Nothing Special   »   [go: up one dir, main page]

WO2019138965A1 - Wheel bearing apparatus and vehicle provided with wheel bearing apparatus - Google Patents

Wheel bearing apparatus and vehicle provided with wheel bearing apparatus Download PDF

Info

Publication number
WO2019138965A1
WO2019138965A1 PCT/JP2019/000077 JP2019000077W WO2019138965A1 WO 2019138965 A1 WO2019138965 A1 WO 2019138965A1 JP 2019000077 W JP2019000077 W JP 2019000077W WO 2019138965 A1 WO2019138965 A1 WO 2019138965A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
bearing
rotor
stator
wheel bearing
Prior art date
Application number
PCT/JP2019/000077
Other languages
French (fr)
Japanese (ja)
Inventor
雄司 矢田
健太郎 西川
康之 藤田
光生 川村
浩希 藪田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019138965A1 publication Critical patent/WO2019138965A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to a wheel bearing device having a function of giving a traveling driving force to an automobile, a vehicle provided with the wheel bearing device, and a power unit thereof.
  • An in-wheel motor incorporating a motor inside the wheel contributes to the improvement of the fuel efficiency of the vehicle through the generation of power when driving and decelerating the vehicle.
  • a high-power motor into the wheel
  • the components around the wheel also had to be changed from conventional products.
  • Patent Document 1 as a direct drive type in-wheel motor system, a rotor of a motor is installed in a hub portion via a hollow cylindrical plate, and a stator of the motor is mounted around the foot of a vehicle via a buffer mechanism. It has been proposed to be attached to frame parts.
  • the brake caliper interferes with the motor, making it difficult to install the brake. Then, in order to solve this problem, as shown in FIG. 14, a generator which is smaller in diameter and smaller in size than the outer peripheral portion 12b of the brake rotor 12 and which assists traveling drive and generates electric power by the motor 3 which can be stored in the wheel.
  • a bearing device for wheeled wheels was proposed.
  • the wheel bearing 2 in the generator equipped wheel bearing of this proposal example is an inner ring rotation, and the stator of the motor 3 is provided on the outer periphery of the fixed ring which is the outer ring 4.
  • a rotor 19 of the motor 3 is provided.
  • the generator-equipped wheel bearing device of the above-described example can be accommodated in the wheel, and the components around the wheel can be used as they are in the conventional configuration in which the wheel bearing device having no power generation or drive function is installed. There is.
  • the motor output can not be increased, and the fuel efficiency improvement effect by the assistance of the driving force and the power recovery at the time of the braking operation is small, and it can not meet the high fuel efficiency target in the automobile industry in recent years.
  • the present invention solves the above-mentioned problems, and an object thereof is a power unit whose size is limited by providing a power unit and reducing the temperature rise due to the heat generation of its coil by circulating the cooling oil. It is an object of the present invention to provide a bearing device for a wheel, a vehicle, and a power unit thereof in which heat generation at the time of a large current can be suppressed to a low level.
  • the generator-equipped wheel bearing apparatus includes a fixed wheel, a wheel bearing having a rotary wheel rotatably supported on the fixed wheel via a rolling element and on which a vehicle wheel is mounted, and mounted on the fixed wheel
  • a wheel bearing device comprising: a power unit having a fixed stator and a rotor attached to the rotating wheel, A clearance between a stator and a rotor formed between the stator and the rotor, a pair of coil end accommodation spaces formed in the power unit around coil ends on both sides of the stator, and an inboard side of the wheel bearing
  • a case is provided for sealing the space adjacent to the bearing end located adjacent in the axial direction of the rotating wheel,
  • a circulation force generating means is provided for circulating the cooling oil in the circulation oil passage provided in the case.
  • the cooling oil is circulated in the circulation oil passage by the circulation force of the circulation force generation means, whereby the winding coil of the stator is cooled.
  • the heat of the cooling oil in the circulating oil path is dissipated by heat conduction to the vehicle body from the location where the case contacts the vehicle body via the frame frame parts such as knuckles, etc., and it is air cooled and kept at low temperature. .
  • the winding coil of the stator is cooled, even in the case of a power unit whose size is limited, heat generation at a large current is suppressed to a low level, and the problem of excessive temperature rise does not occur.
  • a communication oil passage passing through the inside of the fixed wheel is provided, and the space adjacent to the bearing end, the communication oil passage, one of the coil end accommodation spaces,
  • the circulation oil passage may be formed which sequentially circulates through the stator-rotor gap, the other coil end accommodation space, and the space adjacent to the bearing end. In this configuration, cooling oil flows around the coil end, and the coil end is directly cooled by the cooling oil, so that the cooling efficiency is good.
  • the circulating force generation means may be configured to circulate the cooling oil by relative rotation of the rotating wheel and the fixed wheel of the wheel bearing. In this configuration, no separate drive source is required to circulate the cooling oil.
  • the wheel bearing is an inner ring rotating type in which the rotating wheel is an inner ring, the power unit is an outer rotor type, and the case is fixed to the fixed ring. It may have a fixed case and a rotating case fixed to the rotating wheel and the rotor.
  • the rotating case is fixed to the rotor, the case of the generator does not have to be provided separately from the case, and the structure can be made compact.
  • it is an outer rotor type and a moment generation
  • the fixed wheel has a fixed wheel main body having a raceway surface for rolling the rolling elements, and an intermediate member which is externally fitted to the fixed wheel main body and the stator is attached to the outer periphery.
  • the communication fluid passage may be formed in the intermediate member. If the fixed ring of the wheel bearing is a member having a raceway surface for rolling element rolling, it is difficult to attach the stator of the power unit and to form the circulating oil path. However, when the intermediate member is provided to attach the stator and form the communication oil passage, the communication oil passage can be easily formed. In addition, when the whole of the said fixed ring is used as integral components, a number of parts may be small and an assembly man-hour will also be reduced.
  • the circulating force generating means may include an impeller located in the space adjacent to the bearing end and coaxially connected to the rotating wheel. If the circulating force generating means is an impeller, lubricating force of the circulating oil passage can be efficiently obtained, and the impeller can be rotated by connecting the rotating wheel of the wheel bearing directly to the impeller, and the circulating force generating means The configuration of is simplified. In addition, when providing an impeller, you may use together a thing different from an impeller as a circulation force generation
  • a secondary cooling device for cooling the cooling oil flowing through the circulating oil passage may be provided in the middle of the circulating oil passage.
  • the secondary cooling device complicates the configuration, the temperature rise of the cooling oil passage can be suppressed to a lower level to further reduce the temperature rise of the winding coil.
  • the circulation force generation means may include a pump that enhances the circulation force of the cooling oil in the circulation oil passage.
  • a pump is provided as the circulating force generating means, the cooling oil can be lubricated at a higher speed, and the temperature rise of the winding coil can be suppressed more efficiently.
  • the pressure generated by the relative rotation of the rotor and the stator on the circumferential surface constituting the stator-rotor gap in one or both of the rotor and the stator as the circulating force generating means may have a thread groove that produces a gradient.
  • the groove is formed on the peripheral surface of one or both of the rotor and the stator forming the stator-rotor gap, the rotation of the rotor generates a pressure gradient in the stator-rotor gap cooling oil.
  • the screw groove may be used in combination with other circulating force generating means such as an impeller.
  • the wheel bearing may be a bearing that supports a driven wheel that is mechanically disconnected from the main drive source of the vehicle.
  • the driving force of the power unit can be applied to the driven wheel, and the driving force of the driven wheel can be added to the driving force of the main drive source to drive the vehicle.
  • the wheel bearing may be a bearing that supports a driving wheel mechanically coupled to a main drive source of the vehicle.
  • the drive wheel can be driven by adding the drive force of the power unit to the drive force of the main drive source.
  • a vehicle according to the present invention includes the wheel bearing device of any of the above-described configurations according to the present invention. According to the vehicle of this configuration, the effects described for the wheel bearing device of the present invention can be obtained.
  • the power plant according to the present invention is a power plant comprising a motor generator installed in a wheel bearing, A stator attached to a fixed wheel of the wheel bearing, and a rotor attached to a rotating wheel of the wheel bearing;
  • the power unit is an outer rotor type in which the stator is located on the outer periphery of the wheel bearing and the rotor is located radially outward of the stator.
  • the entire power unit is smaller in diameter than an outer peripheral portion of a brake rotor attached to the rotary wheel, which is a portion to which the brake caliper is pressed, and is provided on the outboard side of the rotary wheel in the power unit.
  • the entire portion except the mounting portion to the hub flange is located in an axial range between the hub flange and a vehicle mounting surface on the inboard side of the wheel bearing, A clearance between a stator and a rotor formed between the stator and the rotor, a pair of coil end accommodation spaces formed in the generator around coil ends on both sides of the stator, and an inboard side of the wheel bearing
  • There is provided a case for sealing a bearing end adjacent space located adjacent to each other in the axial direction of the rotating wheel A circulation force generating means is provided for circulating the cooling oil in the circulation oil passage provided in the case.
  • the wheel bearing device 1 includes a wheel bearing 2 and a motor 3 which is a motive power device including a motor generator having a power generation function.
  • the wheel bearing 2 has an outer ring 4 which is a fixed ring, rolling elements 6 in double rows, and an inner ring 5 which is a rotating ring.
  • the inner ring 5 is rotatably supported by the outer ring 4 via the rolling elements 6 in double rows.
  • the outer ring 4 is composed of an outer ring main body 4a having a raceway surface and an intermediate member 4b fitted to the outer periphery of the outer ring main body 4a.
  • the inner ring 5 has a hub flange 7 at a location protruding toward the outboard side in the axial direction with respect to the outer ring 4.
  • the inner ring 5 comprises, in the illustrated example, a hub ring 5a having the hub flange 7 and a partial inner ring 5b fitted on the outer periphery of the inboard end of the hub ring 5a.
  • the outer ring 4 is attached by bolts or the like to an undercarriage frame part 8 such as a knuckle of a suspension system of a vehicle via a wheel bearing 2 and a case 23 serving as an outer shell of the motor 3 to support the weight of the vehicle.
  • an undercarriage frame part 8 such as a knuckle of a suspension system of a vehicle via a wheel bearing 2 and a case 23 serving as an outer shell of the motor 3 to support the weight of the vehicle.
  • the rim 11 of the wheel 10 and the brake rotor 12 are attached to the side surface on the outboard side of the hub flange 7 by the hub bolt 13 in a state where the rim 11 and the brake rotor 12 overlap in the axial direction.
  • a tire (not shown) is attached to the outer periphery of the rim 11.
  • the brake 17 is a friction brake provided with a disc type brake rotor 12 and a brake caliper 22.
  • the brake rotor 12 is formed of an annular and flat disk-like portion 12a overlapping the hub flange 7 and an outer peripheral portion 12b.
  • the outer peripheral portion 12 includes a cylindrical portion 12ba extending from the outer periphery of the disk portion 12a to the outer peripheral side of the motor 3 and an outer diameter side flat portion 12bb extending radially outward from the tip of the cylindrical portion 12ba.
  • the brake rotor 12 is made of, for example, a pressed product of a steel plate.
  • the brake caliper 22 has a pair of friction pads 22 a sandwiching the outer diameter side flat plate portion 12 bb of the outer peripheral portion 12 b of the brake rotor 12.
  • the brake caliper 22 is attached to the underbody frame part 8.
  • the type of the brake caliper 22 is not particularly limited, and may be, for example, either hydraulic or mechanical, or may be motor.
  • the motor 3 is a drive assisting electric motor capable of rotationally driving the wheel 10 by being supplied with power, and is used as a generator at the time of regenerative braking.
  • the motor 3 has a stator 18 attached to the outer peripheral surface of the outer ring 4 and a rotor 19 attached to the hub flange 7 of the inner ring 5.
  • the motor 3 in the illustrated example is an outer rotor type IPM (Interior Permanent Magnet Motor) synchronous motor.
  • a surface permanent magnet motor (SPM) synchronous motor can also be used as the motor 3.
  • SR motor switched reluctance motor
  • IM induction motor
  • synchronous motor each type of distributed winding and concentrated winding can be adopted as a winding type of the stator 18.
  • the whole of the motor 3 is smaller in diameter than the outer peripheral portion 12 b of the brake rotor 12.
  • the motor 3 has substantially the entire mounting surface S of the hubn flange 7 and the frame frame part 8 (that is, the inboard side of the wheel bearing 2) except for the mounting portion to the hub flange 7 and the fixing case 23a of the case 23 described later. In the axial range between the
  • the stator 18 of the motor 3 has a core 18a and a coil 18b wound around teeth 18aa (see FIG. 4) of the core 18a.
  • a portion axially projecting from the core 18a of the coil 18b constitutes a coil end 18ba.
  • the coil 18 b is connected to the wire 60.
  • the motor rotor 19 includes a lateral cup-shaped rotation case 23b serving as a motor case, a magnetic body 19b provided on the inner periphery of the rotation case 23b, and a permanent magnet (not shown) incorporated in the magnetic body 19b.
  • the bottom of the rotation case 23 b is attached to the hub flange 7.
  • the center of the bottom of the rotating case 23 b has a central opening that allows the outboard side portion to project beyond the hub flange 7 of the inner ring 5.
  • the rotation case 23b may be attached to the hub flange 7 by fastening or fixing the bolt 13 or by fitting, welding, bonding or the like to the outer peripheral surface of the hub flange 7.
  • the outer peripheral surface of the rotation case 23 b is close to the inner peripheral surface of the cylindrical portion 12 b of the brake rotor 12.
  • the wheel bearing 2 and the motor 3 are entirely covered by a case 23.
  • the case 23 is composed of the rotating case 23b and the fixed case 23a.
  • the fixed case 23a closes the inboard side end of the cup-shaped rotation case 23b.
  • the inboard end of the outer ring 4 which is a fixed ring of the wheel bearing 2 is fixed to the inner side surface of the fixed case 23a.
  • the inboard end of the intermediate member 4b of the outer ring 4 is fixed to the inner side surface of the fixed case 23a.
  • the space between the outer peripheral portion of the fixed case 23a and the opening edge of the rotating case 23b is sealed by an annular seal member 25, and the entire internal space of the case 23 becomes a lubricating oil filled space.
  • the sealing member 25 is a member for sealing the gap between the fixed case 23a and the rotating case 23b in a relatively rotatable manner.
  • the sealing member 25 may be a slinger attached to one of the fixed case 23a and the rotating case 23b; And a sealing lip (not shown) that is in sliding contact with the slinger.
  • the electric wire 60 extending from the coil end 18 ba of the motor 3 is inserted into the electric wire insertion hole provided in the fixed case 23 a and drawn out of the case 23.
  • the outer opening of the wire insertion hole is provided with a seal 61 for sealing a gap between the wire and the wire.
  • a rotor end ring member 27 is attached to the inner periphery of the inboard end of the rotation case 23b, and the seal between the rotor end ring member 27 and the fixed case 23a is made by the seal member 25.
  • the rotor end ring member 27 doubles as a positioning member in the axial direction of the permanent magnet contained in the magnetic body 19 b.
  • a seal member 28 such as an O-ring is interposed between the outer peripheral surface of the rotor end ring member 27 and the inner peripheral surface of the rotation case 23b.
  • the fixed case 23 a is fixed to the undercarriage frame part 8, whereby the entire wheel bearing device 1 is fixed to the undercarriage frame part 8.
  • a rotation sensor 63 for detecting the rotation of the inner ring 5 is provided on the inboard side of the inner ring 5 of the wheel bearing 2.
  • the rotation sensor 63 comprises a resolver or a magnetic encoder.
  • the rotation sensor 63 is composed of a rotating detected portion 63a and a sensor portion 63b that detects the detected portion 63a.
  • the to-be-detected part 63a is cyclically
  • the detected portion 63 a is fitted to the outer periphery of the rotation sensor shaft 64 coaxially mounted on the inboard side surface of the inner ring 5 with the inner ring 5 and attached to the rotation sensor shaft 64 by a detected portion fixing bolt 65.
