WO2019131718A1 - はんだ合金 - Google Patents
はんだ合金 Download PDFInfo
- Publication number
- WO2019131718A1 WO2019131718A1 PCT/JP2018/047747 JP2018047747W WO2019131718A1 WO 2019131718 A1 WO2019131718 A1 WO 2019131718A1 JP 2018047747 W JP2018047747 W JP 2018047747W WO 2019131718 A1 WO2019131718 A1 WO 2019131718A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solder
- solder alloy
- less
- alloy
- intermetallic compound
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
- B23K35/262—Sn as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/40—Making wire or rods for soldering or welding
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C13/00—Alloys based on tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C13/00—Alloys based on tin
- C22C13/02—Alloys based on tin with antimony or bismuth as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
Definitions
- the present invention relates to a solder alloy excellent in continuous castability, and a solder joint having the solder alloy.
- Flow soldering is a method in which soldering is performed by bringing a jet surface of a solder bath into contact with the connecting surface of a printed circuit board.
- Dip soldering is a method in which a terminal such as a coil component is immersed in a solder bath to remove an insulating film and to perform pre-solder plating.
- Soldering baths are required for flow soldering and dip soldering. Since the solder bath is exposed to the air for a long time, the dross generated in the solder bath must be removed at regular intervals. Also, the molten solder in the solder tank is consumed by soldering. For this reason, a solder alloy is periodically supplied to the solder bath. Bar solder is generally used to supply solder alloys.
- the continuous casting method is a method in which a raw material is charged into a melting furnace and melted, and the molten solder in the melting furnace is cast into the groove of the rotary mold.
- molds used in the continuous casting method include a shape in which a groove is provided at the center in the width direction of the annular plate. The molten solder solidifies after being cast in the groove of the rotary mold and is led to the cutting process from the mold at a temperature of about 150 ° C. The induced continuous casting is cut into a predetermined length to be a bar solder.
- solder alloy The continuous casting technology of solder alloy is described, for example, in Patent Document 1.
- a cooling metal through which cooling water is passed is brought into close contact with the outside of a mold, and a cooling rate to 280 ° C. is 3 ° C./s or more, preferably 20 ° C. It is described that the structure of the eutectic portion is refined as 2 / s or more, more preferably 50 ° C./s or more.
- Au is sometimes used as a high temperature Pb-free solder alloy, it is expensive and difficult to process.
- Sn—Cu based solder alloys are mainly used for the bar solder.
- Sn-Cu solder alloys are known to form intermetallic compounds in solder alloys. When this alloy is manufactured by continuous casting, coarse brittle intermetallic compounds may be formed during solidification of the molten solder. If a coarse intermetallic compound is formed, the solder alloy may be broken at the formation point, which may cause a problem that a continuous casting can not be formed. Also, even if a continuous casting can be formed, there is a risk of breakage during transportation.
- Patent Document 2 uses a Sn-Cu-Ni alloy as a low temperature brazing material to join pipes. It is described that the flux is applied to the portion, dipped in a molten brazing material and pulled up, and then it is gradually cooled and solidified.
- the object of the invention described in Patent Document 2 is to provide a low melting point and easy-to-use alloy, and allow the Cu content to be in the range of 0.3 to 41.4%.
- the liquidus temperature at a Cu content of 41.4% is 640 ° C., and since it is gradually cooled and solidified, coarse intermetallic compounds are precipitated in the alloy layer. Resulting in.
- cracking or breakage may occur in the continuous casting. If cracking or breakage occurs in the continuous casting, the continuous casting process is interrupted, and the casting process is resumed after the broken casting is taken out of the mold, which complicates the working process.
- An object of the present invention is to provide a solder alloy excellent in continuous castability.
- Patent Document 2 The inventors re-examined the problem in the case of producing the alloy described in Patent Document 2 as a continuous casting.
- the solder alloy is prevented from being damaged by annealing the brazing material at the time of joining.
- a coarse intermetallic compound is formed inside the solder alloy.
- a crack occurs at the time of solidification or is broken at the time of cutting of the solder alloy. This is particularly noticeable in hypereutectic systems where the Cu content is 0.8% or more.
- Non-Patent Document 1 reports that the viscosity of the molten solder increases as the Cu content increases. This document reports that when the Cu content is increased from 0.7% to 7.6%, the viscosity at the same temperature is increased by about 1.5 times. Then, when casting was performed with various Cu contents, it is found that the fluidity of the molten solder in the mold decreases as the Cu content increases, and the thickness increases and the frequency of occurrence of cracks during solidification increases. was gotten.
- the rotary mold in order to compensate for the decrease in the fluidity of the molten solder due to the increase in the Cu content, it is possible to tilt the rotary mold so that the molten solder that has been cast flows downward from the upstream.
- the rotary mold when the rotary mold is inclined, the cross-sectional shape of the continuous casting is significantly different from the shape of the groove of the mold, so that the desired continuous casting can not be obtained.
- the tilt angle of the rotary mold is too large, the molten solder may run out of the groove when it strikes the curved portion of the rotary mold. For this reason, when using a continuous casting method, the rotary mold must be kept horizontal.
