WO2019130375A1 - Electrical power conversion device - Google Patents
Electrical power conversion device Download PDFInfo
- Publication number
- WO2019130375A1 WO2019130375A1 PCT/JP2017/046332 JP2017046332W WO2019130375A1 WO 2019130375 A1 WO2019130375 A1 WO 2019130375A1 JP 2017046332 W JP2017046332 W JP 2017046332W WO 2019130375 A1 WO2019130375 A1 WO 2019130375A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- converter
- command
- bus
- control unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1582—Buck-boost converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/10—Parallel operation of dc sources
- H02J1/12—Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33584—Bidirectional converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/337—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
- H02M3/3376—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/14—Arrangements for reducing ripples from dc input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/493—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/66—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
- H02M7/68—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
- H02M7/72—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/79—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/797—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
Definitions
- the present invention relates to a power converter connected to a distribution system.
- the power converter device and grid interconnection system for connecting distributed power supplies such as a solar power generation device, to a system
- An AC power supply system, a DC power supply system, and a communication system are provided that connect a system power supply supplying AC power or DC power to a plurality of power consumers.
- Each power demander is a distributed system comprised of a DC power supply unit, a PWM converter unit for converting the DC power supply into an AC power supply, and a bidirectional DC / DC converter between the AC power supply system and the DC power supply system. Place the power supply.
- a first power converter that mutually converts electric power generated by the power generation device and the first DC power, AC power of the system, and the first power converter And a second power converter for mutually converting DC power of the The first and second power converters perform power conversion operation in synchronization with the grid frequency (for example, Patent Document 2).
- the present invention has been made to solve the above problems, and is connected to both a DC distribution system and an AC distribution system, and is connected to a DC distribution system and a DC distribution system and an AC distribution system. It is an object of the present invention to provide a power conversion device capable of efficient and highly flexible power control by enabling power exchange between a DC distribution system and an AC distribution system without using a DC distributed power supply.
- a power converter controls the DC / DC converter and the DC / AC converter based on N DC / DC converters, M DC / AC converters, and a host control command.
- the DC connection terminal serving as the connection terminal for the common DC bus, the AC bus, and the outside, the AC connection terminal, and the N distributed power supply connection terminals are provided.
- the DC connection terminal is connected to the common DC bus and connected to an external DC distribution system, and the AC connection terminal is connected to the AC bus and connected to an external AC distribution system.
- the N sets of distributed power supply connection terminals are respectively connected to the N DC / DC converters and to an external DC distributed power supply, and the N DC / DC converters have the same primary side as the primary side
- the secondary side of the DC bus is connected to each of the N sets of distributed power connection terminals, and each DC / DC converter converts power between the common DC bus and each distributed power connection terminal to transfer power.
- the M DC / AC converters are connected on the primary side to the AC bus and on the secondary side to the common DC bus, and each DC / AC converter is connected between the AC bus and the common DC bus. Power conversion and exchange power.
- the power converter according to the present invention is connected to both the DC distribution system and the AC distribution system, and interconnects the DC distributed power supply to the DC distribution system and the AC distribution system. Then, power can be exchanged between the DC distribution system and the AC distribution system without using a DC distributed power supply via the common DC bus and the AC bus, and efficient and highly flexible power control becomes possible. .
- Embodiment 3 of this invention It is a figure explaining the control part of the power converter device by Embodiment 3 of this invention. It is a figure explaining the control part of the power converter by another example of Embodiment 3 of this invention. It is a block diagram of the main circuit part in the DC / DC converter by Embodiment 4 of this invention. It is a block diagram of the main circuit part in the DC / DC converter by another example of Embodiment 4 of this invention. It is a block diagram of the main circuit part in the DC / DC converter by another example of Embodiment 4 of this invention. It is a block diagram of the power converter device and distribution system by Embodiment 5 of this invention.
- FIG. 1 is a diagram showing the configuration of a power conversion device according to a first embodiment of the present invention and a power distribution system to which the power conversion device is applied.
- the power conversion device 100 includes a DC connection terminal 3, an AC connection terminal 4, and a distributed power supply connection terminal of N pairs of positive and negative DC bus 1, AC bus 2, and external connection terminals.
- the power conversion apparatus 100 includes N DC / DC converters 10, M DC / AC converters 11, and a control unit 12.
- N and M are positive integers, and in this case, N is 2 or more and M or more.
- the DC connection terminal 3 is connected to the common DC bus 1 and connected to an external DC distribution system 27 via a DC distribution line 21.
- the AC connection terminal 4 is connected to the AC bus 2 and connected to an external AC distribution system 28 via an external transformer 23 and an AC distribution line 22.
- the N sets of distributed power supply connection terminals 13 are respectively connected to the N DC / DC converters 10, and the external N DC distributed power supplies 25, 26 are connected.
- the N DC / DC converters 10 are connected on the primary side to the common DC bus 1 and on the secondary side to the N distributed power supply connection terminals 13, and each DC / DC converter 10 is connected to the common DC bus 1 Power conversion is performed with the distributed power supply connection terminal 13 to exchange power.
- the M DC / AC converters 11 are connected to the AC bus 2 on the primary side and to the common DC bus 1 on the secondary side, and each DC / AC converter 11 is between the AC bus 2 and the common DC bus 1 Power conversion and exchange power.
- the arrangement of the distributed power supply connection terminals 13 may be inside the power conversion device 100.
- the DC / DC converter 10 and the DC / AC converter 11 are configured such that the right side is the primary side and the left side is the secondary side in the drawing, and each is a unit capable of bidirectional power conversion. As described above, by configuring each DC / DC converter 10 and each DC / AC converter 11 as one unit, the converter configuration of the power conversion device 100 is appropriately changed, or only the failed unit is replaced.
- the common DC bus 1 and the AC bus 2 can be formed of a cable, a metal conductor plate or the like, and have a configuration in which each unit can be attached and detached.
- the control unit 12 is configured to include a central processing unit (CPU), a memory, and an input / output interface.
- CPU central processing unit
- the CPU performs calculations by extracting programs and data required for desired calculations from the memory.
- the control unit 12 also has a communication function with an external high-order control device 24. Then, the control unit 12 controls the host control command 24 a received from the host controller 24, detected values of voltage and current detected in the power conversion device 100, and further DC / DC converter 10 and DC / AC conversion. By controlling the DC / DC converter 10 and the DC / AC converter 11 using the state information of the unit 11, the entire power conversion apparatus 100 is controlled.
- Each of the DC / DC converters 10 and each of the DC / AC converters 11 includes control circuits 32 and 42 as will be described later, and the control unit 12 which controls the entire power conversion apparatus 100 and each control circuit 32, At 42, the DC / DC converter 10 and the DC / AC converter 11 are controlled. That is, the control unit 12 and the control circuits 32 and 42 serve as a control unit that controls the DC / DC converter 10 and the DC / AC converter 11.
- the host control device 24 corresponds to what is generally called an Energy Management System (EMS), and the power conversion device 100 or the DC distributed power supply 25, based on the power supply and demand in the distribution system (DC distribution system 27, AC distribution system 28).
- the controller 12 is instructed to perform the charge / discharge operation of 26.
- the control unit 12 transmits the detection value detected in the power conversion device 100 and the state information of the DC / DC converter 10 and the DC / AC converter 11 to the upper control device 24. Furthermore, information related to the DC distributed power supplies 25 and 26 may be acquired by the control unit 12 and transmitted to the host control device 24.
- the communication between the host control device 24 and the control unit 12 may be wired or wireless.
- the DC / DC converter 10 bidirectionally exchanges power between the DC distributed power supplies 25 and 26 and the common DC bus 1.
- the type such as insulation type or non-insulation type, but since the common DC bus 1 is defined by the potential of the DC distribution system 27, the description will be made as the insulation type here.
- the power polarity and current polarity of the DC / DC converter 10 are positive in the direction from secondary to primary. That is, the discharge from the DC distributed power supplies 25 and 26 is positive, and the charge to the DC distributed power supplies 25 and 26 is negative.
- the DC distributed power supply 25 is a power storage device, and uses, for example, a storage battery such as a lithium ion battery. You may use the storage battery (it calls an EV storage battery henceforth) of an electric vehicle or a hybrid vehicle. That is, the DC distributed power supply 25 can not only supply (discharge) power to the common DC bus 1 but also receive (charge) supply from the common DC bus 1.
- the DC distributed power supply 25 may be any one capable of charging and discharging, such as an electric double layer capacitor.
- the DC distributed power supply 26 is, for example, a solar power generation panel. Only power generation is performed, and the generated power is supplied to the common DC bus 1.
- the DC distributed power source 26 may be any type of fuel cell such as a fuel cell that only generates electric power by DC output. In FIG. 1, although there is only one DC distributed power supply 26 for power generation, that is, only discharge, and the remaining is the DC distributed power supply 25 that can be charged and discharged, it is not limited to this.
- One or more distributed power supplies 25
- the DC / AC converter 11 bidirectionally exchanges power between the common DC bus 1 (DC) and the AC bus 2 (AC).
- the power polarity and the current polarity are positive in the direction from secondary to primary. That is, the power supply (regeneration) to the AC bus 2 is positive, and the power supply (powering) from the AC bus 2 is negative.
- the type of the DC / AC converter 11 is not particularly limited, for example, whether it is an insulation type or non-insulation type.
- the common DC bus 1 is defined by the potential of the DC distribution system 27, the reference potential of the AC bus 2 is also defined in the DC distribution system 27.
- the DC bus common DC bus 1 needs to be insulated from the AC distribution system 28, when the DC / AC converter 11 is non-insulated, the AC bus 2 is AC via the transformer 23 It is connected to the distribution line 22.
- a DC load 29 to which DC power is supplied is connected to the DC distribution system 27, and an AC load 30 to which AC power is supplied is connected to the AC distribution system 28.
- these are illustrated collectively, it is obvious that they may be divided into a plurality and connected, or may be connected via a transformer.
- the direct current load 29 and the alternating current load 30 are not limited to ones that consume power, but may be ones that generate regenerative power such as motors, various storage batteries, or various small-scale power generation systems.
- FIG. 2 is a diagram showing the configuration of the power conversion device 100 in more detail.
- the power conversion device 100 includes a control power generation unit 14.
- the control power supply generation unit 14 supplies control power to the DC / DC converter 10, the DC / AC converter 11, and the control unit 12 through the power line 14a.
- the power supply to the control power generation unit 14 is performed from the common DC bus 1 and the AC bus 2.
- the control power can be supplied from the control power generator 14.
- power may be supplied from only the common DC bus 1 or only the AC bus 2, or from a power line in the vicinity of the DC connection terminal 3 or AC connection terminal 4, or a terminal for control power supply input to the power converter 100. It may be provided and supplied.
- the control unit 12 transmits a power command 12 a to each DC / DC converter 10 and each DC / AC converter 11.
- the power command 12 a comprises each first power command to each DC / DC converter 10 and each second power command to each DC / AC converter 11.
- the DC / DC converter 10 includes a main circuit unit 31 and a control circuit 32 as a first converter control unit, and further, detectors 33 on the primary side and the secondary side of the DC / DC converter 10, respectively. , 34.
- FIG. 3 is a diagram showing a detailed configuration of the DC / DC converter 10.
- the main circuit portion 31 includes a primary side smoothing capacitor 35, a secondary side smoothing capacitor 36, primary side semiconductor switching devices 37a to 37d, secondary side semiconductor switching devices 38a to 38d, a high frequency transformer 39 and the like.
- a filter reactor 40 is provided.
- the semiconductor switching elements 37a to 37d and 38a to 38d are formed of IGBTs (Insulated Gate Bipolar Transistors) in which diodes are connected in antiparallel. It is obvious that the semiconductor switching elements 37a to 37d and 38a to 38d may use other semiconductor elements such as MOSFET (metal-oxide-semiconductor field-effect transistor).
- IGBTs Insulated Gate Bipolar Transistors
- MOSFET metal-oxide-semiconductor field-effect transistor
- the primary side smoothing capacitor 35 and the primary side semiconductor switching elements 37 a to 37 d constitute a single-phase inverter, and the AC output thereof is connected to the primary side of the high frequency transformer 39.
- the secondary side smoothing capacitor 36 and the secondary side semiconductor switching elements 38a to 38d also constitute a single phase inverter, and the AC output thereof is connected to the secondary side of the high frequency transformer 39.
- reactors may be additionally provided on the primary side and the secondary side of the high frequency transformer 39, respectively.
- main circuit unit 31 it is possible to convert power bidirectionally regardless of the magnitude relationship between voltages on the primary side and the secondary side.
- the detector 33 on the primary side of the DC / DC converter 10 detects the voltage and current on the primary side, and the detector 34 on the secondary side detects voltage and current on the secondary side.
- the detection value 33 a output from the detector 33 and the detection value 34 a output from the detector 34 are input to the control circuit 32 of the DC / DC converter 10.
- the control circuit 32 using the power command 12a from the control unit 12 of the power conversion device 100 and the detection values 33a and 34a of the DC / DC converter 10, the respective semiconductor switching elements 37a to 37d of the main circuit unit 31 A voltage signal Gd applied to the gates 38a to 38d is generated to control the main circuit unit 31.
- the control circuit 32 also transmits the detection values 33 a and 34 a to the control unit 12 of the power conversion device 100.
- the detection values 33a and 34a may be directly input to the control unit 12 of the power conversion device 100.
- FIG. 4 is a diagram showing the configuration of the control circuit 32 of the DC / DC converter 10.
- the control circuit 32 includes a power supply unit 150, a power control unit 151, a gate signal generation unit 152, and a gate driver 153.
- the control circuit 32 is supplied with power from the control power generation unit 14, and after the power supplied is isolated by the power supply unit 150 and converted into a desired voltage, the power control unit 151, gate signal generation unit 152, gate driver It is supplied to 153.
- the power control unit 151 and the gate signal generation unit 152 may be collectively supplied with power.
- the power supply unit 150 may not be insulated but may be insulated or voltage-converted as necessary after the power supply such as the gate driver 153 is supplied.
- control circuit 32 includes a circuit having a CPU, a memory, and an input / output interface, and can realize functions including the power control unit 151 and the gate signal generation unit 152.
- the gate driver 153 collectively describes the gate drivers provided for the respective semiconductor switching elements 37a to 37d and 38a to 38d of the main circuit portion 31.
- a first power command (power command value Pref) which is the power command 12a from the control unit 12, a detection value 33a from the detector 33 on the primary side, and a detector 34 on the secondary side. And a detected value 34a of The control output 151 a of the power control unit 151 is input to the gate signal generation unit 152.
- the gate signal generation unit 152 generates gate signals G for the semiconductor switching elements 37a to 37d and 38a to 38d of the main circuit unit 31 according to the control output 151a, and supplies the gate signals 153 to the gate driver 153.
- the gate driver 153 applies a gate voltage (voltage signal Gd) between the gate and the emitter of each of the semiconductor switching elements 37a to 37d and 38a to 38d.
- the control circuit 32 of the DC / DC converter 10 transmits the detection values 33a and 34a of the detectors 33 and 34 to the control unit 12 of the power conversion device 100, and further detects all over voltage and over current. It also has a function (not shown) such as giving to the gate driver 153 an all gate cutoff signal for turning off the switching elements 37a to 37d and 38a to 38d.
- FIG. 5 is a block diagram showing a configuration example of the power control unit 151.
- First power command Pref is divided by voltage detection value V in divider 154.
- the output of the divider 154 corresponds to the current command value and is input to the subtractor 155.
- the subtractor 155 outputs the deviation between the input current command value and the current detection value I, and the output is input to the current controller (PI) 156.
- the current controller 156 is, for example, a proportional integral controller, and generates a control output 151 a so as to reduce the input deviation, and uses it as an output of the power control unit 151.
- the control output 151a is, for example, phase shift amounts on the primary side and the secondary side.
- the voltage detection value V and the current detection value I are the detection value 33a of the detector 33 on the primary side of the DC / DC converter 10 or the detection value 34a of the detector 34 on the secondary side. If the detection value 33a is used, the power on the primary side is controlled, and if the detection value 34a is used, the power on the secondary side is controlled.
- the DC / AC converter 11 includes a main circuit unit 41 and a control circuit 42 as a second converter control unit, and further includes a primary side of the DC / AC converter 11 and a secondary side. Each side is provided with a detector 43, 44 respectively.
- FIG. 6 is a diagram showing a detailed configuration of the DC / AC converter 11.
- the main circuit unit 41 is composed of a smoothing capacitor 45, semiconductor switching elements 46a to 46f, and an output filter 47.
- the semiconductor switching elements 46a to 46f are IGBTs whose diodes are connected in antiparallel.
- the semiconductor switching elements 46a to 46f may use other semiconductor elements such as MOSFETs.
- the output filter 47 receives the potential difference between the output of the main circuit portion 41 and the AC bus 2, and removes high frequency components resulting from the switching of the semiconductor switching elements 46a to 46f.
- the output filter 47 includes an AC reactor 51, a filter reactor 52, a filter capacitor 53, and a damping resistor 54.
- AC reactor 51 and filter reactor 52 are connected, the other end of AC reactor 51 is connected to semiconductor switching elements 46 a to 46 f, and the other end of filter reactor 52 is connected to AC bus 2.
- the detector 43 on the primary side of the DC / AC converter 11 detects the voltage and current on the primary side. Since the primary side is an alternating current, a power factor detector may be provided.
- the detector 44 on the secondary side of the DC / AC converter 11 detects the voltage and current on the secondary side.
- the detected value 43 a output from the detector 43 and the detected value 44 a output from the detector 44 are input to the control circuit 42 of the DC / AC converter 11.
- the control circuit 42 uses the power command 12 a from the control unit 12 of the power conversion device 100 and the detection values 43 a and 44 a of the DC / AC converter 11 to select the semiconductor switching elements 46 a to 46 f of the main circuit unit 41.
- a voltage signal Gd to be applied to the gate is generated to control the main circuit unit 41.
- the control circuit 42 also transmits the detection values 43 a and 44 a to the control unit 12 of the power conversion device 100.
- the detection values 43a and 44a may be directly input to the control unit 12 of the power conversion device
- FIG. 8 is a diagram showing the configuration of the control circuit 42 of the DC / AC converter 11.
- the control circuit 42 includes a power supply unit 160, a power control unit 161, a gate signal generation unit 162, and a gate driver 163.
- the control circuit 42 is supplied with power from the control power generation unit 14, and after the power supplied is isolated by the power supply unit 160 and converted into a desired voltage, the power control unit 161, the gate signal generation unit 162, and the gate driver It is supplied to 163.
- the power control unit 161 and the gate signal generation unit 162 may be collectively supplied with power.
- the power supply unit 160 may not be insulated but may be insulated or voltage-converted as necessary after the power is supplied to the gate driver 163 or the like.
- control circuit 42 includes a circuit having a CPU, a memory, and an input / output interface, and can realize functions including the power control unit 161 and the gate signal generation unit 162.
- the gate driver 163 collectively describes the gate driver provided for each of the semiconductor switching elements 46a to 46f of the main circuit portion 41.
- the power control unit 161 includes a second power command (active power command value Pref, reactive power command value Qref) which is the power command 12a from the control unit 12, a detection value 43a from the detector 43 on the primary side, and A detection value 44a from the detector 44 on the next side is given.
- the control output 161 a of the power control unit 161 is input to the gate signal generation unit 162.
- the gate signal generation unit 162 generates a gate signal G to each of the semiconductor switching elements 46a to 46f of the main circuit unit 41 according to the control output 161a, and supplies the gate signal G to the gate driver 163.
- the gate driver 163 applies a gate voltage (voltage signal Gd) between the gate emitters of the semiconductor switching elements 46a to 46f.
- the control circuit 42 of the DC / AC converter 11 transmits the detection values 43a and 44a of the detectors 43 and 44, and the frequency and power factor of the primary side to the control unit 12 of the power converter 100, and further performs overvoltage. It also has a function (not shown) such as giving to the gate driver 163 an all gate cut-off signal for detecting an overcurrent and turning off all the semiconductor switching elements 46a to 46f.
- FIG. 9 is a block diagram showing a configuration example of the power control unit 161.
- Qref is divided by voltage detection value V in divider 164.
- the output of the divider 164 corresponds to the active current command value and the reactive current command value, and is input to the subtractor 165.
- the subtractor 165 outputs the deviation between the input effective current command value, reactive current command value and effective current detection value Ip, reactive current detection value Iq, and the output is input to the current controller (PI) 166.
- the current controller 166 is, for example, a proportional integral controller, and generates a control output 161 a so as to reduce the input deviation, and uses it as an output of the power control unit 161.
- the control output 161a is usually an AC voltage command value.
- the gate signal generation unit 162 compares the AC voltage command value, which is the control output 161 a from the power control unit 161, with the triangular wave carrier, and generates a gate signal G by PWM (Pulse Width Modulation).
- the power conversion apparatus 100 has two DC / DC converters 10 (10a, 10b) and one DC / AC converter 11 as an example.
- the DC / DC converters 10a and 10b are connected to the chargeable / dischargeable DC distributed power supplies 25a and 25b, respectively.
- the output powers of the DC / DC converters 10a and 10b are P10a and P10b, and the output power of the DC / AC converter 11 is P11.
- the power polarity and the current polarity are positive in the secondary to primary directions.
- the output power from the DC connection terminal 3 is Pdc
- the output active power from the AC connection terminal 4 is Pac. In this case, reactive power is not output from the AC connection terminal 4. Therefore, in the control circuit 42 of the DC / AC converter 11, the reactive power command value Qref input to the power control unit 161 is 0.
- the control unit 12 controls the DC / DC converters 10a and 10b and the DC / AC converter 11 with the first power command and DC / AC for the DC / DC converters 10a and 10b, which are the power commands 12a.
- the second power command to the converter 11 is transmitted.
- the first power command to each of the DC / DC converters 10a and 10b and the second power command to the DC / AC converter 11 are controlled by the control unit 12 as a higher control command 24a from the higher control device 24.
- the control unit 12 transmits the received first power command and second power command to the respective DC / DC converters 10 a and 10 b and the DC / AC converter 11.
- the power conversion device 100 operates between the DC / DC converters 10a and 10b and the DC / AC converter 11 to connect between the connection terminals, that is, the DC connection terminal 3, the AC connection terminal 4, and in this case, two sets.
- a plurality of operation modes for exchanging power between distributed power supply connection terminals 13 are provided.
- the plurality of operation modes are a first power transfer mode for transferring power between the distributed power connection terminal 13 and the DC connection terminal 3, and a second power for transferring power between the distributed power connection terminal 13 and the alternating current connection terminal 4.
- Each operation mode is an operation mode in which power is exchanged between the connection terminals via the common DC bus 1, and these four operation modes are simultaneously determined in combination of two or more.
- FIG. 11 is a diagram showing power sharing of each part in four types of cases (X-1, X-2, X-3, X-4).
- P10a, P10b are the same as the first power command to the DC / DC converters 10a, 10b, and P11 is the same as the second power command to the DC / AC converter 11. is there.
- Pdc 10 kW.
- the DC / DC converters 10a and 10b have the first power command (power command value Pref) of 5 kW and the second power command (active power command value Pref) of 0 kW in the DC / AC converter 11. Given. Power control value Pref (5 kW) is input to the control circuit 32 of each DC / DC converter 10a, 10b, and each main circuit is discharged so that each 5kW is discharged to the common DC bus 1 from each DC distributed power supply 25a, 25b. The gate signal G to the unit 31 is generated.
- Active power command value Pref (0 kW) is input to control circuit 42 of DC / AC converter 11, and gate signal G to main circuit unit 41 is output so that main circuit unit 41 does not output active power to AC bus 2 Generate At this time, power of 5 kW each is supplied to the DC distribution line 21 from the DC distributed power supplies 25 a and 25 b.
- the power conversion device 100 operates only in the first power transfer mode in which power is transferred between the distributed power connection terminal 13 and the DC connection terminal 3. Then, a total of 10 kW of power transfer of 5 kW is performed in the direction of the DC connection terminal 3 from each set of the two distributed power supply connection terminals 13.
- the first power command (power command value Pref) of 5 kW and 0 kW for the DC / DC converters 10a and 10b, and the second power command (active power command value Pref) for the DC / AC converter 11 ) Is given.
- the power command value Pref (5 kW) is input to the control circuit 32, and the control circuit 32 transmits to the main circuit unit 31 such that 5 kW is discharged from the DC distributed power supply 25a to the common DC bus 1.
- the power command value Pref (0 kW) is input to the control circuit 32, and the control circuit 32 generates a gate signal G to the main circuit unit 31 so as not to charge and discharge the DC distributed power supply 25b. .
- the control circuit 42 of the DC / AC converter 11 receives the active power command value Pref (-5 kW), and supplies the gate signal G to the main circuit unit 41 so as to supply power from the AC bus 2 to the common DC bus 1. Generate At this time, electric power of 5 kW is supplied to the DC distribution line 21 from the DC distributed power supply 25 a and the AC distribution line 22.
- the power conversion device 100 performs the first power transfer mode in which power is transferred between the distributed power connection terminal 13 and the DC connection terminal 3, and between the DC connection terminal 3 and the AC connection terminal 4. It operates in combination with the third power transfer mode for transferring power. Then, in the first power transfer mode, 5 kW of power transfer is performed in the direction from one set of dispersed power supply connection terminals 13 to the DC connection terminal 3, and in the third power transfer mode, the AC connection terminals 4 to DC connection terminals 3 are Power of 5 kW is transferred in the direction, and a total of 10 kW of power is output from the DC connection terminal 3.
- the first power command (power command value Pref) of 0 kW for the DC / DC converters 10a and 10b, and the second power command (active power command value Pref) for the DC / AC converter 11 Is given.
- the control circuit 32 of each DC / DC converter 10a, 10b receives the power command value Pref (0 kW), and generates a gate signal G to the main circuit unit 31 so that the DC distributed power supplies 25a, 25b are not charged or discharged.
- the control circuit 42 of the DC / AC converter 11 receives the active power command value Pref ( ⁇ 10 kW) and supplies the gate signal G to the main circuit unit 41 to supply power from the AC bus 2 to the common DC bus 1. Generate At this time, 10 kW of power is supplied from the AC distribution line 22 to the DC distribution line 21.
- the power conversion device 100 operates only in the third power transfer mode in which power is transferred between the DC connection terminal 3 and the AC connection terminal 4. Then, in the third power transfer mode, power transfer of 10 kW is performed from the AC connection terminal 4 toward the DC connection terminal 3, and a total of 10 kW of power is output from the DC connection terminal 3.
- the first power command (power command value Pref) of 5 kW and -5 kW for the DC / DC converters 10a and 10b, and the second power command (active power command value for -10 kW for the DC / AC converter 11) Pref) is given.
- the power command value Pref (5 kW) is input to the control circuit 32, and the control circuit 32 transmits to the main circuit unit 31 such that 5 kW is discharged from the DC distributed power supply 25a to the common DC bus 1.
- the power command value Pref (-5 kW) is input to the control circuit 32, and the control circuit 32 is configured such that the DC distributed power supply 25b charges 5 kW from the common DC bus 1 To generate a gate signal G.
- the control circuit 42 of the DC / AC converter 11 receives the active power command value Pref ( ⁇ 10 kW) and supplies the gate signal G to the main circuit unit 41 to supply power from the AC bus 2 to the common DC bus 1. Generate At this time, 5 kW of power from the DC distributed power supply 25a and 10 kW of power from the AC distribution line 22 are supplied to the common DC bus 1, and 5 kW of power is supplied from the common DC bus 1 to the DC distributed power supply 25b, Power of 10 kW is supplied to the DC distribution line 21.
- the power conversion device 100 performs a third power transfer mode in which power is transferred between the DC connection terminal 3 and the AC connection terminal 4 and a power transfer mode in which power is transferred between two sets of distributed power connection terminals 13. 4 Operate in combination with the power transfer mode. Also, since the sum of the input and output of the common DC bus 1 responsible for relaying transmission and reception of power need only be 0, the power is not limited to the combination of the operation modes described above. It may be a combination of a first power transfer mode to transfer, a second power transfer mode to transfer power between the distributed power connection terminal 13 and the AC connection terminal 4, and a third power transfer mode. Furthermore, the first power transfer mode, the second power transfer mode, the third power transfer mode, and the fourth power transfer mode can be combined.
- FIG. 12 is a diagram showing power sharing of each part in four types of cases (Y-1, Y-2, Y-3, Y-4).
- the second power command given to the DC / AC converter 11 is ⁇ 10 kW.
- Pdc is determined by the operation of each DC / DC converter 10 a, 10 b and DC / AC converter 11.
- the first power command (power command value Pref) of -5 kW is given to the DC / DC converters 10a and 10b.
- the control circuit 32 of each DC / DC converter 10a, 10b generates a gate signal G to each main circuit unit 31 so that each 5kW is charged from the common DC bus 1 to each DC distributed power supply 25a, 25b.
- the control circuit 42 of the DC / AC converter 11 receives the active power command value Pref ( ⁇ 10 kW) and supplies the gate signal G to the main circuit unit 41 to supply power from the AC bus 2 to the common DC bus 1. Generate At this time, 10 kW of power supplied from the AC distribution line 22 is supplied to the DC distributed power supplies 25a and 25b at 5 kW each. Further, in the case Y-1, the power conversion device 100 operates only in the second power transfer mode in which power is transferred between the distributed power connection terminal 13 and the AC connection terminal 4.
- the first power command (power command value Pref) of -5 kW and 0 kW is given to the DC / DC converters 10a and 10b.
- the control circuit 32 of the DC / DC converter 10a generates a gate signal G to the main circuit unit 31 such that 5 kW is charged from the common DC bus 1 to the DC distributed power supply 25a.
- the control circuit 32 of the DC / DC converter 10b generates a gate signal G to the main circuit unit 31 so that the DC distributed power supply 25b is not charged and discharged.
- the operation of the DC / AC converter 11 is similar to that of the case Y-1.
- the power conversion device 100 performs the second power transfer mode for transferring power between the distributed power connection terminal 13 and the AC connection terminal 4, the DC connection terminal 3, and the AC connection terminal 4. It operates in combination with the third power transfer mode for transferring power between the two.
- case Y-3 the first power command (power command value Pref) of 0 kW is given to the DC / DC converters 10a and 10b.
- the case Y-3 is the same as the case X-3 described above, and the power conversion device 100 operates only in the third power transfer mode in which power is exchanged between the DC connection terminal 3 and the AC connection terminal 4, Electric power of 10 kW is supplied to the DC distribution line 21 from the AC distribution line 22.
- the first power command (power command value Pref) of -5 kW and 5 kW is given to the DC / DC converters 10a and 10b.
- the control circuit 32 of the DC / DC converter 10a generates a gate signal G to the main circuit unit 31 such that 5 kW is charged from the common DC bus 1 to the DC distributed power supply 25a.
- the control circuit 32 of the DC / DC converter 10b generates a gate signal G to the main circuit unit 31 such that 5 kW is discharged from the DC distributed power supply 25b to the common DC bus 1.
- the operation of the DC / AC converter 11 is similar to that of the case Y-1.
- the power conversion device 100 has a third power transfer mode and a fourth power transfer mode in which power is transferred between two sets of distributed power supply connection terminals 13.
- the power conversion device 100 may be a combination of the first power transfer mode, the second power transfer mode and the third power transfer mode, and further, the first power transfer mode, the second power transfer mode, the third power transfer mode, and the fourth power transfer mode. It is also possible to operate in combination with the power transfer mode.
- FIG. 13 is a diagram showing power sharing of each part in two types (Z-1 and Z-2).
- P11 Pac, and Pac and Pdc have the same polarity.
- the power conversion device 100 supplies a total of 10 kW of power to both the DC distribution line 21 and the AC distribution line 22.
- the first power command (power command value Pref) of 5 kW is given to the DC / DC converters 10a and 10b, and the second power command (active power command value Pref) of 3 kW is given to the DC / AC converter 11.
- the control circuit 32 of each DC / DC converter 10a, 10b generates a gate signal G to each main circuit portion 31 so that each 5kW is discharged from each DC distributed power supply 25a, 25b to the common DC bus 1.
- the control circuit 42 of the DC / AC converter 11 generates a gate signal G to the main circuit unit 41 so as to supply power from the common DC bus 1 to the AC bus 2.
- the power conversion device 100 operates in a combination of the first power transfer mode and the second power transfer mode.
- the power conversion device 100 receives a total of 10 kW of power from both the DC distribution line 21 and the AC distribution line 22.
- the first power command (power command value Pref) of -5 kW is given to the DC / DC converters 10a and 10b
- the second power command (active power command value Pref) of -7 kW is given to the DC / AC converter 11.
- the control circuit 32 of each DC / DC converter 10a, 10b generates a gate signal G to each main circuit unit 31 so that each 5kW is charged from the common DC bus 1 to each DC distributed power supply 25a, 25b.
- the control circuit 42 of the DC / AC converter 11 generates a gate signal G to the main circuit unit 41 so as to supply power from the AC bus 2 to the common DC bus 1.
- the power conversion device 100 operates in a combination of the first power transfer mode and the second power transfer mode.
- the first power command (power command value Pref) of 5 kW and -5 kW is given to the DC / DC converters 10a and 10b, and the second power command (active power command value Pref) of 0 W is given to the DC / AC converter 11. At this time, the 5 kW power discharged from the DC distributed power supply 25a is charged to the DC distributed power supply 25b.
- the first to fourth power control Various power exchange can be realized depending on the mode.
- the unbalance of the power generated due to the conversion loss of the DC / DC converter 10 and the DC / AC converter 11 or the power control error is not considered.
- the DC / DC converters 10a, 10b, DC / AC converter, etc. are increased by increasing the power command value Pref of the DC / DC converters 10a, 10b.
- An amount for compensating the unbalance of the power may be superimposed on each of the power command values Pref of 11.
- FIG. 14 is a diagram illustrating an example of AC power reception by the power conversion device 100.
- the AC distribution system 28 is configured to include an AC transmission system 201 and a transformer 202.
- Power converter 100 receives power from AC power transmission system 201 via transformer 202.
- the power line on the secondary side of the transformer 202 is an AC distribution line 22.
- the secondary side of the transformer 202 may be further branched, or the transformer 23 shown in FIG.
- An AC / DC converter 203 is connected to the secondary side of the transformer 202, and the power line on the DC side of the AC / DC converter 203 is a DC distribution line 21. That is, it can be considered that the AC / DC converter 203 corresponds to the DC distribution system 27.
- the AC / DC converter 203 is prepared as a device capacity according to the capacity of the DC load (including the distributed power source) 29 connected to the DC distribution line 21, and the DC distribution system 27 is AC. It is subordinate to the distribution system 28.
- the DC / AC converter 11 of the power conversion device 100 can be used as an aid of the AC / DC converter 203.
- FIG. 15 is a diagram illustrating an example of direct current reception by the power conversion device 100.
- the DC distribution system 27 is configured to include a DC transmission system 204 and a DC / DC converter 205.
- Power converter 100 receives power from high voltage DC power transmission system 204 via DC / DC converter 205.
- the secondary side of the DC / DC converter 205 is a low voltage and is connected to the DC distribution line 21.
- a DC / AC converter 206 is also connected to the secondary side of the DC / DC converter 205, and the power line on the AC side of the DC / AC converter 206 is an AC distribution line 22. That is, it can be considered that the DC / AC converter 206 corresponds to the AC distribution system 28.
- the DC / AC converter 206 is a low voltage DC input, it may be directly input from the high voltage DC transmission system 204. In addition, when the DC transmission system 204 supplies low-voltage DC power, the DC / DC converter 205 may not be provided. In such a configuration, the DC / AC converter 206 is prepared as a device capacity according to the capacity of the AC load (including the distributed power supply) 30 connected to the AC distribution line 22, and the AC distribution system 28 is DC It is subordinate to the distribution system 27.
- the DC distribution is performed. Since 10 kW of power supplied from the electric wire 21 is supplied to the AC distribution line 22, the DC / AC converter 11 of the power conversion device 100 can be used as an aid of the DC / AC converter 206.
- the DC distribution system 27 is disconnected, and the DC / DC converters 10a and 10b and the DC / AC converter 11 can be supplied so that the power required by the DC load 29 can be supplied to the DC distribution line 21.
- the first power command and the second power command are determined and given. For example, when the power of 5 kW is required, the first power command of each of the DC / DC converters 10a and 10b is set to 0 kW, and the second power command of the DC / AC converter 11 is set to -5 kW. Alternatively, the first power command of each of the DC / DC converters 10a and 10b may be 5 kW and 0 kW, and the second power command of the DC / AC converter 11 may be 0 kW.
- power conversion device 100 includes DC connection terminal 3, AC connection terminal 4, N sets of connection terminals connecting common DC bus 1, AC bus 2, and the outside.
- the distributed power supply connection terminal 13 is further provided, and further, N DC / DC converters 10, M DC / AC converters 11, and a control unit 12 are provided.
- the plurality of DC distributed power supplies 25 and 26 can be collectively connected to the DC distribution system 27 and the AC distribution system 28. Since this power conversion device 100 has a plurality of DC / DC converters 10 of a unit structure and a DC / AC converter 11, the number of connected units can be changed by the configuration of the DC distributed power supplies 25 and 26, unit failure Sometimes only relevant units can be replaced.
- control unit 12 sends power commands 12 a (first power command and second power command) to the DC / DC converter 10 and the DC / AC converter 11 according to the upper control command 24 a from the upper control device 24.
- Each converter 10, 11 can output power according to its power command.
- DC distributed power supplies 25 and 26 and the DC distribution system 27 between the DC distributed power supplies 25 and 26 and the AC distribution system 28, between the DC distribution system 27 and the AC distribution system 28, and a plurality of DC dispersions Power can be exchanged by exchanging power between the power supplies 25 and 26, and furthermore, these can be simultaneously combined and operated.
- power converter 100 power can be exchanged between DC distribution system 27 and AC distribution system 28 via common DC bus 1 and AC bus 2 without using DC distributed power supplies 25 and 26, and it is efficient. Power control with a high degree of freedom.
- a power conversion device 100 can be used for VPP (Virtual Power Plant) using a small-scale DC distributed power source to level the generated power of renewable energy and also to contribute to system stabilization.
