Nothing Special   »   [go: up one dir, main page]

WO2019244223A1 - User terminal and wireless communication method - Google Patents

User terminal and wireless communication method Download PDF

Info

Publication number
WO2019244223A1
WO2019244223A1 PCT/JP2018/023167 JP2018023167W WO2019244223A1 WO 2019244223 A1 WO2019244223 A1 WO 2019244223A1 JP 2018023167 W JP2018023167 W JP 2018023167W WO 2019244223 A1 WO2019244223 A1 WO 2019244223A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
signal
unit
reception
transmission
Prior art date
Application number
PCT/JP2018/023167
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 武田
聡 永田
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2020525104A priority Critical patent/JPWO2019244223A1/en
Priority to PCT/JP2018/023167 priority patent/WO2019244223A1/en
Publication of WO2019244223A1 publication Critical patent/WO2019244223A1/en
Priority to JP2022203042A priority patent/JP2023029395A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A LTE Advanced, LTE @ Rel. 10, 11, 12, 13
  • LTE @ Rel. 8, 9 LTE @ Rel. 8, 9
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Universal Terrestrial Radio Access Network
  • TRP Transmission / Reception @ Point
  • a user terminal In NR, a user terminal (UE: User ⁇ Equipment) is configured to control a downlink control channel (for example, PDCCH (Physical ⁇ Downlink ⁇ Control ⁇ Channel)) based on a set control resource set (CORESET: Control ⁇ Resource ⁇ Set) and a search space. Monitoring is being considered.
  • a downlink control channel for example, PDCCH (Physical ⁇ Downlink ⁇ Control ⁇ Channel)
  • CORESET Control ⁇ Resource ⁇ Set
  • an object of the present disclosure is to provide a user terminal and a radio communication method that can appropriately monitor the PDCCH even when using multi-TRP.
  • a user terminal includes a receiving unit that receives setting information related to search space setting, and the same downlink control information in each of a plurality of control resource sets (CORESET: Control ⁇ REsource ⁇ SET) based on the setting information. Is assumed to be transmitted, and a control unit that controls a reception process of data based on the downlink control information, and the control unit transmits a decoding result of the data to an upper layer. When a duplicate packet is found, at least one of the duplicate packets is discarded.
  • CORESET Control ⁇ REsource ⁇ SET
  • PDCCH can be monitored appropriately.
  • FIG. 1 is a diagram illustrating an example of communication using multi-TRP.
  • FIG. 2 is a diagram illustrating an example of a TRP selection sequence when the network knows the best TRP for the UE.
  • FIG. 3 is a diagram illustrating an example of a TRP selection sequence when the network does not know the best TRP for the UE.
  • FIG. 4 is a diagram showing an example of the reset set in the example of FIG.
  • FIG. 5 is a diagram illustrating an example of resource mapping of PDCCH candidates according to the second embodiment.
  • FIGS. 6A and 6B are diagrams illustrating an example of a search space set setting and a PDCCH candidate identified based on the setting in the second embodiment.
  • FIG. 7A to 7C are diagrams illustrating another example of resource mapping of PDCCH candidates in the second embodiment.
  • FIG. 8 is a diagram illustrating an example of resource mapping of PDCCH candidates according to the third embodiment.
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 10 is a diagram illustrating an example of the entire configuration of the wireless base station according to the embodiment.
  • FIG. 11 is a diagram illustrating an example of a functional configuration of the wireless base station according to the embodiment.
  • FIG. 12 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment.
  • FIG. 13 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of the radio base station and the user terminal according to the embodiment.
  • CORESET In NR, in order to transmit a physical layer control signal (for example, downlink control information (DCI: Downlink Control Information)) from a base station to a user terminal (UE: User Equipment), a control resource set (CORESET: Control) is used. REsource SET) is used.
  • DCI Downlink Control Information
  • UE User Equipment
  • REsource SET REsource SET
  • $ CORESET is an allocation candidate area for a control channel (for example, PDCCH (Physical Downlink Control Channel)).
  • the coreset may be configured to include a predetermined frequency domain resource and a time domain resource (for example, one or two OFDM symbols).
  • the UE may receive the configuration information of the coreset (which may be referred to as coreset configuration (coreset configuration) or coreset-config) from the base station.
  • the UE can detect the physical layer control signal by monitoring the coreset set in the own terminal.
  • the CORESET setting may be notified by, for example, higher layer signaling, or may be represented by a predetermined RRC information element (which may be called “ControlResourceSet”).
  • the upper layer signaling may be, for example, any of RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the MAC signaling may use, for example, a MAC control element (MAC CE (Control Element)), a MAC PDU (Protocol Data Unit), or the like.
  • the broadcast information may be, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), minimum system information (RMSI: Remaining Minimum System Information), or the like.
  • the CORESET may be set to a predetermined number (for example, three or less) for each bandwidth portion (BWP: Bandwidth Part) set for the UE in the serving cell.
  • BWP Bandwidth Part
  • BWP is a partial band set in a carrier (also called a cell, a serving cell, a component carrier (CC: Component Carrier), etc.), and is also called a partial band.
  • the BWP may include a BWP for uplink (UL: Uplink) (UL @ BWP, uplink BWP) and a BWP for downlink (DL: Downlink) (DL @ BWP, downlink BWP).
  • UL Uplink
  • DL Downlink
  • Each BWP to which the predetermined number of coresets are given may be DL BWP.
  • the coreset configuration may mainly include information on the PDCCH resource-related configuration and the RS-related configuration.
  • the following parameters may be provided to the UE for higher CORESET # p (eg, 0 ⁇ p ⁇ 3) set in each DL BWP by higher layer signaling (CORESET setting).
  • a CORESET identifier CORESET-ID (Identifier)
  • a scramble ID of a demodulation reference signal (DMRS) for a PDCCH A CORESET time length (eg, time duration, CORESET-time-duration) indicated by the number of consecutive symbols (consecutive); Frequency-domain Resource Allocation (for example, information (CORESET-freq-dom) indicating a predetermined number of resource blocks constituting CORESET),
  • a mapping type information indicating interleaving or non-interleaving from a control channel element (CCE: Control Channel Element) in the RESET to a resource element group (REG: Resource Element Group) (for example, CORESET-CCE-to-REG-mapping) -type
  • CORESET-ID # 0 may indicate a RESET (may be called an initial RESET, a default RESET, or the like) set using the MIB.
  • search space A search area and a search method of PDCCH candidates are defined as a search space (SS).
  • a UE may receive search space configuration information (which may be referred to as a search space configuration) from a base station.
  • the search space setting may be notified by, for example, higher layer signaling (eg, RRC signaling).
  • the search space setting may be notified to the UE by, for example, higher layer signaling (eg, RRC signaling) or may be represented by a predetermined RRC information element (may be referred to as “SearchSpace”).
  • higher layer signaling eg, RRC signaling
  • SearchSpace a predetermined RRC information element
  • the search space configuration mainly includes information on the monitoring-related configuration and the decoding-related configuration of the PDCCH, and may include, for example, information on at least one of the following: -Search space identifier (search space ID), An identifier of a reset associated with the search space setting (coreset-id); Information indicating whether a common search space (C-SS: Common SS) or a UE-specific search space (UE-SS: UE-specific SS); The number of PDCCH candidates for each aggregation level (AL: Aggregation Level), ⁇ Monitoring cycle, Monitoring offset, A monitoring pattern in the slot (eg a 14 bit bitmap).
  • the UE monitors CORESET based on search space setting.
  • the UE can determine the correspondence between the RESET and the search space based on the RESET-ID included in the search space setting.
  • One coreset may be associated with one or more search spaces.
  • monitoring of CORESET “monitor of search space (PDCCH candidate) associated with CORESET”, “monitor of downlink control channel (for example, PDCCH)”, and “monitor of downlink control information (DCI)” "May be read as each other. “Monitor” may be read as “at least one of blind decoding and blind detection”.
  • the UE performs reception processing (for example, demapping, demodulation, and decoding) on the channel (for example, PDCCH, PDSCH) based on information (QCL information) about pseudo-colocation (QCL: Quasi-Co-Location). At least one of them) is being considered.
  • reception processing for example, demapping, demodulation, and decoding
  • the channel for example, PDCCH, PDSCH
  • QL information information about pseudo-colocation (QCL: Quasi-Co-Location). At least one of them) is being considered.
  • QCL is an index indicating the statistical property of the channel. For example, when one signal and another signal have a QCL relationship, a Doppler shift (doppler shift), a Doppler spread (doppler spread), an average delay (average delay), and a delay spread (delay) among these different signals. spread) and at least one of the spatial parameters (Spatial @ parameter) (e.g., the spatial reception parameter (Spatial @ Rx @ Parameter)) may be assumed to be the same (QCL for at least one of these).
  • the spatial reception parameter may correspond to a reception beam (for example, a reception analog beam) of the UE, and the beam may be specified based on the spatial QCL.
  • the QCL and at least one element of the QCL in the present disclosure may be read as sQCL (spatial @ QCL).
  • QCL types a plurality of types (QCL types) may be defined.
  • QCL types AD with different parameters (or parameter sets) that can be assumed to be the same may be provided, and are described below.
  • QCL type A Doppler shift, Doppler spread, average delay and delay spread
  • ⁇ QCL type B Doppler shift and Doppler spread
  • QCL type C average delay and Doppler shift
  • QCL type D spatial reception parameter.
  • the state (TCI state (TCI-state)) of the transmission configuration instruction (TCI: Transmission Configuration Indication or Transmission Configuration Indicator) may indicate (or may include) QCL information.
  • the TCI state includes, for example, a target channel (or a reference signal (RS: Reference @ Signal) for the channel) and another signal (for example, another downlink reference signal (DL-RS: Downlink @ Reference @ Signal)), and may be, for example, at least one of information on a DL-RS having a QCL relationship (DL-RS related information) and information indicating the QCL type (QCL type information). May be included.
  • RS Reference @ Signal
  • DL-RS Downlink @ Reference @ Signal
  • DL-RS related information may include at least one of information indicating a DL-RS having a QCL relation and information indicating a resource of the DL-RS. For example, when a plurality of reference signal sets (RS sets) are set in the UE, the DL-RS related information indicates a QCL relationship with a channel (or a port for the channel) among the RSs included in the RS set. At least one of the included DL-RS, the resource for the DL-RS, and the like may be indicated.
  • RS sets reference signal sets
  • At least one of the channel RS and the DL-RS is a synchronization signal (SS: Synchronization Signal), a broadcast channel (PBCH: Physical Broadcast Channel), a synchronization signal block (SSB: Synchronization Signal Block), and a mobility reference signal (SSB).
  • SS Synchronization Signal
  • PBCH Physical Broadcast Channel
  • SSB Synchronization Signal Block
  • MRS Mobility RS
  • CSI-RS Channel Satate Information-Reference Signal
  • DMRS Demodulation reference signal
  • beam-specific signal etc., or an extension thereof , And the like (for example, a signal constituted by changing at least one of the density and the period).
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS: Primary Synchronaization Signal) and a secondary synchronization signal (SSS: Secondary Synchronaization Signal).
  • PSS Primary Synchronaization Signal
  • SSS Secondary Synchronaization Signal
  • the SSB may be a signal block including a synchronization signal and a broadcast channel, and may be called an SS / PBCH block or the like.
  • the information on the QCL with the PDCCH (or the DMRS antenna port related to the PDCCH) and a predetermined DL-RS may be referred to as a TCI state for the PDCCH.
  • Information on the PDSCH (or the DMRS antenna port associated with the PDSCH) and the QCL with a given DL-RS may be referred to as the TCI state for the PDSCH.
  • the UE may assume the same sQCL as the PBCH for the type 0 and type 1-PDCCH common search spaces. Also, the UE may determine the sQCL for the type 3-PDCCH common search space and the UE-specific search space based on higher layer signaling.
  • the UE may determine the TCI status for the PDCCH (CORESET) based on the RRC signaling and the MAC $ CE.
  • one or more (K) TCI states may be set by higher layer signaling for each CORESET.
  • the UE may activate one or more TCI states for each CORESET using MAC @ CE.
  • the UE may be notified (configured) of M (M ⁇ 1) TCI states for PDSCH (QCL information for M PDSCHs) by higher layer signaling.
  • M M
  • TCI states for PDSCH QCL information for M PDSCHs
  • the number M of TCI states set for the UE may be limited by at least one of UE capability (UE capability) and QCL type.
  • the DCI used for PDSCH scheduling may include a predetermined field (for example, a TCI field, a TCI field, a TCI status field, etc.) indicating a TCI status (QCL information for PDSCH).
  • the DCI may be used for scheduling the PDSCH of one cell, and may be called, for example, DL @ DCI, DL assignment, DCI format 1_0, DCI format 1_1, and the like.
  • the UE may be configured in advance.
  • the value of the TCI field in the DCI (TCI field value) may indicate one of the TCI states preset by higher layer signaling.
  • TCI states may be activated (designated) using MAC @ CE.
  • the value of the TCI field in DCI may indicate one of the TCI states activated by MAC @ CE.
  • the UE may determine the QCL of the PDSCH (or the DMSCH port of the PDSCH) based on the TCI state indicated by the TCI field value in the DCI. For example, the UE assumes that the DMRS port (or DMRS port group) of the PDSCH of the serving cell is DL-RS and QCL corresponding to the TCI state notified by DCI, and performs PDSCH reception processing (eg, decoding). , Demodulation, etc.). Thereby, the reception accuracy of PDSCH can be improved.
  • PDSCH reception processing eg, decoding). , Demodulation, etc.
  • the UE performs communication (signal transmission / reception, transmission / reception using at least one frequency band (carrier frequency) of a first frequency band (FR1: Frequency Range 1) and a second frequency band (FR2: Frequency Range 2). Measurement).
  • FR1 Frequency Range 1
  • FR2 Frequency Range 2
  • FR1 may be a frequency band of 6 GHz or less (sub-6 GHz (sub-6 GHz)), and FR2 may be a frequency band higher than 24 GHz (above-24 GHz).
  • FR1 may be defined as a frequency range in which at least one of 15, 30, and 60 kHz is used as a sub-carrier interval (SCS: Sub-Carrier Spacing).
  • SCS Sub-Carrier Spacing
  • FR2 may be defined as a frequency range in which at least one of 60 kHz and 120 kHz is used as SCS.
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may be a higher frequency band than FR2.
  • FR2 may be used only for a time division duplex (TDD) band.
  • FR2 may be referred to as an mmW band because it corresponds to a millimeter wave (mmW: millimeter @ Wave) having a wavelength of about 1 mm to 10 mm.
  • the mmW band may be called EHF (Extremely High Frequency).
  • FR1 and FR2 of the present disclosure are replaced with a first frequency band (first ⁇ frequency range) and a second frequency band (second frequency range), which are more general expressions that are not limited to specific frequency bands, respectively. You may be.
  • Multi TRP In a high frequency band such as an mmW band, blocking of radio waves is considered to be a serious problem, and transmission of a signal using a plurality of transmission / reception points (TRP: Transmission / Reception Point) (multi-TRP) has been considered. It is expected as a solution to the problem.
  • TRP Transmission / Reception Point
  • FIG. 1 is a diagram showing an example of communication using multi-TRP.
  • two TRPs TRP # 1 and # 2 can transmit signals to the UE (eg, the two TRPs provide the serving cell of the UE).
  • the UE even if the reception quality of a signal from any of the TRPs deteriorates, communication can be maintained if the reception quality of the signal from the other TRP is more than a certain level.
  • FIG. 2 is a diagram showing an example of a TRP selection sequence when the network knows the best TRP for the UE. At the first time shown, assume that the best TRP for the UE is TRP # 1.
  • step S11 the network (for example, TRP # 1) sets one CORESET having a TCI state indicating that it is an RS and a QCL from TRP # 1 for the UE.
  • step S12 the network (for example, TRP # 1) transmits, to the UE, MAC @ CE for activating the TCI state of CORRESET set in step S11.
  • step S13 the UE reports L1-RSRP based on the activated TCI status.
  • the L1-RSRP may be reported, for example, periodically.
  • step S14 the network needs to change the TRP for the UE based on L1-RSRP (for example, L1-RSRP has become less than a predetermined threshold, L1-RSRP has not been received for a certain period of time) Grasp).
  • L1-RSRP has become less than a predetermined threshold, L1-RSRP has not been received for a certain period of time
  • step S15 the network (e.g., TRP # 2) transmits, to the UE, MAC @ CE for activating the TCI state indicating the RS and QCL from TRP # 2 with respect to the one RESET. I do.
  • the network e.g., TRP # 2
  • MAC @ CE for activating the TCI state indicating the RS and QCL from TRP # 2 with respect to the one RESET. I do.
  • multi-TRP control can be performed using the function of TCI state setting for CORRESET, which has been studied so far in Rel-15 ⁇ NR.
  • the control of the TCI state of the PDCCH based on the RRC setting and the MAC @ CE activation is very slow, and it is necessary to schedule the PDSCH for transmitting the MAC @ CE.
  • FIG. 3 is a diagram showing an example of a TRP selection sequence when the network does not know the best TRP for the UE.
  • the network sets two RESETs for the UE.
  • one coreset is a coreset (coreset # 1) having a TCI state indicating that it is an RS and QCL from TRP # 1
  • the other coreset is an RS and QCL from TRP # 2.
  • CORESET # 2 having a TCI state indicating that this is the case.
  • step S22 the network transmits one or more MAC $ CEs for activating the two CRESET TCI states set in step S21 to the UE.
  • step S23 the UE reports L1-RSRP based on the activated TCI state.
  • the L1-RSRP may be reported, for example, periodically.
  • FIG. 4 is a diagram showing an example of CORESET set in the example of FIG. As shown in FIG. 4, for example, RESET # 1 may be located at the 0th symbol (first symbol) of the slot, and RESET # 2 may be located at the first symbol of the slot.
  • the UE monitors the PDCCH over the two CORESETs based on different TCI state settings.
  • step S24 the network recognizes that it is necessary to change the TRP for the UE based on L1-RSRP.
  • the network does not need to know the best TRP in advance.
  • the number of coresets for each DL @ BWP is limited to a predetermined number (for example, 3)
  • the maximum number of multi-TRPs is also limited.
  • the number of PDCCH candidates monitored by the UE increases by the number of the set RESETs, and the processing load on the UE increases.
  • the present inventors have conceived a method of appropriately monitoring the PDCCH even when using multi-TRP.
  • the TCI state for the PDCCH may be set at a finer granularity than the CORESET unit.
  • the TCI state for the PDCCH may be configurable for each search space configuration (in search space configuration units). It should be noted that “search space setting”, “search space set”, “search space set setting”, and the like of the present disclosure may be interchanged.
  • the TCI state for the PDCCH was set for each RESET.
  • the TCI state parameter tci-StatesPDCCH
  • ControlResourceSet information element of RRC ControlResourceSet information element of RRC
  • AL aggregation level
  • the TCI state for PDCCH may be configurable for each PDCCH candidate for a certain search space configuration. For example, in the TCI state for the PDCCH, a different TCI state may be set for each index of a PDCCH candidate for setting a certain search space.
  • the parameter of the TCI state may be included in the search space setting (SearchSpace information element of RRC).
  • the UE includes a parameter of the TCI state in the search space setting, and the TCI state for the RESET associated with the search space ID of the search space setting is determined based on the search space setting, not the RESET setting information of the RESET. (That is, tci-StatesPDCCH of ControlResourceSet may be ignored).
  • the search space setting may include at least one of the parameter of the TCI state for each AL and the parameter of the TCI state for each PDCCH candidate.
  • the UE may determine the TCI state for the PDCCH based on at least one of the AL unit and the PDCCH candidate unit based on the parameter.
  • the TCI state for the PDCCH can be set more flexibly.
  • one PDCCH candidate may be able to be mapped across multiple RESETs.
  • the UE may be configured with one search space (search space set) associated with more than one CORRESET.
  • search space set search space set associated with more than one CORRESET.
  • Each PDCCH candidate or each AL may be mapped to any one or more of the configured more than one CORESET.
  • the network may send the PDCCH candidates according to the following method: (1) a part of a certain PDCCH candidate corresponding to CORRESET # 1 (TCI state is related to TRP # 1) is transmitted by TRP # 1; (2) A part of the PDCCH candidates corresponding to CORRESET # 2 (TCI state is related to TRP # 2) is transmitted by TRP # 2.
  • the UE may decode the PDCCH candidate.
  • the UE may use the PDCCH candidate part of (1) and the PDCCH candidate part of (2) for soft combining.
  • soft combining may be read as “combining”, “decoding”, “error correction”, or the like.
  • FIG. 5 is a diagram showing an example of resource mapping of PDCCH candidates in the second embodiment. This example is almost the same as FIG. 4, except that one PDCCH candidate (dashed line in the figure) is mapped (correlated) over CORRESET # 1 and # 2.
  • the PDCCH candidate or AL may be separated into subsets related to different coresets.
  • FIGS. 6A and 6B are diagrams illustrating an example of a search space set setting and a PDCCH candidate identified based on the setting in the second embodiment.
  • the UE may receive search space set configuration information including a plurality of RESET-IDs (in this example, ID # 1 and # 2).
  • the UE may perform the reception process on the assumption that the PDCCH candidates in the search space corresponding to the search space set configuration are transmitted as shown in FIG. 6B over the coresets of the reset IDs # 1 and # 2.
  • the frequency resource of the PDCCH over a plurality of RESETs is the same over the plurality of RESETs, but is not limited to this.
  • Different radio resources e.g., frequency and time resources
  • FIGS. 7A to 7C are diagrams illustrating another example of resource mapping of PDCCH candidates in the second embodiment.
  • FIG. 7A shows an example in which the frequency resources of each coreset included in one PDCCH candidate are in units of REG bundles.
  • the UE Based on the RESET setting specified by the RESET @ ID, the UE sets the resource amount corresponding to the PDCCH candidate in the RESET (for example, a resource in units of at least one of CCE, CCE group, REG, REG bundle, PRB, etc.). Amount) may be determined.
  • the UE may determine the resource amount of each RESET portion based on the respective RESET settings.
  • FIG. 7B shows an example in which both the time and frequency resources of each reset included in one PDCCH candidate are different.
  • RESET # 1 is one symbol long
  • RESET # 2 is two symbols long.
  • the frequency resources of the part of the PDCCH candidate “CORESET # 1” are larger than the part of the “CORESET # 2”.
  • FIG. 7C shows an example in which the mapping type (interleaved or non-interleaved) of each coreset included in one PDCCH candidate is different.
  • CORRESET # 1 is interleaved mapping (interleaved @ mapping)
  • CORESET # 2 is non-interleaved mapping.
  • one DCI may be able to be transmitted repeatedly over multiple RESETs.
  • the repeated transmission of the PDCCH (DCI) may be performed over multiple search space sets respectively associated with different coresets having different TCI state settings.
  • FIG. 8 is a diagram showing an example of resource mapping of PDCCH candidates in the third embodiment.
  • one PDCCH candidate (broken line in the figure) is mapped to each of CORESET # 1 and # 2.
  • the DCI transmitted in each PDCCH candidate is the same DCI. That is, one DCI is repeatedly transmitted using the plurality of PDCCH candidates.
  • the UE does not need to perform soft combining of DCIs repeatedly transmitted, or may perform soft combining.
  • the UE may or may not perform soft combining on data (PDSCH) scheduled by DCI that is repeatedly transmitted.
  • PDSCH data scheduled by DCI that is repeatedly transmitted.
  • the UE may detect more than one DL DCI per slot and may decode more than one PDSCH per slot.
  • the UE transmits the decoded DCI or data (DL shared channel (DL-SCH)) to an upper layer (for example, MAC layer, PDCP (Packet Data Convergence Protocol) layer, RLC (Radio Link Control) layer, RRC layer, IP (At least one of Internet @ Protocol) layers).
  • MAC layer for example, MAC layer, PDCP (Packet Data Convergence Protocol) layer, RLC (Radio Link Control) layer, RRC layer, IP (At least one of Internet @ Protocol) layers.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC Radio Link Control
  • IP At least one of Internet @ Protocol
  • the UE discards at least one of the duplicated packets (or a packet having the same content) (which may be replaced with data, control information, or the like) in the upper layer.
  • This packet is at least one of an IP packet, RLC service data unit (SDU: Service @ Data @ Unit), RLC protocol data unit (PDU: Protocol @ Data @ Unit), PDCP @ SDU, PDCP @ PDU, MAC @ SDU, MAC @ PDU, etc. Is also good. Note that “discard” may be read as “ignore”, "drop”, or the like.
  • the UE may be configured by higher layer signaling with information indicating that PDCCH candidates in one search space set are related to PDCCH candidates in another search space set.
  • the information may be, for example, information indicating that a PDCCH candidate in one search space set and a PDCCH candidate in another search space set are soft-combined.
  • the UE may determine the number of times of blind decoding of the PDCCH candidate based on soft combining. For example, the UE may count the number of times of blind decoding of PDCCH candidates based on the number of PDCCH candidates after soft combining (the number of DCIs whose contents may be different among all PDCCHs (DCIs)). Even if the UE has two PDCCH candidates before soft combining, if the soft combining is applied to these PDCCH candidates, the UE may assume that the number of times of blind decoding for these PDCCH candidates is one. Good.