- the present inventors sufficiently melt the molten solder having a high viscosity alloy composition into the mold even if it is cast into the mold while maintaining the horizontal state of the rotary mold to prevent cracking and breakage during solidification. Further examination was repeated. In the past, it was thought that cracking and breakage of the continuous casting were induced by the vibration of the rotary mold, but when daring to apply micro-vibrations such as ultrasonic waves to molten solder cast in the mold, Unexpectedly, it has been found that the fluidity of the molten solder in the mold is improved and the maximum crystal grain size of the intermetallic compound is decreased. This makes it possible to produce a continuous casting having good quality with almost no cracking or breakage during solidification, and the present invention has been completed.
- the alloy composition further includes, in mass%, at least one of P: 0.3% or less, Ge: 0.3% or less, and Ga: 0.3% or less. The solder alloy according to any one of (3).
- the alloy composition further includes a group consisting of 5% or less in total of at least one of Bi, In, Sb, Zn, and Ag, and Mn, Cr, Co, Fe, Si, Al, Ti, and rare earths.
- FIG. 1 is a cross-sectional image of a solder alloy of Example 7.
- FIG. 2 is a cross-sectional image of the solder alloy of Example 8 and Comparative Example 4,
- FIG. 2 (a) is an image of Example 8
- FIG. 2 (b) is an image of Comparative Example 4.
- % relating to the solder alloy composition is “% by mass” unless otherwise specified.
- Alloy composition of solder alloy (1) Cu 0.8 to 10%
- the solder alloy of the present invention can solve the problem in the case of a hypereutectic alloy in which a coarse CuSn intermetallic compound is easily generated. If the Cu content is less than 0.7%, it becomes hypoeutectic, so the primary crystals during solidification are Sn, but if the Cu content exceeds 0.7%, it becomes hypereutectic to solidify The primary crystal of time is a SnCu compound. When the primary crystal is a SnCu compound, the fluidity of the molten solder in the mold is degraded. However, if the Cu content is slightly higher than 0.7%, the influence of intermetallic compounds at the time of casting is hardly affected regardless of the manufacturing conditions. The lower the Cu content, the lower the Cu content is 0.8% or more, preferably 1.0% or more, and more preferably 4.0% or more. is there.
- the Cu content exceeds 10%, the liquidus temperature rises, and the workability deteriorates.
- the area ratio of the intermetallic compound becomes too large.
- the viscosity of the molten solder increases and the fluidity in the mold deteriorates, so that coarse intermetallic compounds are formed. As a result, cracks and the like occur during solidification.
- the upper limit of the Cu content is 10% or less, preferably 8% or less, and more preferably 7% or less.
- Ni 0.4% or less
- Ni is an optional element capable of controlling the crystal grain size of the SnCu intermetallic compound.
- the Sn—Cu solder alloy contains Ni, it is possible to uniformly disperse Ni in Cu 6 Sn 5 to make the grain size of the intermetallic compound finer and to suppress the breakage of the continuous casting.
- the Ni content is 0.4% or less, good workability can be maintained because the rise in liquidus temperature is within an allowable range.
- the upper limit of the Ni content is preferably 0.2% or less, more preferably 0.15%.
- the lower limit of the Ni content is preferably 0.03% or more, more preferably 0.1% or more.
- the intermetallic compound in the present invention in the case of containing Ni is preferably mainly (Cu, Ni) 6 Sn 5 .
- the term "mainly (Cu, Ni) 6 Sn 5 " means that the ratio of the area of (Cu, Ni) 6 Sn 5 to the total area of the intermetallic compound is 0.5 or more when observing the cross section of the solder alloy. Represents a certain thing.
- At least one of P: 0.3% or less, Ge: 0.3% or less, and Ga: 0.3% or less suppress the oxidation of the solder alloy and, at the same time, the fluidity of the molten solder It is an optional element that can be improved.
- the upper limit of the content is 0.3% or less, the rise in liquidus temperature can be suppressed, so the time to solidification can be shortened and the coarsening of the alloy structure can be suppressed.
- the upper limit of the P content is preferably 0.3% or less, more preferably 0.1% or less, and still more preferably 0.025% or less.
- the upper limit of each of the Ge content and the Ga content is preferably 0.3% or less, and more preferably 0.15% or less.
- the lower limit of the content of each element is preferably 0.005% or more, more preferably 0.01% or more.
- the rare earth element refers to 17 kinds of elements including Sc and Y belonging to Group 3 in the periodic table and 15 elements of the lanthanum group corresponding to atomic numbers 57 to 71.
- At least one of Bi, In, Sb, Zn, Ag, Mn, Cr, Co, Fe, Si, Al, Ti, and a rare earth element may be contained.
- the content of each element is preferably at most 5% or less in at least one of Bi, In, Sb, Zn, and Ag, and Mn, Cr, Co, Fe, Si, Al, Ti, and rare earth elements
- the total is 1% or less. More preferably, at least one of Bi, In, Sb, Zn, and Ag has a total of 1% or less in total, and at least one of Mn, Cr, Co, Fe, Si, Al, Ti, and a rare earth element has a total of 0 .5% or less.
- Remainder Sn
- unavoidable impurities may be contained. Even when including inevitable impurities, the above-mentioned effects are not affected. In addition, as described later, even if an element not contained in the present invention is contained as an unavoidable impurity, the above-mentioned effect is not affected.
- the maximum crystal grain size of the intermetallic compound is 100 ⁇ m or less in the region where the thickness from the surface of the solder alloy is 50 ⁇ m or more.
