Nothing Special   »   [go: up one dir, main page]

WO2019128799A1 - 拉曼光谱检测设备和方法 - Google Patents

拉曼光谱检测设备和方法 Download PDF

Info

Publication number
WO2019128799A1
WO2019128799A1 PCT/CN2018/122054 CN2018122054W WO2019128799A1 WO 2019128799 A1 WO2019128799 A1 WO 2019128799A1 CN 2018122054 W CN2018122054 W CN 2018122054W WO 2019128799 A1 WO2019128799 A1 WO 2019128799A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
optical element
excitation light
optical
spot
Prior art date
Application number
PCT/CN2018/122054
Other languages
English (en)
French (fr)
Inventor
刘海辉
王红球
张建红
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Priority to US16/314,311 priority Critical patent/US11035796B2/en
Priority to EP18826178.8A priority patent/EP3531113A4/en
Publication of WO2019128799A1 publication Critical patent/WO2019128799A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0237Adjustable, e.g. focussing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/108Scanning systems having one or more prisms as scanning elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • G01J2003/064Use of other elements for scan, e.g. mirror, fixed grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning
    • G01N2201/104Mechano-optical scan, i.e. object and beam moving
    • G01N2201/1045Spiral scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning
    • G01N2201/105Purely optical scan
    • G01N2201/1056Prism scan, diasporameter