- the power conversion device 100 is suitable for changing the power supplied to the DC distribution system 27 and the AC distribution system 28 as appropriate according to changes in the load characteristics and power generation characteristics of the customer, thus reducing received power. It is valid.
- FIG. 16 is a diagram showing a configuration of control circuit 32 of DC / DC converter 10 according to the second embodiment of the present invention.
- the DC / DC converter 10 is connected to a chargeable / dischargeable DC distributed power supply 25.
- parts different from the first embodiment will be mainly described, and the same configuration as the first embodiment will not be described as appropriate. As shown in FIG.
- the control circuit 32 includes a power supply unit 150, a power control unit 157, a gate signal generation unit 152, and a gate driver 153.
- the power supply unit 150, the gate signal generation unit 152, and the gate driver 153 are the same as in the first embodiment, and the power control unit 157 is different.
- the power control unit 157 includes the first power command (power command value Pref) which is the power command 12a from the control unit 12, and the detection value 33a from the detector 33 on the primary side. , And a detection value 34a from the detector 34 on the secondary side.
- the control output 157 a of the power control unit 157 is input to the gate signal generation unit 152.
- the first power command Pref is corrected and used according to the fluctuation of the primary side voltage Vdc which is the detection value 33a on the primary side. That is, the output power of the DC / DC converter 10 is corrected. There are two main reasons why the output power needs to be corrected.
- the first is to suppress the deviation of the primary side voltage Vdc of the DC / DC converter 10 from the reference value, and the DC distributed power supply 25 is charged and discharged in the suppression direction.
- the power sharing is adjusted in consideration of the converter loss and detection error of the DC / DC converter 10 and the converter loss and error of the other DC / DC converter 10 and the DC / AC converter 11 It is for.
- FIG. 17 is a block diagram showing a configuration of power control unit 157.
- the first electric power command Pref is corrected by the addition of the correction amount Padd in the adder 171.
- the corrected first power command Pref is limited by the limiter 175 to a value equal to or less than the converter rated power of the DC / DC converter 10 and is input to the divider 154.
- the primary side voltage Vdc which is the detection value 33a on the primary side, is input to the table 172 and the flag generator 174.
- the flag generator 174 also receives the first power command Pref.
- FIG. 18 is a diagram showing the relationship between input and output of the table 172.
- the table 172 outputs the correction amount Padd * for correcting the first power command Pref in accordance with the fluctuation of Vdc.
- Vdc is divided into five regions A to E in ascending order of Vdc to determine the correction amount Padd *.
- Vdc is in the central area C, and the central value (reference value) of the area C is Vdcc.
- Padd * is 0 when Vdc matches Vdcc.
- Padd * is a small correction amount that compensates for the converter loss.
- the first power command Pref and the primary side voltage Vdc are input to the flag generator 174, and a flag Flg1 of 0 or 1 is output.
- the flag generator 174 lower limits Pmin and Vdifmin are set for the magnitude
- of the primary side voltage Vdc. Then, based on the input first power command Pref and the primary side voltage Vdc, Flg1 0 in the case of
- ⁇ Vdifmin, and Flg1 1 in other cases.
- Output Flg1 as Pmin is a value near 0, which is sufficiently smaller than the rated power of the DC / DC converter 10, and Vdifmin is 1/2 of the width of the region C.
- Flg1 is used to prevent the DC distributed power supply 25 from being charged and discharged by the correction of the first power command Pref.
- the correction amount Padd * output from the table 172 is multiplied by the flag Flg1 in the multiplier 173 to generate the correction amount Padd. Then, as described above, the adder 171 adds the correction amount Padd to the first electric power command Pref, and the limiter 175 limits the first electric power command Pref to be input to the divider 154. Thereafter, the output of the limiter 175 is divided by the voltage detection value V in the divider 154. The output of the divider 154 corresponds to the current command value and is input to the subtractor 155. The subtractor 155 outputs the deviation between the input current command value and the current detection value I, and the output is input to the current controller (PI) 156.
- PI current controller
- the current controller 156 is, for example, a proportional integral controller, and generates and outputs a control output 157a so that the input deviation is reduced.
- the voltage detection value V and the current detection value I are the detection value 33 a of the detector 33 on the primary side of the DC / DC converter 10 or the detection value 34 a of the detector 34 on the secondary side. When the detection value 33a on the primary side is used, the voltage detection value V has the same value as Vdc.
- the power control unit 157 not only operates according to the first power command Pref given from the control unit 12, but Perform the following operation. That is, when the primary side voltage Vdc deviates from the reference value, the power control unit 157 operates to correct the first power command Pref to make Vdc approach the reference value.
- the correction amount Padd is obtained using the table 172, and the table data is stored and used in a memory (not shown). Further, instead of using the table 172, the correction amount Padd may be obtained by another method such as using an arithmetic expression.
- the positive correction amount Padd is canceled by the negative first power command Pref.
- the discharge is suppressed. That is, the control of suppressing the fluctuation of the primary side voltage Vdc, that is, the control with low priority of voltage maintenance is performed.
- the power control unit 157 may be configured as shown in FIG. 19, and is a control configuration that raises the priority of maintaining the voltage of the primary side voltage Vdc.
- the power control unit 157 shown in FIG. 19 is obtained by adding a table 176 and a multiplier 177 to those shown in FIG. As shown in FIG. 19, after the multiplier 177 multiplies the first power command Pref by the gain K 1, the adder 171 adds the correction amount Padd to correct the first power command Pref. Further, the primary side voltage Vdc which is the detection value 33 a on the primary side is input to the table 172, the flag generator 174, and the table 176. The flag generator 174 also receives the first power command Pref.
- FIG. 20 is a diagram showing the relationship between input and output of the table 176.
- the table 176 outputs a gain K1 by which the first power command Pref is multiplied according to the fluctuation of Vdc.
- Vdc is divided into five regions A to E similarly to those shown in FIG. 18 to determine the gain K1.
- gain K1 decreases to 0 as Vdc moves away from Vdcc.
- the adder 171 adds the correction amount Padd to correct the first power command Pref. Further, the primary side voltage Vdc which is the detection value 33 a on the primary side is input to the table 172, the flag generator 174, and the table 176. The flag generator 174 also receives the first power command Pref. Other configurations and operations are similar to those shown in FIG.
- the input / output characteristics of the table 176 are not limited to those shown in FIG. 20, and can be determined according to the priority of the first power command Pref from the control unit 12 and the voltage maintenance of the primary side voltage Vdc. Also, instead of using the table 176, an arithmetic expression may be used.
- the common DC bus 1 is connected to the DC distribution line 21 and to the primary side of the DC / DC converter 10 and to the secondary side of the DC / AC converter 11.
- the voltage of the common DC bus corresponds to the voltage of the DC distribution line 21, and the primary voltage of the DC / DC converter 10 and the secondary voltage of the DC / AC converter 11 correspond to the voltage of the common DC bus 1. I can say that.
- the DC / AC converter 11 In order to maintain the voltage of the DC voltage Vdc of the common DC bus 1, not only the above-described DC / DC converter 10 but also the DC / AC converter 11 can be used for control.
- FIG. 21 is a diagram showing a configuration of control circuit 42 of DC / AC converter 11 according to the second embodiment of the present invention.
- the control circuit 42 includes a power supply unit 160, a power control unit 167, a gate signal generation unit 162, and a gate driver 163.
- the power supply unit 160, the gate signal generation unit 162, and the gate driver 163 are the same as those in the first embodiment, and the power control unit 167 is different.
- the power control unit 167 includes the second power command (power command value Pref) which is the power command 12a from the control unit 12, and the detection value 43a from the detector 43 on the primary side. , And a detection value 44a from the detector 44 on the secondary side.
- the control output 167 a of the power control unit 167 is input to the gate signal generation unit 162.
- the second power command Pref is corrected and used in accordance with the fluctuation of the secondary voltage Vdc, which is the detection value 44a on the secondary side. That is, the output power of the DC / AC converter 11 is corrected.
- FIG. 22 is a block diagram showing a configuration of power control unit 167. Referring to FIG. FIG. 22 shows only blocks for the effective power. As shown in FIG. 22, the second electric power command Pref is corrected by adding the correction amount Padd in the adder 178. The corrected second power command Pref is limited by the limiter 180 to a value equal to or less than the converter rated power of the DC / AC converter 11, and is input to the divider 164. Further, the secondary side voltage Vdc, which is the detection value 44 a on the secondary side, is input to the table 179.
- FIG. 23 is a diagram showing the relationship between input and output of the table 179.
- the table 179 outputs a correction amount Padd for correcting the second power command Pref in accordance with the fluctuation of Vdc.
- Vdc is divided into five regions A to E to determine the correction amount Padd.
- the absolute value of Padd increases as Vdc moves away from Vdcc.
- Padd is positive, and the power output from the common DC bus 1 in the direction of the AC bus 2 is increased, or the power output from the AC bus 2 in the direction of the common DC bus 1 is decreased.
- Padd is negative, and the power output from the common DC bus 1 in the direction of the AC bus 2 is reduced or the power output from the AC bus 2 in the direction of the common DC bus 1 is increased.
- the correction amount Padd output from the table 179 is input to the adder 178. Then, as described above, the adder 178 adds the correction amount Padd to the first power command Pref, and the limiter 180 further restricts the first power command Pref to be input to the divider 164. Thereafter, the output of the limiter 180 is divided by the voltage detection value V in the divider 164. The output of the divider 164 corresponds to the effective current command value, and is input to the subtractor 165. The subtractor 165 outputs the deviation between the input effective current command value and the effective current detection value Ip, and the output is input to the current controller (PI) 166.
- the current controller 166 is, for example, a proportional integral controller, and generates and outputs the control output 167a so that the input deviation is reduced.
- the input / output characteristics of table 179 are not limited to those shown in FIG. 23, and are determined according to the priority between the second power command Pref from control unit 12 and the voltage maintenance of secondary side voltage Vdc. it can. Also, instead of using the table 179, an arithmetic expression may be used. Further, when Vdc enters an area smaller than the instantaneous voltage value of the AC distribution line 22, power is supplied from the AC distribution system 28 to the DC distribution line 21 even if all the gate signals G are turned off. In this case, it is necessary to temporarily disconnect the DC / AC converter 11 from the AC distribution system 28 or the DC distribution system 27.
- the negative correction amount Padd is canceled by the positive second power command Pref.
- the power supply from the AC bus 2 to the common DC bus 1 is suppressed. In other words, the priority of the voltage maintenance of the secondary side voltage Vdc is low.
- the power control unit 167 may be configured as shown in FIG. 24, and is a control configuration that raises the priority of voltage maintenance of the secondary side voltage Vdc.
- the power control unit 167 shown in FIG. 24 has a table 181 and a multiplier 182 added to those shown in FIG.
- the secondary side voltage Vdc is input to the table 179 and the table 181.
- the correction amount Padd is added and corrected in the adder 178.
- An example of the input / output characteristics of the table 181 may be the same as that shown in FIG. In this case, when Vdc deviates from the area C, the power control unit 167 operates with the suppression of the voltage fluctuation of Vdc as the top priority.
- the input / output characteristics of the table 181 are not limited to those shown in FIG. 20, and can be determined according to the priority between the second power command Pref from the control unit 12 and the voltage maintenance of the secondary voltage Vdc. . Also, instead of using the table 181, an arithmetic expression may be used.
- the total capacity of the DC / DC converter 10 that is connected to the chargeable / dischargeable DC distributed power supply 25 and can be used to maintain the voltage of Vdc is reduced by the amount obtained by subtracting the maximum power of the power transmitted to and received from the DC distribution system 27 Power interchange from the AC distribution system 28 is performed. That is, the number of DC / AC converters 11 performing control for maintaining the voltage of Vdc is limited, or the limiter of the table 179 of the DC / AC converters 11 is limited. These are implemented by notification from the control unit 12 to each DC / AC converter 11.
- the AC bus 2 is connected to the AC distribution line 22 and to the primary side of the DC / AC converter 11. It can be said that the voltage of the AC bus 2 corresponds to the voltage of the AC distribution line 22, and the primary voltage of the DC / AC converter 11 corresponds to the voltage of the AC bus 2. That is, the voltage of the AC bus 2 can be maintained using the DC / AC converter 11. Also in this case, similarly to the power control unit 167 shown in FIG. 22 or FIG. 24, the correction amount Padd is used by adding the second power command (active power command value Pref) to the second power command. In this case, the effective value Vac of the primary side voltage (voltage of the AC bus 2) of the DC / AC converter 11 is used instead of Vdc. Further, instead of the table 179, for example, the correction amount Padd is determined using a table having input / output characteristics shown in FIG.
- the table outputs a correction amount Padd for correcting the second power command Pref according to the fluctuation of Vac.
- Vac is divided into three areas F1, G1, and H1 in ascending order of Vac, and the correction amount Padd is determined.
- Vac is usually in the central area G1, and the central value (reference value) of the area G1 is Vacc.
- Padd 0.
- the absolute value of Padd increases as Vac leaves Vacc.
- Padd is positive, and the power output from the common DC bus 1 in the direction of the AC bus 2 is increased or the power output from the AC bus 2 in the direction of the common DC bus 1 is reduced.
- Padd is negative, and the power output from the common DC bus 1 in the direction of the AC bus 2 is reduced or the power output from the AC bus 2 in the direction of the common DC bus 1 is increased.
- the correction amount Padd may be determined according to the frequency fac of the primary side voltage of the DC / AC converter 11 .
- the correction amount Padd is determined using, for example, a table having input / output characteristics shown in FIG. As shown in FIG. 26, the table outputs the correction amount Padd for correcting the second power command Pref according to the fluctuation of fac.
- the fac is divided into three areas of F2, G2, and H2 in ascending order of fac, and the correction amount Padd is determined.
- fac is usually in the central region G2, and the median (reference value) of the region G2 is facc.
- Padd 0.
- the absolute value of Padd increases as fac leaves facc.
- Padd is positive, and the power output from the common DC bus 1 in the direction of the AC bus 2 is increased or the power output from the AC bus 2 in the direction of the common DC bus 1 is reduced.
- Padd is negative, and the power output from the common DC bus 1 in the direction of the AC bus 2 is reduced or the power output from the AC bus 2 in the direction of the common DC bus 1 is increased.
- the DC / DC converter 10 performs the following operation accordingly. That is, the DC / DC converter 10 to which the DC distributed power supply 25 is connected operates in the direction of maintaining Vdc by the function of the power control unit 157. Then, as a result, power is interchanged with the AC distribution line 22.
- the correction amount Padd is determined using a table having input / output characteristics as shown in FIG. 25 or 26. If Vac or fac decreases, Padd becomes positive, and the discharge power from the DC distributed power supply 25 is increased or the charge power is decreased. If Vac or fac rises, Padd becomes negative, and the charging power to the DC distributed power supply 25 is increased or the discharging power is decreased. In this manner, power can be interchanged between the DC distributed power supply 25 and the AC distribution line 22 even when Vdc does not change.
- control unit 12 may be provided with a table having the input / output characteristics shown in FIG. 25 or 26, and the control unit 12 may generate the correction amount Padd. In that case, the control unit 12 may add the correction amount Padd to each power command Pref that is the upper control command 24a given from the upper control device 24, and may transmit the corrected power command to the power control unit 157. .
- Vdc is maintained in the case of alternating current reception (see FIG. 14)
- Vac is maintained in the case of direct current reception (see FIG. 15).
- a block for calculating the correction amount Padd of the power command Pref exists in both of Vdc and Vac. In that case, prioritize to avoid interference.
- control circuit 32 of DC / DC converter 10 includes power control unit 157 having a block for calculating correction amount Padd of the first power command, and DC / AC converter
- the eleventh control circuit 42 includes a power control unit 167 having a block for calculating the correction amount Padd of the second power command (active power command value).
- power conversion device 100 operates as follows, regardless of a command from higher-level controller 24. When the voltage Vdc of the common DC bus 1 drops away from the reference value, the discharge amount of the DC distributed power supply 25 is increased or the charge amount is decreased, or the power is interchanged with the AC distribution system 28.
- the voltage Vdc of the common DC bus 1 rises from the reference value, the charge amount of the DC distributed power supply 25 is increased or the discharge amount is decreased, or the power is interchanged with the AC distribution system 28. In this manner, the voltage of the common DC bus 1, that is, the voltage of the DC distribution line 21 can be automatically operated so as to be close to a desired range.
- the power conversion device 100 operates as follows regardless of a command from the host control device 24.
- the voltage Vac of the AC bus 2 drops away from the reference value or the frequency fac decreases, the power supplied from the common DC bus 1 to the AC distribution line 22 is increased or the power supplied from the AC distribution line 22 is decreased.
- the voltage Vac rises from the reference value or the frequency fac rises the power supplied from the AC distribution line 22 is increased or the power supplied to the AC distribution line 22 is decreased.
- the power conversion apparatus 100 operates to automatically suppress voltage fluctuations of the DC voltage Vdc and the AC voltage Vac, and therefore, particularly when connecting to a distribution system in which the voltage is easily changed due to load fluctuations, Power conversion operation can be performed with high reliability and reliability. Further, the voltages Vdc and Vad to be maintained and the power to be accommodated can be appropriately set in accordance with the installation mode and the usage method of the power conversion device 100.
- the control unit 12 receives the first power command to the DC / DC converter 10 and the second power command to the DC / AC converter 11 as the upper control command 24 a from the upper controller 24.
- the control unit 12 generates the first power command and the second power command.
- the configuration other than the control unit 12 is the same as that of the first embodiment.
- FIG. 27 shows control unit 12 according to the third embodiment. In this case, the control unit 12 collectively receives the power command value to be input / output by the power conversion device 100 as the upper control command 24a from the upper control device 24.
- the control unit 12 includes a power command generation unit 61.
- the power command generation unit 61 receives the power command value, which is the upper control command 24a, and also receives voltage and current information, which are various detection values 33a and 34a, from the control circuit 32 of each DC / DC converter 10.
- the control circuit 42 of each DC / AC converter 11 receives voltage and current information which are various detection values 43a and 44a.
- the power command generation unit 61 generates the first power command Pref of each DC / DC converter 10 and the second power command Pref of each DC / AC converter 11 based on these pieces of input information.
- the control circuit 32 of the DC / DC converter 10 and the control circuit 42 of each DC / AC converter 11 are output.
- higher-order control device 24 provides power control value (upper control command 24a) of input / output power of power conversion device 100 to control unit 12, and control unit 12 controls each first power command and each The second power command is generated and transmitted to the control circuit 32 of each DC / DC converter 10 and the control circuit 42 of each DC / AC converter 11.
- the host control device 24 transmits and receives a total power command PA of the charge and discharge power of the DC distributed power supplies 25 and 26 connected to the power conversion device 100, and between the power conversion device 100 and the DC distribution system 27.
- Power command PB and power command PC exchanged between power conversion device 100 and AC distribution system 28 are designated as higher control command 24a.
- the individual charge / discharge power of each DC distributed power supply 25, 26 is not specified.
- Total power command PA is a command of the sum of input / output power of N sets of dispersed power supply connection terminals 13
- power command PB is an input / output power command of DC connection terminal 3
- power command PC is AC connection terminal 4 Input / output power command.
- Power command generation unit 61 sets the first power command of each DC / DC converter 10 such that the loss is reduced according to the total power command PA of the charge / discharge power of DC distributed power supplies 25 and 26 and the converter efficiency. Determine Pref. Further, second power command Pref of each DC / AC converter 11 is determined so as to reduce the loss according to power command PC and converter efficiency exchanged between power conversion device 100 and AC distribution system 28. .
- the power command PB is not used directly for generation of the first and second power commands Pref, but is used supplementary for adjustment and the like.
- the transducer to be operated may not be fixed, but may be changed as appropriate, or the temperature information of the transducer may be used to pause the high temperature transducer.
- the DC / DC converter 10 to which the DC distributed power supply 26 only performing power generation is connected is preferentially used for discharging. It is good.
- the first power command Pref of the DC / DC converter 10 to which the DC distributed power supply 26 is connected corresponds to the maximum generated power of the DC distributed power supply 26.
- the first power command Pref of the DC / DC converter 10 to which the DC distributed power supply 25 is connected is adjusted to match the power specified by the host control device 24. Further, the first power command Pref may be determined in consideration of the charge state and temperature of the DC distributed power supply 25.
- the DC / DC converter 10 to which the DC distributed power supply 25 having a low charge state is connected may be preferentially operated. Further, charge and discharge may be suppressed to reduce the life of the DC distributed power supply 25.
- the control unit 12 can receive various information of the DC distributed power supplies 25 and 26 via the host controller 24 or the control circuit 32 of the DC / DC converter 10, and is input to the power command generation unit 61. Used.
- FIG. 28 is a diagram illustrating the control unit 12 according to another example.
- the control unit 12 includes a power command generation unit 62.
- various detected values and specification information which are the information 125 and 126 of the DC distributed power supplies 25 and 26 are directly input from the DC distributed power supplies 25 and 26 to the power command generation unit 62. Therefore, the information 125, 126 of the DC distributed power supplies 25, 26 can be received and used without intervention of the host controller 24 or the control circuit 32 of the DC / DC converter 10.
- the other configuration is the same as that of the control unit 12 shown in FIG.
- control unit 12 includes power command generation units 61 and 62 to determine the power sharing of each DC / DC converter 10 and each DC / AC converter 11. 1. Determine the power command Pref and the second power command Pref.
- the amount of information of the upper control instruction 24a received from the upper control device 24 can be reduced.
- the amount of calculations in the host controller 24 can be reduced.
- the control unit 12 can determine the first and second power commands Pref so as to reduce the loss generated in the power conversion device 100, and the responsibility of the DC / DC converter 10 and the DC / AC converter 11 is further reduced.
- the first and second power commands Pref can be determined so as not to concentrate. This enables effective use of power.
- controller 12 can determine the first and second power commands Pref in consideration of the types and charging states of the DC distributed power supplies 25 and 26, effective use of generated power can be achieved, and deterioration of the storage battery can be suppressed. The effect that power interchange can be realized with a small storage battery capacity is obtained.
- the above-mentioned second embodiment may be applied to the above-mentioned third embodiment so that the first power command and the second power command can be corrected. Thereby, the effect by the said Embodiment 2 is obtained collectively.
- a power converter according to a fourth embodiment of the present invention will be described.
- the configuration of the main circuit portion in DC / DC converter 10 in power conversion device 100 is different.
- the configuration of control circuit 32 is partially changed according to the configuration of the main circuit unit.
- the other configuration is the same as that of the first embodiment.
- FIG. 29 is a diagram showing a main circuit portion 71A of the DC / DC converter 10 according to the fourth embodiment.
- the main circuit unit 71A includes a primary side smoothing capacitor 72, a secondary side smoothing capacitor 73, primary side semiconductor switching devices 74a and 74b, secondary side semiconductor switching devices 75a and 75b, a reactor 76 and a filter reactor. And 77.
- the semiconductor switching elements 74a, 74b, 75a, 75b are IGBTs in which diodes are connected in antiparallel.
- the semiconductor switching elements 74a, 74b, 75a, 75b may use other semiconductor elements such as MOSFETs.
- the primary side and the secondary side are non-insulated, and bidirectional power conversion can be performed regardless of the magnitude relation between the primary side voltage and the secondary side voltage.
- FIG. 30 is a diagram showing a main circuit portion 71B of a DC / DC converter 10 according to another example of the fourth embodiment.
- the main circuit unit 71B includes a primary side smoothing capacitor 72, a secondary side smoothing capacitor 73, primary side semiconductor switching elements 74a and 74b, a reactor 76, and a filter reactor 77.
- bi-directional power conversion can be performed when the primary side and the secondary side are not insulated and the primary side voltage is higher than the secondary side voltage.
- FIG. 31 is a diagram showing a main circuit portion 71C of a DC / DC converter 10 according to still another example of the fourth embodiment.
- the main circuit unit 71C includes a primary side smoothing capacitor 72, a secondary side smoothing capacitor 73, secondary side semiconductor switching elements 75a and 75b, a reactor 76, and a filter reactor 77.
- bi-directional power conversion can be performed when the primary side and the secondary side are not insulated and the secondary side voltage is higher than the primary side voltage.
- any of main circuit portions 71A, 71B, 71C shown in FIGS. 29 to 31 is used instead of main circuit portion 31 of DC / DC converter 10 shown in the first embodiment. .
- All the main circuit parts 31 may be replaced, or a part may be replaced.
- the main circuit portion of the DC / DC converter 10 is not limited to the above-described one, and another circuit method can be applied. As described above, various circuit configurations can be applied to the main circuit portion of the DC / DC converter 10, and the configuration of the DC distributed power supplies 25 and 26 connected to the secondary side of each DC / DC converter 10 is possible.
- the main circuit unit can be selected in consideration of the type, operation specification, cost of the unit, and the like. Therefore, the effects of the first embodiment can be obtained, and the characteristics of the DC distributed power supply can be effectively used, and the unit cost can be suppressed to a low level.
- Embodiments 2 and 3 can be applied, and the effects of Embodiments 2 and 3 can be obtained.
- FIG. 32 shows a configuration of power conversion device 100 according to the fifth embodiment and a power distribution system to which power conversion device 100 is applied.
- the power conversion device 100 includes two power conversion units 101 a and 101 b which are independent blocks.
- the two power conversion units 101 a and 101 b receive the upper control instruction 24 a from the common upper control device 24.
- Each of the power conversion units 101a and 101b includes the configuration and the function of the power conversion device 100 described in the first embodiment.
- DC connection terminal 3 of power conversion unit 101a and DC connection terminal 3 of power conversion unit 101b are connected in parallel, and AC connection terminal 4 of power conversion unit 101a and AC connection terminal of power conversion unit 101b are connected in parallel.
- Ru The DC connection terminal 3 is connected to a DC distribution system 27 via a DC distribution line 21, and the AC connection terminal 4 is connected to an AC distribution system 28 via a transformer 23 and an AC distribution line 22.
- the plurality of distributed power supply connection terminals 13 of each of the power conversion units 101a and 101b are connected to the DC distributed power supply 25 capable of charging and discharging.
- the EV storage battery mounted on the electric vehicle 301 is the DC distributed power supply 25.
- the positive and negative DC connection terminals 3, the three-phase AC connection terminal 4, and the positive and negative distributed power supply connection terminals 13 are only illustrated for simplicity.
- the power conversion units 101a and 101b each include five sets of distributed power supply connection terminals 13 and the DC distributed power supply 25 is connected to all of them.
- the present invention is not limited thereto. That is, the distributed power supply connection terminal 13 may be vacant.
- the electric vehicle 301 may be a hybrid vehicle or the like provided with a storage battery.
- a relay board may be provided between the distributed power supply connection terminal 13 and the electric vehicle 301 to display the charge / discharge state of the DC distributed power supply 25 or to provide an operation panel capable of externally inputting charge start / end.
- FIG. 33 is a diagram showing a configuration of a power conversion device 100 according to another example of the fifth embodiment and a power distribution system to which the power conversion device 100 is applied.
- FIG. 34 is a layout diagram for realizing the power conversion device 100 and the power distribution system of FIG.
- the power conversion device 100 includes two power conversion units 101c and 101d which are independent blocks.
- the two power conversion units 101c and 101d receive the upper control instruction 24a from the common upper control device 24.
- Each of the power conversion units 101c and 101d has the configuration and function of the power conversion apparatus 100 described in the first embodiment.
- DC connection terminal 3 of power conversion unit 101c and DC connection terminal 3 of power conversion unit 101d are connected in parallel, and AC connection terminal 4 of power conversion unit 101c and AC connection terminal of power conversion unit 101d are connected in parallel.
- the DC connection terminal 3 is connected to a DC distribution system 27 via a DC distribution line 21, and the AC connection terminal 4 is connected to an AC distribution system 28 via a transformer 23 and an AC distribution line 22.
- the plurality of distributed power supply connection terminals 13 of the power conversion unit 101c are connected to the chargeable and dischargeable DC distributed power supply 25, respectively.
- the plurality of distributed power supply connection terminals 13 of the power conversion unit 101 d are connected to the DC distributed power supply 26 that performs only power generation.
- a part of the distributed power supply connection terminals 13 is connected to the DC distributed power supply 25 or the DC distributed power supply 26 after a plurality of the distributed power supply connection terminals 13 are connected in parallel.
- a power conversion unit 101c and stationary storage batteries 304 and 305 to be the DC distributed power supply 25 are arranged adjacent to one of the two buildings 302 and 303.
- Stationary storage battery 305 is capable of charging and discharging twice as much power as stationary storage battery 304.
- a plurality of distributed power supply connection terminals 13 are connected in parallel and connected to stationary storage battery 305.
- Stationary storage batteries 304 and 305 are connected to power conversion unit 101c to perform charging and discharging.
- a power conversion unit 101d and a photovoltaic panel (PV) 306 are disposed on the roof of the other building 303.
- the photovoltaic power generation panel 306 corresponds to one DC distributed power supply 26 divided appropriately, and supplies generated power to the DC distribution line 21 and the AC distribution line 22 through the power conversion unit 101 d.
- Each of the power conversion units 101c and 101d can communicate with the host control device 24 independently.
- the power conversion unit 101c may be a master
- the power conversion unit 101d may be a slave
- instructions for charging and discharging may be transmitted from the master to the slave
- status information and the like may be individually transmitted to the host controller 24.
- two power conversion parts 101c and 101d which receive the common high-order control command 24a were used, you may use three or more.
- the forms of the DC distributed power sources 25 and 26 to be connected are not limited to those described above.
- the electric vehicle 301, the stationary storage battery 304 and the photovoltaic panel 306 are mixed in one power conversion unit 101c (101d). May be connected.
- the number of parallel connections of the distributed power supply connection terminals 13 can be determined according to the capacity of the DC distributed power supply 25 or 26 to be connected, or some of the distributed power supply connection terminals 13 can be unconnected.
- the power conversion device 100 can be configured of a plurality of power conversion units 101a to 101d.
- the power conversion units 101a to 101d can be dispersedly arranged, and by connecting a large number of DC distributed power supplies 25 and 26, the small-capacity DC distributed power supplies 25 and 26 individually have medium capacity or large capacity. It can be put together in capacity and operated as VPP. Therefore, power conversion device 100 according to this embodiment obtains the same effects as those of the first embodiment, and also uses a plurality of DC distributed power supplies 25 and 26 and a plurality of DC distributed power supplies 25 and 26. When distributed, they can be easily applied and used effectively.
- each of the power conversion units 101a to 101d has a function of communicating with the host controller 24, there is no need to provide another controller related to overall control.
- the distributed power supply connection terminals 13 can be connected in parallel to cope with the case where the charge and discharge power of the DC distributed power supplies 25 and 26 is large. For this reason, even if the number of DC distributed power supplies 25 and 26 increases, it is not necessary to increase the number of converter units to prepare a large power conversion apparatus having a one-block configuration. Moreover, even if the capacities of the plurality of DC distributed power supplies 25 and 26 are various, it is not necessary to prepare the DC / DC converter 10 having different capacities.
- the AC connection terminals 4 are not limited to being connected to the transformer 23 after being connected in parallel, but may be connected in parallel on the AC distribution line 22 side after being connected to the transformer 23.
- Each of the power conversion units 101a to 101d is not limited to one directly receiving the upper control command 24a from the common upper control apparatus 24, but may receive signals from a plurality of relaying control apparatuses.
- any one or a plurality of the above-mentioned second to fourth embodiments can be applied in combination, and the effect of each of the second to fourth embodiments can be obtained.
- N may be one, or only one DC / DC converter 10 may be used. In that case, a chargeable / dischargeable DC distributed power supply 25 is connected to one DC / DC converter 10.
- each embodiment can be freely combined, or each embodiment can be appropriately modified or omitted.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Direct Current Feeding And Distribution (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Dc-Dc Converters (AREA)
Abstract
An electrical power conversion device (100) comprises a common DC bus line (1), an AC bus line (2), a DC connection terminal (3), an AC connection terminal (4), and N pairs of distributed electrical power connection terminals (13) and further comprises N units of DC/DC converters (10) for electrical power transfer between the common DC bus line (1) and the distributed electrical power connection terminals (13), and M units of DC/AC converters (11) for electrical power transfer between the AC bus line (2) and the common DC bus line (1), and a controller (12) for controlling each of the converters (10, 11) on the basis of host computer (24a) control commands. The DC connection terminal (3) is connected to the common DC bus line (1) as well as to an external DC electrical distribution system (27), the AC connection terminal (4) is connected to the AC bus line (2) as well as to an external AC electrical distribution system (28), and the distributed electrical power connection terminals (13) are connected to the DC/DC converters (10) as well as to external DC distributed electrical power sources (25, 26).
Description
この発明は、配電系統に接続される電力変換装置に関するものである。
The present invention relates to a power converter connected to a distribution system.
従来から、太陽光発電装置等の分散電源を系統に接続するための電力変換装置および系統連系システムが知られている。交流電力または直流電力を供給する系統電源と複数の電力需要家とを結ぶ交流電源系統、直流電源系統及び通信系統を設ける。各電力需要家は、交流電源系統と直流電源系統との間に、直流電源部と、この直流電源を交流電源に変換するPWMコンバータ部と、双方向性DC/DCコンバータとから構成される分散型電源を配置する。そして、各電力需要家の分散型電源間、また分散型電源と系統電源との間で、交流電源系統および直流電源系統を介して電力の入出力制御が行われる。また、系統電源側に一括の共通バッテリを備え、太陽電池代替の直流電源を確保する(例えば特許文献1)。
DESCRIPTION OF RELATED ART Conventionally, the power converter device and grid interconnection system for connecting distributed power supplies, such as a solar power generation device, to a system are known. An AC power supply system, a DC power supply system, and a communication system are provided that connect a system power supply supplying AC power or DC power to a plurality of power consumers. Each power demander is a distributed system comprised of a DC power supply unit, a PWM converter unit for converting the DC power supply into an AC power supply, and a bidirectional DC / DC converter between the AC power supply system and the DC power supply system. Place the power supply. Then, input / output control of power is performed via the AC power supply system and the DC power supply system between the distributed power sources of each power consumer, and between the distributed power source and the system power source. In addition, a collective common battery is provided on the system power supply side, and a direct current power source for solar cell substitution is secured (for example, Patent Document 1).
また、別例による従来の電力変換装置としての電力制御装置では、発電装置で発電した電力と第1の直流電力とを相互に変換する第1の電力変換器と、系統の交流電力と第1の直流電力とを相互に変換する第2の電力変換器とを備える。第1、第2の電力変換器は、系統周波数と同期して電力変換動作を実行する(例えば特許文献2)。
In addition, in a power control device as a conventional power conversion device according to another example, a first power converter that mutually converts electric power generated by the power generation device and the first DC power, AC power of the system, and the first power converter And a second power converter for mutually converting DC power of the The first and second power converters perform power conversion operation in synchronization with the grid frequency (for example, Patent Document 2).
これらの電力変換装置では、交流系統から受電する交流電力と分散電源による直流電力とを利用して負荷に電力供給する。
上記特許文献1記載の装置では、直流および交流の双方の配電系統(電源系統)が用いられ、直流配電系統と交流配電系統との間に分散電源が接続される。このため、直流配電系統と交流配電系統との間の電力授受は分散電源の充放電を必ず伴うものとなり、制約が大きいものであった。
また、上記特許文献2記載の装置では、第1の直流電力が入出力される直流電力線と交流配電系統との間で第2の電力変換器により電力授受されるが、上記直流電力線は直流配電系統と接続されるものではない。このため、直流配電系統と交流配電系統との間の電力授受はできない。 In these power conversion devices, power is supplied to a load using AC power received from an AC system and DC power from a distributed power supply.
In the device described inPatent Document 1 described above, both direct current and alternating current distribution systems (power supply systems) are used, and a distributed power supply is connected between the direct current distribution system and the alternating current distribution system. For this reason, the exchange of electric power between the DC distribution system and the AC distribution system necessarily involves the charge and discharge of the distributed power supply, and the restriction is large.
Further, in the device described inPatent Document 2, although the power is exchanged by the second power converter between the DC power line to which the first DC power is input / output and the AC power distribution system, the DC power line is DC power distribution It is not connected with the system. Therefore, it is not possible to exchange power between the DC distribution system and the AC distribution system.
上記特許文献1記載の装置では、直流および交流の双方の配電系統(電源系統)が用いられ、直流配電系統と交流配電系統との間に分散電源が接続される。このため、直流配電系統と交流配電系統との間の電力授受は分散電源の充放電を必ず伴うものとなり、制約が大きいものであった。
また、上記特許文献2記載の装置では、第1の直流電力が入出力される直流電力線と交流配電系統との間で第2の電力変換器により電力授受されるが、上記直流電力線は直流配電系統と接続されるものではない。このため、直流配電系統と交流配電系統との間の電力授受はできない。 In these power conversion devices, power is supplied to a load using AC power received from an AC system and DC power from a distributed power supply.
In the device described in
Further, in the device described in
この発明は、上記のような問題点を解決するためになされたものであり、直流配電系統と交流配電系統との双方に接続され、直流分散電源を直流配電系統および交流配電系統に連系し、直流配電系統と交流配電系統との間で直流分散電源を介すること無く電力授受を可能にして、効率的で自由度の高い電力制御が可能な電力変換装置を得ることを目的とする。
The present invention has been made to solve the above problems, and is connected to both a DC distribution system and an AC distribution system, and is connected to a DC distribution system and a DC distribution system and an AC distribution system. It is an object of the present invention to provide a power conversion device capable of efficient and highly flexible power control by enabling power exchange between a DC distribution system and an AC distribution system without using a DC distributed power supply.
