Nothing Special   »   [go: up one dir, main page]

WO2019135492A1 - 제어 알고리즘이 개선된 유도 가열 장치 - Google Patents

제어 알고리즘이 개선된 유도 가열 장치 Download PDF

Info

Publication number
WO2019135492A1
WO2019135492A1 PCT/KR2018/014881 KR2018014881W WO2019135492A1 WO 2019135492 A1 WO2019135492 A1 WO 2019135492A1 KR 2018014881 W KR2018014881 W KR 2018014881W WO 2019135492 A1 WO2019135492 A1 WO 2019135492A1
Authority
WO
WIPO (PCT)
Prior art keywords
working coil
induction heating
semiconductor switch
heating apparatus
working
Prior art date
Application number
PCT/KR2018/014881
Other languages
English (en)
French (fr)
Inventor
옥승복
박병욱
이재우
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP18898822.4A priority Critical patent/EP3740031B1/en
Priority to US16/766,595 priority patent/US20210127459A1/en
Publication of WO2019135492A1 publication Critical patent/WO2019135492A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • H05B6/065Control, e.g. of temperature, of power for cooking plates or the like using coordinated control of multiple induction coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • H05B6/1209Cooking devices induction cooking plates or the like and devices to be used in combination with them
    • H05B6/1236Cooking devices induction cooking plates or the like and devices to be used in combination with them adapted to induce current in a coil to supply power to a device and electrical heating devices powered in this way
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • H05B6/1209Cooking devices induction cooking plates or the like and devices to be used in combination with them
    • H05B6/1245Cooking devices induction cooking plates or the like and devices to be used in combination with them with special coil arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • H05B6/1209Cooking devices induction cooking plates or the like and devices to be used in combination with them
    • H05B6/1245Cooking devices induction cooking plates or the like and devices to be used in combination with them with special coil arrangements
    • H05B6/1272Cooking devices induction cooking plates or the like and devices to be used in combination with them with special coil arrangements with more than one coil or coil segment per heating zone
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/03Heating plates made out of a matrix of heating elements that can define heating areas adapted to cookware randomly placed on the heating plate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/05Heating plates with pan detection means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to an induction heating apparatus with an improved control algorithm.
  • the method of heating the object to be heated by electricity is divided into resistance heating method and induction heating method.
  • the electric resistance method is a method of heating an object to be heated by transferring heat generated by flowing a current to a non-metallic heating element such as a metal resistance wire or silicon carbide to the object to be heated through conduction or conduction.
  • a non-metallic heating element such as a metal resistance wire or silicon carbide
  • eddy current is generated in a heated object (for example, a cooking container) made of a metal by using a magnetic field generated around a coil when a predetermined high-frequency power is applied to the coil, So that the heated object itself is heated.
  • Such an induction heating apparatus is generally provided with a working coil in a corresponding region for heating each of a plurality of objects (for example, a cooking vessel).
  • an induction heating apparatus i.e., an induction heating apparatus of the ZONE FREE system
  • an induction heating apparatus of the ZONE FREE system for simultaneously heating a single object with a plurality of working coils has been widely used.
  • the object can be inductively heated regardless of the size and position of the object in a region where a plurality of working coils exist.
  • EP2928265A1 European Patent
  • EP2928265A1 European Patent
  • EP2928265A1 European Patent
  • a conventional zone free induction heating apparatus is shown, and a conventional zone free induction heating apparatus will be described.
  • FIG. 1 is a schematic view for explaining a conventional zone free induction heating apparatus.
  • EP 2928265A1 is a diagram shown in the European patent (EP 2928265A1).
  • a conventional zone-free induction heating apparatus 10 includes a plurality of induction coils L1 to Ln for controlling individual outputs of a plurality of induction coils L1 to Ln,
  • the semiconductor switches T1 to Tn are connected. That is, it is necessary to separately turn-on / turn-off the semiconductor switches T1 to Tn in order to control the outputs of the induction coils L1 to Ln.
  • the semiconductor switch T1 when the semiconductor switch T1 is turned off when a resonance current flows in the semiconductor switch (for example, T1), the counter electromotive force formula (L * di / dt; L is the inductance and di is the resonance A change in current, and a change in time tt), the switch stress is momentarily applied to the semiconductor switch T1, causing damage due to an increase in the amount of heat generated.
  • the semiconductor switch T1 when the semiconductor switch T1 is turned off when a resonance current flows in the semiconductor switch (for example, T1), the counter electromotive force formula (L * di / dt; L is the inductance and di is the resonance A change in current, and a change in time tt), the switch stress is momentarily applied to the semiconductor switch T1, causing damage due to an increase in the amount of heat generated.
  • free wheeling diodes D1 to Dn Free Wheeling Diode are additionally provided for each semiconductor switch T1 to Tn in order to reduce the switch stress.
  • Another object of the present invention is to provide an induction heating apparatus capable of reducing switch stress without a freewheeling diode.
  • Still another object of the present invention is to provide an induction heating apparatus capable of solving a noise problem occurring in a relay switching operation by eliminating a relay and a freewheeling diode and reducing a circuit volume.
  • the induction heating apparatus includes a control unit for controlling the operation of the inverter unit and the plurality of semiconductor switches, respectively, so that independent output control for a plurality of working coils is possible.
  • the induction heating apparatus includes a control unit that turns off the inverter unit before turning off the semiconductor switch, so that the switch stress can be reduced without the free wheeling diode.
  • the induction heating apparatus can control the output of the working coil by using a semiconductor switch and a control unit instead of the relay and freewheeling diode, thereby solving the noise problem occurring in the relay switching operation and reducing the circuit volume .
  • the induction heating apparatus independently controls a plurality of working coils through a semiconductor switch and a control unit, and independently turns on or off a plurality of working coils by rapidly turning on or off the coils. Further, when the input voltage of the power supply unit becomes 0, control operations are performed on the inverter unit and the semiconductor switch. Therefore, even when a delay occurs due to an abnormal situation in the control operation, Can be minimized.
  • the induction heating apparatus can always reduce the switch stress without turning off the freewheeling diode by always turning off the inverter before turning off the semiconductor switch. Furthermore, it is possible to reduce the heat generation of the semiconductor switch by reducing the switch stress, thereby improving the service life and reliability of the semiconductor switch.
  • the induction heating apparatus can solve the noise problem occurring in the switching operation of the relays by performing the output control work on the working coil by using the semiconductor switch and the control unit instead of the relay and the freewheeling diode, Can be improved. Also, since the user can quietly use the time zone (for example, at dawn or late at night) sensitive to the noise problem, usability can be improved.
  • the circuit volume can be reduced by eliminating the bulky relay and freewheeling diodes in the circuit, thereby reducing the overall volume of the induction heating device. Furthermore, space utilization can be improved by reducing the total volume of the induction heating device.
  • FIG. 1 is a schematic view for explaining a conventional zone free induction heating apparatus.
  • FIG. 2 is a block diagram illustrating an induction heating apparatus according to an embodiment of the present invention.
  • FIG. 3 is a circuit diagram for specifically explaining the induction heating apparatus of FIG.
  • FIG. 4 is a schematic diagram illustrating the working coil arrangement of FIG.
  • FIG. 5 is a graph for explaining an output control method of the induction heating apparatus of FIG.
  • FIG. 6 is a circuit diagram for explaining the best mode of the induction heating apparatus of FIG. 2;
  • FIG. 7 is a schematic view for explaining the arrangement of the working coil of Fig.
  • FIG. 2 is a block diagram illustrating an induction heating apparatus according to an embodiment of the present invention.
  • an induction heating apparatus 1 includes a power supply unit 100, a rectifying unit 150, first and second inverter units IV1 and IV2, a controller 250, First to fourth working coils WC1 to WC4, first to fourth semiconductor switches S1 to S4, an auxiliary power source 300 and an input interface 350.
  • the number of some components for example, inverter section, working coil, semiconductor switch, etc.
  • the number of some components for example, inverter section, working coil, semiconductor switch, etc. of the induction heating apparatus 1 shown in Fig. 2 may be changed.
  • the power supply unit 100 can output AC power.
  • the power supply unit 100 may output AC power to the rectifying unit 150, and may be, for example, a commercial power supply.
  • the rectifying unit 150 may convert AC power supplied from the power supply unit 100 into DC power and supply the AC power to at least one of the first inverter unit IV1 and the second inverter unit IV2.
  • the rectifying unit 150 rectifies the AC power supplied from the power supply unit 100 and converts the rectified AC power into DC power.
  • the DC power rectified by the rectifying section 150 may be provided to a filter section (not shown), and the filter section may remove AC components remaining in the DC power.
  • the DC power rectified by the rectifying unit 150 may be provided as a DC link capacitor (not shown), and the DC link capacitor may reduce a ripple of the corresponding DC power.
  • the DC power rectified by the rectifying section 150 and the filter section (or DC link capacitor) can be supplied to at least one of the first and second inverter sections IV1 and IV2.
  • the first inverter unit IV1 may perform a switching operation to apply a resonant current to at least one of the first and second working coils WC1 and WC2.
  • the switching operation of the first inverter section IV1 can be controlled by the control section 250.
  • the first inverter unit IV1 can perform the switching operation based on the switching signal provided from the controller 250.
  • the first inverter IV1 may include two switching elements (not shown), and the two switching elements may be alternately turned on and off by a switching signal provided from the controller 250, Can be turned off.
  • a high-frequency alternating current (that is, a resonant current) can be generated by the switching operation of these two switching elements, and the generated high-frequency alternating current is applied to at least one of the first and second working coils WCl and WC2 .
  • the second inverter unit IV2 may perform a switching operation to apply a resonant current to at least one of the third and fourth working coils WC3 and WC4.
  • the switching operation of the second inverter section IV2 can be controlled by the control section 250.
  • the second inverter unit IV2 can perform the switching operation based on the switching signal provided from the controller 250.
  • two switching elements may be included in the second inverter section IV2, and the two switching elements may be alternately turned on and off by a switching signal provided from the control section 250. [ Can be turned off.
  • alternating current of high frequency (that is, resonant current) can be generated by the switching operation of these two switching elements, and generated high frequency alternating current is applied to at least one of the third and fourth working coils WC3 and WC4 .
  • the control unit 250 can control the operation of the first and second inverter units IV1 and IV2 and the first to fourth semiconductor switches S1 to S4, respectively.
  • the switching operation of the first and second inverter units IV1 and IV2 may be controlled according to the switching signal of the controller 250, and the first to fourth semiconductor switches S1 to S4 may be turned on or off sequentially or in a specific order or simultaneously.
  • the first inverter unit IV1 is driven by the switching signal of the controller 250 and the first semiconductor switch S1 is turned on by the control signal of the controller 250, the first working coil WC1).
  • the object located above the first working coil WC1 can be heated by the resonance current applied to the first working coil WC1.
  • the control unit 250 controls the operation of the inverter units IV1 and IV2 and the semiconductor switches S1 to S4 at the time when the input voltage of the power supply unit 100 (that is, the AC voltage by the AC power) becomes zero . Accordingly, even when a delay occurs due to an abnormal situation in the control operation of the control unit 250, the influence (i.e., loss) on the apparatus can be minimized.
  • the control unit 250 can also control components other than the inverter units IV1 and IV2 and the semiconductor switches S1 to S4 so that the control operation for the other components is also controlled by the input voltage of the power unit 100 0 < / RTI >
  • the control unit 250 controls the inverter units IV1 and IV2 and the semiconductor switches S1 to S4 at the time when the input voltage of the power source unit 100 becomes zero. The control of the operation will be described as an example.
  • the control unit 250 may generate various switching signals or control signals through a PWM (Pulse Width Modulation) function.
  • PWM Pulse Width Modulation
  • control unit 250 generates first to fourth control signals having different pulse widths (i.e., duty), and outputs the generated first to fourth control signals to the first to fourth
  • the first to fourth semiconductor switches S1 to S4 can be independently controlled by providing them to the semiconductor switches S1 to S4.
  • controller 250 may control the output of each of the working coils WC1 to WC4 by adjusting the pulse width of each control signal, and the details thereof will be described later.
  • the induction heating apparatus 1 may have a wireless power transmission function.
  • Such a wireless power transmission technique includes an electromagnetic induction method using a coil, a resonance method using resonance, and a radio wave radiation method in which electrical energy is converted into a microwave and transmitted.
  • the electromagnetic induction system uses electromagnetic induction between a primary coil (for example, a working coil WC) provided in an apparatus for transmitting radio power and a secondary coil provided in an apparatus for receiving radio power, Transmission technology.
  • the induction heating system of the induction heating apparatus 1 is substantially the same as the principle of the electromagnetic induction wireless power transmission in that the object to be heated is heated by electromagnetic induction.
  • the induction heating apparatus 1 not only the induction heating function but also the wireless power transmission function can be mounted.
  • control unit 250 can control the driving mode of the induction heating apparatus 1, that is, the induction heating mode or the wireless power transmission mode.
  • control unit 250 sets the driving mode of the induction heating apparatus 1 to the wireless power transmission mode, at least one of the first to fourth working coils WC1 to WC4 is driven, And transmits power wirelessly.
  • control unit 250 sets the driving mode of the induction heating apparatus 1 to the induction heating mode, at least one of the first to fourth working coils WC1 to WC4 is driven to move the object (not shown) And then heated.
  • control unit 250 can control the output intensities of the working coils WC1 to WC4 by adjusting the pulse widths of the control signals provided to the semiconductor switches S1 to S4.
  • control unit 250 can determine which working coil to drive according to the position of the object (i.e., the object to be heated), and can also determine whether or not the switching signal between the working coils to be driven is synchronized.
  • the control unit 250 detects the resonance currents flowing through the first to fourth working coils WC1 to WC4 and detects the resonance current flowing to any one of the first to fourth working coils WC1 to WC4 .
  • controller 250 may determine whether the object is a magnetic body or a non-magnetic body based on the detection value.
  • the object to be placed on the upper portion of the induction heating apparatus 1 is a magnetic body
  • a large amount of eddy current is induced in the working coil from the working coil to resonate, so that a relatively small resonance current flows through the working coil.
  • the working coil is not resonated, since the working coil is not resonated, a relatively large resonance current flows in the working coil.
  • control unit 250 can determine that the object to be driven is a magnetic body when the resonance current flowing through the working coil is smaller than a preset reference current. Conversely, when the resonance current flowing through the working coil is equal to or greater than a predetermined reference current, the controller 250 can determine that the object is a non-magnetic body.
  • the induction heating apparatus 1 may further include a detection unit (not shown) for detecting the resonance current flowing through the working coils WC1 to WC4, and the detection unit may detect the object .
  • control unit 250 performs the object detection function as an example.
  • the first and second working coils WC1 and WC2 may be connected in parallel with each other.
  • first and second working coils WC1 and WC2 are connected in parallel with each other and can receive a resonant current from the first inverter IV1.
  • the drive mode of the induction heating apparatus 1 is the induction heating mode
  • An eddy current is generated between the working coil and the object so that the object can be heated.
  • the high-frequency alternating current applied to at least one of the first and second working coils WC1 and WC2 in the first inverter unit IV1 A magnetic field may be generated in the working coil.
  • a current flows through the coil inside the object corresponding to the working coil, and the object can be charged by the current flowing through the coil inside the object.
  • the first working coil WC1 may be connected to the first semiconductor switch S1 and the second working coil WC2 may be connected to the second semiconductor switch S2.
  • each of the working coils can be turned on or turned off at a high speed by the corresponding semiconductor switch.
  • the third and fourth working coils WC3 and WC4 may be connected in parallel with each other.
  • the third and fourth working coils WC3 and WC4 are connected in parallel to each other and can receive a resonant current from the second inverter unit IV2.
  • the high-frequency alternating current applied to at least one of the third and fourth working coils WC3 and WC4 in the second inverter unit IV2 An eddy current is generated between the working coil and the object so that the object can be heated.
  • the high-frequency alternating current applied to at least one of the third and fourth working coils WC3 and WC4 in the second inverter unit IV2 A magnetic field may be generated in the working coil.
  • a current flows through the coil inside the object corresponding to the working coil, and the object can be charged by the current flowing through the coil inside the object.
  • the third working coil WC3 may be connected to the third semiconductor switch S3 and the fourth working coil WC4 may be connected to the fourth semiconductor switch S4.
  • each of the working coils can be turned on or turned off at a high speed by the corresponding semiconductor switch.
  • the meaning that the working coil is turned on or off by the semiconductor switch may mean that the flow of the resonance current applied from the inverter to the working coil is unblocked or blocked by the semiconductor switch.
  • the first to fourth semiconductor switches S1 to S4 are respectively connected to the first to fourth working coils WC1 to WC4 to turn on or off the first to fourth working coils WC1 to WC4, And can be supplied with power from the auxiliary power source 300.
  • the first semiconductor switch S1 is connected to the first working coil WC1 to turn on or off the first working coil WC1
  • the second semiconductor switch S2 is connected to the second working coil WC2 to turn on or off the second working coil WC2.
  • the first and second semiconductor switches S1 and S2 are driven by the control unit 250 in cooperation with the first inverter unit IV1 so that the object is present on the first and second working coils WC1 and WC2 And to control the outputs of the first and second working coils WC1 and WC2.
  • the control unit 250 may block the resonance current from flowing to the semiconductor switch that is turned off by turning off the first inverter unit IV1 before turning off at least one of the first and second semiconductor switches S1 and S2 have. Also, the switch stress applied to the semiconductor switch which is turned off through this can be reduced.
  • the third semiconductor switch S3 may be connected to the third working coil WC3 to turn on or off the third working coil WC3
  • the fourth semiconductor switch S4 may be connected to the fourth working coil WC4 So that the fourth working coil WC4 can be turned on or off.
  • the third and fourth semiconductor switches S3 and S4 are driven by the control unit 250 in cooperation with the second inverter unit IV2 so that the object is present on the third and fourth working coils WC3 and WC4 And to control the outputs of the third and fourth working coils WC3 and WC4.
  • the control unit 250 can prevent the resonance current from flowing to the semiconductor switch that is turned off by turning off the second inverter unit IV2 before turning off at least one of the third and fourth semiconductor switches S3 and S4 have. Also, the switch stress applied to the semiconductor switch which is turned off through this can be reduced.
  • the first to fourth semiconductor switches S1 to S4 may include, for example, a static switch.
