Nothing Special   »   [go: up one dir, main page]

WO2019114573A1 - 电路驱动补偿方法、电路驱动方法及装置、显示装置 - Google Patents

电路驱动补偿方法、电路驱动方法及装置、显示装置 Download PDF

Info

Publication number
WO2019114573A1
WO2019114573A1 PCT/CN2018/118734 CN2018118734W WO2019114573A1 WO 2019114573 A1 WO2019114573 A1 WO 2019114573A1 CN 2018118734 W CN2018118734 W CN 2018118734W WO 2019114573 A1 WO2019114573 A1 WO 2019114573A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving transistor
pixel circuit
signal
threshold voltage
compensation
Prior art date
Application number
PCT/CN2018/118734
Other languages
English (en)
French (fr)
Inventor
林奕呈
王雨
王玲
徐攀
盖翠丽
张保侠
闫光
杨栋芳
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/624,276 priority Critical patent/US10977992B2/en
Publication of WO2019114573A1 publication Critical patent/WO2019114573A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • G09G2360/147Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a pixel circuit driving compensation method, a pixel circuit driving method and device, and a display device.
  • OLED Organic Light Emitting Diode
  • PMOLED Passive Matrix Driving OLED
  • AMOLED Active Matrix Driving OLED
  • each OLED relies on a pixel circuit corresponding to each OLED on the array substrate to drive its light to realize display.
  • the mobility of the driving transistor, the threshold voltage, the resistance on the wire, and the like may cause the driving currents driving the OLEDs to be inconsistent, thereby causing the display panel to display uneven brightness.
  • An object of the present disclosure is to provide a pixel circuit driving compensation method, a pixel circuit driving method and apparatus, and a display device, and at least to some extent overcome one or more problems due to limitations and disadvantages of the related art.
  • a pixel circuit driving compensation method including:
  • a preset signal is provided to a control terminal of the driving transistor to write the preset signal to a control terminal of the driving transistor, and an internal loss voltage of the driving transistor Writing to the first end of the driving transistor;
  • the compensation phase includes a first external compensation phase and a second external compensation phase
  • the preset signal is a sum of a reference signal and a threshold voltage of the driving transistor
  • the preset signal is a sum of a data signal and a threshold voltage of the driving transistor.
  • the method further includes:
  • the preset signal is supplied to a control terminal of the driving transistor to reset a control terminal of the driving transistor and provide a reset signal to a first end of the driving transistor And resetting the first end of the driving transistor; wherein the preset signal is a sum of a threshold voltage of the reference signal and the driving transistor.
  • the method further includes:
  • the driving transistor In a light emitting phase of the pixel circuit, the driving transistor is turned on under the action of the data signal and a threshold voltage of the driving transistor and the internal loss voltage, and is in a first power signal of the pixel circuit The driving current is outputted to drive the electroluminescent element to emit light.
  • the method further includes:
  • a current signal flowing through the driving transistor is extracted through a sensing line of the pixel circuit, and the driving transistor is calculated by an external electrical compensation circuit based on a current signal flowing through the driving transistor Threshold voltage.
  • the method further includes:
  • a current signal flowing through the electroluminescent element is extracted through a sensing line of the pixel circuit, and the external electrical compensation circuit is used to calculate the current signal based on a current signal flowing through the electroluminescent element The threshold voltage of the driving transistor.
  • the method further includes:
  • a luminance value of the electroluminescent element is obtained by the external optical compensation circuit, and a threshold voltage of the driving transistor is calculated according to a luminance value of the electroluminescent element.
  • the mobility of the driving transistor is The compensation voltage is determined as the internal loss voltage.
  • the threshold voltage of the driving transistor is compensated for mobility of the driving transistor when the first external compensation phase and the second external compensation phase are changed.
  • the voltage and the amount of change in the threshold voltage of the drive transistor are determined as the internal loss voltage.
  • a pixel circuit driving method for providing a preset signal to a control terminal of a driving transistor in a pixel circuit includes:
  • the preset signal is the driving transistor in a first external compensation phase of the pixel circuit And a sum of the threshold voltage and the reference signal, in a second external compensation phase of the pixel circuit, the preset signal being a sum of a threshold voltage of the driving transistor and the data signal.
  • the method further includes:
  • the threshold voltage of the driving transistor is obtained from an external compensation circuit.
  • the external compensation circuit includes an external electrical compensation circuit and an external optical compensation circuit.
  • a pixel circuit driving apparatus for providing a preset signal to a control terminal of a driving transistor in a pixel circuit, including:
  • Generating a module configured to generate the preset signal according to the reference signal, the data signal, and a threshold voltage of the driving transistor, wherein, in a first external compensation phase of the pixel circuit, the preset signal is a sum of a threshold voltage of the driving transistor and the reference signal, in a second external compensation phase of the pixel circuit, the preset signal being a sum of a threshold voltage of the driving transistor and the data signal.