  • the UE may count the number of times of blind decoding of the PDCCH candidates based on the number of PDCCH candidates before soft combining (the number of all PDCCHs (DCIs (DCIs having the same content are also counted repeatedly))). . If there are two PDCCH candidates before soft combining, the UE assumes that the number of times of blind decoding for these PDCCH candidates is 2 even when applying soft combining to these PDCCH candidates. Good.
  • the PDSCH of each TRP can be decoded, and TRP diversity can be suitably realized.
  • the UE may monitor (decode) one PDCCH candidate over a plurality of RESETs indicating that the TCI state is DL RS and QCL of the same TRP # 1.
  • the UE sets one PDCCH by using signals transmitted from different sTRPs using a plurality of radio resources and configured to use multi-TRP. It may be assumed that decoding of the candidate is set.
  • wireless communication system Wireless communication system
  • communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • NR New Radio
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • the radio communication system 1 includes a radio base station 11 forming a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1. , Is provided. Further, user terminals 20 are arranged in the macro cell C1 and each small cell C2. The arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. Further, the user terminal 20 may apply CA or DC using a plurality of cells (CCs).
  • CCs cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz or the like
  • the same carrier as that between may be used.
  • the configuration of the frequency band used by each wireless base station is not limited to this.
  • the user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a single numerology may be applied, or a plurality of different numerologies may be applied.
  • Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering processing performed by the transceiver in the frequency domain, specific windowing processing performed by the transceiver in the time domain, and the like.
  • the numerology may be referred to as different.
  • the wireless base station 11 and the wireless base station 12 are connected by wire (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, or the like) or wirelessly. May be done.
  • the wireless base station 11 and each wireless base station 12 are connected to the upper station device 30 and connected to the core network 40 via the upper station device 30.
  • the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), and a mobility management entity (MME), but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
  • the radio base station 11 is a radio base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the wireless base station 12 is a wireless base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point or the like.
  • the wireless base stations 11 and 12 are not distinguished, they are collectively referred to as a wireless base station 10.
  • Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
  • Orthogonal Frequency Division Multiple Access (OFDMA) is applied to the downlink as a wireless access method, and Single Carrier-Frequency Division Multiple Access (SC-FDMA: Single Carrier) is applied to the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier to perform communication.
  • SC-FDMA divides a system bandwidth into bands each composed of one or a continuous resource block for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like shared by each user terminal 20 are used. Used.
  • the PDSCH transmits user data, upper layer control information, SIB (System Information Block), and the like.
  • SIB System Information Block
  • MIB Master ⁇ Information ⁇ Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
  • DCI for scheduling DL data reception may be referred to as DL assignment
  • DCI for scheduling UL data transmission may be referred to as UL grant.
  • PCFICH transmits the number of OFDM symbols used for PDCCH.
  • the PHICH transmits acknowledgment information (eg, retransmission control information, HARQ-ACK, ACK / NACK, etc.) of HARQ (Hybrid Automatic Repeat Repeat reQuest) to the PUSCH.
  • the EPDCCH is frequency-division multiplexed with a PDSCH (Downlink Shared Data Channel) and used for transmission of DCI and the like like the PDCCH.
  • PDSCH Downlink Shared Data Channel
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • user data higher layer control information, etc. are transmitted.
  • downlink radio quality information CQI: Channel Quality Indicator
  • delivery confirmation information delivery confirmation information
  • scheduling request (SR: Scheduling Request), and the like are transmitted by PUCCH.
  • the PRACH transmits a random access preamble for establishing a connection with a cell.
  • a cell-specific reference signal CRS: Cell-specific Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • DMRS Demodulation Reference Signal
  • PRS Positioning Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • the transmitted reference signal is not limited to these.
  • FIG. 10 is a diagram illustrating an example of the entire configuration of the wireless base station according to the embodiment.
  • the wireless base station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
  • the baseband signal processing unit 104 regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control)
  • the transmission / reception unit performs retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, and so on.
  • HARQ transmission processing for example, HARQ transmission processing
  • IFFT inverse fast Fourier transform
  • precoding processing precoding processing
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and transferred to the transmission / reception unit 103.
  • the transmission / reception section 103 converts the baseband signal precoded and output from the baseband signal processing section 104 for each antenna into a radio frequency band, and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101.
  • the transmission / reception unit 103 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102.
  • Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT: Fast Fourier Transform), inverse discrete Fourier transform (IDFT), and error correction on user data included in the input uplink signal. Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the wireless base station 10, management of wireless resources, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface.
  • the transmission path interface 106 transmits and receives signals (backhaul signaling) to and from another wireless base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). You may.
  • CPRI Common Public Radio Interface
  • X2 interface X2 interface
  • the transmission / reception unit 103 may further include an analog beamforming unit that performs analog beamforming.
  • the analog beamforming unit includes an analog beamforming circuit (for example, a phase shifter, a phase shift circuit) or an analog beamforming device (for example, a phase shifter) described based on common recognition in the technical field according to the present invention. May be.
  • the transmitting / receiving antenna 101 may be configured by, for example, an array antenna.
  • FIG. 11 is a diagram illustrating an example of a functional configuration of the wireless base station according to an embodiment of the present disclosure.
  • functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations may be included in the radio base station 10, and some or all of the configurations need not be included in the baseband signal processing unit 104.
  • the control unit (scheduler) 301 controls the entire wireless base station 10.
  • the control unit 301 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
  • the control unit 301 performs scheduling (for example, resources) of system information, a downlink data signal (for example, a signal transmitted on the PDSCH), and a downlink control signal (for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like). Allocation). Further, control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
  • scheduling for example, resources
  • a downlink data signal for example, a signal transmitted on the PDSCH
  • a downlink control signal for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like. Allocation.
  • control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
  • the control unit 301 controls scheduling of a synchronization signal (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)) and a downlink reference signal (for example, CRS, CSI-RS, DMRS).
  • a synchronization signal for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)
  • a downlink reference signal for example, CRS, CSI-RS, DMRS.
  • the control unit 301 transmits an uplink data signal (for example, a signal transmitted on the PUSCH), an uplink control signal (for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.), a random access preamble (for example, a PRACH). (Transmission signal), scheduling of uplink reference signals and the like.
  • an uplink data signal for example, a signal transmitted on the PUSCH
  • an uplink control signal for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.
  • a random access preamble for example, a PRACH.
  • Transmission signal scheduling of uplink reference signals and the like.
  • the control unit 301 controls to form a transmission beam and / or a reception beam using digital BF (for example, precoding) in the baseband signal processing unit 104 and / or analog BF (for example, phase rotation) in the transmission and reception unit 103. May be performed.
  • the control unit 301 may perform control to form a beam based on downlink channel information, uplink channel information, and the like. These propagation path information may be acquired from the reception signal processing unit 304 and / or the measurement unit 305.
  • Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated downlink signal to mapping section 303.
  • the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 302 generates a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301, for example.
  • the DL assignment and the UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to an encoding process and a modulation process according to an encoding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel ⁇ State ⁇ Information) from each user terminal 20 and the like.
  • CSI Channel ⁇ State ⁇ Information
  • Mapping section 303 maps the downlink signal generated by transmission signal generating section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs it to transmitting / receiving section 103.
  • the mapping unit 303 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal.
  • the measurement unit 305 receives the reception power (for example, RSRP (Reference Signal Received Power)), the reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)). , Signal strength (for example, RSSI (Received @ Signal @ Strength @ Indicator)), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 301.
  • the transmitting / receiving section 103 may transmit downlink control information (DCI) (DL assignment or the like) for scheduling a downlink shared channel (for example, PDSCH) by using the PDCCH.
  • DCI downlink control information
  • the transmission / reception unit 103 may transmit setting information (for example, SearchSpace information element) related to search space setting, setting information (for example, ControlResourceSet information element) related to CORRESET, to the user terminal 20.
  • FIG. 12 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
  • the radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmitting / receiving section 203 converts the frequency of the received signal into a baseband signal and outputs the baseband signal to the baseband signal processing section 204.
  • the transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
  • the transmission / reception unit 203 may further include an analog beamforming unit that performs analog beamforming.
  • the analog beamforming unit includes an analog beamforming circuit (for example, a phase shifter, a phase shift circuit) or an analog beamforming device (for example, a phase shifter) described based on common recognition in the technical field according to the present invention. May be.
  • the transmitting / receiving antenna 201 may be configured by, for example, an array antenna.
  • FIG. 13 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
  • the control unit 401 controls to form a transmission beam and / or a reception beam using digital BF (for example, precoding) in the baseband signal processing unit 204 and / or analog BF (for example, phase rotation) in the transmission / reception unit 203. May be performed.
  • the control unit 401 may perform control to form a beam based on downlink channel information, uplink channel information, and the like. These propagation path information may be obtained from the reception signal processing unit 404 and / or the measurement unit 405.
  • control unit 401 When the control unit 401 acquires various information notified from the radio base station 10 from the reception signal processing unit 404, the control unit 401 may update the parameters used for control based on the information.
  • Transmission signal generating section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403.
  • the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the radio base station 10 includes an UL grant.
  • CSI channel state information
  • Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203.
  • the mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement unit 405 may perform the same frequency measurement and / or the different frequency measurement on one or both of the first carrier and the second carrier.
  • measurement section 405 may perform the different frequency measurement on the second carrier based on the measurement instruction acquired from reception signal processing section 404.
  • the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • the transmission / reception unit 203 may receive downlink control information (DCI) (DL assignment or the like) for scheduling a downlink shared channel (for example, PDSCH).
  • DCI downlink control information
  • the transmission / reception unit 203 may receive, from the wireless base station 10, setting information (for example, a SearchSpace information element) related to search space setting, setting information (for example, a ControlResourceSet information element) related to CORESET.
  • the control unit 401 determines a PDCCH (Physical Downlink Control Channel) candidate included in a certain control resource set (CORESET: Control REsource Set) based on the setting information (at least one of the setting information related to the search space setting and the setting information related to the CORSET).
  • the state (TCI-state) of a transmission configuration instruction (TCI: Transmission ⁇ Indicator) for each aggregation level may be determined (may be referred to as specification, determination, or the like).
  • the control unit 401 may assume that one PDCCH candidate is mapped (may be expressed as being mapped, assigned, transmitted, etc.) over a plurality of coresets based on the configuration information.
  • the control unit 401 may assume that the same downlink control information (DCI) is transmitted in each of a plurality of resets based on the setting information.
  • DCI downlink control information
  • the control unit 401 may determine that the PDCCH candidates of a plurality of search spaces are soft-combined based on the setting information. For example, the control unit 401 may determine a PDCCH candidate of a first search space set corresponding to a part of the plurality of RESETs (for example, a first RESET) based on the setting information, You may soft-combine with the PDCCH candidate of the 2nd search space set corresponding to a part (for example, 2nd CORESET).
  • the DCI transmitted in these PDCCH candidates may be the same DCI or different parts of one DCI.
  • the first and second coresets may be set as different coresets (by separate coreset settings) or may be set as the same single coreset part (by one coreset setting). Good.
  • Control section 401 may count the number of times of blind decoding of PDCCH candidates in consideration of software combining applied to a plurality of coresets. For example, when soft combining is applied to two PDCCHs (DCIs) transmitted by two coresets, the control unit 401 may count the number of times of decoding to one or two.
  • DCIs PDCCHs
  • the control unit 401 may control a process of receiving data (PDSCH) based on DCI. Further, the control unit 401 transmits the decoding result of the DCI or data to the upper layer, and when an overlapping packet (DCI or data) is found in the upper layer, discards at least one of the overlapping packet. May be.
  • a plurality of coresets may be different coresets corresponding to different TCI states.
  • Each TCI state may correspond to a separate TRP.
  • each functional block is realized by an arbitrary combination of at least one of hardware and software.
  • a method for implementing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically combined, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.) and using these multiple devices.
  • a wireless base station, a user terminal, or the like may function as a computer that performs processing of the wireless communication method according to the present disclosure.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of the radio base station and the user terminal according to the embodiment.
  • the above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more devices shown in the drawing, or may be configured without including some devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the radio base station 10 and the user terminal 20 are performed by, for example, reading predetermined software (program) on hardware, such as the processor 1001 and the memory 1002, so that the processor 1001 performs an arithmetic operation and the communication device 1004 via the communication device 1004. It is realized by controlling communication and controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operation described in the above embodiment is used.
  • the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.)), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured.
  • the storage 1003 may be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission line interface 106, and the like may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input.
  • the output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and the symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard.
  • a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
  • the one or more respective periods (frames) forming the radio frame may be referred to as a subframe.
  • a subframe may be configured by one or more slots in the time domain.
  • the subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
  • the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception.
  • SCS SubCarrier @ Spacing
  • TTI Transmission @ Time @ Interval
  • TTI Transmission @ Time @ Interval
  • radio frame configuration transmission and reception.
  • At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
  • the slot may be configured by one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots.
  • Each minislot may be constituted by one or more symbols in the time domain.
  • minislots may be called subslots.
  • a minislot may be made up of a smaller number of symbols than slots.
  • a PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals.
  • the radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding thereto. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
  • one subframe may be called a transmission time interval (TTI: Transmission @ Time @ Interval)
  • TTI Transmission @ Time @ Interval
  • TTI Transmission Time interval
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot is called a TTI.
  • You may. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit of scheduling in wireless communication.
  • a radio base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units.
  • radio resources frequency bandwidth, transmission power, and the like that can be used in each user terminal
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, a code word, or a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like.
  • a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms.
  • the TTI having the TTI length described above may be replaced with the TTI.
  • the resource block (RB: Resource Block) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
  • one or a plurality of RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical @ RB
  • SCG Sub-Carrier @ Group
  • REG Resource @ Element @ Group
  • PRB pair an RB pair, and the like. May be called.
  • a resource block may be composed of one or more resource elements (RE: Resource @ Element).
  • RE Resource @ Element
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a bandwidth part (which may also be referred to as a partial bandwidth or the like) may represent a subset of contiguous common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good.
  • the common RB may be specified by an index of the RB based on the common reference point of the carrier.
  • a PRB may be defined in a BWP and numbered within the BWP.
  • $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP).
  • BWP for a UE, one or more BWPs may be configured in one carrier.
  • At least one of the configured BWPs may be active, and the UE may not have to assume transmitting and receiving a given signal / channel outside the active BWP.
  • “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
  • the structures of the above-described radio frame, subframe, slot, minislot, and symbol are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The number of subcarriers, the number of symbols in a TTI, the symbol length, the configuration such as the cyclic prefix (CP) length can be variously changed.
  • the information, parameters, and the like described in the present disclosure may be represented using an absolute value, may be represented using a relative value from a predetermined value, or may be represented using another corresponding information. May be represented.
  • a radio resource may be indicated by a predetermined index.
  • Names used for parameters and the like in the present disclosure are not limited in any way. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure.
  • the various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
  • information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to at least one of the upper layer.
  • Information, signals, and the like may be input and output via a plurality of network nodes.
  • Information and signals input and output may be stored in a specific location (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
  • Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method.
  • the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
  • the notification of the predetermined information is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
  • the determination may be made by a value represented by 1 bit (0 or 1) or by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
  • software, instructions, information, and the like may be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
  • system and “network” may be used interchangeably.
  • precoding In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “transmission power”, “phase rotation”, “antenna port”, “antenna port group”, “layer”, “ Terms such as “number of layers,” “rank,” “beam,” “beam width,” “beam angle,” “antenna,” “antenna element,” “panel,” etc., may be used interchangeably.
  • base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “ “Access point (access @ point)”, “transmission point (TP: Transmission @ Point)”, “reception point (RP: Reception @ Point)”, “transmission / reception point (TRP: Transmission / Reception @ Point)", “panel”, “cell” Terms such as, “sector”, “cell group”, “carrier”, “component carrier” may be used interchangeably.
  • a base station may be referred to by a term such as a macro cell, a small cell, a femto cell, a pico cell, and the like.
  • a base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio ⁇ Head)).
  • a base station subsystem eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio ⁇ Head).
  • RRH Small indoor base station
  • the term “cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , A handset, a user agent, a mobile client, a client or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, or the like.
  • the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (maned or unmanned). ).
  • at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
  • the wireless base station in the present disclosure may be replaced with a user terminal.
  • communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (for example, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration described above.
  • the configuration may be such that the user terminal 20 has the function of the wireless base station 10 described above.
  • words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
  • an uplink channel, a downlink channel, and the like may be replaced with a side channel.
  • the user terminal in the present disclosure may be replaced with a wireless base station.
  • the configuration may be such that the wireless base station 10 has the functions of the user terminal 20 described above.
  • an operation performed by the base station may be performed by an upper node (upper node) in some cases.
  • various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility @ Management @ Entity), S-GW (Serving-Gateway), etc., but not limited thereto, or a combination thereof.
  • Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched and used in execution.
  • the order of the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no inconsistency.
  • elements of the various steps are presented in an exemplary order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-B Long Term Evolution-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication
  • system 5G (5th generation mobile communication system)
  • FRA Fluture Radio Access
  • New-RAT Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Fluture generation radio access
  • GSM Registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • UWB Ultra-WideBand
  • Bluetooth registered trademark
  • a system using other appropriate wireless communication methods a next-generation system extended based on these systems, and the like.
  • a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
  • any reference to elements using designations such as "first,” “second,” etc., as used in the present disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining means judging, calculating, computing, processing, deriving, investigating, looking up (for example, a table, Searching in a database or another data structure), ascertaining, etc., may be regarded as "deciding".
  • determination includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
  • judgment (decision) is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, and the like. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
  • “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
  • connection refers to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • the radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, the light (both visible and invisible) regions, and the like.
  • the term “A and B are different” may mean that “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • Terms such as “separate” and “coupled” may be construed similarly to “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user terminal according to the present disclosure is characterized by comprising a receiver that receives configuration information pertaining to a search space configuration, and a controller that assumes that the same downlink control information is transmitted in each of a plurality of control resource sets (CORESETs) on the basis of the configuration information and controls a reception process for data based on the downlink control information, wherein the controller transmits the decoding result of the data to an upper layer, and if packets to be duplicated in the upper layer are discovered, discards at least one of the duplicate packets. The present disclosure thus makes it is possible to appropriately monitor a PDCCH, even when utilizing multiple transmission/reception points (TRPs).