Definitions

  • Embodiments of the present disclosure generally relate to the field of Raman spectroscopy, and more particularly to Raman spectroscopy apparatus and methods of detecting samples.
  • Raman spectroscopy is a non-contact spectroscopy technique based on the Raman scattering effect. It can qualitatively and quantitatively analyze the composition of a substance.
  • Raman spectroscopy is a molecular vibrational spectroscopy that reflects the fingerprint characteristics of molecules and can be used to detect substances.
  • Raman spectroscopy detects and identifies a substance by detecting a Raman spectrum produced by the Raman scattering effect of the analyte on the excitation light.
  • Raman spectroscopy has been widely used in liquid security, jewelry testing, explosives testing, drug testing, drug testing and other fields.
  • Raman spectroscopy In the field of application of Raman spectroscopy, the physical properties of various substances vary depending on the sample to be tested, and their thermal sensitivity to laser irradiation for Raman spectroscopy is different. Since Raman spectroscopy requires high-power density laser as the excitation light source, for example, the near-infrared 785nm laser has a strong thermal effect. In the case where the sample is unknown, the rash test may cause the sample to be damaged by laser ablation, or even possible. Causes the laser to ignite or detonate some flammable and explosive chemicals, resulting in the loss of personal property.
  • the present disclosure has been made to overcome at least one of the above and other problems and disadvantages of the prior art.
  • a Raman spectroscopy detecting apparatus comprising:
  • An optical assembly for directing the excitation light along a first optical path to a sample to be detected and collecting an optical signal from the sample along a second optical path;
  • a spectrometer for splitting an optical signal collected by an optical component to generate a Raman spectrum of the sample being detected
  • the optical assembly includes a first optical element configured to move during excitation of the illumination of the sample to change the position of the spot of the excitation light on the sample.
  • the first optical element is further configured to rotate about an axis to direct the spot of illumination light impinging on the sample to move over the sample in a generally circular trajectory.
  • the first optical element is further configured to move along the axis to change a radius of the substantially circular trajectory of the spot on the sample.
  • the first optical element is further configured to rotate about the axis while moving along the axis to direct the spot to move over the sample in a generally helical trajectory.
  • the Raman spectroscopy detection apparatus further includes a drive mechanism configured to drive the first optical element to rotate about the axis and/or to move along the axis.
  • the axis passes through the center of the first optical element.
  • a portion of the first optical path is coaxial with the second optical path, the first optical element is positioned in the second optical path between the laser and the sample, and the axis is parallel to the second The optical path; or the first optical path and the second optical path are off-axis, the first optical element being positioned in the first optical path, and the axis being parallel to the portion of the first optical path from the laser to the first optical element.
  • the first optical element comprises a wedge.
  • a method of detecting a sample using a Raman spectroscopy apparatus as described in any of the embodiments of the present disclosure comprising the steps of:
  • Excitation light is emitted by the laser and directed to the sample by an optical component
  • the light signal produced by the sample under excitation light illumination is collected by a spectrometer to form a Raman spectrum of the sample.
  • the step of changing the position of the spot of the excitation light on the sample by the movement of the first optical element is performed continuously during the illumination of the sample by the excitation light, or at intervals of time during which the excitation light illuminates the sample. Intermittently.
  • the step of changing the position of the spot of the excitation light on the sample by the movement of the first optical element comprises: rotating the first optical element to direct the spot of the excitation light to illuminate the sample on the sample in a substantially circular trajectory mobile.
  • the method further includes moving the first optical element along the axis while the first optical element is rotated to change a radius of the substantially circular trajectory of the spot on the sample.
  • the first optical element directs the spot to move over the sample in a generally helical trajectory while the excitation light illuminates the sample.
  • FIG. 1 is a schematic view showing an arrangement of a Raman spectroscopy detecting apparatus according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic diagram showing an arrangement of a Raman spectroscopy detecting apparatus according to another exemplary embodiment of the present disclosure
  • FIG. 3 is a schematic diagram showing a motion trajectory of a spot generated by a Raman spectrum detecting apparatus in a sample according to an exemplary embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing a motion trajectory of a spot generated by a Raman spectroscopy detecting apparatus in a sample according to another exemplary embodiment of the present disclosure
  • FIG. 5 is a schematic diagram showing a motion trajectory of a spot generated by a Raman spectrum detecting apparatus in a sample according to still another exemplary embodiment of the present disclosure
  • FIG. 6 is a flowchart illustrating a method of detecting a sample by a Raman spectroscopy detecting apparatus, according to an exemplary embodiment of the present disclosure.
  • FIG. 1 schematically illustrates an arrangement of a Raman spectroscopy detecting apparatus according to an exemplary embodiment of the present disclosure.
  • the Raman spectroscopy apparatus 100 includes a laser 10 for emitting excitation light 11 , an optical assembly 20 for directing excitation light 11 to the sample 1 and collecting optical signals from the sample 1; The optical signal collected by the optical assembly 20 is processed to generate a Raman spectrum of the sample 1 under illumination of the excitation light.
  • the Raman spectrum of a sample generated by a spectrometer can be compared to the Raman spectrum of a known substance to determine the composition of the sample. This comparison can be done, for example, by a computer or processor.
  • the optical element is used to guide and change the position of the spot of the excitation light on the sample such that the excitation light does not illuminate the sample in a single point static manner, but may change the irradiation position of the sample to prevent the sample from being irradiated. Overheating at a certain location can avoid degradation, burns, ignition, or even explosion of the sample under test due to excessive laser power density during Raman spectroscopy, reducing the risk of the detection process.
  • the optical assembly includes a first optical element 22 that is configured or capable of moving during illumination of the sample 1 by the excitation light 11 to change the position of the spot of the excitation light on the sample, As indicated by the dashed arrow in the figure, it is possible to prevent heat from accumulating or accumulating at a certain position of the sample.