  • a metal oxide semiconductor field effect transistor (MOSFET) or an insulated gate bipolar mode transistor (IGBT) may be applied to the first to fourth semiconductor switches S1 to S4.
  • MOSFET metal oxide semiconductor field effect transistor
  • IGBT insulated gate bipolar mode transistor
  • the auxiliary power supply 300 can supply power to the first to fourth semiconductor switches S1 to S4.
  • the auxiliary power supply 300 may have a single output structure (i.e., one output stage). Therefore, the auxiliary power supply 300 can supply power to the first to fourth semiconductor switches S1 to S4 with a single output. Also, the auxiliary power supply 300 can reduce the number of pins required for connection with the first to fourth semiconductor switches S1 to S4 when compared with other multiple output structures.
  • the auxiliary power supply 300 has a dual output structure in which each output stage divides a single output capacity into a capacity smaller than a preset reference capacity Output structure).
  • the auxiliary power supply 300 may include, for example, a switched mode power supply (SMPS), but is not limited thereto.
  • SMPS switched mode power supply
  • the input interface 350 may receive an input from a user and provide the input to the controller 250.
  • the input interface 350 is a module for inputting the heating intensity desired by the user or the driving time of the induction heating device, and can be variously implemented as a physical button or a touch panel.
  • the input interface 350 may include a power button, a lock button, a power level control button (+, -), a timer control button (+, -), a charge mode button,
  • the input interface 350 may provide the input information to the controller 250 and the controller 250 may drive the induction heating apparatus 1 variously based on the input information provided from the input interface 350
  • the controller 250 may drive the induction heating apparatus 1 variously based on the input information provided from the input interface 350
  • the driving of the induction heating apparatus 1 can be started. Conversely, if the user touches the power button for a predetermined time while the induction heating apparatus 1 is being driven, the driving of the induction heating apparatus 1 may be terminated.
  • buttons when the user touches the lock button for a predetermined period of time, all of the other buttons can not be operated. Thereafter, when the user touches the lock button again for a predetermined time, all of the other buttons can be operated.
  • the control unit 250 may adjust the frequency for the switching operation of the first and second inverter units IV1 and IV2 to correspond to the input power level.
  • the user can set the driving time of the induction heating apparatus 1 by touching the timer adjustment buttons (+, -).
  • the control unit 250 may terminate the driving of the induction heating apparatus 1 when the driving time set by the user has elapsed.
  • the driving time of the induction heating apparatus 1 set by the timer control buttons (+, -) can be the heating time of the object. Also, when the induction heating apparatus 1 operates in the wireless power transmission mode, the driving time of the induction heating apparatus 1 set by the timer control buttons (+, -) may be the charging time of the object.
  • the induction heating apparatus 1 can be driven in the wireless power transmission mode.
  • control unit 250 can receive the device information about the target object through communication with the target object placed in the driving region (i.e., the upper portion of the working coil).
  • the device information transmitted from the object may include information such as, for example, the type of object, the charging mode, and the amount of power required.
  • control unit 250 can determine the type of the object based on the received device information, and can grasp the charging mode of the object.
  • the charging mode of the object may include a normal charging mode and a fast charging mode.
  • the controller 250 can adjust the frequency of at least one of the first and second inverter units IV1 and IV2 according to the determined charging mode. For example, in the fast charge mode, the controller 250 can adjust the frequency so that a larger resonance current is applied to the working coil in accordance with the switching operation of the inverter unit.
  • the charging mode of the object may be input by the user through the input interface 350.
  • the induction heating apparatus 1 can have the above-described characteristics and configuration.
  • FIG. 3 is a circuit diagram for specifically explaining the induction heating apparatus of FIG. 4 is a schematic diagram illustrating the working coil arrangement of FIG. 5 is a graph for explaining an output control method of the induction heating apparatus of FIG.
  • the induction heating apparatus shown in FIG. 3 has the same configuration and features as the induction heating apparatus shown in FIG. 2, but the number and the name of some of the elements are changed for convenience of explanation.
  • the induction heating apparatus of FIG. 3 includes an additional inverter unit, A walking coil, a detection group, a detection unit, a semiconductor switch unit, and a semiconductor switch.
  • the inverter unit the working coil unit, the working coil, the detection group, the detection unit, the semiconductor switch unit, and the semiconductor switch will be described as an example.
  • an induction heating apparatus 1 includes a power supply unit 100, a rectifying unit 150, a DC link capacitor 200, first to third inverter units IV1- BS3 and CS3, a control unit 250, an auxiliary power supply 300, an input interface 350, and a control unit 350.
  • the first, second, third, and fourth working coils (AWC, BWC, CWC) ).
  • the number of the inverter section, the working coil section, the working coil, the semiconductor switch section, and the semiconductor switch is not limited to the number shown in FIG. 3 and can be changed.
  • the power supply unit 100 may output AC power to the rectifying unit 150, and the rectifying unit 150 may convert the AC power supplied from the power supply unit 100 to DC power and supply the AC power to the DC link capacitor 200 .
  • the DC link capacitor 200 may be connected in parallel with the rectifying part 150.
  • the DC link capacitor 200 may be connected in parallel with the rectifying part 150 to receive the DC voltage from the rectifying part 150.
  • the DC link capacitor 200 may also be a smoothing capacitor, for example, and thus reduce the ripple of the supplied DC voltage.
  • the DC voltage is supplied from the rectifying unit 150, and DC voltage is applied to one end and grounded by the potential difference from the other end.
  • the DC power (or DC voltage) rectified by the rectification section 150 and reduced in ripple by the DC link capacitor 200 may be supplied to at least one of the first to third inverter sections IV1 to IV3 .
  • the first inverter section IV1 includes two switching elements SV1 and SV1 'and the second inverter section IV2 includes two switching elements SV2 and SV2' (IV3) may include two switching elements SV3 and SV3 '.
  • each of the inverter units IV1 to IV3 are alternately turned on and off by the switching signal provided from the controller 250 to convert the DC power into a high frequency alternating current (i.e., a resonance current) And the converted high frequency alternating current can be provided to the working coil.
  • a high frequency alternating current i.e., a resonance current
  • the resonance current converted by the switching operation of the first inverter section IV1 can be provided to the first working coil section AWC, and the resonance current converted by the switching operation of the second inverter section IV2 The current can be provided to the second working coil portion BWC.
  • the resonance current converted by the switching operation of the third inverter unit IV3 can be provided to the third working coil unit CWC.
  • the resonance current generated by the first inverter section IV1 can be applied to at least one of the working coils WC1 and WC2 (first and second working coils) included in the first working coil section AWC
  • the resonance current generated by the second inverter unit IV2 may be applied to at least one of the working coils WC3 and WC4 (third and fourth working coils) included in the second working coil unit BWC.
  • the resonance current generated by the third inverter unit IV3 may be applied to at least one of the working coils WC5 and WC6 (fifth and sixth working coils) included in the third working coil unit CWC.
  • the working coils WC1 and WC2 included in the first working coil part AWC are connected in parallel with each other and the working coils WC3 and WC4 included in the second working coil part BWC are also connected in parallel .
  • the working coils WC5 and WC6 included in the third working coil portion CWC are also connected in parallel with each other.
  • the working coils WC1 and WC2 included in the first working coil part AWC can be grouped and arranged in the A area AR and the second working coil part BWC
  • the working coils WC3 and WC4 included in the region B can be grouped and arranged in the B region BR.
  • the working coils WC5 and WC6 included in the third working coil portion CWC can be grouped and arranged in the C region CR.
  • the working coil may be disposed in the remaining empty space, and the input interface 350 may be disposed at a position other than the position shown in FIG.
  • the first semiconductor switch part AS is connected to the first working coil part AWC
  • the second semiconductor switch part BS is connected to the second working coil part BWC
  • the third semiconductor switch part CS may be connected to the third working coil part CWC.
  • the first semiconductor switch portion AS includes two semiconductor switches S1 and S2 (first and second semiconductor switches), and each of the two semiconductor switches S1 and S2 is connected to a first working coil portion
  • the two working coils WC1 and WC2 may be respectively turned on or off by being connected to the two working coils WC1 and WC2 included in the AWC.
  • each of the two semiconductor switches S1 and S2 is connected to the two working coils WC1 and WC2 and the other end of each of the two semiconductor switches S1 and S2 is connected to the other end of the DC link capacitor 200 And may be connected to the other end (i.e., the ground terminal).
  • the second semiconductor switch portion BS includes two semiconductor switches S3 and S4 (third and fourth semiconductor switches), and each of the two semiconductor switches S3 and S4 includes a second working coil portion BWC. And the two working coils WC3 and WC4 can be turned on or off, respectively, by being connected to the two working coils WC3 and WC4 included in the control unit.
  • each of the two semiconductor switches S3 and S4 is connected to the two working coils WC3 and WC4 respectively and the other end of each of the two semiconductor switches S3 and S4 is connected to the other end of the DC link capacitor 200 And may be connected to the other end (i.e., the ground terminal).
  • the third semiconductor switch portion CS includes two semiconductor switches S5 and S6 and each of the two semiconductor switches S5 and S6 is connected to two working coils CWC included in the third working coil portion CWC WC5, and WC6, respectively, so that the two working coils WC5 and WC6 can be turned on or off, respectively.
  • each of the two semiconductor switches S5 and S6 is connected to two working coils WC5 and WC6 and the other end of each of the two semiconductor switches S5 and S6 is connected to the other end of the DC link capacitor 200 And may be connected to the other end (i.e., the ground terminal).
  • the other ends of all the semiconductor switches of the first to third semiconductor switch parts AS, BS and CS may be connected to the other end (i.e., the ground end) of the DC link capacitor 200, ) Can supply power to all semiconductor switches through one output terminal.
  • the emitter of each semiconductor switch floats with each other, and the number of output stages of the auxiliary power supply 300 increases by the number of semiconductor switches have. This also increases the number of pins of the auxiliary power supply 300, which increases the circuit volume.
  • the auxiliary power supply 300 can supply power to all the semiconductor switches through one output terminal.
  • the number of pins of the auxiliary power supply 300 can be reduced compared to when the emitter of the semiconductor switch is floated, and further, the circuit volume can be reduced.
  • the other ends of all semiconductor switches may be connected to one end of the DC link capacitor 200 (i.e., a portion to which a DC voltage is applied). If the single output capacitance of the auxiliary power supply 300 is too large (that is, if it is largely deviated from a preset reference capacitance), the other ends of the semiconductor switches included in some semiconductor switch parts are connected to the other end of the DC link capacitor 200 And the other end of the semiconductor switches included in the remaining semiconductor switch unit may be connected to one end of the DC link capacitor 200 (i.e., a portion to which the DC voltage is applied).
  • the induction heating apparatus 1 may further include a resonance capacitor C connected between the working coil and the semiconductor switch.
  • the resonant capacitor C In the case of the resonant capacitor C, resonance is started when a voltage is applied by the switching operation of the inverter section (for example, the first inverter section IV1). Further, when the resonance capacitor C resonates, the current flowing in the working coil (for example, WC1) connected to the resonance capacitor C rises.
  • controller 250 may control the operations of the first to third inverter units IV1 to IV3 and the first to third semiconductor switch units AS, BS, and CS, respectively.
  • the control unit 250 also detects resonance currents flowing through at least one of the working coils WC1 to WC6 included in the first to third working coil units AWC, BWC and CWC, It can be determined whether the object is located on the upper part.
  • the controller 250 controls the operations of the first to third inverter units IV1 to IV3 and the semiconductor switches S1 to S6 included in the first to third semiconductor switch units AS, BS and CS, respectively It is possible to detect which of the working coils WC1 to WC6 included in the first to third working coil portions AWC, BWC and CWC is located above the working coil.
  • the control unit 250 can independently control the output of the working coils WC1 to WC6 included in the first to third working coil units AWC, BWC and CWC, S6) can be reduced.
  • the control unit 250 also controls the operation of the inverter units IV1, IV2, and IV3 and the semiconductor switches S1 to S6 at the time when the input voltage of the power source unit 100 (that is, can do.
  • FIG. 1 a control method of the control unit 250 will be described with reference to FIGS. 3 and 5.
  • FIG. 1 a control method of the control unit 250 will be described with reference to FIGS. 3 and 5.
  • the first inverter unit IV1, the first working coil unit AWC, the first semiconductor switch unit AS, and the first inverter unit IV1 operate in the same manner and in principle, As an example.
  • control unit 250 provides a first control signal having a first pulse width to the first semiconductor switch S1 to control the operation of the first semiconductor switch S1, And to provide a second control signal having a second pulse width to the second semiconductor switch S2 to control the operation.
  • the first semiconductor switch S1 is turned on during the holding time of the first pulse width (for example, P1 to P3, P5 to P6 (note that the holding time of the pulse width corresponds to the pulse width)
  • the second semiconductor switch S2 can be turned on during the holding time (for example, P1 to P6) of the second pulse width. Further, when the first semiconductor switch S1 is turned on, the first working coil WC1 is turned on, and when the second semiconductor switch S2 is turned on, the second working coil WC2 can be turned on.
  • controller 250 may set the first and second pulse widths to be different from each other and set the outputs of the first and second working coils WC2 differently from each other.
  • the controller 250 sets the first pulse width to 50% and the second pulse width to 70%
  • the output of the first working coil WC1 can be adjusted to 500W and the output of the second working coil WC2 can be adjusted to 700W.
  • control unit 250 may adjust the first pulse width to control the output of the first working coil WC1 and adjust the second pulse width to control the output of the second working coil WC2.
  • control unit 250 controls the turn-off timing of the first inverter unit IV1 and the first and second semiconductor switches S1 and S2 so that the switch stress applied to the semiconductor switches S1 and S2 Can be reduced.
  • the control unit 250 sets the third time point The first inverter section IV1 is turned off before the third time point P3 (i.e., at the second time point P2), and after the third time point P3 (i.e., at the fourth time point P4) IV1) can be turned on again.
  • control unit 250 may turn off the first inverter unit IV1 before a specific point in time.
  • control unit 250 turns off the first inverter unit IV1 before turning off at least one of the first and second semiconductor switches S1 and S2 so that the resonance current flows in the semiconductor switch that is turned off Can be blocked. Accordingly, when the semiconductor switch is turned off, the stress applied to the semiconductor switch can be reduced, and the amount of heat generated by the semiconductor switch can be reduced by reducing the stress.
  • the control unit 250 also controls the first inverter unit IV1 and the first inverter unit IV2 at a time point when the input voltage Vac of the power supply unit 100 (i.e., the AC voltage generated by the AC power) becomes zero And the operation of the second semiconductor switches (S1, S2).
  • the controller 250 controls the first inverter unit IV1 and the first semiconductor switch SW2 at the second time point P2 and the third time point P3 at which the input voltage Vac of the power source unit 100 becomes 0, (S1) can be turned off.
  • the controller 250 controls the first inverter unit IV1 and the first semiconductor switch S1 at the fourth time point P4 and the fifth time point P5 at which the input voltage Vac of the power source unit 100 becomes zero, Can be turned on.
  • control unit 250 Since the control unit 250 performs the control operation at the time when the input voltage Vac of the power supply unit 100 becomes zero, a delay occurs due to an abnormal situation in the control operation of the control unit 250 It is possible to minimize the influence (i.e., loss) on the device or the parts.
  • the induction heating apparatus 1 independently separates the plurality of working coils WC1 to WC6 through the semiconductor switches S1 to S6 and the control unit 250, Independent output control for a plurality of working coils WC1 to WC6 is possible by turning on or off. Control operations for the inverter units IV1 to IV3 and the semiconductor switches S1 to S6 are performed at the time when the input voltage Vac of the power source unit 100 becomes 0, (i.e., loss) to the device even if a delay occurs.
  • the induction heating apparatus 1 always controls the inverter units IV1 to IV3 (that is, the inverters corresponding to the semiconductor switches to be turned off) before turning off the semiconductor switches S1 to S6 By turning off first, switch stress can be reduced without a freewheeling diode. Furthermore, it is possible to reduce the amount of heat generated by the semiconductor switches (S1 to S6) by reducing the switch stress, thereby improving the life and reliability of the product.
  • the induction heating apparatus 1 can control the output of the working coils WC1 to WC6 by using the semiconductor switches S1 to S6 and the control unit 250 instead of the relay and the freewheeling diode Thereby solving the problem of noise occurring in the switching operation of the relay, thereby improving the user satisfaction. Also, since the user can quietly use the time zone (for example, at dawn or late at night) sensitive to the noise problem, usability can be improved. In addition, the circuit volume can be reduced by eliminating the bulky relay and freewheeling diode in the circuit, thereby reducing the overall volume of the induction heating apparatus 1. Further, space utilization can be improved by reducing the total volume of the induction heating apparatus 1. [
  • FIG. 6 is a circuit diagram for explaining the best mode of the induction heating apparatus of FIG. 2;
  • FIG. 7 is a schematic view for explaining the arrangement of the working coil of Fig.
  • the induction heating apparatus shown in FIG. 6 has the same configuration and features as the induction heating apparatus shown in FIG. 3, but the number and the name of some elements are changed for explaining the optimum example.
  • the induction heating apparatus of Fig. 6 includes an additional inverter unit, A walking coil, a detection group, a detection unit, a semiconductor switch unit, and a semiconductor switch.
  • the inverter unit the working coil part, the working coil, the detection group, the detection part, the semiconductor switch part, and the semiconductor switch will be described as examples of the best example of the present invention.
  • an optimum example of the induction heating apparatus 1 includes a power supply unit 100, a rectifying unit 150, a DC link capacitor 200, First to third working switch parts (AWC, BWC, CWC), first to third semiconductor switch parts AS, BS and CS, a control part 250, an auxiliary power supply 300, Interface 350 may be included.
  • a power supply unit 100 a rectifying unit 150, a DC link capacitor 200, First to third working switch parts (AWC, BWC, CWC), first to third semiconductor switch parts AS, BS and CS, a control part 250, an auxiliary power supply 300, Interface 350 may be included.
  • the first working coil part AWC includes six working coils AWC1 through AWC6
  • the second working coil part BWC Includes four working coils BWC1 to BWC4
  • a third working coil part CWC may include six working coils CWC1 to CWC6.
  • the first semiconductor switch portion AS includes six semiconductor switches AS1 to AS6 and the second semiconductor switch portion BS includes four semiconductor switches BS1 to BS4 in accordance with the number of working coils
  • the third semiconductor switch unit CS may include six semiconductor switches CS1 to CS6.
  • the working coils AWC1 to AWC6 included in the first working coil portion AWC can be grouped and disposed in the A region AR, and the second working coil portion BWC
  • the working coils BWC1 to BWC4 included in the region B can be grouped and arranged in the B region BR.
  • the working coils CWC1 to CWC6 included in the third working coil portion CWC may be arranged in the C region CR.
  • the working coil may be disposed in the remaining empty space, and the input interface 350 may also be disposed at a position other than the position shown in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
  • Inverter Devices (AREA)