この発明に係る電力変換装置は、N台のDC/DC変換器と、M台のDC/AC変換器と、上位制御指令に基づいて上記DC/DC変換器および上記DC/AC変換器を制御する制御部とを備える電力変換装置において、共通直流母線と、交流母線と、外部との接続端子となる、直流接続端子と、交流接続端子と、正負N組の分散電源接続端子とを備える。そして、上記直流接続端子は、上記共通直流母線に接続されると共に外部の直流配電系統に接続され、上記交流接続端子は、上記交流母線に接続されると共に外部の交流配電系統に接続され、上記N組の分散電源接続端子は、上記N台のDC/DC変換器にそれぞれ接続されると共に、外部の直流分散電源にそれぞれ接続され、上記N台のDC/DC変換器は、一次側が上記共通直流母線に、二次側が上記N組の分散電源接続端子にそれぞれ接続され、該各DC/DC変換器は、上記共通直流母線と上記各分散電源接続端子との間で電力変換して電力授受する。上記M台のDC/AC変換器は、一次側が上記交流母線に、二次側が上記共通直流母線にそれぞれ接続され、該各DC/AC変換器は、上記交流母線と上記共通直流母線との間で電力変換して電力授受する。
A power converter according to the present invention controls the DC / DC converter and the DC / AC converter based on N DC / DC converters, M DC / AC converters, and a host control command. In the power conversion device including the control unit, the DC connection terminal serving as the connection terminal for the common DC bus, the AC bus, and the outside, the AC connection terminal, and the N distributed power supply connection terminals are provided. The DC connection terminal is connected to the common DC bus and connected to an external DC distribution system, and the AC connection terminal is connected to the AC bus and connected to an external AC distribution system. The N sets of distributed power supply connection terminals are respectively connected to the N DC / DC converters and to an external DC distributed power supply, and the N DC / DC converters have the same primary side as the primary side The secondary side of the DC bus is connected to each of the N sets of distributed power connection terminals, and each DC / DC converter converts power between the common DC bus and each distributed power connection terminal to transfer power. Do. The M DC / AC converters are connected on the primary side to the AC bus and on the secondary side to the common DC bus, and each DC / AC converter is connected between the AC bus and the common DC bus. Power conversion and exchange power.
この発明による電力変換装置は、直流配電系統と交流配電系統との双方に接続され、直流分散電源を直流配電系統および交流配電系統に連系する。そして、共通直流母線および交流母線を介して、直流配電系統と交流配電系統との間で直流分散電源を介すること無く電力授受が可能になり、効率的で自由度の高い電力制御が可能になる。
The power converter according to the present invention is connected to both the DC distribution system and the AC distribution system, and interconnects the DC distributed power supply to the DC distribution system and the AC distribution system. Then, power can be exchanged between the DC distribution system and the AC distribution system without using a DC distributed power supply via the common DC bus and the AC bus, and efficient and highly flexible power control becomes possible. .
実施の形態1.
以下、この発明の実施の形態1による電力変換装置を図に基づいて以下に説明する。
図1は、この発明の実施の形態1による電力変換装置と、この電力変換装置が適用される配電システムとの構成を示す図である。
図1に示すように、電力変換装置100は共通直流母線1と交流母線2と、外部との接続端子となる、直流接続端子3と、交流接続端子4と、正負N組の分散電源接続端子13とを備える。また、電力変換装置100は、N台のDC/DC変換器10と、M台のDC/AC変換器11と、制御部12とを備える。なお、N、Mは正の整数であり、この場合Nは2以上、かつM以上である。Embodiment 1
Hereinafter, a power conversion device according to a first embodiment of the present invention will be described below based on the drawings.
FIG. 1 is a diagram showing the configuration of a power conversion device according to a first embodiment of the present invention and a power distribution system to which the power conversion device is applied.
As shown in FIG. 1, thepower conversion device 100 includes a DC connection terminal 3, an AC connection terminal 4, and a distributed power supply connection terminal of N pairs of positive and negative DC bus 1, AC bus 2, and external connection terminals. And 13. Further, the power conversion apparatus 100 includes N DC / DC converters 10, M DC / AC converters 11, and a control unit 12. N and M are positive integers, and in this case, N is 2 or more and M or more.
以下、この発明の実施の形態1による電力変換装置を図に基づいて以下に説明する。
図1は、この発明の実施の形態1による電力変換装置と、この電力変換装置が適用される配電システムとの構成を示す図である。
図1に示すように、電力変換装置100は共通直流母線1と交流母線2と、外部との接続端子となる、直流接続端子3と、交流接続端子4と、正負N組の分散電源接続端子13とを備える。また、電力変換装置100は、N台のDC/DC変換器10と、M台のDC/AC変換器11と、制御部12とを備える。なお、N、Mは正の整数であり、この場合Nは2以上、かつM以上である。
Hereinafter, a power conversion device according to a first embodiment of the present invention will be described below based on the drawings.
FIG. 1 is a diagram showing the configuration of a power conversion device according to a first embodiment of the present invention and a power distribution system to which the power conversion device is applied.
As shown in FIG. 1, the
直流接続端子3は、共通直流母線1に接続されると共に、外部の直流配電系統27に直流配電線21を介して接続される。交流接続端子4は、交流母線2に接続されると共に、外部の交流配電系統28に外部の変圧器23および交流配電線22を介して接続される。N組の分散電源接続端子13は、N台のDC/DC変換器10にそれぞれ接続されると共に、外部のN台の直流分散電源25、26が接続される。
N台のDC/DC変換器10は、一次側が共通直流母線1に、二次側がN組の分散電源接続端子13にそれぞれ接続され、各DC/DC変換器10は、共通直流母線1と各分散電源接続端子13との間で電力変換して電力授受する。M台のDC/AC変換器11は、一次側が交流母線2に、二次側が共通直流母線1にそれぞれ接続され、各DC/AC変換器11は、交流母線2と共通直流母線1との間で電力変換して電力授受する。 TheDC connection terminal 3 is connected to the common DC bus 1 and connected to an external DC distribution system 27 via a DC distribution line 21. The AC connection terminal 4 is connected to the AC bus 2 and connected to an external AC distribution system 28 via an external transformer 23 and an AC distribution line 22. The N sets of distributed power supply connection terminals 13 are respectively connected to the N DC / DC converters 10, and the external N DC distributed power supplies 25, 26 are connected.
The N DC /DC converters 10 are connected on the primary side to the common DC bus 1 and on the secondary side to the N distributed power supply connection terminals 13, and each DC / DC converter 10 is connected to the common DC bus 1 Power conversion is performed with the distributed power supply connection terminal 13 to exchange power. The M DC / AC converters 11 are connected to the AC bus 2 on the primary side and to the common DC bus 1 on the secondary side, and each DC / AC converter 11 is between the AC bus 2 and the common DC bus 1 Power conversion and exchange power.
N台のDC/DC変換器10は、一次側が共通直流母線1に、二次側がN組の分散電源接続端子13にそれぞれ接続され、各DC/DC変換器10は、共通直流母線1と各分散電源接続端子13との間で電力変換して電力授受する。M台のDC/AC変換器11は、一次側が交流母線2に、二次側が共通直流母線1にそれぞれ接続され、各DC/AC変換器11は、交流母線2と共通直流母線1との間で電力変換して電力授受する。 The
The N DC /
なお、分散電源接続端子13の配置は、電力変換装置100の内側であっても良いことは明らかである。
また、DC/DC変換器10およびDC/AC変換器11は、図中右側を一次側、左側を二次側としたもので、それぞれ双方向電力変換可能なユニットとして構成される。このように、各DC/DC変換器10および各DC/AC変換器11を1ユニットで構成することにより、適宜に電力変換装置100の変換器構成を変更したり、故障したユニットのみを交換したりすることができる。共通直流母線1と交流母線2はケーブル、金属導体板等で構成することができ、各ユニットの着脱が可能な構成を有する。 It is obvious that the arrangement of the distributed powersupply connection terminals 13 may be inside the power conversion device 100.
Further, the DC /DC converter 10 and the DC / AC converter 11 are configured such that the right side is the primary side and the left side is the secondary side in the drawing, and each is a unit capable of bidirectional power conversion. As described above, by configuring each DC / DC converter 10 and each DC / AC converter 11 as one unit, the converter configuration of the power conversion device 100 is appropriately changed, or only the failed unit is replaced. Can be The common DC bus 1 and the AC bus 2 can be formed of a cable, a metal conductor plate or the like, and have a configuration in which each unit can be attached and detached.
また、DC/DC変換器10およびDC/AC変換器11は、図中右側を一次側、左側を二次側としたもので、それぞれ双方向電力変換可能なユニットとして構成される。このように、各DC/DC変換器10および各DC/AC変換器11を1ユニットで構成することにより、適宜に電力変換装置100の変換器構成を変更したり、故障したユニットのみを交換したりすることができる。共通直流母線1と交流母線2はケーブル、金属導体板等で構成することができ、各ユニットの着脱が可能な構成を有する。 It is obvious that the arrangement of the distributed power
Further, the DC /
制御部12は、CPU(Central Processing Unit)、メモリ、入出力インタフェースを有して構成される。例えば、メモリには、制御用のプログラムの他、演算により得られたデータ、検出値、指令値等の各種データが保存格納されている。CPUは、所望の演算に必要なプログラムやデータをメモリから抽出して演算を行う。
また制御部12は、外部の上位制御装置24との通信機能を有する。そして、制御部12は、上位制御装置24から受信する上位制御指令24aと、電力変換装置100内で検出される電圧、電流等の検出値、更にはDC/DC変換器10、DC/AC変換器11の状態情報を使用して、DC/DC変換器10、DC/AC変換器11を制御することで電力変換装置100全体の制御を行う。 Thecontrol unit 12 is configured to include a central processing unit (CPU), a memory, and an input / output interface. For example, in the memory, besides the control program, various data such as data obtained by calculation, detected values, command values and the like are stored and stored. The CPU performs calculations by extracting programs and data required for desired calculations from the memory.
Thecontrol unit 12 also has a communication function with an external high-order control device 24. Then, the control unit 12 controls the host control command 24 a received from the host controller 24, detected values of voltage and current detected in the power conversion device 100, and further DC / DC converter 10 and DC / AC conversion. By controlling the DC / DC converter 10 and the DC / AC converter 11 using the state information of the unit 11, the entire power conversion apparatus 100 is controlled.
また制御部12は、外部の上位制御装置24との通信機能を有する。そして、制御部12は、上位制御装置24から受信する上位制御指令24aと、電力変換装置100内で検出される電圧、電流等の検出値、更にはDC/DC変換器10、DC/AC変換器11の状態情報を使用して、DC/DC変換器10、DC/AC変換器11を制御することで電力変換装置100全体の制御を行う。 The
The
なお、各DC/DC変換器10および各DC/AC変換器11は、後述するようにそれぞれ制御回路32、42を備え、電力変換装置100全体の制御を行う制御部12と各制御回路32、42とで、DC/DC変換器10およびDC/AC変換器11を制御する。すなわち、制御部12および制御回路32、42が、DC/DC変換器10およびDC/AC変換器11を制御する制御部となる。
Each of the DC / DC converters 10 and each of the DC / AC converters 11 includes control circuits 32 and 42 as will be described later, and the control unit 12 which controls the entire power conversion apparatus 100 and each control circuit 32, At 42, the DC / DC converter 10 and the DC / AC converter 11 are controlled. That is, the control unit 12 and the control circuits 32 and 42 serve as a control unit that controls the DC / DC converter 10 and the DC / AC converter 11.
上位制御装置24は、一般にEnergy Management System(EMS)と呼ばれるものに相当し、配電系統(直流配電系統27、交流配電系統28)内の電力需給に基づき、電力変換装置100あるいは直流分散電源25、26の充放電動作を制御部12に指令する。制御部12は、電力変換装置100内で検出した検出値およびDC/DC変換器10、DC/AC変換器11の状態情報を上位制御装置24に送信する。さらに、直流分散電源25、26に係る情報を制御部12で取得して上位制御装置24に送信するようにしても良い。
なお、上位制御装置24と制御部12との間の通信は有線であっても無線であっても良い。 Thehost control device 24 corresponds to what is generally called an Energy Management System (EMS), and the power conversion device 100 or the DC distributed power supply 25, based on the power supply and demand in the distribution system (DC distribution system 27, AC distribution system 28). The controller 12 is instructed to perform the charge / discharge operation of 26. The control unit 12 transmits the detection value detected in the power conversion device 100 and the state information of the DC / DC converter 10 and the DC / AC converter 11 to the upper control device 24. Furthermore, information related to the DC distributed power supplies 25 and 26 may be acquired by the control unit 12 and transmitted to the host control device 24.
The communication between thehost control device 24 and the control unit 12 may be wired or wireless.
なお、上位制御装置24と制御部12との間の通信は有線であっても無線であっても良い。 The
The communication between the
DC/DC変換器10は直流分散電源25、26と共通直流母線1との間で双方向に電力を融通するものである。絶縁型か非絶縁型かなど形式は特に問われないが、共通直流母線1が直流配電系統27の電位で規定されるため、ここでは絶縁型として説明を進める。
なお、DC/DC変換器10の電力極性と電流極性は二次から一次の向きを正とする。すなわち直流分散電源25、26からの放電を正、直流分散電源25、26への充電を負とする。 The DC /DC converter 10 bidirectionally exchanges power between the DC distributed power supplies 25 and 26 and the common DC bus 1. There is no particular limitation on the type such as insulation type or non-insulation type, but since the common DC bus 1 is defined by the potential of the DC distribution system 27, the description will be made as the insulation type here.
The power polarity and current polarity of the DC /DC converter 10 are positive in the direction from secondary to primary. That is, the discharge from the DC distributed power supplies 25 and 26 is positive, and the charge to the DC distributed power supplies 25 and 26 is negative.
なお、DC/DC変換器10の電力極性と電流極性は二次から一次の向きを正とする。すなわち直流分散電源25、26からの放電を正、直流分散電源25、26への充電を負とする。 The DC /
The power polarity and current polarity of the DC /
直流分散電源25は蓄電装置であり、例えばリチウムイオン電池等の蓄電池を用いる。電気自動車やハイブリッド自動車の蓄電池(以降ではEV蓄電池と呼ぶ)を用いても良い。つまり、直流分散電源25は電力を共通直流母線1に供給する(放電)だけでなく、共通直流母線1から供給を受ける(充電)ことが可能である。直流分散電源25は電気二重層キャパシタなど、充電と放電とが可能なものであればよい。
直流分散電源26は、例えば太陽光発電パネルである。専ら発電だけを行い、発電電力を共通直流母線1に供給する。直流分散電源26は燃料電池など直流出力で発電のみ行うものであればよい。
図1においては発電、すなわち放電のみの直流分散電源26が1個で、残りが充放電可能な直流分散電源25となっているが、これに限定されるものではなく、充放電が可能な直流分散電源25が1個以上接続されていればよい。 The DC distributedpower supply 25 is a power storage device, and uses, for example, a storage battery such as a lithium ion battery. You may use the storage battery (it calls an EV storage battery henceforth) of an electric vehicle or a hybrid vehicle. That is, the DC distributed power supply 25 can not only supply (discharge) power to the common DC bus 1 but also receive (charge) supply from the common DC bus 1. The DC distributed power supply 25 may be any one capable of charging and discharging, such as an electric double layer capacitor.
The DC distributedpower supply 26 is, for example, a solar power generation panel. Only power generation is performed, and the generated power is supplied to the common DC bus 1. The DC distributed power source 26 may be any type of fuel cell such as a fuel cell that only generates electric power by DC output.
In FIG. 1, although there is only one DC distributedpower supply 26 for power generation, that is, only discharge, and the remaining is the DC distributed power supply 25 that can be charged and discharged, it is not limited to this. One or more distributed power supplies 25 may be connected.
直流分散電源26は、例えば太陽光発電パネルである。専ら発電だけを行い、発電電力を共通直流母線1に供給する。直流分散電源26は燃料電池など直流出力で発電のみ行うものであればよい。
図1においては発電、すなわち放電のみの直流分散電源26が1個で、残りが充放電可能な直流分散電源25となっているが、これに限定されるものではなく、充放電が可能な直流分散電源25が1個以上接続されていればよい。 The DC distributed
The DC distributed
In FIG. 1, although there is only one DC distributed
DC/AC変換器11は、共通直流母線1(直流)と交流母線2(交流)との間で双方向に電力を融通するものである。ここでも、電力極性と電流極性は二次から一次の向きを正とする。すなわち交流母線2への電力供給(回生)を正、交流母線2からの電力供給(力行)を負とする。
DC/AC変換器11について、絶縁型か非絶縁型かなど形式を特に問われないが、ここでは非絶縁型であるものとして説明する。先に述べたように、共通直流母線1は直流配電系統27の電位で規定されるので、交流母線2の基準電位も直流配電系統27に規定される。一般に、直流母線(共通直流母線1)は交流配電系統28との間で絶縁が必要となるので、DC/AC変換器11が非絶縁型の場合は交流母線2が変圧器23を介して交流配電線22に接続される。 The DC /AC converter 11 bidirectionally exchanges power between the common DC bus 1 (DC) and the AC bus 2 (AC). Here also, the power polarity and the current polarity are positive in the direction from secondary to primary. That is, the power supply (regeneration) to the AC bus 2 is positive, and the power supply (powering) from the AC bus 2 is negative.
The type of the DC /AC converter 11 is not particularly limited, for example, whether it is an insulation type or non-insulation type. As described above, since the common DC bus 1 is defined by the potential of the DC distribution system 27, the reference potential of the AC bus 2 is also defined in the DC distribution system 27. In general, since the DC bus (common DC bus 1) needs to be insulated from the AC distribution system 28, when the DC / AC converter 11 is non-insulated, the AC bus 2 is AC via the transformer 23 It is connected to the distribution line 22.
DC/AC変換器11について、絶縁型か非絶縁型かなど形式を特に問われないが、ここでは非絶縁型であるものとして説明する。先に述べたように、共通直流母線1は直流配電系統27の電位で規定されるので、交流母線2の基準電位も直流配電系統27に規定される。一般に、直流母線(共通直流母線1)は交流配電系統28との間で絶縁が必要となるので、DC/AC変換器11が非絶縁型の場合は交流母線2が変圧器23を介して交流配電線22に接続される。 The DC /
The type of the DC /
直流配電系統27には直流電力が供給される直流負荷29が接続され、交流配電系統28には交流電力が供給される交流負荷30が接続されている。これらは一括して図示されているが、複数に分割されて接続されたり、変圧器を介して接続されたりしても良いのは明らかである。また、直流負荷29および交流負荷30は、電力消費するものに限定されておらず、電動機のような回生電力を発生するもの、各種蓄電池または各種小規模発電システムを含むものでも良い。
A DC load 29 to which DC power is supplied is connected to the DC distribution system 27, and an AC load 30 to which AC power is supplied is connected to the AC distribution system 28. Although these are illustrated collectively, it is obvious that they may be divided into a plurality and connected, or may be connected via a transformer. Further, the direct current load 29 and the alternating current load 30 are not limited to ones that consume power, but may be ones that generate regenerative power such as motors, various storage batteries, or various small-scale power generation systems.
図2は電力変換装置100の構成をより詳しく示す図である。
図2に示すように、電力変換装置100は、制御電源生成部14を備える。制御電源生成部14は、DC/DC変換器10とDC/AC変換器11と制御部12とに制御電源を電力線14aを介して供給する。制御電源生成部14への電源供給は共通直流母線1と交流母線2とから行う。これにより、共通直流母線1または交流母線2の少なくとも一方から電源供給可能な期間は、制御電源生成部14から制御電源の供給が可能である。
なお、共通直流母線1のみ、または交流母線2のみから電源供給してもよいし、直流接続端子3、交流接続端子4の近傍の電力線から、あるいは電力変換装置100に制御電源入力用の端子を設けて供給しても良い。
制御部12は、各DC/DC変換器10と各DC/AC変換器11に対して、電力指令12aを送信する。電力指令12aは、各DC/DC変換器10への各第1電力指令と各DC/AC変換器11への各第2電力指令とから成る。 FIG. 2 is a diagram showing the configuration of thepower conversion device 100 in more detail.
As shown in FIG. 2, thepower conversion device 100 includes a control power generation unit 14. The control power supply generation unit 14 supplies control power to the DC / DC converter 10, the DC / AC converter 11, and the control unit 12 through the power line 14a. The power supply to the control power generation unit 14 is performed from the common DC bus 1 and the AC bus 2. As a result, during a period in which power can be supplied from at least one of the common DC bus 1 and the AC bus 2, the control power can be supplied from the control power generator 14.
Note that power may be supplied from only thecommon DC bus 1 or only the AC bus 2, or from a power line in the vicinity of the DC connection terminal 3 or AC connection terminal 4, or a terminal for control power supply input to the power converter 100. It may be provided and supplied.
Thecontrol unit 12 transmits a power command 12 a to each DC / DC converter 10 and each DC / AC converter 11. The power command 12 a comprises each first power command to each DC / DC converter 10 and each second power command to each DC / AC converter 11.
図2に示すように、電力変換装置100は、制御電源生成部14を備える。制御電源生成部14は、DC/DC変換器10とDC/AC変換器11と制御部12とに制御電源を電力線14aを介して供給する。制御電源生成部14への電源供給は共通直流母線1と交流母線2とから行う。これにより、共通直流母線1または交流母線2の少なくとも一方から電源供給可能な期間は、制御電源生成部14から制御電源の供給が可能である。
なお、共通直流母線1のみ、または交流母線2のみから電源供給してもよいし、直流接続端子3、交流接続端子4の近傍の電力線から、あるいは電力変換装置100に制御電源入力用の端子を設けて供給しても良い。
制御部12は、各DC/DC変換器10と各DC/AC変換器11に対して、電力指令12aを送信する。電力指令12aは、各DC/DC変換器10への各第1電力指令と各DC/AC変換器11への各第2電力指令とから成る。 FIG. 2 is a diagram showing the configuration of the
As shown in FIG. 2, the
Note that power may be supplied from only the
The
次に、DC/DC変換器10について詳しく説明する。DC/DC変換器10は、主回路部31と、第1変換器制御部としての制御回路32とを備え、さらに、DC/DC変換器10の一次側と二次側とにそれぞれ検出器33、34を備える。
図3はDC/DC変換器10の詳細構成を示す図である。
図3に示すように、主回路部31は、一次側平滑コンデンサ35、二次側平滑コンデンサ36、一次側半導体スイッチング素子37a~37d、二次側半導体スイッチング素子38a~38d、高周波変圧器39およびフィルタリアクトル40を備える。半導体スイッチング素子37a~37d、38a~38dは、ダイオードが逆並列に接続されたIGBT(Insulated Gate Bipolar Transistor)から成る。なお、半導体スイッチング素子37a~37d、38a~38dは、MOSFET(metal-oxide-semiconductor field-effect transistor)等他の半導体素子を用いても良いのは明らかである。 Next, the DC /DC converter 10 will be described in detail. The DC / DC converter 10 includes a main circuit unit 31 and a control circuit 32 as a first converter control unit, and further, detectors 33 on the primary side and the secondary side of the DC / DC converter 10, respectively. , 34.
FIG. 3 is a diagram showing a detailed configuration of the DC /DC converter 10. As shown in FIG.
As shown in FIG. 3, themain circuit portion 31 includes a primary side smoothing capacitor 35, a secondary side smoothing capacitor 36, primary side semiconductor switching devices 37a to 37d, secondary side semiconductor switching devices 38a to 38d, a high frequency transformer 39 and the like. A filter reactor 40 is provided. The semiconductor switching elements 37a to 37d and 38a to 38d are formed of IGBTs (Insulated Gate Bipolar Transistors) in which diodes are connected in antiparallel. It is obvious that the semiconductor switching elements 37a to 37d and 38a to 38d may use other semiconductor elements such as MOSFET (metal-oxide-semiconductor field-effect transistor).
図3はDC/DC変換器10の詳細構成を示す図である。
図3に示すように、主回路部31は、一次側平滑コンデンサ35、二次側平滑コンデンサ36、一次側半導体スイッチング素子37a~37d、二次側半導体スイッチング素子38a~38d、高周波変圧器39およびフィルタリアクトル40を備える。半導体スイッチング素子37a~37d、38a~38dは、ダイオードが逆並列に接続されたIGBT(Insulated Gate Bipolar Transistor)から成る。なお、半導体スイッチング素子37a~37d、38a~38dは、MOSFET(metal-oxide-semiconductor field-effect transistor)等他の半導体素子を用いても良いのは明らかである。 Next, the DC /
FIG. 3 is a diagram showing a detailed configuration of the DC /
As shown in FIG. 3, the
一次側平滑コンデンサ35および一次側半導体スイッチング素子37a~37dは、単相インバータを構成しており、その交流出力は高周波変圧器39の一次側に接続される。二次側平滑コンデンサ36と二次側半導体スイッチング素子38a~38dも単相インバータを構成しており、その交流出力は高周波変圧器39の二次側に接続される。これにより、直流の電力を、一旦高周波交流に変換した上で高周波変圧器39で絶縁した後、再度直流に変換できる。フィルタリアクトル40は直流分散電源25、26に流れ込む高調波を抑制するものである。
この場合、高周波変圧器39の漏れインダクタンスを利用して電力変換を行うものであるが、高周波変圧器39の一次側と二次側とにそれぞれリアクトルを追加して設けても良い。
このような主回路部31を用いることで、一次側と二次側との電圧の大小関係にかかわらず、双方向に電力を変換することができる。 The primary side smoothing capacitor 35 and the primary sidesemiconductor switching elements 37 a to 37 d constitute a single-phase inverter, and the AC output thereof is connected to the primary side of the high frequency transformer 39. The secondary side smoothing capacitor 36 and the secondary side semiconductor switching elements 38a to 38d also constitute a single phase inverter, and the AC output thereof is connected to the secondary side of the high frequency transformer 39. As a result, direct-current power can be once converted into high-frequency alternating current, isolated by the high-frequency transformer 39, and then converted into direct-current again. The filter reactor 40 suppresses harmonics flowing into the DC distributed power supplies 25 and 26.
In this case, although power conversion is performed using the leakage inductance of thehigh frequency transformer 39, reactors may be additionally provided on the primary side and the secondary side of the high frequency transformer 39, respectively.
By using such amain circuit unit 31, it is possible to convert power bidirectionally regardless of the magnitude relationship between voltages on the primary side and the secondary side.
この場合、高周波変圧器39の漏れインダクタンスを利用して電力変換を行うものであるが、高周波変圧器39の一次側と二次側とにそれぞれリアクトルを追加して設けても良い。
このような主回路部31を用いることで、一次側と二次側との電圧の大小関係にかかわらず、双方向に電力を変換することができる。 The primary side smoothing capacitor 35 and the primary side
In this case, although power conversion is performed using the leakage inductance of the
By using such a
DC/DC変換器10の一次側の検出器33は、一次側の電圧、電流を検出し、二次側の検出器34は、二次側の電圧、電流を検出する。検出器33が出力する検出値33a、および検出器34が出力する検出値34aは、DC/DC変換器10の制御回路32に入力される。制御回路32では、電力変換装置100の制御部12からの電力指令12aと、DC/DC変換器10の検出値33a、34aとを用いて、主回路部31の各半導体スイッチング素子37a~37d、38a~38dのゲートに印加する電圧信号Gdを生成し、主回路部31を制御する。また、制御回路32は、検出値33a、34aを電力変換装置100の制御部12にも送信する。
なお、検出値33a、34aは、電力変換装置100の制御部12に直接入力しても良い。 Thedetector 33 on the primary side of the DC / DC converter 10 detects the voltage and current on the primary side, and the detector 34 on the secondary side detects voltage and current on the secondary side. The detection value 33 a output from the detector 33 and the detection value 34 a output from the detector 34 are input to the control circuit 32 of the DC / DC converter 10. In the control circuit 32, using the power command 12a from the control unit 12 of the power conversion device 100 and the detection values 33a and 34a of the DC / DC converter 10, the respective semiconductor switching elements 37a to 37d of the main circuit unit 31 A voltage signal Gd applied to the gates 38a to 38d is generated to control the main circuit unit 31. The control circuit 32 also transmits the detection values 33 a and 34 a to the control unit 12 of the power conversion device 100.
The detection values 33a and 34a may be directly input to thecontrol unit 12 of the power conversion device 100.
なお、検出値33a、34aは、電力変換装置100の制御部12に直接入力しても良い。 The
The detection values 33a and 34a may be directly input to the
図4は、DC/DC変換器10の制御回路32の構成を示す図である。
図4に示すように、制御回路32は、電力供給部150、電力制御部151、ゲート信号生成部152およびゲートドライバ153を備える。制御回路32は、制御電源生成部14から電力供給され、供給された電力は、電力供給部150で絶縁され所望の電圧に変換された後に、電力制御部151、ゲート信号生成部152、ゲートドライバ153に供給される。電力制御部151およびゲート信号生成部152には、一括して給電しても良い。
なお、電力供給部150では絶縁せず、ゲートドライバ153等、電力供給された後に必要に応じて絶縁したり電圧変換したりしても良い。 FIG. 4 is a diagram showing the configuration of thecontrol circuit 32 of the DC / DC converter 10. As shown in FIG.
As shown in FIG. 4, thecontrol circuit 32 includes a power supply unit 150, a power control unit 151, a gate signal generation unit 152, and a gate driver 153. The control circuit 32 is supplied with power from the control power generation unit 14, and after the power supplied is isolated by the power supply unit 150 and converted into a desired voltage, the power control unit 151, gate signal generation unit 152, gate driver It is supplied to 153. The power control unit 151 and the gate signal generation unit 152 may be collectively supplied with power.
Note that thepower supply unit 150 may not be insulated but may be insulated or voltage-converted as necessary after the power supply such as the gate driver 153 is supplied.
図4に示すように、制御回路32は、電力供給部150、電力制御部151、ゲート信号生成部152およびゲートドライバ153を備える。制御回路32は、制御電源生成部14から電力供給され、供給された電力は、電力供給部150で絶縁され所望の電圧に変換された後に、電力制御部151、ゲート信号生成部152、ゲートドライバ153に供給される。電力制御部151およびゲート信号生成部152には、一括して給電しても良い。
なお、電力供給部150では絶縁せず、ゲートドライバ153等、電力供給された後に必要に応じて絶縁したり電圧変換したりしても良い。 FIG. 4 is a diagram showing the configuration of the
As shown in FIG. 4, the
Note that the
また、制御回路32は、CPU、メモリおよび入出力インタフェースを有する回路を有して、電力制御部151およびゲート信号生成部152を含む機能が実現できる。
また、ゲートドライバ153は、主回路部31の各半導体スイッチング素子37a~37d、38a~38dに対してそれぞれ設けられるゲートドライバをまとめて記載したものである。 Further, thecontrol circuit 32 includes a circuit having a CPU, a memory, and an input / output interface, and can realize functions including the power control unit 151 and the gate signal generation unit 152.
Further, thegate driver 153 collectively describes the gate drivers provided for the respective semiconductor switching elements 37a to 37d and 38a to 38d of the main circuit portion 31.
また、ゲートドライバ153は、主回路部31の各半導体スイッチング素子37a~37d、38a~38dに対してそれぞれ設けられるゲートドライバをまとめて記載したものである。 Further, the
Further, the
電力制御部151には、制御部12からの電力指令12aである第1電力指令(電力指令値Pref)と、一次側の検出器33からの検出値33aと、二次側の検出器34からの検出値34aとが与えられる。
電力制御部151の制御出力151aはゲート信号生成部152に入力される。ゲート信号生成部152は、制御出力151aに応じて主回路部31の各半導体スイッチング素子37a~37d、38a~38dへのゲート信号Gを生成してゲートドライバ153に与える。ゲートドライバ153は、各半導体スイッチング素子37a~37d、38a~38dのゲートエミッタ間にゲート電圧(電圧信号Gd)を印加する。 In thepower control unit 151, a first power command (power command value Pref) which is the power command 12a from the control unit 12, a detection value 33a from the detector 33 on the primary side, and a detector 34 on the secondary side. And a detected value 34a of
Thecontrol output 151 a of the power control unit 151 is input to the gate signal generation unit 152. The gate signal generation unit 152 generates gate signals G for the semiconductor switching elements 37a to 37d and 38a to 38d of the main circuit unit 31 according to the control output 151a, and supplies the gate signals 153 to the gate driver 153. The gate driver 153 applies a gate voltage (voltage signal Gd) between the gate and the emitter of each of the semiconductor switching elements 37a to 37d and 38a to 38d.
電力制御部151の制御出力151aはゲート信号生成部152に入力される。ゲート信号生成部152は、制御出力151aに応じて主回路部31の各半導体スイッチング素子37a~37d、38a~38dへのゲート信号Gを生成してゲートドライバ153に与える。ゲートドライバ153は、各半導体スイッチング素子37a~37d、38a~38dのゲートエミッタ間にゲート電圧(電圧信号Gd)を印加する。 In the
The
なお、DC/DC変換器10の制御回路32は、検出器33、34の検出値33a、34aを電力変換装置100の制御部12へ送信し、さらに過電圧や過電流を検知して全ての半導体スイッチング素子37a~37d、38a~38dをオフさせる全ゲート遮断信号をゲートドライバ153に与える等、図示されていない機能も有する。
The control circuit 32 of the DC / DC converter 10 transmits the detection values 33a and 34a of the detectors 33 and 34 to the control unit 12 of the power conversion device 100, and further detects all over voltage and over current. It also has a function (not shown) such as giving to the gate driver 153 an all gate cutoff signal for turning off the switching elements 37a to 37d and 38a to 38d.
図5は、電力制御部151の構成例を示すブロック図である。第1電力指令Prefは除算器154にて電圧検出値Vにより除算される。除算器154の出力は電流指令値に相当しており、減算器155へ入力される。減算器155は、入力された電流指令値と電流検出値Iとの偏差を出力し、その出力が電流制御器(PI)156に入力される。電流制御器156は、例えば比例積分制御器であり、入力された偏差が小さくなるように制御出力151aを生成し、電力制御部151の出力とする。制御出力151aは、例えば、一次側と二次側の位相シフト量である。
なお、電圧検出値V、電流検出値Iは、DC/DC変換器10の一次側の検出器33の検出値33a、あるいは二次側の検出器34の検出値34aである。検出値33aを使用すれば一次側の電力を制御することになり、検出値34aを使用すれば二次側の電力を制御することになる。 FIG. 5 is a block diagram showing a configuration example of thepower control unit 151. As shown in FIG. First power command Pref is divided by voltage detection value V in divider 154. The output of the divider 154 corresponds to the current command value and is input to the subtractor 155. The subtractor 155 outputs the deviation between the input current command value and the current detection value I, and the output is input to the current controller (PI) 156. The current controller 156 is, for example, a proportional integral controller, and generates a control output 151 a so as to reduce the input deviation, and uses it as an output of the power control unit 151. The control output 151a is, for example, phase shift amounts on the primary side and the secondary side.
The voltage detection value V and the current detection value I are thedetection value 33a of the detector 33 on the primary side of the DC / DC converter 10 or the detection value 34a of the detector 34 on the secondary side. If the detection value 33a is used, the power on the primary side is controlled, and if the detection value 34a is used, the power on the secondary side is controlled.
なお、電圧検出値V、電流検出値Iは、DC/DC変換器10の一次側の検出器33の検出値33a、あるいは二次側の検出器34の検出値34aである。検出値33aを使用すれば一次側の電力を制御することになり、検出値34aを使用すれば二次側の電力を制御することになる。 FIG. 5 is a block diagram showing a configuration example of the
The voltage detection value V and the current detection value I are the
次に、DC/AC変換器11について詳しく説明する。DC/AC変換器11は、図2に示すように、主回路部41と、第2変換器制御部としての制御回路42とを備え、さらに、DC/AC変換器11の一次側と二次側とにそれぞれ検出器43、44を備える。
図6はDC/AC変換器11の詳細構成を示す図である。
図6に示すように、主回路部41は、平滑コンデンサ45、半導体スイッチング素子46a~46f、出力フィルタ47で構成される。
半導体スイッチング素子46a~46fは、ダイオードが逆並列に接続されたIGBTから成る。なお、半導体スイッチング素子46a~46fは、MOSFET等他の半導体素子を用いても良い。 Next, the DC /AC converter 11 will be described in detail. As shown in FIG. 2, the DC / AC converter 11 includes a main circuit unit 41 and a control circuit 42 as a second converter control unit, and further includes a primary side of the DC / AC converter 11 and a secondary side. Each side is provided with a detector 43, 44 respectively.
FIG. 6 is a diagram showing a detailed configuration of the DC /AC converter 11. As shown in FIG.
As shown in FIG. 6, themain circuit unit 41 is composed of a smoothing capacitor 45, semiconductor switching elements 46a to 46f, and an output filter 47.
Thesemiconductor switching elements 46a to 46f are IGBTs whose diodes are connected in antiparallel. The semiconductor switching elements 46a to 46f may use other semiconductor elements such as MOSFETs.
図6はDC/AC変換器11の詳細構成を示す図である。
図6に示すように、主回路部41は、平滑コンデンサ45、半導体スイッチング素子46a~46f、出力フィルタ47で構成される。
半導体スイッチング素子46a~46fは、ダイオードが逆並列に接続されたIGBTから成る。なお、半導体スイッチング素子46a~46fは、MOSFET等他の半導体素子を用いても良い。 Next, the DC /
FIG. 6 is a diagram showing a detailed configuration of the DC /
As shown in FIG. 6, the
The
出力フィルタ47は、主回路部41の出力と交流母線2との電位差を受け持ち、半導体スイッチング素子46a~46fのスイッチングに起因する高周波成分を除去する。この出力フィルタ47は、例えば、図7に示すように、ACリアクトル51、フィルタリアクトル52、フィルタコンデンサ53、ダンピング抵抗54で構成される。ACリアクトル51とフィルタリアクトル52とが接続され、ACリアクトル51の他端は半導体スイッチング素子46a~46fに接続され、フィルタリアクトル52の他端は交流母線2に接続される。
The output filter 47 receives the potential difference between the output of the main circuit portion 41 and the AC bus 2, and removes high frequency components resulting from the switching of the semiconductor switching elements 46a to 46f. For example, as shown in FIG. 7, the output filter 47 includes an AC reactor 51, a filter reactor 52, a filter capacitor 53, and a damping resistor 54. AC reactor 51 and filter reactor 52 are connected, the other end of AC reactor 51 is connected to semiconductor switching elements 46 a to 46 f, and the other end of filter reactor 52 is connected to AC bus 2.
このような主回路部41を用いることで、共通直流母線1(直流)と交流母線2(交流)との間で双方向に有効電力を変換することができる。また、交流母線2に無効電力を供給することもできる。なお、一次側に正弦波に近い電流を流すためには、共通直流母線1の電圧が交流母線2の線間電圧振幅よりも大きい必要がある。
By using such a main circuit unit 41, it is possible to convert active power bidirectionally between the common DC bus 1 (DC) and the AC bus 2 (AC). Also, reactive power can be supplied to the AC bus 2. In order to flow a current close to a sine wave on the primary side, the voltage of the common DC bus 1 needs to be larger than the line voltage amplitude of the AC bus 2.