  • the particular form of the first optical element used to change the position of the spot on the sample is varied, and in some examples, it may include a prism, such as a wedge.
  • the first optical element 22 is rotatable about an axis O-O' to direct the excitation light 11 to illuminate the spot on the sample in a non-concentrated manner, such as in a substantially circular trajectory Move on the sample (clockwise or counterclockwise), as shown in Figure 3, disperse the laser energy on the sample to avoid overheating or damage of the sample caused by conventional single-point static irradiation.
  • the position of the spot of the excitation light on the sample is varied by the rotation of the first optical element about the axis such that the optical path system is relatively stable, preventing movement of other optical elements from causing optical path fluctuations.
  • the trajectory of the spot of the excitation light on the sample is not limited to a circular trajectory, and other straight or curved trajectories may be employed to avoid accumulation or accumulation of heat at a certain location of the sample.
  • the spot of the excitation light is moved or scanned over the sample in a substantially circular trajectory, which can effectively avoid repeated accumulation of heat causing accumulation of heat on the sample.
  • the first optical element 22 can also be moved or translated axially, such as along the axis O-O' (one-way, two-way, or reciprocating back and forth), as indicated by the double-headed arrows in Figures 1 and 2.
  • the position of the first optical element 22 at the axis is varied to vary the radius of the substantially circular trajectory of the spot of the excitation light 11 on the sample 1, as indicated by the circular trajectories 101, 102 of FIG.
  • the first optical element 22 is configured to rotate about the axis while moving or translating along the axis O-O' to direct the spot of the excitation light in a substantially helical trajectory over the sample
  • the upper moving scan as shown in Fig. 5, can thereby disperse the laser energy more effectively and reduce the accumulation of heat on the sample.
  • the Raman spectroscopy apparatus further includes a driveable mechanism 40 that can drive the first optical element 22 to rotate about the axis OO' and/or drive the first optical element 22 along the axis O- O' mobile.
  • the specific form of the drive mechanism is not particularly limited herein, and one example includes a motor.
  • the axis O-O' extends through the center of the first optical element 22 such that rotation or translation of the first optical element relative to the axis can be more stable, and the spot distribution of the spot is more uniform over the sample.
  • the optical assembly 20 directs the excitation light 11 to the sample 1 along a first optical path (indicated by the thick solid line in the figure) and directs the optical signal from the sample 1 to the spectrometer 30 along the second optical path 21.
  • a portion of the first optical path is coaxial with the second optical path 21, and the first optical element 22 is positioned between the laser 10 and the sample 11 (specifically, between the beam splitter 25 and the sample 11).
  • the two optical paths 21 are located in a portion where the first optical path is coaxial with the second optical path 21, and the axis O-O' is parallel to the second optical path 21.
  • the axis O-O' may extend through the center of the first optical element 22 and the sample 1.
  • the first optical path and the second optical path 21 are off-axis or independent of each other and extend from the laser 10 to the sample 1
  • the first optical element 22 is positioned in the first optical path
  • the axis O -O' extends parallel to the first optical path from the laser to the portion of the first optical element, for example, the axis O-O' extends through the center of the first optical element 22 and the sample 1.
  • optical assembly 20 can establish or form an optical path 21 for collecting or directing an optical signal (including Raman light components) from sample 1 to the spectrometer.
  • a beam splitter 25 located between the converging lenses 23 and 24, and a long length are disposed in the optical path 21.
  • Passing the filter or notch filter 26, the first optical element 22 is located between the beam splitter 25 and the sample 1 (eg, between the beam splitter 25 and the condenser lens 24) in the optical path 21.
  • Converging lens 24 is used to concentrate excitation light 11 to sample 1 and collect optical signals from sample 1.
  • the beam splitter 25 is for directing (eg, reflecting) the excitation light 11 from the laser 10 toward the first optical element 22 and the concentrating lens 24, and transmitting at least a portion of the optical signal from the sample 1 through the second beam splitter to emit To the spectrometer 30.
  • a long pass filter or notch filter 26 is used to filter Rayleigh light in the optical signal after passing through the beam splitter 25.
  • Converging lens 23 is used to concentrate light from the sample to spectrometer 30 (eg, to converge onto its detector).
  • other optical elements 27 such as collimating lenses and/or narrow-band filters, may be provided, and the collimating lens may make the excitation light approximate to parallel light to improve directivity.
  • narrow-band filters can remove interference and increase the signal-to-noise ratio of the excitation light over the desired wavelength range.
  • Embodiments of the present disclosure also provide a method of detecting a sample using a Raman spectroscopy detecting apparatus described in the embodiments of the present disclosure.
  • the method can include the following steps:
  • the step of changing the position of the spot on which the excitation light is irradiated on the sample by the movement of the first optical element may be continuously performed during the irradiation of the sample by the excitation light, or during the irradiation of the sample by the excitation light.
  • the time interval is intermittently performed or selectively performed depending on the safe state of the sample under laser irradiation.
  • the first optical element 22 in step S1, can be driven to rotate about the axis O-O' to direct the spot of illumination light 11 to illuminate the sample to move over the sample 1 in a generally circular trajectory.
  • the first optical element 22 can be driven to move or translate along the axis while rotating about the axis OO' to change the radius of the substantially circular trajectory of the spot of excitation light on the sample, for example, such that the spot Move on the sample in a roughly helical trajectory.
  • the optical element is used to guide and change the position of the spot of the excitation light on the sample such that the excitation light does not illuminate the sample in a single point static manner, but may change its irradiation position at the sample to prevent the sample from being irradiated.
  • Excessive heating at a certain position can avoid degradation, burns, ignition or even explosion of the sample to be tested due to excessive laser power density during Raman spectroscopy, reducing the risk of the detection process and ensuring the use of Raman spectroscopy. Sample safety during the process and user safety.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