Abstract

본 발명은 제어 알고리즘이 개선된 유도 가열 장치에 관한 것이다. 또한 본 발명의 일 실시예에 따른 유도 가열 장치는, 병렬 연결된 제1 및 제2 워킹 코일을 포함하는 워킹 코일부, 스위칭 동작을 수행하여 제1 및 제2 워킹 코일 중 적어도 하나에 공진 전류를 인가하는 인버터부, 제1 워킹 코일을 턴온(turn-on) 또는 턴오프(turn-off)하기 위해 제1 워킹 코일에 연결된 제1 반도체 스위치, 제2 워킹 코일을 턴온 또는 턴오프하기 위해 제2 워킹 코일에 연결된 제2 반도체 스위치 및 인버터부와 제1 및 제2 반도체 스위치의 동작을 각각 제어하는 제어부를 포함하되, 제어부는 제1 및 제2 반도체 스위치 중 적어도 하나를 턴오프하기 전에 인버터부를 턴오프한다.

Description

제어 알고리즘이 개선된 유도 가열 장치
본 발명은 제어 알고리즘이 개선된 유도 가열 장치에 관한 것이다.
가정이나 식당에서 음식을 가열하기 위한 다양한 방식의 조리 기구들이 사용되고 있다. 종래에는 가스를 연료로 하는 가스 레인지가 널리 보급되어 사용되어 왔으나, 최근에는 가스를 이용하지 않고 전기를 이용하여 피가열 물체, 예컨대 냄비와 같은 조리 용기를 가열하는 장치들의 보급이 이루어지고 있다.
전기를 이용하여 피가열 물체를 가열하는 방식은 크게 저항 가열 방식과 유도 가열 방식으로 나누어진다. 전기 저항 방식은 금속 저항선 또는 탄화규소와 같은 비금속 발열체에 전류를 흘릴 때 생기는 열을 방사 또는 전도를 통해 피가열 물체에 전달함으로써 피가열 물체를 가열하는 방식이다. 그리고 유도 가열 방식은 소정 크기의 고주파 전력을 코일에 인가할 때 코일 주변에 발생하는 자계를 이용하여 금속 성분으로 이루어진 피가열 물체(예를 들어, 조리 용기)에 와전류(eddy current)를 발생시켜 피가열 물체 자체가 가열되도록 하는 방식이다.
이러한 유도 가열 장치는 복수개의 대상체 각각(예를 들어, 조리 용기)을 가열하기 위해 대응하는 영역에 각각 워킹 코일을 구비하고 있는 것이 일반적이다.
다만, 최근에는 하나의 대상체를 복수개의 워킹 코일로 동시에 가열하는 유도 가열 장치(즉, 존프리(ZONE FREE) 방식의 유도 가열 장치)가 널리 보급되고 있다.
이러한 존프리 방식의 유도 가열 장치의 경우, 복수개의 워킹 코일이 존재하는 영역 내에서는 대상체의 크기 및 위치에 상관 없이 대상체를 유도 가열할 수 있다.
여기에서, 유럽 특허(EP2928265A1)를 참조하면, 종래의 존프리 방식의 유도 가열 장치가 도시되어 있는바, 이를 참조하여, 종래의 존프리 방식의 유도 가열 장치를 살펴보도록 한다.
도 1은 종래의 존프리 방식의 유도 가열 장치를 설명하는 개략도이다.
참고로, 도 1은 유럽 특허(EP2928265A1)에 도시된 도면이다.
도 1에 도시된 바와 같이, 종래의 존프리 방식의 유도 가열 장치(10)는, 복수개의 인덕션 코일(L1~Ln)의 개별 출력을 제어하기 위해 복수개의 인덕션 코일(L1~Ln)마다 코일 절환용 반도체 스위치(T1~Tn)가 연결된 구조를 가지고 있다. 즉, 인덕션 코일(L1~Ln) 각각의 출력을 제어하기 위해서는 반도체 스위치(T1~Tn)를 개별적으로 턴온(turn-on)/턴오프(turn-off) 해야 할 필요가 있다.
다만, 반도체 스위치(예를 들어, T1)에 공진 전류가 흐르고 있을 때 해당 반도체 스위치(T1)를 턴오프하는 경우, 인덕션 코일과 관련된 역기전력 공식(L*di/dt; L은 인덕턴스, di는 공진 전류 변화분, dt는 시간 변화분)에 따라 순간적으로 해당 반도체 스위치(T1)에 스위치 스트레스가 인가되어 발열량 증가에 따른 손상이 발생한다는 문제가 있었다.
이에 따라, 종래의 존프리 방식의 유도 가열 장치(10)에는, 스위치 스트레스를 저감하기 위해 반도체 스위치(T1~Tn)마다 프리휠링 다이오드(D1~Dn; Free Wheeling Diode)가 추가 장착되었다.
그러나 프리휠링 다이오드 추가 장착으로 인해, 종래의 존프리 방식의 유도 가열 장치(10)에서는 프리휠링 다이오드(D1~Dn) 자체의 발열에 따른 발열량 증가 및 프리휠링 다이오드(D1~Dn) 추가에 따른 비용 및 회로 면적 증가 문제가 새로 발생하게 되었다.
본 발명의 목적은 복수개의 워킹 코일에 대한 독립적인 출력 제어가 가능한 유도 가열 장치를 제공하는 것이다.
또한 본 발명의 다른 목적은 프리휠링 다이오드 없이 스위치 스트레스 저감이 가능한 유도 가열 장치를 제공하는 것이다.
또한 본 발명의 또 다른 목적은 릴레이 및 프리휠링 다이오드를 제거함으로써 릴레이 전환 동작시 발생하는 소음 문제를 해결할 수 있고 회로 부피도 줄일 수 있는 유도 가열 장치를 제공하는 것이다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명에 따른 유도 가열 장치는 인버터부 및 복수개의 반도체 스위치의 동작을 각각 제어하는 제어부를 포함함으로써 복수개의 워킹 코일에 대한 독립적인 출력 제어가 가능하다.
또한 본 발명에 따른 유도 가열 장치는 반도체 스위치를 턴오프하기 전에 인버터부를 턴오프하는 제어부를 포함함으로써 프리휠링 다이오드 없이 스위치 스트레스 저감이 가능하다.
또한 본 발명에 따른 유도 가열 장치는 릴레이 및 프리휠링 다이오드 대신 반도체 스위치 및 제어부를 이용하여 워킹 코일에 대한 출력 제어 작업을 수행함으로써 릴레이 전환 동작시 발생하는 소음 문제를 해결할 수 있고 회로 부피도 줄일 수 있다.
본 발명에 따른 유도 가열 장치는 반도체 스위치 및 제어부를 통해 복수개의 워킹 코일을 독립적으로 구분하여 고속으로 턴온 또는 턴오프함으로써 복수개의 워킹 코일에 대한 독립적인 출력 제어가 가능하다. 나아가 전원부의 입력전압이 0이 되는 시점에 인버터부 및 반도체 스위치에 대한 제어 작업이 수행되는바, 제어 작업시 비정상적인 상황으로 인한 딜레이(delay)가 발생하는 경우에도 장치에 미치는 영향(즉, 손실)을 최소화할 수 있다.
또한 본 발명에 따른 유도 가열 장치는 반도체 스위치를 턴오프하기 전에 항상 인버터부를 먼저 턴오프함으로써 프리휠링 다이오드 없이도 스위치 스트레스 저감이 가능하다. 나아가, 스위치 스트레스 저감을 통해 반도체 스위치의 발열량 저감도 가능하고, 이를 통해 제품 수명 및 신뢰도 개선이 가능하다.
또한 본 발명에 따른 유도 가열 장치는 릴레이 및 프리휠링 다이오드 대신 반도체 스위치 및 제어부를 이용하여 워킹 코일에 대한 출력 제어 작업을 수행함으로써 릴레이의 절환 동작시 발생하는 소음 문제를 해결할 수 있고, 이를 통해 사용자 만족도를 개선할 수 있다. 또한 사용자가 소음 문제에 민감한 시간대(예를 들어, 새벽 또는 늦은 밤)에도 조용하게 사용할 수 있는바, 사용 편의성이 개선될 수 있다. 그 뿐만 아니라 회로에서 부피를 많이 차지하는 릴레이 및 프리휠링 다이오드를 제거함으로써 회로 부피를 줄일 수 있고, 이를 통해 유도 가열 장치의 전체 부피도 줄일 수 있다. 나아가, 유도 가열 장치의 전체 부피를 줄임으로써 공간 활용도를 개선할 수 있다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.
도 1은 종래의 존프리 방식의 유도 가열 장치를 설명하는 개략도이다.
도 2는 본 발명의 일 실시예에 따른 유도 가열 장치를 설명하는 블록도이다.
도 3은 도 2의 유도 가열 장치를 구체적으로 설명하기 위한 회로도이다.
도 4는 도 3의 워킹 코일 배치를 설명하는 개략도이다.
도 5는 도 2의 유도 가열 장치의 출력 제어 방법을 설명하기 위한 그래프이다.
도 6은 도 2의 유도 가열 장치의 최적 예시(best mode)를 설명하기 위한 회로도이다.
도 7은 도 6의 워킹 코일 배치를 설명하는 개략도이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.
도 2는 본 발명의 일 실시예에 따른 유도 가열 장치를 설명하는 블록도이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 유도 가열 장치(1)는 전원부(100), 정류부(150), 제1 및 제2 인버터부(IV1, IV2), 제어부(250), 제1 내지 제4 워킹 코일(WC1~WC4), 제1 내지 제4 반도체 스위치(S1~S4), 보조 전원(300), 입력 인터페이스(350)를 포함할 수 있다.
참고로, 도 2에 도시된 유도 가열 장치(1)의 일부 구성요소(예를 들어, 인버터부, 워킹 코일, 반도체 스위치 등)의 개수는 변경될 수 있다.
전원부(100)는 교류 전력을 출력할 수 있다.
구체적으로, 전원부(100)는 교류 전력을 출력하여 정류부(150)에 제공할 수 있고, 예를 들어, 상용 전원일 수 있다.
정류부(150)는 전원부(100)로부터 공급받은 교류 전력을 직류 전력으로 변환하여 제1 인버터부(IV1) 및 제2 인버터부(IV2) 중 적어도 하나에 공급할 수 있다.
구체적으로, 정류부(150)는 전원부(100)로부터 공급받은 교류 전력을 정류하여 직류 전력으로 변환할 수 있다.
참고로, 도면에 도시되어 있지 않지만, 정류부(150)에 의해 정류된 직류 전력은 필터부(미도시)로 제공될 수 있고, 필터부는 해당 직류 전력에 남아 있는 교류 성분을 제거할 수 있다. 또한 정류부(150)에 의해 정류된 직류 전력은 직류 링크 커패시터(미도시; 평활 커패시터)로 제공될 수 있고, 직류 링크 커패시터는 해당 직류 전력의 리플(Ripple)을 저감할 수 있다.
이와 같이, 정류부(150) 및 필터부(또는 직류 링크 커패시터)에 의해 정류된 직류 전력은 제1 및 제2 인버터부(IV1, IV2) 중 적어도 하나에 공급될 수 있다.
제1 인버터부(IV1)는 스위칭 동작을 수행하여 제1 및 제2 워킹 코일(WC1, WC2) 중 적어도 하나에 공진 전류를 인가할 수 있다.
구체적으로, 제1 인버터부(IV1)는 제어부(250)에 의해 스위칭 동작이 제어될 수 있다. 즉, 제1 인버터부(IV1)는 제어부(250)로부터 제공받은 스위칭 신호를 토대로 스위칭 동작을 수행할 수 있다.
참고로, 제1 인버터부(IV1)에는 2개의 스위칭 소자(미도시)가 포함될 수 있고, 2개의 스위칭 소자는 제어부(250)로부터 제공받은 스위칭 신호에 의하여 교대로 턴온(turn-on) 및 턴오프(turn-off)될 수 있다.
또한 이러한 2개의 스위칭 소자의 스위칭 동작에 의해 고주파의 교류 전류(즉, 공진 전류)가 생성될 수 있고, 생성된 고주파의 교류 전류는 제1 및 제2 워킹 코일(WC1, WC2) 중 적어도 하나로 인가될 수 있다.
마찬가지로, 제2 인버터부(IV2)는 스위칭 동작을 수행하여 제3 및 제4 워킹 코일(WC3, WC4) 중 적어도 하나에 공진 전류를 인가할 수 있다.
구체적으로, 제2 인버터부(IV2)는 제어부(250)에 의해 스위칭 동작이 제어될 수 있다. 즉, 제2 인버터부(IV2)는 제어부(250)로부터 제공받은 스위칭 신호를 토대로 스위칭 동작을 수행할 수 있다.
참고로, 제2 인버터부(IV2)에는 2개의 스위칭 소자(미도시)가 포함될 수 있고, 2개의 스위칭 소자는 제어부(250)로부터 제공받은 스위칭 신호에 의하여 교대로 턴온(turn-on) 및 턴오프(turn-off)될 수 있다.
또한 이러한 2개의 스위칭 소자의 스위칭 동작에 의하여 고주파의 교류 전류(즉, 공진 전류)가 생성될 수 있고, 생성된 고주파의 교류 전류는 제3 및 제4 워킹 코일(WC3, WC4) 중 적어도 하나로 인가될 수 있다.
제어부(250)는 제1 및 제2 인버터부(IV1, IV2)와 제1 내지 제4 반도체 스위치(S1~S4)의 동작을 각각 제어할 수 있다.
구체적으로, 제어부(250)의 스위칭 신호에 따라서 제1 및 제2 인버터부(IV1, IV2)의 스위칭 동작이 제어될 수 있고, 제어부(250)의 제어 신호에 따라서 제1 내지 제4 반도체 스위치(S1~S4)가 순차적으로 또는 특정 순서대로 또는 동시에 턴온 또는 턴오프될 수 있다. 예를 들어, 제어부(250)의 스위칭 신호에 의해 제1 인버터부(IV1)가 구동되고, 제어부(250)의 제어 신호에 의해 제1 반도체 스위치(S1)가 턴온된 경우, 제1 워킹 코일(WC1)로 공진 전류가 인가될 수 있다.
이와 같이, 제1 워킹 코일(WC1)로 인가된 공진 전류에 의해 제1 워킹 코일(WC1)의 상부에 위치한 대상체가 가열될 수 있다.