DC/AC変換器11の一次側の検出器43は、一次側の電圧、電流を検出する。一次側は交流であるから、力率の検出器を設けてもよい。DC/AC変換器11の二次側の検出器44は、二次側の電圧、電流を検出する。検出器43が出力する検出値43a、および検出器44が出力する検出値44aは、DC/AC変換器11の制御回路42に入力される。制御回路42では、電力変換装置100の制御部12からの電力指令12aと、DC/AC変換器11の検出値43a、44aとを用いて、主回路部41の各半導体スイッチング素子46a~46fのゲートに印加する電圧信号Gdを生成し、主回路部41を制御する。また、制御回路42は、検出値43a、44aを電力変換装置100の制御部12にも送信する。
なお、検出値43a、44aは、電力変換装置100の制御部12に直接入力しても良い。 Thedetector 43 on the primary side of the DC / AC converter 11 detects the voltage and current on the primary side. Since the primary side is an alternating current, a power factor detector may be provided. The detector 44 on the secondary side of the DC / AC converter 11 detects the voltage and current on the secondary side. The detected value 43 a output from the detector 43 and the detected value 44 a output from the detector 44 are input to the control circuit 42 of the DC / AC converter 11. The control circuit 42 uses the power command 12 a from the control unit 12 of the power conversion device 100 and the detection values 43 a and 44 a of the DC / AC converter 11 to select the semiconductor switching elements 46 a to 46 f of the main circuit unit 41. A voltage signal Gd to be applied to the gate is generated to control the main circuit unit 41. The control circuit 42 also transmits the detection values 43 a and 44 a to the control unit 12 of the power conversion device 100.
The detection values 43a and 44a may be directly input to thecontrol unit 12 of the power conversion device 100.
なお、検出値43a、44aは、電力変換装置100の制御部12に直接入力しても良い。 The
The detection values 43a and 44a may be directly input to the
図8は、DC/AC変換器11の制御回路42の構成を示す図である。
図8に示すように、制御回路42は、電力供給部160、電力制御部161、ゲート信号生成部162およびゲートドライバ163を備える。制御回路42は、制御電源生成部14から電力供給され、供給された電力は、電力供給部160で絶縁され所望の電圧に変換された後に、電力制御部161、ゲート信号生成部162、ゲートドライバ163に供給される。電力制御部161およびゲート信号生成部162には、一括して給電しても良い。
なお、電力供給部160では絶縁せず、ゲートドライバ163等、電力供給された後に必要に応じて絶縁したり電圧変換したりしても良い。 FIG. 8 is a diagram showing the configuration of thecontrol circuit 42 of the DC / AC converter 11. As shown in FIG.
As shown in FIG. 8, thecontrol circuit 42 includes a power supply unit 160, a power control unit 161, a gate signal generation unit 162, and a gate driver 163. The control circuit 42 is supplied with power from the control power generation unit 14, and after the power supplied is isolated by the power supply unit 160 and converted into a desired voltage, the power control unit 161, the gate signal generation unit 162, and the gate driver It is supplied to 163. The power control unit 161 and the gate signal generation unit 162 may be collectively supplied with power.
Note that thepower supply unit 160 may not be insulated but may be insulated or voltage-converted as necessary after the power is supplied to the gate driver 163 or the like.
図8に示すように、制御回路42は、電力供給部160、電力制御部161、ゲート信号生成部162およびゲートドライバ163を備える。制御回路42は、制御電源生成部14から電力供給され、供給された電力は、電力供給部160で絶縁され所望の電圧に変換された後に、電力制御部161、ゲート信号生成部162、ゲートドライバ163に供給される。電力制御部161およびゲート信号生成部162には、一括して給電しても良い。
なお、電力供給部160では絶縁せず、ゲートドライバ163等、電力供給された後に必要に応じて絶縁したり電圧変換したりしても良い。 FIG. 8 is a diagram showing the configuration of the
As shown in FIG. 8, the
Note that the
また、制御回路42は、CPU、メモリおよび入出力インタフェースを有する回路を有して、電力制御部161およびゲート信号生成部162を含む機能が実現できる。
また、ゲートドライバ163は、主回路部41の各半導体スイッチング素子46a~46fに対してそれぞれ設けられるゲートドライバをまとめて記載したものである。 Further, thecontrol circuit 42 includes a circuit having a CPU, a memory, and an input / output interface, and can realize functions including the power control unit 161 and the gate signal generation unit 162.
Further, thegate driver 163 collectively describes the gate driver provided for each of the semiconductor switching elements 46a to 46f of the main circuit portion 41.
また、ゲートドライバ163は、主回路部41の各半導体スイッチング素子46a~46fに対してそれぞれ設けられるゲートドライバをまとめて記載したものである。 Further, the
Further, the
電力制御部161には、制御部12からの電力指令12aである第2電力指令(有効電力指令値Pref、無効電力指令値Qref)と、一次側の検出器43からの検出値43aと、二次側の検出器44からの検出値44aとが与えられる。
電力制御部161の制御出力161aはゲート信号生成部162に入力される。ゲート信号生成部162は、制御出力161aに応じて主回路部41の各半導体スイッチング素子46a~46fへのゲート信号Gを生成してゲートドライバ163に与える。ゲートドライバ163は、各半導体スイッチング素子46a~46fのゲートエミッタ間にゲート電圧(電圧信号Gd)を印加する。 Thepower control unit 161 includes a second power command (active power command value Pref, reactive power command value Qref) which is the power command 12a from the control unit 12, a detection value 43a from the detector 43 on the primary side, and A detection value 44a from the detector 44 on the next side is given.
Thecontrol output 161 a of the power control unit 161 is input to the gate signal generation unit 162. The gate signal generation unit 162 generates a gate signal G to each of the semiconductor switching elements 46a to 46f of the main circuit unit 41 according to the control output 161a, and supplies the gate signal G to the gate driver 163. The gate driver 163 applies a gate voltage (voltage signal Gd) between the gate emitters of the semiconductor switching elements 46a to 46f.
電力制御部161の制御出力161aはゲート信号生成部162に入力される。ゲート信号生成部162は、制御出力161aに応じて主回路部41の各半導体スイッチング素子46a~46fへのゲート信号Gを生成してゲートドライバ163に与える。ゲートドライバ163は、各半導体スイッチング素子46a~46fのゲートエミッタ間にゲート電圧(電圧信号Gd)を印加する。 The
The
なお、DC/AC変換器11の制御回路42は、検出器43、44の検出値43a、44a、また一次側の周波数、力率を、電力変換装置100の制御部12へ送信し、さらに過電圧や過電流を検知して全ての半導体スイッチング素子46a~46fをオフさせる全ゲート遮断信号をゲートドライバ163に与える等、図示されていない機能も有する。
The control circuit 42 of the DC / AC converter 11 transmits the detection values 43a and 44a of the detectors 43 and 44, and the frequency and power factor of the primary side to the control unit 12 of the power converter 100, and further performs overvoltage. It also has a function (not shown) such as giving to the gate driver 163 an all gate cut-off signal for detecting an overcurrent and turning off all the semiconductor switching elements 46a to 46f.
図9は、電力制御部161の構成例を示すブロック図である。第2電力指令Pref、Qrefは、除算器164にて電圧検出値Vにより除算される。除算器164の出力は有効電流指令値、無効電流指令値に相当しており、減算器165へ入力される。減算器165は、入力された有効電流指令値、無効電流指令値と有効電流検出値Ip、無効電流検出値Iqとの偏差を出力し、その出力が電流制御器(PI)166に入力される。電流制御器166は、例えば比例積分制御器であり、入力された偏差が小さくなるように制御出力161aを生成し、電力制御部161の出力とする。制御出力161aは、通常、交流電圧指令値である。
FIG. 9 is a block diagram showing a configuration example of the power control unit 161. As shown in FIG. Second power command Pref, Qref is divided by voltage detection value V in divider 164. The output of the divider 164 corresponds to the active current command value and the reactive current command value, and is input to the subtractor 165. The subtractor 165 outputs the deviation between the input effective current command value, reactive current command value and effective current detection value Ip, reactive current detection value Iq, and the output is input to the current controller (PI) 166. . The current controller 166 is, for example, a proportional integral controller, and generates a control output 161 a so as to reduce the input deviation, and uses it as an output of the power control unit 161. The control output 161a is usually an AC voltage command value.
なお、DC/AC変換器11の一次側の検出器43の検出値43aである電圧検出値V、電流検出値Iを使用し、電圧検出値Vの位相と電流検出値Iとから有効電流検出値Ip、無効電流検出値Iqを求める。このように、一次側の電圧検出値Vおよび有効電流検出値Ip、無効電流検出値Iqを用いて一次側の有効電力と無効電力を制御する。
ゲート信号生成部162は、電力制御部161からの制御出力161aである交流電圧指令値と三角波キャリアを比較してPWM(Pulse Width Modulation)によりゲート信号Gを生成する。 In addition, using the voltage detection value V and the current detection value I which aredetection values 43a of the detector 43 on the primary side of the DC / AC converter 11, effective current detection from the phase of the voltage detection value V and the current detection value I The value Ip and the reactive current detection value Iq are obtained. As described above, the primary side active power and reactive power are controlled using the voltage detection value V on the primary side, the active current detection value Ip, and the reactive current detection value Iq.
The gatesignal generation unit 162 compares the AC voltage command value, which is the control output 161 a from the power control unit 161, with the triangular wave carrier, and generates a gate signal G by PWM (Pulse Width Modulation).
ゲート信号生成部162は、電力制御部161からの制御出力161aである交流電圧指令値と三角波キャリアを比較してPWM(Pulse Width Modulation)によりゲート信号Gを生成する。 In addition, using the voltage detection value V and the current detection value I which are
The gate
次に、電力変換装置100の機能と動作について説明する。簡単のため、電力変換装置100は、図10に示すように、2つのDC/DC変換器10(10a、10b)と、1つのDC/AC変換器11を有するものを例とする。DC/DC変換器10a、10bは各々、充放電可能な直流分散電源25a、25bと接続されている。
DC/DC変換器10a、10bの出力電力をP10a、P10bとし、DC/AC変換器11の出力電力をP11とする。上述したように、電力極性と電流極性は二次から一次の向きを正とする。
また、直流接続端子3からの出力電力をPdc、交流接続端子4からの出力有効電力をPacとする。この場合、交流接続端子4から無効電力を出力させない。したがって、DC/AC変換器11の制御回路42において、電力制御部161に入力される無効電力指令値Qrefは0とする。 Next, the function and operation of thepower conversion device 100 will be described. For the sake of simplicity, as shown in FIG. 10, the power conversion apparatus 100 has two DC / DC converters 10 (10a, 10b) and one DC / AC converter 11 as an example. The DC / DC converters 10a and 10b are connected to the chargeable / dischargeable DC distributed power supplies 25a and 25b, respectively.
The output powers of the DC / DC converters 10a and 10b are P10a and P10b, and the output power of the DC / AC converter 11 is P11. As described above, the power polarity and the current polarity are positive in the secondary to primary directions.
Further, the output power from theDC connection terminal 3 is Pdc, and the output active power from the AC connection terminal 4 is Pac. In this case, reactive power is not output from the AC connection terminal 4. Therefore, in the control circuit 42 of the DC / AC converter 11, the reactive power command value Qref input to the power control unit 161 is 0.
DC/DC変換器10a、10bの出力電力をP10a、P10bとし、DC/AC変換器11の出力電力をP11とする。上述したように、電力極性と電流極性は二次から一次の向きを正とする。
また、直流接続端子3からの出力電力をPdc、交流接続端子4からの出力有効電力をPacとする。この場合、交流接続端子4から無効電力を出力させない。したがって、DC/AC変換器11の制御回路42において、電力制御部161に入力される無効電力指令値Qrefは0とする。 Next, the function and operation of the
The output powers of the DC /
Further, the output power from the
制御部12は、各DC/DC変換器10a、10bとDC/AC変換器11に対して、電力指令12aである、各DC/DC変換器10a、10bへの第1電力指令とDC/AC変換器11への第2電力指令とを送信する。この実施の形態では、各DC/DC変換器10a、10bへの第1電力指令およびDC/AC変換器11への第2電力指令は、上位制御装置24からの上位制御指令24aとして制御部12が受信し、制御部12は受信した第1電力指令、第2電力指令を各DC/DC変換器10a、10bとDC/AC変換器11に送信する。
The control unit 12 controls the DC / DC converters 10a and 10b and the DC / AC converter 11 with the first power command and DC / AC for the DC / DC converters 10a and 10b, which are the power commands 12a. The second power command to the converter 11 is transmitted. In this embodiment, the first power command to each of the DC / DC converters 10a and 10b and the second power command to the DC / AC converter 11 are controlled by the control unit 12 as a higher control command 24a from the higher control device 24. , And the control unit 12 transmits the received first power command and second power command to the respective DC / DC converters 10 a and 10 b and the DC / AC converter 11.
また、電力変換装置100は、各DC/DC変換器10a、10bおよびDC/AC変換器11の動作により、接続端子間、すなわち直流接続端子3、交流接続端子4、および、この場合2組の分散電源接続端子13の間で電力授受する複数の動作モードを備える。この複数の動作モードは、分散電源接続端子13と直流接続端子3との間で電力授受する第1電力授受モード、分散電源接続端子13と交流接続端子4との間で電力授受する第2電力授受モード、直流接続端子3と交流接続端子4との間で電力授受する第3電力授受モード、および複数の分散電源接続端子13間で電力授受する第4電力授受モードである。
各動作モードは、共通直流母線1を介して上記接続端子間で電力授受する動作モードであり、この4種の動作モードは、同時に2以上の組み合わせ可能に決定される。 Further, thepower conversion device 100 operates between the DC / DC converters 10a and 10b and the DC / AC converter 11 to connect between the connection terminals, that is, the DC connection terminal 3, the AC connection terminal 4, and in this case, two sets. A plurality of operation modes for exchanging power between distributed power supply connection terminals 13 are provided. The plurality of operation modes are a first power transfer mode for transferring power between the distributed power connection terminal 13 and the DC connection terminal 3, and a second power for transferring power between the distributed power connection terminal 13 and the alternating current connection terminal 4. A transfer mode, a third power transfer mode in which power is transferred between the DC connection terminal 3 and the AC connection terminal 4, and a fourth power transfer mode in which power is transferred between the plurality of distributed power supply connection terminals 13.
Each operation mode is an operation mode in which power is exchanged between the connection terminals via thecommon DC bus 1, and these four operation modes are simultaneously determined in combination of two or more.
各動作モードは、共通直流母線1を介して上記接続端子間で電力授受する動作モードであり、この4種の動作モードは、同時に2以上の組み合わせ可能に決定される。 Further, the
Each operation mode is an operation mode in which power is exchanged between the connection terminals via the
共通直流母線1は直流接続端子3に直接接続されているため、共通直流母線1での電力の過不足は直流接続端子3からの出力電力Pdcで賄われる。
すなわち、電力授受の中継を担う共通直流母線1の電力の入出力和は0であり、図10の構成では、
P10a+P10b-P11-Pdc=0
となる。 Since thecommon DC bus 1 is directly connected to the DC connection terminal 3, excess or deficiency of power in the common DC bus 1 can be covered by the output power Pdc from the DC connection 3.
That is, the input / output sum of the power ofcommon DC bus 1 responsible for relaying of power transfer is 0, and in the configuration of FIG.
P10a + P10b-P11-Pdc = 0
It becomes.
すなわち、電力授受の中継を担う共通直流母線1の電力の入出力和は0であり、図10の構成では、
P10a+P10b-P11-Pdc=0
となる。 Since the
That is, the input / output sum of the power of
P10a + P10b-P11-Pdc = 0
It becomes.
まず、電力変換装置100の動作において、電力変換装置100が、直流接続端子3から直流配電線21へ電力(10kW)を供給する4種の場合(X-1、X-2、X-3、X-4)について、図11に基づいて以下に説明する。
図11は、4種の場合(X-1、X-2、X-3、X-4)について、各部の電力分担を示す図である。理想的な動作を仮定すると、P10a、P10bは、DC/DC変換器10a、10bへの第1電力指令と同じであり、P11は、DC/AC変換器11への第2電力指令と同じである。
またこの場合、Pdc=10kW、となる。さらに、Pac=ΣP11、であるが、DC/AC変換器11は1台であるため、この場合、Pac=P11、となる。 First, in the operation of thepower conversion device 100, in the four cases where the power conversion device 100 supplies power (10 kW) from the DC connection terminal 3 to the DC distribution line 21 (X-1, X-2, X-3, X-4) will be described below with reference to FIG.
FIG. 11 is a diagram showing power sharing of each part in four types of cases (X-1, X-2, X-3, X-4). Assuming an ideal operation, P10a, P10b are the same as the first power command to the DC / DC converters 10a, 10b, and P11 is the same as the second power command to the DC / AC converter 11. is there.
In this case, Pdc = 10 kW. Furthermore, Pac = ΣP11, but since there is one DC /AC converter 11, Pac = P11 in this case.
図11は、4種の場合(X-1、X-2、X-3、X-4)について、各部の電力分担を示す図である。理想的な動作を仮定すると、P10a、P10bは、DC/DC変換器10a、10bへの第1電力指令と同じであり、P11は、DC/AC変換器11への第2電力指令と同じである。
またこの場合、Pdc=10kW、となる。さらに、Pac=ΣP11、であるが、DC/AC変換器11は1台であるため、この場合、Pac=P11、となる。 First, in the operation of the
FIG. 11 is a diagram showing power sharing of each part in four types of cases (X-1, X-2, X-3, X-4). Assuming an ideal operation, P10a, P10b are the same as the first power command to the DC /
In this case, Pdc = 10 kW. Furthermore, Pac = ΣP11, but since there is one DC /
ケースX-1では、DC/DC変換器10a、10bに各5kWの第1電力指令(電力指令値Pref)、DC/AC変換器11に0kWの第2電力指令(有効電力指令値Pref)が与えられる。各DC/DC変換器10a、10bの制御回路32では、電力指令値Pref(5kW)が入力され、各直流分散電源25a、25bから共通直流母線1に各5kWが放電されるよう、各主回路部31へのゲート信号Gを生成する。
DC/AC変換器11の制御回路42では、有効電力指令値Pref(0kW)が入力され、主回路部41が交流母線2に有効電力を出力しないよう、主回路部41へのゲート信号Gを生成する。このとき、直流分散電源25a、25bから各5kWの電力が直流配電線21に供給される。 In Case X-1, the DC / DC converters 10a and 10b have the first power command (power command value Pref) of 5 kW and the second power command (active power command value Pref) of 0 kW in the DC / AC converter 11. Given. Power control value Pref (5 kW) is input to the control circuit 32 of each DC / DC converter 10a, 10b, and each main circuit is discharged so that each 5kW is discharged to the common DC bus 1 from each DC distributed power supply 25a, 25b. The gate signal G to the unit 31 is generated.
Active power command value Pref (0 kW) is input to controlcircuit 42 of DC / AC converter 11, and gate signal G to main circuit unit 41 is output so that main circuit unit 41 does not output active power to AC bus 2 Generate At this time, power of 5 kW each is supplied to the DC distribution line 21 from the DC distributed power supplies 25 a and 25 b.
DC/AC変換器11の制御回路42では、有効電力指令値Pref(0kW)が入力され、主回路部41が交流母線2に有効電力を出力しないよう、主回路部41へのゲート信号Gを生成する。このとき、直流分散電源25a、25bから各5kWの電力が直流配電線21に供給される。 In Case X-1, the DC /
Active power command value Pref (0 kW) is input to control
このケースX-1では、電力変換装置100は、分散電源接続端子13と直流接続端子3との間で電力授受する第1電力授受モードのみで動作する。そして、2組の分散電源接続端子13の各組から直流接続端子3の方向に、それぞれ5kW、合計10kWの電力授受が行われる。
In the case X-1, the power conversion device 100 operates only in the first power transfer mode in which power is transferred between the distributed power connection terminal 13 and the DC connection terminal 3. Then, a total of 10 kW of power transfer of 5 kW is performed in the direction of the DC connection terminal 3 from each set of the two distributed power supply connection terminals 13.
ケースX-2では、DC/DC変換器10a、10bに5kW、0kWの第1電力指令(電力指令値Pref)、DC/AC変換器11に-5kWの第2電力指令(有効電力指令値Pref)が与えられる。DC/DC変換器10aでは、電力指令値Pref(5kW)が制御回路32に入力され、制御回路32は、直流分散電源25aから共通直流母線1に5kWが放電されるよう、主回路部31へのゲート信号Gを生成する。DC/DC変換器10bでは、電力指令値Pref(0kW)が制御回路32に入力され、制御回路32は、直流分散電源25bが充放電しないよう、主回路部31へのゲート信号Gを生成する。
DC/AC変換器11の制御回路42では、有効電力指令値Pref(-5kW)が入力され、交流母線2から共通直流母線1に電力を供給するよう、主回路部41へのゲート信号Gを生成する。このとき、直流分散電源25a、交流配電線22から各5kWの電力が直流配電線21に供給される。 In Case X-2, the first power command (power command value Pref) of 5 kW and 0 kW for the DC / DC converters 10a and 10b, and the second power command (active power command value Pref) for the DC / AC converter 11 ) Is given. In the DC / DC converter 10a, the power command value Pref (5 kW) is input to the control circuit 32, and the control circuit 32 transmits to the main circuit unit 31 such that 5 kW is discharged from the DC distributed power supply 25a to the common DC bus 1. To generate a gate signal G of In the DC / DC converter 10b, the power command value Pref (0 kW) is input to the control circuit 32, and the control circuit 32 generates a gate signal G to the main circuit unit 31 so as not to charge and discharge the DC distributed power supply 25b. .
Thecontrol circuit 42 of the DC / AC converter 11 receives the active power command value Pref (-5 kW), and supplies the gate signal G to the main circuit unit 41 so as to supply power from the AC bus 2 to the common DC bus 1. Generate At this time, electric power of 5 kW is supplied to the DC distribution line 21 from the DC distributed power supply 25 a and the AC distribution line 22.
DC/AC変換器11の制御回路42では、有効電力指令値Pref(-5kW)が入力され、交流母線2から共通直流母線1に電力を供給するよう、主回路部41へのゲート信号Gを生成する。このとき、直流分散電源25a、交流配電線22から各5kWの電力が直流配電線21に供給される。 In Case X-2, the first power command (power command value Pref) of 5 kW and 0 kW for the DC /
The
このケースX-2では、電力変換装置100は、分散電源接続端子13と直流接続端子3との間で電力授受する第1電力授受モードと、直流接続端子3と交流接続端子4との間で電力授受する第3電力授受モードとの組み合わせで動作する。そして、第1電力授受モードにより、1組の分散電源接続端子13から直流接続端子3の方向に5kWの電力授受が行われ、第3電力授受モードにより、交流接続端子4から直流接続端子3の方向に5kWの電力授受が行われ、合計10kWの電力が直流接続端子3から出力される。
In this case X-2, the power conversion device 100 performs the first power transfer mode in which power is transferred between the distributed power connection terminal 13 and the DC connection terminal 3, and between the DC connection terminal 3 and the AC connection terminal 4. It operates in combination with the third power transfer mode for transferring power. Then, in the first power transfer mode, 5 kW of power transfer is performed in the direction from one set of dispersed power supply connection terminals 13 to the DC connection terminal 3, and in the third power transfer mode, the AC connection terminals 4 to DC connection terminals 3 are Power of 5 kW is transferred in the direction, and a total of 10 kW of power is output from the DC connection terminal 3.
ケースX-3では、DC/DC変換器10a、10bに各0kWの第1電力指令(電力指令値Pref)、DC/AC変換器11に-10kWの第2電力指令(有効電力指令値Pref)が与えられる。
各DC/DC変換器10a、10bの制御回路32では、電力指令値Pref(0kW)が入力され、直流分散電源25a、25bが充放電しないよう、主回路部31へのゲート信号Gを生成する。
DC/AC変換器11の制御回路42では、有効電力指令値Pref(-10kW)が入力され、交流母線2から共通直流母線1に電力を供給するよう、主回路部41へのゲート信号Gを生成する。このとき、交流配電線22から10kWの電力が直流配電線21に供給される。 In Case X-3, the first power command (power command value Pref) of 0 kW for the DC / DC converters 10a and 10b, and the second power command (active power command value Pref) for the DC / AC converter 11 Is given.
Thecontrol circuit 32 of each DC / DC converter 10a, 10b receives the power command value Pref (0 kW), and generates a gate signal G to the main circuit unit 31 so that the DC distributed power supplies 25a, 25b are not charged or discharged. .
Thecontrol circuit 42 of the DC / AC converter 11 receives the active power command value Pref (−10 kW) and supplies the gate signal G to the main circuit unit 41 to supply power from the AC bus 2 to the common DC bus 1. Generate At this time, 10 kW of power is supplied from the AC distribution line 22 to the DC distribution line 21.
各DC/DC変換器10a、10bの制御回路32では、電力指令値Pref(0kW)が入力され、直流分散電源25a、25bが充放電しないよう、主回路部31へのゲート信号Gを生成する。
DC/AC変換器11の制御回路42では、有効電力指令値Pref(-10kW)が入力され、交流母線2から共通直流母線1に電力を供給するよう、主回路部41へのゲート信号Gを生成する。このとき、交流配電線22から10kWの電力が直流配電線21に供給される。 In Case X-3, the first power command (power command value Pref) of 0 kW for the DC /
The
The
このケースX-3では、電力変換装置100は、直流接続端子3と交流接続端子4との間で電力授受する第3電力授受モードのみで動作する。そして、第3電力授受モードにより、交流接続端子4から直流接続端子3の方向に10kWの電力授受が行われ、合計10kWの電力が直流接続端子3から出力される。
In this case X-3, the power conversion device 100 operates only in the third power transfer mode in which power is transferred between the DC connection terminal 3 and the AC connection terminal 4. Then, in the third power transfer mode, power transfer of 10 kW is performed from the AC connection terminal 4 toward the DC connection terminal 3, and a total of 10 kW of power is output from the DC connection terminal 3.
ケースX-4では、DC/DC変換器10a、10bに5kW、-5kWの第1電力指令(電力指令値Pref)、DC/AC変換器11に-10kWの第2電力指令(有効電力指令値Pref)が与えられる。DC/DC変換器10aでは、電力指令値Pref(5kW)が制御回路32に入力され、制御回路32は、直流分散電源25aから共通直流母線1に5kWが放電されるよう、主回路部31へのゲート信号Gを生成する。DC/DC変換器10bでは、電力指令値Pref(-5kW)が制御回路32に入力され、制御回路32は、直流分散電源25bが共通直流母線1から5kWが充電されるよう、主回路部31へのゲート信号Gを生成する。
In Case X-4, the first power command (power command value Pref) of 5 kW and -5 kW for the DC / DC converters 10a and 10b, and the second power command (active power command value for -10 kW for the DC / AC converter 11) Pref) is given. In the DC / DC converter 10a, the power command value Pref (5 kW) is input to the control circuit 32, and the control circuit 32 transmits to the main circuit unit 31 such that 5 kW is discharged from the DC distributed power supply 25a to the common DC bus 1. To generate a gate signal G of In the DC / DC converter 10b, the power command value Pref (-5 kW) is input to the control circuit 32, and the control circuit 32 is configured such that the DC distributed power supply 25b charges 5 kW from the common DC bus 1 To generate a gate signal G.
DC/AC変換器11の制御回路42では、有効電力指令値Pref(-10kW)が入力され、交流母線2から共通直流母線1に電力を供給するよう、主回路部41へのゲート信号Gを生成する。
このとき、直流分散電源25aから5kWの電力、交流配電線22から10kWの電力がそれぞれ共通直流母線1に供給され、共通直流母線1から、直流分散電源25bに5kWの電力が供給されると共に、10kWの電力が直流配電線21に供給される。 Thecontrol circuit 42 of the DC / AC converter 11 receives the active power command value Pref (−10 kW) and supplies the gate signal G to the main circuit unit 41 to supply power from the AC bus 2 to the common DC bus 1. Generate
At this time, 5 kW of power from the DC distributed power supply 25a and 10 kW of power from the AC distribution line 22 are supplied to the common DC bus 1, and 5 kW of power is supplied from the common DC bus 1 to the DC distributed power supply 25b, Power of 10 kW is supplied to the DC distribution line 21.
このとき、直流分散電源25aから5kWの電力、交流配電線22から10kWの電力がそれぞれ共通直流母線1に供給され、共通直流母線1から、直流分散電源25bに5kWの電力が供給されると共に、10kWの電力が直流配電線21に供給される。 The
At this time, 5 kW of power from the DC distributed
このケースX-4では、電力変換装置100は、直流接続端子3と交流接続端子4との間で電力授受する第3電力授受モードと、2組の分散電源接続端子13間で電力授受する第4電力授受モードとの組み合わせで動作する。
また、電力授受の中継を担う共通直流母線1の入出力和が0になれば良いため、上記動作モードの組み合わせに限らず、例えば、分散電源接続端子13と直流接続端子3との間で電力授受する第1電力授受モードと、分散電源接続端子13と交流接続端子4との間で電力授受する第2電力授受モードと、第3電力授受モードとの組み合わせであっても良い。さらに、第1電力授受モードと、第2電力授受モードと、第3電力授受モードと、第4電力授受モードとを組み合わせた動作とすることもできる。 In this case X-4, thepower conversion device 100 performs a third power transfer mode in which power is transferred between the DC connection terminal 3 and the AC connection terminal 4 and a power transfer mode in which power is transferred between two sets of distributed power connection terminals 13. 4 Operate in combination with the power transfer mode.
Also, since the sum of the input and output of thecommon DC bus 1 responsible for relaying transmission and reception of power need only be 0, the power is not limited to the combination of the operation modes described above. It may be a combination of a first power transfer mode to transfer, a second power transfer mode to transfer power between the distributed power connection terminal 13 and the AC connection terminal 4, and a third power transfer mode. Furthermore, the first power transfer mode, the second power transfer mode, the third power transfer mode, and the fourth power transfer mode can be combined.
また、電力授受の中継を担う共通直流母線1の入出力和が0になれば良いため、上記動作モードの組み合わせに限らず、例えば、分散電源接続端子13と直流接続端子3との間で電力授受する第1電力授受モードと、分散電源接続端子13と交流接続端子4との間で電力授受する第2電力授受モードと、第3電力授受モードとの組み合わせであっても良い。さらに、第1電力授受モードと、第2電力授受モードと、第3電力授受モードと、第4電力授受モードとを組み合わせた動作とすることもできる。 In this case X-4, the
Also, since the sum of the input and output of the
次に、電力変換装置100が、交流配電線22から交流接続端子4を介して電力(10kW)を受電する4種の場合(Y-1、Y-2、Y-3、Y-4)について、図12に基づいて以下に説明する。
図12は、4種の場合(Y-1、Y-2、Y-3、Y-4)について、各部の電力分担を示す図である。この場合、P11=Pac=-10kW、であり、DC/AC変換器11に与えられる第2電力指令は-10kWとなる。また、Pdcは、各DC/DC変換器10a、10bおよびDC/AC変換器11の動作により決定される。 Next, four cases (Y-1, Y-2, Y-3, Y-4) in which thepower conversion device 100 receives power (10 kW) from the AC distribution line 22 through the AC connection terminal 4 This will be described below based on FIG.
FIG. 12 is a diagram showing power sharing of each part in four types of cases (Y-1, Y-2, Y-3, Y-4). In this case, P11 = Pac = −10 kW, and the second power command given to the DC /AC converter 11 is −10 kW. Also, Pdc is determined by the operation of each DC / DC converter 10 a, 10 b and DC / AC converter 11.
図12は、4種の場合(Y-1、Y-2、Y-3、Y-4)について、各部の電力分担を示す図である。この場合、P11=Pac=-10kW、であり、DC/AC変換器11に与えられる第2電力指令は-10kWとなる。また、Pdcは、各DC/DC変換器10a、10bおよびDC/AC変換器11の動作により決定される。 Next, four cases (Y-1, Y-2, Y-3, Y-4) in which the
FIG. 12 is a diagram showing power sharing of each part in four types of cases (Y-1, Y-2, Y-3, Y-4). In this case, P11 = Pac = −10 kW, and the second power command given to the DC /
ケースY-1では、DC/DC変換器10a、10bに各-5kWの第1電力指令(電力指令値Pref)が与えられる。各DC/DC変換器10a、10bの制御回路32では、共通直流母線1から各直流分散電源25a、25bへ各5kWが充電されるよう、各主回路部31へのゲート信号Gを生成する。
DC/AC変換器11の制御回路42では、有効電力指令値Pref(-10kW)が入力され、交流母線2から共通直流母線1に電力を供給するよう、主回路部41へのゲート信号Gを生成する。
このとき、交流配電線22から供給された10kWの電力が、直流分散電源25a、25bに各5kWで供給される。
また、このケースY-1では、電力変換装置100は、分散電源接続端子13と交流接続端子4との間で電力授受する第2電力授受モードのみで動作する。 In case Y-1, the first power command (power command value Pref) of -5 kW is given to the DC / DC converters 10a and 10b. The control circuit 32 of each DC / DC converter 10a, 10b generates a gate signal G to each main circuit unit 31 so that each 5kW is charged from the common DC bus 1 to each DC distributed power supply 25a, 25b.
Thecontrol circuit 42 of the DC / AC converter 11 receives the active power command value Pref (−10 kW) and supplies the gate signal G to the main circuit unit 41 to supply power from the AC bus 2 to the common DC bus 1. Generate
At this time, 10 kW of power supplied from theAC distribution line 22 is supplied to the DC distributed power supplies 25a and 25b at 5 kW each.
Further, in the case Y-1, thepower conversion device 100 operates only in the second power transfer mode in which power is transferred between the distributed power connection terminal 13 and the AC connection terminal 4.
DC/AC変換器11の制御回路42では、有効電力指令値Pref(-10kW)が入力され、交流母線2から共通直流母線1に電力を供給するよう、主回路部41へのゲート信号Gを生成する。
このとき、交流配電線22から供給された10kWの電力が、直流分散電源25a、25bに各5kWで供給される。
また、このケースY-1では、電力変換装置100は、分散電源接続端子13と交流接続端子4との間で電力授受する第2電力授受モードのみで動作する。 In case Y-1, the first power command (power command value Pref) of -5 kW is given to the DC /
The
At this time, 10 kW of power supplied from the
Further, in the case Y-1, the
ケースY-2では、DC/DC変換器10a、10bに-5kW、0kWの第1電力指令(電力指令値Pref)が与えられる。DC/DC変換器10aの制御回路32は、共通直流母線1から直流分散電源25aへ5kWが充電されるよう、主回路部31へのゲート信号Gを生成する。DC/DC変換器10bの制御回路32は、直流分散電源25bが充放電しないよう、主回路部31へのゲート信号Gを生成する。DC/AC変換器11の動作は、ケースY-1と同様である。
このとき、交流配電線22から10kWの電力が共通直流母線1に供給され、共通直流母線1から、直流分散電源25aに5kWの電力が供給され、残りの5kWの電力が直流配電線21に供給される。
また、このケースY-2では、電力変換装置100は、分散電源接続端子13と交流接続端子4との間で電力授受する第2電力授受モードと、直流接続端子3と交流接続端子4との間で電力授受する第3電力授受モードとの組み合わせで動作する。 In case Y-2, the first power command (power command value Pref) of -5 kW and 0 kW is given to the DC / DC converters 10a and 10b. The control circuit 32 of the DC / DC converter 10a generates a gate signal G to the main circuit unit 31 such that 5 kW is charged from the common DC bus 1 to the DC distributed power supply 25a. The control circuit 32 of the DC / DC converter 10b generates a gate signal G to the main circuit unit 31 so that the DC distributed power supply 25b is not charged and discharged. The operation of the DC / AC converter 11 is similar to that of the case Y-1.
At this time, 10 kW of power is supplied from theAC distribution line 22 to the common DC bus 1, 5 kW of power is supplied from the common DC bus 1 to the DC distributed power supply 25a, and the remaining 5 kW is supplied to the DC distribution line 21. Be done.
Further, in this case Y-2, thepower conversion device 100 performs the second power transfer mode for transferring power between the distributed power connection terminal 13 and the AC connection terminal 4, the DC connection terminal 3, and the AC connection terminal 4. It operates in combination with the third power transfer mode for transferring power between the two.
このとき、交流配電線22から10kWの電力が共通直流母線1に供給され、共通直流母線1から、直流分散電源25aに5kWの電力が供給され、残りの5kWの電力が直流配電線21に供給される。
また、このケースY-2では、電力変換装置100は、分散電源接続端子13と交流接続端子4との間で電力授受する第2電力授受モードと、直流接続端子3と交流接続端子4との間で電力授受する第3電力授受モードとの組み合わせで動作する。 In case Y-2, the first power command (power command value Pref) of -5 kW and 0 kW is given to the DC /
At this time, 10 kW of power is supplied from the
Further, in this case Y-2, the
ケースY-3では、DC/DC変換器10a、10bに各0kWの第1電力指令(電力指令値Pref)が与えられる。このケースY-3は、上述したケースX-3と同じであり、電力変換装置100は、直流接続端子3と交流接続端子4との間で電力授受する第3電力授受モードのみで動作し、交流配電線22から10kWの電力が直流配電線21に供給される。
In case Y-3, the first power command (power command value Pref) of 0 kW is given to the DC / DC converters 10a and 10b. The case Y-3 is the same as the case X-3 described above, and the power conversion device 100 operates only in the third power transfer mode in which power is exchanged between the DC connection terminal 3 and the AC connection terminal 4, Electric power of 10 kW is supplied to the DC distribution line 21 from the AC distribution line 22.