一种拉曼光谱检测设备(100)和方法,该拉曼光谱检测设备(100)包括:激光器(10),用于发射激发光(11);光学组件(20),用于沿第一光路将该激发光(11)引导至样品(1)和沿第二光路(21)收集来自样品(1)的光信号;光谱仪(30),用于对由光学组件(20)收集的光信号进行处理以生成被检测的样品(1)的拉曼光谱,该光学组件(20)包括第一光学元件(22),该第一光学元件(22)被构造成在激发光(11)照射样品(1)期间运动以改变激发光(11)在样品(1)上的光斑的位置。

Description

拉曼光谱检测设备和方法
相关申请的交叉引用
本申请主张在2017年12月26日在中国专利局提交的中国专利申请No.201711442675.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开的实施例一般地涉及拉曼光谱检测领域,尤其涉及拉曼光谱检测设备和检测样品的方法。
背景技术
拉曼光谱分析技术是一种以拉曼散射效应为基础的非接触式光谱分析技术,它能对物质的成分进行定性、定量分析。拉曼光谱是一种分子振动光谱,它可以反映分子的指纹特征,可用于对物质的检测。拉曼光谱检测通过检测待测物对于激发光的拉曼散射效应所产生的拉曼光谱来检测和识别物质。拉曼光谱检测方法已经广泛应用于液体安检、珠宝检测、爆炸物检测、毒品检测、药品检测等领域。
在拉曼光谱分析技术的应用领域,由于被检物千差万别,各种物质的物理特性会有不同,他们对于用于拉曼光谱分析技术的激光照射的热敏感性会有不同。由于拉曼光谱需要用高功率密度的激光作为激发光源,比如近红外的785nm激光有较强的热效应,在样品未知的情况下,贸然检测很可能会导致样品被激光烧蚀损伤,甚至有可能导致激光引燃或引爆一些易燃易爆化学品,造成人身财产的损失。
公开内容
为了克服现有技术存在的上述和其它问题和缺陷中的至少一种,提出了本公开。
根据本公开的一个方面,提出了一种拉曼光谱检测设备,包括:
激光器,用于发射激发光;
光学组件,用于沿第一光路将所述激发光引导至将被检测的样品和沿 第二光路收集来自所述样品的光信号;和
光谱仪,用于对由光学组件收集的光信号进行分光以生成被检测的样品的拉曼光谱,
所述光学组件包括第一光学元件,该第一光学元件被构造成在激发光照射样品期间运动以改变激发光在样品上的光斑的位置。
在一个实施例中,第一光学元件进一步被构造成围绕一轴线旋转,以引导激发光照射在样品上的光斑以大致环形轨迹在样品上移动。
在一个实施例中,第一光学元件进一步被构造成沿着所述轴线移动,以改变所述光斑在样品上的大致环形轨迹的半径。
在一个实施例中,第一光学元件进一步被构造成在沿着所述轴线移动的同时围绕所述轴线旋转,以引导所述光斑以大致螺旋状轨迹在样品上移动。
在一个实施例中,拉曼光谱检测设备还包括驱动机构,该驱动机构被配置成驱动第一光学元件围绕所述轴线旋转和/或沿着所述轴线移动。
在一个实施例中,所述轴线穿过第一光学元件的中心。
在一些实施例中,第一光路的一部分与第二光路是同轴的,所述第一光学元件在激光器和样品之间定位在该第二光路中,并且所述轴线平行于所述第二光路;或者,第一光路与第二光路是偏轴的,所述第一光学元件定位在第一光路中,并且所述轴线平行于所述第一光路从激光器至第一光学元件的部分。
在一个实施例中,第一光学元件包括光楔。
根据本公开的另一方面,提供了一种采用本公开的任一实施例中描述的拉曼光谱检测设备检测样品的方法,包括下述步骤:
由激光器发射激发光并通过光学组件将所述激发光引导至样品;
通过第一光学元件的运动改变激发光照射在样品上的光斑的位置;以及
由光谱仪收集样品在激发光照射下产生的光信号以形成样品的拉曼光谱。
在一个实施例中,通过第一光学元件的运动改变激发光照射在样品上的光斑的位置的步骤是在激发光照射样品期间持续地进行的,或者是在激发光照射样品期间以一定时间间隔间歇地进行的。
在一个实施例中,通过第一光学元件的运动改变激发光照射在样品上的光斑的位置的步骤包括:旋转第一光学元件以引导激发光照射在样品上的光斑以大致环形轨迹在样品上移动。
在一个实施例中,该方法还包括在第一光学元件旋转的同时沿着所述轴线移动第一光学元件,以改变所述光斑在样品上的大致环形轨迹的半径。