또한, 제어부(250)는 전원부(100)의 입력전압(즉, 교류 전력에 의한 교류 전압)이 0이 되는 시점에 인버터부(IV1, IV2) 및 반도체 스위치(S1~S4)의 동작을 제어할 수 있다. 이에 따라, 제어부(250)의 제어 작업시 비정상적인 상황으로 인한 딜레이(delay)가 발생하는 경우에도 장치에 미치는 영향(즉, 손실)을 최소화할 수 있다.
참고로, 제어부(250)는 인버터부(IV1, IV2) 및 반도체 스위치(S1~S4) 외 다른 구성요소도 제어할 수 있는바, 다른 구성요소에 대한 제어 작업도 전원부(100)의 입력전압이 0이 되는 시점에 수행할 수 있다. 다만, 설명의 편의를 위해, 본 발명의 일 실시예에서는, 제어부(250)가 전원부(100)의 입력전압이 0이 되는 시점에 인버터부(IV1, IV2) 및 반도체 스위치(S1~S4)의 동작을 제어하는 것을 예로 들어 설명하기로 한다.
그리고, 제어부(250)는 PWM(Pulse Width Modulation) 기능을 통해 다양한 스위칭 신호 또는 제어 신호를 생성할 수 있다.
예를 들어, 제어부(250)는 서로 다른 펄스 폭(즉, 듀티(duty))을 가지는 제1 내지 제4 제어 신호를 생성하고, 생성된 제1 내지 제4 제어 신호를 각각 제1 내지 제4 반도체 스위치(S1~S4)에 제공함으로써, 제1 내지 제4 반도체 스위치(S1~S4)를 독립적으로 제어할 수 있다.
또한 제어부(250)는 각 제어 신호의 펄스 폭을 조정하여 각각의 워킹 코일(WC1~WC4)의 출력을 제어할 수도 있는바, 이에 대한 구체적인 내용은 후술하도록 한다.
한편, 본 발명의 일 실시예에 따른 유도 가열 장치(1)는 무선 전력 전송 기능을 가질 수 있다.
즉, 최근에는 무선으로 전력을 공급하는 기술이 개발되어 많은 전자 장치에 적용되고 있다. 무선 전력 전송 기술이 적용된 전자 장치는 별도의 충전 커넥터를 연결하지 않고 충전 패드에 올려 놓는 것 만으로도 배터리가 충전된다. 이러한 무선 전력 전송이 적용된 전자 장치는 유선 코드나 충전기가 필요하지 않으므로 휴대성이 향상되며 크기와 무게가 종래에 비해 감소한다는 장점이 있다.
이러한 무선 전력 전송 기술은 크게 코일을 이용한 전자기 유도 방식과, 공진을 이용하는 공진 방식, 그리고 전기적 에너지를 마이크로파로 변환시켜 전달하는 전파 방사 방식 등이 있다. 이 중 전자기 유도 방식은 무선 전력을 송신하는 장치에 구비되는 1차 코일(예를 들어, 워킹 코일(WC))과 무선 전력을 수신하는 장치에 구비되는 2차 코일 간의 전자기 유도를 이용하여 전력을 전송하는 기술이다.
물론 유도 가열 장치(1)의 유도 가열 방식은 전자기 유도에 의하여 피가열 물체를 가열한다는 점에서 전자기 유도에 의한 무선 전력 전송 기술과 원리가 실질적으로 동일하다.
따라서, 본 발명의 일 실시예에 따른 유도 가열 장치(1)의 경우에도, 유도 가열 기능 뿐만 아니라 무선 전력 전송 기능이 탑재될 수 있다.
이에 따라, 제어부(250)는 유도 가열 장치(1)의 구동 모드, 즉, 유도 가열 모드 또는 무선 전력 전송 모드를 제어할 수 있다.
즉, 제어부(250)에 의해 유도 가열 장치(1)의 구동 모드가 무선 전력 전송 모드로 설정되면, 제1 내지 제4 워킹 코일(WC1~WC4) 중 적어도 하나가 구동되어 대상체(미도시)에 무선으로 전력을 전송하게 된다.
반면에, 제어부(250)에 의해 유도 가열 장치(1)의 구동 모드가 유도 가열 모드로 설정되면, 제1 내지 제4 워킹 코일(WC1~WC4) 중 적어도 하나가 구동되어 대상체(미도시)를 가열하게 된다.
또한, 제어부(250)의 제어에 의해 구동되는 워킹 코일의 수가 결정될 수 있고, 구동되는 워킹 코일의 수에 따라서 유도 가열 장치(1)의 전송 전력량 또는 가열 세기가 달라질 수 있다. 그리고, 제어부(250)는 반도체 스위치(S1~S4)로 제공하는 제어 신호의 펄스 폭을 조정함으로써 워킹 코일(WC1~WC4)의 출력 세기를 제어할 수 있다.
또한 제어부(250)는 대상체(즉, 피가열 물체)의 위치에 따라서 어떤 워킹 코일을 구동할지를 결정할 수 있고, 구동 대상 워킹 코일 간 스위칭 신호의 동기화 여부도 결정할 수 있다.
그리고, 제어부(250)는 제1 내지 제4 워킹 코일(WC1~WC4)에 흐르는 공진 전류를 검출하고, 검출 값을 토대로 제1 내지 제4 워킹 코일(WC1~WC4) 중 어느 코일에 대상체가 위치하는지를 판단할 수 있다.
또한 제어부(250)는 검출 값을 토대로 대상체가 자성체인지 또는 비자성체인지를 판단할 수도 있다.
구체적으로, 유도 가열 장치(1)의 상부에 안착되는 대상체가 자성체일 경우, 워킹 코일에서 대상체로 많은 와전류가 유도되면서 공진되므로 워킹 코일에는 상대적으로 작은 공진 전류가 흐르게 된다. 그러나 유도 가열 장치(1)의 상부에 안착되는 대상체가 존재하지 않거나 비자성체일 경우, 워킹 코일이 공진되지 않으므로 워킹 코일에는 상대적으로 큰 공진 전류가 흐르게 된다.
따라서 제어부(250)는 워킹 코일에 흐르는 공진 전류가 미리 설정된 기준 전류보다 작은 경우 구동 대상 물체가 자성체인 것으로 판단할 수 있다. 반대로 워킹 코일에 흐르는 공진 전류가 미리 설정된 기준 전류보다 크거나 같은 경우 제어부(250)는 대상체가 비자성체인 것으로 판단할 수 있다.
물론, 도면에 도시되어 있지는 않지만, 유도 가열 장치(1)는 워킹 코일(WC1~WC4)에 흐르는 공진 전류를 검출하는 검출부(미도시)를 더 포함할 수 있고, 검출부가 전술한 대상체 검출 기능을 수행할 수도 있다.
다만, 설명의 편의를 위해, 본 발명의 실시예에서는, 제어부(250)가 대상체 검출 기능을 수행하는 것을 예로 들어 설명하기로 한다.
제1 및 제2 워킹 코일(WC1, WC2)은 서로 병렬 연결될 수 있다.
구체적으로, 제1 및 제2 워킹 코일(WC1, WC2)은 서로 병렬 연결되고, 제1 인버터부(IV1)로부터 공진 전류를 인가받을 수 있다.
즉, 유도 가열 장치(1)의 구동 모드가 유도 가열 모드인 경우, 제1 인버터부(IV1)에서 제1 및 제2 워킹 코일(WC1, WC2) 중 적어도 하나로 인가되는 고주파의 교류 전류에 의해 해당 워킹 코일과 대상체 사이에 와전류가 발생되어 대상체가 가열될 수 있다.
또한 유도 가열 장치(1)의 구동 모드가 무선 전력 전송 모드인 경우, 제1 인버터부(IV1)에서 제1 및 제2 워킹 코일(WC1, WC2) 중 적어도 하나로 인가되는 고주파의 교류 전류에 의해 해당 워킹 코일에서 자기장이 발생할 수 있다. 이로 인해 해당 워킹 코일에 대응되는 대상체 내부의 코일에도 전류가 흐르게 되고, 대상체 내부의 코일에 흐르는 전류에 의해 대상체가 충전될 수 있다.
또한 제1 워킹 코일(WC1)은 제1 반도체 스위치(S1)에 연결되고, 제2 워킹 코일(WC2)은 제2 반도체 스위치(S2)에 연결될 수 있다.
이에 따라, 각각의 워킹 코일은 대응되는 반도체 스위치에 의해 고속으로 턴온 또는 턴오프될 수 있다.
제3 및 제4 워킹 코일(WC3, WC4)은 서로 병렬 연결될 수 있다.
구체적으로, 제3 및 제4 워킹 코일(WC3, WC4)은 서로 병렬 연결되고, 제2 인버터부(IV2)로부터 공진 전류를 인가받을 수 있다.
즉, 유도 가열 장치(1)의 구동 모드가 유도 가열 모드인 경우, 제2 인버터부(IV2)에서 제3 및 제4 워킹 코일(WC3, WC4) 중 적어도 하나로 인가되는 고주파의 교류 전류에 의해 해당 워킹 코일과 대상체 사이에 와전류가 발생되어 대상체가 가열될 수 있다.
또한 유도 가열 장치(1)의 구동 모드가 무선 전력 전송 모드인 경우, 제2 인버터부(IV2)에서 제3 및 제4 워킹 코일(WC3, WC4) 중 적어도 하나로 인가되는 고주파의 교류 전류에 의해 해당 워킹 코일에서 자기장이 발생할 수 있다. 이로 인해 해당 워킹 코일에 대응되는 대상체 내부의 코일에도 전류가 흐르게 되고, 대상체 내부의 코일에 흐르는 전류에 의해 대상체가 충전될 수 있다.
또한 제3 워킹 코일(WC3)은 제3 반도체 스위치(S3)에 연결되고, 제4 워킹 코일(WC4)은 제4 반도체 스위치(S4)에 연결될 수 있다.
이에 따라, 각각의 워킹 코일은 대응되는 반도체 스위치에 의해 고속으로 턴온 또는 턴오프될 수 있다.
참고로, 반도체 스위치에 의해 워킹 코일이 턴온 또는 턴오프된다는 의미는 인버터부로부터 워킹 코일로 인가되는 공진 전류의 흐름이 반도체 스위치에 의해 차단 해제 또는 차단된다는 의미일 수 있다.
한편, 제1 내지 제4 반도체 스위치(S1~S4)는 각각 제1 내지 제4 워킹 코일(WC1~WC4)을 턴온 또는 턴오프하기 위해 제1 내지 제4 워킹 코일(WC1~WC4)에 각각 연결될 수 있고, 보조 전원(300)으로부터 전력을 공급받을 수 있다.
구체적으로, 제1 반도체 스위치(S1)는 제1 워킹 코일(WC1)에 연결되어 제1 워킹 코일(WC1)을 턴온 또는 턴오프할 수 있고, 제2 반도체 스위치(S2)는 제2 워킹 코일(WC2)에 연결되어 제2 워킹 코일(WC2)을 턴온 또는 턴오프할 수 있다.
또한, 제1 및 제2 반도체 스위치(S1, S2)는 제어부(250)에 의해 제1 인버터부(IV1)와 보조를 맞추어 구동됨으로써 제1 및 제2 워킹 코일(WC1, WC2) 위에 대상체가 존재하는지 여부를 검출하거나 제1 및 제2 워킹 코일(WC1, WC2)의 출력을 제어하고자 할 때 이용될 수 있다.
그리고 제어부(250)는 제1 및 제2 반도체 스위치(S1, S2) 중 적어도 하나를 턴오프하기 전에 제1 인버터부(IV1)를 턴오프함으로써 턴오프되는 반도체 스위치에 공진 전류가 흐르는 것을 차단할 수 있다. 또한 이를 통해 턴오프되는 반도체 스위치에 가해지는 스위치 스트레스를 저감할 수 있다.
한편, 제3 반도체 스위치(S3)는 제3 워킹 코일(WC3)에 연결되어 제3 워킹 코일(WC3)을 턴온 또는 턴오프할 수 있고, 제4 반도체 스위치(S4)는 제4 워킹 코일(WC4)에 연결되어 제4 워킹 코일(WC4)을 턴온 또는 턴오프할 수 있다.
또한, 제3 및 제4 반도체 스위치(S3, S4)는 제어부(250)에 의해 제2 인버터부(IV2)와 보조를 맞추어 구동됨으로써 제3 및 제4 워킹 코일(WC3, WC4) 위에 대상체가 존재하는지 여부를 검출하거나 제3 및 제4 워킹 코일(WC3, WC4)의 출력을 제어하고자 할 때 이용될 수 있다.
그리고 제어부(250)는 제3 및 제4 반도체 스위치(S3, S4) 중 적어도 하나를 턴오프하기 전에 제2 인버터부(IV2)를 턴오프함으로써 턴오프되는 반도체 스위치에 공진 전류가 흐르는 것을 차단할 수 있다. 또한 이를 통해 턴오프되는 반도체 스위치에 가해지는 스위치 스트레스를 저감할 수 있다.
참고로 제1 내지 제4 반도체 스위치(S1~S4)는 예를 들어, 스태틱 스위치(static switch)를 포함할 수 있다. 또한 제1 내지 제4 반도체 스위치(S1~S4)에는 예를 들어, MOSFET(Metal oxide semiconductor field effect transistor) 또는 IGBT(Insulated gate bipolar mode transistor)가 적용될 수 있다.
보조 전원(300)은 제1 내지 제4 반도체 스위치(S1~S4)에 전력을 공급할 수 있다.
구체적으로, 보조 전원(300)은 단일 출력 구조(즉, 하나의 출력단)를 가질 수 있다. 따라서, 보조 전원(300)은 단일 출력으로 제1 내지 제4 반도체 스위치(S1~S4)에 전력을 공급할 수 있다. 또한 보조 전원(300)은 다른 다중 출력 구조와 비교하였을 때 제1 내지 제4 반도체 스위치(S1~S4)와의 연결을 위해 필요한 핀(pin) 수를 줄일 수 있다.
물론, 단일 출력 용량이 너무 큰 경우(즉, 미리 설정된 기준 용량을 크게 벗어난 경우), 보조 전원(300)은 이중 출력 구조(각각의 출력단이 단일 출력 용량을 미리 설정된 기준 용량 이하의 용량으로 분할하여 출력하는 구조)로 설계될 수도 있다.
참고로, 보조 전원(300)은 예를 들어, SMPS(Switched mode power supply)를 포함할 수 있으나, 이에 한정되는 것은 아니다.
입력 인터페이스(350)는 사용자로부터 입력을 제공받아 제어부(250)로 해당 입력을 제공할 수 있다.