Description

ユーザ端末及び無線通信方法User terminal and wireless communication method
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。 The present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。 In a UMTS (Universal Mobile Telecommunications System) network, long term evolution (LTE: Long Term Evolution) has been specified for the purpose of higher data rates and lower delays (Non-Patent Document 1). Also, LTE-A (LTE Advanced, LTE @ Rel. 10, 11, 12, 13) has been specified for the purpose of further increasing the capacity and sophistication of LTE (LTE @ Rel. 8, 9).
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。 Succession system of LTE (for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Rel. 14 or 15).
 ミリ波バンドなどの高周波数帯においては、電波のブロッキングが深刻な問題になると考えられている。将来の無線通信システム(以下、単にNRとも表記する)では、複数の送受信ポイント(TRP:Transmission/Reception Point)(マルチTRP)を用いて信号を送信することがこの問題の解決方法として期待されている。 高 In high frequency bands such as the millimeter wave band, blocking of radio waves is considered to be a serious problem. In a future wireless communication system (hereinafter, also simply referred to as NR), transmitting a signal using a plurality of transmission / reception points (TRP: Transmission / Reception @ Point) (multi-TRP) is expected as a solution to this problem. I have.
 また、NRでは、ユーザ端末(UE:User Equipment)は、設定される制御リソースセット(CORESET:Control Resource Set)及びサーチスペースに基づいて、下りリンク制御チャネル(例えば、PDCCH(Physical Downlink Control Channel))をモニタすることが検討されている。 In NR, a user terminal (UE: User \ Equipment) is configured to control a downlink control channel (for example, PDCCH (Physical \ Downlink \ Control \ Channel)) based on a set control resource set (CORESET: Control \ Resource \ Set) and a search space. Monitoring is being considered.
 しかしながら、これまで検討されているPDCCH関連の制御方法を用いると、マルチTRPに対応する場合に、遅延、UE負荷などが問題になり、通信スループットが低下するおそれがある。 However, if a PDCCH-related control method that has been studied so far is used, delays, UE loads, and the like become problems when multi-TRP is supported, and communication throughput may be reduced.
 そこで、本開示は、マルチTRPを利用する場合であっても、適切にPDCCHをモニタできるユーザ端末及び無線通信方法を提供することを目的の1つとする。 Therefore, an object of the present disclosure is to provide a user terminal and a radio communication method that can appropriately monitor the PDCCH even when using multi-TRP.
 本開示の一態様に係るユーザ端末は、サーチスペース設定に関する設定情報を受信する受信部と、前記設定情報に基づいて、複数の制御リソースセット(CORESET:COntrol REsource SET)のそれぞれにおいて同じ下り制御情報が送信されると想定し、当該下り制御情報に基づくデータの受信処理を制御する制御部と、を有し、前記制御部は、前記データの復号結果を上位レイヤに伝送し、当該上位レイヤにおいて重複するパケットが発見される場合には、当該重複するパケットの少なくとも1つを廃棄することを特徴とする。 A user terminal according to an aspect of the present disclosure includes a receiving unit that receives setting information related to search space setting, and the same downlink control information in each of a plurality of control resource sets (CORESET: Control \ REsource \ SET) based on the setting information. Is assumed to be transmitted, and a control unit that controls a reception process of data based on the downlink control information, and the control unit transmits a decoding result of the data to an upper layer. When a duplicate packet is found, at least one of the duplicate packets is discarded.
 本開示の一態様によれば、マルチTRPを利用する場合であっても、適切にPDCCHをモニタできる。 According to one aspect of the present disclosure, even when using multi-TRP, PDCCH can be monitored appropriately.
図1は、マルチTRPを用いた通信の一例を示す図である。FIG. 1 is a diagram illustrating an example of communication using multi-TRP. 図2は、ネットワークがUEにとっての最良のTRPを知る場合のTRP選択シーケンスの一例を示す図である。FIG. 2 is a diagram illustrating an example of a TRP selection sequence when the network knows the best TRP for the UE. 図3は、ネットワークがUEにとっての最良のTRPを知らない場合のTRP選択シーケンスの一例を示す図である。FIG. 3 is a diagram illustrating an example of a TRP selection sequence when the network does not know the best TRP for the UE. 図4は、図3の例で設定されるCORESETの一例を示す図である。FIG. 4 is a diagram showing an example of the reset set in the example of FIG. 図5は、第2の実施形態におけるPDCCH候補のリソースマッピングの一例を示す図である。FIG. 5 is a diagram illustrating an example of resource mapping of PDCCH candidates according to the second embodiment. 図6A及び6Bは、第2の実施形態におけるサーチスペースセット設定と、当該設定に基づいて特定されるPDCCH候補の一例を示す図である。FIGS. 6A and 6B are diagrams illustrating an example of a search space set setting and a PDCCH candidate identified based on the setting in the second embodiment. 図7A-7Cは、第2の実施形態におけるPDCCH候補のリソースマッピングの別の一例を示す図である。FIGS. 7A to 7C are diagrams illustrating another example of resource mapping of PDCCH candidates in the second embodiment. 図8は、第3の実施形態におけるPDCCH候補のリソースマッピングの一例を示す図である。FIG. 8 is a diagram illustrating an example of resource mapping of PDCCH candidates according to the third embodiment. 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. 図10は、一実施形態に係る無線基地局の全体構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of the entire configuration of the wireless base station according to the embodiment. 図11は、一実施形態に係る無線基地局の機能構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of a functional configuration of the wireless base station according to the embodiment. 図12は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment. 図13は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。FIG. 13 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment. 図14は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 14 is a diagram illustrating an example of a hardware configuration of the radio base station and the user terminal according to the embodiment.
(CORESET)
 NRにおいては、物理レイヤ制御信号(例えば、下り制御情報(DCI:Downlink Control Information))を、基地局からユーザ端末(UE:User Equipment)に対して送信するために、制御リソースセット(CORESET:COntrol REsource SET)が利用される。
(CORESET)
In NR, in order to transmit a physical layer control signal (for example, downlink control information (DCI: Downlink Control Information)) from a base station to a user terminal (UE: User Equipment), a control resource set (CORESET: Control) is used. REsource SET) is used.
 CORESETは、制御チャネル(例えば、PDCCH(Physical Downlink Control Channel))の割当て候補領域である。CORESETは、所定の周波数領域リソースと時間領域リソース(例えば1又は2OFDMシンボルなど)を含んで構成されてもよい。 $ CORESET is an allocation candidate area for a control channel (for example, PDCCH (Physical Downlink Control Channel)). The coreset may be configured to include a predetermined frequency domain resource and a time domain resource (for example, one or two OFDM symbols).
 UEは、CORESETの設定情報(CORESET設定(CORESET configuration)、coreset-Configと呼ばれてもよい)を、基地局から受信してもよい。UEは、自端末に設定されたCORESETをモニタすれば、物理レイヤ制御信号を検出できる。 The UE may receive the configuration information of the coreset (which may be referred to as coreset configuration (coreset configuration) or coreset-config) from the base station. The UE can detect the physical layer control signal by monitoring the coreset set in the own terminal.
 CORESET設定は、例えば、上位レイヤシグナリングによって通知されてもよく、所定のRRC情報要素(「ControlResourceSet」と呼ばれてもよい)で表されてもよい。 The CORESET setting may be notified by, for example, higher layer signaling, or may be represented by a predetermined RRC information element (which may be called “ControlResourceSet”).
 ここで、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 Here, the upper layer signaling may be, for example, any of RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof.
 MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)などであってもよい。 The MAC signaling may use, for example, a MAC control element (MAC CE (Control Element)), a MAC PDU (Protocol Data Unit), or the like. The broadcast information may be, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), minimum system information (RMSI: Remaining Minimum System Information), or the like.
 CORESETは、サービングセルにおいてUEに設定される帯域幅部分(BWP:Bandwidth Part)ごとに、所定数(例えば、3個以下)設定されてもよい。 The CORESET may be set to a predetermined number (for example, three or less) for each bandwidth portion (BWP: Bandwidth Part) set for the UE in the serving cell.
 ここで、BWPとは、キャリア(セル、サービングセル、コンポーネントキャリア(CC:Component Carrier)などともいう)内に設定される部分的な帯域であり、部分帯域などとも呼ばれる。BWPは、上り(UL:Uplink)用のBWP(UL BWP、上りBWP)及び下り(DL:Downlink)用のBWP(DL BWP、下りBWP)を有してもよい。上記所定数のCORESETが与えられる各BWPは、DL BWPであってもよい。 BHere, BWP is a partial band set in a carrier (also called a cell, a serving cell, a component carrier (CC: Component Carrier), etc.), and is also called a partial band. The BWP may include a BWP for uplink (UL: Uplink) (UL @ BWP, uplink BWP) and a BWP for downlink (DL: Downlink) (DL @ BWP, downlink BWP). Each BWP to which the predetermined number of coresets are given may be DL BWP.
 CORESET設定は、主にPDCCHのリソース関連設定及びRS関連設定の情報を含んでもよい。UEには、各DL BWPに設定されるCORESET#p(例えば、0≦p<3)について、以下のパラメータが上位レイヤシグナリング(CORESET設定)によって与えられてもよい。すなわち、以下のパラメータは、CORESET毎にUEに通知(設定)されてもよい:
・CORESETの識別子(CORESET-ID(Identifier))、
・PDCCH用の復調用参照信号(DMRS:DeModulation Reference Signal)のスクランブルID、
・連続する(consecutive)シンボル数で示されるCORESETの時間長(例えば、time duration、CORESET-time-duration)、
・周波数領域のリソース割り当て(Frequency-domain Resource Allocation)(例えば、CORESETを構成する所定数のリソースブロックを示す情報(CORESET-freq-dom))、
・CORESET内の制御チャネル要素(CCE:Control Channel Element)からリソース要素グループ(REG:Resource Element Group)へのマッピングタイプ(インターリーブ又は非インターリーブを示す情報)(例えば、CORESET-CCE-to-REG-mapping-type)、
・所定数のREGを含むグループ(REGバンドル)のサイズ(REGバンドル内のREG数)を示す情報(例えば、CORESET-REG-bundle-size)、
・REGバンドルのインターリーバ用の巡回シフト(CS:Cyclic Shift、CS量又はCSインデックス)を示す情報(例えば、CORESET-shift-index)、
・PDCCH用の送信設定通知(TCI:Transmission Configuration Indication)状態(PDCCH受信用のDMRSのアンテナポートのQCL情報(アンテナポートQCL)などともいう)、
・CORESET#p内でPDCCHによって送信されるDCI(例えば、DCIフォーマット1_0又はDCIフォーマット1_1)内のTCIフィールドの有無の指示(例えば、TCI-PresentInDCI)。
The coreset configuration may mainly include information on the PDCCH resource-related configuration and the RS-related configuration. The following parameters may be provided to the UE for higher CORESET # p (eg, 0 ≦ p <3) set in each DL BWP by higher layer signaling (CORESET setting). That is, the following parameters may be notified (set) to the UE for each CORESET:
A CORESET identifier (CORESET-ID (Identifier)),
A scramble ID of a demodulation reference signal (DMRS) for a PDCCH,
A CORESET time length (eg, time duration, CORESET-time-duration) indicated by the number of consecutive symbols (consecutive);
Frequency-domain Resource Allocation (for example, information (CORESET-freq-dom) indicating a predetermined number of resource blocks constituting CORESET),
A mapping type (information indicating interleaving or non-interleaving) from a control channel element (CCE: Control Channel Element) in the RESET to a resource element group (REG: Resource Element Group) (for example, CORESET-CCE-to-REG-mapping) -type),
Information indicating the size (the number of REGs in the REG bundle) of a group (REG bundle) including a predetermined number of REGs (eg, CORESET-REG-bundle-size);
Information indicating a cyclic shift (CS: Cyclic Shift, CS amount or CS index) for the interleaver of the REG bundle (eg, CORESET-shift-index);
A PDCCH transmission configuration notification (TCI: Transmission Configuration Indication) state (also referred to as an antenna port QCL information (antenna port QCL) of a DMRS antenna port for PDCCH reception);
-An indication (for example, TCI-PresentInDCI) of the presence or absence of a TCI field in DCI (for example, DCI format 1_0 or DCI format 1_1) transmitted by PDCCH in CORRESET # p.
 なお、「CORESET-ID#0」は、MIBを用いて設定されるCORESET(イニシャルCORESET、デフォルトCORESETなどと呼ばれてもよい)を示してもよい。 Note that “CORESET-ID # 0” may indicate a RESET (may be called an initial RESET, a default RESET, or the like) set using the MIB.
(サーチスペース)
 PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法は、サーチスペース(SS:Search Space)として定義される。UEは、サーチスペースの設定情報(サーチスペース設定(search space configuration)と呼ばれてもよい)を、基地局から受信してもよい。サーチスペース設定は、例えば、上位レイヤシグナリング(RRCシグナリングなど)によって通知されてもよい。
(Search space)
A search area and a search method of PDCCH candidates are defined as a search space (SS). A UE may receive search space configuration information (which may be referred to as a search space configuration) from a base station. The search space setting may be notified by, for example, higher layer signaling (eg, RRC signaling).
 サーチスペース設定は、例えば、上位レイヤシグナリング(RRCシグナリングなど)によってUEに通知されてもよく、所定のRRC情報要素(「SearchSpace」と呼ばれてもよい)で表されてもよい。 The search space setting may be notified to the UE by, for example, higher layer signaling (eg, RRC signaling) or may be represented by a predetermined RRC information element (may be referred to as “SearchSpace”).
 サーチスペース設定は、主にPDCCHのモニタリング関連設定及び復号関連設定の情報を含み、例えば以下の少なくとも1つに関する情報を含んでもよい:
・サーチスペースの識別子(サーチスペースID)、
・当該サーチスペース設定が関連するCORESETの識別子(CORESET-ID)、
・共通サーチスペース(C-SS:Common SS)かUE固有サーチスペース(UE-SS:UE-specific SS)かを示す情報、
・アグリゲーションレベル(AL:Aggregation Level)ごとのPDCCH候補数、
・モニタリング周期、
・モニタリングオフセット、
・スロット内のモニタリングパターン(例えば14ビットのビットマップ)。
The search space configuration mainly includes information on the monitoring-related configuration and the decoding-related configuration of the PDCCH, and may include, for example, information on at least one of the following:
-Search space identifier (search space ID),
An identifier of a reset associated with the search space setting (coreset-id);
Information indicating whether a common search space (C-SS: Common SS) or a UE-specific search space (UE-SS: UE-specific SS);
The number of PDCCH candidates for each aggregation level (AL: Aggregation Level),
・ Monitoring cycle,
Monitoring offset,
A monitoring pattern in the slot (eg a 14 bit bitmap).
 UEは、サーチスペース設定に基づいて、CORESETをモニタする。UEは、上記サーチスペース設定に含まれるCORESET-IDに基づいて、CORESETとサーチスペースとの対応関係を判断できる。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。 UE monitors CORESET based on search space setting. The UE can determine the correspondence between the RESET and the search space based on the RESET-ID included in the search space setting. One coreset may be associated with one or more search spaces.
 なお、本開示において、「CORESETのモニタ」、「CORESETに対応付けられたサーチスペース(PDCCH候補)のモニタ」、「下り制御チャネル(例えばPDCCH)のモニタ」及び「下り制御情報(DCI)のモニタ」は、互いに読み替えられてもよい。また、「モニタ」は、「ブラインド復号及びブラインド検出の少なくとも一方」で読み替えられてもよい。 Note that, in the present disclosure, “monitor of CORESET”, “monitor of search space (PDCCH candidate) associated with CORESET”, “monitor of downlink control channel (for example, PDCCH)”, and “monitor of downlink control information (DCI)” "May be read as each other. “Monitor” may be read as “at least one of blind decoding and blind detection”.
(QCL/TCI)
 NRでは、UEは、チャネル(例えば、PDCCH、PDSCH)の疑似コロケーション(QCL:Quasi-Co-Location)に関する情報(QCL情報)に基づいて、当該チャネルの受信処理(例えば、デマッピング、復調、復号の少なくとも1つ)を制御することが検討されている。
(QCL / TCI)
In NR, the UE performs reception processing (for example, demapping, demodulation, and decoding) on the channel (for example, PDCCH, PDSCH) based on information (QCL information) about pseudo-colocation (QCL: Quasi-Co-Location). At least one of them) is being considered.
 ここで、QCLとは、チャネルの統計的性質を示す指標である。例えば、ある信号と他の信号がQCLの関係である場合、これらの異なる複数の信号間において、ドップラーシフト(doppler shift)、ドップラースプレッド(doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(Spatial parameter)(例えば、空間受信パラメータ(Spatial Rx Parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。 QHere, QCL is an index indicating the statistical property of the channel. For example, when one signal and another signal have a QCL relationship, a Doppler shift (doppler shift), a Doppler spread (doppler spread), an average delay (average delay), and a delay spread (delay) among these different signals. spread) and at least one of the spatial parameters (Spatial @ parameter) (e.g., the spatial reception parameter (Spatial @ Rx @ Parameter)) may be assumed to be the same (QCL for at least one of these).
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL、及びQCLの少なくとも1つの要素は、sQCL(spatial QCL)で読み替えられてもよい。 Note that the spatial reception parameter may correspond to a reception beam (for example, a reception analog beam) of the UE, and the beam may be specified based on the spatial QCL. The QCL and at least one element of the QCL in the present disclosure may be read as sQCL (spatial @ QCL).
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータについて示す:
 ・QCLタイプA:ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB:ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC:平均遅延及びドップラーシフト、
 ・QCLタイプD:空間受信パラメータ。
As the QCL, a plurality of types (QCL types) may be defined. For example, four QCL types AD with different parameters (or parameter sets) that can be assumed to be the same may be provided, and are described below.
QCL type A: Doppler shift, Doppler spread, average delay and delay spread,
・ QCL type B: Doppler shift and Doppler spread,
QCL type C: average delay and Doppler shift,
QCL type D: spatial reception parameter.
 送信構成指示(TCI:Transmission Configuration Indication又はTransmission Configuration Indicator)の状態(TCI状態(TCI-state))は、QCL情報を示してもよい(含んでもよい)。 The state (TCI state (TCI-state)) of the transmission configuration instruction (TCI: Transmission Configuration Indication or Transmission Configuration Indicator) may indicate (or may include) QCL information.
 TCI状態(及び/又はQCL情報)は、例えば、対象となるチャネル(又は当該チャネル用の参照信号(RS:Reference Signal))と、別の信号(例えば、別の下り参照信号(DL-RS:Downlink Reference Signal))とのQCLに関する情報であってもよく、例えば、QCL関係となるDL-RSに関する情報(DL-RS関連情報)及び上記QCLタイプを示す情報(QCLタイプ情報)の少なくとも1つを含んでもよい。 The TCI state (and / or QCL information) includes, for example, a target channel (or a reference signal (RS: Reference @ Signal) for the channel) and another signal (for example, another downlink reference signal (DL-RS: Downlink @ Reference @ Signal)), and may be, for example, at least one of information on a DL-RS having a QCL relationship (DL-RS related information) and information indicating the QCL type (QCL type information). May be included.