- the problem in the continuous casting can be solved for the first time by focusing attention on the alloy structure of the solder alloy which is a continuous casting manufactured by continuous casting before solder joining. It is
- the molten solder is cooled from the contact surface with the mold, and the central portion farthest from the contact surface with the mold finally solidifies. This is because the cooling rate at the contact surface with the mold is faster than the cooling rate at the central portion. Also, if the cooling rate is fast, the grain size will be smaller. Thus, in general, mold-cooled castings are finer on the surface than in the central portion.
- the maximum grain size of the present invention is defined as follows. The cross-sectional image of the casting is observed to identify intermetallic compounds, and the largest grains are selected visually. With respect to the crystal grains, two parallel tangents are drawn so as to maximize the spacing, and the spacing is defined as the maximum grain size.
- the upper limit of the maximum crystal grain size is 100 ⁇ m or less, preferably 80 ⁇ m or less, more preferably 60.44 ⁇ m or less, and further preferably 58.50 ⁇ m because the smaller the maximum crystal grain size, the better the continuous castability. Or less, particularly preferably 50 ⁇ m or less.
- Intermetallic compounds are generated depending on the constituent elements.
- the intermetallic compound in the alloy composition containing Sn, Cu, and Ni is mainly (Cu, Ni) 6 Sn 5 as described above.
- the area ratio of the intermetallic compound to the solder alloy is preferably 40% or less, preferably 30% or less, from the viewpoint of reducing the amount of precipitation of the brittle intermetallic compound to suppress the breakage. Is more preferably 20% or less, particularly preferably 18.06% or less, and most preferably 15.15 ⁇ m or less.
- the breakage can be further suppressed.
- the solder alloy according to the present invention it is preferable to satisfy the following equation (1) in consideration of the balance between the two.
- the area ratio of the intermetallic compound to a solder alloy represents the ratio (%) of the area of the cut surface which cut
- the right side of the above formula (1) is more preferably 2500 ⁇ m ⁇ %, further preferably 1500 ⁇ m ⁇ %.
- solder Joint is used, for example, for connection between an IC chip and its substrate (interposer) in a semiconductor package or connection between a semiconductor package and a printed wiring board.
- a solder joint means the connection part of an electrode.
- the method of manufacturing a solder alloy according to the present invention is manufactured, for example, by a continuous casting method.
- the continuous casting method first, the raw material is introduced into a melting furnace so as to obtain a predetermined alloy composition, and the raw material is melted by heating to about 350 to 500.degree.
- molten solder in the melting furnace is continuously cast into a rotary mold.
- the rotary mold has, for example, a shape in which a groove is provided at the center in the width direction of the annular plate.
- the molten solder is cast into the groove of the mold while rotating the rotary mold.
- the amount of molten solder supplied to the mold is appropriately adjusted in accordance with the number of rotations of the mold and the frequency of micro-vibrations such as ultrasonic waves applied to the molten solder in the mold.
- an ultrasonic vibration device is attached to the side surface of the rotary mold.
- the frequency of the ultrasonic wave applied to the molten solder is not particularly limited, but may be, for example, 10 kHz or more.
- a microstructure is obtained by attaching an ultrasonic device to a rotary mold and applying ultrasonic waves to molten solder.
- the area ratio of the intermetallic compound is not too high, and the balance with the maximum crystal grain size is maintained.
- the details are unknown, but are presumed as follows.
- an SnCu compound is formed as a primary crystal during solidification, and a portion where the amount of Cu becomes too high is generated due to segregation, and a coarse SnCu compound may be formed. Therefore, in the present invention, the segregation of the SnCu compound is suppressed by applying a micro-vibration such as an ultrasonic wave, and the formation of a coarse SnCu compound can be suppressed.
- the molten solder cast in the mold is cooled to about 150 ° C. at a cooling rate of about 10 to 50 ° C./s.
- the bottom of the rotary mold is immersed in cooling water, or the cooling water is circulated in the mold using a chiller or the like.
- solder alloy after cooling is guided to the outside of the mold through the guide and cut into a predetermined length.
- the solder alloy reached the guide is cooled to about 80 to 200.degree.
- the intermetallic compound is fine up to the inside, it is possible to suppress the breakage that may occur at the time of contact with the guide, etc. which can occur conventionally.
- solder alloy after cutting is shipped in the form of bar solder or the like.
- the solder alloy of the present invention is not damaged by impact during transportation.
- the continuous casting was guided from the rotary mold to the outside of the rotary mold by a guide. Then, it was cut into an appropriate length, and a total of 10 m of bar solder was manufactured including a bar solder having a width of 10 mm and a length of 300 mm.
- the evaluation method is described below.
- the evaluation surface shall be 6m of the rod solder with a width of 10mm and a length of 300mm, with the bar solder from the height of 1m, with each evaluation surface facing down, assuming transportation. It was free to fall manually on the concrete surface (total 6 times) and visually confirmed.
- the above “1 m height” represents the height of the evaluation surface of the bar solder from the concrete surface.
- the rod solder was rated as "o” if no new chipping or cracking occurred, and "x" if a new chipping or cracking occurred.