在一个实施例中,在激发光照射样品的同时第一光学元件引导所述光斑以大致螺旋状轨迹在样品上移动。
通过下文中参照附图对本公开所作的详细描述,本公开的其它目的和优点将显而易见,并可帮助对本公开有全面的理解。
附图说明
通过参考附图能够更加清楚地理解本公开的特征和优点,附图是示意性的而不应理解为对本公开进行任何限制,在附图中:
图1为示出根据本公开的一个示例性实施例的拉曼光谱检测设备的布置的示意图;
图2为示出根据本公开的另一个示例性实施例的拉曼光谱检测设备的布置的示意图;
图3为示出根据本公开的一个示例性实施例的拉曼光谱检测设备在样品产生的光斑的运动轨迹的示意图;
图4为示出根据本公开的另一个示例性实施例的拉曼光谱检测设备在样品产生的光斑的运动轨迹的示意图;
图5为示出根据本公开的又一个示例性实施例的拉曼光谱检测设备在样品产生的光斑的运动轨迹的示意图;以及
图6为示出根据本公开的一个示例性实施例的由拉曼光谱检测设备检测样品的方法的流程图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的 范围。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本公开内容的实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
图1示意性地示出了根据本公开的一个示例性实施例的拉曼光谱检测设备的布置。如图所示,拉曼光谱检测设备100包括:激光器10,用于发射激发光11;光学组件20,用于将激发光11引导至样品1和收集来自样品1的光信号;光谱仪30,用于对由光学组件20收集的光信号进行处理以生成在激发光的照射下的样品1的拉曼光谱。作为示例,由光谱仪生成的样品的拉曼光谱可以与已知物质的拉曼光谱进行比较以确定样品的成分。这种比较可以例如通过计算机或处理器来完成。
在拉曼检测过程中,安全问题往往是由于在激光照射样品期间样品吸热导致温度上升,进而有可能导致对被测物的烧蚀,甚至产生引燃、引爆等现象。在本公开的实施例中,采用光学元件引导和改变激发光在样品上的光斑的位置,使得激发光不是以单点静态方式照射样品,而是可以改变在样品的照射位置,防止对样品的某个位置过度加热,可以避免在拉曼光谱检测过程中,由于过强的激光功率密度导致的被测样品的降解、灼伤、引燃甚至爆炸,降低检测过程的风险。
在一个实施例中,如图1和2所示,光学组件包括第一光学元件22,其被构造成或能够在激发光11照射样品1期间运动以改变激发光在样品上的光斑的位置,如图中虚线箭头所指示,从而能够避免热量在样品的某个位置处聚积或积累。可以理解,用于改变样品上的光斑的位置的第一光学元件的具体形式多种多样,在一些示例,其可以包括棱镜,如光楔。
在一个示例中,如图1和2所示,第一光学元件22能够围绕一轴线O-O’旋转,以引导激发光11照射在样品上的光斑以非集中的方式,如以大致环形轨迹,在样品上移动(顺时针或逆时针),如图3所示,分散样品上的激光能量,避免常规单点静态照射引起的样品过热或损坏问题。而且,通过第一光学元件围绕轴线的旋转来改变激发光的光斑在样品上的位置,使得光路系统相对稳定,避免其它光学元件的运动造成光路波动。
可以理解,激发光在样品上的光斑的运动轨迹不限于环形轨迹,还可 以采取其它直线或曲线轨迹来避免热量在样品的某个位置处的聚积或积累。在本公开的实施例中,激发光的光斑以大致环形轨迹在样品上移动或扫描,可以有效地避免反复扫描导致热量在样品上的积累。
在另一个示例中,第一光学元件22还能够轴向移动或平移,如沿着轴线O-O’移动(单向、双向或来回往复移动),如图1和2中的双向箭头所示,使得第一光学元件22在该轴线的位置发生变化,以改变激发光11的光斑在样品1上的大致环形轨迹的半径,如图4的环形轨迹101、102所指示。示例性地,在图1和2图示的实施例中,当第一光学元件22沿着轴线O-O’朝向样品1移动时,样品1上的光斑的轨迹的半径变小,而当第一光学元件22沿着轴线O-O’远离样品1移动时,样品1上的光斑的轨迹的半径变大。
在本公开的一个示例性实施例中,第一光学元件22被构造成在沿着轴线O-O’移动或平移的同时围绕该轴线旋转,以引导激发光的光斑以大致螺旋状轨迹在样品上移动扫描,如图5所示,由此可以更加有效地分散激光能量,减少热量在样品上的聚积。