 DL-RS関連情報は、QCL関係となるDL-RSを示す情報及び当該DL-RSのリソースを示す情報の少なくとも一つを含んでもよい。例えば、UEに複数の参照信号セット(RSセット)が設定される場合、当該DL-RS関連情報は、当該RSセットに含まれるRSのうち、チャネル(又は当該チャネル用のポート)とQCL関係を有するDL-RS、当該DL-RS用のリソースなどの少なくとも1つを示してもよい。 DL-RS related information may include at least one of information indicating a DL-RS having a QCL relation and information indicating a resource of the DL-RS. For example, when a plurality of reference signal sets (RS sets) are set in the UE, the DL-RS related information indicates a QCL relationship with a channel (or a port for the channel) among the RSs included in the RS set. At least one of the included DL-RS, the resource for the DL-RS, and the like may be indicated.
 ここで、チャネル用のRS及びDL-RSの少なくとも一方は、同期信号(SS:Synchronaization Signal)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、同期信号ブロック(SSB:Synchronization Signal Block)、モビリティ参照信号(MRS:Mobility RS)、チャネル状態情報参照信号(CSI-RS:Channel Satate Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、ビーム固有の信号などの少なくとも1つ、又はこれらを拡張、変更などして構成される信号(例えば、密度及び周期の少なくとも一方を変更して構成される信号)であってもよい。 Here, at least one of the channel RS and the DL-RS is a synchronization signal (SS: Synchronization Signal), a broadcast channel (PBCH: Physical Broadcast Channel), a synchronization signal block (SSB: Synchronization Signal Block), and a mobility reference signal (SSB). At least one of MRS: Mobility RS, channel state information reference signal (CSI-RS: Channel Satate Information-Reference Signal), demodulation reference signal (DMRS: DeModulation Reference Signal), beam-specific signal, etc., or an extension thereof , And the like (for example, a signal constituted by changing at least one of the density and the period).
 同期信号は、例えば、プライマリ同期信号(PSS:Primary Synchronaization Signal)及びセカンダリ同期信号(SSS:Secondary Synchronaization Signal)の少なくとも1つであってもよい。SSBは、同期信号及びブロードキャストチャネルを含む信号ブロックであってもよく、SS/PBCHブロックなどと呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (PSS: Primary Synchronaization Signal) and a secondary synchronization signal (SSS: Secondary Synchronaization Signal). The SSB may be a signal block including a synchronization signal and a broadcast channel, and may be called an SS / PBCH block or the like.
 PDCCH(又はPDCCHに関連するDMRSアンテナポート)及び所定のDL-RSとのQCLに関する情報は、PDCCHのためのTCI状態などと呼ばれてもよい。PDSCH(又はPDSCHに関連するDMRSアンテナポート)及び所定のDL-RSとのQCLに関する情報は、PDSCHのためのTCI状態などと呼ばれてもよい。 The information on the QCL with the PDCCH (or the DMRS antenna port related to the PDCCH) and a predetermined DL-RS may be referred to as a TCI state for the PDCCH. Information on the PDSCH (or the DMRS antenna port associated with the PDSCH) and the QCL with a given DL-RS may be referred to as the TCI state for the PDSCH.
 UEは、タイプ0及びタイプ1-PDCCH共通サーチスペースについては、PBCHと同じsQCLを想定してもよい。また、UEは、タイプ3-PDCCH共通サーチスペース及びUE固有サーチスペースについては、上位レイヤシグナリングに基づいてsQCLを判断してもよい。 The UE may assume the same sQCL as the PBCH for the type 0 and type 1-PDCCH common search spaces. Also, the UE may determine the sQCL for the type 3-PDCCH common search space and the UE-specific search space based on higher layer signaling.
 UEは、PDCCH(CORESET)のためのTCI状態を、RRCシグナリング及びMAC CEに基づいて判断してもよい。 The UE may determine the TCI status for the PDCCH (CORESET) based on the RRC signaling and the MAC $ CE.
 例えば、UEに対して、CORESETごとに、1つ又は複数(K個)のTCI状態が上位レイヤシグナリングによって設定されてもよい。また、UEは、各CORESETについて、それぞれ1つ又は複数のTCI状態を、MAC CEを用いてアクティベートしてもよい。 For example, for the UE, one or more (K) TCI states may be set by higher layer signaling for each CORESET. Also, the UE may activate one or more TCI states for each CORESET using MAC @ CE.
 UEは、PDSCH用のM(M≧1)個のTCI状態(M個のPDSCH用のQCL情報)を、上位レイヤシグナリングによって通知(設定(configure))されてもよい。なお、UEに設定されるTCI状態の数Mは、UE能力(UE capability)及びQCLタイプの少なくとも1つによって制限されてもよい。 The UE may be notified (configured) of M (M ≧ 1) TCI states for PDSCH (QCL information for M PDSCHs) by higher layer signaling. Note that the number M of TCI states set for the UE may be limited by at least one of UE capability (UE capability) and QCL type.
 PDSCHのスケジューリングに用いられるDCIは、TCI状態(PDSCH用のQCL情報)を示す所定のフィールド(例えば、TCI用のフィールド、TCIフィールド、TCI状態フィールドなどと呼ばれてもよい)を含んでもよい。当該DCIは、1つのセルのPDSCHのスケジューリングに用いられてもよく、例えば、DL DCI、DLアサインメント、DCIフォーマット1_0、DCIフォーマット1_1などと呼ばれてもよい。 The DCI used for PDSCH scheduling may include a predetermined field (for example, a TCI field, a TCI field, a TCI status field, etc.) indicating a TCI status (QCL information for PDSCH). The DCI may be used for scheduling the PDSCH of one cell, and may be called, for example, DL @ DCI, DL assignment, DCI format 1_0, DCI format 1_1, and the like.
 また、DCIがxビット(例えば、x=3)のTCIフィールドを含む場合、基地局は、最大2(例えば、x=3の場合、8)種類のTCI状態を、上位レイヤシグナリングを用いてUEに予め設定(configure)してもよい。DCI内のTCIフィールドの値(TCIフィールド値)は、上位レイヤシグナリングにより予め設定されたTCI状態の1つを示してもよい。 Also, when the DCI includes a TCI field of x bits (for example, x = 3), the base station may use a higher layer signaling to indicate up to 2 x (for example, 8 for x = 3) TCI states. The UE may be configured in advance. The value of the TCI field in the DCI (TCI field value) may indicate one of the TCI states preset by higher layer signaling.
 8種類を超えるTCI状態がUEに設定される場合、MAC CEを用いて、8種類以下のTCI状態がアクティブ化(指定)されてもよい。DCI内のTCIフィールドの値は、MAC CEによりアクティブ化されたTCI状態の一つを示してもよい。 If more than eight TCI states are set in the UE, eight or less TCI states may be activated (designated) using MAC @ CE. The value of the TCI field in DCI may indicate one of the TCI states activated by MAC @ CE.
 UEは、DCI内のTCIフィールド値が示すTCI状態に基づいて、PDSCH(又はPDSCHのDMRSポート)のQCLを決定してもよい。例えば、UEは、サービングセルのPDSCHのDMRSポート(又は、DMRSポートグループ)が、DCIで通知されたTCI状態に対応するDL-RSとQCLであると想定して、PDSCHの受信処理(例えば、復号、復調など)を制御してもよい。これにより、PDSCHの受信精度を向上できる。 The UE may determine the QCL of the PDSCH (or the DMSCH port of the PDSCH) based on the TCI state indicated by the TCI field value in the DCI. For example, the UE assumes that the DMRS port (or DMRS port group) of the PDSCH of the serving cell is DL-RS and QCL corresponding to the TCI state notified by DCI, and performs PDSCH reception processing (eg, decoding). , Demodulation, etc.). Thereby, the reception accuracy of PDSCH can be improved.
(FR1/FR2)
 NRにおいて、UEは、第1の周波数帯(FR1:Frequency Range 1)及び第2の周波数帯(FR2:Frequency Range 2)の少なくとも1つの周波数帯(キャリア周波数)を用いて通信(信号の送受信、測定など)することが検討されている。
(FR1 / FR2)
In NR, the UE performs communication (signal transmission / reception, transmission / reception using at least one frequency band (carrier frequency) of a first frequency band (FR1: Frequency Range 1) and a second frequency band (FR2: Frequency Range 2). Measurement).
 例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。 {For example, FR1 may be a frequency band of 6 GHz or less (sub-6 GHz (sub-6 GHz)), and FR2 may be a frequency band higher than 24 GHz (above-24 GHz).
 FR1は、サブキャリア間隔(SCS:Sub-Carrier Spacing)として15、30及び60kHzのうちから少なくとも1つが用いられる周波数レンジと定義されてもよい。 FR1 may be defined as a frequency range in which at least one of 15, 30, and 60 kHz is used as a sub-carrier interval (SCS: Sub-Carrier Spacing).
 FR2は、SCSとして60及び120kHzのうちから少なくとも1つが用いられる周波数レンジと定義されてもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯であってもよい。 FR2 may be defined as a frequency range in which at least one of 60 kHz and 120 kHz is used as SCS. The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may be a higher frequency band than FR2.
 FR2は、時分割複信(TDD:Time Division Duplex)バンドのみに用いられてもよい。FR2は、波長が1mmから10mm程度のミリ波(mmW:millimeter Wave)に対応するため、mmWバンドと呼ばれてもよい。mmWバンドは、EHF(Extremely High Frequency)と呼ばれてもよい。 FR2 may be used only for a time division duplex (TDD) band. FR2 may be referred to as an mmW band because it corresponds to a millimeter wave (mmW: millimeter @ Wave) having a wavelength of about 1 mm to 10 mm. The mmW band may be called EHF (Extremely High Frequency).
 なお、本開示のFR1及びFR2は、それぞれ、具体的な周波数帯に限定されないより一般的な表現である第1の周波数帯(first frequency range)及び第2の周波数帯(second frequency range)で読み替えられてもよい。 Note that FR1 and FR2 of the present disclosure are replaced with a first frequency band (first 帯 frequency range) and a second frequency band (second frequency range), which are more general expressions that are not limited to specific frequency bands, respectively. You may be.
(マルチTRP)
 mmWバンドなどの高周波数帯においては、電波のブロッキングが深刻な問題になると考えられており、複数の送受信ポイント(TRP:Transmission/Reception Point)(マルチTRP)を用いて信号を送信することがこの問題の解決方法として期待されている。
(Multi TRP)
In a high frequency band such as an mmW band, blocking of radio waves is considered to be a serious problem, and transmission of a signal using a plurality of transmission / reception points (TRP: Transmission / Reception Point) (multi-TRP) has been considered. It is expected as a solution to the problem.
 図1は、マルチTRPを用いた通信の一例を示す図である。本例では、2つのTRP(TRP#1及び#2)がUEに対して信号を送信できる(例えば、当該2つのTRPが当該UEのサービングセルを提供している)。UEにおいて、いずれかのTRPからの信号の受信品質が劣化する場合であっても、他方のTRPからの信号の受信品質がある程度以上の場合には、通信を維持できる。 FIG. 1 is a diagram showing an example of communication using multi-TRP. In this example, two TRPs (TRP # 1 and # 2) can transmit signals to the UE (eg, the two TRPs provide the serving cell of the UE). In the UE, even if the reception quality of a signal from any of the TRPs deteriorates, communication can be maintained if the reception quality of the signal from the other TRP is more than a certain level.
 しかしながら、マルチTRPを運用する具体的なケースを考えると、さらに検討すべき事項がある。以下図2-4を用いて当該検討事項について説明する。 However, considering the specific case of operating a multi-TRP, there are further matters to be considered. Hereinafter, the matters to be considered will be described with reference to FIG.
 図2は、ネットワークがUEにとっての最良のTRPを知る場合のTRP選択シーケンスの一例を示す図である。図示する最初の時点において、UEにとって最良のTRPは、TRP#1であると想定する。 FIG. 2 is a diagram showing an example of a TRP selection sequence when the network knows the best TRP for the UE. At the first time shown, assume that the best TRP for the UE is TRP # 1.
 ステップS11において、ネットワーク(例えば、TRP#1)は、TRP#1からのRSとQCLであることを指示するTCI状態を有する1つのCORESETを、当該UEに対して設定する。 In step S11, the network (for example, TRP # 1) sets one CORESET having a TCI state indicating that it is an RS and a QCL from TRP # 1 for the UE.
 ステップS12において、ネットワーク(例えば、TRP#1)は、ステップS11で設定したCORESETのTCI状態をアクティベートするためのMAC CEを、UEに対して送信する。 In step S12, the network (for example, TRP # 1) transmits, to the UE, MAC @ CE for activating the TCI state of CORRESET set in step S11.
 ステップS13において、UEは、アクティベートされたTCI状態に基づいてL1-RSRPを報告する。L1-RSRPは、例えば周期的に報告されてもよい。 In step S13, the UE reports L1-RSRP based on the activated TCI status. The L1-RSRP may be reported, for example, periodically.
 ステップS14において、ネットワークは、L1-RSRPに基づいて、UEに対してTRPを変更する必要が生じた(例えば、L1-RSRPが所定の閾値未満になった、L1-RSRPが一定期間受信できなかった)ことを把握する。 In step S14, the network needs to change the TRP for the UE based on L1-RSRP (for example, L1-RSRP has become less than a predetermined threshold, L1-RSRP has not been received for a certain period of time) Grasp).
 ステップS15において、ネットワーク(例えば、TRP#2)は、上記1つのCORESETについて、TRP#2からのRSとQCLであることを指示するTCI状態をアクティベートするためのMAC CEを、UEに対して送信する。 In step S15, the network (e.g., TRP # 2) transmits, to the UE, MAC @ CE for activating the TCI state indicating the RS and QCL from TRP # 2 with respect to the one RESET. I do.
 図2の例においてはRel-15 NRにおいてこれまで検討されている、CORESETのためのTCI状態設定の機能を用いてマルチTRPの制御を行うことができる。しかしながら、RRC設定及びMAC CEアクティベーションに基づくPDCCHのTCI状態の制御は非常に遅く、MAC CEを送信するためのPDSCHをスケジュールする必要もある。 {In the example of FIG. 2, multi-TRP control can be performed using the function of TCI state setting for CORRESET, which has been studied so far in Rel-15} NR. However, the control of the TCI state of the PDCCH based on the RRC setting and the MAC @ CE activation is very slow, and it is necessary to schedule the PDSCH for transmitting the MAC @ CE.
 図3は、ネットワークがUEにとっての最良のTRPを知らない場合のTRP選択シーケンスの一例を示す図である。 FIG. 3 is a diagram showing an example of a TRP selection sequence when the network does not know the best TRP for the UE.
 ステップS21において、ネットワーク(例えば、TRP#1及び#2の少なくとも一方)は、2つのCORESETを、当該UEに対して設定する。ここで、1つのCORESETは、TRP#1からのRSとQCLであることを指示するTCI状態を有するCORESET(CORESET#1)であり、他方のCORESETは、TRP#2からのRSとQCLであることを指示するTCI状態を有するCORESET(CORESET#2)である。 In step S21, the network (for example, at least one of TRP # 1 and # 2) sets two RESETs for the UE. Here, one coreset is a coreset (coreset # 1) having a TCI state indicating that it is an RS and QCL from TRP # 1, and the other coreset is an RS and QCL from TRP # 2. (CORESET # 2) having a TCI state indicating that this is the case.
 ステップS22において、ネットワークは、ステップS21で設定した2つのCORESETのTCI状態をアクティベートするための1つ又は複数のMAC CEを、UEに対して送信する。 In step S22, the network transmits one or more MAC $ CEs for activating the two CRESET TCI states set in step S21 to the UE.
 ステップS23において、UEは、アクティベートされたTCI状態に基づいてL1-RSRPを報告する。L1-RSRPは、例えば周期的に報告されてもよい。 In step S23, the UE reports L1-RSRP based on the activated TCI state. The L1-RSRP may be reported, for example, periodically.
 図4は、図3の例で設定されるCORESETの一例を示す図である。図4に示すように、例えば、スロットの0番目のシンボル(最初のシンボル)にCORESET#1が位置し、スロットの1番目のシンボルにCORESET#2が位置してもよい。UEは、異なるTCI状態の設定に基づいて、2つのCORESETにわたってPDCCHをモニタする。 FIG. 4 is a diagram showing an example of CORESET set in the example of FIG. As shown in FIG. 4, for example, RESET # 1 may be located at the 0th symbol (first symbol) of the slot, and RESET # 2 may be located at the first symbol of the slot. The UE monitors the PDCCH over the two CORESETs based on different TCI state settings.
 ステップS24において、ネットワークは、L1-RSRPに基づいて、UEに対してTRPを変更する必要が生じたことを把握する。 In step S24, the network recognizes that it is necessary to change the TRP for the UE based on L1-RSRP.
 図3-4の例においては、複数のTCI状態設定に対応する複数のCORESETをUEに設定すれば、ネットワークは事前に最良のTRPを把握する必要はない。しかしながら、DL BWPごとのCORESET数が所定の数(例えば、3)に制限されているため、マルチTRPの最大数も制限されることになる。加えて、設定したCORESETの数だけ、UEがモニタするPDCCH候補数も増加し、UEの処理負荷が増大してしまう。 例 In the example of FIG. 3-4, if a plurality of RESETs corresponding to a plurality of TCI state settings are set in the UE, the network does not need to know the best TRP in advance. However, since the number of coresets for each DL @ BWP is limited to a predetermined number (for example, 3), the maximum number of multi-TRPs is also limited. In addition, the number of PDCCH candidates monitored by the UE increases by the number of the set RESETs, and the processing load on the UE increases.
 以上説明したように、これまで検討されているPDCCH関連の制御方法を用いると、マルチTRPに対応する場合に、遅延、UE負荷などが問題になり、通信スループットが低下するおそれがある。 As described above, when the PDCCH-related control method studied so far is used, when multi-TRP is supported, delay, UE load, and the like become problems, and communication throughput may be reduced.
 そこで、本発明者らは、マルチTRPを利用する場合であっても、適切にPDCCHをモニタする方法を着想した。 Therefore, the present inventors have conceived a method of appropriately monitoring the PDCCH even when using multi-TRP.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication method according to each embodiment may be applied alone or in combination.
(無線通信方法)
<第1の実施形態>
 第1の実施形態においては、PDCCHのためのTCI状態は、CORESET単位より細かい粒度で設定されてもよい。
(Wireless communication method)
<First embodiment>
In the first embodiment, the TCI state for the PDCCH may be set at a finer granularity than the CORESET unit.
 例えば、PDCCHのためのTCI状態は、サーチスペース設定ごとに(サーチスペース設定単位で)設定可能であってもよい。なお、本開示の「サーチスペース設定」、「サーチスペースセット」、「サーチスペースセット設定」などは、互いに読み替えられてもよい。 For example, the TCI state for the PDCCH may be configurable for each search space configuration (in search space configuration units). It should be noted that “search space setting”, “search space set”, “search space set setting”, and the like of the present disclosure may be interchanged.
 既存のNRの検討では、PDCCH(CORESET)のためのTCI状態は、CORESETごとに設定されていた。例えば、UEは、RRCで設定されるCORESET設定情報(RRCのControlResourceSet情報要素)に含まれるTCI状態のパラメータ(tci-StatesPDCCH)に基づいて、当該CORESET単位でアクティベート可能なTCI状態を決定していた。 検 討 In the examination of the existing NR, the TCI state for the PDCCH (CORESET) was set for each RESET. For example, based on the TCI state parameter (tci-StatesPDCCH) included in the RESET setting information (ControlResourceSet information element of RRC) set by the RRC, the UE has determined the TCI state that can be activated in the RESET unit. .
 PDCCHのためのTCI状態は、あるサーチスペース設定のためのアグリゲーションレベル(AL)ごとに設定可能であってもよい。例えば、PDCCHのためのTCI状態は、あるサーチスペース設定のためのAL=1、2、4、8などでそれぞれ異なるTCI状態が設定されてもよい。 TThe TCI state for the PDCCH may be configurable for each aggregation level (AL) for a certain search space configuration. For example, in the TCI state for the PDCCH, different TCI states may be set for AL = 1, 2, 4, 8, etc. for setting a certain search space.
 PDCCHのためのTCI状態は、あるサーチスペース設定のためのPDCCH候補ごとに設定可能であってもよい。例えば、PDCCHのためのTCI状態は、あるサーチスペース設定のためのPDCCH候補のインデックスごとにそれぞれ異なるTCI状態が設定されてもよい。 TThe TCI state for PDCCH may be configurable for each PDCCH candidate for a certain search space configuration. For example, in the TCI state for the PDCCH, a different TCI state may be set for each index of a PDCCH candidate for setting a certain search space.
 第1の実施形態では、サーチスペース設定(RRCのSearchSpace情報要素)にTCI状態のパラメータを含めてもよい。UEは、サーチスペース設定にTCI状態のパラメータを含み、当該サーチスペース設定のサーチスペースIDと関連するCORESETのためのTCI状態は、当該CORESETのCORESET設定情報ではなく、サーチスペース設定に基づいて判断されると想定してもよい(つまり、ControlResourceSetのtci-StatesPDCCHは無視されてもよい)。 In the first embodiment, the parameter of the TCI state may be included in the search space setting (SearchSpace information element of RRC). The UE includes a parameter of the TCI state in the search space setting, and the TCI state for the RESET associated with the search space ID of the search space setting is determined based on the search space setting, not the RESET setting information of the RESET. (That is, tci-StatesPDCCH of ControlResourceSet may be ignored).