- Comparative Examples 4 and 7 since ultrasonic waves were not applied to the molten solder cast in the mold, breakage was observed after solidification to cutting, but since the Cu content is relatively small, it is at room temperature. No new chips or cracks were found in the drop test. In Comparative Example 8, the amount of coarse intermetallic compounds precipitated was large, and breakage was confirmed in the bar solder from solidification to cutting. Further, in the drop test at room temperature, chipping and cracking occurred further.
- Comparative Examples 1 to 8 in addition to breakage and the like, generation of burrs and variation in thickness can be observed in one rod solder, and a stable rod having no burr and a constant thickness as in the examples.
- the solder could not be manufactured.
- FIG. 1 is a cross-sectional image of a solder alloy of Example 7. As apparent from this image, it was revealed that the maximum crystal grain size of Example 7 to which ultrasonic waves were applied was 58.50 ⁇ m, which was 100 ⁇ m or less. In addition, it was confirmed that the area ratio of Example 7 was 15%, and it was also clarified that the formula (1) was satisfied.
- FIG. 2 is a cross-sectional image of Example 8 and Comparative Example 4
- FIG. 2 (a) is an image of Example 8
- FIG. 2 (b) is an image of Comparative Example 4.
- FIG. 2A and FIG. 2B show the change of the crystal grain size depending on the presence or absence of the application of the ultrasonic wave.
- Example 8 It was found that the maximum crystal grain size in Example 8 was 60.44 ⁇ m, the area ratio was 18.06%, and the formula (1) was satisfied. Similarly, in Examples 1 to 7 and 9 to 29, it was confirmed that the maximum crystal grain size was 100 ⁇ m or less and the formula (1) was satisfied.
- Comparative Example 4 no ultrasonic wave was applied, so it was found that a coarse intermetallic compound having a maximum crystal grain size of 108.72 ⁇ m exceeding 100 ⁇ m was precipitated. In addition, it was found that the area ratio of Comparative Example 4 was 28.12% and did not satisfy Formula (1). Similarly, it was found that the maximum crystal grain size exceeded 100 ⁇ m and did not satisfy the formula (1).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Continuous Casting (AREA)
- Conductive Materials (AREA)
Abstract
Description
本発明の課題は、連続鋳造性に優れるはんだ合金を提供することである。
(1)質量%で、Cu:0.8~10%、残部Snからなる合金組成を有するとともに金属間化合物を有するはんだ合金であって、前記はんだ合金の表面からの厚さが50μm以上の領域において、金属間化合物の最大結晶粒径が100μm以下であることを特徴とするはんだ合金。
(3)金属間化合物は、主として(Cu、Ni)6Sn5である、上記(2)に記載のはんだ合金。
(4)合金組成は、更に、質量%で、P:0.3%以下、Ge:0.3%以下、およびGa:0.3%以下の少なくとも1種を含有する、上記(1)~(3)のいずれか1項に記載のはんだ合金。
最大結晶粒径(μm)×はんだ合金に占める金属間化合物の面積率(%)≦3000(μm・%) ・・・(1)
(1)Cu:0.8~10%
本発明のはんだ合金は、粗大なCuSn金属間化合物が生成されやすい過共晶合金の場合における課題を解決することができる。Cu含有量が0.7%未満の場合には亜共晶となるために凝固時の初晶はSnであるが、Cu含有量が0.7%を超える場合には過共晶なるため凝固時の初晶はSnCu化合物となる。初晶がSnCu化合物の場合に、溶融はんだの鋳型内での流動性が劣化する。ただ、Cu含有量が0.7%をわずかに上回る程度では製造条件によらず鋳造時での金属間化合物の影響はほとんどない。Cu含有量が多いほど本発明の効果が発揮され易くなるため、Cu含有量の下限は0.8%以上であり、好ましくは1.0%以上であり、より好ましくは4.0%以上である。
Niは、SnCu金属間化合物の結晶粒径を制御することができる任意元素である。Sn-Cuはんだ合金がNiを含有すると、NiがCu6Sn5中に均一に分散して金属間化合物の粒径を微細にし、連続鋳造物の破損を抑制することができる。Ni含有量が0.4%以下であると、液相線温度の上昇が許容範囲内となるために良好な作業性を保つことができる。Ni含有量の上限は、好ましくは0.2%以下であり、より好ましくは0.15%である。一方、Niを含有する効果を発揮させるため、Ni含有量の下限は好ましくは0.03%以上であり、より好ましくは0.1%以上である。