구체적으로, 입력 인터페이스(350)는 사용자가 원하는 가열 강도나 유도 가열 장치의 구동 시간 등을 입력하기 위한 모듈로서, 물리적인 버튼이나 터치 패널 등으로 다양하게 구현될 수 있다.
또한 입력 인터페이스(350)에는 예를 들어, 전원 버튼, 잠금 버튼, 파워 레벨 조절 버튼(+, -), 타이머 조절 버튼(+, -), 충전 모드 버튼 등이 구비될 수 있다.
이러한 입력 인터페이스(350)는 제공받은 입력 정보를 제어부(250)로 제공할 수 있고, 제어부(250)는 입력 인터페이스(350)로부터 제공받은 입력 정보를 토대로 유도 가열 장치(1)를 다양하게 구동시킬 수 있는바, 그 예시는 다음과 같다.
유도 가열 장치(1)가 구동되지 않은 상태에서 사용자가 입력 인터페이스(350)에 구비된 전원 버튼을 일정 시간 동안 터치할 경우, 유도 가열 장치(1)의 구동이 시작될 수 있다. 반대로 유도 가열 장치(1)가 구동되고 있는 상태에서 사용자가 전원 버튼을 일정 시간 동안 터치할 경우 유도 가열 장치(1)의 구동이 종료될 수 있다.
또한 사용자가 잠금 버튼을 일정 시간 동안 터치할 경우 다른 모든 버튼의 조작이 불가능한 상태가 될 수 있다. 이후 사용자가 다시 잠금 버튼을 일정 시간 동안 터치할 경우 다른 모든 버튼의 조작이 가능한 상태가 될 수 있다.
또한 전원이 입력된 상태에서 사용자가 파워 레벨 조절 버튼(+, -)을 터치할 경우, 유도 가열 장치(1)의 현재 파워 레벨이 입력 인터페이스(350) 상에 숫자로 표시될 수 있다. 또한 파워 레벨 조절 버튼(+, -)의 터치에 의해 제어부(250)는 유도 가열 장치(1)의 구동 모드가 유도 가열 모드임을 확인할 수 있다. 그리고, 제어부(250)는 입력된 파워 레벨에 대응되도록 제1 및 제2 인버터부(IV1, IV2)의 스위칭 동작을 위한 주파수를 조절할 수 있다.
또한 사용자는 타이머 조절 버튼(+, -)을 터치하여 유도 가열 장치(1)의 구동 시간을 설정할 수 있다. 제어부(250)는 사용자가 설정한 구동 시간이 경과할 경우 유도 가열 장치(1)의 구동을 종료시킬 수 있다.
이 때 유도 가열 장치(1)가 유도 가열 모드로 동작하는 경우, 타이머 조절 버튼(+, -)에 의하여 설정되는 유도 가열 장치(1)의 구동 시간은 대상체의 가열 시간이 될 수 있다. 또한 유도 가열 장치(1)가 무선 전력 전송 모드로 동작하는 경우, 타이머 조절 버튼(+, -)에 의하여 설정되는 유도 가열 장치(1)의 구동 시간은 대상체의 충전 시간이 될 수 있다.
한편, 사용자가 충전 모드 버튼을 터치할 경우 유도 가열 장치(1)는 무선 전력 전송 모드로 구동될 수 있다.
이 때 제어부(250)는 구동 영역(즉, 워킹 코일 상부)에 안착된 대상체와의 통신을 통해 해당 대상체에 대한 장치 정보를 수신할 수 있다. 대상체로부터 전송되는 장치 정보는 예를 들어, 대상체의 종류, 충전 모드, 요구 전력량과 같은 정보를 포함할 수 있다.
또한 제어부(250)는 수신된 장치 정보에 기초하여 대상체의 종류를 판단하고, 대상체의 충전 모드를 파악할 수 있다.
참고로, 대상체의 충전 모드는 일반 충전 모드 및 고속 충전 모드를 포함할 수 있다.
이에 따라, 제어부(250)는 확인된 충전 모드에 따라서 제1 및 제2 인버터부(IV1, IV2) 중 적어도 하나의 주파수를 조절할 수 있다. 예컨대 고속 충전 모드인 경우 제어부(250)는 인버터부의 스위칭 동작에 따라 보다 큰 공진 전류가 워킹 코일에 인가되도록 주파수를 조절할 수 있다.
물론, 대상체의 충전 모드는 입력 인터페이스(350)를 통해 사용자에 의하여 입력될 수도 있다.
이와 같이, 본 발명의 일 실시예에 따른 유도 가열 장치(1)는 전술한 특징 및 구성을 가질 수 있다.
이하에서는 도 3 내지 도 5를 참조하여, 전술한 유도 가열 장치(1)의 특징 및 구성을 보다 구체적으로 설명하도록 한다.
도 3은 도 2의 유도 가열 장치를 구체적으로 설명하기 위한 회로도이다. 도 4는 도 3의 워킹 코일 배치를 설명하는 개략도이다. 도 5는 도 2의 유도 가열 장치의 출력 제어 방법을 설명하기 위한 그래프이다.
참고로, 도 3에 도시된 유도 가열 장치는 도 2에 도시된 유도 가열 장치와 동일한 구성 및 특징을 가지고 있으나, 설명의 편의를 위해 일부 구성요소의 개수 및 명칭을 변경하여 사용하도록 한다.
또한 도 4에 도시된 바와 같이, 도 3에는 전체 영역(존프리 영역)의 절반을 구성하는 워킹 코일만이 도시되어 있는바, 나머지 절반을 구성하기 위해 도 3의 유도 가열 장치는 추가 인버터부, 워킹 코일부, 워킹 코일, 검출 그룹, 검출부, 반도체 스위치부, 반도체 스위치를 더 포함할 수 있다.
다만 설명의 편의를 위해, 본 발명의 일 실시예에서는, 도 3의 인버터부, 워킹 코일부, 워킹 코일, 검출 그룹, 검출부, 반도체 스위치부, 반도체 스위치를 예로 들어 설명하기로 한다.
먼저, 도 3을 참조하면, 본 발명의 일 실시예에 따른 유도 가열 장치(1)는 전원부(100), 정류부(150), 직류 링크 커패시터(200), 제1 내지 제3 인버터부(IV1~IV3), 제1 내지 제3 워킹 코일부(AWC, BWC, CWC), 제1 내지 제3 반도체 스위치부(AS, BS, CS), 제어부(250), 보조 전원(300), 입력 인터페이스(350)를 포함할 수 있다.
참고로, 인버터부, 워킹 코일부, 워킹 코일, 반도체 스위치부, 반도체 스위치의 수는 도 3에 도시된 개수에 한정되지 않으며, 변경될 수 있다.
구체적으로, 전원부(100)는 교류 전력을 출력하여 정류부(150)에 제공할 수 있고, 정류부(150)는 전원부(100)로부터 공급받은 교류 전력을 직류 전력으로 변환하여 직류 링크 커패시터(200)에 제공할 수 있다.
여기에서, 직류 링크 커패시터(200)는 정류부(150)와 병렬 연결될 수 있다.
구체적으로, 직류 링크 커패시터(200)는 정류부(150)와 병렬 연결되어 정류부(150)로부터 직류 전압을 제공받을 수 있다. 또한 직류 링크 커패시터(200)는 예를 들어, 평활 커패시터일 수 있고, 이에 따라 제공받은 직류 전압의 리플을 저감시킬 수 있다.
참고로, 직류 링크 커패시터(200)의 경우, 정류부(150)로부터 직류 전압을 제공받는바, 일단에는 직류 전압이 인가되고, 타단은 일단과의 전위차에 의해 접지될 수 있다.
또한, 정류부(150)에 의해 정류되고 직류 링크 커패시터(200)에 의해 리플이 감소된 직류 전력(또는 직류 전압)은 제1 내지 제3 인버터부(IV1~IV3) 중 적어도 하나에 공급될 수 있다.
한편, 제1 인버터부(IV1)는 2개의 스위칭 소자(SV1, SV1')를 포함하고, 제2 인버터부(IV2)는 2개의 스위칭 소자(SV2, SV2')를 포함하며, 제3 인버터부(IV3)는 2개의 스위칭 소자(SV3, SV3')를 포함할 수 있다.
또한 각각의 인버터부(IV1~IV3)에 포함된 스위칭 소자들은 제어부(250)로부터 제공받은 스위칭 신호에 의해 교대로 턴온 및 턴오프되어 직류 전력을 고주파의 교류 전류(즉, 공진 전류)로 변환할 수 있고, 변환된 고주파의 교류 전류는 워킹 코일에 제공될 수 있다.
예를 들어, 제1 인버터부(IV1)의 스위칭 동작에 의해 변환된 공진 전류는 제1 워킹 코일부(AWC)로 제공될 수 있고, 제2 인버터부(IV2)의 스위칭 동작에 의해 변환된 공진 전류는 제2 워킹 코일부(BWC)로 제공될 수 있다. 또한 제3 인버터부(IV3)의 스위칭 동작에 의해 변환된 공진 전류는 제3 워킹 코일부(CWC)로 제공될 수 있다.
물론, 제1 인버터부(IV1)에 의해 생성된 공진 전류는 제1 워킹 코일부(AWC) 내에 포함된 워킹 코일(WC1, WC2; 제1 및 제2 워킹 코일) 중 적어도 하나로 인가될 수 있고, 제2 인버터부(IV2)에 의해 생성된 공진 전류는 제2 워킹 코일부(BWC) 내에 포함된 워킹 코일(WC3, WC4; 제3 및 제4 워킹 코일) 중 적어도 하나로 인가될 수 있다. 또한 제3 인버터부(IV3)에 의해 생성된 공진 전류는 제3 워킹 코일부(CWC) 내에 포함된 워킹 코일(WC5, WC6; 제5 및 제6 워킹 코일) 중 적어도 하나로 인가될 수 있다.
여기에서, 제1 워킹 코일부(AWC) 내에 포함된 워킹 코일(WC1, WC2)은 서로 병렬 연결되어 있고, 제2 워킹 코일부(BWC) 내에 포함된 워킹 코일(WC3, WC4)도 서로 병렬 연결되어 있다. 또한 제3 워킹 코일부(CWC) 내에 포함된 워킹 코일(WC5, WC6)도 서로 병렬 연결되어 있다.
이에 따라, 도 4에 도시된 바와 같이, 제1 워킹 코일부(AWC) 내에 포함된 워킹 코일(WC1, WC2)은 A 영역(AR)에 그룹화되어 배치될 수 있고, 제2 워킹 코일부(BWC) 내에 포함된 워킹 코일(WC3, WC4)은 B 영역(BR)에 그룹화되어 배치될 수 있다. 또한 제3 워킹 코일부(CWC) 내에 포함된 워킹 코일(WC5, WC6)은 C 영역(CR)에 그룹화되어 배치될 수 있다.
물론, 나머지 빈 공간에도 워킹 코일이 배치될 수 있으며, 입력 인터페이스(350) 역시 도 4에 도시된 위치 외 다른 위치에 배치될 수도 있다.
다시 도 3을 참조하면, 제1 반도체 스위치부(AS)는 제1 워킹 코일부(AWC)에 연결되고, 제2 반도체 스위치부(BS)는 제2 워킹 코일부(BWC)에 연결되며, 제3 반도체 스위치부(CS)는 제3 워킹 코일부(CWC)에 연결될 수 있다.
구체적으로, 제1 반도체 스위치부(AS)는 2개의 반도체 스위치(S1, S2; 제1 및 제2 반도체 스위치)를 포함하고, 2개의 반도체 스위치(S1, S2) 각각은 제1 워킹 코일부(AWC)에 포함된 2개의 워킹 코일(WC1, WC2)에 각각 연결되어 2개의 워킹 코일(WC1, WC2)을 각각 턴온 또는 턴오프할 수 있다.
여기에서, 2개의 반도체 스위치(S1, S2) 각각의 일단은 2개의 워킹 코일(WC1, WC2)에 각각 연결되고, 2개의 반도체 스위치(S1, S2) 각각의 타단은 직류 링크 커패시터(200)의 타단(즉, 접지단)에 연결될 수 있다.
또한 제2 반도체 스위치부(BS)는 2개의 반도체 스위치(S3, S4; 제3 및 제4 반도체 스위치)를 포함하고, 2개의 반도체 스위치(S3, S4) 각각은 제2 워킹 코일부(BWC)에 포함된 2개의 워킹 코일(WC3, WC4)에 각각 연결되어 2개의 워킹 코일(WC3, WC4)을 각각 턴온 또는 턴오프할 수 있다.
여기에서, 2개의 반도체 스위치(S3, S4) 각각의 일단은 2개의 워킹 코일(WC3, WC4)에 각각 연결되고, 2개의 반도체 스위치(S3, S4) 각각의 타단은 직류 링크 커패시터(200)의 타단(즉, 접지단)에 연결될 수 있다.
또한 제3 반도체 스위치부(CS)는 2개의 반도체 스위치(S5, S6)를 포함하고, 2개의 반도체 스위치(S5, S6) 각각은 제3 워킹 코일부(CWC)에 포함된 2개의 워킹 코일(WC5, WC6)에 각각 연결되어 2개의 워킹 코일(WC5, WC6)을 각각 턴온 또는 턴오프할 수 있다.
여기에서, 2개의 반도체 스위치(S5, S6) 각각의 일단은 2개의 워킹 코일(WC5, WC6)에 각각 연결되고, 2개의 반도체 스위치(S5, S6) 각각의 타단은 직류 링크 커패시터(200)의 타단(즉, 접지단)에 연결될 수 있다.
즉, 제1 내지 제3 반도체 스위치부(AS, BS, CS)의 모든 반도체 스위치들의 타단은 직류 링크 커패시터(200)의 타단(즉, 접지단)에 연결될 수 있고, 이를 통해, 보조 전원(300)은 하나의 출력단을 통해 모든 반도체 스위치들에 전력을 공급할 수 있다.
참고로, 반도체 스위치가 인버터부와 워킹 코일부 사이에 연결된 경우, 각 반도체 스위치의 이미터(emitter)가 서로 플로팅(floating)되어 반도체 스위치의 개수만큼 보조 전원(300)의 출력단 수가 증가한다는 문제가 있다. 또한 이로 인해, 보조 전원(300)의 핀수도 증가하게 되어 회로 부피가 커진다는 문제가 있다.
반면에, 본 발명의 일 실시예와 같이, 반도체 스위치가 모두 접지단(즉, 직류 링크 커패시터(200)의 타단)에 연결된 경우, 반도체 스위치의 이미터가 플로팅되지 않고 모두 공통(common)될 수 있다. 따라서, 보조 전원(300)은 하나의 출력단을 통해 모든 반도체 스위치에 전력을 공급할 수 있다. 또한 반도체 스위치의 이미터가 플로팅된 경우보다 보조 전원(300)의 핀수가 저감될 수 있고, 나아가 회로 부피도 저감될 수 있다.
