第2電圧変換部14から出力される電流の値を予め定められた第2電圧変換部14の目標電流値よりも大きくするように第2電圧変換部14の降圧動作を制御する構成である。
第1電圧変換部13の第1降圧動作によって第2バッテリ11を充電し、第2電圧変換部14の第2降圧動作によって第3バッテリ12を充電する構成のものでは、第1電圧変換部13が異常である場合、第1電圧変換部13による充電動作は期待できなくなる。しかし、このような場合でも、第3バッテリ12の充電状態が低下したときには第2電圧変換部14からの充電電流を大きくして第3バッテリ12の充電を促進することが望ましいが、第2バッテリ11が正常状態でないときにこのような動作を行ってしまうと、第2バッテリ11への電流供給が十分に行えない状況下で第2バッテリ11が放電されすぎてしまう虞がある。しかし、上記構成のように、第1電圧変換部13の異常が検出された場合において第3バッテリ12の充電状態が所定の低レベル状態である場合、第2バッテリ11の充電状態が所定の正常状態であることを条件として第2電圧変換部14の出力電流を大きくすれば、第1電圧変換部13の異常時に第3バッテリ12の充電を促進することに起因して第2バッテリ11の充電状態が悪化しすぎてしまうような事態を回避することができる。
<他の実施例>
本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
実施例1では、車両用電源システム100が3つのバッテリ(第1バッテリ、第2バッテリ、及び第3バッテリ)を備えているが、出力電圧が異なる別のバッテリをさらに備えてもよい。この場合、この電圧が異なる別のバッテリは、さらに別の電圧変換部を介して第2バッテリに接続される構成が望ましい。
実施例1では、第1制御部、及び第2制御部の動作開始条件をイグニッション信号のオフからオンへの切り替わりであることを例示したが、例えば、ハイブリッド車両や電気自動車などにおいて、車両始動用の電源投入されていない状態から電源投入されている状態への切り替わり等であってもよい。
実施例1では、第1制御部、及び第2制御部をそれぞれ個別の情報処理装置(個別のマイクロコンピュータ等)として構成されていることを例示したが、これらが共通の情報処理装置(共通のマイクロコンピュータ等)によって構成されていてもよい。
実施例1では、第1バッテリと第2バッテリとを別体としているが、単電池を直列に複数組み合わせて248Vのバッテリを構成し、このバッテリに中間タップを設け、200Vの第1バッテリと48Vの第2バッテリとを一体化した構成とすることもできる。また、実施例1では、第1バッテリと第2バッテリとに同じ単電池が用いられているが、200Vの第1バッテリを構成する単電池と異なる種類の電池として48Vの第2バッテリを構成してもよい。
いずれの例でも、第2バッテリの充電状態が所定の低下状態とは、第2バッテリの出力電圧が閾値電圧以下の状態であってもよい。また、第3バッテリの充電状態が所定の第2低下状態とは、第3バッテリの出力電圧が閾値電圧以下の状態であってもよい。また、第1バッテリの充電状態が所定の異常状態とは、第3バッテリの出力電圧が閾値電圧以下の状態であってもよい。或いは、第2バッテリの充電状態が所定の正常状態でない場合とは、第2バッテリの出力電圧が閾値電圧以下の場合であってもよい。また、第3バッテリの充電状態が所定の低レベル状態とは、第3バッテリの充電電圧が閾値電圧以下の状態であってもよい。
1…車載用電源装置
10…第1バッテリ
11…第2バッテリ
12…第3バッテリ
13…第1電圧変換部
14…第2電圧変換部
15…第1制御部(異常検出部)
16…第2制御部
17…第1導電路
18…第2導電路
19…第3導電路
100…車両用電源システム
10…第1バッテリ
11…第2バッテリ
12…第3バッテリ
13…第1電圧変換部
14…第2電圧変換部
15…第1制御部(異常検出部)
16…第2制御部
17…第1導電路
18…第2導電路
19…第3導電路
100…車両用電源システム
Claims (7)
- 高圧用の第1バッテリと、
前記第1バッテリの充放電経路となる第1導電路と、
前記第1バッテリの出力電圧よりも低い電圧を出力する第2バッテリと、
前記第2バッテリの充放電経路となる第2導電路と、
前記第2バッテリの出力電圧よりも低い電圧を出力する第3バッテリと、
前記第3バッテリの充放電経路となる第3導電路と、
を備えた車両用電源システムに用いられる車両用電源装置であって、
絶縁型のDCDCコンバータとして構成され、前記第1導電路に印加された電圧を降圧して前記第2導電路に出力電圧を印加する第1降圧動作を行う第1電圧変換部と、
非絶縁型のDCDCコンバータとして構成され、前記第2導電路に印加された電圧を降圧して前記第3導電路に出力電圧を印加する第2降圧動作を行う第2電圧変換部と、
を備える車両用電源装置。 - 前記第1電圧変換部の動作を制御する第1制御部と、
前記第2電圧変換部の動作を制御する第2制御部と、