これらの元素は、はんだ合金の酸化を抑制するとともに溶融はんだの流動性を向上させることができる任意元素である。含有量の上限が0.3%以下であると、液相線温度の上昇を抑えることができるため、凝固までの時間が短縮して合金組織の粗大化を抑制することができる。P含有量の上限は、好ましくは0.3%以下であり、より好ましくは0.1%以下であり、さらに好ましくは0.025%以下である。Ge含有量およびGa含有量の上限は、各々、好ましくは0.3%以下であり、より好ましくは0.15%以下である。一方、これらの元素を含有する効果を発揮させるため、各元素の含有量の下限は好ましくは0.005%以上であり、より好ましくは0.01%以上である。
これらの元素は、Bi、In、Sb、Zn、およびAgの少なくとも1種では合計で5%以下、Mn、Cr、Co、Fe、Si、Al、Ti、および希土類元素の少なくとも1種では合計で1%以下、であれば、本発明に係るはんだ合金の連続鋳造性に影響を及ぼすことがない。本発明において希土類元素とは、周期律表において第3族に属するSc、Yと原子番号57~71に該当するランタン族の15個の元素を合わせた17種の元素のことである。
本発明に係るはんだ合金の残部はSnである。前述の元素の他に不可避的不純物を含有してもよい。不可避的不純物を含有する場合であっても、前述の効果に影響することはない。また、後述するように、本発明では含有しない元素が不可避的不純物として含有されても前述の効果に影響することはない。
本発明に係るはんだ合金は、はんだ合金の表面からの厚さが50μm以上の領域において、金属間化合物の最大結晶粒径が100μm以下である。
「はんだ合金に占める金属間化合物の面積率」とは、はんだ合金を切断した切断面の面積と、その切断面に存在する金属間化合物の面積との比率(%)を表す。上記(1)式の右辺は、より好ましくは2500μm・%であり、さらに好ましくは1500μm・%である。
はんだ継手は、例えば、半導体パッケージにおけるICチップとその基板(インターポーザ)との接続、或いは半導体パッケージとプリント配線板との接続に使用される。ここで、「はんだ継手」とは電極の接続部をいう。
本発明に係るはんだ合金の製造方法は、例えば、連続鋳造法にて製造される。連続鋳造法は、まず、所定の合金組成となるように原材料を溶融炉に投入し350~500℃程度に加熱して原材料を溶融する。
回転鋳型は、例えば環状板の幅方向中央部に溝が設けられた形状である。溶融はんだを鋳込む際には、回転鋳型を回転させながら溶融はんだが鋳型の溝に鋳込まれる。鋳型への溶融はんだの供給量は、鋳型の回転数および鋳型内の溶融はんだに印加される超音波等の微振動の周波数に応じて適宜調整する。例えば、超音波を印加する場合には、超音波振動装置を回転鋳型の側面に付設して行う。本発明において、溶融はんだに印加される超音波の周波数は特に限定されないが、例えば10kHz以上であればよい。
本発明の効果を立証するため、下記により棒はんだを作製して評価した。溶融炉に原材料を秤量し、溶融炉の設定温度を450℃として溶融した後、水を循環させた回転鋳型の溝に溶融はんだを鋳込んだ。冷却速度は概ね30℃/sであった。そして、回転鋳型に超音波発振器を付設し、溶融はんだを鋳込む際に出力が5Wで60kHzの超音波を印加した。
(2-1)金属間化合物(IMC)の面積率
作製した棒はんだの長手方向の中心部(横断面)を切断し、走査型電子顕微鏡SEM(倍率:250倍)を用いて組成像の画像を撮影した。得られた画像を解析して金属間化合物を同定した。金属間化合物は濃い灰色を呈するため、その色調から金属間化合物を判断した。濃い灰色を呈する金属間化合物の面積の画像領域に占める割合を面積率として導出した。面積率が20%以下を「◎」とし、20%超え40%以下を「○」として、40%超えを「×」とした。「◎」および「○」であれば実用上問題ない。本評価では、250倍で撮影した画像領域の面積をはんだ合金の断面積であると想定し、濃い灰色部分の総面積を断面における全金属間化合物の面積であると想定することができる。
得られた画像から同定された金属間化合物の中で、目視にて最大の結晶粒を選択する。その結晶粒について、間隔が最大となるように平行な2本の接線を引き、その間隔を最大結晶粒径とした。最大結晶粒径が100μm以下を「○」とし、100μm超えを「×」とした。
上記(2-1)および(2-2)から得られた結果を乗じた値が3000(μm・%)以下を「○」とし、3000(μm・%)超えを「×」とした。
棒はんだの破損は、凝固後から切断までの棒はんだを目視にて確認した。棒はんだに欠け、破損、崩れ等が発生していなければ「○」とし、少しでも欠け、破損、崩れ等が発生していれば「×」とした。
図1は、実施例7のはんだ合金の断面画像である。この画像から明らかなように、超音波を印加した実施例7の最大結晶粒径は100μm以下の58.50μmであることが明らかになった。また、実施例7の面積率は15%であることが確認できており、(1)式を満たすことも明らかになった。
Claims (6)
- 質量%で、Cu:0.8~10%、残部Snからなる合金組成を有するとともに金属間化合物を有するはんだ合金であって、前記はんだ合金の表面からの厚さが50μm以上の領域において、前記金属間化合物の最大結晶粒径が100μm以下であることを特徴とするはんだ合金。
- 前記合金組成は、更に、質量%で、Ni:0.4%以下を含有する、請求項1に記載のはんだ合金。
- 前記金属間化合物は、主として(Cu、Ni)6Sn5である、請求項2に記載のはんだ合金。
- 前記合金組成は、更に、質量%で、P:0.3%以下、Ge:0.3%以下、およびGa:0.3%以下の少なくとも1種を含有する、請求項1~3のいずれか1項に記載のはんだ合金。
- 前記合金組成は、更に、Bi、In、Sb、Zn、およびAgの少なくとも1種を合計で5%以下からなる群、ならびにMn、Cr、Co、Fe、Si、Al、Ti、および希土類元素の少なくとも1種を合計で1%以下からなる群、の少なくとも1群から選択される少なくとも1種を含有する、請求項1~4のいずれか1項に記載のはんだ合金。
- 下記(1)式を満たす、請求項1~5のいずれか1項に記載のはんだ合金。
前記最大結晶粒径(μm)×前記はんだ合金に占める前記金属間化合物の面積率(%)≦3000(μm・%) ・・・(1)
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HRP20211480TT HRP20211480T1 (hr) | 2017-12-31 | 2018-12-26 | Legura za lemljenje |
KR1020197031277A KR102090548B1 (ko) | 2017-12-31 | 2018-12-26 | 땜납 합금 |
ES18896544T ES2884792T3 (es) | 2017-12-31 | 2018-12-26 | Aleación de soldadura |
MX2019012904A MX2019012904A (es) | 2017-12-31 | 2018-12-26 | Aleacion de soldadura. |