ケースY-4では、DC/DC変換器10a、10bに-5kW、5kWの第1電力指令(電力指令値Pref)が与えられる。DC/DC変換器10aの制御回路32は、共通直流母線1から直流分散電源25aへ5kWが充電されるよう、主回路部31へのゲート信号Gを生成する。DC/DC変換器10bの制御回路32は、直流分散電源25bから共通直流母線1へ5kWが放電されるよう、主回路部31へのゲート信号Gを生成する。DC/AC変換器11の動作は、ケースY-1と同様である。
このとき、交流配電線22から10kWの電力、直流分散電源25bから5kWの電力が、それぞれ共通直流母線1に供給される。そして、共通直流母線1から、直流分散電源25aに5kWの電力が供給され、残りの10kWの電力が直流配電線21に供給される。 In case Y-4, the first power command (power command value Pref) of -5 kW and 5 kW is given to the DC / DC converters 10a and 10b. The control circuit 32 of the DC / DC converter 10a generates a gate signal G to the main circuit unit 31 such that 5 kW is charged from the common DC bus 1 to the DC distributed power supply 25a. The control circuit 32 of the DC / DC converter 10b generates a gate signal G to the main circuit unit 31 such that 5 kW is discharged from the DC distributed power supply 25b to the common DC bus 1. The operation of the DC / AC converter 11 is similar to that of the case Y-1.
At this time, power of 10 kW from theAC distribution line 22 and power of 5 kW from the DC distributed power supply 25 b are supplied to the common DC bus 1 respectively. Then, 5 kW of power is supplied from the common DC bus 1 to the DC distributed power supply 25 a, and the remaining 10 kW of power is supplied to the DC distribution line 21.
このとき、交流配電線22から10kWの電力、直流分散電源25bから5kWの電力が、それぞれ共通直流母線1に供給される。そして、共通直流母線1から、直流分散電源25aに5kWの電力が供給され、残りの10kWの電力が直流配電線21に供給される。 In case Y-4, the first power command (power command value Pref) of -5 kW and 5 kW is given to the DC /
At this time, power of 10 kW from the
このケースY-4においても上述したケースX-4と同様に、電力変換装置100は、第3電力授受モードと、2組の分散電源接続端子13間で電力授受する第4電力授受モードとの組み合わせで動作する。あるいは、第1電力授受モードと第2電力授受モードと第3電力授受モードとの組み合わせであっても良く、さらに、第1電力授受モードと第2電力授受モードと第3電力授受モードと第4電力授受モードとを組み合わせた動作とすることもできる。
In this case Y-4 as well as in the case X-4 described above, the power conversion device 100 has a third power transfer mode and a fourth power transfer mode in which power is transferred between two sets of distributed power supply connection terminals 13. Works in combination. Alternatively, it may be a combination of the first power transfer mode, the second power transfer mode and the third power transfer mode, and further, the first power transfer mode, the second power transfer mode, the third power transfer mode, and the fourth power transfer mode. It is also possible to operate in combination with the power transfer mode.
次に、電力変換装置100が、直流配電線21と交流配電線22との双方に合計10kWの電力供給する、あるいは双方から合計10kWの電力を受電する2種の場合(Z-1、Z-2)について、図13に基づいて以下に説明する。
図13は、2種の場合(Z-1、Z-2)について、各部の電力分担を示す図である。なお、P11=Pac、であり、PacとPdcとは同極性である。 Next, in the case of two types in which thepower conversion apparatus 100 supplies a total of 10 kW of electric power to both the DC distribution line 21 and the AC distribution line 22 or receives a total of 10 kW of electric power from both (Z-1, Z- 2) will be described below based on FIG.
FIG. 13 is a diagram showing power sharing of each part in two types (Z-1 and Z-2). P11 = Pac, and Pac and Pdc have the same polarity.
図13は、2種の場合(Z-1、Z-2)について、各部の電力分担を示す図である。なお、P11=Pac、であり、PacとPdcとは同極性である。 Next, in the case of two types in which the
FIG. 13 is a diagram showing power sharing of each part in two types (Z-1 and Z-2). P11 = Pac, and Pac and Pdc have the same polarity.
ケースZ-1では、電力変換装置100が、直流配電線21と交流配電線22との双方に合計10kWの電力供給する。DC/DC変換器10a、10bに各5kWの第1電力指令(電力指令値Pref)、DC/AC変換器11に3kWの第2電力指令(有効電力指令値Pref)が与えられる。各DC/DC変換器10a、10bの制御回路32では、各直流分散電源25a、25bから共通直流母線1に各5kWが放電されるよう、各主回路部31へのゲート信号Gを生成する。DC/AC変換器11の制御回路42では、共通直流母線1から交流母線2に電力を供給するよう、主回路部41へのゲート信号Gを生成する。
このとき、直流分散電源25a、25bから各5kWの電力が共通直流母線1に供給される。そして、共通直流母線1から、交流配電線22に3kWの電力が供給され、残りの7kWの電力が直流配電線21に供給される。
このケースZ-1では、電力変換装置100は、第1電力授受モードと第2電力授受モードとの組み合わせで動作する。 In case Z-1, thepower conversion device 100 supplies a total of 10 kW of power to both the DC distribution line 21 and the AC distribution line 22. The first power command (power command value Pref) of 5 kW is given to the DC / DC converters 10a and 10b, and the second power command (active power command value Pref) of 3 kW is given to the DC / AC converter 11. The control circuit 32 of each DC / DC converter 10a, 10b generates a gate signal G to each main circuit portion 31 so that each 5kW is discharged from each DC distributed power supply 25a, 25b to the common DC bus 1. The control circuit 42 of the DC / AC converter 11 generates a gate signal G to the main circuit unit 41 so as to supply power from the common DC bus 1 to the AC bus 2.
At this time, power of 5 kW each is supplied from the DC distributed power supplies 25 a and 25 b to the common DC bus 1. Then, 3 kW of power is supplied from the common DC bus 1 to the AC distribution line 22, and the remaining 7 kW of power is supplied to the DC distribution line 21.
In case Z-1, thepower conversion device 100 operates in a combination of the first power transfer mode and the second power transfer mode.
このとき、直流分散電源25a、25bから各5kWの電力が共通直流母線1に供給される。そして、共通直流母線1から、交流配電線22に3kWの電力が供給され、残りの7kWの電力が直流配電線21に供給される。
このケースZ-1では、電力変換装置100は、第1電力授受モードと第2電力授受モードとの組み合わせで動作する。 In case Z-1, the
At this time, power of 5 kW each is supplied from the DC distributed
In case Z-1, the
ケースZ-2では、電力変換装置100が、直流配電線21と交流配電線22との双方から合計10kWの電力を受電する。DC/DC変換器10a、10bに各-5kWの第1電力指令(電力指令値Pref)、DC/AC変換器11に-7kWの第2電力指令(有効電力指令値Pref)が与えられる。各DC/DC変換器10a、10bの制御回路32では、共通直流母線1から各直流分散電源25a、25bへ各5kWが充電されるよう、各主回路部31へのゲート信号Gを生成する。DC/AC変換器11の制御回路42では、交流母線2から共通直流母線1に電力を供給するよう、主回路部41へのゲート信号Gを生成する。
In case Z-2, the power conversion device 100 receives a total of 10 kW of power from both the DC distribution line 21 and the AC distribution line 22. The first power command (power command value Pref) of -5 kW is given to the DC / DC converters 10a and 10b, and the second power command (active power command value Pref) of -7 kW is given to the DC / AC converter 11. The control circuit 32 of each DC / DC converter 10a, 10b generates a gate signal G to each main circuit unit 31 so that each 5kW is charged from the common DC bus 1 to each DC distributed power supply 25a, 25b. The control circuit 42 of the DC / AC converter 11 generates a gate signal G to the main circuit unit 41 so as to supply power from the AC bus 2 to the common DC bus 1.
このとき、直流分散電源25a、25bに対して各5kWの電力が共通直流母線1から供給される。そして、共通直流母線1に対して、交流配電線22に7kWの電力が供給され、不足する3kWの電力が直流配電線21から供給される。
このケースZ-2においても、電力変換装置100は、第1電力授受モードと第2電力授受モードとの組み合わせで動作する。 At this time, power of 5 kW each is supplied from thecommon DC bus 1 to the DC distributed power supplies 25a and 25b. Then, 7 kW of power is supplied to the AC power distribution line 22 with respect to the common DC bus 1, and the insufficient 3 kW power is supplied from the DC power distribution line 21.
Also in this case Z-2, thepower conversion device 100 operates in a combination of the first power transfer mode and the second power transfer mode.
このケースZ-2においても、電力変換装置100は、第1電力授受モードと第2電力授受モードとの組み合わせで動作する。 At this time, power of 5 kW each is supplied from the
Also in this case Z-2, the
図11~図13では、電力変換装置100が、直流配電線21、交流配電線22の少なくとも一方と電力授受する場合を説明したが、直流配電線21および交流配電線22との間の電力授受を伴わない第4電力授受モードのみで動作する場合を、以下に示す。
DC/DC変換器10a、10bに5kW、-5kWの第1電力指令(電力指令値Pref)、DC/AC変換器11に0Wの第2電力指令(有効電力指令値Pref)が与えられる。このとき、直流分散電源25aから放電された5kWの電力が、直流分散電源25bに充電される。 Although the case where thepower conversion device 100 exchanges power with at least one of the DC distribution line 21 and the AC distribution line 22 has been described with reference to FIGS. 11 to 13, the power exchange between the DC distribution line 21 and the AC distribution line 22 is described. The case of operating only in the fourth power transfer mode that does not accompany is described below.
The first power command (power command value Pref) of 5 kW and -5 kW is given to the DC / DC converters 10a and 10b, and the second power command (active power command value Pref) of 0 W is given to the DC / AC converter 11. At this time, the 5 kW power discharged from the DC distributed power supply 25a is charged to the DC distributed power supply 25b.
DC/DC変換器10a、10bに5kW、-5kWの第1電力指令(電力指令値Pref)、DC/AC変換器11に0Wの第2電力指令(有効電力指令値Pref)が与えられる。このとき、直流分散電源25aから放電された5kWの電力が、直流分散電源25bに充電される。 Although the case where the
The first power command (power command value Pref) of 5 kW and -5 kW is given to the DC /
以上のように、各DC/DC変換器10a、10bおよびDC/AC変換器11の出力電力を第1電力指令および第2電力指令を用いて出力制御することで、第1~第4電力制御モードによる様々な電力授受が実現できる。
As described above, by controlling the output power of each of the DC / DC converters 10a and 10b and the DC / AC converter 11 using the first power command and the second power command, the first to fourth power control Various power exchange can be realized depending on the mode.
なお、上述した動作では、DC/DC変換器10およびDC/AC変換器11の変換損失や電力制御誤差で発生する電力のアンバランス分については考慮しなかった。これについては、例えば、Pdcの値が想定値よりも小さい場合にはDC/DC変換器10a、10bの電力指令値Prefを増加させるなど、DC/DC変換器10a、10b、DC/AC変換器11の各電力指令値Prefに電力のアンバランス分を補償する量を重畳しても良い。
In the operation described above, the unbalance of the power generated due to the conversion loss of the DC / DC converter 10 and the DC / AC converter 11 or the power control error is not considered. Regarding this, for example, when the value of Pdc is smaller than the expected value, the DC / DC converters 10a, 10b, DC / AC converter, etc. are increased by increasing the power command value Pref of the DC / DC converters 10a, 10b. An amount for compensating the unbalance of the power may be superimposed on each of the power command values Pref of 11.
ところで、需要家の配電網で直流配電系統27と交流配電系統28とが併存する場合、電力変換装置100の受電形式は、交流受電のみ、直流受電のみ、および交流受電と直流受電との双方、の三種類がある。なお、交流受電は広く普及している。
図14は、電力変換装置100による交流受電の例を示す図である。
図14に示すように、交流配電系統28は、交流送電系統201と変圧器202とを備えて構成されるものとする。
電力変換装置100は、交流送電系統201から変圧器202を介して受電する。この場合、変圧器202の二次側の電力線を交流配電線22とする。なお、変圧器202の二次側はさらに分岐したり、図1で示す変圧器23が接続されても良い。
変圧器202の二次側にはAC/DC変換器203が接続され、AC/DC変換器203の直流側の電力線を直流配電線21とする。すなわち、AC/DC変換器203が直流配電系統27に相当するとみなせる。 By the way, when the directcurrent distribution system 27 and the alternating current distribution system 28 coexist in the distribution network of the customer, the power receiving format of the power conversion device 100 is alternating current reception only, direct current reception only, and both alternating current reception and direct current reception, There are three types of Note that AC power reception is widely spread.
FIG. 14 is a diagram illustrating an example of AC power reception by thepower conversion device 100.
As shown in FIG. 14, theAC distribution system 28 is configured to include an AC transmission system 201 and a transformer 202.
Power converter 100 receives power from AC power transmission system 201 via transformer 202. In this case, the power line on the secondary side of the transformer 202 is an AC distribution line 22. The secondary side of the transformer 202 may be further branched, or the transformer 23 shown in FIG. 1 may be connected.
An AC /DC converter 203 is connected to the secondary side of the transformer 202, and the power line on the DC side of the AC / DC converter 203 is a DC distribution line 21. That is, it can be considered that the AC / DC converter 203 corresponds to the DC distribution system 27.
図14は、電力変換装置100による交流受電の例を示す図である。
図14に示すように、交流配電系統28は、交流送電系統201と変圧器202とを備えて構成されるものとする。
電力変換装置100は、交流送電系統201から変圧器202を介して受電する。この場合、変圧器202の二次側の電力線を交流配電線22とする。なお、変圧器202の二次側はさらに分岐したり、図1で示す変圧器23が接続されても良い。
変圧器202の二次側にはAC/DC変換器203が接続され、AC/DC変換器203の直流側の電力線を直流配電線21とする。すなわち、AC/DC変換器203が直流配電系統27に相当するとみなせる。 By the way, when the direct
FIG. 14 is a diagram illustrating an example of AC power reception by the
As shown in FIG. 14, the
An AC /
このような構成において、AC/DC変換器203は直流配電線21に接続されている直流負荷(分散電源を含む)29の容量に応じた機器容量として準備されており、直流配電系統27は交流配電系統28に対して従属的な位置づけである。
このとき、例えば上述したケースX-3のように動作させると、電力変換装置100のDC/AC変換器11をAC/DC変換器203の補助として使用できる。 In such a configuration, the AC /DC converter 203 is prepared as a device capacity according to the capacity of the DC load (including the distributed power source) 29 connected to the DC distribution line 21, and the DC distribution system 27 is AC. It is subordinate to the distribution system 28.
At this time, for example, when operating as in the case X-3 described above, the DC /AC converter 11 of the power conversion device 100 can be used as an aid of the AC / DC converter 203.
このとき、例えば上述したケースX-3のように動作させると、電力変換装置100のDC/AC変換器11をAC/DC変換器203の補助として使用できる。 In such a configuration, the AC /
At this time, for example, when operating as in the case X-3 described above, the DC /
近年、直流送電系統が普及しつつあり、長距離送電、および洋上風力発電所から需要地への送電に直流送電が適用される例が増加傾向にある。このため、特に、発変電所内やその周辺施設などで、電力変換装置100による直流受電の技術が重要である。
図15は、電力変換装置100による直流受電の例を示す図である。
図15に示すように、直流配電系統27は、直流送電系統204とDC/DC変換器205とを備えて構成されるものとする。
電力変換装置100は、高圧の直流送電系統204からDC/DC変換器205を介して受電する。DC/DC変換器205の二次側は低電圧であり、直流配電線21と接続される。DC/DC変換器205の二次側にはDC/AC変換器206も接続され、DC/AC変換器206の交流側の電力線を交流配電線22とする。すなわち、DC/AC変換器206が交流配電系統28に相当するとみなせる。 In recent years, DC power transmission systems are spreading, and there are increasing cases where DC power transmission is applied to long distance power transmission and power transmission from an offshore wind power plant to a demand area. For this reason, in particular, the technology of DC power reception by thepower conversion device 100 is important in the power plant / substation or its peripheral facilities.
FIG. 15 is a diagram illustrating an example of direct current reception by thepower conversion device 100.
As shown in FIG. 15, theDC distribution system 27 is configured to include a DC transmission system 204 and a DC / DC converter 205.
Power converter 100 receives power from high voltage DC power transmission system 204 via DC / DC converter 205. The secondary side of the DC / DC converter 205 is a low voltage and is connected to the DC distribution line 21. A DC / AC converter 206 is also connected to the secondary side of the DC / DC converter 205, and the power line on the AC side of the DC / AC converter 206 is an AC distribution line 22. That is, it can be considered that the DC / AC converter 206 corresponds to the AC distribution system 28.
図15は、電力変換装置100による直流受電の例を示す図である。
図15に示すように、直流配電系統27は、直流送電系統204とDC/DC変換器205とを備えて構成されるものとする。
電力変換装置100は、高圧の直流送電系統204からDC/DC変換器205を介して受電する。DC/DC変換器205の二次側は低電圧であり、直流配電線21と接続される。DC/DC変換器205の二次側にはDC/AC変換器206も接続され、DC/AC変換器206の交流側の電力線を交流配電線22とする。すなわち、DC/AC変換器206が交流配電系統28に相当するとみなせる。 In recent years, DC power transmission systems are spreading, and there are increasing cases where DC power transmission is applied to long distance power transmission and power transmission from an offshore wind power plant to a demand area. For this reason, in particular, the technology of DC power reception by the
FIG. 15 is a diagram illustrating an example of direct current reception by the
As shown in FIG. 15, the
なお、DC/AC変換器206は、低圧の直流入力としたが、高圧の直流送電系統204から直接に入力可能としても良い。
また、直流送電系統204が低圧の直流電力を供給する場合は、DC/DC変換器205は設けなくてもよい。
このような構成において、DC/AC変換器206は交流配電線22に接続されている交流負荷(分散電源を含む)30の容量に応じた機器容量として準備されており、交流配電系統28は直流配電系統27に対して従属的な位置づけである。 Although the DC /AC converter 206 is a low voltage DC input, it may be directly input from the high voltage DC transmission system 204.
In addition, when theDC transmission system 204 supplies low-voltage DC power, the DC / DC converter 205 may not be provided.
In such a configuration, the DC /AC converter 206 is prepared as a device capacity according to the capacity of the AC load (including the distributed power supply) 30 connected to the AC distribution line 22, and the AC distribution system 28 is DC It is subordinate to the distribution system 27.
また、直流送電系統204が低圧の直流電力を供給する場合は、DC/DC変換器205は設けなくてもよい。
このような構成において、DC/AC変換器206は交流配電線22に接続されている交流負荷(分散電源を含む)30の容量に応じた機器容量として準備されており、交流配電系統28は直流配電系統27に対して従属的な位置づけである。 Although the DC /
In addition, when the
In such a configuration, the DC /
このとき、例えば、DC/DC変換器10a、10bに各0kWの第1電力指令、DC/AC変換器11に-10kWの第2電力指令を与えて電力変換装置100を動作させると、直流配電線21から供給された10kWの電力が交流配電線22に供給されるため、電力変換装置100のDC/AC変換器11をDC/AC変換器206の補助として使用できる。
At this time, for example, when the power converter 100 is operated by giving the first power command of 0 kW to the DC / DC converters 10 a and 10 b and the second power command of −10 kW to the DC / AC converter 11, the DC distribution is performed. Since 10 kW of power supplied from the electric wire 21 is supplied to the AC distribution line 22, the DC / AC converter 11 of the power conversion device 100 can be used as an aid of the DC / AC converter 206.
次に、交流送電系統と直流送電系統の双方から受電する場合について説明する。
この場合、一方の送電系統が停電した場合には、停電した送電系統から切り離した後、DC/AC変換器11の容量内で、他方の送電系統から受電できる。
交流送電系統が停電した場合は、交流配電系統28を切り離し、DC/AC変換器11へ交流負荷30で必要な電力を第2電力指令として与える。例えば、5kWの電力が必要な場合は、DC/AC変換器11の第2電力指令を5kWとする。
直流送電系統が停電した場合は、直流配電系統27を切り離し、直流負荷29で必要な電力を直流配電線21に供給できるように、各DC/DC変換器10a、10bおよびDC/AC変換器11の第1電力指令および第2電力指令を決定して与える。例えば、5kWの電力が必要な場合は、各DC/DC変換器10a、10bの第1電力指令を0kWにし、DC/AC変換器11の第2電力指令を-5kWにする。あるいは、各DC/DC変換器10a、10bの第1電力指令を5kW、0kWにし、DC/AC変換器11の第2電力指令を0kWにしても良い。 Next, the case of receiving power from both the AC transmission system and the DC transmission system will be described.
In this case, when one of the transmission grids fails, it is possible to receive power from the other transmission grid within the capacity of the DC /AC converter 11 after disconnecting from the transmission grid which has failed.
When the AC transmission system fails, theAC distribution system 28 is disconnected, and the power required by the AC load 30 is given to the DC / AC converter 11 as a second power command. For example, when the power of 5 kW is required, the second power command of the DC / AC converter 11 is 5 kW.
When the DC transmission system fails, theDC distribution system 27 is disconnected, and the DC / DC converters 10a and 10b and the DC / AC converter 11 can be supplied so that the power required by the DC load 29 can be supplied to the DC distribution line 21. The first power command and the second power command are determined and given. For example, when the power of 5 kW is required, the first power command of each of the DC / DC converters 10a and 10b is set to 0 kW, and the second power command of the DC / AC converter 11 is set to -5 kW. Alternatively, the first power command of each of the DC / DC converters 10a and 10b may be 5 kW and 0 kW, and the second power command of the DC / AC converter 11 may be 0 kW.
この場合、一方の送電系統が停電した場合には、停電した送電系統から切り離した後、DC/AC変換器11の容量内で、他方の送電系統から受電できる。
交流送電系統が停電した場合は、交流配電系統28を切り離し、DC/AC変換器11へ交流負荷30で必要な電力を第2電力指令として与える。例えば、5kWの電力が必要な場合は、DC/AC変換器11の第2電力指令を5kWとする。
直流送電系統が停電した場合は、直流配電系統27を切り離し、直流負荷29で必要な電力を直流配電線21に供給できるように、各DC/DC変換器10a、10bおよびDC/AC変換器11の第1電力指令および第2電力指令を決定して与える。例えば、5kWの電力が必要な場合は、各DC/DC変換器10a、10bの第1電力指令を0kWにし、DC/AC変換器11の第2電力指令を-5kWにする。あるいは、各DC/DC変換器10a、10bの第1電力指令を5kW、0kWにし、DC/AC変換器11の第2電力指令を0kWにしても良い。 Next, the case of receiving power from both the AC transmission system and the DC transmission system will be described.
In this case, when one of the transmission grids fails, it is possible to receive power from the other transmission grid within the capacity of the DC /
When the AC transmission system fails, the
When the DC transmission system fails, the
以上のように、この実施の形態では、電力変換装置100は、共通直流母線1と、交流母線2と、外部との接続端子となる、直流接続端子3と、交流接続端子4と、N組の分散電源接続端子13とを備え、さらにN台のDC/DC変換器10と、M台のDC/AC変換器11と、制御部12とを備える。これにより、複数の直流分散電源25、26を一括して直流配電系統27と交流配電系統28とに接続することができる。この電力変換装置100は、ユニット構造の複数のDC/DC変換器10と、DC/AC変換器11とを有するので、直流分散電源25、26の構成によってユニット接続台数を変更したり、ユニット故障時に関係するユニットのみ交換したりできる。
As described above, in this embodiment, power conversion device 100 includes DC connection terminal 3, AC connection terminal 4, N sets of connection terminals connecting common DC bus 1, AC bus 2, and the outside. The distributed power supply connection terminal 13 is further provided, and further, N DC / DC converters 10, M DC / AC converters 11, and a control unit 12 are provided. Thus, the plurality of DC distributed power supplies 25 and 26 can be collectively connected to the DC distribution system 27 and the AC distribution system 28. Since this power conversion device 100 has a plurality of DC / DC converters 10 of a unit structure and a DC / AC converter 11, the number of connected units can be changed by the configuration of the DC distributed power supplies 25 and 26, unit failure Sometimes only relevant units can be replaced.
また、上位制御装置24からの上位制御指令24aにより、制御部12が各DC/DC変換器10およびDC/AC変換器11に対して電力指令12a(第1電力指令および第2電力指令)を与え、各変換器10、11がその電力指令に応じた電力を出力することができる。これにより、分散電源接続端子13と直流接続端子3との間、分散電源接続端子13と交流接続端子4との間、直流接続端子3と交流接続端子4との間、および複数の分散電源接続端子13間で、電力授受できる。すなわち、直流分散電源25、26と直流配電系統27との間、直流分散電源25、26と交流配電系統28との間、直流配電系統27と交流配電系統28との間、および複数の直流分散電源25、26間で、相互に電力授受して電力を融通でき、さらにこれらを同時に組合せて動作させることが可能となる。
Further, the control unit 12 sends power commands 12 a (first power command and second power command) to the DC / DC converter 10 and the DC / AC converter 11 according to the upper control command 24 a from the upper control device 24. Each converter 10, 11 can output power according to its power command. Thereby, between the distributed power connection terminal 13 and the DC connection terminal 3, between the distributed power connection terminal 13 and the AC connection terminal 4, between the DC connection terminal 3 and the AC connection terminal 4, and a plurality of distributed power connections Power can be transferred between the terminals 13. That is, between the DC distributed power supplies 25 and 26 and the DC distribution system 27, between the DC distributed power supplies 25 and 26 and the AC distribution system 28, between the DC distribution system 27 and the AC distribution system 28, and a plurality of DC dispersions Power can be exchanged by exchanging power between the power supplies 25 and 26, and furthermore, these can be simultaneously combined and operated.
電力変換装置100では、共通直流母線1および交流母線2を介して、直流配電系統27と交流配電系統28との間で直流分散電源25、26を介すること無く電力授受が可能になり、効率的で自由度の高い電力制御が可能になる。
また、このような電力変換装置100は、小規模な直流分散電源を用いたVPP(Virtual Power Plant)に用いて、再生可能エネルギの発電電力を平準化し、また系統安定化に寄与できる。
さらに、電力変換装置100は、需要家の負荷特性と発電特性の変化に応じて適宜に直流配電系統27、交流配電系統28に供給する電力を変更するのに適しており、受電電力の削減に有効である。 Inpower converter 100, power can be exchanged between DC distribution system 27 and AC distribution system 28 via common DC bus 1 and AC bus 2 without using DC distributed power supplies 25 and 26, and it is efficient. Power control with a high degree of freedom.
In addition, such apower conversion device 100 can be used for VPP (Virtual Power Plant) using a small-scale DC distributed power source to level the generated power of renewable energy and also to contribute to system stabilization.
Furthermore, thepower conversion device 100 is suitable for changing the power supplied to the DC distribution system 27 and the AC distribution system 28 as appropriate according to changes in the load characteristics and power generation characteristics of the customer, thus reducing received power. It is valid.
また、このような電力変換装置100は、小規模な直流分散電源を用いたVPP(Virtual Power Plant)に用いて、再生可能エネルギの発電電力を平準化し、また系統安定化に寄与できる。
さらに、電力変換装置100は、需要家の負荷特性と発電特性の変化に応じて適宜に直流配電系統27、交流配電系統28に供給する電力を変更するのに適しており、受電電力の削減に有効である。 In
In addition, such a
Furthermore, the
実施の形態2.
次に、この発明の実施の形態2による電力変換装置について説明する。
この実施の形態2では、DC/DC変換器10、DC/AC変換器11の各制御回路32、42の構成が、上記実施の形態1と異なる。
図16は、この発明の実施の形態2によるDC/DC変換器10の制御回路32の構成を示す図である。この場合、DC/DC変換器10には、充放電可能な直流分散電源25が接続される。なお、ここでは実施の形態1と異なる部分を中心に述べ、実施の形態1と同様の構成は適宜、説明を省略する。
図16に示すように、制御回路32は、電力供給部150、電力制御部157、ゲート信号生成部152およびゲートドライバ153を備える。電力供給部150、ゲート信号生成部152およびゲートドライバ153は、上記実施の形態1と同様であり、電力制御部157が異なる。 Second Embodiment
Next, a power converter according toEmbodiment 2 of the present invention will be described.
In the second embodiment, the configurations of the control circuits 32 and 42 of the DC / DC converter 10 and the DC / AC converter 11 are different from those of the first embodiment.
FIG. 16 is a diagram showing a configuration ofcontrol circuit 32 of DC / DC converter 10 according to the second embodiment of the present invention. In this case, the DC / DC converter 10 is connected to a chargeable / dischargeable DC distributed power supply 25. Here, parts different from the first embodiment will be mainly described, and the same configuration as the first embodiment will not be described as appropriate.
As shown in FIG. 16, thecontrol circuit 32 includes a power supply unit 150, a power control unit 157, a gate signal generation unit 152, and a gate driver 153. The power supply unit 150, the gate signal generation unit 152, and the gate driver 153 are the same as in the first embodiment, and the power control unit 157 is different.
次に、この発明の実施の形態2による電力変換装置について説明する。
この実施の形態2では、DC/DC変換器10、DC/AC変換器11の各制御回路32、42の構成が、上記実施の形態1と異なる。
図16は、この発明の実施の形態2によるDC/DC変換器10の制御回路32の構成を示す図である。この場合、DC/DC変換器10には、充放電可能な直流分散電源25が接続される。なお、ここでは実施の形態1と異なる部分を中心に述べ、実施の形態1と同様の構成は適宜、説明を省略する。
図16に示すように、制御回路32は、電力供給部150、電力制御部157、ゲート信号生成部152およびゲートドライバ153を備える。電力供給部150、ゲート信号生成部152およびゲートドライバ153は、上記実施の形態1と同様であり、電力制御部157が異なる。 Second Embodiment
Next, a power converter according to
In the second embodiment, the configurations of the
FIG. 16 is a diagram showing a configuration of
As shown in FIG. 16, the
電力制御部157には、上記実施の形態1と同様に、制御部12からの電力指令12aである第1電力指令(電力指令値Pref)と、一次側の検出器33からの検出値33aと、二次側の検出器34からの検出値34aとが与えられる。電力制御部157の制御出力157aはゲート信号生成部152に入力される。
この場合、一次側の検出値33aである一次側電圧Vdcの変動に応じて第1電力指令Prefを補正して用いる。すなわち、DC/DC変換器10の出力電力を補正するものである。出力電力の補正が必要になる理由は主として以下の二つである。第1は、DC/DC変換器10の一次側電圧Vdcが基準値からずれるのを抑制するためであり、抑制方向に直流分散電源25を充放電させる。第2は、DC/DC変換器10の変換器損失や検出誤差、更には他のDC/DC変換器10やDC/AC変換器11の変換器損失や誤差との兼ね合いで電力分担を調整するためである。 As in the first embodiment, thepower control unit 157 includes the first power command (power command value Pref) which is the power command 12a from the control unit 12, and the detection value 33a from the detector 33 on the primary side. , And a detection value 34a from the detector 34 on the secondary side. The control output 157 a of the power control unit 157 is input to the gate signal generation unit 152.
In this case, the first power command Pref is corrected and used according to the fluctuation of the primary side voltage Vdc which is thedetection value 33a on the primary side. That is, the output power of the DC / DC converter 10 is corrected. There are two main reasons why the output power needs to be corrected. The first is to suppress the deviation of the primary side voltage Vdc of the DC / DC converter 10 from the reference value, and the DC distributed power supply 25 is charged and discharged in the suppression direction. Second, the power sharing is adjusted in consideration of the converter loss and detection error of the DC / DC converter 10 and the converter loss and error of the other DC / DC converter 10 and the DC / AC converter 11 It is for.
この場合、一次側の検出値33aである一次側電圧Vdcの変動に応じて第1電力指令Prefを補正して用いる。すなわち、DC/DC変換器10の出力電力を補正するものである。出力電力の補正が必要になる理由は主として以下の二つである。第1は、DC/DC変換器10の一次側電圧Vdcが基準値からずれるのを抑制するためであり、抑制方向に直流分散電源25を充放電させる。第2は、DC/DC変換器10の変換器損失や検出誤差、更には他のDC/DC変換器10やDC/AC変換器11の変換器損失や誤差との兼ね合いで電力分担を調整するためである。 As in the first embodiment, the
In this case, the first power command Pref is corrected and used according to the fluctuation of the primary side voltage Vdc which is the
図17は、電力制御部157の構成を示すブロック図である。
図17に示すように、第1電力指令Prefは、加算器171にて補正量Paddが加算されて補正される。補正後の第1電力指令Prefは、リミッタ175にて、DC/DC変換器10の変換器定格電力以下の値に制限されて除算器154に入力される。
また、一次側の検出値33aである一次側電圧Vdcは、テーブル172とフラグ生成器174とに入力される。フラグ生成器174には、第1電力指令Prefも入力される。 FIG. 17 is a block diagram showing a configuration ofpower control unit 157. Referring to FIG.
As shown in FIG. 17, the first electric power command Pref is corrected by the addition of the correction amount Padd in theadder 171. The corrected first power command Pref is limited by the limiter 175 to a value equal to or less than the converter rated power of the DC / DC converter 10 and is input to the divider 154.
The primary side voltage Vdc, which is thedetection value 33a on the primary side, is input to the table 172 and the flag generator 174. The flag generator 174 also receives the first power command Pref.
図17に示すように、第1電力指令Prefは、加算器171にて補正量Paddが加算されて補正される。補正後の第1電力指令Prefは、リミッタ175にて、DC/DC変換器10の変換器定格電力以下の値に制限されて除算器154に入力される。
また、一次側の検出値33aである一次側電圧Vdcは、テーブル172とフラグ生成器174とに入力される。フラグ生成器174には、第1電力指令Prefも入力される。 FIG. 17 is a block diagram showing a configuration of
As shown in FIG. 17, the first electric power command Pref is corrected by the addition of the correction amount Padd in the
The primary side voltage Vdc, which is the
図18は、テーブル172の入出力の関係を示す図である。
図18に示すように、テーブル172は、Vdcの変動に応じて第1電力指令Prefを補正するための補正量Padd*を出力する。Vdcは、Vdcの昇順にA~Eの5つの領域に分割されて補正量Padd*が決定される。通常、Vdcは中央の領域C内にあり、領域Cの中央値(基準値)をVdccとする。
この場合、VdcがVdccと一致するとき、Padd*は0である。Vdcが大きくなると少しずつPadd*が減少し(負の値)、Vdcが小さくなると少しずつPadd*が増加する(正の値)。領域Cでは、Padd*は、変換器損失分の補償程度の小さな補正量である。この領域Cを不感帯として扱いPadd*=0としても良い。 FIG. 18 is a diagram showing the relationship between input and output of the table 172. As shown in FIG.
As shown in FIG. 18, the table 172 outputs the correction amount Padd * for correcting the first power command Pref in accordance with the fluctuation of Vdc. Vdc is divided into five regions A to E in ascending order of Vdc to determine the correction amount Padd *. Usually, Vdc is in the central area C, and the central value (reference value) of the area C is Vdcc.
In this case, Padd * is 0 when Vdc matches Vdcc. As Vdc increases, Padd * decreases gradually (negative value), and as Vdc decreases, Padd * increases gradually (positive value). In the region C, Padd * is a small correction amount that compensates for the converter loss. This area C may be treated as a dead zone and Padd * = 0.
図18に示すように、テーブル172は、Vdcの変動に応じて第1電力指令Prefを補正するための補正量Padd*を出力する。Vdcは、Vdcの昇順にA~Eの5つの領域に分割されて補正量Padd*が決定される。通常、Vdcは中央の領域C内にあり、領域Cの中央値(基準値)をVdccとする。
この場合、VdcがVdccと一致するとき、Padd*は0である。Vdcが大きくなると少しずつPadd*が減少し(負の値)、Vdcが小さくなると少しずつPadd*が増加する(正の値)。領域Cでは、Padd*は、変換器損失分の補償程度の小さな補正量である。この領域Cを不感帯として扱いPadd*=0としても良い。 FIG. 18 is a diagram showing the relationship between input and output of the table 172. As shown in FIG.
As shown in FIG. 18, the table 172 outputs the correction amount Padd * for correcting the first power command Pref in accordance with the fluctuation of Vdc. Vdc is divided into five regions A to E in ascending order of Vdc to determine the correction amount Padd *. Usually, Vdc is in the central area C, and the central value (reference value) of the area C is Vdcc.
In this case, Padd * is 0 when Vdc matches Vdcc. As Vdc increases, Padd * decreases gradually (negative value), and as Vdc decreases, Padd * increases gradually (positive value). In the region C, Padd * is a small correction amount that compensates for the converter loss. This area C may be treated as a dead zone and Padd * = 0.
VdcがVdccから離れるに従ってPadd*の絶対値は大きくなる。Vdcが離れて領域Bまたは領域Dに入ると、領域CよりもPadd*の傾きが大きくなる。Vdcが大きい領域Dでは、Padd*を負の値として直流分散電源25の充電方向に制御する。Vdcが小さい領域Bでは、Padd*を正の値として直流分散電源25の放電方向に制御する。
更にVdcがVdccから離れて領域Aまたは領域Eに入ると、変換器定格容量の関係でPadd*の絶対値を増加させることができず、Padd*は一定となる。
VdcがDC/DC変換器10の運転範囲の上下限を超すと、全ゲート信号Gをオフして充放電を停止する。
なお、図18ではVdccに対して対称となるように特性を持たせているが、これに限定されるものではない。領域Bと領域Dとの傾きが異なったり、領域幅が異なったりしても良い。 As Vdc moves away from Vdcc, the absolute value of Padd * increases. When Vdc is separated and enters region B or region D, the slope of Padd * becomes larger than that of region C. In a region D where Vdc is large, the charging direction of the DC distributedpower supply 25 is controlled with Padd * as a negative value. In a region B where Vdc is small, the discharge direction of the DC distributed power supply 25 is controlled with Padd * as a positive value.
Furthermore, when Vdc goes away from Vdcc and enters region A or region E, the absolute value of Padd * can not be increased due to the converter rated capacity, and Padd * becomes constant.
When Vdc exceeds the upper and lower limits of the operating range of the DC /DC converter 10, all gate signals G are turned off to stop charging and discharging.
Although in FIG. 18 the characteristics are given to be symmetrical with respect to Vdcc, it is not limited to this. The inclination of the area B and the area D may be different, or the area width may be different.