を備え、
前記第1制御部は、前記第2バッテリの充電状態が所定の低下状態であるときに、前記第1電圧変換部から前記第2導電路に出力される電流の値を予め定められた前記第1電圧変換部の目標電流値よりも大きくするように前記第1電圧変換部の降圧動作を制御し、
前記第2制御部は、前記第2バッテリの充電状態が前記所定の低下状態であるときに、前記第2電圧変換部から前記第3導電路に出力される電流の値を予め定められた前記第2電圧変換部の目標電流値よりも小さくするように前記第2電圧変換部の降圧動作を制御する請求項1に記載の車両用電源装置。 - 前記第1電圧変換部の動作を制御する第1制御部と、
前記第2電圧変換部の動作を制御する第2制御部と、
を備え、
前記第1制御部は、前記第3バッテリの充電状態が所定の第2低下状態であるときに、前記第1電圧変換部から前記第2導電路に出力される電流の値を予め定められた前記第1電圧変換部の目標電流値よりも大きくするように前記第1電圧変換部の降圧動作を制御し、
前記第2制御部は、前記第3バッテリの充電状態が前記所定の第2低下状態であるときに、前記第2電圧変換部から前記第3導電路に出力される電流の値を予め定められた前記第2電圧変換部の目標電流値よりも大きくするように前記第2電圧変換部の降圧動作を制御する請求項1又は請求項2に記載の車両用電源装置。 - 前記第1電圧変換部の動作を制御する第1制御部と、
前記第2電圧変換部の動作を制御する第2制御部と、
を備え、
前記第1制御部は、前記第1バッテリの充電状態が所定の異常状態であるときに、前記第1電圧変換部の動作を停止し、
前記第2制御部は、少なくとも前記第1電圧変換部の動作が停止している場合において前記第2バッテリの充電状態が所定の正常状態でない場合に、前記第2電圧変換部に、前記第3導電路に印加された電圧を昇圧して前記第2導電路に出力電圧を印加する昇圧動作を行わせる請求項1から請求項3に記載の車両用電源装置。 - 前記第1電圧変換部の動作を制御する第1制御部と、
前記第2電圧変換部の動作を制御する第2制御部と、
を備え、
前記第1制御部は、前記第1バッテリの充電状態が所定の異常状態であるときに、前記第1電圧変換部の動作を停止し、
前記第2制御部は、少なくとも前記第1電圧変換部の動作が停止している場合において前記第2バッテリの充電状態が所定の正常状態である場合、前記第3バッテリの充電状態が所定の低レベル状態であれば、前記第2電圧変換部から出力される電流の値を予め定められた前記第2電圧変換部の目標電流値よりも大きくするように前記第2電圧変換部の降圧動作を制御する請求項1から請求項4に記載の車両用電源装置。 - 前記第1電圧変換部の動作を制御する第1制御部と、
前記第2電圧変換部の動作を制御する第2制御部と、
前記第1電圧変換部の異常を検出する異常検出部と、
を備え、
前記第2制御部は、前記異常検出部によって前記第1電圧変換部の異常が検出された場合において前記第2バッテリの充電状態が所定の正常状態でない場合に、前記第2電圧変換部に、前記第3導電路に印加された電圧を昇圧して前記第2導電路に出力電圧を印加する昇圧動作を行わせる請求項1から請求項5に記載の車両用電源装置。 - 前記第1電圧変換部の動作を制御する第1制御部と、
前記第2電圧変換部の動作を制御する第2制御部と、
前記第1電圧変換部の異常を検出する異常検出部と、
を備え、
前記第2制御部は、前記異常検出部によって前記第1電圧変換部の異常が検出された場合において前記第2バッテリの充電状態が所定の正常状態である場合、前記第3バッテリの充電状態が所定の低レベル状態であれば、前記第2電圧変換部から出力される電流の値を予め定められた前記第2電圧変換部の目標電流値よりも大きくするように前記第2電圧変換部の降圧動作を制御する請求項1から請求項6に記載の車両用電源装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980036983.5A CN112236917A (zh) | 2018-06-20 | 2019-06-03 | 车辆用电源装置 |
US17/252,777 US20210261018A1 (en) | 2018-06-20 | 2019-06-03 | Vehicle power supply device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-116642 | 2018-06-20 | ||
JP2018116642A JP2019221063A (ja) | 2018-06-20 | 2018-06-20 | 車両用電源装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019244606A1 true WO2019244606A1 (ja) | 2019-12-26 |
Family