CN201880028510.6A CN110612175B (zh) | 2017-12-31 | 2018-12-26 | 软钎料合金 |
BR112020003649-8A BR112020003649B1 (pt) | 2017-12-31 | 2018-12-26 | Liga de solda |
PL18896544T PL3597356T3 (pl) | 2017-12-31 | 2018-12-26 | Stop lutowniczy |
MYPI2019006081A MY185972A (en) | 2017-12-31 | 2018-12-26 | Solder alloy |
US16/605,744 US11123824B2 (en) | 2017-12-31 | 2018-12-26 | Solder alloy |
EP18896544.6A EP3597356B1 (en) | 2017-12-31 | 2018-12-26 | Solder alloy |
PH12019502364A PH12019502364B1 (en) | 2017-12-31 | 2019-10-17 | Solder alloy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017255303A JP6369620B1 (ja) | 2017-12-31 | 2017-12-31 | はんだ合金 |
JP2017-255303 | 2017-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019131718A1 true WO2019131718A1 (ja) | 2019-07-04 |
Family
ID=63104312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/047747 WO2019131718A1 (ja) | 2017-12-31 | 2018-12-26 | はんだ合金 |
Country Status (16)
Country | Link |
---|---|
US (1) | US11123824B2 (ja) |
EP (1) | EP3597356B1 (ja) |
JP (1) | JP6369620B1 (ja) |
KR (1) | KR102090548B1 (ja) |
CN (1) | CN110612175B (ja) |
ES (1) | ES2884792T3 (ja) |
HR (1) | HRP20211480T1 (ja) |
HU (1) | HUE055917T2 (ja) |
MA (1) | MA47802A (ja) |
MX (1) | MX2019012904A (ja) |
MY (1) | MY185972A (ja) |
PH (1) | PH12019502364B1 (ja) |
PL (1) | PL3597356T3 (ja) |
PT (1) | PT3597356T (ja) |
TW (1) | TWI673130B (ja) |
WO (1) | WO2019131718A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11123823B2 (en) * | 2017-11-08 | 2021-09-21 | Alpha Assembly Solutions Inc. | Cost-effective lead-free solder alloy for electronic applications |
TWI820277B (zh) * | 2018-12-27 | 2023-11-01 | 美商阿爾發金屬化工公司 | 無鉛焊料組成物 |
JP6721851B1 (ja) | 2019-06-28 | 2020-07-15 | 千住金属工業株式会社 | はんだ合金、鋳造物、形成物およびはんだ継手 |
CN114173983A (zh) * | 2019-07-26 | 2022-03-11 | 日本斯倍利亚社股份有限公司 | 预制焊料和使用该预制焊料形成的焊料接合体 |
JP6744972B1 (ja) | 2019-10-04 | 2020-08-19 | 有限会社 ナプラ | 接合構造部 |
JP6799701B1 (ja) * | 2020-03-12 | 2020-12-16 | 有限会社 ナプラ | 金属粒子 |
JP6890201B1 (ja) * | 2020-08-27 | 2021-06-18 | 有限会社 ナプラ | 接合材用合金インゴット |
JP7007623B1 (ja) * | 2021-08-27 | 2022-01-24 | 千住金属工業株式会社 | はんだ合金及びはんだ継手 |
CN113798725B (zh) * | 2021-10-13 | 2022-10-04 | 浙江强力控股有限公司 | 选择性波峰焊用免焊剂无铅焊料及其制备方法 |
CN115383344B (zh) * | 2022-06-06 | 2024-02-06 | 桂林航天工业学院 | In-48Sn-xCuZnAl复合钎料及其制备方法与应用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09122967A (ja) * | 1995-10-25 | 1997-05-13 | Tanaka Denshi Kogyo Kk | 複合半田材料 |
JP2003001482A (ja) * | 2001-06-19 | 2003-01-08 | Tokyo Daiichi Shoko:Kk | 無鉛半田合金 |
JP2004181485A (ja) * | 2002-12-03 | 2004-07-02 | Senju Metal Ind Co Ltd | 鉛フリーはんだ合金 |
JP2005046882A (ja) * | 2003-07-29 | 2005-02-24 | Hitachi Metals Ltd | はんだ合金、はんだボール及びはんだ接合体 |
JP2011041979A (ja) * | 2009-07-22 | 2011-03-03 | Sanyo Special Steel Co Ltd | 鉛フリー接合材料およびその製造方法 |
JP2013013916A (ja) * | 2011-07-04 | 2013-01-24 | Nihon Superior Co Ltd | 金属間化合物含有鉛フリーはんだ合金及びその製造方法 |
WO2014084242A1 (ja) | 2012-11-30 | 2014-06-05 | 株式会社日本スペリア社 | 低融点ろう材 |
JP2017196647A (ja) | 2016-04-28 | 2017-11-02 | 住友金属鉱山株式会社 | Au−Sn−Ag−α系はんだ合金及びそのはんだ材料並びに該はんだ材料を用いて接合又は封止された実装基板 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7172726B2 (en) * | 2002-10-15 | 2007-02-06 | Senju Metal Industry Co., Ltd. | Lead-free solder |