물론, 모든 반도체 스위치들의 타단은 직류 링크 커패시터(200)의 일단(즉, 직류 전압이 인가된 부분)에 연결될 수도 있다. 또한 보조 전원(300)의 단일 출력 용량이 너무 큰 경우(즉, 미리 설정된 기준 용량을 크게 벗어난 경우), 일부 반도체 스위치부에 포함된 반도체 스위치들의 타단은 직류 링크 커패시터(200)의 타단(즉, 접지단)에 연결되고, 나머지 반도체 스위치부에 포함된 반도체 스위치들의 타단은 직류 링크 커패시터(200)의 일단(즉, 직류 전압이 인가된 부분)에 연결될 수도 있다.
다만, 설명의 편의를 위해, 본 발명의 일 실시예에서는 반도체 스위치가 모두 접지단(즉, 직류 링크 커패시터(200)의 타단)에 연결된 것을 예로 들어 설명하기로 한다.
참고로, 유도 가열 장치(1)는 워킹 코일과 반도체 스위치 사이에 연결된 공진 커패시터(C)를 더 포함할 수 있다.
공진 커패시터(C)의 경우, 인버터부(예를 들어, 제1 인버터부(IV1))의 스위칭 동작에 의해 전압이 인가되면, 공진을 시작하게 된다. 또한 공진 커패시터(C)가 공진하게 되면, 해당 공진 커패시터(C)와 연결된 워킹 코일(예를 들어, WC1)에 흐르는 전류가 상승하게 된다.
이와 같은 과정을 거쳐, 해당 공진 커패시터(C)에 연결된 워킹 코일 상부에 배치된 대상체로 와전류가 유도되는 것이다.
한편, 제어부(250)는 제1 내지 제3 인버터부(IV1~IV3)와 제1 내지 제3 반도체 스위치부(AS, BS, CS)의 동작을 각각 제어할 수 있다.
또한 제어부(250)는 제1 내지 제3 워킹 코일부(AWC, BWC, CWC)에 포함된 워킹 코일(WC1~WC6) 중 적어도 하나에 흐르는 공진 전류를 검출하고, 검출 값을 토대로 어느 워킹 코일의 상부에 대상체가 위치하는지를 판단할 수 있다.
즉, 제어부(250)는 제1 내지 제3 인버터부(IV1~IV3)와, 제1 내지 제3 반도체 스위치부(AS, BS, CS)에 포함된 반도체 스위치(S1~S6)의 동작을 각각 제어하여 제1 내지 제3 워킹 코일부(AWC, BWC, CWC)에 포함된 워킹 코일(WC1~WC6) 중 어느 워킹 코일의 상부에 대상체가 위치하는지를 검출할 수 있다.
그리고 제어부(250)는 제1 내지 제3 워킹 코일부(AWC, BWC, CWC)에 포함된 워킹 코일(WC1~WC6)에 대한 독립적인 출력 제어가 가능하고, 프리휠링 다이오드 없이도 반도체 스위치(S1~S6)에 가해지는 스위치 스트레스 저감이 가능하다. 또한 제어부(250)는 전원부(100)의 입력전압(즉, 교류 전력에 의한 교류 전압)이 0이 되는 시점에 인버터부(IV1, IV2, IV3) 및 반도체 스위치(S1~S6)의 동작을 제어할 수 있다.
구체적으로, 도 3 및 도 5를 참조하여, 제어부(250)의 제어 방법에 대해 설명하도록 한다.
참고로, 각각의 인버터부, 워킹 코일부, 반도체 스위치부는 동일한 방법 및 원리에 의해 동작하는바, 제1 인버터부(IV1), 제1 워킹 코일부(AWC), 제1 반도체 스위치부(AS)를 예로 들어 설명하도록 한다.
먼저, 제어부(250)는 제1 반도체 스위치(S1)의 동작을 제어하기 위해 제1 반도체 스위치(S1)로 제1 펄스 폭을 가지는 제1 제어 신호를 제공하고, 제2 반도체 스위치(S2)의 동작을 제어하기 위해 제2 반도체 스위치(S2)로 제2 펄스 폭을 가지는 제2 제어 신호를 제공할 수 있다.
여기에서, 제1 펄스 폭의 유지 시간(예를 들어, P1~P3, P5~P6; 참고로, 펄스 폭의 유지 시간은 펄스 폭에 대응되는 시간을 의미) 동안 제1 반도체 스위치(S1)가 턴온되고, 제2 펄스 폭의 유지 시간(예를 들어, P1~P6) 동안 제2 반도체 스위치(S2)가 턴온될 수 있다. 또한 제1 반도체 스위치(S1)가 턴온된 경우, 제1 워킹 코일(WC1)이 턴온되고, 제2 반도체 스위치(S2)가 턴온된 경우, 제2 워킹 코일(WC2)이 턴온될 수 있다.
물론, 제1 및 제2 반도체 스위치(S1, S2)가 턴온되어 있다 하더라도 제1 인버터부(IV1)가 턴오프된 경우에는, 제1 및 제2 워킹 코일(WC1, WC2)은 구동되지 않는다.
또한 제어부(250)는 제1 및 제2 펄스 폭을 서로 다르게 설정하여 제1 및 제2 워킹 코일(WC2)의 출력을 서로 다르게 설정할 수 있다.
예를 들어, 펄스 폭을 100%로 설정하였을 때 워킹 코일의 출력이 1000W라고 가정하는 경우, 제어부(250)는 제1 펄스 폭을 50%로 설정하고, 제2 펄스 폭을 70%로 설정함으로써 제1 워킹 코일(WC1)의 출력을 500W로 조정하고 제2 워킹 코일(WC2)의 출력을 700W로 조정할 수 있다.
즉, 제어부(250)는 제1 워킹 코일(WC1)의 출력을 제어하기 위해 제1 펄스 폭을 조정하고, 제2 워킹 코일(WC2)의 출력을 제어하기 위해 제2 펄스 폭을 조정할 수 있다.
한편, 제어부(250)는 제1 인버터부(IV1)와 제1 및 제2 반도체 스위치(S1, S2)의 턴오프 시점을 제어함으로써 프리휠링 다이오드 없이도 반도체 스위치(S1, S2)에 가해지는 스위치 스트레스를 저감할 수 있다.
예를 들어, 도 5에 도시된 바와 같이, 제3 시점(P3)에 제1 펄스 폭의 유지 시간이 종료되고 제2 펄스 폭의 유지 시간은 종료되지 않는 경우, 제어부(250)는 제3 시점(P3) 전에(즉, 제2 시점(P2)에) 제1 인버터부(IV1)를 턴오프하고, 제3 시점(P3) 후에(즉, 제4 시점(P4)에) 제1 인버터부(IV1)를 다시 턴온할 수 있다.
물론, 도면에 도시되어 있지 않지만, 특정 시점에 제1 및 제2 펄스 폭의 유지 시간이 종료되는 경우, 제어부(250)는 특정 시점 전에 제1 인버터부(IV1)를 턴오프할 수 있다.
즉, 제어부(250)는 제1 및 제2 반도체 스위치(S1, S2) 중 적어도 하나를 턴오프하기 전에 제1 인버터부(IV1)를 턴오프함으로써, 턴오프되는 반도체 스위치에 공진 전류가 흐르는 것을 차단할 수 있다. 이를 통해, 반도체 스위치의 턴오프시, 해당 반도체 스위치에 인가되는 스트레스를 저감할 수 있고, 스트레스 저감을 통해 해당 반도체 스위치의 발열량 저감도 가능하다.
또한 제어부(250)는 전원부(100)의 입력전압(Vac; 즉, 교류 전력에 의한 교류 전압)이 0이 되는 시점(즉, zero-crossing되는 시점)에 제1 인버터부(IV1)와 제1 및 제2 반도체 스위치(S1, S2)의 동작을 제어할 수 있다.
예를 들어, 제어부(250)는 전원부(100)의 입력전압(Vac)이 0이 되는 제2 시점(P2) 및 제3 시점(P3)에 각각 제1 인버터부(IV1) 및 제1 반도체 스위치(S1)를 턴오프할 수 있다. 또한 제어부(250)는 전원부(100)의 입력전압(Vac)이 0이 되는 제4 시점(P4) 및 제5 시점(P5)에 각각 제1 인버터부(IV1) 및 제1 반도체 스위치(S1)를 턴온할 수 있다.
이와 같이, 전원부(100)의 입력전압(Vac)이 0이 되는 시점에 제어부(250)가 제어 작업을 수행하는바, 설령 제어부(250)의 제어 작업시 비정상적인 상황으로 인한 딜레이(delay)가 발생하는 경우에도 장치 또는 부품에 미치는 영향(즉, 손실)을 최소화할 수 있다.
전술한 바와 같이, 본 발명의 일 실시예에 따른 유도 가열 장치(1)는 반도체 스위치(S1~S6) 및 제어부(250)를 통해 복수개의 워킹 코일(WC1~WC6)을 독립적으로 구분하여 고속으로 턴온 또는 턴오프함으로써 복수개의 워킹 코일(WC1~WC6)에 대한 독립적인 출력 제어가 가능하다. 나아가 전원부(100)의 입력전압(Vac)이 0이 되는 시점에 인버터부(IV1~IV3) 및 반도체 스위치(S1~S6)에 대한 제어 작업이 수행되는바, 제어 작업시 비정상적인 상황으로 인한 딜레이(delay)가 발생하는 경우에도 장치에 미치는 영향(즉, 손실)을 최소화할 수 있다.
또한 본 발명의 일 실시예에 따른 유도 가열 장치(1)는 반도체 스위치(S1~S6)를 턴오프하기 전에 항상 인버터부(IV1~IV3; 즉, 턴오프되는 반도체 스위치에 대응되는 인버터부)를 먼저 턴오프함으로써 프리휠링 다이오드 없이도 스위치 스트레스 저감이 가능하다. 나아가, 스위치 스트레스 저감을 통해 반도체 스위치(S1~S6)의 발열량 저감도 가능하고, 이를 통해 제품 수명 및 신뢰도 개선이 가능하다.
또한 본 발명의 일 실시예에 따른 유도 가열 장치(1)는 릴레이 및 프리휠링 다이오드 대신 반도체 스위치(S1~S6) 및 제어부(250)를 이용하여 워킹 코일(WC1~WC6)에 대한 출력 제어 작업을 수행함으로써 릴레이의 절환 동작시 발생하는 소음 문제를 해결할 수 있고, 이를 통해 사용자 만족도를 개선할 수 있다. 또한 사용자가 소음 문제에 민감한 시간대(예를 들어, 새벽 또는 늦은 밤)에도 조용하게 사용할 수 있는바, 사용 편의성이 개선될 수 있다. 그 뿐만 아니라 회로에서 부피를 많이 차지하는 릴레이 및 프리휠링 다이오드를 제거함으로써 회로 부피를 줄일 수 있고, 이를 통해 유도 가열 장치(1)의 전체 부피도 줄일 수 있다. 나아가, 유도 가열 장치(1)의 전체 부피를 줄임으로써 공간 활용도를 개선할 수 있다.
이하에서는, 도 6 및 도 7을 참조하여, 전술한 유도 가열 장치(1)의 최적 예시(즉, 베스트 모드(best mode))를 설명하도록 한다.
도 6은 도 2의 유도 가열 장치의 최적 예시(best mode)를 설명하기 위한 회로도이다. 도 7은 도 6의 워킹 코일 배치를 설명하는 개략도이다.
참고로, 도 6에 도시된 유도 가열 장치는 도 3에 도시된 유도 가열 장치와 동일한 구성 및 특징을 가지고 있으나, 최적 예시를 설명하기 위해 일부 구성요소의 개수 및 명칭을 변경하여 사용하도록 한다.
또한 도 7에 도시된 바와 같이, 도 6에는 전체 영역(존프리 영역)의 절반을 구성하는 워킹 코일만이 도시되어 있는바, 나머지 절반을 구성하기 위해 도 6의 유도 가열 장치는 추가 인버터부, 워킹 코일부, 워킹 코일, 검출 그룹, 검출부, 반도체 스위치부, 반도체 스위치를 더 포함할 수 있다.
다만 설명의 편의를 위해, 본 발명의 최적 예시에서는, 도 6의 인버터부, 워킹 코일부, 워킹 코일, 검출 그룹, 검출부, 반도체 스위치부, 반도체 스위치를 예로 들어 설명하기로 한다.
먼저, 도 6을 참조하면, 본 발명의 일 실시예에 따른 유도 가열 장치(1)의 최적 예시는 전원부(100), 정류부(150), 직류 링크 커패시터(200), 제1 내지 제3 인버터부(IV1~IV3), 제1 내지 제3 워킹 코일부(AWC, BWC, CWC), 제1 내지 제3 반도체 스위치부(AS, BS, CS), 제어부(250), 보조 전원(300), 입력 인터페이스(350)를 포함할 수 있다.
즉, 본 발명의 일 실시예에 따른 유도 가열 장치(1)의 최적 예시에서는, 제1 워킹 코일부(AWC)가 6개의 워킹 코일(AWC1~AWC6)을 포함하고, 제2 워킹 코일부(BWC)가 4개의 워킹 코일(BWC1~BWC4)을 포함하며, 제3 워킹 코일부(CWC)가 6개의 워킹 코일(CWC1~CWC6)을 포함할 수 있다. 또한 워킹 코일의 개수에 맞추어 제1 반도체 스위치부(AS)는 6개의 반도체 스위치(AS1~AS6)를 포함하고, 제2 반도체 스위치부(BS)는 4개의 반도체 스위치(BS1~BS4)를 포함하며, 제3 반도체 스위치부(CS)는 6개의 반도체 스위치(CS1~CS6)를 포함할 수 있다.
이에 따라, 도 6에 도시된 바와 같이, 제1 워킹 코일부(AWC) 내에 포함된 워킹 코일(AWC1~AWC6)은 A 영역(AR)에 그룹화되어 배치될 수 있고, 제2 워킹 코일부(BWC) 내에 포함된 워킹 코일(BWC1~BWC4)은 B 영역(BR)에 그룹화되어 배치될 수 있다. 또한 제3 워킹 코일부(CWC) 내에 포함된 워킹 코일(CWC1~CWC6)은 C 영역(CR)에 그룹화되어 배치될 수 있다.
물론, 나머지 빈 공간에도 워킹 코일이 배치될 수 있으며, 입력 인터페이스(350) 역시 도 6에 도시된 위치 외 다른 위치에 배치될 수도 있다.
전술한 본 발명은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.