  • the sensor portion 63 b is formed in an annular shape in which the detection surface faces the outer peripheral surface of the detected portion 63 a.
  • the sensor portion 63 b is attached to a flange portion projecting on the inner periphery of the intermediate member 4 b of the outer ring 4 by a sensor portion fixing bolt 91.
  • the intermediate member 4b of the outer ring 4 has a thick-walled cylindrical shape that extends more inboard than the outer ring main body 4a.
  • a communicating oil passage 66 extending in the axial direction is provided at a plurality of circumferential positions inside the intermediate member 4b.
  • One end of the communication oil passage 66 opens at the end face on the outboard side of the intermediate member 4b, and the other end opens at the inner circumferential surface near the inboard end of the intermediate member 4b.
  • case wall communication paths 67 communicating with the inner circumferential surface from the surface facing the stator 18 are formed at a plurality of locations in the circumferential direction.
  • stator-rotor gap 68 As a part constituting the case internal space of the case 23, a stator-rotor gap 68 generated between the stator 18 and the rotor 19 of the motor 3, coil end accommodation spaces 69, 70 on both sides of the stator 18, and wheels There is a bearing end adjacent space 71 adjacent to the inner ring 5 of the bearing 2 on the inboard side.
  • the stator-rotor gap 68 includes a coil-to-coil gap 72 generated between adjacent teeth 18 aa of the core 18 a.
  • Impeller 74 is provided in the case 23 as a circulating force generating means for circulating the cooling oil of the circulating oil passage 73.
  • the impeller 74 is coaxially fixed to the inner ring 5 on the inboard side of the inner ring 5 at the end face of the detected portion fixing bolt sensor fixing bolt 65.
  • the opening on the bearing end adjacent space 71 side of the communication oil passage 66 is at an axial position facing the outer periphery of the impeller 74.
  • the impeller 74 as shown in FIG. 3, includes a truncated cone-shaped central portion 74a and a plurality of blades 74b provided circumferentially along the outer periphery of the central portion 74a.
  • the central portion 74a has a concave shape as shown in FIGS. 1 and 2 in the shape of the cross section including the axial center.
  • the insulating coating film such as varnish covering the winding coil 18b may be deteriorated by the cooling oil to cause insulation failure. Therefore, it is preferable to use an insulating material that is not deteriorated by the cooling oil. It is preferable to use a phenol-based or alkyd-based insulating varnish material as the insulating coating film that is less likely to cause such deterioration, whereby the problem of the insulating coating film deterioration can be solved. The same applies to the following embodiments.
  • the cooling oil is in direct contact with the winding coil 18b which is the heat source, so the cooling effect is large.
  • the structure of the flow channel is complicated, and it is difficult to achieve compactness.
  • measures such as infiltrating a heat dissipation resin for improving heat dissipation into coil magnetic pole portions adjacent to each other in the circumferential direction of the winding coil 18b are indispensable, in the cooling structure of this embodiment, the heat dissipation There is no need to penetrate the resin.
  • the circulation of the cooling oil is performed by utilizing the rotation of the wheel in operation, that is, the relative rotation between the rotating wheel and the fixed wheel of the wheel bearing 1, a new power source for rotating the impeller 74 is not necessary. .
  • the structure for circulating the cooling oil also contributes to the lubrication of the wheel bearing 2.
  • the motor 3 generates electric power by regenerative braking at the time of braking of the vehicle, but the heat generation at the time of electric power generation is suppressed in the same manner as at the time of driving, and sufficient power generation can be performed.
  • the whole of the motor 3 has a diameter smaller than that of the outer peripheral portion of the brake rotor 12, the outer peripheral portion of the brake rotor and the wheel bearing produced in a general vehicle
  • the auxiliary power unit can be installed by efficiently utilizing the space between them.
  • FIGS. 5 to 10 Other embodiments will be described in conjunction with FIGS. 5 to 10. In these embodiments, other than the matters particularly described, the second embodiment is the same as the first embodiment described above with reference to FIGS. 1 to 4.
  • the outer ring of the wheel bearing 2 has a split structure and an intermediate member having a communication oil passage is used for easy processing of the communication oil passage of the cooling oil, as shown in FIG.
  • the communication oil passage 66 may be provided with the outer ring 4 of the wheel bearing 2 as an integral structure.
  • the integral structure can simplify the structure.
  • a secondary cooling device 75 may be added as shown in FIG.
  • the secondary cooling device 75 includes a secondary coolant circulation path 76 having a portion 76 a along the case wall communication path 67 in the circulation oil path 73 and a pump 77 for circulating the coolant in the secondary coolant circulation path 76. And consists of.
  • the pump 77 is driven by a motor (not shown) different from the motor 3.
  • the coolant in the secondary coolant circulation path 76 obtained by cooling the lubricating oil in the circulation oil path 73 by heat exchange is cooled by heat conduction to the vehicle body and air cooling while flowing in the secondary coolant circulation path 76. Ru.
  • the presence of the secondary cooling device 75 complicates the configuration, but can further suppress the temperature rise of the cooling oil to further reduce the temperature rise of the winding coil 18b.
  • a pressure pump 78 is provided as a circulating force generating means. May be connected by the suction passage 79 and the discharge passage 80.
  • the discharge passage 80 opens at the axial center of the inboard side wall surface of the space 71 adjacent to the bearing end, and the suction passage 79 is connected to the coil end accommodation space 70 via another oil passage 81 provided in the fixed case 23a. It is done.
  • the pressure pump 78 is driven by another motor (not shown). In the case of this configuration, as compared with the case where the pump 74 is operated by the impeller 74 of FIG. 2, the cooling oil can be circulated at a higher speed by providing the high-performance pressure pump 78, and the cooling efficiency is increased.
  • a screw groove 82 is provided on the outer peripheral surface of the core 18 a of the stator 18 which constitutes the stator-rotor gap 68 to constitute a screw pump.
  • a screw pump formed by the screw groove 82 is added to the impeller 74 and provided.
  • a pressure gradient can be generated in the stator-rotor gap 68 by the rotation of the rotor of the motor 3 to increase the circulation speed.
  • the cooling efficiency of the winding coil 18b is further improved.
  • the screw groove 82 is provided on the inner peripheral surface of the rotor 19 instead of the configuration in which the screw groove 82 is provided on the outer peripheral surface of the stator 18 in the embodiment of FIG. Also in this configuration, a pressure gradient can be generated in the stator-rotor gap 68 by the rotation of the rotor 19 of the motor 3 to increase the circulation speed. Thereby, the cooling efficiency of the winding coil 18b is further improved.
  • FIG. 8 and the embodiment of FIG. 9 may be used in combination. That is, the screw groove 22 may be provided on both the outer peripheral surface of the stator 18 and the inner peripheral surface of the rotor 19 that constitute the stator-rotor gap 68.
  • the gap 82A between the permanent magnets 19c arranged in the circumferential direction on the inner peripheral surface of the magnetic body 19b of the rotor 19 may be inclined with respect to the axial direction. This also generates a pressure gradient in the stator-rotor gap 68.
  • FIG. 11 is a block diagram showing a conceptual configuration of a vehicle system using the wheel bearing device 1 according to any one of the embodiments.
  • a wheel bearing apparatus 1 in a vehicle having a driven wheel 10 B is the main drive source 35 mechanically unconnected, is mounted against the driven wheel 10 B.
  • Wheel bearing 2 in the bearing device for a wheel 1 (FIG. 1) is a bearing supporting the driven wheel 10 B.
  • the main drive source 35 is an internal combustion engine such as a gasoline engine or a diesel engine, or a motor generator (electric motor), or a hybrid drive source combining both.
  • the "motor generator” refers to an electric motor capable of generating power by rotation.
  • the vehicle 30 is a front wheel drive car whose front wheels are drive wheels 10 A and rear wheels are driven wheels 10 B, and the main drive source 35 is an internal combustion engine 35 a and a motor generator 35 b on the drive wheels side.
  • a hybrid vehicle hereinafter sometimes referred to as “HEV”).
  • Hybrids can be broadly divided into Strong Hybrids and Mild Hybrids, but Mild Hybrids, whose main drive source is an internal combustion engine, is a type that mainly assists driving with a motor when starting or accelerating. In the (electric car) mode, it can be distinguished from the strong hybrid because normal travel can be performed for a while but can not be performed for a long time.
  • Internal combustion engine 35a of the example of the figure is connected to the drive shaft of the drive wheel 10 A via the clutch 36 and speed reducer 37, the motor generator 35b of the driving wheel is connected to a reduction gear 37.
  • System for a vehicle includes a motor 3 for traveling aid for rotating driving of the driven wheels 10 B, the individual control means 39 for controlling the motor 3, the drive and the individual control means 39 provided in the upper ECU40 And an individual motor generator command means 45 for outputting a command for performing control of regeneration.
  • the generator 3A is connected to the storage means.
  • the storage means may be a battery (storage battery) or a capacitor, a capacitor, etc.
  • the type and mounting position on the vehicle 30 are not limited. In this embodiment, the low voltage battery 50 mounted on the vehicle 30 and The medium voltage battery 49 of the medium voltage battery 49 is used.
  • the driven wheel motor 3 is a direct drive motor that does not use a transmission.
  • the motor 3 also acts as a generator for converting kinetic energy of the vehicle 30 into electric power. Since the motor 3 has the rotor 19 attached to the inner ring 5 (FIG. 1) which is a hub wheel, when a current is applied to the motor 3, the inner ring 5 (FIG. 1) is rotationally driven. Regenerative power can be obtained by loading.
  • the drive voltage or regenerative voltage for driving the motor 3 to rotate is 100 V or less.
  • the host ECU 40 is a unit that performs integrated control of the vehicle 30, and includes a torque command generation unit 43.
  • the torque command generation unit 43 generates a torque command in accordance with signals of operation amounts respectively input from an accelerator operation unit 56 such as an accelerator pedal and a brake operation unit 57 such as a brake pedal.
  • the vehicle 30 includes an internal combustion engine 35a and the drive wheel of the motor 35b as the main drive source 35, and because with the two motors 3, 3 for driving two driven wheels 10 B, 10 B, respectively, the torque command Is distributed to the respective drive sources (35a, 35b, 3, 3) according to the rules defined in the respective drive sources (35a, 35b, 3, 3).
  • the torque command for the internal combustion engine 35a is transmitted to the internal combustion engine control means 47, and is used for valve opening control etc. by the internal combustion engine control means 47.
  • a torque command to the drive wheel side generator motor 35b is transmitted to the drive wheel side motor generator control means 48 and executed.
  • Torque commands for the driven wheels 3, 3 are transmitted to the individual control means 39, 39.
  • the part of the torque command distribution means 44 to be output to the individual control means 39, 39 is referred to as an individual motor generator command means 45.
  • the individual motor generator command means 45 also has a function of giving to the individual control means 39 a torque command serving as a command of a braking force with which the motor 3 shares braking by regenerative braking in response to the signal of the operation amount of the brake operation means 57. Prepare.
  • the individual control means 39 is an inverter device, and an inverter 41 for converting DC power of the medium voltage battery 49 into three-phase AC voltage, and a control unit 42 for controlling the output of the inverter 41 by PWM control etc.
  • the inverter 41 includes a bridge circuit (not shown) such as a semiconductor switching element or the like, and a charging circuit (not shown) for charging the medium voltage battery 49 with the regenerative power of the motor 3.
  • the individual control means 39 is provided separately for the two motors 3 and 3, it may be housed in a single housing, and the control unit 42 may be shared by both individual control means 39 and 39. .
  • FIG. 12 is a power supply system diagram as an example of a vehicle equipped with the vehicle system shown in FIG.
  • the low voltage battery 50 and the medium power battery 49 are provided as the battery, and both the batteries 49 and 50 are connected via the DC / DC converter 51.
  • the motor 35b on the drive wheel side of FIG. 15 is connected to the medium power system in parallel with the motor 3 on the driven wheel side, although not shown in FIG.
  • a low voltage load 52 is connected to the low voltage system, and a medium voltage load 53 is connected to the medium voltage system.
  • the low voltage battery 50 is a battery generally used in various automobiles as a power supply of a control system or the like, and is, for example, 12 V or 24 V.
  • the low voltage load 52 includes basic components such as a starter motor of the internal combustion engine 35a, lights, a host ECU 40, and other ECUs (not shown).
  • the low voltage battery 50 may be referred to as an auxiliary battery for electrical equipment accessories, and the medium voltage battery 49 may be referred to as an auxiliary battery for an electric system or the like.
  • the medium voltage battery 49 has a higher voltage than the low voltage battery 50 and is lower than a high voltage battery (100 V or more, for example, about 200 to 400 V) used in a strong hybrid vehicle etc. It is a voltage that does not cause a problem, and a 48V battery used in recent years for mild hybrids is preferable.
  • a medium voltage battery 49 such as a 48V battery can be mounted relatively easily on a vehicle equipped with a conventional internal combustion engine, and can reduce fuel consumption by power assist and regeneration with electric power as a mild hybrid.
  • the medium voltage load 53 of the 48V system is the accessory component, and is a power assist motor which is the motor 3 on the drive wheel side, an electric pump, an electric power steering, a supercharger, an air compressor, or the like.
  • a power assist motor which is the motor 3 on the drive wheel side, an electric pump, an electric power steering, a supercharger, an air compressor, or the like.
  • the vehicle system is suitable for accessory parts of such mild hybrid vehicles, and is applied as a power assist and a power regeneration part.
  • CMGs, GMGs, and belt-driven starter motors may be employed conventionally in mild hybrid vehicles, all of them are power assists for internal combustion engines or power devices. Or because it regenerates, it is affected by the efficiency of the transmission device and speed reducer.
  • the vehicle system of this example is mounted on the driven wheel 10B, it is separated from the main drive source such as the internal combustion engine 35a and the motor (not shown).
  • the kinetic energy of the vehicle body 1 can be used directly.
  • CMG, GMG, a belt drive type starter motor, etc. are mounted, it is necessary to consider considering from the design stage of the vehicle 30, and it is difficult to retrofit, but the system for this vehicle that fits in the driven wheel 10B
  • the motor 3 can be mounted with the same number of steps as part replacement even if it is a complete vehicle, and a system of 48 V can be configured even for a complete vehicle with only the internal combustion engine 35a.
  • auxiliary drive motor 35b is mounted on the vehicle equipped with the vehicle system of this embodiment as in the example of FIG. 11, the power assist amount and the regenerative power amount for the vehicle 30 can be increased. Although this contributes to the reduction of fuel consumption, the auxiliary drive motor 35b may not be mounted.
  • FIG. 13 shows an example in which the wheel bearing device 1 according to any of the embodiments is applied to the driving wheel 10A as a front wheel and the driven wheel 10B as a rear wheel.
  • the drive wheel 10A is driven by the main drive source 35 consisting of an internal combustion engine via the clutch 36 and the reduction gear 37.
  • the wheel bearing device 1 is installed to support and assist the drive wheels 10A and the driven wheels 10B.
  • the wheel bearing device 1 can be applied not only to the driven wheel 10B but also to the driving wheel 10A.
  • the vehicle system shown in FIGS. 11 and 12 has a function of generating power, it may be a system not performing rotational drive by power feeding.
  • the braking power can be generated by storing the regenerative power generated by the motor 3 in the medium voltage battery 49.
  • the braking performance can also be improved by using it together with or using the mechanical brake operating means 57.
  • the individual control means 39 can be configured as an AC / DC converter (not shown) rather than an inverter.
  • the AC / DC converter device has a function of charging the medium voltage battery 49 with the regenerative power of the motor 3 by converting a three-phase AC voltage into a DC voltage, and the control method is easy as compared with the inverter.
  • Case 23b rotation case 23a: fixed case 25: seal member 63: rotation sensor 66: communication oil passage 68: stator-rotor gap 69, 70: coil end accommodation space 71: bearing end adjacent space 73: circulation oil passage 74: Impeller (circulation force generation means) 75 ... secondary cooling device 77 ... pump (circulation force generating means) 78 ... pressure pump (recirculation force generation means) 82 ⁇ ⁇ ⁇ Screw groove (circulation force generating means)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