 サーチスペース設定(RRCのSearchSpace情報要素)にALごとのTCI状態のパラメータ及びPDCCH候補ごとのTCI状態のパラメータの少なくとも1つが含まれてもよい。UEは、当該パラメータに基づいて、PDCCHのためのTCI状態を、AL単位及びPDCCH候補単位の少なくとも1つに基づいて判断してもよい。 The search space setting (SearchSpace information element of RRC) may include at least one of the parameter of the TCI state for each AL and the parameter of the TCI state for each PDCCH candidate. The UE may determine the TCI state for the PDCCH based on at least one of the AL unit and the PDCCH candidate unit based on the parameter.
 以上説明した第1の実施形態によれば、PDCCHのためのTCI状態をより柔軟に設定できる。 According to the first embodiment described above, the TCI state for the PDCCH can be set more flexibly.
<第2の実施形態>
 第2の実施形態においては、1つのPDCCH候補は複数のCORESETにわたってマップされることが可能であってもよい。第2の実施形態において、UEは、1つより多いCORESETに関連する1つのサーチスペース(サーチスペースセット)を設定されてもよい。各PDCCH候補又は各ALは、設定された上記1つより多いCORESETのいずれか1つ又は複数にマップされてもよい。
<Second embodiment>
In a second embodiment, one PDCCH candidate may be able to be mapped across multiple RESETs. In the second embodiment, the UE may be configured with one search space (search space set) associated with more than one CORRESET. Each PDCCH candidate or each AL may be mapped to any one or more of the configured more than one CORESET.
 例えば、ネットワークは、以下の方法に従ってPDCCH候補を送信してもよい:
(1)CORESET#1(TCI状態はTRP#1に関連する)に対応する、あるPDCCH候補の一部がTRP#1によって送信される、
(2)CORESET#2(TCI状態はTRP#2に関連する)に対応する、上記PDCCH候補の一部がTRP#2によって送信される。
For example, the network may send the PDCCH candidates according to the following method:
(1) a part of a certain PDCCH candidate corresponding to CORRESET # 1 (TCI state is related to TRP # 1) is transmitted by TRP # 1;
(2) A part of the PDCCH candidates corresponding to CORRESET # 2 (TCI state is related to TRP # 2) is transmitted by TRP # 2.
 UEは、上記PDCCH候補の全体を受信すると、当該PDCCH候補を復号してもよい。ここで、UEは、上記(1)のPDCCH候補の部分と(2)のPDCCH候補の部分と、をソフト合成(soft combining)に用いてもよい。なお、本開示において、「ソフト合成」は、「合成」、「復号」、「エラー訂正」などで読み替えられてもよい。 When the UE receives the entire PDCCH candidate, the UE may decode the PDCCH candidate. Here, the UE may use the PDCCH candidate part of (1) and the PDCCH candidate part of (2) for soft combining. In the present disclosure, “soft combining” may be read as “combining”, “decoding”, “error correction”, or the like.
 図5は、第2の実施形態におけるPDCCH候補のリソースマッピングの一例を示す図である。本例は、図4とほぼ同様であるが、異なる点は、CORESET#1及び#2にわたって1つのPDCCH候補(図の破線部)がマップされて(対応付けられて)いることである。 FIG. 5 is a diagram showing an example of resource mapping of PDCCH candidates in the second embodiment. This example is almost the same as FIG. 4, except that one PDCCH candidate (dashed line in the figure) is mapped (correlated) over CORRESET # 1 and # 2.
 1つのPDCCH候補又はALが、1つより多いCORESETの複数にマップされる場合、当該PDCCH候補又はALは、異なるCORESETに関連するサブセットに分離されてもよい。 場合 If one PDCCH candidate or AL is mapped to more than one coreset, the PDCCH candidate or AL may be separated into subsets related to different coresets.
 図6A及び6Bは、第2の実施形態におけるサーチスペースセット設定と、当該設定に基づいて特定されるPDCCH候補の一例を示す図である。UEは、図6Aに示すように、複数のCORESET-ID(本例では、ID#1及び#2)を含むサーチスペースセット設定の情報を受信してもよい。 FIGS. 6A and 6B are diagrams illustrating an example of a search space set setting and a PDCCH candidate identified based on the setting in the second embodiment. As shown in FIG. 6A, the UE may receive search space set configuration information including a plurality of RESET-IDs (in this example, ID # 1 and # 2).
 UEは、当該サーチスペースセット設定に対応するサーチスペースにおけるPDCCH候補が、CORESET ID#1及び#2それぞれのCORESETにわたって図6Bのように送信されると想定し、受信処理を行ってもよい。 The UE may perform the reception process on the assumption that the PDCCH candidates in the search space corresponding to the search space set configuration are transmitted as shown in FIG. 6B over the coresets of the reset IDs # 1 and # 2.
 なお、図6Bの例では、複数のCORESETにわたるPDCCHの周波数リソースが当該複数のCORESETにわたって同じであるが、これに限られない。PDCCHの部分ごとに、対応するCORESET設定に基づいて、異なる無線リソース(例えば、周波数及び時間リソース)が適用されてもよい。 In the example of FIG. 6B, the frequency resource of the PDCCH over a plurality of RESETs is the same over the plurality of RESETs, but is not limited to this. Different radio resources (e.g., frequency and time resources) may be applied for each PDCCH portion based on the corresponding RESET settings.
 図7A-7Cは、第2の実施形態におけるPDCCH候補のリソースマッピングの別の一例を示す図である。 FIGS. 7A to 7C are diagrams illustrating another example of resource mapping of PDCCH candidates in the second embodiment.
 図7Aは、1つのPDCCH候補に含まれる各CORESETの周波数リソースがそれぞれREGバンドル単位である場合の一例を示す。UEは、CORESET IDで指定されるCORESETの設定に基づいて、CORESET内のPDCCH候補に対応するリソース量(例えば、CCE、CCEグループ、REG、REGバンドル、PRBなどの少なくとも1つを単位とするリソース量)を決定してもよい。UEは、複数のCORESETにわたる1つのPDCCH候補をモニタする場合には、それぞれのCORESETの部分のリソース量をそれぞれのCORESET設定に基づいて判断してもよい。 FIG. 7A shows an example in which the frequency resources of each coreset included in one PDCCH candidate are in units of REG bundles. Based on the RESET setting specified by the RESET @ ID, the UE sets the resource amount corresponding to the PDCCH candidate in the RESET (for example, a resource in units of at least one of CCE, CCE group, REG, REG bundle, PRB, etc.). Amount) may be determined. When monitoring one PDCCH candidate across a plurality of RESETs, the UE may determine the resource amount of each RESET portion based on the respective RESET settings.
 図7Bは、1つのPDCCH候補に含まれる各CORESETの時間及び周波数リソースの両方が異なる場合の一例を示す。本例では、CORESET#1は1シンボル長であり、CORESET#2は2シンボル長である。また、PDCCH候補のCORESET#1の部分の周波数リソースは、CORESET#2の部分より大きい。 FIG. 7B shows an example in which both the time and frequency resources of each reset included in one PDCCH candidate are different. In this example, RESET # 1 is one symbol long, and RESET # 2 is two symbols long. In addition, the frequency resources of the part of the PDCCH candidate “CORESET # 1” are larger than the part of the “CORESET # 2”.
 図7Cは、1つのPDCCH候補に含まれる各CORESETのマッピングタイプ(インターリーブ又は非インターリーブ)が異なる場合の一例を示す。本例では、CORESET#1はインターリーブマッピング(interleaved mapping)であり、CORESET#2は非インターリーブマッピング(non-interleaved mapping)である。 FIG. 7C shows an example in which the mapping type (interleaved or non-interleaved) of each coreset included in one PDCCH candidate is different. In this example, CORRESET # 1 is interleaved mapping (interleaved @ mapping), and CORESET # 2 is non-interleaved mapping.
 以上説明した第2の実施形態によれば、PDCCH候補を複数のCORESETにわたって構成することによって、PDCCH候補のリソースマッピングを柔軟にすることができ、TRPダイバーシティが好適に実現できる。 According to the second embodiment described above, by configuring PDCCH candidates over a plurality of coresets, resource mapping of PDCCH candidates can be made flexible, and TRP diversity can be suitably realized.
<第3の実施形態>
 第3の実施形態においては、1つのDCIが複数のCORESETにわたって繰り返し送信されることが可能であってもよい。ここで、PDCCH(DCI)の繰り返し送信は、異なるTCI状態設定を有する異なるCORESETにそれぞれ関連する複数のサーチスペースセットにわたって行われてもよい。
<Third embodiment>
In a third embodiment, one DCI may be able to be transmitted repeatedly over multiple RESETs. Here, the repeated transmission of the PDCCH (DCI) may be performed over multiple search space sets respectively associated with different coresets having different TCI state settings.
 図8は、第3の実施形態におけるPDCCH候補のリソースマッピングの一例を示す図である。本例においては、CORESET#1及び#2にそれぞれ1つのPDCCH候補(図の破線部)がマップされている。ここで、それぞれのPDCCH候補で送信されるDCIは、同じDCIである。つまり、1つのDCIが、これら複数のPDCCH候補を用いて繰り返し送信されている。 FIG. 8 is a diagram showing an example of resource mapping of PDCCH candidates in the third embodiment. In this example, one PDCCH candidate (broken line in the figure) is mapped to each of CORESET # 1 and # 2. Here, the DCI transmitted in each PDCCH candidate is the same DCI. That is, one DCI is repeatedly transmitted using the plurality of PDCCH candidates.
 UEは、繰り返し送信されるDCIをソフト合成しなくてもよいし、ソフト合成してもよい。また、UEは、繰り返し送信されるDCIがスケジューリングするデータ(PDSCH)をソフト合成しなくてもよいし、ソフト合成してもよい。以下、UEが別々のサーチスペースセットにおいて繰り返し送信されるDCI(及び当該DCIに対応するデータ)をソフト合成しない場合(実施形態3.1)と、ソフト合成する場合(実施形態3.2)と、をそれぞれ説明する。 The UE does not need to perform soft combining of DCIs repeatedly transmitted, or may perform soft combining. In addition, the UE may or may not perform soft combining on data (PDSCH) scheduled by DCI that is repeatedly transmitted. Hereinafter, a case where the UE does not soft-combine DCI (and data corresponding to the DCI) repeatedly transmitted in different search space sets (Embodiment 3.1) and a case where the UE performs soft-combination (Embodiment 3.2) , Respectively.
[実施形態3.1]
 UEが別々のサーチスペースセットにおいて繰り返し送信されるDCI(及び当該DCIに対応するデータ)をソフト合成しない場合、UEは、別々のDCIが別々のデータをスケジュールすると想定してもよい。
[Embodiment 3.1]
If the UE does not soft combine the DCIs (and the data corresponding to the DCIs) that are repeatedly transmitted in different search space sets, the UE may assume that the different DCIs schedule different data.
 UEは、1スロットにつき1つより多いDL DCIを検出してもよいし、1スロットにつき1つより多いPDSCHを復号してもよい。 The UE may detect more than one DL DCI per slot and may decode more than one PDSCH per slot.
 また、UEは、復号したDCI又はデータ(DL共有チャネル(DL-SCH))を上位レイヤ(例えば、MACレイヤ、PDCP(Packet Data Convergence Protocol)レイヤ、RLC(Radio Link Control)レイヤ、RRCレイヤ、IP(Internet Protocol)レイヤなどの少なくとも1つ)に伝送する。 Further, the UE transmits the decoded DCI or data (DL shared channel (DL-SCH)) to an upper layer (for example, MAC layer, PDCP (Packet Data Convergence Protocol) layer, RLC (Radio Link Control) layer, RRC layer, IP (At least one of Internet @ Protocol) layers).
 UEは、当該上位レイヤにおいて重複する(duplicated)(又は同じ内容の)パケット(データ、制御情報などで読み替えられてもよい)が発見される場合には、当該重複するパケットの少なくとも1つを廃棄(discard)してもよい。このパケットは、IPパケット、RLCサービスデータユニット(SDU:Service Data Unit)、RLCプロトコルデータユニット(PDU:Protocol Data Unit)、PDCP SDU、PDCP PDU、MAC SDU、MAC PDUなどの少なくとも1つであってもよい。なお、「廃棄」は、無視(ignore)、ドロップ(drop)などで読み替えられてもよい。 The UE discards at least one of the duplicated packets (or a packet having the same content) (which may be replaced with data, control information, or the like) in the upper layer. (Discard). This packet is at least one of an IP packet, RLC service data unit (SDU: Service @ Data @ Unit), RLC protocol data unit (PDU: Protocol @ Data @ Unit), PDCP @ SDU, PDCP @ PDU, MAC @ SDU, MAC @ PDU, etc. Is also good. Note that "discard" may be read as "ignore", "drop", or the like.
[実施形態3.2]
 UEは、あるサーチスペースセット内のPDCCH候補と別のサーチスペースセット内のPDCCH候補とが関連することを示す情報を、上位レイヤシグナリングによって設定されてもよい。当該情報は、例えば、あるサーチスペースセット内のPDCCH候補と別のサーチスペースセット内のPDCCH候補とをソフト合成することを示す情報であってもよい。
[Embodiment 3.2]
The UE may be configured by higher layer signaling with information indicating that PDCCH candidates in one search space set are related to PDCCH candidates in another search space set. The information may be, for example, information indicating that a PDCCH candidate in one search space set and a PDCCH candidate in another search space set are soft-combined.
 UEは、PDCCH候補のブラインド復号の回数を、ソフト合成に基づいて決定してもよい。例えば、UEは、ソフト合成後のPDCCH候補の数(全PDCCH(DCI)のうち、内容が異なり得るDCIの数)に基づいて、PDCCH候補のブラインド復号の回数をカウントしてもよい。UEは、ソフト合成前において2つのPDCCH候補がある場合であっても、これらのPDCCH候補にソフト合成を適用する場合には、これらのPDCCH候補に関するブラインド復号回数は1であると想定してもよい。 The UE may determine the number of times of blind decoding of the PDCCH candidate based on soft combining. For example, the UE may count the number of times of blind decoding of PDCCH candidates based on the number of PDCCH candidates after soft combining (the number of DCIs whose contents may be different among all PDCCHs (DCIs)). Even if the UE has two PDCCH candidates before soft combining, if the soft combining is applied to these PDCCH candidates, the UE may assume that the number of times of blind decoding for these PDCCH candidates is one. Good.
 また、UEは、ソフト合成前のPDCCH候補の数(全PDCCH(DCI)の数(内容が同じDCIも重複してカウント))に基づいて、PDCCH候補のブラインド復号の回数をカウントしてもよい。UEは、ソフト合成前において2つのPDCCH候補がある場合には、これらのPDCCH候補にソフト合成を適用する場合であっても、これらのPDCCH候補に関するブラインド復号回数は2であると想定してもよい。 Further, the UE may count the number of times of blind decoding of the PDCCH candidates based on the number of PDCCH candidates before soft combining (the number of all PDCCHs (DCIs (DCIs having the same content are also counted repeatedly))). . If there are two PDCCH candidates before soft combining, the UE assumes that the number of times of blind decoding for these PDCCH candidates is 2 even when applying soft combining to these PDCCH candidates. Good.
 なお、これらのブラインド復号回数のカウント方法については、他の実施形態に適用されてもよい。 Note that these methods of counting the number of times of blind decoding may be applied to other embodiments.
 以上説明した第3の実施形態によれば、繰り返し送信されるDCIのうち少なくとも1つの復号に成功すれば各TRPのPDSCHを復号できる可能性があり、TRPダイバーシティが好適に実現できる。 According to the third embodiment described above, if at least one of the repeatedly transmitted DCIs is successfully decoded, there is a possibility that the PDSCH of each TRP can be decoded, and TRP diversity can be suitably realized.
<変形例>
 なお、上述の各実施形態は、マルチTRPを想定して説明したが、1つのTRP(シングルTRP)を用いてUEが通信する場合にも適用されてもよい。
<Modification>
Note that each of the above embodiments has been described assuming a multi-TRP, but may be applied to a case where a UE communicates using one TRP (single TRP).
 例えば、UEは、TCI状態が同じTRP#1のDL RSとQCLであることが示される複数のCORESETにわたって、1つのPDCCH候補をモニタ(復号)してもよい。 For example, the UE may monitor (decode) one PDCCH candidate over a plurality of RESETs indicating that the TCI state is DL RS and QCL of the same TRP # 1.
 また、UEは、上述の実施形態の少なくとも1つが利用される場合には、マルチTRPを用いた通信を設定された、複数の無線リソースでそれぞれ異なるsTRPから送信される信号を用いて1つのPDCCH候補を復号することが設定された、などと想定してもよい。 In addition, when at least one of the above-described embodiments is used, the UE sets one PDCCH by using signals transmitted from different sTRPs using a plurality of radio resources and configured to use multi-TRP. It may be assumed that decoding of the candidate is set.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to an embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。 FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. In the wireless communication system 1, carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。 The wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。 The radio communication system 1 includes a radio base station 11 forming a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1. , Is provided. Further, user terminals 20 are arranged in the macro cell C1 and each small cell C2. The arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)を用いてCA又はDCを適用してもよい。 The user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. Further, the user terminal 20 may apply CA or DC using a plurality of cells (CCs).
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。 Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier). On the other hand, a carrier having a relatively high frequency band (for example, 3.5 GHz, 5 GHz or the like) and a wide bandwidth may be used between the user terminal 20 and the radio base station 12, The same carrier as that between may be used. The configuration of the frequency band used by each wireless base station is not limited to this.
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。 The user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell. In each cell (carrier), a single numerology may be applied, or a plurality of different numerologies may be applied.
 ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。例えば、ある物理チャネルについて、構成するOFDMシンボルのサブキャリア間隔が異なる場合及び/又はOFDMシンボル数が異なる場合には、ニューメロロジーが異なると称されてもよい。 Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering processing performed by the transceiver in the frequency domain, specific windowing processing performed by the transceiver in the time domain, and the like. For example, for a certain physical channel, if the subcarrier intervals of the constituent OFDM symbols are different and / or if the number of OFDM symbols is different, the numerology may be referred to as different.
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。 The wireless base station 11 and the wireless base station 12 (or between the two wireless base stations 12) are connected by wire (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, or the like) or wirelessly. May be done.
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。 The wireless base station 11 and each wireless base station 12 are connected to the upper station device 30 and connected to the core network 40 via the upper station device 30. Note that the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), and a mobility management entity (MME), but is not limited thereto. Further, each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。 The radio base station 11 is a radio base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. The wireless base station 12 is a wireless base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point or the like. Hereinafter, when the wireless base stations 11 and 12 are not distinguished, they are collectively referred to as a wireless base station 10.
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。 Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。 In the wireless communication system 1, Orthogonal Frequency Division Multiple Access (OFDMA) is applied to the downlink as a wireless access method, and Single Carrier-Frequency Division Multiple Access (SC-FDMA: Single Carrier) is applied to the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末ごとに1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。 OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier to perform communication. SC-FDMA divides a system bandwidth into bands each composed of one or a continuous resource block for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method. The uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。 In the wireless communication system 1, as downlink channels, a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like shared by each user terminal 20 are used. Used. The PDSCH transmits user data, upper layer control information, SIB (System Information Block), and the like. Also, MIB (Master \ Information \ Block) is transmitted by PBCH.