Claims (13)

  1. 병렬 연결된 제1 및 제2 워킹 코일을 포함하는 워킹 코일부;
    스위칭 동작을 수행하여 상기 제1 및 제2 워킹 코일 중 적어도 하나에 공진 전류를 인가하는 인버터부;
    상기 제1 워킹 코일을 턴온(turn-on) 또는 턴오프(turn-off)하기 위해 상기 제1 워킹 코일에 연결된 제1 반도체 스위치;
    상기 제2 워킹 코일을 턴온 또는 턴오프하기 위해 상기 제2 워킹 코일에 연결된 제2 반도체 스위치; 및
    상기 인버터부와 상기 제1 및 제2 반도체 스위치의 동작을 각각 제어하는 제어부를 포함하되,
    상기 제어부는 상기 제1 및 제2 반도체 스위치 중 적어도 하나를 턴오프하기 전에 상기 인버터부를 턴오프하는
    유도 가열 장치.
  2. 제1항에 있어서,
    상기 제어부는,
    상기 제1 반도체 스위치의 동작을 제어하기 위해 상기 제1 반도체 스위치로 제1 펄스 폭을 가지는 제1 제어 신호를 제공하고,
    상기 제2 반도체 스위치의 동작을 제어하기 위해 상기 제2 반도체 스위치로 제2 펄스 폭을 가지는 제2 제어 신호를 제공하는
    유도 가열 장치.
  3. 제2항에 있어서,
    상기 제1 펄스 폭과 상기 제2 펄스 폭은 서로 다른
    유도 가열 장치.
  4. 제2항에 있어서,
    상기 제1 펄스 폭의 유지 시간 동안 상기 제1 반도체 스위치가 턴온되고,
    상기 제2 펄스 폭의 유지 시간 동안 상기 제2 반도체 스위치가 턴온되는
    유도 가열 장치.
  5. 제4항에 있어서,
    특정 시점에 상기 제1 펄스 폭의 유지 시간이 종료되고 상기 제2 펄스 폭의 유지 시간은 종료되지 않는 경우,
    상기 제어부는 상기 특정 시점 전에 상기 인버터부를 턴오프하고, 상기 특정 시점 후에 상기 인버터부를 다시 턴온하는
    유도 가열 장치.
  6. 제4항에 있어서,
    특정 시점에 상기 제1 및 제2 펄스 폭의 유지 시간이 종료되는 경우,
    상기 제어부는 상기 특정 시점 전에 상기 인버터부를 턴오프하는
    유도 가열 장치.
  7. 제4항에 있어서,
    상기 제1 반도체 스위치가 턴온된 경우, 상기 제1 워킹 코일이 턴온되고,
    상기 제2 반도체 스위치가 턴온된 경우, 상기 제2 워킹 코일이 턴온되는
    유도 가열 장치.
  8. 제4항에 있어서,
    상기 제어부는,
    상기 제1 워킹 코일의 출력을 제어하기 위해 상기 제1 펄스 폭을 조정하고,
    상기 제2 워킹 코일의 출력을 제어하기 위해 상기 제2 펄스 폭을 조정하는
    유도 가열 장치.
  9. 제1항에 있어서,
    교류 전력을 출력하는 전원부; 및
    상기 전원부에서 출력된 상기 교류 전력을 직류 전력으로 변환하여 상기 인버터부에 공급하는 정류부를 더 포함하는
    유도 가열 장치.
  10. 제9항에 있어서,
    상기 제어부는 상기 교류 전력에 의한 교류 전압이 0이 되는 시점에 상기 인버터부와 상기 제1 및 제2 반도체 스위치 중 적어도 하나의 동작을 제어하는
    유도 가열 장치.
  11. 병렬 연결된 제1 및 제2 워킹 코일을 포함하는 워킹 코일부;
    스위칭 동작을 수행하여 상기 제1 및 제2 워킹 코일 중 적어도 하나에 공진 전류를 인가하는 인버터부;
    전원부로부터 공급받은 교류 전력을 직류 전력으로 변환하여 상기 인버터부에 공급하는 정류부;
    상기 제1 워킹 코일을 턴온(turn-on) 또는 턴오프(turn-off)하기 위해 상기 제1 워킹 코일에 연결된 제1 반도체 스위치;
    상기 제2 워킹 코일을 턴온 또는 턴오프하기 위해 상기 제2 워킹 코일에 연결된 제2 반도체 스위치; 및
    상기 인버터부와 상기 제1 및 제2 반도체 스위치의 동작을 각각 제어하는 제어부를 포함하되,
    상기 제어부는 상기 교류 전력에 의한 교류 전압이 0이 되는 시점에 상기 인버터부와 상기 제1 및 제2 반도체 스위치 중 적어도 하나의 동작을 제어하는
    유도 가열 장치.
  12. 병렬 연결된 제1 및 제2 워킹 코일을 포함하는 워킹 코일부;
    스위칭 동작을 수행하여 상기 제1 및 제2 워킹 코일 중 적어도 하나에 공진 전류를 인가하는 인버터부;
    상기 제1 워킹 코일을 턴온(turn-on) 또는 턴오프(turn-off)하기 위해 상기 제1 워킹 코일에 연결된 제1 반도체 스위치;
    상기 제2 워킹 코일을 턴온 또는 턴오프하기 위해 상기 제2 워킹 코일에 연결된 제2 반도체 스위치; 및
    상기 인버터부와 상기 제1 및 제2 반도체 스위치의 동작을 각각 제어하는 제어부를 포함하되,
    상기 제어부는 상기 제1 반도체 스위치로 제1 펄스 폭을 가지는 제1 제어 신호를 제공하고, 상기 제2 반도체 스위치로 상기 제1 펄스 폭과 다른 제2 펄스 폭을 가지는 제2 제어 신호를 제공하는
    유도 가열 장치.
  13. 제12항에 있어서,
    상기 제어부는,
    상기 제1 워킹 코일의 출력을 제어하기 위해 상기 제1 펄스 폭을 조정하고,
    상기 제2 워킹 코일의 출력을 제어하기 위해 상기 제2 펄스 폭을 조정하는
    유도 가열 장치.
PCT/KR2018/014881 2018-01-08 2018-11-28 제어 알고리즘이 개선된 유도 가열 장치 WO2019135492A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18898822.4A EP3740031B1 (en) 2018-01-08 2018-11-28 Induction heating device with improved control algorithm
US16/766,595 US20210127459A1 (en) 2018-01-08 2018-11-28 Induction heating device with improved control algorithm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0002326 2018-01-08
KR1020180002326A KR102034798B1 (ko) 2018-01-08 2018-01-08 제어 알고리즘이 개선된 유도 가열 장치