A wheel bearing apparatus (1) is provided with; a wheel bearing (2); and a motor (3) that is a power device. The motor (3) has a stator (18) that is attached to a fixed wheel (4) of the wheel bearing (2), and a rotor (19) that is attached to a rotating wheel (5). A case (23), which serves as the outer shell of the motor (3) and the wheel bearing (2), forms a sealed space filled with lubricating oil therein. A circulation force generation means such as an impeller (74) that circulates cooling oil in a circulating oil path disposed in the case (23) is provided.

Description

車輪用軸受装置およびこの車輪用軸受装置を備えた車両Wheel bearing device and vehicle equipped with the wheel bearing device 関連出願Related application
 本出願は、2018年1月9日出願の特願2018-001028の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2018-001028 filed on Jan. 9, 2018, which is incorporated by reference in its entirety as part of the present application.
 この発明は、自動車に走行駆動力を与える機能を有する車輪用軸受装置、およびこの車輪用軸受装置を備えた車両、並びにその動力装置に関する。 The present invention relates to a wheel bearing device having a function of giving a traveling driving force to an automobile, a vehicle provided with the wheel bearing device, and a power unit thereof.
 車輪内部にモータを組み込んだインホイールモータは、自動車の駆動および減速時の発電により、自動車の燃費改善に貢献している。しかしながら、大出力のモータをホイール内に納めることは難しく、また車輪周りの構成部品も従来品から変更しなければならなかった。例えば特許文献1には、ダイレクトドライブ形式のインホイールモータシステムとして、ハブ部に中空円筒状のプレートを介してモータのロータを設置し、前記モータのステータを、緩衝機構を介して車両の足回りフレーム部品に取付けたものが提案されている。 An in-wheel motor incorporating a motor inside the wheel contributes to the improvement of the fuel efficiency of the vehicle through the generation of power when driving and decelerating the vehicle. However, it is difficult to fit a high-power motor into the wheel, and the components around the wheel also had to be changed from conventional products. For example, in Patent Document 1, as a direct drive type in-wheel motor system, a rotor of a motor is installed in a hub portion via a hollow cylindrical plate, and a stator of the motor is mounted around the foot of a vehicle via a buffer mechanism. It has been proposed to be attached to frame parts.
特開2005-333706号公報JP 2005-333706 A
 上記のようなインホイールモータではブレーキディスクが環状のモータの内径側に位置するため、ブレーキキャリパがモータに干渉するなど、ブレーキの設置が困難であった。
 そこで、この問題を解決すべく、図14に示すように、ブレーキロータ12の外周部12bよりも小径で寸法が小さく、ホイール内に収納可能なモータ3により走行駆動の補助および発電を行う発電機付き車輪用軸受装置を提案した。この提案例の発電機付き車輪用軸受における車輪用軸受2は、内輪回転であって、外輪4である固定輪の外周にモータ3のステータを設け、内輪5である回転輪のハブフランジ7にモータ3のロータ19を設けている。
In the in-wheel motor as described above, since the brake disc is positioned on the inner diameter side of the annular motor, the brake caliper interferes with the motor, making it difficult to install the brake.
Then, in order to solve this problem, as shown in FIG. 14, a generator which is smaller in diameter and smaller in size than the outer peripheral portion 12b of the brake rotor 12 and which assists traveling drive and generates electric power by the motor 3 which can be stored in the wheel. A bearing device for wheeled wheels was proposed. The wheel bearing 2 in the generator equipped wheel bearing of this proposal example is an inner ring rotation, and the stator of the motor 3 is provided on the outer periphery of the fixed ring which is the outer ring 4. A rotor 19 of the motor 3 is provided.
 上記提案例の発電機付き車輪用軸受装置は、ホイール内に収納でき、車輪周りの構成部品も、発電や駆動の機能を持たない車輪用軸受装置を設置する従来構成のものをそのまま利用できる利点がある。しかし、モータ寸法の制限により、モータ出力が大きくできず、駆動力の補助とブレーキ動作時の電力回収による燃費改善効果が小さく、近年の自動車業界での高い燃費目標に対応できない。
 モータ出力を大きくするためはステータ18の巻線コイル18bに流す電流を増加させる方法が考えられるが、巻線コイルで18bの発熱が大きくなり、巻線コイル18b、永久磁石19cなど、モータ構成部品や軸受シール部品などが、許容温度以上に温度上昇する恐れがある。結果的に過昇温を防止するには、モータ電流を制限しなければならず、必要十分なモータ出力が得られない。
The generator-equipped wheel bearing device of the above-described example can be accommodated in the wheel, and the components around the wheel can be used as they are in the conventional configuration in which the wheel bearing device having no power generation or drive function is installed. There is. However, due to the limitation of the motor size, the motor output can not be increased, and the fuel efficiency improvement effect by the assistance of the driving force and the power recovery at the time of the braking operation is small, and it can not meet the high fuel efficiency target in the automobile industry in recent years.
Although it is conceivable to increase the current supplied to the winding coil 18b of the stator 18 in order to increase the motor output, the heat generation of the winding coil 18b is increased by the winding coil and motor components such as the winding coil 18b and the permanent magnet 19c And bearing seal parts may increase in temperature beyond the allowable temperature. As a result, in order to prevent excessive temperature rise, the motor current must be limited, and a necessary and sufficient motor output can not be obtained.
 この発明は、上記課題を解消するものであり、その目的は、動力装置を備えそのコイルの発熱による温度上昇を冷却油の循環で低減させることによって、寸法が制限された動力装置であっても大電流時の発熱が小さく抑えられる車輪用軸受装置、車両、およびその動力装置を提案することである。 The present invention solves the above-mentioned problems, and an object thereof is a power unit whose size is limited by providing a power unit and reducing the temperature rise due to the heat generation of its coil by circulating the cooling oil. It is an object of the present invention to provide a bearing device for a wheel, a vehicle, and a power unit thereof in which heat generation at the time of a large current can be suppressed to a low level.
 この発明の発電機付き車輪用軸受装置は、固定輪、およびこの固定輪に転動体を介し回転自在に支持されて車両の車輪が取付られる回転輪を有する車輪用軸受と、前記固定輪に取付けられたステータおよび前記回転輪に取付られたロータを有する動力装置とを備える車輪用軸受装置であって、
 前記ステータとロータとの間に形成されたステータ・ロータ間隙間、前記ステータの両側のコイルエンド周囲で前記動力装置内に形成された一対のコイルエンド収容空間、および前記車輪用軸受のインボード側で前記回転輪の軸方向に隣合って位置する軸受端部隣接空間を密封するケースが設けられ、
 前記ケース内に設けた循環油路内の冷却油を循環させる循環力発生手段が設けられている。
The generator-equipped wheel bearing apparatus according to the present invention includes a fixed wheel, a wheel bearing having a rotary wheel rotatably supported on the fixed wheel via a rolling element and on which a vehicle wheel is mounted, and mounted on the fixed wheel A wheel bearing device comprising: a power unit having a fixed stator and a rotor attached to the rotating wheel,
A clearance between a stator and a rotor formed between the stator and the rotor, a pair of coil end accommodation spaces formed in the power unit around coil ends on both sides of the stator, and an inboard side of the wheel bearing And a case is provided for sealing the space adjacent to the bearing end located adjacent in the axial direction of the rotating wheel,
A circulation force generating means is provided for circulating the cooling oil in the circulation oil passage provided in the case.
 この構成によると、循環力発生手段の循環力により循環油路を冷却油が循環することで、ステータの巻線コイルが冷却される。循環油路の冷却油の熱は、ケースがナックル等の足回りフレーム部品等を介して車体に接触する箇所等から、車体に熱伝導等で放熱され、また空冷され、低い温度に保たれる。このようにステータの巻線コイルが冷却されるため、寸法が制限された動力装置であっても大電流時の発熱が小さく抑えられて、過昇温の問題を生じることがない。 According to this configuration, the cooling oil is circulated in the circulation oil passage by the circulation force of the circulation force generation means, whereby the winding coil of the stator is cooled. The heat of the cooling oil in the circulating oil path is dissipated by heat conduction to the vehicle body from the location where the case contacts the vehicle body via the frame frame parts such as knuckles, etc., and it is air cooled and kept at low temperature. . Thus, since the winding coil of the stator is cooled, even in the case of a power unit whose size is limited, heat generation at a large current is suppressed to a low level, and the problem of excessive temperature rise does not occur.
 この発明の車輪用軸受装置において、前記固定輪内を貫通する連通油路が設けられて、前記ケース内に、前記軸受端部隣接空間、前記連通油路、一方の前記コイルエンド収容空間、前記ステータ・ロータ間隙間、他方の前記コイルエンド収容空間、および前記軸受端部隣接空間を順に循環する前記循環油路が形成されていてもよい。この構成の場合、前記コイルエンド周囲に冷却油が流れ、コイルエンドが冷却油で直接に冷却されるため、冷却の効率が良い。 In the bearing device for a wheel according to the present invention, a communication oil passage passing through the inside of the fixed wheel is provided, and the space adjacent to the bearing end, the communication oil passage, one of the coil end accommodation spaces, The circulation oil passage may be formed which sequentially circulates through the stator-rotor gap, the other coil end accommodation space, and the space adjacent to the bearing end. In this configuration, cooling oil flows around the coil end, and the coil end is directly cooled by the cooling oil, so that the cooling efficiency is good.
 この発明の車輪用軸受装置において、前記循環力発生手段は、前記車輪用軸受の前記回転輪と固定輪との相対回転で前記冷却油を循環させる構成であってもよい。この構成の場合、冷却油を循環させるために別の駆動源を必要としない。 In the wheel bearing device of the present invention, the circulating force generation means may be configured to circulate the cooling oil by relative rotation of the rotating wheel and the fixed wheel of the wheel bearing. In this configuration, no separate drive source is required to circulate the cooling oil.
 この発明の車輪用軸受装置において、前記車輪用軸受が、前記回転輪が内輪となる内輪回転型であり、前記動力装置がアウターロータ型であって、前記ケースが、前記固定輪と互いに固定された固定ケースと、前記回転輪および前記ロータと互いに固定された回転ケースとを有していてもよい。前記回転ケースがロータと互いに固定されていると、発電機のケースを前記ケースと別に設ける必要がなくて、コンパクトに構成できる。また、アウターロータ型であると、前記発電機にモータを用いる場合に、モーメント発生位置が径方位置となるため、大きなトルクが得られる。 In the wheel bearing device of the present invention, the wheel bearing is an inner ring rotating type in which the rotating wheel is an inner ring, the power unit is an outer rotor type, and the case is fixed to the fixed ring. It may have a fixed case and a rotating case fixed to the rotating wheel and the rotor. When the rotating case is fixed to the rotor, the case of the generator does not have to be provided separately from the case, and the structure can be made compact. Moreover, since it is an outer rotor type and a moment generation | occurrence | production position turns into a radial position when using a motor for the said generator, big torque is obtained.
 この発明の車輪用軸受装置において、前記固定輪は、前記転動体を転走させる軌道面を有する固定輪本体と、この固定輪本体に外嵌し外周に前記ステータが取付けられる中間部材とを有し、この中間部材に前記連通油路が形成されていてもよい。車輪用軸受の固定輪が、転動体転走用の軌道面を有する部材であると、動力装置のステータの取付けや、前記循環油路の形成が難しい。しかし、前記中間部材を設けてこれにステータの取付や連通油路の形成を行うようにすると、前記連通油路の形成が簡単に行える。なお、前記固定輪の全体を一体の部品とした場合は、部品点数が少なくて済み、組立工数も削減される。 In the bearing device for a wheel according to the present invention, the fixed wheel has a fixed wheel main body having a raceway surface for rolling the rolling elements, and an intermediate member which is externally fitted to the fixed wheel main body and the stator is attached to the outer periphery. The communication fluid passage may be formed in the intermediate member. If the fixed ring of the wheel bearing is a member having a raceway surface for rolling element rolling, it is difficult to attach the stator of the power unit and to form the circulating oil path. However, when the intermediate member is provided to attach the stator and form the communication oil passage, the communication oil passage can be easily formed. In addition, when the whole of the said fixed ring is used as integral components, a number of parts may be small and an assembly man-hour will also be reduced.
 この発明の車輪用軸受装置において、前記循環力発生手段として、前記軸受端部隣接空間内に位置して前記回転輪に同軸心に連結されたインペラを有していてもよい。前記循環力発生手段がインペラであると、効率良く循環油路の潤滑力が得られ、また車輪用軸受の回転輪とインペラとを直結することでインペラを回転させることができ、循環力発生手段の構成が簡素になる。なお、インペラを設ける場合に、循環力発生手段としてインペラとは別の物を併用してもよい。 In the bearing apparatus for a wheel according to the present invention, the circulating force generating means may include an impeller located in the space adjacent to the bearing end and coaxially connected to the rotating wheel. If the circulating force generating means is an impeller, lubricating force of the circulating oil passage can be efficiently obtained, and the impeller can be rotated by connecting the rotating wheel of the wheel bearing directly to the impeller, and the circulating force generating means The configuration of is simplified. In addition, when providing an impeller, you may use together a thing different from an impeller as a circulation force generation | occurrence | production means.
 この発明の車輪用軸受装置において、前記循環油路の途中に、この循環油路を流れる冷却油を冷却する二次冷却装置を有していてもよい。二次冷却装置があると、構成は複雑になるが、冷却油路の温度上昇をより低く抑えて、巻線コイルの温度上昇をより一層低下させることができる。 In the wheel bearing device of the present invention, a secondary cooling device for cooling the cooling oil flowing through the circulating oil passage may be provided in the middle of the circulating oil passage. Although the secondary cooling device complicates the configuration, the temperature rise of the cooling oil passage can be suppressed to a lower level to further reduce the temperature rise of the winding coil.
 この発明の車輪用軸受装置において、前記循環力発生手段として、前記循環油路の冷却油の循環力を高めるポンプを有していてもよい。前記循環力発生手段としてポンプを有していると、冷却油の潤滑をより高速に行い、巻線コイルの温度上昇をより効率良く抑えることができる。 In the wheel bearing device of the present invention, the circulation force generation means may include a pump that enhances the circulation force of the cooling oil in the circulation oil passage. When a pump is provided as the circulating force generating means, the cooling oil can be lubricated at a higher speed, and the temperature rise of the winding coil can be suppressed more efficiently.
 この発明の車輪用軸受装置において、前記循環力発生手段として、前記ロータおよび前記ステータのいずれか一方または両方における前記ステータ・ロータ間隙間を構成する周面に、前記ロータとステータの相対回転で圧力勾配を生じさせるねじ溝を有していてもよい。ステータ・ロータ間隙を構成するロータおよびステータのいずれか一方または両方の周面にねじ溝が形成されていると、ロータの回転によってステータ・ロータ間隙冷却油に圧力勾配が発生する。このため、簡易な構成で循環力発生手段を構成することができる。前記ねじ溝は、インペラ等の他の循環力発生手段と併用してもよい。 In the bearing apparatus for a wheel according to the present invention, the pressure generated by the relative rotation of the rotor and the stator on the circumferential surface constituting the stator-rotor gap in one or both of the rotor and the stator as the circulating force generating means. It may have a thread groove that produces a gradient. When the groove is formed on the peripheral surface of one or both of the rotor and the stator forming the stator-rotor gap, the rotation of the rotor generates a pressure gradient in the stator-rotor gap cooling oil. For this reason, it is possible to configure the circulation force generation means with a simple configuration. The screw groove may be used in combination with other circulating force generating means such as an impeller.
 この発明の車輪用軸受装置において、前記車輪用軸受が、前記車両の主駆動源と機械的に非連結である従動輪を支持する軸受であってもよい。この構成の場合、前記動力装置の駆動力を従動輪に与え、主駆動源の駆動力に従動輪の駆動力を付加して車両を走行させることができる。 In the wheel bearing device of the present invention, the wheel bearing may be a bearing that supports a driven wheel that is mechanically disconnected from the main drive source of the vehicle. In this configuration, the driving force of the power unit can be applied to the driven wheel, and the driving force of the driven wheel can be added to the driving force of the main drive source to drive the vehicle.
 この発明の車輪用軸受装置において、前記車輪用軸受が、前記車両の主駆動源と機械的に連結された駆動輪を支持する軸受であってもよい。この構成の場合、主駆動源の駆動力に、前記動力装置の駆動力を付加して駆動輪を駆動することができる。 In the wheel bearing device of the present invention, the wheel bearing may be a bearing that supports a driving wheel mechanically coupled to a main drive source of the vehicle. In this configuration, the drive wheel can be driven by adding the drive force of the power unit to the drive force of the main drive source.
 この発明の車両は、この発明の前記いずれかの構成の車輪用軸受装置を備える。この構成の車両によると、この発明の車輪用軸受装置につき説明した作用効果が得られる。 A vehicle according to the present invention includes the wheel bearing device of any of the above-described configurations according to the present invention. According to the vehicle of this configuration, the effects described for the wheel bearing device of the present invention can be obtained.
 この発明の動力装置は、車輪用軸受に設置される電動発電機から成る動力装置であって、
 前記車輪用軸受の固定輪に取付けられるステータと、前記車輪用軸受の回転輪に取付けられるロータとを備え、
 この動力装置は、前記ステータが前記車輪用軸受の外周に位置し、前記ロータが前記ステータの半径方向外方に位置するアウターロータ型であり、
 この動力装置の全体が、前記回転輪に取り付けられたブレーキロータにおける、ブレーキキャリパが押し付けられる部分となる外周部よりも小径であり、且つ、この動力装置における前記回転輪のアウトボード側に設けられたハブフランジへの取付部を除く全体が、前記ハブフランジと、前記車輪用軸受のインボード側の車体取り付け面との間の軸方向範囲に位置し、
 前記ステータとロータとの間に形成されたステータ・ロータ間隙間、前記ステータの両側のコイルエンド周囲で前記発電機内に形成された一対のコイルエンド収容空間、および前記車輪用軸受のインボード側で前記回転輪の軸方向に隣合って位置する軸受端部隣接空間を密封するケースが設けられ、
 前記ケース内に設けた循環油路内の冷却油を循環させる循環力発生手段が設けられている。
 この構成の動力装置によると、車輪用軸受に設置されて、この発明の車輪用軸受につき前述した作用効果が得られる。
The power plant according to the present invention is a power plant comprising a motor generator installed in a wheel bearing,