ID=68982683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/021898 WO2019244606A1 (ja) | 2018-06-20 | 2019-06-03 | 車両用電源装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20210261018A1 (ja) |
JP (1) | JP2019221063A (ja) |
CN (1) | CN112236917A (ja) |
WO (1) | WO2019244606A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023032985A (ja) * | 2021-08-27 | 2023-03-09 | 本田技研工業株式会社 | 車両 |
JP2023046105A (ja) * | 2021-09-22 | 2023-04-03 | 本田技研工業株式会社 | 車両電源システム |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7010988B2 (ja) * | 2020-03-11 | 2022-01-26 | 本田技研工業株式会社 | 車両用電源装置 |
JP7010989B2 (ja) * | 2020-03-11 | 2022-01-26 | 本田技研工業株式会社 | 車両用電源装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011030363A (ja) * | 2009-07-24 | 2011-02-10 | Toyota Industries Corp | 車両用電源装置 |
JP2012115031A (ja) * | 2010-11-24 | 2012-06-14 | Toyota Motor Corp | 車両電源システム |
JP2017081348A (ja) * | 2015-10-27 | 2017-05-18 | 株式会社デンソー | 電源制御装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4771928B2 (ja) * | 2006-12-06 | 2011-09-14 | 株式会社オートネットワーク技術研究所 | 電源装置 |
JP4874874B2 (ja) * | 2007-06-06 | 2012-02-15 | トヨタ自動車株式会社 | 車両の電源装置 |
CN101786412A (zh) * | 2009-12-31 | 2010-07-28 | 江苏常隆客车有限公司 | 同时控制混合动力汽车电机和dc-dc电源的控制系统 |
JP5318004B2 (ja) * | 2010-03-01 | 2013-10-16 | 三菱電機株式会社 | 車両用電源システム |
EP2596979A4 (en) * | 2010-07-22 | 2017-03-29 | Toyota Jidosha Kabushiki Kaisha | Electrically driven vehicle and method of controlling charging thereof |
JP5510283B2 (ja) * | 2010-11-17 | 2014-06-04 | トヨタ自動車株式会社 | 車両用蓄電部保護システム |
WO2012104957A1 (ja) * | 2011-01-31 | 2012-08-09 | トヨタ自動車株式会社 | 電源管理装置 |
JP5915619B2 (ja) * | 2013-10-22 | 2016-05-11 | トヨタ自動車株式会社 | 太陽光発電装置及び太陽光発電装置の制御方法 |
CN105584520B (zh) * | 2014-11-17 | 2018-09-11 | 比亚迪股份有限公司 | 电动车辆的转向动力系统及其控制方法 |
-
2018
- 2018-06-20 JP JP2018116642A patent/JP2019221063A/ja not_active Ceased
-
2019
- 2019-06-03 WO PCT/JP2019/021898 patent/WO2019244606A1/ja active Application Filing
- 2019-06-03 US US17/252,777 patent/US20210261018A1/en not_active Abandoned
- 2019-06-03 CN CN201980036983.5A patent/CN112236917A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011030363A (ja) * | 2009-07-24 | 2011-02-10 | Toyota Industries Corp | 車両用電源装置 |