更にVdcがVdccから離れて領域Aまたは領域Eに入ると、変換器定格容量の関係でPadd*の絶対値を増加させることができず、Padd*は一定となる。
VdcがDC/DC変換器10の運転範囲の上下限を超すと、全ゲート信号Gをオフして充放電を停止する。
なお、図18ではVdccに対して対称となるように特性を持たせているが、これに限定されるものではない。領域Bと領域Dとの傾きが異なったり、領域幅が異なったりしても良い。 As Vdc moves away from Vdcc, the absolute value of Padd * increases. When Vdc is separated and enters region B or region D, the slope of Padd * becomes larger than that of region C. In a region D where Vdc is large, the charging direction of the DC distributed
Furthermore, when Vdc goes away from Vdcc and enters region A or region E, the absolute value of Padd * can not be increased due to the converter rated capacity, and Padd * becomes constant.
When Vdc exceeds the upper and lower limits of the operating range of the DC /
Although in FIG. 18 the characteristics are given to be symmetrical with respect to Vdcc, it is not limited to this. The inclination of the area B and the area D may be different, or the area width may be different.
フラグ生成器174には、第1電力指令Prefと一次側電圧Vdcとが入力され、0または1のフラグFlg1を出力する。フラグ生成器174では、第1電力指令Prefの大きさ|Pref|、および一次側電圧Vdcの電圧変動幅|Vdc-Vdcc|に対して、それぞれ下限値Pmin、Vdifminが設定されている。そして、入力された第1電力指令Prefと一次側電圧Vdcとに基づいて、|Pref|<Pmin、かつ|Vdc-Vdcc|<Vdifmin、の場合にFlg1=0、それ以外の場合にFlg1=1としてFlg1を出力する。
なお、Pminは0近傍の値であって、DC/DC変換器10の定格電力より十分小さい値であり、Vdifminは、領域Cの幅の1/2である。
Vdcが領域C内にあって直流分散電源25がほとんど充放電されていない場合に、第1電力指令Prefの補正により直流分散電源25が充放電することを避けるためにFlg1が用いられる。 The first power command Pref and the primary side voltage Vdc are input to theflag generator 174, and a flag Flg1 of 0 or 1 is output. In the flag generator 174, lower limits Pmin and Vdifmin are set for the magnitude | Pref | of the first power command Pref and the voltage fluctuation range | Vdc−Vdcc | of the primary side voltage Vdc. Then, based on the input first power command Pref and the primary side voltage Vdc, Flg1 = 0 in the case of | Pref | <Pmin and | Vdc-Vdcc | <Vdifmin, and Flg1 = 1 in other cases. Output Flg1 as
Pmin is a value near 0, which is sufficiently smaller than the rated power of the DC /DC converter 10, and Vdifmin is 1/2 of the width of the region C.
When Vdc is in the region C and the DC distributedpower supply 25 is hardly charged and discharged, Flg1 is used to prevent the DC distributed power supply 25 from being charged and discharged by the correction of the first power command Pref.
なお、Pminは0近傍の値であって、DC/DC変換器10の定格電力より十分小さい値であり、Vdifminは、領域Cの幅の1/2である。
Vdcが領域C内にあって直流分散電源25がほとんど充放電されていない場合に、第1電力指令Prefの補正により直流分散電源25が充放電することを避けるためにFlg1が用いられる。 The first power command Pref and the primary side voltage Vdc are input to the
Pmin is a value near 0, which is sufficiently smaller than the rated power of the DC /
When Vdc is in the region C and the DC distributed
テーブル172から出力される補正量Padd*は、乗算器173にてフラグFlg1が乗算されて補正量Paddが生成される。
そして、上述したように、第1電力指令Prefは、加算器171にて補正量Paddが加算され、さらにリミッタ175にて制限されて除算器154に入力される。その後、リミッタ175の出力は除算器154にて電圧検出値Vにより除算される。除算器154の出力は電流指令値に相当しており、減算器155へ入力される。減算器155は、入力された電流指令値と電流検出値Iとの偏差を出力し、その出力が電流制御器(PI)156に入力される。電流制御器156は、例えば比例積分制御器であり、入力された偏差が小さくなるように制御出力157aを生成して出力する。
電圧検出値V、電流検出値Iは、DC/DC変換器10の一次側の検出器33の検出値33a、あるいは二次側の検出器34の検出値34aである。一次側の検出値33aを用いる場合は、電圧検出値VはVdcと同じ値となる。 The correction amount Padd * output from the table 172 is multiplied by the flag Flg1 in themultiplier 173 to generate the correction amount Padd.
Then, as described above, theadder 171 adds the correction amount Padd to the first electric power command Pref, and the limiter 175 limits the first electric power command Pref to be input to the divider 154. Thereafter, the output of the limiter 175 is divided by the voltage detection value V in the divider 154. The output of the divider 154 corresponds to the current command value and is input to the subtractor 155. The subtractor 155 outputs the deviation between the input current command value and the current detection value I, and the output is input to the current controller (PI) 156. The current controller 156 is, for example, a proportional integral controller, and generates and outputs a control output 157a so that the input deviation is reduced.
The voltage detection value V and the current detection value I are thedetection value 33 a of the detector 33 on the primary side of the DC / DC converter 10 or the detection value 34 a of the detector 34 on the secondary side. When the detection value 33a on the primary side is used, the voltage detection value V has the same value as Vdc.
そして、上述したように、第1電力指令Prefは、加算器171にて補正量Paddが加算され、さらにリミッタ175にて制限されて除算器154に入力される。その後、リミッタ175の出力は除算器154にて電圧検出値Vにより除算される。除算器154の出力は電流指令値に相当しており、減算器155へ入力される。減算器155は、入力された電流指令値と電流検出値Iとの偏差を出力し、その出力が電流制御器(PI)156に入力される。電流制御器156は、例えば比例積分制御器であり、入力された偏差が小さくなるように制御出力157aを生成して出力する。
電圧検出値V、電流検出値Iは、DC/DC変換器10の一次側の検出器33の検出値33a、あるいは二次側の検出器34の検出値34aである。一次側の検出値33aを用いる場合は、電圧検出値VはVdcと同じ値となる。 The correction amount Padd * output from the table 172 is multiplied by the flag Flg1 in the
Then, as described above, the
The voltage detection value V and the current detection value I are the
以上のように、この実施の形態では、DC/DC変換器10の制御回路32において、電力制御部157が、制御部12から与えられた第1電力指令Prefに応じて動作するだけでなく、以下の動作を行う。すなわち、電力制御部157が、一次側電圧Vdcが基準値を逸脱した場合に、第1電力指令Prefを補正してVdcを基準値に近づけるように動作する。
なおこの場合、テーブル172を用いて補正量Paddを求めるもので、テーブルデータを図示しないメモリに保存して用いる。また、テーブル172を用いる以外に、演算式を用いるなど、他の方法で補正量Paddを求めても良い。 As described above, in this embodiment, in thecontrol circuit 32 of the DC / DC converter 10, the power control unit 157 not only operates according to the first power command Pref given from the control unit 12, but Perform the following operation. That is, when the primary side voltage Vdc deviates from the reference value, the power control unit 157 operates to correct the first power command Pref to make Vdc approach the reference value.
In this case, the correction amount Padd is obtained using the table 172, and the table data is stored and used in a memory (not shown). Further, instead of using the table 172, the correction amount Padd may be obtained by another method such as using an arithmetic expression.
なおこの場合、テーブル172を用いて補正量Paddを求めるもので、テーブルデータを図示しないメモリに保存して用いる。また、テーブル172を用いる以外に、演算式を用いるなど、他の方法で補正量Paddを求めても良い。 As described above, in this embodiment, in the
In this case, the correction amount Padd is obtained using the table 172, and the table data is stored and used in a memory (not shown). Further, instead of using the table 172, the correction amount Padd may be obtained by another method such as using an arithmetic expression.
上述した電力制御部157では、例えば、第1電力指令Prefが負で直流分散電源25を充電している時にVdcが低下すると、正の補正量Paddが、負の第1電力指令Prefに打ち消され、放電が抑制される。すなわち、一次側電圧Vdcの変動抑制、すなわち電圧維持の優先度が低い制御となる。
In the power control unit 157 described above, for example, when the first power command Pref is negative and charging the DC distributed power supply 25 and Vdc is reduced, the positive correction amount Padd is canceled by the negative first power command Pref. , The discharge is suppressed. That is, the control of suppressing the fluctuation of the primary side voltage Vdc, that is, the control with low priority of voltage maintenance is performed.
電力制御部157は、図19に示すように構成しても良く、一次側電圧Vdcの電圧維持の優先度を高める制御構成である。
図19に示す電力制御部157は、図17で示したものに、テーブル176と乗算器177とを追加したものである。
図19に示すように、第1電力指令Prefは、乗算器177にてゲインK1が乗算された後、加算器171にて補正量Paddが加算されて補正される。
また、一次側の検出値33aである一次側電圧Vdcは、テーブル172とフラグ生成器174と、さらにテーブル176に入力される。フラグ生成器174には、第1電力指令Prefも入力される。 Thepower control unit 157 may be configured as shown in FIG. 19, and is a control configuration that raises the priority of maintaining the voltage of the primary side voltage Vdc.
Thepower control unit 157 shown in FIG. 19 is obtained by adding a table 176 and a multiplier 177 to those shown in FIG.
As shown in FIG. 19, after themultiplier 177 multiplies the first power command Pref by the gain K 1, the adder 171 adds the correction amount Padd to correct the first power command Pref.
Further, the primary side voltage Vdc which is thedetection value 33 a on the primary side is input to the table 172, the flag generator 174, and the table 176. The flag generator 174 also receives the first power command Pref.
図19に示す電力制御部157は、図17で示したものに、テーブル176と乗算器177とを追加したものである。
図19に示すように、第1電力指令Prefは、乗算器177にてゲインK1が乗算された後、加算器171にて補正量Paddが加算されて補正される。
また、一次側の検出値33aである一次側電圧Vdcは、テーブル172とフラグ生成器174と、さらにテーブル176に入力される。フラグ生成器174には、第1電力指令Prefも入力される。 The
The
As shown in FIG. 19, after the
Further, the primary side voltage Vdc which is the
図20は、テーブル176の入出力の関係を示す図である。
図20に示すように、テーブル176は、Vdcの変動に応じて第1電力指令Prefに乗算するゲインK1を出力する。Vdcは、図18に示すものと同様に、A~Eの5つの領域に分割されてゲインK1が決定される。
通常、Vdcは中央の領域C内にあり、領域CではK=1である。Vdcが変化して領域Bまたは領域Dに入ると、VdcがVdccから離れるに従ってゲインK1は減少して0となる。 FIG. 20 is a diagram showing the relationship between input and output of the table 176.
As shown in FIG. 20, the table 176 outputs a gain K1 by which the first power command Pref is multiplied according to the fluctuation of Vdc. Vdc is divided into five regions A to E similarly to those shown in FIG. 18 to determine the gain K1.
Usually, Vdc is in the central region C, where K = 1. When Vdc changes and enters region B or region D, gain K1 decreases to 0 as Vdc moves away from Vdcc.
図20に示すように、テーブル176は、Vdcの変動に応じて第1電力指令Prefに乗算するゲインK1を出力する。Vdcは、図18に示すものと同様に、A~Eの5つの領域に分割されてゲインK1が決定される。
通常、Vdcは中央の領域C内にあり、領域CではK=1である。Vdcが変化して領域Bまたは領域Dに入ると、VdcがVdccから離れるに従ってゲインK1は減少して0となる。 FIG. 20 is a diagram showing the relationship between input and output of the table 176.
As shown in FIG. 20, the table 176 outputs a gain K1 by which the first power command Pref is multiplied according to the fluctuation of Vdc. Vdc is divided into five regions A to E similarly to those shown in FIG. 18 to determine the gain K1.
Usually, Vdc is in the central region C, where K = 1. When Vdc changes and enters region B or region D, gain K1 decreases to 0 as Vdc moves away from Vdcc.
図19に示すように、第1電力指令Prefは、乗算器177にてゲインK1が乗算された後、加算器171にて補正量Paddが加算されて補正される。
また、一次側の検出値33aである一次側電圧Vdcは、テーブル172とフラグ生成器174と、さらにテーブル176に入力される。フラグ生成器174には、第1電力指令Prefも入力される。その他の構成および動作は、図17で示したものと同様である。 As shown in FIG. 19, after themultiplier 177 multiplies the first power command Pref by the gain K 1, the adder 171 adds the correction amount Padd to correct the first power command Pref.
Further, the primary side voltage Vdc which is thedetection value 33 a on the primary side is input to the table 172, the flag generator 174, and the table 176. The flag generator 174 also receives the first power command Pref. Other configurations and operations are similar to those shown in FIG.
また、一次側の検出値33aである一次側電圧Vdcは、テーブル172とフラグ生成器174と、さらにテーブル176に入力される。フラグ生成器174には、第1電力指令Prefも入力される。その他の構成および動作は、図17で示したものと同様である。 As shown in FIG. 19, after the
Further, the primary side voltage Vdc which is the
この場合、一次側電圧Vdcが通常の領域Cを外れてVdccから離れるとゲインK1が減少するため、制御部12から受信した第1電力指令Prefが補正後の電力指令に反映されにくくなる。そして最終的に、K1=0になって、VdcをVdccに近づける作用だけが残る。このように、電力制御部157は、Vdcが領域Cを外れた場合には、Vdcの電圧変動の抑制を最優先にして動作する。
なお、テーブル176の入出力特性は図20に示すものに限定されるものではなく、制御部12からの第1電力指令Prefと一次側電圧Vdcの電圧維持との優先度合に応じて決定できる。また、テーブル176を用いる代わりに演算式を用いても良い。 In this case, since the gain K1 decreases when the primary side voltage Vdc deviates from the normal region C and leaves Vdcc, the first power command Pref received from thecontrol unit 12 is less likely to be reflected in the corrected power command. Finally, K1 = 0 and only the function of bringing Vdc close to Vdcc remains. Thus, when Vdc deviates from the area C, the power control unit 157 operates with the suppression of the voltage fluctuation of Vdc as the top priority.
The input / output characteristics of the table 176 are not limited to those shown in FIG. 20, and can be determined according to the priority of the first power command Pref from thecontrol unit 12 and the voltage maintenance of the primary side voltage Vdc. Also, instead of using the table 176, an arithmetic expression may be used.
なお、テーブル176の入出力特性は図20に示すものに限定されるものではなく、制御部12からの第1電力指令Prefと一次側電圧Vdcの電圧維持との優先度合に応じて決定できる。また、テーブル176を用いる代わりに演算式を用いても良い。 In this case, since the gain K1 decreases when the primary side voltage Vdc deviates from the normal region C and leaves Vdcc, the first power command Pref received from the
The input / output characteristics of the table 176 are not limited to those shown in FIG. 20, and can be determined according to the priority of the first power command Pref from the
ところで、共通直流母線1は直流配電線21に接続されると共に、DC/DC変換器10の一次側と、DC/AC変換器11の二次側とに接続されている。共通直流母線の電圧は、直流配電線21の電圧に相当し、DC/DC変換器10の一次側電圧およびDC/AC変換器11の二次側電圧は、共通直流母線1の電圧に相当すると言える。共通直流母線1の直流電圧Vdcの電圧維持のためには、上述したDC/DC変換器10を用いるだけでは無く、DC/AC変換器11を用いて制御できる。
図21は、この発明の実施の形態2によるDC/AC変換器11の制御回路42の構成を示す図である。なお、実施の形態1と異なる部分を中心に述べ、実施の形態1と同様の構成は適宜、説明を省略する。
図21に示すように、制御回路42は、電力供給部160、電力制御部167、ゲート信号生成部162およびゲートドライバ163を備える。電力供給部160、ゲート信号生成部162およびゲートドライバ163は、上記実施の形態1と同様であり、電力制御部167が異なる。 Thecommon DC bus 1 is connected to the DC distribution line 21 and to the primary side of the DC / DC converter 10 and to the secondary side of the DC / AC converter 11. The voltage of the common DC bus corresponds to the voltage of the DC distribution line 21, and the primary voltage of the DC / DC converter 10 and the secondary voltage of the DC / AC converter 11 correspond to the voltage of the common DC bus 1. I can say that. In order to maintain the voltage of the DC voltage Vdc of the common DC bus 1, not only the above-described DC / DC converter 10 but also the DC / AC converter 11 can be used for control.
FIG. 21 is a diagram showing a configuration ofcontrol circuit 42 of DC / AC converter 11 according to the second embodiment of the present invention. A description will be made focusing on parts different from the first embodiment, and the description of the same configuration as that of the first embodiment will be omitted as appropriate.
As shown in FIG. 21, thecontrol circuit 42 includes a power supply unit 160, a power control unit 167, a gate signal generation unit 162, and a gate driver 163. The power supply unit 160, the gate signal generation unit 162, and the gate driver 163 are the same as those in the first embodiment, and the power control unit 167 is different.
図21は、この発明の実施の形態2によるDC/AC変換器11の制御回路42の構成を示す図である。なお、実施の形態1と異なる部分を中心に述べ、実施の形態1と同様の構成は適宜、説明を省略する。
図21に示すように、制御回路42は、電力供給部160、電力制御部167、ゲート信号生成部162およびゲートドライバ163を備える。電力供給部160、ゲート信号生成部162およびゲートドライバ163は、上記実施の形態1と同様であり、電力制御部167が異なる。 The
FIG. 21 is a diagram showing a configuration of
As shown in FIG. 21, the
電力制御部167には、上記実施の形態1と同様に、制御部12からの電力指令12aである第2電力指令(電力指令値Pref)と、一次側の検出器43からの検出値43aと、二次側の検出器44からの検出値44aとが与えられる。電力制御部167の制御出力167aはゲート信号生成部162に入力される。
この場合、二次側の検出値44aである二次側電圧Vdcの変動に応じて第2電力指令Prefを補正して用いる。すなわち、DC/AC変換器11の出力電力を補正するものである。 As in the first embodiment, thepower control unit 167 includes the second power command (power command value Pref) which is the power command 12a from the control unit 12, and the detection value 43a from the detector 43 on the primary side. , And a detection value 44a from the detector 44 on the secondary side. The control output 167 a of the power control unit 167 is input to the gate signal generation unit 162.
In this case, the second power command Pref is corrected and used in accordance with the fluctuation of the secondary voltage Vdc, which is thedetection value 44a on the secondary side. That is, the output power of the DC / AC converter 11 is corrected.
この場合、二次側の検出値44aである二次側電圧Vdcの変動に応じて第2電力指令Prefを補正して用いる。すなわち、DC/AC変換器11の出力電力を補正するものである。 As in the first embodiment, the
In this case, the second power command Pref is corrected and used in accordance with the fluctuation of the secondary voltage Vdc, which is the
図22は、電力制御部167の構成を示すブロック図である。なお、図22は、有効電力分のブロックのみを示している。
図22に示すように、第2電力指令Prefは、加算器178にて補正量Paddが加算されて補正される。補正後の第2電力指令Prefは、リミッタ180にて、DC/AC変換器11の変換器定格電力以下の値に制限されて除算器164に入力される。また、二次側の検出値44aである二次側電圧Vdcは、テーブル179に入力される。 FIG. 22 is a block diagram showing a configuration ofpower control unit 167. Referring to FIG. FIG. 22 shows only blocks for the effective power.
As shown in FIG. 22, the second electric power command Pref is corrected by adding the correction amount Padd in theadder 178. The corrected second power command Pref is limited by the limiter 180 to a value equal to or less than the converter rated power of the DC / AC converter 11, and is input to the divider 164. Further, the secondary side voltage Vdc, which is the detection value 44 a on the secondary side, is input to the table 179.
図22に示すように、第2電力指令Prefは、加算器178にて補正量Paddが加算されて補正される。補正後の第2電力指令Prefは、リミッタ180にて、DC/AC変換器11の変換器定格電力以下の値に制限されて除算器164に入力される。また、二次側の検出値44aである二次側電圧Vdcは、テーブル179に入力される。 FIG. 22 is a block diagram showing a configuration of
As shown in FIG. 22, the second electric power command Pref is corrected by adding the correction amount Padd in the
図23は、テーブル179の入出力の関係を示す図である。
図23に示すように、テーブル179は、Vdcの変動に応じて第2電力指令Prefを補正するための補正量Paddを出力する。Vdcは、A~Eの5つの領域に分割されて補正量Paddが決定される。この場合も、Vdcは、通常、中央の領域C内にあり、領域Cの中央値がVdccである。
DC/AC変換器11は、通常、二次側電圧Vdcを制御しないため、Vdcが領域Cにあるとき、Padd=0である。VdcがVdccから離れ、領域Bまたは領域Dに入ると、VdcがVdccから離れるに従ってPaddの絶対値は大きくなる。領域DではPaddを正として、共通直流母線1から交流母線2の向きに出力する電力を増やすか、交流母線2から共通直流母線1の向きに出力する電力を減らす。領域BではPaddを負として、共通直流母線1から交流母線2の向きに出力する電力を減らすか、交流母線2から共通直流母線1の向きに出力する電力を増やす。 FIG. 23 is a diagram showing the relationship between input and output of the table 179. As shown in FIG.
As shown in FIG. 23, the table 179 outputs a correction amount Padd for correcting the second power command Pref in accordance with the fluctuation of Vdc. Vdc is divided into five regions A to E to determine the correction amount Padd. Also in this case, Vdc is usually in the central region C, and the central value of the region C is Vdcc.
Since the DC /AC converter 11 normally does not control the secondary side voltage Vdc, when Vdc is in the region C, Padd = 0. When Vdc moves away from Vdcc and enters region B or region D, the absolute value of Padd increases as Vdc moves away from Vdcc. In the area D, Padd is positive, and the power output from the common DC bus 1 in the direction of the AC bus 2 is increased, or the power output from the AC bus 2 in the direction of the common DC bus 1 is decreased. In the region B, Padd is negative, and the power output from the common DC bus 1 in the direction of the AC bus 2 is reduced or the power output from the AC bus 2 in the direction of the common DC bus 1 is increased.
図23に示すように、テーブル179は、Vdcの変動に応じて第2電力指令Prefを補正するための補正量Paddを出力する。Vdcは、A~Eの5つの領域に分割されて補正量Paddが決定される。この場合も、Vdcは、通常、中央の領域C内にあり、領域Cの中央値がVdccである。
DC/AC変換器11は、通常、二次側電圧Vdcを制御しないため、Vdcが領域Cにあるとき、Padd=0である。VdcがVdccから離れ、領域Bまたは領域Dに入ると、VdcがVdccから離れるに従ってPaddの絶対値は大きくなる。領域DではPaddを正として、共通直流母線1から交流母線2の向きに出力する電力を増やすか、交流母線2から共通直流母線1の向きに出力する電力を減らす。領域BではPaddを負として、共通直流母線1から交流母線2の向きに出力する電力を減らすか、交流母線2から共通直流母線1の向きに出力する電力を増やす。 FIG. 23 is a diagram showing the relationship between input and output of the table 179. As shown in FIG.
As shown in FIG. 23, the table 179 outputs a correction amount Padd for correcting the second power command Pref in accordance with the fluctuation of Vdc. Vdc is divided into five regions A to E to determine the correction amount Padd. Also in this case, Vdc is usually in the central region C, and the central value of the region C is Vdcc.
Since the DC /
これにより、共通直流母線1と交流配電線22との間で電力融通してVdcを領域Cへ戻そうとする。
更にVdcがVdccから離れて領域Aまたは領域Eに入ると、変換器定格容量の関係でPaddの絶対値を増加させることができず、Paddは一定となる。
VdcがDC/AC変換器11の運転範囲の上下限を超すと、全ゲート信号Gをオフして充放電を停止する。
なお、図23ではVdccに対して対称となるように特性を持たせているが、これに限定されるものではない。領域Bと領域Dとの傾きが異なったり、領域幅が異なったりしても良い。 Thus, power is interchanged between thecommon DC bus 1 and the AC distribution line 22 to return Vdc to the area C.
Furthermore, when Vdc is separated from Vdcc and enters region A or region E, the absolute value of Padd can not be increased due to the converter rated capacity, and Padd becomes constant.
When Vdc exceeds the upper and lower limits of the operating range of the DC /AC converter 11, all gate signals G are turned off to stop charging and discharging.
Although in FIG. 23 the characteristics are given to be symmetrical with respect to Vdcc, the present invention is not limited to this. The inclination of the area B and the area D may be different, or the area width may be different.
更にVdcがVdccから離れて領域Aまたは領域Eに入ると、変換器定格容量の関係でPaddの絶対値を増加させることができず、Paddは一定となる。
VdcがDC/AC変換器11の運転範囲の上下限を超すと、全ゲート信号Gをオフして充放電を停止する。
なお、図23ではVdccに対して対称となるように特性を持たせているが、これに限定されるものではない。領域Bと領域Dとの傾きが異なったり、領域幅が異なったりしても良い。 Thus, power is interchanged between the
Furthermore, when Vdc is separated from Vdcc and enters region A or region E, the absolute value of Padd can not be increased due to the converter rated capacity, and Padd becomes constant.
When Vdc exceeds the upper and lower limits of the operating range of the DC /
Although in FIG. 23 the characteristics are given to be symmetrical with respect to Vdcc, the present invention is not limited to this. The inclination of the area B and the area D may be different, or the area width may be different.
テーブル179から出力される補正量Paddは、加算器178に入力される。
そして、上述したように、第1電力指令Prefは、加算器178にて補正量Paddが加算され、さらにリミッタ180にて制限されて除算器164に入力される。その後、リミッタ180の出力は除算器164にて電圧検出値Vにより除算される。除算器164の出力は有効電流指令値に相当しており、減算器165へ入力される。減算器165は、入力された有効電流指令値と有効電流検出値Ipとの偏差を出力し、その出力が電流制御器(PI)166に入力される。電流制御器166は、例えば比例積分制御器であり、入力された偏差が小さくなるように制御出力167aを生成して出力する。 The correction amount Padd output from the table 179 is input to theadder 178.
Then, as described above, theadder 178 adds the correction amount Padd to the first power command Pref, and the limiter 180 further restricts the first power command Pref to be input to the divider 164. Thereafter, the output of the limiter 180 is divided by the voltage detection value V in the divider 164. The output of the divider 164 corresponds to the effective current command value, and is input to the subtractor 165. The subtractor 165 outputs the deviation between the input effective current command value and the effective current detection value Ip, and the output is input to the current controller (PI) 166. The current controller 166 is, for example, a proportional integral controller, and generates and outputs the control output 167a so that the input deviation is reduced.
そして、上述したように、第1電力指令Prefは、加算器178にて補正量Paddが加算され、さらにリミッタ180にて制限されて除算器164に入力される。その後、リミッタ180の出力は除算器164にて電圧検出値Vにより除算される。除算器164の出力は有効電流指令値に相当しており、減算器165へ入力される。減算器165は、入力された有効電流指令値と有効電流検出値Ipとの偏差を出力し、その出力が電流制御器(PI)166に入力される。電流制御器166は、例えば比例積分制御器であり、入力された偏差が小さくなるように制御出力167aを生成して出力する。 The correction amount Padd output from the table 179 is input to the
Then, as described above, the
なお、テーブル179の入出力特性は、図23に示すものに限定されるものではなく、制御部12からの第2電力指令Prefと二次側電圧Vdcの電圧維持との優先度合に応じて決定できる。また、テーブル179を用いる代わりに演算式を用いても良い。
また、Vdcが交流配電線22の瞬時電圧値より小さい領域に入ると、全ゲート信号Gをオフしても交流配電系統28から直流配電線21に電力が供給されることになる。この場合は、DC/AC変換器11を交流配電系統28または直流配電系統27から一時的に解列する必要がある。 The input / output characteristics of table 179 are not limited to those shown in FIG. 23, and are determined according to the priority between the second power command Pref fromcontrol unit 12 and the voltage maintenance of secondary side voltage Vdc. it can. Also, instead of using the table 179, an arithmetic expression may be used.
Further, when Vdc enters an area smaller than the instantaneous voltage value of theAC distribution line 22, power is supplied from the AC distribution system 28 to the DC distribution line 21 even if all the gate signals G are turned off. In this case, it is necessary to temporarily disconnect the DC / AC converter 11 from the AC distribution system 28 or the DC distribution system 27.
また、Vdcが交流配電線22の瞬時電圧値より小さい領域に入ると、全ゲート信号Gをオフしても交流配電系統28から直流配電線21に電力が供給されることになる。この場合は、DC/AC変換器11を交流配電系統28または直流配電系統27から一時的に解列する必要がある。 The input / output characteristics of table 179 are not limited to those shown in FIG. 23, and are determined according to the priority between the second power command Pref from
Further, when Vdc enters an area smaller than the instantaneous voltage value of the
上述した電力制御部167では、例えば、第2電力指令Prefが正で交流母線2に電力供給している時にVdcが低下すると、負の補正量Paddが、正の第2電力指令Prefに打ち消され、交流母線2から共通直流母線1への電力供給が抑制される。すなわち二次側電圧Vdcの電圧維持の優先度が低い制御となる。
In the power control unit 167 described above, for example, when the second power command Pref is positive and power is being supplied to the AC bus 2 and Vdc decreases, the negative correction amount Padd is canceled by the positive second power command Pref. The power supply from the AC bus 2 to the common DC bus 1 is suppressed. In other words, the priority of the voltage maintenance of the secondary side voltage Vdc is low.
電力制御部167は、図24に示すように構成しても良く、二次側電圧Vdcの電圧維持の優先度を高める制御構成である。
図24に示す電力制御部167は、図22で示したものに、テーブル181と乗算器182とを追加したものである。
図24に示すように、二次側電圧Vdcは、テーブル179とテーブル181とに入力される。第2電力指令Prefは、乗算器182にて、テーブル179の出力であるゲインK1が乗算された後、加算器178にて補正量Paddが加算されて補正される。
なお、テーブル181の入出力特性の例は、図20で示したものと同様で良い。
この場合、電力制御部167は、Vdcが領域Cを外れた場合には、Vdcの電圧変動の抑制を最優先にして動作する。 Thepower control unit 167 may be configured as shown in FIG. 24, and is a control configuration that raises the priority of voltage maintenance of the secondary side voltage Vdc.
Thepower control unit 167 shown in FIG. 24 has a table 181 and a multiplier 182 added to those shown in FIG.
As shown in FIG. 24, the secondary side voltage Vdc is input to the table 179 and the table 181. After the second power command Pref is multiplied by the gain K1 which is the output of the table 179 in themultiplier 182, the correction amount Padd is added and corrected in the adder 178.
An example of the input / output characteristics of the table 181 may be the same as that shown in FIG.
In this case, when Vdc deviates from the area C, thepower control unit 167 operates with the suppression of the voltage fluctuation of Vdc as the top priority.
図24に示す電力制御部167は、図22で示したものに、テーブル181と乗算器182とを追加したものである。
図24に示すように、二次側電圧Vdcは、テーブル179とテーブル181とに入力される。第2電力指令Prefは、乗算器182にて、テーブル179の出力であるゲインK1が乗算された後、加算器178にて補正量Paddが加算されて補正される。
なお、テーブル181の入出力特性の例は、図20で示したものと同様で良い。
この場合、電力制御部167は、Vdcが領域Cを外れた場合には、Vdcの電圧変動の抑制を最優先にして動作する。 The
The
As shown in FIG. 24, the secondary side voltage Vdc is input to the table 179 and the table 181. After the second power command Pref is multiplied by the gain K1 which is the output of the table 179 in the
An example of the input / output characteristics of the table 181 may be the same as that shown in FIG.
In this case, when Vdc deviates from the area C, the
なお、テーブル181の入出力特性は図20に示すものに限定されるものではなく、制御部12からの第2電力指令Prefと二次側電圧Vdcの電圧維持との優先度合に応じて決定できる。また、テーブル181を用いる代わりに演算式を用いても良い。
The input / output characteristics of the table 181 are not limited to those shown in FIG. 20, and can be determined according to the priority between the second power command Pref from the control unit 12 and the voltage maintenance of the secondary voltage Vdc. . Also, instead of using the table 181, an arithmetic expression may be used.
ところで、直流電圧Vdc、すなわち直流配電系統27の電圧を維持するための電力変換装置100の動作としては、DC/DC変換器10を用いて直流分散電源25を充放電する方法と、DC/AC変換器11を用いて交流配電系統28と電力融通する方法と、これら2つの方法を組み合わせる方法とがある。
これらは設置場所や使用方法に応じて予め固定しておくこともできるし、状況に応じて変更することもできるが、上記2つの方法を組み合わせる際には、直流配電系統27と授受する電力が、変換器容量内に収まるようにしなければならない。
例えば、充放電可能な直流分散電源25が接続され、Vdcの電圧維持に使用可能なDC/DC変換器10の合計容量を、直流配電系統27と授受する電力における最大電力から減じた分だけ、交流配電系統28から電力融通する。すなわち、Vdcの電圧維持のための制御を行うDC/AC変換器11の台数を制限したり、DC/AC変換器11のテーブル179のリミッタを制限したりする。これらは制御部12から各DC/AC変換器11への通知により実施される。 By the way, as the operation of thepower conversion device 100 for maintaining the DC voltage Vdc, that is, the voltage of the DC distribution system 27, a method of charging and discharging the DC distributed power supply 25 using the DC / DC converter 10, DC / AC There are a method of interchanging power with the AC distribution system 28 using the converter 11, and a method of combining the two methods.
These can be fixed in advance according to the installation place and usage, and can be changed according to the situation, but when combining the above two methods, the power supplied to and from theDC distribution system 27 , Must be within the converter capacity.
For example, the total capacity of the DC /DC converter 10 that is connected to the chargeable / dischargeable DC distributed power supply 25 and can be used to maintain the voltage of Vdc is reduced by the amount obtained by subtracting the maximum power of the power transmitted to and received from the DC distribution system 27 Power interchange from the AC distribution system 28 is performed. That is, the number of DC / AC converters 11 performing control for maintaining the voltage of Vdc is limited, or the limiter of the table 179 of the DC / AC converters 11 is limited. These are implemented by notification from the control unit 12 to each DC / AC converter 11.
これらは設置場所や使用方法に応じて予め固定しておくこともできるし、状況に応じて変更することもできるが、上記2つの方法を組み合わせる際には、直流配電系統27と授受する電力が、変換器容量内に収まるようにしなければならない。
例えば、充放電可能な直流分散電源25が接続され、Vdcの電圧維持に使用可能なDC/DC変換器10の合計容量を、直流配電系統27と授受する電力における最大電力から減じた分だけ、交流配電系統28から電力融通する。すなわち、Vdcの電圧維持のための制御を行うDC/AC変換器11の台数を制限したり、DC/AC変換器11のテーブル179のリミッタを制限したりする。これらは制御部12から各DC/AC変換器11への通知により実施される。 By the way, as the operation of the
These can be fixed in advance according to the installation place and usage, and can be changed according to the situation, but when combining the above two methods, the power supplied to and from the
For example, the total capacity of the DC /
次に、交流母線2の電圧変動について説明する。
交流母線2は交流配電線22に接続されると共に、DC/AC変換器11の一次側に接続されている。交流母線2の電圧は交流配電線22の電圧に相当し、DC/AC変換器11の一次側電圧は交流母線2の電圧に相当するといえる。すなわち、交流母線2の電圧は、DC/AC変換器11を用いて電圧維持できる。
この場合も、図22あるいは図24で示した電力制御部167と同様に、第2電力指令(有効電力指令値Pref)に補正量Paddを加算して用いる。この場合、Vdcに代わりDC/AC変換器11の一次側電圧(交流母線2の電圧)の実効値Vacを用いる。また、テーブル179に代わり、例えば図25に示す入出力特性を有するテーブルを用いて補正量Paddを求める。 Next, voltage fluctuation of theAC bus 2 will be described.
TheAC bus 2 is connected to the AC distribution line 22 and to the primary side of the DC / AC converter 11. It can be said that the voltage of the AC bus 2 corresponds to the voltage of the AC distribution line 22, and the primary voltage of the DC / AC converter 11 corresponds to the voltage of the AC bus 2. That is, the voltage of the AC bus 2 can be maintained using the DC / AC converter 11.
Also in this case, similarly to thepower control unit 167 shown in FIG. 22 or FIG. 24, the correction amount Padd is used by adding the second power command (active power command value Pref) to the second power command. In this case, the effective value Vac of the primary side voltage (voltage of the AC bus 2) of the DC / AC converter 11 is used instead of Vdc. Further, instead of the table 179, for example, the correction amount Padd is determined using a table having input / output characteristics shown in FIG.
交流母線2は交流配電線22に接続されると共に、DC/AC変換器11の一次側に接続されている。交流母線2の電圧は交流配電線22の電圧に相当し、DC/AC変換器11の一次側電圧は交流母線2の電圧に相当するといえる。すなわち、交流母線2の電圧は、DC/AC変換器11を用いて電圧維持できる。
この場合も、図22あるいは図24で示した電力制御部167と同様に、第2電力指令(有効電力指令値Pref)に補正量Paddを加算して用いる。この場合、Vdcに代わりDC/AC変換器11の一次側電圧(交流母線2の電圧)の実効値Vacを用いる。また、テーブル179に代わり、例えば図25に示す入出力特性を有するテーブルを用いて補正量Paddを求める。 Next, voltage fluctuation of the
The
Also in this case, similarly to the
図25に示すように、テーブルは、Vacの変動に応じて第2電力指令Prefを補正するための補正量Paddを出力する。Vacは、Vacの昇順にF1、G1、H1の3つの領域に分割されて補正量Paddが決定される。この場合、Vacは、通常、中央の領域G1内にあり、領域G1の中央値(基準値)がVaccである。
Vacが領域G1にあるとき、Padd=0である。VacがVaccから離れ、領域F1または領域H1に入ると、VacがVaccから離れるに従ってPaddの絶対値は大きくなる。領域F1ではPaddを正として、共通直流母線1から交流母線2の向きに出力する電力を増やすか、交流母線2から共通直流母線1の向きに出力する電力を減らす。領域H1ではPaddを負として、共通直流母線1から交流母線2の向きに出力する電力を減らすか、交流母線2から共通直流母線1の向きに出力する電力を増やす。 As shown in FIG. 25, the table outputs a correction amount Padd for correcting the second power command Pref according to the fluctuation of Vac. Vac is divided into three areas F1, G1, and H1 in ascending order of Vac, and the correction amount Padd is determined. In this case, Vac is usually in the central area G1, and the central value (reference value) of the area G1 is Vacc.