A stator attached to a fixed wheel of the wheel bearing, and a rotor attached to a rotating wheel of the wheel bearing;
The power unit is an outer rotor type in which the stator is located on the outer periphery of the wheel bearing and the rotor is located radially outward of the stator.
The entire power unit is smaller in diameter than an outer peripheral portion of a brake rotor attached to the rotary wheel, which is a portion to which the brake caliper is pressed, and is provided on the outboard side of the rotary wheel in the power unit. The entire portion except the mounting portion to the hub flange is located in an axial range between the hub flange and a vehicle mounting surface on the inboard side of the wheel bearing,
A clearance between a stator and a rotor formed between the stator and the rotor, a pair of coil end accommodation spaces formed in the generator around coil ends on both sides of the stator, and an inboard side of the wheel bearing There is provided a case for sealing a bearing end adjacent space located adjacent to each other in the axial direction of the rotating wheel,
A circulation force generating means is provided for circulating the cooling oil in the circulation oil passage provided in the case.
According to the power unit of this configuration, the wheel bearing is installed in the wheel bearing, and the above-described operation and effect can be obtained for the wheel bearing of the present invention.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of the at least two configurations disclosed in the claims and / or the description and / or the drawings is included in the present invention. In particular, any combination of two or more of the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態に係る車輪用軸受装置、およびその周辺部を示す断面図である。 同車輪用軸受装置の断面図である。 同車輪用軸受装置の循環力発生手段の一例であるインペラの斜視図である。 同車輪用軸受装置のステータの部分拡大断面図である。 この発明の他の実施形態に係る車輪用軸受装置の断面図である。 この発明のさらに他の実施形態に係る車輪用軸受装置の断面図である。 この発明のさらに他の実施形態に係る車輪用軸受装置の断面図である。 この発明のさらに他の実施形態に係る車輪用軸受装置の断面図である。 この発明のさらに他の実施形態に係る発電機付き車輪用軸受装置の断面図である。 この発明のさらに他の実施形態に係る発電機付き車輪用軸受装置のロータの部分断面図である。 上記の任意の実施形態に係る発電機付き車輪用軸受装置を用いた車両用システムの概念構成を示すブロック図である。 同車両用システムを搭載した車両の一例となる電源系統図である。 同発電機付き車輪用軸受装置を用いた他の車両用システムの概念構成を示すブロック図である。 発電機付き車輪用軸受装置の提案例の断面図である。
The invention will be more clearly understood from the following description of the preferred embodiments with reference to the accompanying drawings. However, the embodiments and the drawings are for the purpose of illustration and description only and are not to be taken as limiting the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in multiple drawings indicate the same or corresponding parts.
BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows the bearing apparatus for wheels which concerns on 1st Embodiment of this invention, and its periphery part. It is a sectional view of the bearing device for the same wheels. It is a perspective view of the impeller which is an example of the circulating force generation means of the bearing apparatus for the said wheels. It is a partial expanded sectional view of the stator of the bearing apparatus for the same wheels. It is sectional drawing of the bearing apparatus for wheels which concerns on other embodiment of this invention. It is sectional drawing of the bearing apparatus for wheels which concerns on other embodiment of this invention. It is sectional drawing of the bearing apparatus for wheels which concerns on other embodiment of this invention. It is sectional drawing of the bearing apparatus for wheels which concerns on other embodiment of this invention. It is sectional drawing of the bearing apparatus for wheels with a generator which concerns on further another embodiment of this invention. It is a fragmentary sectional view of the rotor of the bearing apparatus for wheels with a generator which concerns on other embodiment of this invention. It is a block diagram which shows the conceptual structure of the system for vehicles using the bearing apparatus for wheels with a generator which concerns on said arbitrary embodiment. It is a power supply system figure used as an example of the vehicles carrying the system for vehicles. It is a block diagram which shows the conceptual structure of the system for other vehicles using the bearing apparatus for wheels with a generator. It is sectional drawing of the proposal example of the bearing apparatus for wheels with a generator.
 この発明の第1の実施形態を、図1ないし図4と共に説明する。この車輪用軸受装置1は、車輪用軸受2と、発電機能を有する電動発電機からなる動力装置であるモータ3とを備える。  A first embodiment of the invention will be described in conjunction with FIGS. 1 to 4. The wheel bearing device 1 includes a wheel bearing 2 and a motor 3 which is a motive power device including a motor generator having a power generation function.
 <車輪用軸受2について>
 車輪用軸受2は、固定輪である外輪4と、複列の転動体6と、回転輪である内輪5とを有する。外輪4に複列の転動体6を介して内輪5が回転自在に支持されている。外輪4は軌道面を有する外輪本体4aと、外輪本体4aの外周に嵌合する中間部材4bとでなる。内輪5は、外輪4よりも軸方向のアウトボード側に突出した箇所にハブフランジ7を有する。内輪5は、図示の例では、前記ハブフランジ7を有するハブ輪5aと、このハブ輪5aのインボード側端の外周に嵌合する部分内輪5bとでなる。外輪4は、車輪用軸受2およびモータ3の外郭となるケース23を介し、車両の懸架装置のナックル等の足回りフレーム部品8に、ボルト等で取付けられ、車両の重量を支持する。なおこの明細書において、車輪用軸受装置1が車両に搭載された状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の車幅方向の中央寄りとなる側をインボード側と呼ぶ。
<About wheel bearing 2>
The wheel bearing 2 has an outer ring 4 which is a fixed ring, rolling elements 6 in double rows, and an inner ring 5 which is a rotating ring. The inner ring 5 is rotatably supported by the outer ring 4 via the rolling elements 6 in double rows. The outer ring 4 is composed of an outer ring main body 4a having a raceway surface and an intermediate member 4b fitted to the outer periphery of the outer ring main body 4a. The inner ring 5 has a hub flange 7 at a location protruding toward the outboard side in the axial direction with respect to the outer ring 4. The inner ring 5 comprises, in the illustrated example, a hub ring 5a having the hub flange 7 and a partial inner ring 5b fitted on the outer periphery of the inboard end of the hub ring 5a. The outer ring 4 is attached by bolts or the like to an undercarriage frame part 8 such as a knuckle of a suspension system of a vehicle via a wheel bearing 2 and a case 23 serving as an outer shell of the motor 3 to support the weight of the vehicle. In this specification, when the wheel bearing device 1 is mounted on a vehicle, the side closer to the outside in the vehicle width direction of the vehicle is called the outboard side, and the side closer to the center in the vehicle width direction is in Called the board side.
 ハブフランジ7のアウトボード側の側面には、ホイール10のリム11とブレーキロータ12とが軸方向に重なった状態で、ハブボルト13により取り付けられている。リム11の外周にタイヤ(図示せず)が取付けられている。 The rim 11 of the wheel 10 and the brake rotor 12 are attached to the side surface on the outboard side of the hub flange 7 by the hub bolt 13 in a state where the rim 11 and the brake rotor 12 overlap in the axial direction. A tire (not shown) is attached to the outer periphery of the rim 11.
 <ブレーキ17について>
 ブレーキ17は、ディスク式のブレーキロータ12と、ブレーキキャリパ22とを備える摩擦ブレーキである。ブレーキロータ12は、ハブフランジ7に重なる環状でかつ平板状の円板状部12aと、外周部12bとでなる。外周部12は、円板状部12aの外周からモータ3の外周側へ延びる円筒状部12baと、この円筒状部12baの先端から径方向外方へ延びる外径側平板部12bbとでなる。ブレーキロータ12は、例えば鋼板のプレス加工品からなる。
<About the brake 17>
The brake 17 is a friction brake provided with a disc type brake rotor 12 and a brake caliper 22. The brake rotor 12 is formed of an annular and flat disk-like portion 12a overlapping the hub flange 7 and an outer peripheral portion 12b. The outer peripheral portion 12 includes a cylindrical portion 12ba extending from the outer periphery of the disk portion 12a to the outer peripheral side of the motor 3 and an outer diameter side flat portion 12bb extending radially outward from the tip of the cylindrical portion 12ba. The brake rotor 12 is made of, for example, a pressed product of a steel plate.
 前記ブレーキキャリパ22は、ブレーキロータ12の外周部12bにおける外径側平板部12bbを挟み付ける一対の摩擦パッド22aを有する。前記ブレーキキャリパ22は前記足回りフレーム部品8に取付けられている。前記ブレーキキャリパ22のタイプは特に限定されず、例えば、油圧式および機械式のいずれであってもよく、またモータ式であってもよい。 The brake caliper 22 has a pair of friction pads 22 a sandwiching the outer diameter side flat plate portion 12 bb of the outer peripheral portion 12 b of the brake rotor 12. The brake caliper 22 is attached to the underbody frame part 8. The type of the brake caliper 22 is not particularly limited, and may be, for example, either hydraulic or mechanical, or may be motor.
 <モータ3について>
 モータ3は、給電されることによって車輪10を回転駆動可能な走行補助用の電動のモータであり、回生制動時に発電機として用いられる。モータ3は、外輪4の外周面に取付けられたステータ18と、内輪5のハブフランジ7に取付けられたロータ19とを有する。図示の例のモータ3は、アウターロータ型のIPM(Interior Permanent Magnet Motor )同期モータである。また、SPM(Surface Permanent Magnet Motor)同期モータもモータ3として使用できる。その他、モータ3として、スイッチトリラクタンスモータ(Switched reluctance motor;略称:SRモータ) 、インダクションモータ(Induction Motor ;略称:IM)等、各種形式が採用できる。同期モータにおいては、ステータ18の巻き線形式として分布巻、集中巻の各形式が採用できる。
<About motor 3>
The motor 3 is a drive assisting electric motor capable of rotationally driving the wheel 10 by being supplied with power, and is used as a generator at the time of regenerative braking. The motor 3 has a stator 18 attached to the outer peripheral surface of the outer ring 4 and a rotor 19 attached to the hub flange 7 of the inner ring 5. The motor 3 in the illustrated example is an outer rotor type IPM (Interior Permanent Magnet Motor) synchronous motor. In addition, a surface permanent magnet motor (SPM) synchronous motor can also be used as the motor 3. In addition, various types such as a switched reluctance motor (abbreviation: SR motor), an induction motor (induction motor; abbreviation: IM), and the like can be adopted as the motor 3. In the synchronous motor, each type of distributed winding and concentrated winding can be adopted as a winding type of the stator 18.
 モータ3は、その全体が、ブレーキロータ12の外周部12bよりも小径である。モータ3は、ハブフランジ7への取付部およびケース23の後述の固定ケース23aを除く略全体が、ハブンフランジ7と前記足回りフレーム部品8の取付面S(つまり、車輪用軸受2のインボード側の車体取付面)との間の軸方向範囲に位置する。 The whole of the motor 3 is smaller in diameter than the outer peripheral portion 12 b of the brake rotor 12. The motor 3 has substantially the entire mounting surface S of the hubn flange 7 and the frame frame part 8 (that is, the inboard side of the wheel bearing 2) except for the mounting portion to the hub flange 7 and the fixing case 23a of the case 23 described later. In the axial range between the
 モータ3のステータ18は、コア18aと、このコア18aの各ティース18aa(図4参照)に巻回されたコイル18bとを有する。コイル18bのコア18aから軸方向に突出した部分は、コイルエンド18baを成す。コイル18bは電線60に接続されている。 The stator 18 of the motor 3 has a core 18a and a coil 18b wound around teeth 18aa (see FIG. 4) of the core 18a. A portion axially projecting from the core 18a of the coil 18b constitutes a coil end 18ba. The coil 18 b is connected to the wire 60.
 モータロータ19は、モータケースとなる横向きカップ状の回転ケース23bと、この回転ケース23bの内周に設けられる磁性体19bと、この磁性体19bに内蔵される永久磁石(図示せず)とを備え、回転ケース23bの底部がハブフランジ7に取付けられている。回転ケース23bの底部の中央は、内輪5のハブフランジ7よりもアウトボード側部分を突出させる中央開口を有している。回転ケース23bのハブフランジ7への取付けは、前記ボルト13による締め付け固定としても、またハブフランジ7の外周面への嵌合、溶接、または接着等で行ってもよい。回転ケース23bの外周面は、ブレーキロータ12の円筒状部12bの内周面に近接している。 The motor rotor 19 includes a lateral cup-shaped rotation case 23b serving as a motor case, a magnetic body 19b provided on the inner periphery of the rotation case 23b, and a permanent magnet (not shown) incorporated in the magnetic body 19b. The bottom of the rotation case 23 b is attached to the hub flange 7. The center of the bottom of the rotating case 23 b has a central opening that allows the outboard side portion to project beyond the hub flange 7 of the inner ring 5. The rotation case 23b may be attached to the hub flange 7 by fastening or fixing the bolt 13 or by fitting, welding, bonding or the like to the outer peripheral surface of the hub flange 7. The outer peripheral surface of the rotation case 23 b is close to the inner peripheral surface of the cylindrical portion 12 b of the brake rotor 12.
 <ケース23について>
 車輪用軸受2およびモータ3は、その全体がケース23によって覆われている。ケース23は、前記回転ケース23bと固定ケース23aとでなる。固定ケース23aは、カップ状の回転ケース23bのインボート側端を閉じている。固定ケース23aの内側面に、車輪用軸受2の固定輪である外輪4のインボード側端が固定される。詳しくは、固定ケース23aの内側面に外輪4の中間部材4bのインボード側端が固定される。固定ケース23aの外周部と回転ケース23bの開口縁との間は、環状のシール部材25によって密閉され、ケース23の内部空間の全体が、潤滑油充填空間となる。前記シール部材25は、固定ケース23aと回転ケース23bとの間の隙間を相対回転自在に密封する部材であり、例えば、固定ケース23aおよび回転ケース23bのいずれか一方に取付けられたスリンガと、他方に取付けられて前記スリンガに摺接するシールリップ(いずれも図示せず)とでなる。
<About Case 23>
The wheel bearing 2 and the motor 3 are entirely covered by a case 23. The case 23 is composed of the rotating case 23b and the fixed case 23a. The fixed case 23a closes the inboard side end of the cup-shaped rotation case 23b. The inboard end of the outer ring 4 which is a fixed ring of the wheel bearing 2 is fixed to the inner side surface of the fixed case 23a. Specifically, the inboard end of the intermediate member 4b of the outer ring 4 is fixed to the inner side surface of the fixed case 23a. The space between the outer peripheral portion of the fixed case 23a and the opening edge of the rotating case 23b is sealed by an annular seal member 25, and the entire internal space of the case 23 becomes a lubricating oil filled space. The sealing member 25 is a member for sealing the gap between the fixed case 23a and the rotating case 23b in a relatively rotatable manner. For example, the sealing member 25 may be a slinger attached to one of the fixed case 23a and the rotating case 23b; And a sealing lip (not shown) that is in sliding contact with the slinger.
 モータ3のコイルエンド18baから延びる電線60は、固定ケース23aに設けられた電線挿通孔に挿通されてケース23外に引き出されている。電線挿通孔の外側開口部に電線との間の隙間を密封するシール61が設けられている。 The electric wire 60 extending from the coil end 18 ba of the motor 3 is inserted into the electric wire insertion hole provided in the fixed case 23 a and drawn out of the case 23. The outer opening of the wire insertion hole is provided with a seal 61 for sealing a gap between the wire and the wire.
  <シール構造について>
 回転ケース23bのインボード側端の内周にロータ端リング部材27が取付けられ、このロータ端リング部材27と固定ケース23aとの間の密封が、前記シール部材25によりなされる。ロータ端リング部材27は、磁性体19bに内蔵される前記永久磁石の軸方向についての位置決め部材を兼ねる。ロータ端リング部材27の外周面と回転ケース23bの内周面との間には、Oリング等のシール部材28が介在している。固定ケース23aは、前記足回りフレーム部品8に固定され、これによりこの車輪用軸受装置1の全体が足回りフレーム部品8に固定される。
<About seal structure>
A rotor end ring member 27 is attached to the inner periphery of the inboard end of the rotation case 23b, and the seal between the rotor end ring member 27 and the fixed case 23a is made by the seal member 25. The rotor end ring member 27 doubles as a positioning member in the axial direction of the permanent magnet contained in the magnetic body 19 b. A seal member 28 such as an O-ring is interposed between the outer peripheral surface of the rotor end ring member 27 and the inner peripheral surface of the rotation case 23b. The fixed case 23 a is fixed to the undercarriage frame part 8, whereby the entire wheel bearing device 1 is fixed to the undercarriage frame part 8.
 <回転センサについて>
 車輪用軸受2の内輪5のインボード側に位置して、内輪5の回転を検出する回転センサ63が設けられている。回転センサ63は、レゾルバまたは磁気式のエンコーダからなる。回転センサ63は、回転する被検出部63aとこの被検出部63aを検出するセンサ部63bとでなる。被検出部63aは、環状に形成されている。被検出部63aは、内輪5のインボード側面に内輪5と同軸心に取付けられた回転センサ軸64の外周に嵌合し、被検出部固定ボルト65で回転センサ軸64に取付けられている。センサ部63bは、検出面が被検出部63aの外周面に対向する環状に形成されている。センサ部63bは、外輪4の中間部材4bの内周に突出したフランジ部にセンサ部固定ボルト91 で取付けられている。
<About the rotation sensor>
A rotation sensor 63 for detecting the rotation of the inner ring 5 is provided on the inboard side of the inner ring 5 of the wheel bearing 2. The rotation sensor 63 comprises a resolver or a magnetic encoder. The rotation sensor 63 is composed of a rotating detected portion 63a and a sensor portion 63b that detects the detected portion 63a. The to-be-detected part 63a is cyclically | annularly formed. The detected portion 63 a is fitted to the outer periphery of the rotation sensor shaft 64 coaxially mounted on the inboard side surface of the inner ring 5 with the inner ring 5 and attached to the rotation sensor shaft 64 by a detected portion fixing bolt 65. The sensor portion 63 b is formed in an annular shape in which the detection surface faces the outer peripheral surface of the detected portion 63 a. The sensor portion 63 b is attached to a flange portion projecting on the inner periphery of the intermediate member 4 b of the outer ring 4 by a sensor portion fixing bolt 91.