如图1和2所示,拉曼光谱检测设备还包括可以驱动机构40,其可以驱动第一光学元件22围绕轴线O-O’旋转,和/或驱动第一光学元件22沿着轴线O-O’移动。驱动机构的具体形式在本文中不受特别限制,一个示例包括马达。
在一个示例中,轴线O-O’延伸穿过第一光学元件22的中心,使得第一光学元件相对于该轴线的旋转或平移能够更加稳定,光斑在样品的轨迹分布更加均匀。在图示的实施例中,光学组件20沿第一光路(如图中粗实线指示)将激发光11引导至样品1,并沿第二光路21将来自样品1的光信号引导至光谱仪30。在图1中,第一光路的一部分与第二光路21是同轴的,第一光学元件22在激光器10和样品11之间(具体地,在分光镜25和样品11之间)定位在第二光路21中或定位在第一光路与第二光路21同轴的部分中,并且轴线O-O’平行于第二光路21。在这种情况中,轴线O-O’可以延伸穿过第一光学元件22和样品1的中心。而在图2的替换实施例中,第一光路与第二光路21是偏轴的或彼此独立的并从激光器10延伸至样品1,第一光学元件22定位在第一光路中,并且轴线O-O’平行于第一光路从激光器至第一光学元件的部分,例如,轴线O-O’延伸穿过 第一光学元件22和样品1的中心。
在一些实施例中,如图1和2所示,光学组件20可以建立或形成光路21,用于收集来自样品1的光信号(包括拉曼光成分)或将该信号引导至光谱仪。在图1中图示的示例性实施例中,在光路21中设置有靠近光谱仪30的会聚透镜23、靠近样品1的会聚透镜24、位于会聚透镜23和24之间的分光镜25、以及长通滤波片或陷波滤波片26,第一光学元件22在分光镜25和样品1之间(例如,在分光镜25和会聚透镜24之间)位于光路21中。会聚透镜24用于将激发光11会聚到样品1并收集来自样品1的光信号。分光镜25用于将来自于激光器10的激发光11向第一光学元件22和会聚透镜24引导(如反射),并使来自样品1的光信号的至少一部分透射通过该第二分光镜以射向光谱仪30。长通滤波片或陷波滤波片26用于滤除经过分光镜25之后的光信号中的瑞利光。会聚透镜23用于将来自样品的光会聚到光谱仪30(如会聚到其探测器上)。此外,在从激光器10至样品的激发光光路中,还可以设置其它光学元件27,如准直透镜和/或窄带滤波片,准直透镜可以使激发光称为近似于平行光以提高方向性和光学效率,窄带滤波片可以去除干扰,提高激发光在期望的波长段上的信噪比。
本公开的实施例还提供了一种使用本公开的实施例中描述的拉曼光谱检测设备检测样品的方法。参见图1-6,该方法可以包括下述步骤:
S1:由激光器10发射激发光11并通过光学组件将所述激发光引导至样品1;
S2:通过第一光学元件22的运动改变激发光照射在样品1上的光斑的位置;以及
S3:由光谱仪30收集样品1在激发光照射下产生的光信号以形成样品的拉曼光谱。
在一些示例中,如前所述,通过第一光学元件的运动改变激发光照射在样品上的光斑的位置的步骤可以在激发光照射样品期间持续地进行,也可以在激发光照射样品期间以一定时间间隔间歇地进行,或者根据样品在被激光照射下的安全状态选择地进行。
在一个示例中,在步骤S1中,可以驱动第一光学元件22围绕轴线O-O’旋转以引导激发光11照射在样品上的光斑以大致环形轨迹在样品1 上移动。在其它示例中,可以驱动第一光学元件22在围绕轴线O-O’旋转的同时沿着该轴线移动或平移,以改变激发光的光斑在样品上的大致环形轨迹的半径,例如,使得光斑以大致螺旋状轨迹在样品上移动。
在本公开的实施例中,采用光学元件引导和改变激发光在样品上的光斑的位置,使得激发光不是以单点静态方式照射样品,而是可以改变其在样品的照射位置,防止对样品的某个位置过度加热,可以避免在拉曼光谱检测过程中,由于过强的激光功率密度导致的被测样品的降解、灼伤、引燃甚至爆炸,降低检测过程的风险,确保拉曼光谱仪使用过程中的样品安全以及使用者的安全。
尽管已经示出和描述了本公开的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本公开的原理和精神的情况下可以对这些实施例进行变化,本公开的范围由所附权利要求及其等同物限定。