Publications (1)

Publication Number Publication Date
WO2019135492A1 true WO2019135492A1 (ko) 2019-07-11

Family

ID=67143876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014881 WO2019135492A1 (ko) 2018-01-08 2018-11-28 제어 알고리즘이 개선된 유도 가열 장치

Country Status (4)

Country Link
US (1) US20210127459A1 (ko)
EP (1) EP3740031B1 (ko)
KR (1) KR102034798B1 (ko)
WO (1) WO2019135492A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102413857B1 (ko) * 2017-08-31 2022-06-28 엘지전자 주식회사 회로 구조가 개선된 유도 가열 및 무선 전력 전송 장치
KR102210089B1 (ko) 2020-03-06 2021-02-01 (주)실로암테크 인덕션 방식에 의한 고온 열분해 멸균 장치
KR102280673B1 (ko) * 2020-12-17 2021-07-22 (주)테크레인 용기 감지가 가능한 인덕션 레인지 장치
WO2023287387A2 (en) * 2021-07-14 2023-01-19 Ecotech Bi̇yoteknoloji̇ Araştirma Geli̇şti̇rme Sanayi̇ Ve Ti̇caret Li̇mi̇ted Şi̇rketi̇ A sterilization device working with the principle of induction heating

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070114489A (ko) * 2006-05-29 2007-12-04 엘지전자 주식회사 조리기의 가열원 구동장치
KR20100120015A (ko) * 2009-05-04 2010-11-12 엘지전자 주식회사 조리기기 및 그에 대한 제어방법
KR20110092071A (ko) * 2010-02-08 2011-08-17 엘지전자 주식회사 유도가열 조리기기
EP2928265A1 (de) 2014-04-03 2015-10-07 E.G.O. ELEKTRO-GERÄTEBAU GmbH Induktionsheizvorrichtung und induktionskochfeld
KR101659001B1 (ko) * 2009-07-22 2016-09-23 엘지전자 주식회사 단일 인버터를 구비한 유도가열 전기조리기
KR20170123821A (ko) * 2016-04-29 2017-11-09 (주)쿠첸 복수의 워킹코일을 구비한 전기 레인지

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1325666A4 (en) * 2000-08-18 2007-03-21 Luxine Inc INDUCTION HEATING AND CONTROL SYSTEM AND METHOD WITH HIGH RELIABILITY AND ADVANCED PERFORMANCE FEATURES
ES2353890B1 (es) * 2008-12-19 2012-01-26 Bsh Electrodomesticos España, S.A. Campo de cocción con al menos tres zonas de calentamiento.
CN102484907B (zh) * 2010-01-20 2014-12-31 松下电器产业株式会社 感应加热装置
TWI501534B (zh) * 2011-01-21 2015-09-21 Delta Electronics Inc 電熱裝置及其準諧振式反流器的控制系統與方法
JP4886080B1 (ja) * 2011-03-23 2012-02-29 三井造船株式会社 誘導加熱装置、誘導加熱装置の制御方法、及び制御プログラム
US8575849B2 (en) * 2011-07-15 2013-11-05 Osram Sylvania Inc. Resonate driver for solid state light sources
KR102009354B1 (ko) * 2012-11-26 2019-08-09 엘지전자 주식회사 전자 유도 가열 조리기 및 이의 구동 방법
KR102413858B1 (ko) * 2017-08-31 2022-06-28 엘지전자 주식회사 제어 알고리즘이 개선된 유도 가열 및 무선 전력 전송 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070114489A (ko) * 2006-05-29 2007-12-04 엘지전자 주식회사 조리기의 가열원 구동장치
KR20100120015A (ko) * 2009-05-04 2010-11-12 엘지전자 주식회사 조리기기 및 그에 대한 제어방법
KR101659001B1 (ko) * 2009-07-22 2016-09-23 엘지전자 주식회사 단일 인버터를 구비한 유도가열 전기조리기
KR20110092071A (ko) * 2010-02-08 2011-08-17 엘지전자 주식회사 유도가열 조리기기
EP2928265A1 (de) 2014-04-03 2015-10-07 E.G.O. ELEKTRO-GERÄTEBAU GmbH Induktionsheizvorrichtung und induktionskochfeld
KR20170123821A (ko) * 2016-04-29 2017-11-09 (주)쿠첸 복수의 워킹코일을 구비한 전기 레인지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3740031A4

Also Published As

Publication number Publication date
EP3740031B1 (en) 2024-08-21
KR20190084503A (ko) 2019-07-17
EP3740031A1 (en) 2020-11-18
KR102034798B1 (ko) 2019-10-21
EP3740031A4 (en) 2021-10-06
US20210127459A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
WO2019135492A1 (ko) 제어 알고리즘이 개선된 유도 가열 장치
WO2018221977A1 (ko) 시트용 무선 전력전송장치
WO2021201477A1 (ko) 유도 가열 방식의 쿡탑
WO2013162336A1 (ko) 무선전력 수신장치 및 그의 전력 제어 방법
WO2018034392A1 (ko) 무선 전력 송신기 및 수신기
EP2932578A1 (en) Wirless power receiver and method of controlling the same
WO2017069469A1 (ko) 무선 신호를 송수신하기 위한 무선 전력 송신기, 무선 전력 수신기, 무선 시스템 및 이의 동작 방법
WO2021045402A1 (ko) 유도 가열 장치
WO2018147621A1 (ko) 유도 가열 조리기기
WO2020046048A1 (en) Induction heating device and method of controlling the same
WO2020046068A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2015020432A1 (ko) 무선전력 송신장치
WO2021225376A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2017023008A1 (ko) 유도 가열 장치 및 그 제어 방법
WO2013151290A1 (ko) 전력 공급 장치, 무선전력 송신장치 및 전력 공급 방법
WO2021225375A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2021225373A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2020004892A1 (en) Cooking apparatus and method for controlling thereof
WO2021194302A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2016163750A1 (ko) 무선 전력 송신 장치 및 그 제어 방법
WO2021071076A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2019045323A1 (ko) 회로 구조가 개선된 유도 가열 및 무선 전력 전송 장치
WO2019226019A1 (ko) 조리장치 및 그 제어방법
WO2021194173A1 (ko) 유도 가열 방식의 쿡탑
WO2019045322A1 (ko) 제어 알고리즘이 개선된 유도 가열 및 무선 전력 전송 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018898822

Country of ref document: EP

Effective date: 20200810