JP2004141910A (ja) * | 2002-10-23 | 2004-05-20 | Senju Metal Ind Co Ltd | 鉛フリーはんだ合金 |
US20040258556A1 (en) * | 2003-06-19 | 2004-12-23 | Nokia Corporation | Lead-free solder alloys and methods of making same |
US20110303448A1 (en) | 2010-04-23 | 2011-12-15 | Iowa State University Research Foundation, Inc. | Pb-Free Sn-Ag-Cu-Al or Sn-Cu-Al Solder |
CN102029479A (zh) * | 2010-12-29 | 2011-04-27 | 广州有色金属研究院 | 一种低银无铅焊料合金及其制备方法和装置 |
JP5973992B2 (ja) | 2011-04-08 | 2016-08-23 | 株式会社日本スペリア社 | はんだ合金 |
JP2013252548A (ja) * | 2012-06-08 | 2013-12-19 | Nihon Almit Co Ltd | 微細部品接合用のソルダペースト |
US9642275B2 (en) | 2012-12-25 | 2017-05-02 | Mitsubishi Materials Corporation | Power module |
US9320152B2 (en) | 2013-05-29 | 2016-04-19 | Nippon Steel & Sumikin Materials Co., Ltd. | Solder ball and electronic member |
CN103753047B (zh) | 2013-11-20 | 2017-04-19 | 中国电子科技集团公司第四十一研究所 | 一种无铅钎料 |
JPWO2015111587A1 (ja) | 2014-01-24 | 2017-03-23 | 新日鉄住金マテリアルズ株式会社 | 太陽電池用インターコネクタ及び太陽電池モジュール |
JP5880766B1 (ja) * | 2015-05-26 | 2016-03-09 | 千住金属工業株式会社 | はんだ合金、はんだボール、チップソルダ、はんだペースト及びはんだ継手 |
CN105665956A (zh) | 2016-03-23 | 2016-06-15 | 徐宏达 | 一种用于钎焊铝及其合金的软钎料合金 |
-
2017
- 2017-12-31 JP JP2017255303A patent/JP6369620B1/ja active Active
-
2018
- 2018-12-26 KR KR1020197031277A patent/KR102090548B1/ko active IP Right Grant
- 2018-12-26 PL PL18896544T patent/PL3597356T3/pl unknown
- 2018-12-26 EP EP18896544.6A patent/EP3597356B1/en active Active
- 2018-12-26 PT PT188965446T patent/PT3597356T/pt unknown
- 2018-12-26 MY MYPI2019006081A patent/MY185972A/en unknown
- 2018-12-26 HR HRP20211480TT patent/HRP20211480T1/hr unknown
- 2018-12-26 ES ES18896544T patent/ES2884792T3/es active Active
- 2018-12-26 MX MX2019012904A patent/MX2019012904A/es unknown
- 2018-12-26 US US16/605,744 patent/US11123824B2/en active Active
- 2018-12-26 WO PCT/JP2018/047747 patent/WO2019131718A1/ja unknown
- 2018-12-26 MA MA047802A patent/MA47802A/fr unknown
- 2018-12-26 HU HUE18896544A patent/HUE055917T2/hu unknown
- 2018-12-26 CN CN201880028510.6A patent/CN110612175B/zh active Active
- 2018-12-28 TW TW107147608A patent/TWI673130B/zh active
-
2019
- 2019-10-17 PH PH12019502364A patent/PH12019502364B1/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09122967A (ja) * | 1995-10-25 | 1997-05-13 | Tanaka Denshi Kogyo Kk | 複合半田材料 |
JP2003001482A (ja) * | 2001-06-19 | 2003-01-08 | Tokyo Daiichi Shoko:Kk | 無鉛半田合金 |
JP2004181485A (ja) * | 2002-12-03 | 2004-07-02 | Senju Metal Ind Co Ltd | 鉛フリーはんだ合金 |
JP2005046882A (ja) * | 2003-07-29 | 2005-02-24 | Hitachi Metals Ltd | はんだ合金、はんだボール及びはんだ接合体 |
JP2011041979A (ja) * | 2009-07-22 | 2011-03-03 | Sanyo Special Steel Co Ltd | 鉛フリー接合材料およびその製造方法 |
JP2013013916A (ja) * | 2011-07-04 | 2013-01-24 | Nihon Superior Co Ltd | 金属間化合物含有鉛フリーはんだ合金及びその製造方法 |
WO2014084242A1 (ja) | 2012-11-30 | 2014-06-05 | 株式会社日本スペリア社 | 低融点ろう材 |
JP2017196647A (ja) | 2016-04-28 | 2017-11-02 | 住友金属鉱山株式会社 | Au−Sn−Ag−α系はんだ合金及びそのはんだ材料並びに該はんだ材料を用いて接合又は封止された実装基板 |
Non-Patent Citations (1)
Title |
---|
YASUTAKA HASHIMOTO ET AL.: "Current Status and Future Plan of Viscosity Measurement for the Lead-Free Solder", JOURNAL OF THE JAPAN INSTITUTE OF METALS AND MATERIALS, J-STAGE, 27 March 2017 (2017-03-27) |
Also Published As
Publication number | Publication date |