 <冷却構造について>
 前記外輪4の前記中間部材4bは、外輪本体4aよりもインボード側に延出した厚肉円筒状である。中間部材4bの内部の円周方向複数箇所に、軸方向に延びる連通油路66が設けられている。連通油路66は、一端が中間部材4bのアウトボード側の端面に開口し、他端が、中間部材4bのインボード側端付近の内周面に開口している。また、固定ケース23aの肉厚内に、ステータ18との対向面から、内周面に連通するケース壁部連通路67が、円周方向に複数箇所に形成されている。
<About cooling structure>
The intermediate member 4b of the outer ring 4 has a thick-walled cylindrical shape that extends more inboard than the outer ring main body 4a. A communicating oil passage 66 extending in the axial direction is provided at a plurality of circumferential positions inside the intermediate member 4b. One end of the communication oil passage 66 opens at the end face on the outboard side of the intermediate member 4b, and the other end opens at the inner circumferential surface near the inboard end of the intermediate member 4b. Further, within the thickness of the fixed case 23a, case wall communication paths 67 communicating with the inner circumferential surface from the surface facing the stator 18 are formed at a plurality of locations in the circumferential direction.
 ケース23のケース内空間を構成する部分として、モータ3のステータ18とロータ19との間に生じたステータ・ロータ間隙間68と、ステータ18の両側のコイルエンド収容空間69、70と、車輪用軸受2の内輪5にインボード側で隣接して位置する軸受端部隣接空間71とがある。ステータ・ロータ間隙間68には、コア18aの隣合うティース18aa間に生じるコイル間隙間72を含む。 As a part constituting the case internal space of the case 23, a stator-rotor gap 68 generated between the stator 18 and the rotor 19 of the motor 3, coil end accommodation spaces 69, 70 on both sides of the stator 18, and wheels There is a bearing end adjacent space 71 adjacent to the inner ring 5 of the bearing 2 on the inboard side. The stator-rotor gap 68 includes a coil-to-coil gap 72 generated between adjacent teeth 18 aa of the core 18 a.
 これらの空間は、前記連通油路66およびケース壁部連通路67が設けられたことにより、ステータ・ロータ間隙間68、インボード側のコイルエンド収容空間70、ケース内壁油路67、軸受端部隣接空間71、連通油路66、およびアウトボード側のコイルエンド収容空間69が、この順に循環する循環油路73を構成している。この循環油路73を構成するケース内空間には、モータ冷却用の冷却油が充填される。この冷却油は、この実施形態では車輪用軸受2の潤滑油を兼用する。もっとも、例えば、車輪用軸受2の外輪4と内輪5間の軸受空間におけるインボード側およびアウトボード側の口部にシール部材(図示せず)を設け、前記軸受空間にグリースを充填することで、前記冷却油を冷却専用としてもよい。 These spaces are provided with the communication oil passage 66 and the case wall communication passage 67 so that the stator / rotor gap 68, the inboard coil end accommodation space 70, the case inner wall oil passage 67, the bearing end The adjacent space 71, the communication oil passage 66, and the coil end accommodation space 69 on the outboard side constitute a circulation oil passage 73 that circulates in this order. A cooling oil for motor cooling is filled in the case internal space that constitutes the circulating oil passage 73. This cooling oil doubles as lubricating oil for the wheel bearing 2 in this embodiment. However, for example, sealing members (not shown) are provided at the inboard side and the outboard side opening in the bearing space between the outer ring 4 and the inner ring 5 of the wheel bearing 2, and the bearing space is filled with grease. The cooling oil may be dedicated to cooling.
 <循環力発生手段、インペラ74について>
 ケース23内に、前記循環油路73の冷却油を循環させる循環力発生手段として、インペラ74が設けられている。インペラ74は内輪5のインボード側に、前記被検出部固定ボルトセンサ固定ボルト65の端面で、内輪5と同軸心に固定されている。前記連通油路66の軸受端部隣接空間71側の開口は、インペラ74の外周に対向する軸方向位置にある。
<Regarding Circulation Force Generating Means, Impeller 74>
An impeller 74 is provided in the case 23 as a circulating force generating means for circulating the cooling oil of the circulating oil passage 73. The impeller 74 is coaxially fixed to the inner ring 5 on the inboard side of the inner ring 5 at the end face of the detected portion fixing bolt sensor fixing bolt 65. The opening on the bearing end adjacent space 71 side of the communication oil passage 66 is at an axial position facing the outer periphery of the impeller 74.
 インペラ74は、図3に示すように、円錐台状の中央部74aと、この中央部74aの外周に周方向に並んで設けられた複数の羽根74bとでなる。中央部74aは、軸心を含む断面の形状が、図1、図2のように凹曲線となっている。 The impeller 74, as shown in FIG. 3, includes a truncated cone-shaped central portion 74a and a plurality of blades 74b provided circumferentially along the outer periphery of the central portion 74a. The central portion 74a has a concave shape as shown in FIGS. 1 and 2 in the shape of the cross section including the axial center.
 なお、この実施形態の冷却構造では、冷却油が巻線コイル18bに直接触れるため、冷却油によって、巻線コイル18bを覆うニスなどの絶縁塗膜が劣化し絶縁不良を起こす恐れがある。そこで冷却油によって劣化することのない絶縁材の使用が好ましい。このような劣化が生じ難い絶縁塗膜として、フェノール系やアルキド系の絶縁ニス材を使用することが好ましく、これより絶縁塗膜の劣化の問題が解決できる。以下の各実施形態でも同様である。 In the cooling structure of this embodiment, since the cooling oil directly contacts the winding coil 18b, the insulating coating film such as varnish covering the winding coil 18b may be deteriorated by the cooling oil to cause insulation failure. Therefore, it is preferable to use an insulating material that is not deteriorated by the cooling oil. It is preferable to use a phenol-based or alkyd-based insulating varnish material as the insulating coating film that is less likely to cause such deterioration, whereby the problem of the insulating coating film deterioration can be solved. The same applies to the following embodiments.
 <第一の実施形態の作用、効果>
 冷却油の循環動作について説明する。
 車両走行中では、車輪の回転に伴い、車輪用軸受装置1のロータ19および回転センサ軸64が回転する。回転センサ軸64と一体を成すインペラ74の回転により、冷却油が連通油路66を通ってハブフランジ7側のコイルエンド収容空間69へ送られる。さらに冷却油は、ステータ・ロータ間隙間68と、コイルエンド収容空間70まで流れ、ケース内流路67を通って軸受端部隣接空間71内のインペラ74まで戻される。また、モータ3のロータ19が回転することにより、冷却油がロータ19の内周面に引きずられて、回転軸心まわりに撹拌され、巻線コイル18bが均等に冷却される。
<Operation and effect of the first embodiment>
The circulation operation of the cooling oil will be described.
While the vehicle is traveling, the rotor 19 and the rotation sensor shaft 64 of the wheel bearing device 1 rotate as the wheels rotate. By rotation of the impeller 74 integrally formed with the rotation sensor shaft 64, the cooling oil is sent to the coil end accommodation space 69 on the hub flange 7 side through the communication oil passage 66. Further, the cooling oil flows to the stator / rotor gap 68 and the coil end accommodation space 70, and is returned to the impeller 74 in the bearing end adjacent space 71 through the in-case flow path 67. Further, as the rotor 19 of the motor 3 rotates, the cooling oil is dragged to the inner peripheral surface of the rotor 19 and stirred around the rotation axis, and the winding coil 18b is uniformly cooled.
 この冷却構造では、冷却油が発熱源である巻線コイル18bに直接触れるため、冷却効果が大きい。従来の冷却液流路を設けた部材を介して冷却を行う冷却方法では、流路の構造が複雑となり、コンパクト化が難しい。また、巻線コイル18bの円周方向に隣合うコイル磁極部に、放熱性を良くするための放熱樹脂を浸透させるなどの対策が不可欠であったが、この実施形態の冷却構造では、前記放熱樹脂を浸透等の必要がない。さらに、冷却油の循環を運転中の車輪の回転、つまり車輪用軸受1の回転輪と固定輪との相対回転を利用して行うため、インペラ74を回転させるための新たな電源を必要としない。 In this cooling structure, the cooling oil is in direct contact with the winding coil 18b which is the heat source, so the cooling effect is large. In the conventional cooling method in which cooling is performed via a member provided with a coolant flow channel, the structure of the flow channel is complicated, and it is difficult to achieve compactness. In addition, although measures such as infiltrating a heat dissipation resin for improving heat dissipation into coil magnetic pole portions adjacent to each other in the circumferential direction of the winding coil 18b are indispensable, in the cooling structure of this embodiment, the heat dissipation There is no need to penetrate the resin. Furthermore, since the circulation of the cooling oil is performed by utilizing the rotation of the wheel in operation, that is, the relative rotation between the rotating wheel and the fixed wheel of the wheel bearing 1, a new power source for rotating the impeller 74 is not necessary. .
 このように、巻線コイル18bに電流を流すことで発生する熱を冷却し、巻線コイル18bの発熱を抑えることにで、継続してモータ3に大電流を流すことができ、燃費改善に十分貢献できるモータ出力が発生可能となる。また、この冷却油を循環させる構造は、車輪用軸受2の潤滑にも貢献される。モータ3は、車両の制動時は、回生制動により発電を行うが、発電時の発熱も駆動時と同様に抑制され、十分な発電が行える。また、この実施形態の車輪用軸受装置1は、モータ3の全体がブレーキロータ12の外周部よりも小径であるため、一般的な車両において生じているブレーキロータの外周部と車輪用軸受との間の空間を効率的に利用して補助動力装置を設置することができる。 As described above, by cooling the heat generated by supplying current to the winding coil 18b and suppressing the heat generation of the winding coil 18b, a large current can be continuously supplied to the motor 3 to improve fuel consumption. It is possible to generate a motor output that can contribute sufficiently. The structure for circulating the cooling oil also contributes to the lubrication of the wheel bearing 2. The motor 3 generates electric power by regenerative braking at the time of braking of the vehicle, but the heat generation at the time of electric power generation is suppressed in the same manner as at the time of driving, and sufficient power generation can be performed. Further, in the wheel bearing device 1 of this embodiment, since the whole of the motor 3 has a diameter smaller than that of the outer peripheral portion of the brake rotor 12, the outer peripheral portion of the brake rotor and the wheel bearing produced in a general vehicle The auxiliary power unit can be installed by efficiently utilizing the space between them.
 他の各実施形態につき、図5ないし図10と共に説明する。これらの実施形態において、特に説明した事項の他は、図1ないし図4と共に前述した第一の実施形態と同様である。 Other embodiments will be described in conjunction with FIGS. 5 to 10. In these embodiments, other than the matters particularly described, the second embodiment is the same as the first embodiment described above with reference to FIGS. 1 to 4.
 <図5の実施形態>
 第1の実施形態では、冷却油の連通油路の加工の容易のため、車輪用軸受2の外輪を分割構造とし、連通油路を持った中間部材を使用しているが、図5に示すように、車輪用軸受2の外輪4を一体構造として連通油路66を設けてもよい。一体構造とすると構造が簡略化できる。
<Embodiment of FIG. 5>
In the first embodiment, the outer ring of the wheel bearing 2 has a split structure and an intermediate member having a communication oil passage is used for easy processing of the communication oil passage of the cooling oil, as shown in FIG. Thus, the communication oil passage 66 may be provided with the outer ring 4 of the wheel bearing 2 as an integral structure. The integral structure can simplify the structure.
 <図6の実施形態>
 図1ないし図4に示す第1の実施形態において、さらに冷却効率を上げるために、図6に示すように、二次冷却装置75を追加してもよい。この二次冷却装置75は、循環油路73におけるケース壁部連通路67に沿う部分76aを有する二次冷却液循環路76と、この二次冷却液循環路76の冷却液を循環させるポンプ77とで構成されている。ポンプ77は、前記モータ3とは別のモータ(図示せず)によって駆動される。循環油路73の潤滑油を熱交換により冷却した二次冷却液循環路76内の冷却液は、二次冷却液環路76内を流れる間に、車体への熱伝導および空気冷却により冷却される。二次冷却装置75があると、構成は複雑になるが、冷却油の温度上昇をより抑えて、巻線コイル18bの温度上昇をより一層低下させることができる。
<Embodiment of FIG. 6>
In the first embodiment shown in FIGS. 1 to 4, in order to further increase the cooling efficiency, a secondary cooling device 75 may be added as shown in FIG. The secondary cooling device 75 includes a secondary coolant circulation path 76 having a portion 76 a along the case wall communication path 67 in the circulation oil path 73 and a pump 77 for circulating the coolant in the secondary coolant circulation path 76. And consists of. The pump 77 is driven by a motor (not shown) different from the motor 3. The coolant in the secondary coolant circulation path 76 obtained by cooling the lubricating oil in the circulation oil path 73 by heat exchange is cooled by heat conduction to the vehicle body and air cooling while flowing in the secondary coolant circulation path 76. Ru. The presence of the secondary cooling device 75 complicates the configuration, but can further suppress the temperature rise of the cooling oil to further reduce the temperature rise of the winding coil 18b.
 <図7の実施形態>
 また、図1ないし図4に示す第1の実施形態において、インペラ74を設ける代わりに、図7に示すように、循環力発生手段として圧力ポンプ78を設け、循環油路73と圧力ポンプ78とを吸引路79および吐出路80により接続してもよい。吐出路80は軸受端部隣接空間71のインボード側壁面における軸心部に開口し、吸引路79はコイルエンド収容空間70に、固定ケース23aに設けられた他の油路81を介して接続されている。圧力ポンプ78は、他のモータ(図示せず)により駆動される。この構成の場合、図2のインペラ74でポンプ動作させる場合に比べ、高性能な圧力ポンプ78が設けられることで、より高速で冷却油を循環させることができ、冷却効率を上がる。
<Embodiment of FIG. 7>
Further, in the first embodiment shown in FIGS. 1 to 4, instead of providing the impeller 74, as shown in FIG. 7, a pressure pump 78 is provided as a circulating force generating means. May be connected by the suction passage 79 and the discharge passage 80. The discharge passage 80 opens at the axial center of the inboard side wall surface of the space 71 adjacent to the bearing end, and the suction passage 79 is connected to the coil end accommodation space 70 via another oil passage 81 provided in the fixed case 23a. It is done. The pressure pump 78 is driven by another motor (not shown). In the case of this configuration, as compared with the case where the pump 74 is operated by the impeller 74 of FIG. 2, the cooling oil can be circulated at a higher speed by providing the high-performance pressure pump 78, and the cooling efficiency is increased.
 <図8の実施形態>
 図8の実施形態は、第一の実施形態において、前記ステータ・ロータ間隙間68を構成するステータ18のコア18aの外周面にねじ溝82を設け、ねじポンプを構成している。前記循環力発生手段として、前記ねじ溝82で形成されるねじポンプを、前記インペラ74に加えて設けている。この構成の場合、モータ3のロータの回転によりステータ・ロータ間隙間68に、圧力勾配を発生させ、循環速度を上昇させることができる。これにより、巻線コイル18bの冷却効率がさらに向上する。
<Embodiment of FIG. 8>
In the embodiment of FIG. 8, in the first embodiment, a screw groove 82 is provided on the outer peripheral surface of the core 18 a of the stator 18 which constitutes the stator-rotor gap 68 to constitute a screw pump. As the circulating force generating means, a screw pump formed by the screw groove 82 is added to the impeller 74 and provided. In this configuration, a pressure gradient can be generated in the stator-rotor gap 68 by the rotation of the rotor of the motor 3 to increase the circulation speed. Thereby, the cooling efficiency of the winding coil 18b is further improved.
 <図9の実施形態>
 図9の実施形態は、図8の実施形態において、ねじ溝82をステータ18の外周面に設けた構成に代えて、ねじ溝82をロータ19の内周面に設けている。この構成の場合も、モータ3のロータ19の回転によりステータ・ロータ間隙間68に、圧力勾配を発生させ、循環速度を上昇させることができる。これにより、巻線コイル18bの冷却効率がさらに向上する。
<Embodiment of FIG. 9>
In the embodiment of FIG. 9, the screw groove 82 is provided on the inner peripheral surface of the rotor 19 instead of the configuration in which the screw groove 82 is provided on the outer peripheral surface of the stator 18 in the embodiment of FIG. Also in this configuration, a pressure gradient can be generated in the stator-rotor gap 68 by the rotation of the rotor 19 of the motor 3 to increase the circulation speed. Thereby, the cooling efficiency of the winding coil 18b is further improved.
 <その他の実施形態>
 図8の実施形態と図9の実施形態とは併用してもよい。すなわち、ステータ・ロータ間隙68を構成するステータ18の外周面とロータ19の内周面との両方に前記ねじ溝22を設けてもよい。
<Other Embodiments>
The embodiment of FIG. 8 and the embodiment of FIG. 9 may be used in combination. That is, the screw groove 22 may be provided on both the outer peripheral surface of the stator 18 and the inner peripheral surface of the rotor 19 that constitute the stator-rotor gap 68.
 なお、図10のSPM同期モーターでは、ロータ19の磁性体19bの内周面で円周方向に並ぶ永久磁石19c間の隙間82Aを軸心方向に対して傾斜させてもよい。これによっても、ステータ・ロータ間隙間68に圧力勾配が発生する。 In the SPM synchronous motor of FIG. 10, the gap 82A between the permanent magnets 19c arranged in the circumferential direction on the inner peripheral surface of the magnetic body 19b of the rotor 19 may be inclined with respect to the axial direction. This also generates a pressure gradient in the stator-rotor gap 68.
 <車両30の制御系について>
 図11は、いずれかの実施形態に係る車輪用軸受装置1を用いた車両用システムの概念構成を示すブロック図である。この車両用システムにおいて、車輪用軸受装置1は、主駆動源35と機械的に非連結である従動輪10を持つ車両において、従動輪10に対して搭載される。車輪用軸受装置1における車輪用軸受2(図1)は、従動輪10を支持する軸受である。
<About Control System of Vehicle 30>
FIG. 11 is a block diagram showing a conceptual configuration of a vehicle system using the wheel bearing device 1 according to any one of the embodiments. In the vehicle system, a wheel bearing apparatus 1, in a vehicle having a driven wheel 10 B is the main drive source 35 mechanically unconnected, is mounted against the driven wheel 10 B. Wheel bearing 2 in the bearing device for a wheel 1 (FIG. 1) is a bearing supporting the driven wheel 10 B.
 主駆動源35は、ガソリンエンジンまたはディーゼルエンジン等の内燃機関、または電動発電機(電動モータ)、または両者を組み合わせたハイブリッド型の駆動源である。前記「電動発電機」は、回転付与による発電が可能な電動モータを称す。図示の例では、車両30は、前輪が駆動輪10、後輪が従動輪10となる前輪駆動車であって、主駆動源35が内燃機関35aと駆動輪側の電動発電機35bとを有するハイブリッド車(以下、「HEV」と称することがある)である。 The main drive source 35 is an internal combustion engine such as a gasoline engine or a diesel engine, or a motor generator (electric motor), or a hybrid drive source combining both. The "motor generator" refers to an electric motor capable of generating power by rotation. In the illustrated example, the vehicle 30 is a front wheel drive car whose front wheels are drive wheels 10 A and rear wheels are driven wheels 10 B, and the main drive source 35 is an internal combustion engine 35 a and a motor generator 35 b on the drive wheels side. A hybrid vehicle (hereinafter sometimes referred to as “HEV”).