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。 Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like. Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
 なお、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。 Note that DCI for scheduling DL data reception may be referred to as DL assignment, and DCI for scheduling UL data transmission may be referred to as UL grant.
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。 PCFICH transmits the number of OFDM symbols used for PDCCH. The PHICH transmits acknowledgment information (eg, retransmission control information, HARQ-ACK, ACK / NACK, etc.) of HARQ (Hybrid Automatic Repeat Repeat reQuest) to the PUSCH. The EPDCCH is frequency-division multiplexed with a PDSCH (Downlink Shared Data Channel) and used for transmission of DCI and the like like the PDCCH.
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。 In the wireless communication system 1, as an uplink channel, an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used. By PUSCH, user data, higher layer control information, etc. are transmitted. Also, downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, scheduling request (SR: Scheduling Request), and the like are transmitted by PUCCH. The PRACH transmits a random access preamble for establishing a connection with a cell.
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。 In the wireless communication system 1, as a downlink reference signal, a cell-specific reference signal (CRS: Cell-specific Reference Signal), a channel state information reference signal (CSI-RS: Channel State Information-Reference Signal), and a demodulation reference signal (DMRS: DeModulation Reference Signal, a position determination reference signal (PRS: Positioning Reference Signal), and the like are transmitted. In the wireless communication system 1, a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like are transmitted as uplink reference signals. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). The transmitted reference signal is not limited to these.
(無線基地局)
 図10は、一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
(Wireless base station)
FIG. 10 is a diagram illustrating an example of the entire configuration of the wireless base station according to the embodiment. The wireless base station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. The transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
 下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。 (4) User data transmitted from the radio base station 10 to the user terminal 20 via downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。 In the baseband signal processing unit 104, regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control) The transmission / reception unit performs retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, and so on. 103. The downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and transferred to the transmission / reception unit 103.
 送受信部103は、ベースバンド信号処理部104からアンテナごとにプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 (4) The transmission / reception section 103 converts the baseband signal precoded and output from the baseband signal processing section 104 for each antenna into a radio frequency band, and transmits the radio frequency band. The radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101. The transmission / reception unit 103 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。 On the other hand, as for an uplink signal, a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102. The transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102. Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。 The baseband signal processing unit 104 performs fast Fourier transform (FFT: Fast Fourier Transform), inverse discrete Fourier transform (IDFT), and error correction on user data included in the input uplink signal. Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106. The call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the wireless base station 10, management of wireless resources, and the like.
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。 The transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface. The transmission path interface 106 transmits and receives signals (backhaul signaling) to and from another wireless base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). You may.
 なお、送受信部103は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ101は、例えばアレーアンテナによって構成してもよい。 Note that the transmission / reception unit 103 may further include an analog beamforming unit that performs analog beamforming. The analog beamforming unit includes an analog beamforming circuit (for example, a phase shifter, a phase shift circuit) or an analog beamforming device (for example, a phase shifter) described based on common recognition in the technical field according to the present invention. May be. Further, the transmitting / receiving antenna 101 may be configured by, for example, an array antenna.
 図11は、本開示の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 11 is a diagram illustrating an example of a functional configuration of the wireless base station according to an embodiment of the present disclosure. In this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。 The baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations may be included in the radio base station 10, and some or all of the configurations need not be included in the baseband signal processing unit 104.
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit (scheduler) 301 controls the entire wireless base station 10. The control unit 301 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。 The control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。 The control unit 301 performs scheduling (for example, resources) of system information, a downlink data signal (for example, a signal transmitted on the PDSCH), and a downlink control signal (for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like). Allocation). Further, control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
 制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。 The control unit 301 controls scheduling of a synchronization signal (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)) and a downlink reference signal (for example, CRS, CSI-RS, DMRS).
 制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。 The control unit 301 transmits an uplink data signal (for example, a signal transmitted on the PUSCH), an uplink control signal (for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.), a random access preamble (for example, a PRACH). (Transmission signal), scheduling of uplink reference signals and the like.
 制御部301は、ベースバンド信号処理部104におけるデジタルBF(例えば、プリコーディング)及び/又は送受信部103におけるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。制御部301は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成する制御を行ってもよい。これらの伝搬路情報は、受信信号処理部304及び/又は測定部305から取得されてもよい。 The control unit 301 controls to form a transmission beam and / or a reception beam using digital BF (for example, precoding) in the baseband signal processing unit 104 and / or analog BF (for example, phase rotation) in the transmission and reception unit 103. May be performed. The control unit 301 may perform control to form a beam based on downlink channel information, uplink channel information, and the like. These propagation path information may be acquired from the reception signal processing unit 304 and / or the measurement unit 305.
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated downlink signal to mapping section 303. The transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。 The transmission signal generation unit 302 generates a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301, for example. The DL assignment and the UL grant are both DCI and follow the DCI format. In addition, the downlink data signal is subjected to an encoding process and a modulation process according to an encoding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel \ State \ Information) from each user terminal 20 and the like.
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 Mapping section 303 maps the downlink signal generated by transmission signal generating section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs it to transmitting / receiving section 103. The mapping unit 303 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。 (4) The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 103. Here, the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20. The reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。 (4) The reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 (4) The measurement unit 305 performs measurement on the received signal. The measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。 For example, the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal. The measurement unit 305 receives the reception power (for example, RSRP (Reference Signal Received Power)), the reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)). , Signal strength (for example, RSSI (Received @ Signal @ Strength @ Indicator)), channel information (for example, CSI), and the like. The measurement result may be output to the control unit 301.
 なお、送受信部103は、下り共有チャネル(例えば、PDSCH)のスケジュールのための下り制御情報(DCI)(DLアサインメントなど)を、PDCCHを用いて送信してもよい。送受信部103は、サーチスペース設定に関する設定情報(例えば、SearchSpace情報要素)、CORESETに関する設定情報(例えば、ControlResourceSet情報要素)などをユーザ端末20に対して送信してもよい。 Note that the transmitting / receiving section 103 may transmit downlink control information (DCI) (DL assignment or the like) for scheduling a downlink shared channel (for example, PDSCH) by using the PDCCH. The transmission / reception unit 103 may transmit setting information (for example, SearchSpace information element) related to search space setting, setting information (for example, ControlResourceSet information element) related to CORRESET, to the user terminal 20.
(ユーザ端末)
 図12は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
(User terminal)
FIG. 12 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment. The user terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205. Note that the transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 (4) The radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202. The transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202. The transmitting / receiving section 203 converts the frequency of the received signal into a baseband signal and outputs the baseband signal to the baseband signal processing section 204. The transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。 The baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal. The downlink user data is transferred to the application unit 205. The application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。 On the other hand, uplink user data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processing unit 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。 (4) The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band. The radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
 なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ201は、例えばアレーアンテナによって構成してもよい。 Note that the transmission / reception unit 203 may further include an analog beamforming unit that performs analog beamforming. The analog beamforming unit includes an analog beamforming circuit (for example, a phase shifter, a phase shift circuit) or an analog beamforming device (for example, a phase shifter) described based on common recognition in the technical field according to the present invention. May be. Further, the transmitting / receiving antenna 201 may be configured by, for example, an array antenna.
 図13は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 13 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。 The baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 401 controls the entire user terminal 20. The control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。 The control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
 制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。 The control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404. The control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
 制御部401は、ベースバンド信号処理部204におけるデジタルBF(例えば、プリコーディング)及び/又は送受信部203におけるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。制御部401は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成する制御を行ってもよい。これらの伝搬路情報は、受信信号処理部404及び/又は測定部405から取得されてもよい。 The control unit 401 controls to form a transmission beam and / or a reception beam using digital BF (for example, precoding) in the baseband signal processing unit 204 and / or analog BF (for example, phase rotation) in the transmission / reception unit 203. May be performed. The control unit 401 may perform control to form a beam based on downlink channel information, uplink channel information, and the like. These propagation path information may be obtained from the reception signal processing unit 404 and / or the measurement unit 405.
 また、制御部401は、無線基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。 When the control unit 401 acquires various information notified from the radio base station 10 from the reception signal processing unit 404, the control unit 401 may update the parameters used for control based on the information.
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 Transmission signal generating section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403. The transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。 (4) The transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the radio base station 10 includes an UL grant.
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203. The mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。 (4) The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203. Here, the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the radio base station 10. The reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure. In addition, the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。 (4) The reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401. The reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
 測定部405は、受信した信号に関する測定を実施する。例えば、測定部405は、第1のキャリア及び第2のキャリアの一方又は両方について、同周波測定及び/又は異周波測定を行ってもよい。測定部405は、第1のキャリアにサービングセルが含まれる場合に、受信信号処理部404から取得した測定指示に基づいて第2のキャリアにおける異周波測定を行ってもよい。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 405 performs measurement on the received signal. For example, the measurement unit 405 may perform the same frequency measurement and / or the different frequency measurement on one or both of the first carrier and the second carrier. When the serving cell is included in the first carrier, measurement section 405 may perform the different frequency measurement on the second carrier based on the measurement instruction acquired from reception signal processing section 404. The measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。 For example, the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal. The measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like. The measurement result may be output to the control unit 401.
 なお、送受信部203は、下り共有チャネル(例えば、PDSCH)のスケジュールのための下り制御情報(DCI)(DLアサインメントなど)を受信してもよい。送受信部203は、サーチスペース設定に関する設定情報(例えば、SearchSpace情報要素)、CORESETに関する設定情報(例えば、ControlResourceSet情報要素)などを無線基地局10から受信してもよい。 Note that the transmission / reception unit 203 may receive downlink control information (DCI) (DL assignment or the like) for scheduling a downlink shared channel (for example, PDSCH). The transmission / reception unit 203 may receive, from the wireless base station 10, setting information (for example, a SearchSpace information element) related to search space setting, setting information (for example, a ControlResourceSet information element) related to CORESET.
 制御部401は、上記設定情報(サーチスペース設定に関する設定情報及びCORESETに関する設定情報の少なくとも一方)に基づいて、ある制御リソースセット(CORESET:COntrol REsource SET)に含まれるPDCCH(Physical Downlink Control Channel)候補又はアグリゲーションレベルごとの送信構成指示(TCI:Transmission Configuration Indicator)の状態(TCI状態(TCI-state))を決定(特定、判断などと呼ばれてもよい)してもよい。 The control unit 401 determines a PDCCH (Physical Downlink Control Channel) candidate included in a certain control resource set (CORESET: Control REsource Set) based on the setting information (at least one of the setting information related to the search space setting and the setting information related to the CORSET). Alternatively, the state (TCI-state) of a transmission configuration instruction (TCI: Transmission \ Indicator) for each aggregation level may be determined (may be referred to as specification, determination, or the like).
 制御部401は、上記設定情報に基づいて、複数のCORESETにわたって1つのPDCCH候補がマップされる(マッピングされる、割り当てられる、送信されるなどと表現されてもよい)と想定してもよい。 The control unit 401 may assume that one PDCCH candidate is mapped (may be expressed as being mapped, assigned, transmitted, etc.) over a plurality of coresets based on the configuration information.