---|---|
PT3597356T (pt) | 2021-08-20 |
ES2884792T3 (es) | 2021-12-13 |
MX2019012904A (es) | 2019-12-11 |
KR20190123800A (ko) | 2019-11-01 |
EP3597356A1 (en) | 2020-01-22 |
HRP20211480T1 (hr) | 2021-12-24 |
US11123824B2 (en) | 2021-09-21 |
CN110612175A (zh) | 2019-12-24 |
JP2019118930A (ja) | 2019-07-22 |
PL3597356T3 (pl) | 2022-01-17 |
EP3597356B1 (en) | 2021-07-21 |
MA47802A (fr) | 2020-01-22 |
US20200376606A1 (en) | 2020-12-03 |
MY185972A (en) | 2021-06-14 |
EP3597356A4 (en) | 2020-06-03 |
BR112020003649A2 (pt) | 2020-11-17 |
CN110612175B (zh) | 2020-10-27 |
HUE055917T2 (hu) | 2021-12-28 |
PH12019502364A1 (en) | 2020-07-13 |
TW201929994A (zh) | 2019-08-01 |
PH12019502364B1 (en) | 2020-07-13 |
JP6369620B1 (ja) | 2018-08-08 |
TWI673130B (zh) | 2019-10-01 |
KR102090548B1 (ko) | 2020-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019131718A1 (ja) | はんだ合金 | |
JP5585746B2 (ja) | 高温鉛フリーはんだ合金 | |
JP5973992B2 (ja) | はんだ合金 | |
WO2015041018A1 (ja) | Bi基はんだ合金、並びにそれを用いた電子部品のボンディング方法および電子部品実装基板 | |
JP2018047500A (ja) | Bi基はんだ合金及びその製造方法、並びに、そのはんだ合金を用いた電子部品及び電子部品実装基板 | |
JP6136878B2 (ja) | Bi基はんだ合金とその製造方法、並びにそれを用いた電子部品のボンディング方法および電子部品実装基板 | |
CN109848606B (zh) | 一种高界面结合强度的Sn-Ag-Cu无铅焊料及其制备方法 | |
JP2016093831A (ja) | Pbを含まないMg−Cu系はんだ合金 | |
US11607753B2 (en) | Solder alloy, cast article, formed article, and solder joint | |
JP2018047499A (ja) | Bi基はんだ合金及びその製造方法、並びに、そのはんだ合金を用いた電子部品及び電子部品実装基板 | |
JP2017035708A (ja) | Pbを含まないSb−Cu系はんだ合金 | |
JP2017196647A (ja) | Au−Sn−Ag−α系はんだ合金及びそのはんだ材料並びに該はんだ材料を用いて接合又は封止された実装基板 | |
JP5861526B2 (ja) | Pbを含まないGe−Al系はんだ合金 | |
JP2017094376A (ja) | PbフリーSn系はんだ合金 | |
JP2018047497A (ja) | Bi基はんだ合金及びその製造方法、並びに、そのはんだ合金を用いた電子部品及び電子部品実装基板 | |
JP6136807B2 (ja) | Bi基はんだ合金とその製造方法、並びにそれを用いた電子部品のボンディング方法および電子部品実装基板 | |
JP2018149554A (ja) | PbフリーBi系はんだ合金、該はんだ合金を用いた電子部品、および電子部品実装基板 | |
JP6136853B2 (ja) | Bi基はんだ合金とその製造方法、並びにそれを用いた電子部品のボンディング方法および電子部品実装基板 | |
JP2015020189A (ja) | Auを主成分とするPbフリーAu−Ge−Sn系はんだ合金 | |
BR112020003649B1 (pt) | Liga de solda | |
JP2018047498A (ja) | Bi基はんだ合金及びその製造方法、並びに、そのはんだ合金を用いた電子部品及び電子部品実装基板 | |
JP2017094377A (ja) | PbフリーSn系はんだ合金 | |
JP2017029996A (ja) | Pbを含まないAg−Sb系はんだ合金 | |
JP2015098048A (ja) | Pbを含まないZn−Ge系はんだ合金およびそれを用いた電子部品 | |
JP2017047439A (ja) | PbフリーSn系はんだ合金及びこれを用いた電子部品実装基板並びに該実装基板を搭載した電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18896544 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197031277 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018896544 Country of ref document: EP Effective date: 20191016 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020003649 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: 112020003649 Country of ref document: BR Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP 2017-255303 DE 31/12/2017 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA (DEPOSITANTE(S), INVENTOR(ES), NUMERO DE REGISTRO, DATA DE DEPOSITO E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013, UMA VEZ QUE NAO FOI POSSIVEL DETERMINAR O(S) TITULAR(ES) DA CITADA PRIORIDADE, NEM SEUS INVENTORES, INFORMACAO NECESSARIA PARA O EXAME. |
|
ENP | Entry into the national phase |
Ref document number: 112020003649 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200220 |