 具体的には、駆動輪側の電動発電機35bが48V等の中電圧で駆動されるマイルドハイブリッド形式である。ハイブリッドはストロングハイブリッドとマイルドハイブリッドとに大別されるが、マイルドハイブリッドは、主要駆動源が内燃機関であって、発進時や加速時等にモータで走行の補助を主に行う形式を言い、EV(電気自動車)モードでは通常の走行を暫くは行えても長時間行うことができないことでストロングハイブリッドと区別される。同図の例の内燃機関35aは、クラッチ36および減速機37を介して駆動輪10のドライブシャフトに接続され、減速機37に駆動輪側の電動発電機35bが接続されている。 Specifically, it is a mild hybrid type in which the motor generator 35b on the drive wheel side is driven by a medium voltage such as 48V. Hybrids can be broadly divided into Strong Hybrids and Mild Hybrids, but Mild Hybrids, whose main drive source is an internal combustion engine, is a type that mainly assists driving with a motor when starting or accelerating. In the (electric car) mode, it can be distinguished from the strong hybrid because normal travel can be performed for a while but can not be performed for a long time. Internal combustion engine 35a of the example of the figure, is connected to the drive shaft of the drive wheel 10 A via the clutch 36 and speed reducer 37, the motor generator 35b of the driving wheel is connected to a reduction gear 37.
 この車両用システムは、従動輪10の回転駆動を行う走行補助用のモータ3と、このモータ3の制御を行う個別制御手段39と、上位ECU40に設けられて前記個別制御手段39に駆動および回生の制御を行わせる指令を出力する個別電動発電機指令手段45とを備える。発電機3Aは、蓄電手段に接続されている。この蓄電手段は、バッテリー(蓄電池)またはキャパシタ、コンデンサ等を用いることができ、その形式や車両30への搭載位置は問わないが、この実施形態では、車両30に搭載された低電圧バッテリー50および中電圧バッテリー49のうちの中電圧バッテリー49とされている。 System for a vehicle includes a motor 3 for traveling aid for rotating driving of the driven wheels 10 B, the individual control means 39 for controlling the motor 3, the drive and the individual control means 39 provided in the upper ECU40 And an individual motor generator command means 45 for outputting a command for performing control of regeneration. The generator 3A is connected to the storage means. The storage means may be a battery (storage battery) or a capacitor, a capacitor, etc. The type and mounting position on the vehicle 30 are not limited. In this embodiment, the low voltage battery 50 mounted on the vehicle 30 and The medium voltage battery 49 of the medium voltage battery 49 is used.
 従動輪用のモータ3は、変速機を用いないダイレクトドライブモータである。モータ3車両30の運動エネルギーを電力に変換する発電機としても作用する。モータ3は、ハブ輪である内輪5(図1)にロータ19が取付けられているため、モータ3に電流を印加すると内輪5(図1)が回転駆動され、逆に電力回生時には誘起電圧を負荷することで回生電力が得られる。このモータ3の回転駆動用の駆動電圧または回生電圧が100V以下である。 The driven wheel motor 3 is a direct drive motor that does not use a transmission. The motor 3 also acts as a generator for converting kinetic energy of the vehicle 30 into electric power. Since the motor 3 has the rotor 19 attached to the inner ring 5 (FIG. 1) which is a hub wheel, when a current is applied to the motor 3, the inner ring 5 (FIG. 1) is rotationally driven. Regenerative power can be obtained by loading. The drive voltage or regenerative voltage for driving the motor 3 to rotate is 100 V or less.
 上位ECU40は、車両30の統合制御を行う手段であり、トルク指令生成手段43を備える。このトルク指令生成手段43は、アクセルペダル等のアクセル操作手段56およびブレーキペダル等のブレーキ操作手段57からそれぞれ入力される操作量の信号に従ってトルク指令を生成する。この車両30は、主駆動源35として内燃機関35aおよび駆動輪側のモータ35bを備え、また二つの従動輪10,10をそれぞれ駆動する二つのモータ3,3を備えるため、前記トルク指令を各駆動源(35a,35b,3,3)に定められた規則によって分配するトルク指令分配手段44が上位ECU40に設けられている。 The host ECU 40 is a unit that performs integrated control of the vehicle 30, and includes a torque command generation unit 43. The torque command generation unit 43 generates a torque command in accordance with signals of operation amounts respectively input from an accelerator operation unit 56 such as an accelerator pedal and a brake operation unit 57 such as a brake pedal. The vehicle 30 includes an internal combustion engine 35a and the drive wheel of the motor 35b as the main drive source 35, and because with the two motors 3, 3 for driving two driven wheels 10 B, 10 B, respectively, the torque command Is distributed to the respective drive sources (35a, 35b, 3, 3) according to the rules defined in the respective drive sources (35a, 35b, 3, 3).
 内燃機関35aに対するトルク指令は内燃機関制御手段47に伝達され、内燃機関制御手段47によるバルブ開度制御等に用いられる。駆動輪側の発電電動機35bに対するトルク指令は、駆動輪側電動発電機制御手段48に伝達されて実行される。従動輪側のモータ3,3に対するトルク指令は、個別制御手段39,39に伝達される。前記トルク指令分配手段44のうち、個別制御手段39,39へ出力する部分を個別電動発電機指令手段45と称している。この個別電動発電機指令手段45は、ブレーキ操作手段57の操作量の信号に対して、モータ3が回生制動により制動を分担する制動力の指令となるトルク指令を個別制御手段39へ与える機能も備える。 The torque command for the internal combustion engine 35a is transmitted to the internal combustion engine control means 47, and is used for valve opening control etc. by the internal combustion engine control means 47. A torque command to the drive wheel side generator motor 35b is transmitted to the drive wheel side motor generator control means 48 and executed. Torque commands for the driven wheels 3, 3 are transmitted to the individual control means 39, 39. The part of the torque command distribution means 44 to be output to the individual control means 39, 39 is referred to as an individual motor generator command means 45. The individual motor generator command means 45 also has a function of giving to the individual control means 39 a torque command serving as a command of a braking force with which the motor 3 shares braking by regenerative braking in response to the signal of the operation amount of the brake operation means 57. Prepare.
 個別制御手段39はインバータ装置であり、中電圧バッテリー49の直流電力を三相の交流電圧に変換するインバータ41と、前記トルク指令等によりインバータ41の出力をPWM制御等で制御する制御部42とを有する。インバータ41は、半導体スイッチング素子等によるブリッジ回路(図示せず)と、モータ3の回生電力を中電圧バッテリー49に充電する充電回路(図示せず)とを備える。なお個別制御手段39は、二つのモータ3,3に対して個別に設けられるが、一つの筐体内に収められ、制御部42を両個別制御手段39,39で共有する構成であってもよい。 The individual control means 39 is an inverter device, and an inverter 41 for converting DC power of the medium voltage battery 49 into three-phase AC voltage, and a control unit 42 for controlling the output of the inverter 41 by PWM control etc. Have. The inverter 41 includes a bridge circuit (not shown) such as a semiconductor switching element or the like, and a charging circuit (not shown) for charging the medium voltage battery 49 with the regenerative power of the motor 3. Although the individual control means 39 is provided separately for the two motors 3 and 3, it may be housed in a single housing, and the control unit 42 may be shared by both individual control means 39 and 39. .
 図12は、図11に示した車両用システムを搭載した車両の一例となる電源系統図である。同図の例では、バッテリーとして低電圧バッテリー50と中電力バッテリー49とが設けられ、両バッテリー49,50は、DC/DCコンバータ51を介して接続されている。モータ3は二つあるが、代表して一つで図示している。図15の駆動輪側のモータ35bは、図12では図示を省略しているが、従動輪側のモータ3と並列に中電力系統に接続されている。低電圧系統には低電圧負荷52が接続され、中電圧系統には中電圧負荷53が接続される。低電圧負荷52および中電圧負荷53は、それぞれ複数あるが、代表して一つで示している。 FIG. 12 is a power supply system diagram as an example of a vehicle equipped with the vehicle system shown in FIG. In the example of the figure, the low voltage battery 50 and the medium power battery 49 are provided as the battery, and both the batteries 49 and 50 are connected via the DC / DC converter 51. Although there are two motors 3, one is representatively shown. The motor 35b on the drive wheel side of FIG. 15 is connected to the medium power system in parallel with the motor 3 on the driven wheel side, although not shown in FIG. A low voltage load 52 is connected to the low voltage system, and a medium voltage load 53 is connected to the medium voltage system. There are a plurality of low voltage loads 52 and a plurality of medium voltage loads 53, but one is representatively shown.
 低電圧バッテリー50は、制御系等の電源として各種の自動車一般に用いられているバッテリーであり、例えば12Vまたは24Vとされる。低電圧負荷52としては、内燃機関35aのスタータモータ、灯火類、上位ECU40およびその他のECU(図示せず)等の基幹部品がある。低電圧バッテリー50は電装補機類用補助バッテリーと称し、中電圧バッテリー49は電動システム用補助バッテリー等と称してもよい。 The low voltage battery 50 is a battery generally used in various automobiles as a power supply of a control system or the like, and is, for example, 12 V or 24 V. The low voltage load 52 includes basic components such as a starter motor of the internal combustion engine 35a, lights, a host ECU 40, and other ECUs (not shown). The low voltage battery 50 may be referred to as an auxiliary battery for electrical equipment accessories, and the medium voltage battery 49 may be referred to as an auxiliary battery for an electric system or the like.
 中電圧バッテリー49は、低電圧バッテリー50よりも電圧が高く、かつストロングハイブリッド車等に用いられる高圧バッテリー(100V以上、例えば200~400V程度)よりも低く、かつ作業時に感電による人体への影響が問題とならない程度の電圧であり、近年マイルドハイブリッドに用いられている48Vバッテリーが好ましい。48Vバッテリー等の中電圧バッテリー49は、従来の内燃機関を搭載した車両に比較的容易に搭載することができ、マイルドハイブリッドとして電力による動力アシストや回生により、燃費低減することができる。 The medium voltage battery 49 has a higher voltage than the low voltage battery 50 and is lower than a high voltage battery (100 V or more, for example, about 200 to 400 V) used in a strong hybrid vehicle etc. It is a voltage that does not cause a problem, and a 48V battery used in recent years for mild hybrids is preferable. A medium voltage battery 49 such as a 48V battery can be mounted relatively easily on a vehicle equipped with a conventional internal combustion engine, and can reduce fuel consumption by power assist and regeneration with electric power as a mild hybrid.
 前記48V系統の中電圧負荷53は前記アクセサリー部品であり、前記駆動輪側のモータ3である動力アシストモータ、電動ポンプ、電動パワーステアリング、スーパーチャージャ、およびエアーコンフレッサなどである。アクセサリーによる負荷を48V系統で構成することで、高電圧(100V以上のストロングハイブリッド車など)よりも動力アシストの出力が低くなるものの、乗員やメンテナンス作業者への感電の危険性を低くすることができる。電線の絶縁被膜を薄くすることができるので、電線の重量や体積を減らすことができる。また、12Vよりも小さな電流量で大きな電力量を入出力することができるため、電動機または発電機の体積を小さくすることができる。これらのことから、車両の燃費低減効果に寄与する。 The medium voltage load 53 of the 48V system is the accessory component, and is a power assist motor which is the motor 3 on the drive wheel side, an electric pump, an electric power steering, a supercharger, an air compressor, or the like. By configuring the load of accessories with a 48V system, although the power assist output is lower than that of high voltage (100V or higher strong hybrid vehicles etc.), the risk of electric shock to occupants and maintenance workers can be reduced. it can. Since the insulation coating of the wire can be thinned, the weight and volume of the wire can be reduced. Further, since a large amount of power can be input / output with a current amount smaller than 12 V, the volume of the motor or generator can be reduced. From these things, it contributes to the fuel consumption reduction effect of vehicles.
 この車両用システムは、こうしたマイルドハイブリッド車のアクセサリー部品に好適であり、動力アシストおよび電力回生部品として適用される。なお、従来よりマイルドハイブリッド車において、CMG、GMG、ベルト駆動式スタータモータ(いずれも図示せず)などが採用されることがあるが、これらはいずれも、内燃機関または動力装置に対して動力アシストまたは回生するため、伝達装置および減速機などの効率の影響を受ける。 The vehicle system is suitable for accessory parts of such mild hybrid vehicles, and is applied as a power assist and a power regeneration part. Although CMGs, GMGs, and belt-driven starter motors (none of which are shown) may be employed conventionally in mild hybrid vehicles, all of them are power assists for internal combustion engines or power devices. Or because it regenerates, it is affected by the efficiency of the transmission device and speed reducer.
 これに対してこの例の車両用システムは従動輪10Bに対して搭載されるため、内燃機関35aおよびモータ(図示せず)等の主駆動源とは切り離されており、電力回生の際には車体1の運動エネルギーを直接利用することができる。また、CMG、GMG、ベルト駆動式スタータモータなどを搭載する際には、車両30の設計段階から考慮して組み込む必要があり、後付けすることが難しいが、従動輪10B内に収まるこの車両用システムのモータ3は、完成車であっても部品交換と同等の工数で取り付けることができ、内燃機関35aのみの完成車に対しても48Vのシステムを構成することができる。この実施形態の車両用システムを搭載した車両に、図11の例のように別の補助駆動用のモータ35bが搭載されていると、車両30に対する動力アシスト量や回生電力量を増加させることができ、さらに燃費低減に寄与するが、補助駆動用のモータ35bは搭載されていなくてもよい。 On the other hand, since the vehicle system of this example is mounted on the driven wheel 10B, it is separated from the main drive source such as the internal combustion engine 35a and the motor (not shown). The kinetic energy of the vehicle body 1 can be used directly. In addition, when CMG, GMG, a belt drive type starter motor, etc. are mounted, it is necessary to consider considering from the design stage of the vehicle 30, and it is difficult to retrofit, but the system for this vehicle that fits in the driven wheel 10B The motor 3 can be mounted with the same number of steps as part replacement even if it is a complete vehicle, and a system of 48 V can be configured even for a complete vehicle with only the internal combustion engine 35a. If another auxiliary drive motor 35b is mounted on the vehicle equipped with the vehicle system of this embodiment as in the example of FIG. 11, the power assist amount and the regenerative power amount for the vehicle 30 can be increased. Although this contributes to the reduction of fuel consumption, the auxiliary drive motor 35b may not be mounted.
 図13は、いずれかの実施形態に係る車輪用軸受装置1を、前輪である駆動輪10Aおよび後輪である従動輪10Bにそれぞれ適用した例を示す。駆動輪10Aは内燃機関からなる主駆動源35により、クラッチ36および減速機37を介して駆動される。この前輪駆動車において、各駆動輪10Aおよび従動輪10Bの支持および補助駆動に、車輪用軸受装置1が設置されている。このように車輪用軸受装置1を、従動輪10Bだけでなく、駆動輪10Aにも適用し得る。 FIG. 13 shows an example in which the wheel bearing device 1 according to any of the embodiments is applied to the driving wheel 10A as a front wheel and the driven wheel 10B as a rear wheel. The drive wheel 10A is driven by the main drive source 35 consisting of an internal combustion engine via the clutch 36 and the reduction gear 37. In the front wheel drive vehicle, the wheel bearing device 1 is installed to support and assist the drive wheels 10A and the driven wheels 10B. As described above, the wheel bearing device 1 can be applied not only to the driven wheel 10B but also to the driving wheel 10A.
 図11、図12に示す車両用システムは、発電を行う機能を有するが、給電による回転駆動をしないシステムとしてもよい。この場合、モータ3が発電した回生電力を中電圧バッテリー49に蓄えることにより、制動力を発生させることができる。機械式のブレーキ操作手段57と併用や使い分けで、制動性能も向上させることができる。このように発電を行う機能に限定した場合、個別制御手段39はインバータ装置ではなく、AC/DC コンバータ装置(図示せず)として構成することができる。前記AC/DC コンバータ装置は、3相交流電圧を直流電圧に変換することで、モータ3の回生電力を中電圧バッテリー49に充電する機能を備え、インバータと比較すると制御方法が容易であり、小型化が可能となる。   
 以上、実施形態に基づいてこの発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
Although the vehicle system shown in FIGS. 11 and 12 has a function of generating power, it may be a system not performing rotational drive by power feeding. In this case, the braking power can be generated by storing the regenerative power generated by the motor 3 in the medium voltage battery 49. The braking performance can also be improved by using it together with or using the mechanical brake operating means 57. When limited to the function of generating electric power as described above, the individual control means 39 can be configured as an AC / DC converter (not shown) rather than an inverter. The AC / DC converter device has a function of charging the medium voltage battery 49 with the regenerative power of the motor 3 by converting a three-phase AC voltage into a DC voltage, and the control method is easy as compared with the inverter. Can be
As mentioned above, although the form for implementing this invention was demonstrated based on embodiment, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is indicated not by the above description but by the claims, and is intended to include all modifications within the meaning and scope equivalent to the claims.
1…車輪用軸受装置
2…車輪用軸受
3…モータ(動力装置)
4…外輪(固定輪)
4a…外輪本体
4b…中間部材
5…内輪(回転輪)
6…転動体
7…ハブフランジ
8…足回りフレーム部品
12…ブレーキロータ
17…ブレーキ
18…ステータ
18a…コア
18b…巻線コイル
18ba…コイルエンド
19…ロータ
19b…磁性体
19c…永久磁石
23…ケース
23b…回転ケース
23a…固定ケース
25…シール部材
63…回転センサ
66…連通油路
68…ステータ・ロータ間隙間
69,70…コイルエンド収容空間
71…軸受端部隣接空間
73…循環油路
74…インペラ(循環力発生手段)
75…二次冷却装置
77…ポンプ(循環力発生手段)
78…圧力ポンプ(循環力発生手段)
82…ねじ溝(循環力発生手段)
1 ... wheel bearing device 2 ... wheel bearing 3 ... motor (power device)
4 ... Outer ring (fixed ring)
4a: Outer ring body 4b: Intermediate member 5: Inner ring (rotating ring)
DESCRIPTION OF SYMBOLS 6 ... Rolling body 7 ... Hub flange 8 ... Frame frame part 12 ... Brake rotor 17 ... Brake 18 ... Stator 18a ... Core 18b ... Winding coil 18ba ... Coil end 19 ... Rotor 19b ... Magnetic body 19c ... Permanent magnet 23 ... Case 23b: rotation case 23a: fixed case 25: seal member 63: rotation sensor 66: communication oil passage 68: stator-rotor gap 69, 70: coil end accommodation space 71: bearing end adjacent space 73: circulation oil passage 74: Impeller (circulation force generation means)
75 ... secondary cooling device 77 ... pump (circulation force generating means)
78 ... pressure pump (recirculation force generation means)
82 ・ ・ ・ Screw groove (circulation force generating means)