JP2012115031A (ja) * | 2010-11-24 | 2012-06-14 | Toyota Motor Corp | 車両電源システム |
JP2017081348A (ja) * | 2015-10-27 | 2017-05-18 | 株式会社デンソー | 電源制御装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023032985A (ja) * | 2021-08-27 | 2023-03-09 | 本田技研工業株式会社 | 車両 |
JP7295912B2 (ja) | 2021-08-27 | 2023-06-21 | 本田技研工業株式会社 | 車両 |
JP2023046105A (ja) * | 2021-09-22 | 2023-04-03 | 本田技研工業株式会社 | 車両電源システム |
JP7295915B2 (ja) | 2021-09-22 | 2023-06-21 | 本田技研工業株式会社 | 車両電源システム |
US11979055B2 (en) | 2021-09-22 | 2024-05-07 | Honda Motor Co., Ltd. | Vehicle power supply system |
Also Published As
Publication number | Publication date |
---|---|
US20210261018A1 (en) | 2021-08-26 |
CN112236917A (zh) | 2021-01-15 |
JP2019221063A (ja) | 2019-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11208006B2 (en) | Electric power supply system | |
WO2019244606A1 (ja) | 車両用電源装置 | |
US8823206B2 (en) | Power-supply control device | |
JP5577775B2 (ja) | 電動車両用電源装置 | |
KR102253328B1 (ko) | 차량용 전원 시스템 | |
JP5605320B2 (ja) | 車両用電源装置 | |
US8884461B2 (en) | Battery system for vehicle and control method thereof | |
JP7178892B2 (ja) | 車両のバッテリ充電制御装置 | |
US9431180B2 (en) | Energy storage arrangement | |
US10933762B2 (en) | DC/DC conversion unit | |
JP7290965B2 (ja) | 電動車両の電源システム | |
JP5796457B2 (ja) | バッテリシステムおよびバッテリシステムの制御方法 | |
JP5835136B2 (ja) | 車載充電制御装置 | |
JP2008110700A (ja) | ハイブリッド車両の電源システム | |
US11673485B2 (en) | Method for controlling an electrical system of an electrically drivable motor vehicle having a plurality of batteries, and electrical system of an electrically drivable motor vehicle having a plurality of batteries | |
JP2014150593A (ja) | 車両用電源システム | |
JP5822779B2 (ja) | 蓄電システムおよびその充放電制御方法 | |
US11964620B2 (en) | Vehicular power supply device | |
KR20170025605A (ko) | 친환경 자동차의 전력변환 제어방법 | |
JP2019134636A (ja) | 充電システム及び充電方法 | |
JP2014054119A (ja) | 車載電力制御装置 | |
JP7560808B1 (ja) | 車載用制御装置 | |
US11894714B2 (en) | Power source system | |
JP7545266B2 (ja) | 車両用電源装置 | |
JP6787271B2 (ja) | 電源システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19822560 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19822560 Country of ref document: EP Kind code of ref document: A1 |