Claims (13)

  1. 一种拉曼光谱检测设备,包括:
    激光器,用于发射激发光;
    光学组件,用于沿第一光路将所述激发光引导至将被检测的样品和沿第二光路收集来自所述样品的光信号;和
    光谱仪,用于对由光学组件收集的光信号进行处理以生成被检测的样品的拉曼光谱,
    其中,所述光学组件包括第一光学元件,该第一光学元件被构造成在激发光照射样品期间运动以改变激发光在样品上的光斑的位置。
  2. 根据权利要求1所述的拉曼光谱检测设备,其中第一光学元件进一步被构造成围绕一轴线旋转,以引导激发光照射在样品上的光斑以大致环形轨迹在样品上移动。
  3. 根据权利要求2所述的拉曼光谱检测设备,其中第一光学元件进一步被构造成沿着所述轴线移动,以改变所述光斑在样品上的大致环形轨迹的半径。
  4. 根据权利要求2或3所述的拉曼光谱检测设备,其中第一光学元件进一步被构造成在沿着所述轴线移动的同时围绕所述轴线旋转,以引导所述光斑以大致螺旋状轨迹在样品上移动。
  5. 根据权利要求2-4中任一项所述的拉曼光谱检测设备,还包括驱动机构,该驱动机构被配置成驱动第一光学元件围绕所述轴线旋转和/或沿着所述轴线移动。
  6. 根据权利要求2-4中任一项所述的拉曼光谱检测设备,其中所述轴线穿过第一光学元件的中心。
  7. 根据权利要求2-6中任一项所述的拉曼光谱检测设备,其中
    第一光路的一部分与第二光路是同轴的,所述第一光学元件在激光器和样品之间定位在该第二光路中,并且所述轴线平行于所述第二光路;或者
    第一光路与第二光路是偏轴的,所述第一光学元件定位在第一光路中,并且所述轴线平行于所述第一光路从激光器至第一光学元件的部分。
  8. 根据权利要求1-7中任一项所述的拉曼光谱检测设备,其中第一光学元件包括光楔。
  9. 一种采用权利要求1-8中任一项所述的拉曼光谱检测设备检测样品的方法,包括下述步骤:
    由激光器发射激发光并通过光学组件将所述激发光引导至样品;
    通过第一光学元件的运动改变激发光照射在样品上的光斑的位置;以及
    由光谱仪收集样品在激发光照射下产生的光信号以形成样品的拉曼光谱。
  10. 根据权利要求9所述的方法,其中通过第一光学元件的运动改变激发光照射在样品上的光斑的位置的步骤是在激发光照射样品期间持续地进行的,或者是在激发光照射样品期间以一定时间间隔间歇地进行的。
  11. 根据权利要求9或10所述的方法,其中通过第一光学元件的运动改变激发光照射在样品上的光斑的位置的步骤包括:
    旋转第一光学元件以引导激发光照射在样品上的光斑以大致环形轨迹在样品上移动。
  12. 根据权利要求11所述的方法,还包括:
    在第一光学元件旋转的同时沿着所述轴线移动第一光学元件,以改变所述光斑在样品上的大致环形轨迹的半径。
  13. 根据权利要求11或12所述的方法,其中在激发光照射样品的同时第一光学元件引导所述光斑以大致螺旋状轨迹在样品上移动。
PCT/CN2018/122054 2017-12-26 2018-12-19 拉曼光谱检测设备和方法 WO2019128799A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/314,311 US11035796B2 (en) 2017-12-26 2018-12-19 Raman spectrum detection apparatus and method
EP18826178.8A EP3531113A4 (en) 2017-12-26 2018-12-19 RAMAN SPECTROSCOPY DETECTOR AND METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711442675.1A CN107884389A (zh) 2017-12-26 2017-12-26 拉曼光谱检测设备和方法
CN201711442675.1 2017-12-26

Publications (1)

Publication Number Publication Date
WO2019128799A1 true WO2019128799A1 (zh) 2019-07-04

Family

ID=61772540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122054 WO2019128799A1 (zh) 2017-12-26 2018-12-19 拉曼光谱检测设备和方法

Country Status (4)