Claims (13)

  1.  固定輪、およびこの固定輪に転動体を介し回転自在に支持されて車両の車輪が取付られる回転輪を有する車輪用軸受と、
     前記固定輪に取付けられたステータおよび前記回転輪に取付られたロータを有する動力装置と、
    を備える車輪用軸受装置であって、
     前記ステータとロータとの間に形成されたステータ・ロータ間隙間、前記ステータの両側のコイルエンド周囲で前記動力装置内に形成された一対のコイルエンド収容空間、および前記車輪用軸受のインボード側で前記回転輪に軸方向に隣合って位置する軸受端部隣接空間を密封するケースが設けられ、
     前記ケース内に設けた循環油路内の冷却油を循環させる循環力発生手段が設けられた、
    車輪用軸受装置。
    A fixed wheel, and a wheel bearing having a rotating wheel rotatably supported by the fixed wheel via a rolling element and to which a vehicle wheel is attached;
    A power unit having a stator attached to the fixed wheel and a rotor attached to the rotating wheel;
    A wheel bearing device comprising
    A clearance between a stator and a rotor formed between the stator and the rotor, a pair of coil end accommodation spaces formed in the power unit around coil ends on both sides of the stator, and an inboard side of the wheel bearing A case for sealing the bearing end adjacent space located axially adjacent to the rotating wheel,
    Circulating force generating means for circulating cooling oil in a circulating oil passage provided in the case is provided.
    Wheel bearing device.
  2.  請求項1に記載の車輪用軸受装置において、前記固定輪内を貫通する連通油路が設けられて、前記ケース内に、前記軸受端部隣接空間、前記連通油路、一方の前記コイルエンド収容空間、前記ステータ・ロータ間隙間、他方の前記コイルエンド収容空間、および前記軸受端部隣接空間を順に循環する前記循環油路が形成された、車輪用軸受装置。 The bearing apparatus for a wheel according to claim 1, wherein a communication oil passage passing through the inside of the fixed wheel is provided, and the space adjacent to the bearing end, the communication oil passage, and one of the coil ends are accommodated in the case. A bearing device for a wheel, wherein the circulating oil passage is formed which sequentially circulates through a space, a space between the stator and the rotor, the other coil end accommodation space, and a space adjacent to the bearing end.
  3.  請求項1または請求項2に記載の車輪用軸受装置において、前記循環力発生手段は、前記車輪用軸受の前記回転輪と固定輪との相対回転で前記冷却油を循環させる車輪用軸受装置。 The wheel bearing device according to claim 1 or 2, wherein the circulating force generation means circulates the cooling oil by relative rotation between the rotating wheel and a fixed wheel of the wheel bearing.
  4.  請求項1ないし請求項3いずれか1項に記載の車輪用軸受装置において、前記車輪用軸受が、前記回転輪が内輪となる内輪回転型であり、前記動力装置がアウターロータ型であって、前記ケースが、前記固定輪と互いに固定された固定ケースと、前記回転輪および前記ロータと互いに固定された回転ケースとを有する車輪用軸受装置。 The wheel bearing device according to any one of claims 1 to 3, wherein the wheel bearing is an inner ring rotating type in which the rotating wheel is an inner ring, and the power unit is an outer rotor type. A bearing apparatus for a wheel according to claim 1, wherein the case includes a fixed case fixed to the fixed wheel and a rotating case fixed to the rotary wheel and the rotor.
  5.  請求項1ないし請求項4のいずれか1項に記載の車輪用軸受装置において、前記固定輪は、前記転動体を転走させる軌道面を有する固定輪本体と、この固定輪本体に外嵌し外周に前記ステータが取付けられる中間部材とを有し、この中間部材に前記連通油路が形成された車輪用軸受装置。 The wheel bearing device according to any one of claims 1 to 4, wherein the fixed wheel is externally fitted to a fixed wheel main body having a raceway surface on which the rolling elements are caused to roll. And an intermediate member to which the stator is attached at an outer periphery thereof, wherein the communication oil passage is formed in the intermediate member.
  6.  請求項1ないし請求項5のいずれか1項に記載の車輪用軸受装置において、前記循環力発生手段として、前記軸受端部隣接空間内に位置して前記回転輪に同軸心に連結されたインペラを有する車輪用軸受装置。 The wheel bearing device according to any one of claims 1 to 5, wherein the circulating force generating means is an impeller located in the space adjacent to the bearing end and coaxially connected to the rotating wheel. Bearing assembly for wheels.
  7.  請求項1ないし請求項6のいずれか1項に記載の車輪用軸受装置において、前記循環油路の途中に、この循環油路を流れる冷却油を冷却する二次冷却装置を有する車輪用軸受装置。 The wheel bearing device according to any one of claims 1 to 6, further comprising a secondary cooling device for cooling a cooling oil flowing in the circulating oil passage, in the middle of the circulating oil passage. .
  8.  請求項1ないし請求項7のいずれか1項に記載の車輪用軸受装置において、循環力発生手段として、前記循環油路の冷却油の循環力を高めるポンプを有する車輪用軸受装置。 The wheel bearing device according to any one of claims 1 to 7, wherein the wheel force bearing device includes a pump that enhances the circulation force of the cooling oil in the circulation oil passage as the circulation force generation unit.
  9.  請求項1ないし請求項8のいずれか1項に記載の車輪用軸受装置において、前記循環力発生手段として、前記ロータおよび前記ステータのいずれか一方または両方における前記ステータ・ロータ間隙間を構成する周面に、前記ロータとステータの相対回転で圧力勾配を生じさせるねじ溝を有する車輪用軸受装置。 The wheel bearing device according to any one of claims 1 to 8, wherein, as the circulating force generating means, a periphery that constitutes the gap between the stator and the rotor in one or both of the rotor and the stator. A bearing apparatus for a wheel having a thread groove on a surface to generate a pressure gradient by relative rotation of the rotor and the stator.
  10.  請求項1ないし請求項9のいずれか1項に記載の車輪用軸受装置において、前記車輪用軸受が、前記車両の主駆動源と機械的に非連結である従動輪を支持する軸受である車輪用軸受装置。 The wheel bearing apparatus according to any one of claims 1 to 9, wherein the wheel bearing is a bearing that supports a driven wheel mechanically disconnected from a main drive source of the vehicle. Bearing equipment.
  11.  請求項1ないし請求項9のいずれか1項に記載の車輪用軸受装置において、前記車輪用軸受が、前記車両の主駆動源と機械的に連結された駆動輪を支持する軸受である車輪用軸受装置。 The wheel bearing apparatus according to any one of claims 1 to 9, wherein the wheel bearing is a bearing that supports a drive wheel mechanically coupled to a main drive source of the vehicle. Bearing equipment.
  12.  請求項1ないし請求項11のいずれか1項に記載の車輪用軸受装置を備えた車両。 A vehicle comprising the wheel bearing device according to any one of claims 1 to 11.
  13.  車輪用軸受に設置される電動発電機から成る動力装置であって、
     前記車輪用軸受の固定輪に取付けられるステータと、前記車輪用軸受の回転輪に取付けられるロータとを備え、
     この動力装置は、前記ステータが前記車輪用軸受の外周に位置し、前記ロータが前記ステータの半径方向外方に位置するアウターロータ型であり、
     この動力装置の全体が、前記回転輪に取り付けられたブレーキロータにおける、ブレーキキャリパが押し付けられる部分となる外周部よりも小径であり、且つ、この動力装置における前記回転輪のアウトボード側に設けられたハブフランジへの取付部を除く全体が、前記ハブフランジと、前記車輪用軸受のインボード側の車体取り付け面との間の軸方向範囲に位置し、
     前記ステータとロータとの間に形成されたステータ・ロータ間隙間、前記ステータの両側のコイルエンド周囲で前記発電機内に形成された一対のコイルエンド収容空間、および前記車輪用軸受のインボード側で前記回転輪に軸方向に隣合って位置する軸受端部隣接空間を密封するケースが設けられ、
     前記ケース内に設けた循環油路内の冷却油を循環させる循環力発生手段が設けられた、
    動力装置。
    A power unit comprising a motor generator installed on a wheel bearing, comprising:
    A stator attached to a fixed wheel of the wheel bearing, and a rotor attached to a rotating wheel of the wheel bearing;
    The power unit is an outer rotor type in which the stator is located on the outer periphery of the wheel bearing and the rotor is located radially outward of the stator.
    The entire power unit is smaller in diameter than an outer peripheral portion of a brake rotor attached to the rotary wheel, which is a portion to which the brake caliper is pressed, and is provided on the outboard side of the rotary wheel in the power unit. The entire portion except the mounting portion to the hub flange is located in an axial range between the hub flange and a vehicle mounting surface on the inboard side of the wheel bearing,
    A clearance between a stator and a rotor formed between the stator and the rotor, a pair of coil end accommodation spaces formed in the generator around coil ends on both sides of the stator, and an inboard side of the wheel bearing A case is provided for sealing the bearing end adjacent space located axially adjacent to the rotating wheel;
    Circulating force generating means for circulating cooling oil in a circulating oil passage provided in the case is provided.
    Power plant.
PCT/JP2019/000077 2018-01-09 2019-01-07 Wheel bearing apparatus and vehicle provided with wheel bearing apparatus WO2019138965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018001028A JP7048320B2 (en) 2018-01-09 2018-01-09 Wheel bearing device and vehicle equipped with this wheel bearing device
JP2018-001028 2018-01-09