When Vac is in the area G1, Padd = 0. When Vac leaves Vacc and enters region F1 or region H1, the absolute value of Padd increases as Vac leaves Vacc. In the region F1, Padd is positive, and the power output from thecommon DC bus 1 in the direction of the AC bus 2 is increased or the power output from the AC bus 2 in the direction of the common DC bus 1 is reduced. In the region H1, Padd is negative, and the power output from the common DC bus 1 in the direction of the AC bus 2 is reduced or the power output from the AC bus 2 in the direction of the common DC bus 1 is increased.
Vacが領域G1にあるとき、Padd=0である。VacがVaccから離れ、領域F1または領域H1に入ると、VacがVaccから離れるに従ってPaddの絶対値は大きくなる。領域F1ではPaddを正として、共通直流母線1から交流母線2の向きに出力する電力を増やすか、交流母線2から共通直流母線1の向きに出力する電力を減らす。領域H1ではPaddを負として、共通直流母線1から交流母線2の向きに出力する電力を減らすか、交流母線2から共通直流母線1の向きに出力する電力を増やす。 As shown in FIG. 25, the table outputs a correction amount Padd for correcting the second power command Pref according to the fluctuation of Vac. Vac is divided into three areas F1, G1, and H1 in ascending order of Vac, and the correction amount Padd is determined. In this case, Vac is usually in the central area G1, and the central value (reference value) of the area G1 is Vacc.
When Vac is in the area G1, Padd = 0. When Vac leaves Vacc and enters region F1 or region H1, the absolute value of Padd increases as Vac leaves Vacc. In the region F1, Padd is positive, and the power output from the
なお、交流配電系統28が電力バランスに応じて周波数を変化させる特性を有している場合には、DC/AC変換器11の一次側電圧の周波数facに応じて補正量Paddを求めても良い。その場合、例えば図26に示す入出力特性を有するテーブルを用いて補正量Paddを求める。
図26に示すように、テーブルは、facの変動に応じて第2電力指令Prefを補正するための補正量Paddを出力する。facは、facの昇順にF2、G2、H2の3つの領域に分割されて補正量Paddが決定される。この場合、facは、通常、中央の領域G2内にあり、領域G2の中央値(基準値)がfaccである。
facが領域G2にあるとき、Padd=0である。facがfaccから離れ、領域F2または領域H2に入ると、facがfaccから離れるに従ってPaddの絶対値は大きくなる。領域F2ではPaddを正として、共通直流母線1から交流母線2の向きに出力する電力を増やすか、交流母線2から共通直流母線1の向きに出力する電力を減らす。領域H2ではPaddを負として、共通直流母線1から交流母線2の向きに出力する電力を減らすか、交流母線2から共通直流母線1の向きに出力する電力を増やす。 If theAC distribution system 28 has the characteristic of changing the frequency according to the power balance, the correction amount Padd may be determined according to the frequency fac of the primary side voltage of the DC / AC converter 11 . In that case, the correction amount Padd is determined using, for example, a table having input / output characteristics shown in FIG.
As shown in FIG. 26, the table outputs the correction amount Padd for correcting the second power command Pref according to the fluctuation of fac. The fac is divided into three areas of F2, G2, and H2 in ascending order of fac, and the correction amount Padd is determined. In this case, fac is usually in the central region G2, and the median (reference value) of the region G2 is facc.
When fac is in the region G2, Padd = 0. When fac leaves facc and enters region F2 or H2, the absolute value of Padd increases as fac leaves facc. In the region F2, Padd is positive, and the power output from thecommon DC bus 1 in the direction of the AC bus 2 is increased or the power output from the AC bus 2 in the direction of the common DC bus 1 is reduced. In the region H2, Padd is negative, and the power output from the common DC bus 1 in the direction of the AC bus 2 is reduced or the power output from the AC bus 2 in the direction of the common DC bus 1 is increased.
図26に示すように、テーブルは、facの変動に応じて第2電力指令Prefを補正するための補正量Paddを出力する。facは、facの昇順にF2、G2、H2の3つの領域に分割されて補正量Paddが決定される。この場合、facは、通常、中央の領域G2内にあり、領域G2の中央値(基準値)がfaccである。
facが領域G2にあるとき、Padd=0である。facがfaccから離れ、領域F2または領域H2に入ると、facがfaccから離れるに従ってPaddの絶対値は大きくなる。領域F2ではPaddを正として、共通直流母線1から交流母線2の向きに出力する電力を増やすか、交流母線2から共通直流母線1の向きに出力する電力を減らす。領域H2ではPaddを負として、共通直流母線1から交流母線2の向きに出力する電力を減らすか、交流母線2から共通直流母線1の向きに出力する電力を増やす。 If the
As shown in FIG. 26, the table outputs the correction amount Padd for correcting the second power command Pref according to the fluctuation of fac. The fac is divided into three areas of F2, G2, and H2 in ascending order of fac, and the correction amount Padd is determined. In this case, fac is usually in the central region G2, and the median (reference value) of the region G2 is facc.
When fac is in the region G2, Padd = 0. When fac leaves facc and enters region F2 or H2, the absolute value of Padd increases as fac leaves facc. In the region F2, Padd is positive, and the power output from the
さて、交流電圧Vac、すなわち交流配電系統28の電圧を維持するための電力変換装置100の動作としては、DC/AC変換器11を用いて共通直流母線1と交流配電系統28との間で電力融通する。共通直流母線1へ電力を供給したり、共通直流母線1から電力を受け取ったりするのには、DC/DC変換器10を用いて直流分散電源25を充放電する方法と、共通直流母線1を介して直流配電系統27と電力融通する方法と、これら2つの方法を組み合わせる方法がある。
共通直流母線1と直流配電線21との間には変換器がないことから、共通直流母線1において電力バランスが崩れかけると自動的に直流配電線21から電力不足分が供給されるか、直流配電線21へ電力余剰分が供給される。 Now, as an operation ofpower converter 100 for maintaining AC voltage Vac, that is, a voltage of AC distribution system 28, power between common DC bus 1 and AC distribution system 28 using DC / AC converter 11 To be flexible. In order to supply power to the common DC bus 1 and to receive power from the common DC bus 1, a method of charging and discharging the DC distributed power supply 25 using the DC / DC converter 10, and the common DC bus 1 are used. There is a method of interchanging power with the DC distribution system 27 via the two, and a method of combining these two methods.
Since there is no converter between thecommon DC bus 1 and the DC distribution line 21, if the power balance in the common DC bus 1 breaks down, the power shortage is automatically supplied from the DC distribution line 21 or DC The surplus power is supplied to the distribution line 21.
共通直流母線1と直流配電線21との間には変換器がないことから、共通直流母線1において電力バランスが崩れかけると自動的に直流配電線21から電力不足分が供給されるか、直流配電線21へ電力余剰分が供給される。 Now, as an operation of
Since there is no converter between the
また、DC/AC変換器11がVacの電圧を維持する動作を行うことによりVdcの電圧が変化すると、それに応じてDC/DC変換器10が以下の動作を行う。すなわち、直流分散電源25が接続されているDC/DC変換器10が、電力制御部157の働きでVdcを維持する方向に動作する。そして、結果的に交流配電線22との間で電力融通する。
Further, when the voltage of Vdc changes due to the DC / AC converter 11 performing the operation of maintaining the voltage of Vac, the DC / DC converter 10 performs the following operation accordingly. That is, the DC / DC converter 10 to which the DC distributed power supply 25 is connected operates in the direction of maintaining Vdc by the function of the power control unit 157. Then, as a result, power is interchanged with the AC distribution line 22.
また、DC/DC変換器10の制御に用いる、図17あるいは図19で示した電力制御部157において、Vdcの代わりにVacあるいはfacを入力し、Vacあるいはfacに応じて補正量Paddを求めることもできる。この場合、図25あるいは図26に示すような入出力特性を有するテーブルを用いて、補正量Paddが決定される。Vacまたはfacが低下すればPaddが正となり直流分散電源25からの放電電力を増加させるか充電電力を減少させる。Vacまたはfacが上昇すればPaddが負となり直流分散電源25への充電電力を増加させるか放電電力を減少させる。
このようにして、Vdcが変化しない場合でも直流分散電源25と交流配電線22との間で電力融通できる。 Also, in thepower control unit 157 shown in FIG. 17 or 19 used for control of the DC / DC converter 10, Vac or fac is input instead of Vdc, and the correction amount Padd is determined according to Vac or fac. You can also. In this case, the correction amount Padd is determined using a table having input / output characteristics as shown in FIG. 25 or 26. If Vac or fac decreases, Padd becomes positive, and the discharge power from the DC distributed power supply 25 is increased or the charge power is decreased. If Vac or fac rises, Padd becomes negative, and the charging power to the DC distributed power supply 25 is increased or the discharging power is decreased.
In this manner, power can be interchanged between the DC distributedpower supply 25 and the AC distribution line 22 even when Vdc does not change.
このようにして、Vdcが変化しない場合でも直流分散電源25と交流配電線22との間で電力融通できる。 Also, in the
In this manner, power can be interchanged between the DC distributed
また、図25あるいは図26に示す入出力特性を有するテーブルを制御部12が備えて、制御部12が補正量Paddを生成しても良い。その場合、制御部12は、上位制御装置24から与えられた上位制御指令24aである各電力指令Prefに補正量Paddを加算し、補正後の電力指令を電力制御部157に送信してもよい。
Further, the control unit 12 may be provided with a table having the input / output characteristics shown in FIG. 25 or 26, and the control unit 12 may generate the correction amount Padd. In that case, the control unit 12 may add the correction amount Padd to each power command Pref that is the upper control command 24a given from the upper control device 24, and may transmit the corrected power command to the power control unit 157. .
以上、電力変換装置100を用いて直流電圧Vdcを維持する制御と、交流電圧Vacを維持する制御について説明した。一般には、交流受電(図14参照)の場合にVdcを維持し、直流受電(図15参照)の場合にVacを維持する。また、Vdcのみ維持する、Vacのみ維持する、あるいはVdcとVacとの双方を維持する、中から設置方法および使用方法に応じて選択することができる。
VdcとVacとを双方を維持する場合には、電力指令Prefの補正量Paddを算出するブロックが、Vdc用とVac用との双方に存在することになる。その場合、優先順位をつけて干渉を避ける。 The control for maintaining the DC voltage Vdc and the control for maintaining the AC voltage Vac using thepower conversion device 100 have been described above. In general, Vdc is maintained in the case of alternating current reception (see FIG. 14), and Vac is maintained in the case of direct current reception (see FIG. 15). In addition, it is possible to select from among the installation method and the usage method of maintaining only Vdc, maintaining only Vac, or maintaining both Vdc and Vac.
When both Vdc and Vac are maintained, a block for calculating the correction amount Padd of the power command Pref exists in both of Vdc and Vac. In that case, prioritize to avoid interference.
VdcとVacとを双方を維持する場合には、電力指令Prefの補正量Paddを算出するブロックが、Vdc用とVac用との双方に存在することになる。その場合、優先順位をつけて干渉を避ける。 The control for maintaining the DC voltage Vdc and the control for maintaining the AC voltage Vac using the
When both Vdc and Vac are maintained, a block for calculating the correction amount Padd of the power command Pref exists in both of Vdc and Vac. In that case, prioritize to avoid interference.
この実施の形態2による電力変換装置100では、DC/DC変換器10の制御回路32が、第1電力指令の補正量Paddを算出するブロックを有する電力制御部157を備え、DC/AC変換器11の制御回路42が、第2電力指令(有効電力指令値)の補正量Paddを算出するブロックを有する電力制御部167を備える。
これにより、上記実施の形態1による効果に加えて、電力変換装置100は、上位制御装置24からの指令によらず、次のように動作する。共通直流母線1の電圧Vdcが基準値から離れて低下すると、直流分散電源25の放電量を増加させるか充電量を減少させる、あるいは交流配電系統28と電力融通する。また、共通直流母線1の電圧Vdcが基準値から上昇すると、直流分散電源25の充電量を増加させるか放電量を減少させる、あるいは交流配電系統28と電力融通する。このように共通直流母線1の電圧すなわち直流配電線21の電圧を望ましい範囲に近づけようと、自動的に動作することができる。 Inpower converter 100 according to the second embodiment, control circuit 32 of DC / DC converter 10 includes power control unit 157 having a block for calculating correction amount Padd of the first power command, and DC / AC converter The eleventh control circuit 42 includes a power control unit 167 having a block for calculating the correction amount Padd of the second power command (active power command value).
Thus, in addition to the effects of the first embodiment,power conversion device 100 operates as follows, regardless of a command from higher-level controller 24. When the voltage Vdc of the common DC bus 1 drops away from the reference value, the discharge amount of the DC distributed power supply 25 is increased or the charge amount is decreased, or the power is interchanged with the AC distribution system 28. Further, when the voltage Vdc of the common DC bus 1 rises from the reference value, the charge amount of the DC distributed power supply 25 is increased or the discharge amount is decreased, or the power is interchanged with the AC distribution system 28. In this manner, the voltage of the common DC bus 1, that is, the voltage of the DC distribution line 21 can be automatically operated so as to be close to a desired range.
これにより、上記実施の形態1による効果に加えて、電力変換装置100は、上位制御装置24からの指令によらず、次のように動作する。共通直流母線1の電圧Vdcが基準値から離れて低下すると、直流分散電源25の放電量を増加させるか充電量を減少させる、あるいは交流配電系統28と電力融通する。また、共通直流母線1の電圧Vdcが基準値から上昇すると、直流分散電源25の充電量を増加させるか放電量を減少させる、あるいは交流配電系統28と電力融通する。このように共通直流母線1の電圧すなわち直流配電線21の電圧を望ましい範囲に近づけようと、自動的に動作することができる。 In
Thus, in addition to the effects of the first embodiment,
さらに、電力変換装置100は、上位制御装置24からの指令によらず、次のように動作する。交流母線2の電圧Vacが基準値から離れて低下する、あるいは周波数facが低下すると、共通直流母線1から交流配電線22への供給電力を増加させるか交流配電線22からの供給電力を減少させる。また、電圧Vacが基準値から上昇する、あるいは周波数facが上昇すると、交流配電線22からの供給電力を増加させるか交流配電線22への供給電力を減少させる。これにより直流分散電源25と直流配電線21との双方あるいは一方の電力を融通して交流母線2すなわち交流配電線22の電圧を望ましい範囲に近づけようと、自動的に動作することができる。
Furthermore, the power conversion device 100 operates as follows regardless of a command from the host control device 24. When the voltage Vac of the AC bus 2 drops away from the reference value or the frequency fac decreases, the power supplied from the common DC bus 1 to the AC distribution line 22 is increased or the power supplied from the AC distribution line 22 is decreased. . When the voltage Vac rises from the reference value or the frequency fac rises, the power supplied from the AC distribution line 22 is increased or the power supplied to the AC distribution line 22 is decreased. As a result, it is possible to automatically operate so as to bring the voltage of the AC bus 2, that is, the AC distribution line 22 closer to a desired range by interchanging the power of the DC distributed power supply 25 and / or the DC distribution line 21.
このように、電力変換装置100は、直流電圧Vdc、交流電圧Vacの電圧変動を自動的に抑制するように動作するため、特に負荷変動で電圧が変化しやすい配電系統に接続する際にも、信頼性良く高精度に電力変換動作を行える。
また、電力変換装置100の設置形態や使用方法に応じて、維持する電圧Vdc、Vad、および融通する電力を適宜に設定することができる。 As described above, thepower conversion apparatus 100 operates to automatically suppress voltage fluctuations of the DC voltage Vdc and the AC voltage Vac, and therefore, particularly when connecting to a distribution system in which the voltage is easily changed due to load fluctuations, Power conversion operation can be performed with high reliability and reliability.
Further, the voltages Vdc and Vad to be maintained and the power to be accommodated can be appropriately set in accordance with the installation mode and the usage method of thepower conversion device 100.
また、電力変換装置100の設置形態や使用方法に応じて、維持する電圧Vdc、Vad、および融通する電力を適宜に設定することができる。 As described above, the
Further, the voltages Vdc and Vad to be maintained and the power to be accommodated can be appropriately set in accordance with the installation mode and the usage method of the
実施の形態3.
次に、この発明の実施の形態3による電力変換装置について説明する。
上記実施の形態1では、DC/DC変換器10への第1電力指令およびDC/AC変換器11への第2電力指令は、上位制御装置24からの上位制御指令24aとして制御部12が受信して用いられるものであったが、この実施の形態3では、制御部12が第1電力指令および第2電力指令を生成する。制御部12以外の構成は、上記実施の形態1と同様である。
図27は、この実施の形態3による制御部12を示す図である。この場合、制御部12は、上位制御装置24から、上位制御指令24aとして、電力変換装置100が入出力すべき電力指令値を一括して受信する。 Third Embodiment
Next, a power converter according to a third embodiment of the present invention will be described.
In the first embodiment, thecontrol unit 12 receives the first power command to the DC / DC converter 10 and the second power command to the DC / AC converter 11 as the upper control command 24 a from the upper controller 24. However, in the third embodiment, the control unit 12 generates the first power command and the second power command. The configuration other than the control unit 12 is the same as that of the first embodiment.
FIG. 27 shows controlunit 12 according to the third embodiment. In this case, the control unit 12 collectively receives the power command value to be input / output by the power conversion device 100 as the upper control command 24a from the upper control device 24.
次に、この発明の実施の形態3による電力変換装置について説明する。
上記実施の形態1では、DC/DC変換器10への第1電力指令およびDC/AC変換器11への第2電力指令は、上位制御装置24からの上位制御指令24aとして制御部12が受信して用いられるものであったが、この実施の形態3では、制御部12が第1電力指令および第2電力指令を生成する。制御部12以外の構成は、上記実施の形態1と同様である。
図27は、この実施の形態3による制御部12を示す図である。この場合、制御部12は、上位制御装置24から、上位制御指令24aとして、電力変換装置100が入出力すべき電力指令値を一括して受信する。 Third Embodiment
Next, a power converter according to a third embodiment of the present invention will be described.
In the first embodiment, the
FIG. 27 shows control
図27に示すように、制御部12は、電力指令生成部61を備える。電力指令生成部61には、上位制御指令24aである電力指令値が入力されると共に、各DC/DC変換器10の制御回路32から各種検出値33a、34aである電圧、電流情報が入力され、各DC/AC変換器11の制御回路42から各種検出値43a、44aである電圧、電流情報が入力される。電力指令生成部61は、これらの入力情報に基づいて、各DC/DC変換器10の第1電力指令Pref、および各DC/AC変換器11の第2電力指令Prefを生成して、それぞれ各DC/DC変換器10の制御回路32、および各DC/AC変換器11の制御回路42に出力する。
As shown in FIG. 27, the control unit 12 includes a power command generation unit 61. The power command generation unit 61 receives the power command value, which is the upper control command 24a, and also receives voltage and current information, which are various detection values 33a and 34a, from the control circuit 32 of each DC / DC converter 10. The control circuit 42 of each DC / AC converter 11 receives voltage and current information which are various detection values 43a and 44a. The power command generation unit 61 generates the first power command Pref of each DC / DC converter 10 and the second power command Pref of each DC / AC converter 11 based on these pieces of input information. The control circuit 32 of the DC / DC converter 10 and the control circuit 42 of each DC / AC converter 11 are output.
この実施の形態3では、上位制御装置24が、電力変換装置100の入出力電力の電力指令値(上位制御指令24a)を制御部12に与え、制御部12が、各第1電力指令および各第2電力指令を生成して、各DC/DC変換器10の制御回路32と各DC/AC変換器11の制御回路42に送信する。
In the third embodiment, higher-order control device 24 provides power control value (upper control command 24a) of input / output power of power conversion device 100 to control unit 12, and control unit 12 controls each first power command and each The second power command is generated and transmitted to the control circuit 32 of each DC / DC converter 10 and the control circuit 42 of each DC / AC converter 11.
各DC/DC変換器10の第1電力指令と、各DC/AC変換器11の第2電力指令との決定方法を、以下に説明する。
この場合、上位制御装置24は、電力変換装置100に接続されている直流分散電源25、26の充放電電力の合計電力指令PAと、電力変換装置100と直流配電系統27との間で授受する電力指令PBと、電力変換装置100と交流配電系統28の間で授受する電力指令PCとを上位制御指令24aとして指定する。各直流分散電源25、26の個別の充放電電力は指定しない。
なお、合計電力指令PAは、N組の分散電源接続端子13の入出力電力和の指令であり、電力指令PBは直流接続端子3の入出力電力指令であり、電力指令PCは交流接続端子4の入出力電力指令である。 The method of determining the first power command of each DC /DC converter 10 and the second power command of each DC / AC converter 11 will be described below.
In this case, thehost control device 24 transmits and receives a total power command PA of the charge and discharge power of the DC distributed power supplies 25 and 26 connected to the power conversion device 100, and between the power conversion device 100 and the DC distribution system 27. Power command PB and power command PC exchanged between power conversion device 100 and AC distribution system 28 are designated as higher control command 24a. The individual charge / discharge power of each DC distributed power supply 25, 26 is not specified.
Total power command PA is a command of the sum of input / output power of N sets of dispersed powersupply connection terminals 13, power command PB is an input / output power command of DC connection terminal 3, and power command PC is AC connection terminal 4 Input / output power command.
この場合、上位制御装置24は、電力変換装置100に接続されている直流分散電源25、26の充放電電力の合計電力指令PAと、電力変換装置100と直流配電系統27との間で授受する電力指令PBと、電力変換装置100と交流配電系統28の間で授受する電力指令PCとを上位制御指令24aとして指定する。各直流分散電源25、26の個別の充放電電力は指定しない。
なお、合計電力指令PAは、N組の分散電源接続端子13の入出力電力和の指令であり、電力指令PBは直流接続端子3の入出力電力指令であり、電力指令PCは交流接続端子4の入出力電力指令である。 The method of determining the first power command of each DC /
In this case, the
Total power command PA is a command of the sum of input / output power of N sets of dispersed power
電力指令生成部61は、直流分散電源25、26の充放電電力の合計電力指令PAと、変換器効率とに応じて、損失が小さくなるように各DC/DC変換器10の第1電力指令Prefを決定する。また、電力変換装置100と交流配電系統28との間で授受する電力指令PCと変換器効率に応じて、損失が小さくなるように各DC/AC変換器11の第2電力指令Prefを決定する。この場合、電力指令PBは、第1、第2電力指令Prefの生成に直接用いられず、調整など補助的に用いられる。
一般に、DC/DC変換器10およびDC/AC変換器11において、軽負荷時の変換器効率は低いので、扱う電力が少ない場合には、均等に分担させるのではなく、一部の変換器を動作させるのが有効である。動作させる変換器は固定せず、適宜変更してもよいし、変換器の温度情報を使用して、温度が高い変換器を休止させてもよい。 Powercommand generation unit 61 sets the first power command of each DC / DC converter 10 such that the loss is reduced according to the total power command PA of the charge / discharge power of DC distributed power supplies 25 and 26 and the converter efficiency. Determine Pref. Further, second power command Pref of each DC / AC converter 11 is determined so as to reduce the loss according to power command PC and converter efficiency exchanged between power conversion device 100 and AC distribution system 28. . In this case, the power command PB is not used directly for generation of the first and second power commands Pref, but is used supplementary for adjustment and the like.
Generally, in the DC /DC converter 10 and the DC / AC converter 11, since the converter efficiency at light load is low, when the power to be handled is small, not all the converters should be equally shared, but some converters It is effective to operate. The transducer to be operated may not be fixed, but may be changed as appropriate, or the temperature information of the transducer may be used to pause the high temperature transducer.
一般に、DC/DC変換器10およびDC/AC変換器11において、軽負荷時の変換器効率は低いので、扱う電力が少ない場合には、均等に分担させるのではなく、一部の変換器を動作させるのが有効である。動作させる変換器は固定せず、適宜変更してもよいし、変換器の温度情報を使用して、温度が高い変換器を休止させてもよい。 Power
Generally, in the DC /
また、接続されている直流分散電源25、26の仕様情報を使用して、発電のみを行う直流分散電源26が接続されているDC/DC変換器10を、放電に対して優先的に使用しても良い。この場合、直流分散電源26が接続されているDC/DC変換器10の第1電力指令Prefは、直流分散電源26の最大発電電力相当とする。そして、直流分散電源25が接続されているDC/DC変換器10の第1電力指令Prefを調整して上位制御装置24の指定する電力に一致させる。
また、直流分散電源25の充電状態や温度を考慮して第1電力指令Prefを決定してもよい。例えば、充電時には充電状態が低い直流分散電源25が接続されているDC/DC変換器10を優先的に動作させても良い。また、直流分散電源25の寿命を低下させる充放電を抑制しても良い。
なお、制御部12は、上位制御装置24あるいはDC/DC変換器10の制御回路32を介して、直流分散電源25、26の各種情報を受け取ることができ、電力指令生成部61に入力されて用いられる。 In addition, using the specification information of the connected DC distributed power supplies 25 and 26, the DC / DC converter 10 to which the DC distributed power supply 26 only performing power generation is connected is preferentially used for discharging. It is good. In this case, the first power command Pref of the DC / DC converter 10 to which the DC distributed power supply 26 is connected corresponds to the maximum generated power of the DC distributed power supply 26. Then, the first power command Pref of the DC / DC converter 10 to which the DC distributed power supply 25 is connected is adjusted to match the power specified by the host control device 24.
Further, the first power command Pref may be determined in consideration of the charge state and temperature of the DC distributedpower supply 25. For example, at the time of charging, the DC / DC converter 10 to which the DC distributed power supply 25 having a low charge state is connected may be preferentially operated. Further, charge and discharge may be suppressed to reduce the life of the DC distributed power supply 25.
Thecontrol unit 12 can receive various information of the DC distributed power supplies 25 and 26 via the host controller 24 or the control circuit 32 of the DC / DC converter 10, and is input to the power command generation unit 61. Used.
また、直流分散電源25の充電状態や温度を考慮して第1電力指令Prefを決定してもよい。例えば、充電時には充電状態が低い直流分散電源25が接続されているDC/DC変換器10を優先的に動作させても良い。また、直流分散電源25の寿命を低下させる充放電を抑制しても良い。
なお、制御部12は、上位制御装置24あるいはDC/DC変換器10の制御回路32を介して、直流分散電源25、26の各種情報を受け取ることができ、電力指令生成部61に入力されて用いられる。 In addition, using the specification information of the connected DC distributed
Further, the first power command Pref may be determined in consideration of the charge state and temperature of the DC distributed
The
図28は、別例による制御部12を示す図である。
図28に示すように、制御部12は、電力指令生成部62を備える。この場合、電力指令生成部62には、直流分散電源25、26の情報125、126である各種検出値や仕様情報を、直流分散電源25、26から直接入力される。このため、上位制御装置24あるいはDC/DC変換器10の制御回路32を介することなく直流分散電源25、26の情報125、126を受信して利用できる。その他の構成は、図27で示した制御部12の場合と同様である。 FIG. 28 is a diagram illustrating thecontrol unit 12 according to another example.
As shown in FIG. 28, thecontrol unit 12 includes a power command generation unit 62. In this case, various detected values and specification information which are the information 125 and 126 of the DC distributed power supplies 25 and 26 are directly input from the DC distributed power supplies 25 and 26 to the power command generation unit 62. Therefore, the information 125, 126 of the DC distributed power supplies 25, 26 can be received and used without intervention of the host controller 24 or the control circuit 32 of the DC / DC converter 10. The other configuration is the same as that of the control unit 12 shown in FIG.
図28に示すように、制御部12は、電力指令生成部62を備える。この場合、電力指令生成部62には、直流分散電源25、26の情報125、126である各種検出値や仕様情報を、直流分散電源25、26から直接入力される。このため、上位制御装置24あるいはDC/DC変換器10の制御回路32を介することなく直流分散電源25、26の情報125、126を受信して利用できる。その他の構成は、図27で示した制御部12の場合と同様である。 FIG. 28 is a diagram illustrating the
As shown in FIG. 28, the
以上のように、この実施の形態3では、制御部12が電力指令生成部61、62を備えて、各DC/DC変換器10および各DC/AC変換器11の電力分担を決定して第1電力指令Prefおよび第2電力指令Prefを決定する。
これにより、上記実施の形態1による効果に加えて、上位制御装置24から受信する上位制御指令24aの情報量を少なくできる。また、上位制御装置24における演算量を低減できる。
また、制御部12が、電力変換装置100で発生する損失を低減するように第1、第2電力指令Prefを決定でき、さらに、DC/DC変換器10やDC/AC変換器11の責務が集中しないように第1、第2電力指令Prefを決定できる。これにより、電力を有効に利用できる。
さらに、制御部12が、直流分散電源25、26の種類や充電状態を考慮して第1、第2電力指令Prefを決定できるので、発電電力の有効利用が図れる、蓄電池の劣化を抑制できる、少ない蓄電池容量で電力融通が実現できるといった効果が得られる。 As described above, in the third embodiment,control unit 12 includes power command generation units 61 and 62 to determine the power sharing of each DC / DC converter 10 and each DC / AC converter 11. 1. Determine the power command Pref and the second power command Pref.
Thus, in addition to the effects of the first embodiment, the amount of information of theupper control instruction 24a received from the upper control device 24 can be reduced. Moreover, the amount of calculations in the host controller 24 can be reduced.
Further, thecontrol unit 12 can determine the first and second power commands Pref so as to reduce the loss generated in the power conversion device 100, and the responsibility of the DC / DC converter 10 and the DC / AC converter 11 is further reduced. The first and second power commands Pref can be determined so as not to concentrate. This enables effective use of power.
Furthermore, since thecontroller 12 can determine the first and second power commands Pref in consideration of the types and charging states of the DC distributed power supplies 25 and 26, effective use of generated power can be achieved, and deterioration of the storage battery can be suppressed. The effect that power interchange can be realized with a small storage battery capacity is obtained.
これにより、上記実施の形態1による効果に加えて、上位制御装置24から受信する上位制御指令24aの情報量を少なくできる。また、上位制御装置24における演算量を低減できる。
また、制御部12が、電力変換装置100で発生する損失を低減するように第1、第2電力指令Prefを決定でき、さらに、DC/DC変換器10やDC/AC変換器11の責務が集中しないように第1、第2電力指令Prefを決定できる。これにより、電力を有効に利用できる。
さらに、制御部12が、直流分散電源25、26の種類や充電状態を考慮して第1、第2電力指令Prefを決定できるので、発電電力の有効利用が図れる、蓄電池の劣化を抑制できる、少ない蓄電池容量で電力融通が実現できるといった効果が得られる。 As described above, in the third embodiment,
Thus, in addition to the effects of the first embodiment, the amount of information of the
Further, the
Furthermore, since the
なお、上記実施の形態3に上記実施の形態2を適用して、第1電力指令、第2電力指令を補正可能にしても良い。これにより、上記実施の形態2による効果が併せて得られる。
The above-mentioned second embodiment may be applied to the above-mentioned third embodiment so that the first power command and the second power command can be corrected. Thereby, the effect by the said Embodiment 2 is obtained collectively.
実施の形態4.
次に、この発明の実施の形態4による電力変換装置について説明する。
この実施の形態4では、電力変換装置100内のDC/DC変換器10における主回路部の構成が異なる。また主回路部の構成に応じて制御回路32の構成は一部変更される。その他の構成は実施の形態1と同様である。 Fourth Embodiment
Next, a power converter according to a fourth embodiment of the present invention will be described.
In the fourth embodiment, the configuration of the main circuit portion in DC /DC converter 10 in power conversion device 100 is different. Further, the configuration of control circuit 32 is partially changed according to the configuration of the main circuit unit. The other configuration is the same as that of the first embodiment.
次に、この発明の実施の形態4による電力変換装置について説明する。
この実施の形態4では、電力変換装置100内のDC/DC変換器10における主回路部の構成が異なる。また主回路部の構成に応じて制御回路32の構成は一部変更される。その他の構成は実施の形態1と同様である。 Fourth Embodiment
Next, a power converter according to a fourth embodiment of the present invention will be described.
In the fourth embodiment, the configuration of the main circuit portion in DC /
図29は、この実施の形態4によるDC/DC変換器10の主回路部71Aを示す図である。図29に示すように、主回路部71Aは、一次側平滑コンデンサ72、二次側平滑コンデンサ73、一次側半導体スイッチング素子74a、74b、二次側半導体スイッチング素子75a、75b、リアクトル76およびフィルタリアクトル77を備える。
半導体スイッチング素子74a、74b、75a、75bは、ダイオードが逆並列に接続されたIGBTから成る。なお、半導体スイッチング素子74a、74b、75a、75bは、MOSFET等他の半導体素子を用いても良い。
この場合、一次側と二次側とが非絶縁であり、一次側電圧と二次側電圧との大小関係に拘わらず、双方向の電力変換が行える。 FIG. 29 is a diagram showing amain circuit portion 71A of the DC / DC converter 10 according to the fourth embodiment. As shown in FIG. 29, the main circuit unit 71A includes a primary side smoothing capacitor 72, a secondary side smoothing capacitor 73, primary side semiconductor switching devices 74a and 74b, secondary side semiconductor switching devices 75a and 75b, a reactor 76 and a filter reactor. And 77.
The semiconductor switching elements 74a, 74b, 75a, 75b are IGBTs in which diodes are connected in antiparallel. The semiconductor switching elements 74a, 74b, 75a, 75b may use other semiconductor elements such as MOSFETs.
In this case, the primary side and the secondary side are non-insulated, and bidirectional power conversion can be performed regardless of the magnitude relation between the primary side voltage and the secondary side voltage.
半導体スイッチング素子74a、74b、75a、75bは、ダイオードが逆並列に接続されたIGBTから成る。なお、半導体スイッチング素子74a、74b、75a、75bは、MOSFET等他の半導体素子を用いても良い。
この場合、一次側と二次側とが非絶縁であり、一次側電圧と二次側電圧との大小関係に拘わらず、双方向の電力変換が行える。 FIG. 29 is a diagram showing a
The
In this case, the primary side and the secondary side are non-insulated, and bidirectional power conversion can be performed regardless of the magnitude relation between the primary side voltage and the secondary side voltage.
図30は、この実施の形態4の別例によるDC/DC変換器10の主回路部71Bを示す図である。図30に示すように、主回路部71Bは、一次側平滑コンデンサ72、二次側平滑コンデンサ73、一次側半導体スイッチング素子74a、74b、リアクトル76およびフィルタリアクトル77を備える。
この場合、一次側と二次側とが非絶縁であり、一次側電圧が二次側電圧より高い場合に双方向の電力変換が行える。 FIG. 30 is a diagram showing amain circuit portion 71B of a DC / DC converter 10 according to another example of the fourth embodiment. As shown in FIG. 30, the main circuit unit 71B includes a primary side smoothing capacitor 72, a secondary side smoothing capacitor 73, primary side semiconductor switching elements 74a and 74b, a reactor 76, and a filter reactor 77.
In this case, bi-directional power conversion can be performed when the primary side and the secondary side are not insulated and the primary side voltage is higher than the secondary side voltage.
この場合、一次側と二次側とが非絶縁であり、一次側電圧が二次側電圧より高い場合に双方向の電力変換が行える。 FIG. 30 is a diagram showing a
In this case, bi-directional power conversion can be performed when the primary side and the secondary side are not insulated and the primary side voltage is higher than the secondary side voltage.
図31は、この実施の形態4のさらに別例によるDC/DC変換器10の主回路部71Cを示す図である。図31に示すように、主回路部71Cは、一次側平滑コンデンサ72、二次側平滑コンデンサ73、二次側半導体スイッチング素子75a、75b、リアクトル76およびフィルタリアクトル77を備える。
この場合、一次側と二次側とが非絶縁であり、二次側電圧が一次側電圧より高い場合に双方向の電力変換が行える。 FIG. 31 is a diagram showing a main circuit portion 71C of a DC /DC converter 10 according to still another example of the fourth embodiment. As shown in FIG. 31, the main circuit unit 71C includes a primary side smoothing capacitor 72, a secondary side smoothing capacitor 73, secondary side semiconductor switching elements 75a and 75b, a reactor 76, and a filter reactor 77.
In this case, bi-directional power conversion can be performed when the primary side and the secondary side are not insulated and the secondary side voltage is higher than the primary side voltage.
この場合、一次側と二次側とが非絶縁であり、二次側電圧が一次側電圧より高い場合に双方向の電力変換が行える。 FIG. 31 is a diagram showing a main circuit portion 71C of a DC /
In this case, bi-directional power conversion can be performed when the primary side and the secondary side are not insulated and the secondary side voltage is higher than the primary side voltage.
この実施の形態では、上記実施の形態1で示したDC/DC変換器10の主回路部31の代わりに、図29~図31で示した主回路部71A、71B、71Cのいずれかを用いる。全ての主回路部31を置き換えても良いし、一部を置き換えても良い。
なお、DC/DC変換器10の主回路部は、上記示したものに限らず別の回路方式を適用することもできる。
このように、DC/DC変換器10の主回路部には多種の回路構成が適用可能であり、各DC/DC変換器10の二次側に接続する直流分散電源25、26の構成に応じて、その種別、動作仕様、ユニットのコスト等を考慮して主回路部を選択できる。このため、上記実施の形態1による効果が得られると共に、直流分散電源の特性を有効に活用でき、ユニットコストも低く抑えられる。 In this embodiment, any of main circuit portions 71A, 71B, 71C shown in FIGS. 29 to 31 is used instead of main circuit portion 31 of DC / DC converter 10 shown in the first embodiment. . All the main circuit parts 31 may be replaced, or a part may be replaced.
The main circuit portion of the DC /DC converter 10 is not limited to the above-described one, and another circuit method can be applied.
As described above, various circuit configurations can be applied to the main circuit portion of the DC /DC converter 10, and the configuration of the DC distributed power supplies 25 and 26 connected to the secondary side of each DC / DC converter 10 is possible. The main circuit unit can be selected in consideration of the type, operation specification, cost of the unit, and the like. Therefore, the effects of the first embodiment can be obtained, and the characteristics of the DC distributed power supply can be effectively used, and the unit cost can be suppressed to a low level.