 制御部401は、上記設定情報に基づいて、複数のCORESETのそれぞれにおいて同じ下り制御情報(DCI)が送信されると想定してもよい。 The control unit 401 may assume that the same downlink control information (DCI) is transmitted in each of a plurality of resets based on the setting information.
 制御部401は、複数のサーチスペースのPDCCH候補をソフト合成することを上記設定情報に基づいて判断してもよい。例えば、制御部401は、上記設定情報に基づいて、前記複数のCORESETの一部(例えば、第1のCORESET)に対応する第1のサーチスペースセットのPDCCH候補を、前記複数のCORESETの別の一部(例えば、第2のCORESET)に対応する第2のサーチスペースセットのPDCCH候補とソフト合成してもよい。 The control unit 401 may determine that the PDCCH candidates of a plurality of search spaces are soft-combined based on the setting information. For example, the control unit 401 may determine a PDCCH candidate of a first search space set corresponding to a part of the plurality of RESETs (for example, a first RESET) based on the setting information, You may soft-combine with the PDCCH candidate of the 2nd search space set corresponding to a part (for example, 2nd CORESET).
 これらのPDCCH候補で送信されるDCIは、同じDCIであってもよいし、1つのDCIの異なる部分であってもよい。なお、第1のCORESET及び第2のCORESETは、それぞれ別のCORESETとして(別々のCORESET設定によって)設定されてもよいし、同じ1つのCORESETの部分として(1つのCORESET設定によって)設定されてもよい。 DCThe DCI transmitted in these PDCCH candidates may be the same DCI or different parts of one DCI. Note that the first and second coresets may be set as different coresets (by separate coreset settings) or may be set as the same single coreset part (by one coreset setting). Good.
 制御部401は、PDCCH候補のブラインド復号の回数を、複数のCORESETに適用されるソフト合成を考慮してカウントしてもよい。例えば、制御部401は、2つのCORESETで送信される2つのPDCCH(DCI)にソフト合成が適用される場合には、これらの復号回数を1回又は2回とカウントしてもよい。 Control section 401 may count the number of times of blind decoding of PDCCH candidates in consideration of software combining applied to a plurality of coresets. For example, when soft combining is applied to two PDCCHs (DCIs) transmitted by two coresets, the control unit 401 may count the number of times of decoding to one or two.
 制御部401は、DCIに基づくデータ(PDSCH)の受信処理を制御してもよい。また、制御部401は、DCI又はデータの復号結果を上位レイヤに伝送し、当該上位レイヤにおいて重複するパケット(DCI又はデータ)が発見される場合には、当該重複するパケットの少なくとも1つを廃棄してもよい。 The control unit 401 may control a process of receiving data (PDSCH) based on DCI. Further, the control unit 401 transmits the decoding result of the DCI or data to the upper layer, and when an overlapping packet (DCI or data) is found in the upper layer, discards at least one of the overlapping packet. May be.
 なお、「複数のCORESET」は、それぞれ異なるTCI状態に対応する異なるCORESETであってもよい。各TCI状態は、それぞれ別々のTRPに対応してもよい。 Note that “a plurality of coresets” may be different coresets corresponding to different TCI states. Each TCI state may correspond to a separate TRP.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。
(Hardware configuration)
Note that the block diagram used in the description of the above-described embodiment shows blocks in functional units. These functional blocks (components) are realized by an arbitrary combination of at least one of hardware and software. In addition, a method for implementing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically combined, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.) and using these multiple devices.
 例えば、本開示の一実施形態における無線基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a wireless base station, a user terminal, or the like according to an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method according to the present disclosure. FIG. 14 is a diagram illustrating an example of a hardware configuration of the radio base station and the user terminal according to the embodiment. The above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more devices shown in the drawing, or may be configured without including some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Further, the processing may be executed by one processor, or the processing may be executed by two or more processors simultaneously, sequentially, or by using another method. Note that the processor 1001 may be implemented by one or more chips.
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 The functions of the radio base station 10 and the user terminal 20 are performed by, for example, reading predetermined software (program) on hardware, such as the processor 1001 and the memory 1002, so that the processor 1001 performs an arithmetic operation and the communication device 1004 via the communication device 1004. It is realized by controlling communication and controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like. For example, the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 The processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operation described in the above embodiment is used. For example, the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be similarly implemented.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.)), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured. The storage 1003 may be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission line interface 106, and the like may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input. The output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 The devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
Note that terms described in the present disclosure and terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning. For example, at least one of the channel and the symbol may be a signal (signaling). Also, the signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard. A component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The radio frame may be configured by one or a plurality of periods (frames) in the time domain. The one or more respective periods (frames) forming the radio frame may be referred to as a subframe. Furthermore, a subframe may be configured by one or more slots in the time domain. The subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception. At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be configured by one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be constituted by one or more symbols in the time domain. Also, minislots may be called subslots. A minislot may be made up of a smaller number of symbols than slots. A PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. The radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding thereto. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI: Transmission @ Time @ Interval), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot is called a TTI. You may. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be. Note that the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI means, for example, a minimum time unit of scheduling in wireless communication. For example, in the LTE system, a radio base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, a code word, or a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is called a TTI, one or more TTIs (ie, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like. A TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms. The TTI having the TTI length described above may be replaced with the TTI.
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 The resource block (RB: Resource Block) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12. The number of subcarriers included in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 R Also, the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI. One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or a plurality of RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 {Also, a resource block may be composed of one or more resource elements (RE: Resource @ Element). For example, one RE may be a radio resource area of one subcarrier and one symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A bandwidth part (BWP: Bandwidth @ Part) (which may also be referred to as a partial bandwidth or the like) may represent a subset of contiguous common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good. Here, the common RB may be specified by an index of the RB based on the common reference point of the carrier. A PRB may be defined in a BWP and numbered within the BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP). For a UE, one or more BWPs may be configured in one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 少 な く と も At least one of the configured BWPs may be active, and the UE may not have to assume transmitting and receiving a given signal / channel outside the active BWP. Note that “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures of the above-described radio frame, subframe, slot, minislot, and symbol are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The number of subcarriers, the number of symbols in a TTI, the symbol length, the configuration such as the cyclic prefix (CP) length can be variously changed.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Further, the information, parameters, and the like described in the present disclosure may be represented using an absolute value, may be represented using a relative value from a predetermined value, or may be represented using another corresponding information. May be represented. For example, a radio resource may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 名称 Names used for parameters and the like in the present disclosure are not limited in any way. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure. The various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 情報 In addition, information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to at least one of the upper layer. Information, signals, and the like may be input and output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 (4) Information and signals input and output may be stored in a specific location (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method. For example, the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。 {Note that the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. The RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like. Also, the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, the notification of the predetermined information (for example, the notification of “X”) is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1) or by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, regardless of whether it is called software, firmware, middleware, microcode, a hardware description language, or any other name, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 ソ フ ト ウ ェ ア In addition, software, instructions, information, and the like may be transmitted and received via a transmission medium. For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。 用語 As used in this disclosure, the terms “system” and “network” may be used interchangeably.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “transmission power”, “phase rotation”, “antenna port”, “antenna port group”, “layer”, “ Terms such as "number of layers," "rank," "beam," "beam width," "beam angle," "antenna," "antenna element," "panel," etc., may be used interchangeably.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(TP:Transmission Point)」、「受信ポイント(RP:Reception Point)」、「送受信ポイント(TRP:Transmission/Reception Point)」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, “base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “ "Access point (access @ point)", "transmission point (TP: Transmission @ Point)", "reception point (RP: Reception @ Point)", "transmission / reception point (TRP: Transmission / Reception @ Point)", "panel", "cell" Terms such as, "sector", "cell group", "carrier", "component carrier" may be used interchangeably. A base station may be referred to by a term such as a macro cell, a small cell, a femto cell, a pico cell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio 通信 Head)). The term “cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provide communication services in this coverage.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as “mobile station (MS)”, “user terminal”, “user equipment” (UE), and “terminal” may be used interchangeably. .
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , A handset, a user agent, a mobile client, a client or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。 少 な く と も At least one of the base station and the mobile station may be called a transmitting device, a receiving device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like. The moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (maned or unmanned). ). Note that at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
 また、本開示における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 無線 In addition, the wireless base station in the present disclosure may be replaced with a user terminal. For example, communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (for example, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration described above. In this case, the configuration may be such that the user terminal 20 has the function of the wireless base station 10 described above. Further, words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”). For example, an uplink channel, a downlink channel, and the like may be replaced with a side channel.
 同様に、本開示におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a wireless base station. In this case, the configuration may be such that the wireless base station 10 has the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, an operation performed by the base station may be performed by an upper node (upper node) in some cases. In a network including one or more network nodes having a base station (network @ nodes), various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility @ Management @ Entity), S-GW (Serving-Gateway), etc., but not limited thereto, or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 各 Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched and used in execution. In addition, the order of the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no inconsistency. For example, for the methods described in this disclosure, elements of the various steps are presented in an exemplary order, and are not limited to the specific order presented.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure is applicable to LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication). system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (Registered trademark) (Global System for Mobile Communications), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802. 20, UWB (Ultra-WideBand), Bluetooth (registered trademark) , A system using other appropriate wireless communication methods, a next-generation system extended based on these systems, and the like. A plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 記載 The term "based on" as used in the present disclosure does not mean "based solely on" unless stated otherwise. In other words, the description "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 い か な る Any reference to elements using designations such as "first," "second," etc., as used in the present disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in some way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 用語 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, “judgment (decision)” means judging, calculating, computing, processing, deriving, investigating, looking up (for example, a table, Searching in a database or another data structure), ascertaining, etc., may be regarded as "deciding".
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, “determination” includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 Also, “judgment (decision)” is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, and the like. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 判断 Also, “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected," "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements "connected" or "coupled" to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, where two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, the radio frequency domain, microwave It can be considered to be "connected" or "coupled" to each other using electromagnetic energy having a wavelength in the region, the light (both visible and invisible) regions, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 に お い て In the present disclosure, the term “A and B are different” may mean that “A and B are different from each other”. The term may mean that “A and B are different from C”. Terms such as "separate" and "coupled" may be construed similarly to "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where the terms “include”, “including” and variations thereof are used in the present disclosure, these terms are as inclusive as the term “comprising” Is intended. Further, the term "or" as used in the present disclosure is not intended to be an exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the present disclosure may include that the nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be embodied as modifications and changes without departing from the spirit and scope of the invention determined based on the description in the claims. Therefore, the description of the present disclosure is intended to be illustrative and does not bring any restrictive meaning to the invention according to the present disclosure.