Publications (1)

Publication Number Publication Date
WO2019138965A1 true WO2019138965A1 (en) 2019-07-18

Family

ID=67219060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000077 WO2019138965A1 (en) 2018-01-09 2019-01-07 Wheel bearing apparatus and vehicle provided with wheel bearing apparatus

Country Status (2)

Country Link
JP (1) JP7048320B2 (en)
WO (1) WO2019138965A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021045988A (en) * 2019-09-17 2021-03-25 株式会社日立製作所 Electric device in wheel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7339882B2 (en) * 2019-12-26 2023-09-06 株式会社日立製作所 Wheel built-in electric device
JP2023002194A (en) 2021-06-22 2023-01-10 Ntn株式会社 Vehicle power device and wheel bearing with generator
WO2024043004A1 (en) * 2022-08-24 2024-02-29 株式会社デンソー In-wheel motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141861A (en) * 1997-07-22 1999-02-12 Denso Corp Electric rotating machine
JP2005073364A (en) * 2003-08-22 2005-03-17 Toyota Motor Corp In-wheel motor
US20050206250A1 (en) * 2004-01-29 2005-09-22 Magnet-Motor Gesellschaft Fuer Cooled electric drive unit for a motor vehicle
CN204623116U (en) * 2015-05-30 2015-09-09 谷伟 A kind of automobile electrical motor car wheel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141861A (en) * 1997-07-22 1999-02-12 Denso Corp Electric rotating machine
JP2005073364A (en) * 2003-08-22 2005-03-17 Toyota Motor Corp In-wheel motor
US20050206250A1 (en) * 2004-01-29 2005-09-22 Magnet-Motor Gesellschaft Fuer Cooled electric drive unit for a motor vehicle
CN204623116U (en) * 2015-05-30 2015-09-09 谷伟 A kind of automobile electrical motor car wheel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021045988A (en) * 2019-09-17 2021-03-25 株式会社日立製作所 Electric device in wheel

Also Published As

Publication number Publication date
JP2019119360A (en) 2019-07-22
JP7048320B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
JP7156787B2 (en) Wheel bearing device and vehicle equipped with this wheel bearing device
US11990822B2 (en) Vehicle power unit and vehicle wheel bearing with generator
US12021427B2 (en) Motor, vehicle power unit with motor, generator, vehicle wheel bearing with generator
WO2019138965A1 (en) Wheel bearing apparatus and vehicle provided with wheel bearing apparatus
JP2018052482A (en) Bearing device for wheel with auxiliary power unit and auxiliary power unit
WO2020162399A1 (en) Vehicle power device and wheel bearing device equipped with generator
JP7025176B2 (en) Vehicle power unit
WO2021251299A1 (en) Vehicle power device and wheel bearing with generator
JP2019018839A (en) Power device for vehicle and wheel bearing device with generator
JP7140608B2 (en) Power unit for vehicle and bearing unit for wheel with generator
US20230098893A1 (en) Vehicle power device and vehicle bearing with power generator
JP6491719B1 (en) Vehicle power assist system
WO2018225696A1 (en) Generator-equipped wheel bearing device and system for vehicles
JP6997571B2 (en) Bearing device for wheels with generator
WO2019078216A1 (en) Vehicle power device and wheel bearing device with generator
WO2019017340A1 (en) Vehicular power device and wheel bearing device equipped with generator
JP6755988B2 (en) Vehicle power assist system
JP2019049314A (en) Bearing device for wheel with power generator and vehicle provided with bearing device for wheel with power generator
JP2019048555A (en) Bearing device for wheel with generator and vehicle provided with bearing device for wheel with generator
JP2019068560A (en) Wheel bearing device with generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19738040

Country of ref document: EP

Kind code of ref document: A1