Country Link
US (1) US11035796B2 (zh)
EP (1) EP3531113A4 (zh)
CN (1) CN107884389A (zh)
WO (1) WO2019128799A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107884389A (zh) 2017-12-26 2018-04-06 同方威视技术股份有限公司 拉曼光谱检测设备和方法
CN115931725B (zh) * 2023-02-20 2023-05-23 中国科学院半导体研究所 旋转样品台及显微拉曼光谱的测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021724A1 (en) * 2007-07-20 2009-01-22 Vanderbilt University Combined raman spectroscopy-optical coherence tomography (rs-oct) system and applications of the same
CN105765372A (zh) * 2013-11-14 2016-07-13 赛默科技便携式分析仪器有限公司 在光谱仪中移动激光焦点
CN106226282A (zh) * 2016-06-24 2016-12-14 北京华泰诺安探测技术有限公司 一种使用激光拉曼光谱仪进行采样的装置及方法
CN206479455U (zh) * 2016-12-26 2017-09-08 同方威视技术股份有限公司 拉曼光谱检测设备
CN107884389A (zh) * 2017-12-26 2018-04-06 同方威视技术股份有限公司 拉曼光谱检测设备和方法
CN207779899U (zh) * 2017-12-26 2018-08-28 同方威视技术股份有限公司 拉曼光谱检测设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8420861D0 (en) 1984-08-16 1984-09-19 Atomic Energy Authority Uk Laser control system
JP4887989B2 (ja) * 2005-12-02 2012-02-29 ナノフォトン株式会社 光学顕微鏡及びスペクトル測定方法
EP1882971A3 (en) * 2006-01-12 2008-11-26 Olympus Corporation Microscope examination apparatus
US7535565B1 (en) 2008-01-08 2009-05-19 General Electric Company System and method for detecting and analyzing compositions
US9791313B2 (en) * 2010-12-01 2017-10-17 MKS Technology Spectrometer
GB201511696D0 (en) 2015-07-03 2015-08-19 Cobalt Light Systems Ltd Scanner for spatially offset raman spectrscopy
CN107328755B (zh) * 2017-07-25 2024-03-12 同方威视技术股份有限公司 拉曼光谱检测设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021724A1 (en) * 2007-07-20 2009-01-22 Vanderbilt University Combined raman spectroscopy-optical coherence tomography (rs-oct) system and applications of the same
CN105765372A (zh) * 2013-11-14 2016-07-13 赛默科技便携式分析仪器有限公司 在光谱仪中移动激光焦点
CN106226282A (zh) * 2016-06-24 2016-12-14 北京华泰诺安探测技术有限公司 一种使用激光拉曼光谱仪进行采样的装置及方法
CN206479455U (zh) * 2016-12-26 2017-09-08 同方威视技术股份有限公司 拉曼光谱检测设备
CN107884389A (zh) * 2017-12-26 2018-04-06 同方威视技术股份有限公司 拉曼光谱检测设备和方法
CN207779899U (zh) * 2017-12-26 2018-08-28 同方威视技术股份有限公司 拉曼光谱检测设备

Also Published As

Publication number Publication date
US20200319112A1 (en) 2020-10-08
CN107884389A (zh) 2018-04-06
EP3531113A1 (en) 2019-08-28
EP3531113A4 (en) 2020-06-17
US11035796B2 (en) 2021-06-15

Similar Documents

Publication Publication Date Title
US9869585B2 (en) Dual spectrometer
WO2018121799A1 (zh) 拉曼光谱检测设备及其检测安全性的监控方法
US9557216B2 (en) High speed spectroscopic sensor assembly and system
CN106442401B (zh) 一种结合拉曼光谱和近红外光谱的探测装置及探测方法
US10295408B2 (en) Raman spectroscopy system
WO2019128799A1 (zh) 拉曼光谱检测设备和方法
JP2015500492A (ja) ラマン放射線を用いてサンプルを試験するための装置
KR101782784B1 (ko) 레이저 유도 방전 스펙트로스코피 장치 및 고감도 핸드피스
EP3175221B1 (en) Raster optic device for optical hyper spectral scanning
US11249030B2 (en) Product inspection and characterization device
US7209237B2 (en) Optical system for analyzing multi-channel samples and multi-channel sample analyzer employing the same
CN207779899U (zh) 拉曼光谱检测设备
US10082456B2 (en) Photothermal conversion spectroscopic analyzer
EP3650842B1 (en) A light collection arrangement for optical emission spectroscopy
KR20170106776A (ko) 레이저 유도 방전 스펙트로스코피 장치 및 고감도 핸드피스
CN108152265B (zh) 拉曼光谱检测设备及其检测安全性的监控方法
CN108885168B (zh) 一种检测系统及信号增强装置
KR101849606B1 (ko) 단일샷에 의한 심도 분해 분광 분석 이미징 장치
RU2640751C2 (ru) Устройство для регистрации эмиссии образца в среднем диапазоне инфракрасного спектра
EP4457504A1 (en) Method for enhancing a raman contribution in a spectrum, spectroscopy system, computer program and non-transitory computer-readable storage medium
CN117277048A (zh) 一种多激光束共焦激发拉曼光谱的方法及信号激发装置
RU2474796C1 (ru) Эффективная оптическая система сбора рассеянного излучения для раман-спектрометра
JPS59214737A (ja) 分子レベルに於ける物質構造の均一性を評価する計測装置
JPS6375642A (ja) 赤外吸収スペクトル反射測定装置
JP2016045145A (ja) 赤外分光測定装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018826178

Country of ref document: EP

Effective date: 20181228

NENP Non-entry into the national phase

Ref country code: DE