Claims (2)

  1.  サーチスペース設定に関する設定情報を受信する受信部と、
     前記設定情報に基づいて、複数の制御リソースセット(CORESET:COntrol REsource SET)のそれぞれにおいて同じ下り制御情報が送信されると想定し、当該下り制御情報に基づくデータの受信処理を制御する制御部と、を有し、
     前記制御部は、前記データの復号結果を上位レイヤに伝送し、当該上位レイヤにおいて重複するパケットが発見される場合には、当該重複するパケットの少なくとも1つを廃棄することを特徴とするユーザ端末。
    A receiving unit that receives setting information related to search space setting;
    Based on the setting information, it is assumed that the same downlink control information is transmitted in each of a plurality of control resource sets (CORESET: Control RESET SET), and a control unit that controls a data reception process based on the downlink control information. , And
    The user terminal, wherein the control unit transmits a decoding result of the data to an upper layer, and when an overlapping packet is found in the upper layer, discards at least one of the overlapping packets. .
  2.  サーチスペース設定に関する設定情報を受信するステップと、
     前記設定情報に基づいて、複数の制御リソースセット(CORESET:COntrol REsource SET)のそれぞれにおいて同じ下り制御情報が送信されると想定し、当該下り制御情報に基づくデータの受信処理を制御するステップと、
     前記データの復号結果を上位レイヤに伝送し、当該上位レイヤにおいて重複するパケットが発見される場合には、当該重複するパケットの少なくとも1つを廃棄するステップと、を有することを特徴とする無線通信方法。
    Receiving setting information related to the search space setting;
    Based on the setting information, assuming that the same downlink control information is transmitted in each of a plurality of control resource sets (CORESET: Control RESET SET), and controlling a data reception process based on the downlink control information;
    Transmitting a decoding result of the data to an upper layer, and discarding at least one of the duplicate packets when a duplicate packet is found in the upper layer. Method.
PCT/JP2018/023167 2018-06-18 2018-06-18 User terminal and wireless communication method WO2019244223A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020525104A JPWO2019244223A1 (en) 2018-06-18 2018-06-18 User terminal and wireless communication method
PCT/JP2018/023167 WO2019244223A1 (en) 2018-06-18 2018-06-18 User terminal and wireless communication method
JP2022203042A JP2023029395A (en) 2018-06-18 2022-12-20 Terminal, wireless communication method, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023167 WO2019244223A1 (en) 2018-06-18 2018-06-18 User terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2019244223A1 true WO2019244223A1 (en) 2019-12-26

Family

ID=68982787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023167 WO2019244223A1 (en) 2018-06-18 2018-06-18 User terminal and wireless communication method

Country Status (2)

Country Link
JP (2) JPWO2019244223A1 (en)
WO (1) WO2019244223A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022067501A1 (en) * 2020-09-29 2022-04-07 Lenovo (Beijing) Limited Methods and apparatus of resource mapping and signaling indication for joint coreset for enhanced pdcch transmission with multiple trps
WO2022078486A1 (en) * 2020-10-15 2022-04-21 展讯通信(上海)有限公司 Communication method and apparatus, and device
CN115136708A (en) * 2020-02-13 2022-09-30 三星电子株式会社 Method and apparatus for transmitting downlink control information for cooperative communication
CN115136639A (en) * 2020-02-20 2022-09-30 株式会社Ntt都科摩 Terminal, wireless communication method, and base station
EP4125235A1 (en) * 2021-07-29 2023-02-01 MediaTek Inc. Method and user equipment for transmission configuration indication (tci) state application
JP2023509907A (en) * 2020-01-21 2023-03-10 中興通訊股▲ふん▼有限公司 Systems and methods for reference signaling design and configuration in wireless communication networks
JP2023526813A (en) * 2020-05-22 2023-06-23 テレフオンアクチーボラゲット エルエム エリクソン(パブル) PDCCH Diversity Based on Single CORESET Across Multiple TRPs
CN116326026A (en) * 2020-07-31 2023-06-23 株式会社Ntt都科摩 Terminal, wireless communication method and base station
EP4222906A4 (en) * 2020-10-02 2024-07-03 Apple Inc Configuring and providing physical downlink control channel communications with improved reliability
US12089224B2 (en) 2019-04-19 2024-09-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, terminal device and network device
EP3952518B1 (en) * 2020-08-06 2024-09-11 Nokia Technologies Oy Control channel repetition with mapping scheme
JP7573753B2 (en) 2020-12-07 2024-10-25 北京小米移動軟件有限公司 COMMUNICATION METHOD, COMMUNICATION DEVICE, AND STORAGE MEDIUM
US12143334B2 (en) 2020-10-02 2024-11-12 Apple Inc. Configuring and providing physical downlink control channel communications with improved reliability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139796A (en) * 2011-09-30 2017-08-10 インターデイジタル パテント ホールディングス インコーポレイテッド Device communication using reduced channel bandwidth

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139796A (en) * 2011-09-30 2017-08-10 インターデイジタル パテント ホールディングス インコーポレイテッド Device communication using reduced channel bandwidth

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO; INC: "Offline discussion for search space", 3GPP TSG-RAN1 NR_AD_HOC_1801 R1-1801079, vol. RAN WG1, 24 January 2018 (2018-01-24), pages 1 - 4, XP051385305 *
SAMSUNG: "On Search Space Design", 3GPP TSG-RAN1#90BIS R1-1717642, vol. RAN WG1, 2 October 2017 (2017-10-02), pages 1 - 8, XP051352257 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12089224B2 (en) 2019-04-19 2024-09-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, terminal device and network device
JP2023509907A (en) * 2020-01-21 2023-03-10 中興通訊股▲ふん▼有限公司 Systems and methods for reference signaling design and configuration in wireless communication networks
JP7541581B2 (en) 2020-01-21 2024-08-28 中興通訊股▲ふん▼有限公司 System and method for reference signaling design and configuration in wireless communication networks - Patents.com
CN115136708A (en) * 2020-02-13 2022-09-30 三星电子株式会社 Method and apparatus for transmitting downlink control information for cooperative communication
CN115136639A (en) * 2020-02-20 2022-09-30 株式会社Ntt都科摩 Terminal, wireless communication method, and base station
JP2023526813A (en) * 2020-05-22 2023-06-23 テレフオンアクチーボラゲット エルエム エリクソン(パブル) PDCCH Diversity Based on Single CORESET Across Multiple TRPs
CN116326026A (en) * 2020-07-31 2023-06-23 株式会社Ntt都科摩 Terminal, wireless communication method and base station
EP3952518B1 (en) * 2020-08-06 2024-09-11 Nokia Technologies Oy Control channel repetition with mapping scheme
JP7569923B2 (en) 2020-08-06 2024-10-18 ノキア テクノロジーズ オサケユイチア Control channel repetition using a mapping scheme - Patents.com
WO2022067501A1 (en) * 2020-09-29 2022-04-07 Lenovo (Beijing) Limited Methods and apparatus of resource mapping and signaling indication for joint coreset for enhanced pdcch transmission with multiple trps
US12143334B2 (en) 2020-10-02 2024-11-12 Apple Inc. Configuring and providing physical downlink control channel communications with improved reliability
EP4222906A4 (en) * 2020-10-02 2024-07-03 Apple Inc Configuring and providing physical downlink control channel communications with improved reliability
WO2022078486A1 (en) * 2020-10-15 2022-04-21 展讯通信(上海)有限公司 Communication method and apparatus, and device
JP7573753B2 (en) 2020-12-07 2024-10-25 北京小米移動軟件有限公司 COMMUNICATION METHOD, COMMUNICATION DEVICE, AND STORAGE MEDIUM
EP4125235A1 (en) * 2021-07-29 2023-02-01 MediaTek Inc. Method and user equipment for transmission configuration indication (tci) state application
TWI816490B (en) * 2021-07-29 2023-09-21 聯發科技股份有限公司 Method and user equipment for transmission configuration indication (tci) state application

Also Published As

Publication number Publication date
JP2023029395A (en) 2023-03-03
JPWO2019244223A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
WO2019244222A1 (en) User terminal and wireless communication method
WO2019244218A1 (en) User terminal
WO2019244221A1 (en) User terminal
WO2019244223A1 (en) User terminal and wireless communication method
WO2020054036A1 (en) User equipment and wireless communication method
WO2020026296A1 (en) User terminal and wireless communication method
WO2020026454A1 (en) User terminal and wireless communications method
JP7096334B2 (en) Terminals, base stations, wireless communication methods and systems
WO2020039484A1 (en) User equipment
JP7210591B2 (en) Terminal, wireless communication method, base station and system
WO2020003443A1 (en) User equipment and radio base station
WO2020026292A1 (en) Base station
WO2020021725A1 (en) User terminal and wireless communication method
WO2020031353A1 (en) User terminal and wireless communication method
WO2018203409A1 (en) User terminal, and wireless communication method
EP3823337B1 (en) User equipment and base station
WO2020031354A1 (en) User terminal and wireless communication method
JP7285845B2 (en) Terminal, wireless communication method and system
WO2019215895A1 (en) User terminal
WO2020026291A1 (en) User terminal
AU2018433296B2 (en) User terminal
WO2019234929A1 (en) User terminal and wireless communication method
JP7248685B2 (en) Terminal, wireless communication method, base station and system
CN112640547B (en) Terminal, wireless communication method, base station and system
WO2020031324A1 (en) User equipment and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525104

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923463

Country of ref document: EP

Kind code of ref document: A1