なお、DC/DC変換器10の主回路部は、上記示したものに限らず別の回路方式を適用することもできる。
このように、DC/DC変換器10の主回路部には多種の回路構成が適用可能であり、各DC/DC変換器10の二次側に接続する直流分散電源25、26の構成に応じて、その種別、動作仕様、ユニットのコスト等を考慮して主回路部を選択できる。このため、上記実施の形態1による効果が得られると共に、直流分散電源の特性を有効に活用でき、ユニットコストも低く抑えられる。 In this embodiment, any of
The main circuit portion of the DC /
As described above, various circuit configurations can be applied to the main circuit portion of the DC /
また、この実施の形態においても、上記実施の形態2、3のいずれかまたは双方を適用することができ、各実施の形態2、3による効果を得ることができる。
Also in this embodiment, either or both of Embodiments 2 and 3 can be applied, and the effects of Embodiments 2 and 3 can be obtained.
実施の形態5.
次に、この発明の実施の形態5による電力変換装置について説明する。
上記実施の形態1では、電力変換装置100は、外部との接続端子となる、直流接続端子3と、交流接続端子4と、N組の分散電源接続端子13とを備えた1つブロックで構成されたが、この実施の形態では、複数のブロックを用いる。
図32は、この実施の形態5による電力変換装置100と、この電力変換装置100が適用される配電システムとの構成を示す図である。
図32に示すように、電力変換装置100は、それぞれ独立したブロックである2つの電力変換部101a、101bを備える。なお、2つの電力変換部101a、101bは、共通の上位制御装置24からの上位制御指令24aを受信する。Embodiment 5
Next, a power converter according to a fifth embodiment of the present invention will be described.
In the first embodiment,power conversion device 100 is configured in one block including DC connection terminal 3, AC connection terminal 4, and N sets of dispersed power supply connection terminals 13 serving as connection terminals with the outside. However, in this embodiment, multiple blocks are used.
FIG. 32 shows a configuration ofpower conversion device 100 according to the fifth embodiment and a power distribution system to which power conversion device 100 is applied.
As shown in FIG. 32, thepower conversion device 100 includes two power conversion units 101 a and 101 b which are independent blocks. The two power conversion units 101 a and 101 b receive the upper control instruction 24 a from the common upper control device 24.
次に、この発明の実施の形態5による電力変換装置について説明する。
上記実施の形態1では、電力変換装置100は、外部との接続端子となる、直流接続端子3と、交流接続端子4と、N組の分散電源接続端子13とを備えた1つブロックで構成されたが、この実施の形態では、複数のブロックを用いる。
図32は、この実施の形態5による電力変換装置100と、この電力変換装置100が適用される配電システムとの構成を示す図である。
図32に示すように、電力変換装置100は、それぞれ独立したブロックである2つの電力変換部101a、101bを備える。なお、2つの電力変換部101a、101bは、共通の上位制御装置24からの上位制御指令24aを受信する。
Next, a power converter according to a fifth embodiment of the present invention will be described.
In the first embodiment,
FIG. 32 shows a configuration of
As shown in FIG. 32, the
各電力変換部101a、101bは、それぞれ実施の形態1で説明した電力変換装置100の構成および機能を備えている。
電力変換部101aの直流接続端子3と、電力変換部101bの直流接続端子3とは並列接続され、電力変換部101aの交流接続端子4と、電力変換部101bの交流接続端子とは並列接続される。直流接続端子3は直流配電線21を介して直流配電系統27に接続され、交流接続端子4は変圧器23および交流配電線22を介して交流配電系統28に接続される。また、各電力変換部101a、101bの複数の分散電源接続端子13は、それぞれ充放電可能な直流分散電源25に接続される。この場合、電気自動車301に搭載されているEV蓄電池が直流分散電源25である。
なお、正負の直流接続端子3と、三相の交流接続端子4と、正負の分散電源接続端子13とは、それぞれ簡便のため1端子のみ図示した。 Each of the power conversion units 101a and 101b includes the configuration and the function of the power conversion device 100 described in the first embodiment.
DC connection terminal 3 of power conversion unit 101a and DC connection terminal 3 of power conversion unit 101b are connected in parallel, and AC connection terminal 4 of power conversion unit 101a and AC connection terminal of power conversion unit 101b are connected in parallel. Ru. The DC connection terminal 3 is connected to a DC distribution system 27 via a DC distribution line 21, and the AC connection terminal 4 is connected to an AC distribution system 28 via a transformer 23 and an AC distribution line 22. Further, the plurality of distributed power supply connection terminals 13 of each of the power conversion units 101a and 101b are connected to the DC distributed power supply 25 capable of charging and discharging. In this case, the EV storage battery mounted on the electric vehicle 301 is the DC distributed power supply 25.
The positive and negativeDC connection terminals 3, the three-phase AC connection terminal 4, and the positive and negative distributed power supply connection terminals 13 are only illustrated for simplicity.
電力変換部101aの直流接続端子3と、電力変換部101bの直流接続端子3とは並列接続され、電力変換部101aの交流接続端子4と、電力変換部101bの交流接続端子とは並列接続される。直流接続端子3は直流配電線21を介して直流配電系統27に接続され、交流接続端子4は変圧器23および交流配電線22を介して交流配電系統28に接続される。また、各電力変換部101a、101bの複数の分散電源接続端子13は、それぞれ充放電可能な直流分散電源25に接続される。この場合、電気自動車301に搭載されているEV蓄電池が直流分散電源25である。
なお、正負の直流接続端子3と、三相の交流接続端子4と、正負の分散電源接続端子13とは、それぞれ簡便のため1端子のみ図示した。 Each of the
The positive and negative
この実施の形態では、駐車場に駐車している10台の電気自動車301のEV蓄電池である直流分散電源25が、5台分ずつ電力変換部101a、101bに接続されている。
この場合、各電力変換部101a、101bは、それぞれ5組の分散電源接続端子13を備えてその全てに直流分散電源25が接続されるものを示したが、それに限るものではない。すなわち、分散電源接続端子13に空きがあることもある。
また、電気自動車301は、ハイブリッド自動車等、蓄電池を備えているものであれば良い。
さらに、分散電源接続端子13と電気自動車301との間に中継盤を設けて、直流分散電源25の充放電状態を表示したり、充電開始/終了を外部入力できる操作パネルを設けても良い。 In this embodiment, five DC distributedpower sources 25 which are EV storage batteries of ten electric vehicles 301 parked in a parking lot are connected to the power conversion units 101a and 101b.
In this case, the power conversion units 101a and 101b each include five sets of distributed power supply connection terminals 13 and the DC distributed power supply 25 is connected to all of them. However, the present invention is not limited thereto. That is, the distributed power supply connection terminal 13 may be vacant.
Further, theelectric vehicle 301 may be a hybrid vehicle or the like provided with a storage battery.
Furthermore, a relay board may be provided between the distributed powersupply connection terminal 13 and the electric vehicle 301 to display the charge / discharge state of the DC distributed power supply 25 or to provide an operation panel capable of externally inputting charge start / end.
この場合、各電力変換部101a、101bは、それぞれ5組の分散電源接続端子13を備えてその全てに直流分散電源25が接続されるものを示したが、それに限るものではない。すなわち、分散電源接続端子13に空きがあることもある。
また、電気自動車301は、ハイブリッド自動車等、蓄電池を備えているものであれば良い。
さらに、分散電源接続端子13と電気自動車301との間に中継盤を設けて、直流分散電源25の充放電状態を表示したり、充電開始/終了を外部入力できる操作パネルを設けても良い。 In this embodiment, five DC distributed
In this case, the
Further, the
Furthermore, a relay board may be provided between the distributed power
図33は、この実施の形態5の別例による電力変換装置100と、この電力変換装置100が適用される配電システムとの構成を示す図である。また、図34は、図33の電力変換装置100および配電システムを実現する配置図である。
図33に示すように、電力変換装置100は、それぞれ独立したブロックである2つの電力変換部101c、101dを備える。なお、2つの電力変換部101c、101dは、共通の上位制御装置24からの上位制御指令24aを受信する。
各電力変換部101c、101dは、それぞれ実施の形態1で説明した電力変換装置100の構成および機能を備えている。
電力変換部101cの直流接続端子3と、電力変換部101dの直流接続端子3とは並列接続され、電力変換部101cの交流接続端子4と、電力変換部101dの交流接続端子とは並列接続される。直流接続端子3は直流配電線21を介して直流配電系統27に接続され、交流接続端子4は変圧器23および交流配電線22を介して交流配電系統28に接続される。 FIG. 33 is a diagram showing a configuration of apower conversion device 100 according to another example of the fifth embodiment and a power distribution system to which the power conversion device 100 is applied. Also, FIG. 34 is a layout diagram for realizing the power conversion device 100 and the power distribution system of FIG.
As shown in FIG. 33, thepower conversion device 100 includes two power conversion units 101c and 101d which are independent blocks. The two power conversion units 101c and 101d receive the upper control instruction 24a from the common upper control device 24.
Each of the power conversion units 101c and 101d has the configuration and function of the power conversion apparatus 100 described in the first embodiment.
DC connection terminal 3 of power conversion unit 101c and DC connection terminal 3 of power conversion unit 101d are connected in parallel, and AC connection terminal 4 of power conversion unit 101c and AC connection terminal of power conversion unit 101d are connected in parallel. Ru. The DC connection terminal 3 is connected to a DC distribution system 27 via a DC distribution line 21, and the AC connection terminal 4 is connected to an AC distribution system 28 via a transformer 23 and an AC distribution line 22.
図33に示すように、電力変換装置100は、それぞれ独立したブロックである2つの電力変換部101c、101dを備える。なお、2つの電力変換部101c、101dは、共通の上位制御装置24からの上位制御指令24aを受信する。
各電力変換部101c、101dは、それぞれ実施の形態1で説明した電力変換装置100の構成および機能を備えている。
電力変換部101cの直流接続端子3と、電力変換部101dの直流接続端子3とは並列接続され、電力変換部101cの交流接続端子4と、電力変換部101dの交流接続端子とは並列接続される。直流接続端子3は直流配電線21を介して直流配電系統27に接続され、交流接続端子4は変圧器23および交流配電線22を介して交流配電系統28に接続される。 FIG. 33 is a diagram showing a configuration of a
As shown in FIG. 33, the
Each of the
電力変換部101cの複数の分散電源接続端子13は、それぞれ充放電可能な直流分散電源25に接続される。電力変換部101dの複数の分散電源接続端子13は、それぞれ発電のみ行う直流分散電源26に接続される。
一部の分散電源接続端子13は、複数が並列接続された後、直流分散電源25または直流分散電源26に接続されている。
図34に示すように、2棟の建物302、303の一方の建物302に隣接して電力変換部101cと、直流分散電源25となる定置蓄電池304、305とが配置される。定置蓄電池305は定置蓄電池304の倍の電力を充放電できるものとし、この場合、複数の分散電源接続端子13が並列接続されて定置蓄電池305に接続される。定置蓄電池304、305は電力変換部101cと接続されて充放電を行う。 The plurality of distributed powersupply connection terminals 13 of the power conversion unit 101c are connected to the chargeable and dischargeable DC distributed power supply 25, respectively. The plurality of distributed power supply connection terminals 13 of the power conversion unit 101 d are connected to the DC distributed power supply 26 that performs only power generation.
A part of the distributed powersupply connection terminals 13 is connected to the DC distributed power supply 25 or the DC distributed power supply 26 after a plurality of the distributed power supply connection terminals 13 are connected in parallel.
As shown in FIG. 34, apower conversion unit 101c and stationary storage batteries 304 and 305 to be the DC distributed power supply 25 are arranged adjacent to one of the two buildings 302 and 303. Stationary storage battery 305 is capable of charging and discharging twice as much power as stationary storage battery 304. In this case, a plurality of distributed power supply connection terminals 13 are connected in parallel and connected to stationary storage battery 305. Stationary storage batteries 304 and 305 are connected to power conversion unit 101c to perform charging and discharging.
一部の分散電源接続端子13は、複数が並列接続された後、直流分散電源25または直流分散電源26に接続されている。
図34に示すように、2棟の建物302、303の一方の建物302に隣接して電力変換部101cと、直流分散電源25となる定置蓄電池304、305とが配置される。定置蓄電池305は定置蓄電池304の倍の電力を充放電できるものとし、この場合、複数の分散電源接続端子13が並列接続されて定置蓄電池305に接続される。定置蓄電池304、305は電力変換部101cと接続されて充放電を行う。 The plurality of distributed power
A part of the distributed power
As shown in FIG. 34, a
他方の建物303の屋上には、電力変換部101dと、太陽光発電パネル(PV)306とが配置される。太陽光発電パネル306は、適宜に分割されたものが1つの直流分散電源26に相当し、電力変換部101dを介して発電電力を直流配電線21と交流配電線22に供給する。
各電力変換部101c、101dは、独立して上位制御装置24と通信することができる。 On the roof of theother building 303, a power conversion unit 101d and a photovoltaic panel (PV) 306 are disposed. The photovoltaic power generation panel 306 corresponds to one DC distributed power supply 26 divided appropriately, and supplies generated power to the DC distribution line 21 and the AC distribution line 22 through the power conversion unit 101 d.
Each of the power conversion units 101c and 101d can communicate with the host control device 24 independently.
各電力変換部101c、101dは、独立して上位制御装置24と通信することができる。 On the roof of the
Each of the
なお、電力変換部101cをマスタ、電力変換部101dをスレーブとして充放電動作の指令等をマスタからスレーブに送信し、状態情報等は個別に上位制御装置24に送信する構成でも良い。
また、上記実施の形態5では、共通の上位制御指令24aを受ける2つの電力変換部101c、101dを用いたが、3台以上を用いてもよい。 Alternatively, thepower conversion unit 101c may be a master, the power conversion unit 101d may be a slave, and instructions for charging and discharging may be transmitted from the master to the slave, and status information and the like may be individually transmitted to the host controller 24.
Moreover, in the saidEmbodiment 5, although two power conversion parts 101c and 101d which receive the common high-order control command 24a were used, you may use three or more.
また、上記実施の形態5では、共通の上位制御指令24aを受ける2つの電力変換部101c、101dを用いたが、3台以上を用いてもよい。 Alternatively, the
Moreover, in the said
さらに、接続される直流分散電源25、26の形態は、上述したものに限らず、例えば、1つの電力変換部101c(101d)に、電気自動車301、定置蓄電池304および太陽光発電パネル306を混在して接続しても良い。また、接続する直流分散電源25、26の容量に応じて分散電源接続端子13の並列数を決定したり、一部の分散電源接続端子13が未接続状態としたりできる。
Furthermore, the forms of the DC distributed power sources 25 and 26 to be connected are not limited to those described above. For example, the electric vehicle 301, the stationary storage battery 304 and the photovoltaic panel 306 are mixed in one power conversion unit 101c (101d). May be connected. Further, the number of parallel connections of the distributed power supply connection terminals 13 can be determined according to the capacity of the DC distributed power supply 25 or 26 to be connected, or some of the distributed power supply connection terminals 13 can be unconnected.
以上のように、この実施の形態では、電力変換装置100は複数の電力変換部101a~101dで構成することができる。このため、電力変換部101a~101dを分散して配置することができ、多数の直流分散電源25、26を接続することで、個別には小容量の直流分散電源25、26を中容量または大容量に取りまとめてVPPとして運用することができる。
従って、この実施の形態による電力変換装置100は、上記実施の形態1と同様の効果を得ると共に、さらに、多数の直流分散電源25、26を用いる場合、および複数の直流分散電源25、26が分散配置されている場合に、容易に適用できて効果的に用いる事ができる。 As described above, in this embodiment, thepower conversion device 100 can be configured of a plurality of power conversion units 101a to 101d. For this reason, the power conversion units 101a to 101d can be dispersedly arranged, and by connecting a large number of DC distributed power supplies 25 and 26, the small-capacity DC distributed power supplies 25 and 26 individually have medium capacity or large capacity. It can be put together in capacity and operated as VPP.
Therefore,power conversion device 100 according to this embodiment obtains the same effects as those of the first embodiment, and also uses a plurality of DC distributed power supplies 25 and 26 and a plurality of DC distributed power supplies 25 and 26. When distributed, they can be easily applied and used effectively.
従って、この実施の形態による電力変換装置100は、上記実施の形態1と同様の効果を得ると共に、さらに、多数の直流分散電源25、26を用いる場合、および複数の直流分散電源25、26が分散配置されている場合に、容易に適用できて効果的に用いる事ができる。 As described above, in this embodiment, the
Therefore,
また、事業所内、複数ビル間等で電力融通を行うことで需要家の直流分散電源の効率的運用が可能となる。さらには受電電力の削減に有効である。
また、各電力変換部101a~101dは上位制御装置24と通信する機能を備えているので、他に全体の制御に係る制御装置を設ける必要がない。
さらに、分散電源接続端子13を並列接続して、直流分散電源25、26の充放電電力が大きい場合にも対応できる。このため、直流分散電源25、26の台数が増えても、変換器ユニットの数を増やして大型の1ブロック構成の電力変換装置を準備する必要がない。
また、複数の直流分散電源25、26の容量が多様であっても、容量の異なるDC/DC変換器10を準備する必要がない。 Further, by performing power interchange in a business site, between multiple buildings, etc., efficient operation of the DC distributed power supply of the customer becomes possible. Furthermore, it is effective to reduce received power.
In addition, since each of thepower conversion units 101a to 101d has a function of communicating with the host controller 24, there is no need to provide another controller related to overall control.
Furthermore, the distributed powersupply connection terminals 13 can be connected in parallel to cope with the case where the charge and discharge power of the DC distributed power supplies 25 and 26 is large. For this reason, even if the number of DC distributed power supplies 25 and 26 increases, it is not necessary to increase the number of converter units to prepare a large power conversion apparatus having a one-block configuration.
Moreover, even if the capacities of the plurality of DC distributed power supplies 25 and 26 are various, it is not necessary to prepare the DC / DC converter 10 having different capacities.
また、各電力変換部101a~101dは上位制御装置24と通信する機能を備えているので、他に全体の制御に係る制御装置を設ける必要がない。
さらに、分散電源接続端子13を並列接続して、直流分散電源25、26の充放電電力が大きい場合にも対応できる。このため、直流分散電源25、26の台数が増えても、変換器ユニットの数を増やして大型の1ブロック構成の電力変換装置を準備する必要がない。
また、複数の直流分散電源25、26の容量が多様であっても、容量の異なるDC/DC変換器10を準備する必要がない。 Further, by performing power interchange in a business site, between multiple buildings, etc., efficient operation of the DC distributed power supply of the customer becomes possible. Furthermore, it is effective to reduce received power.
In addition, since each of the
Furthermore, the distributed power
Moreover, even if the capacities of the plurality of DC distributed
なお、交流接続端子4は、並列接続後、変圧器23に接続されることに限定されず、変圧器23に接続した後、交流配電線22側で並列接続されてもよい。
また、各電力変換部101a~101dは、共通の上位制御装置24から直接、上位制御指令24aを受信するものに限らず、中継する複数の制御装置から受信しても良い。 TheAC connection terminals 4 are not limited to being connected to the transformer 23 after being connected in parallel, but may be connected in parallel on the AC distribution line 22 side after being connected to the transformer 23.
Each of thepower conversion units 101a to 101d is not limited to one directly receiving the upper control command 24a from the common upper control apparatus 24, but may receive signals from a plurality of relaying control apparatuses.
また、各電力変換部101a~101dは、共通の上位制御装置24から直接、上位制御指令24aを受信するものに限らず、中継する複数の制御装置から受信しても良い。 The
Each of the
また、この実施の形態においても、上記実施の形態2~4のいずれかまたは複数を組み合わせて適用することができ、各実施の形態2~4による効果を得ることができる。
Also in this embodiment, any one or a plurality of the above-mentioned second to fourth embodiments can be applied in combination, and the effect of each of the second to fourth embodiments can be obtained.
上記各実施の形態では、DC/DC変換器10の台数Nは、複数として説明したが、Nは1であっても良く、1台のDC/DC変換器10のみが用いられても良い。その場合、1台のDC/DC変換器10には充放電可能な直流分散電源25が接続される。
Although the number N of DC / DC converters 10 has been described as a plurality in the above embodiments, N may be one, or only one DC / DC converter 10 may be used. In that case, a chargeable / dischargeable DC distributed power supply 25 is connected to one DC / DC converter 10.
なおこの発明は、発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
In the present invention, within the scope of the invention, each embodiment can be freely combined, or each embodiment can be appropriately modified or omitted.
1 共通直流母線、2 交流母線、3 直流接続端子、4 交流接続端子、10 DC/DC変換器、11 DC/AC変換器、12 制御部、13 分散電源接続端子、21 直流配電系統、22 交流配電系統、24a 上位制御指令、25,26 直流分散電源、32 制御回路、42 制御回路、100 電力変換装置、101a~101d 電力変換部。
1 Common DC Bus, 2 AC Bus, 3 DC Connection Terminal, 4 AC Connection Terminal, 10 DC / DC Converter, 11 DC / AC Converter, 12 Control Section, 13 Distributed Power Supply Connection Terminal, 21 DC Distribution System, 22 AC Power distribution system, 24a upper control command, 25, 26 DC distributed power supply, 32 control circuits, 42 control circuits, 100 power converters, 101a to 101d power converters.
Claims (12)
- N台のDC/DC変換器と、M台のDC/AC変換器と、上位制御指令に基づいて上記DC/DC変換器および上記DC/AC変換器を制御する制御部とを備える電力変換装置において、
共通直流母線と、
交流母線と、
外部との接続端子となる、直流接続端子と、交流接続端子と、正負N組の分散電源接続端子とを備え、
上記直流接続端子は、上記共通直流母線に接続されると共に外部の直流配電系統に接続され、上記交流接続端子は、上記交流母線に接続されると共に外部の交流配電系統に接続され、上記N組の分散電源接続端子は、上記N台のDC/DC変換器にそれぞれ接続されると共に、外部の直流分散電源にそれぞれ接続され、
上記N台のDC/DC変換器は、一次側が上記共通直流母線に、二次側が上記N組の分散電源接続端子にそれぞれ接続され、該各DC/DC変換器は、上記共通直流母線と上記各分散電源接続端子との間で電力変換して電力授受し、
上記M台のDC/AC変換器は、一次側が上記交流母線に、二次側が上記共通直流母線にそれぞれ接続され、該各DC/AC変換器は、上記交流母線と上記共通直流母線との間で電力変換して電力授受する、
電力変換装置。 Power converter comprising: N DC / DC converters, M DC / AC converters, and a control unit for controlling the DC / DC converter and the DC / AC converter based on a host control command In
Common DC bus and
AC bus,
A DC connection terminal, an AC connection terminal, and N sets of distributed power supply connection terminals of positive and negative, which are connection terminals to the outside,
The DC connection terminal is connected to the common DC bus and to an external DC distribution system, and the AC connection terminal is connected to the AC bus and to an external AC distribution system, and the N sets Are connected to the N DC / DC converters and to an external DC distributed power supply,
The N DC / DC converters are connected on the primary side to the common DC bus and on the secondary side to the N distributed power supply connection terminals, and each DC / DC converter is connected to the common DC bus and the above Convert power to and receive power from each distributed power supply connection terminal,
The M DC / AC converters are connected on the primary side to the AC bus and on the secondary side to the common DC bus, and each DC / AC converter is connected between the AC bus and the common DC bus. Convert power and exchange power,
Power converter. - 上記直流分散電源の少なくとも1台は、充放電可能な直流分散電源である、
請求項1に記載の電力変換装置。 At least one of the DC distributed power supplies is a chargeable and dischargeable DC distributed power supply,
The power converter device according to claim 1. - 上記各DC/DC変換器および上記各DC/AC変換器の動作により、上記接続端子間で上記共通直流母線を介して電力授受する複数の動作モードを備え、
上記複数の動作モードは、上記分散電源接続端子と上記直流接続端子との間で電力授受する第1電力授受モード、上記分散電源接続端子と上記交流接続端子との間で電力授受する第2電力授受モード、および上記直流接続端子と上記交流接続端子との間で電力授受する第3電力授受モードを有し、
上記複数の動作モードは、同時に2以上の組み合わせ可能に決定される、
請求項1または請求項2に記載の電力変換装置。 A plurality of operation modes in which power is exchanged between the connection terminals through the common DC bus by the operations of the DC / DC converters and the DC / AC converters,
The plurality of operation modes are a first power transfer mode in which power is transferred between the distributed power connection terminal and the DC connection terminal, and a second power transferred between the distributed power connection terminal and the AC connection terminal. A transfer mode, and a third power transfer mode for transferring power between the DC connection terminal and the AC connection terminal;
The plurality of operation modes are determined simultaneously in two or more combinations,
The power converter device according to claim 1 or claim 2. - 上記DC/DC変換器の台数Nは、複数であって、かつ上記DC/AC変換器の台数M以上であり、
上記複数の動作モードは、さらに、複数の上記分散電源接続端子間で電力授受する第4電力授受モードを有する、
請求項3に記載の電力変換装置。 The number N of the DC / DC converters is plural and is equal to or more than the number M of the DC / AC converters,
The plurality of operation modes further include a fourth power transfer mode for transferring power between the plurality of distributed power supply connection terminals.
The power converter device according to claim 3. - 上記制御部は、上記各DC/DC変換器の第1電力指令および上記各DC/AC変換器の第2電力指令を上記上位制御指令として受信して、上記第1電力指令に基づいて上記DC/DC変換器を制御し、上記第2電力指令に基づいて上記DC/AC変換器を制御する、
請求項1から請求項4のいずれか1項に記載の電力変換装置。 The control unit receives the first power command of each DC / DC converter and the second power command of each DC / AC converter as the upper control command, and based on the first power command, the DC Control the DC / AC converter and control the DC / AC converter based on the second power command,
The power converter device according to any one of claims 1 to 4. - 上記制御部は、上記上位制御指令に基づいて上記各DC/DC変換器の第1電力指令および上記各DC/AC変換器の第2電力指令を生成し、上記第1電力指令に基づいて上記DC/DC変換器を制御し、上記第2電力指令に基づいて上記DC/AC変換器を制御する、
請求項1から請求項4のいずれか1項に記載の電力変換装置。 The control unit generates a first power command of each DC / DC converter and a second power command of each DC / AC converter based on the upper control command, and the control unit generates the first power command based on the first power command. Control the DC / DC converter and control the DC / AC converter based on the second power command,
The power converter device according to any one of claims 1 to 4. - 上記上位制御指令は、複数の上記分散電源接続端子の入出力電力和の指令および上記交流接続端子の入出力電力指令を有する、
請求項6に記載の電力変換装置。 The upper control command has a command of the sum of input and output power of the plurality of distributed power supply connection terminals and an input and output power command of the AC connection terminal,
The power converter device according to claim 6. - 上記制御部は、上記各DC/DC変換器毎に第1変換器制御部を備え、
上記第1変換器制御部は、上記DC/DC変換器の一次側の電圧変動に応じて上記第1電力指令を補正して用いる、
請求項5から請求項7のいずれか1項に記載の電力変換装置。 The control unit includes a first converter control unit for each of the DC / DC converters.
The first converter control unit corrects and uses the first power command according to voltage fluctuation on the primary side of the DC / DC converter.
The power converter device according to any one of claims 5 to 7. - 上記制御部は、上記各DC/AC変換器毎に第2変換器制御部を備え、
上記第2変換器制御部は、上記DC/AC変換器の一次側の電圧変動、二次側の電圧変動の少なくとも一方に応じて上記第2電力指令を補正して用いる、
請求項5から請求項8のいずれか1項に記載の電力変換装置。 The control unit includes a second converter control unit for each of the DC / AC converters,
The second converter control unit corrects and uses the second power command according to at least one of voltage fluctuation on the primary side and voltage fluctuation on the secondary side of the DC / AC converter.
The power converter device according to any one of claims 5 to 8. - 上記直流接続端子の電圧変動により、上記第1電力指令、上記第2電力指令の少なくとも一方が補正され、上記交流接続端子の電圧変動により上記第2電力指令が補正される、
請求項5から請求項7のいずれか1項に記載の電力変換装置。 At least one of the first power command and the second power command is corrected by voltage fluctuation of the DC connection terminal, and the second power command is corrected by voltage fluctuation of the AC connection terminal.
The power converter device according to any one of claims 5 to 7. - 上記制御部は、上記各DC/DC変換器毎に第1変換器制御部を備えると共に、上記各DC/AC変換器毎に第2変換器制御部を備え、
上記第1変換器制御部は、上記DC/DC変換器の一次側の電圧変動に応じて上記第1電力指令を補正して用い、
上記第2変換器制御部は、上記DC/AC変換器の一次側の電圧変動、二次側の電圧変動の少なくとも一方に応じて上記第2電力指令を補正して用いる、
請求項10に記載の電力変換装置。 The control unit includes a first converter control unit for each of the DC / DC converters, and includes a second converter control unit for each of the DC / AC converters,
The first converter control unit corrects and uses the first power command according to voltage fluctuation on the primary side of the DC / DC converter,
The second converter control unit corrects and uses the second power command according to at least one of voltage fluctuation on the primary side and voltage fluctuation on the secondary side of the DC / AC converter.
The power converter device according to claim 10. - 上記N組の分散電源接続端子の中の複数組の分散電源接続端子が並列接続されて上記直流分散電源に接続される、
請求項1から請求項11のいずれか1項に記載の電力変換装置。 Among the N sets of distributed power supply connection terminals, a plurality of sets of distributed power supply connection terminals are connected in parallel and connected to the DC distributed power supply
The power converter device according to any one of claims 1 to 11.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018528070A JP6419394B1 (en) | 2017-12-25 | 2017-12-25 | Power converter |
PCT/JP2017/046332 WO2019130375A1 (en) | 2017-12-25 | 2017-12-25 | Electrical power conversion device |
US16/850,131 US11025086B2 (en) | 2017-12-25 | 2020-04-16 | Power conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/046332 WO2019130375A1 (en) | 2017-12-25 | 2017-12-25 | Electrical power conversion device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/850,131 Continuation US11025086B2 (en) | 2017-12-25 | 2020-04-16 | Power conversion device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019130375A1 true WO2019130375A1 (en) | 2019-07-04 |
Family
ID=64098739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/046332 WO2019130375A1 (en) | 2017-12-25 | 2017-12-25 | Electrical power conversion device |
Country Status (3)
Country | Link |
---|---|
US (1) | US11025086B2 (en) |
JP (1) | JP6419394B1 (en) |
WO (1) | WO2019130375A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021208045A1 (en) * | 2020-04-16 | 2021-10-21 | 华为技术有限公司 | Power supply system |
JPWO2022201471A1 (en) * | 2021-03-25 | 2022-09-29 | ||
WO2023233651A1 (en) * | 2022-06-03 | 2023-12-07 | 三菱電機株式会社 | Dc power distribution system and control power supply generation device |
JP7578379B2 (en) | 2021-08-09 | 2024-11-06 | エルジー エナジー ソリューション リミテッド | Power distribution method and energy storage system using the same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210006178A1 (en) * | 2016-09-29 | 2021-01-07 | Transportation Ip Holdings, Llc | Harmonic distortion reduction system for converters connected to a common bus |
KR102248347B1 (en) * | 2017-05-09 | 2021-05-06 | 고도가이샤 츄라에코넷토 | Solar power plant |
JP6825637B2 (en) * | 2019-02-28 | 2021-02-03 | 株式会社安川電機 | Power converter, power conversion system and power conversion method |
JP2022024297A (en) * | 2020-07-15 | 2022-02-09 | 本田技研工業株式会社 | Fuel cell system |
CN112803795A (en) * | 2021-02-01 | 2021-05-14 | 全球能源互联网研究院有限公司 | Active commutation unit, hybrid converter topology structure and method for forced commutation |
CN112803796B (en) * | 2021-02-01 | 2024-09-17 | 全球能源互联网研究院有限公司 | Active commutation hybrid converter topological structure and control method thereof |
CN112803799B (en) * | 2021-02-01 | 2024-09-17 | 全球能源互联网研究院有限公司 | Topological structure of direct-current side common bus auxiliary commutation hybrid converter and method thereof |
CN113300413B (en) * | 2021-05-28 | 2022-10-04 | 广东电网有限责任公司 | Access capability assessment method for multi-constraint distributed power supply of virtual power plant |
WO2024016059A1 (en) * | 2022-07-21 | 2024-01-25 | Relectrify Holdings Pty Ltd | Electrical line selector system having multiple sources |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006129585A (en) * | 2004-10-27 | 2006-05-18 | Hitachi Ltd | Controller for dc distribution system, and transformer controller |
JP2014131413A (en) * | 2012-12-28 | 2014-07-10 | Omron Corp | Power control device, power control method, program, and energy management system |
JP2016182006A (en) * | 2015-03-24 | 2016-10-13 | 株式会社デンソー | Control device |
JP2017143616A (en) * | 2016-02-09 | 2017-08-17 | 株式会社東芝 | Control device for power converter |
JP2017174283A (en) * | 2016-03-25 | 2017-09-28 | 株式会社日立情報通信エンジニアリング | Power conversion device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09130977A (en) | 1995-10-31 | 1997-05-16 | Hitachi Ltd | System linkage system containing dispersed power supply |
CA2708001A1 (en) * | 2009-07-13 | 2011-01-13 | Lineage Power Corporation | System and method for combining the outputs of multiple, disparate types of power sources |
CN201563081U (en) * | 2009-10-30 | 2010-08-25 | 国琏电子(上海)有限公司 | Solar energy conversion module and power supply system utilizing same |
JP2014230454A (en) | 2013-05-27 | 2014-12-08 | 株式会社東芝 | Power control device and power generation system |
CN104426157B (en) * | 2013-09-10 | 2017-04-19 | 台达电子企业管理(上海)有限公司 | Energy storage module and energy storage device |
US10050445B2 (en) * | 2015-07-13 | 2018-08-14 | Sparq Systems Inc. | PV inverter with micro/nano-grid integration capability |
EP3365964A4 (en) * | 2015-10-23 | 2019-05-29 | The University of Hong Kong | Plug-and-play ripple pacifier for dc voltage links in power electronics systems and dc power grids |
-
2017
- 2017-12-25 WO PCT/JP2017/046332 patent/WO2019130375A1/en active Application Filing
- 2017-12-25 JP JP2018528070A patent/JP6419394B1/en active Active
-
2020
- 2020-04-16 US US16/850,131 patent/US11025086B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006129585A (en) * | 2004-10-27 | 2006-05-18 | Hitachi Ltd | Controller for dc distribution system, and transformer controller |
JP2014131413A (en) * | 2012-12-28 | 2014-07-10 | Omron Corp | Power control device, power control method, program, and energy management system |
JP2016182006A (en) * | 2015-03-24 | 2016-10-13 | 株式会社デンソー | Control device |
JP2017143616A (en) * | 2016-02-09 | 2017-08-17 | 株式会社東芝 | Control device for power converter |
JP2017174283A (en) * | 2016-03-25 | 2017-09-28 | 株式会社日立情報通信エンジニアリング | Power conversion device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021208045A1 (en) * | 2020-04-16 | 2021-10-21 | 华为技术有限公司 | Power supply system |
US12051905B2 (en) | 2020-04-16 | 2024-07-30 | Huawei Digital Power Technologies Co., Ltd. | Power system |
JPWO2022201471A1 (en) * | 2021-03-25 | 2022-09-29 | ||
WO2022201471A1 (en) * | 2021-03-25 | 2022-09-29 | 東芝三菱電機産業システム株式会社 | Power conversion device and control device |
JP7289410B2 (en) | 2021-03-25 | 2023-06-09 | 東芝三菱電機産業システム株式会社 | Power conversion device and control device |
AU2021436071B2 (en) * | 2021-03-25 | 2023-08-31 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Power conversion device and control device |
JP7578379B2 (en) | 2021-08-09 | 2024-11-06 | エルジー エナジー ソリューション リミテッド | Power distribution method and energy storage system using the same |
WO2023233651A1 (en) * | 2022-06-03 | 2023-12-07 | 三菱電機株式会社 | Dc power distribution system and control power supply generation device |
Also Published As
Publication number | Publication date |
---|---|
JP6419394B1 (en) | 2018-11-07 |
JPWO2019130375A1 (en) | 2019-12-26 |
US11025086B2 (en) | 2021-06-01 |
US20200244096A1 (en) | 2020-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6419394B1 (en) | Power converter | |
Pires et al. | Power converter interfaces for electrochemical energy storage systems–A review | |
US10355611B2 (en) | Multi-functional power management system | |
US9899867B2 (en) | DC power server for a DC microgrid | |
US20130155736A1 (en) | Bi-directional energy converter with multiple dc sources | |
US9343989B2 (en) | Method for controlling a cycloconverter, electronic control device therefor, cycloconverter, and computer program | |
US20100102762A1 (en) | Power converter | |
WO2017163508A1 (en) | Electric power conversion device | |
CN116780915A (en) | Power supply device and power supply system applied to solid-state transformer structure | |
US20230178982A1 (en) | SST System with Multiple LVDC Outputs | |
CN112072940B (en) | Active modular converter chain, converter control method and device and electronic equipment | |
JP2004187383A (en) | System interconnected inverter device | |
JP4588623B2 (en) | Power supply | |
JP5661075B2 (en) | Charge / discharge device | |
JP2017184607A (en) | Power distribution system and power combination circuit | |
EP3930135B1 (en) | Power supply system | |
WO2018060129A1 (en) | A power converter system for power quality compensation and load balancing connected to an electric power distribution grid | |
Machado et al. | Fault-tolerant Utility Interface power converter for low-voltage microgrids | |
JP6722295B2 (en) | Power conversion system, power supply system, and power conversion device | |
Oh et al. | Operation method for hybrid UPS with energy storage system function | |
KR20190036696A (en) | Multi output dc-dc converter | |
JP2023545235A (en) | power grid | |
JP2007104822A (en) | Parallelization system of power converter | |
JP7422345B2 (en) | Power conversion system, power conversion device | |
EP4020744A1 (en) | Power control device and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018528070 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17935847 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17935847 Country of ref document: EP Kind code of ref document: A1 |