  • a display device comprising the pixel circuit driving device of any of the above.
  • the pixel circuit driving compensation method provides a preset signal to a compensation stage of the pixel circuit a control terminal of the driving transistor, wherein the compensation phase includes a first external compensation phase and a second external compensation phase, and in the first external compensation phase, the preset signal is a reference signal and a threshold voltage of the driving transistor And in the second external compensation phase, the preset signal is a sum of a data signal and a threshold voltage of the driving transistor.
  • the preset signal is the sum of the reference signal and the threshold voltage of the driving transistor in the first external compensation phase
  • the preset signal is the sum of the threshold voltage of the data signal and the driving transistor, that is, The threshold voltages of the driving transistors respectively correct the reference signal and the data signal to write the threshold voltage of the driving transistor to the control terminal of the driving transistor by external compensation, thereby eliminating the influence of the threshold voltage of the driving transistor on the driving transistor, and ensuring The pixel display brightness uniformity;
  • the voltage of the control terminal of the driving transistor maintains the sum of the reference signal and the threshold voltage of the driving transistor for a period of time, and the voltage of the first terminal of the driving transistor is performed.
  • the first rise when the second external compensation phase comes, the voltage of the control terminal of the driving transistor is changed from the sum of the reference signal and the threshold voltage of the driving transistor to the sum of the threshold voltage of the data signal and the driving transistor, which will drive the transistor
  • the voltage at one end is at the base of the first lift
  • the second rise was performed.
  • the voltage of the first end of the driving transistor was raised twice, which increased the internal compensation range, and also avoided the problem of insufficient charging time of the data signal;
  • the internal loss voltage is written to the first end of the driving transistor by the sum of the reference signal supplied to the control terminal of the driving transistor and the threshold voltage of the driving transistor and the threshold voltage of the data signal and the driving transistor, In order to eliminate the influence of internal loss on the current of the driving transistor, the uniformity of display brightness of each pixel is ensured.
  • FIG. 1 is a schematic diagram of a 3T1C pixel circuit provided in an exemplary embodiment of the present disclosure
  • FIG. 2 is an operational timing diagram of a 3T1C pixel circuit provided in an exemplary embodiment of the present disclosure
  • FIG. 3 is an equivalent circuit diagram of a 3T1C pixel circuit provided in a reset phase according to an exemplary embodiment of the present disclosure
  • FIG. 4 is an equivalent circuit diagram of a 3T1C pixel circuit provided in a compensation phase according to an exemplary embodiment of the present disclosure
  • FIG. 5 is an equivalent circuit diagram of a 3T1C pixel circuit provided in an illuminating phase according to an exemplary embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of extracting a current signal flowing through a driving transistor according to an exemplary embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of extracting a current signal flowing through an electroluminescent element according to an exemplary embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of acquiring luminance values of an electroluminescent element by the external optical compensation circuit according to an exemplary embodiment of the present disclosure
  • FIG. 9 is a block diagram of a pixel circuit driving apparatus according to an exemplary embodiment of the present disclosure.
  • T1 a first switching transistor
  • T2 a second switching transistor
  • DK drive transistor
  • G1 a first scan signal
  • G2 second scan signal
  • VDD the first power signal
  • VSS second power signal
  • T2 compensation phase
  • T3 illuminating phase
  • T21 first external compensation phase
  • T22 second external compensation phase
  • ⁇ V a voltage that the first end of the driving transistor is raised in total during the compensation phase
  • Vref reference signal
  • Vth threshold voltage
  • Vdata data signal
  • VL reset signal
  • Voled The voltage of the electroluminescent element.
  • a pixel circuit driving compensation method is provided in the exemplary embodiment, the pixel circuit including a driving transistor, which may be an N-type transistor or a P-type transistor.
  • the pixel circuit compensation method may include: providing a preset signal to a control end of the driving transistor during a compensation phase of the pixel circuit to write the preset signal to a control end of the driving transistor, and An internal loss voltage of the drive transistor is written to a first end of the drive transistor; wherein: the compensation phase includes a first external compensation phase and a second external compensation phase; in the first external compensation phase, the pre- The signal is a sum of a reference signal and a threshold voltage of the driving transistor; in the second external compensation phase, the preset signal is a sum of a data signal and a threshold voltage of the driving transistor.
  • the preset signal in the first external compensation phase, is the sum of the reference signal and the threshold voltage of the driving transistor, and in the second external compensation phase, is the sum of the threshold voltages of the data signal and the driving transistor, that is, the reference signal and the data signal are respectively corrected by the threshold voltage of the driving transistor to write the threshold voltage of the driving transistor to the driving transistor by external compensation.
  • the voltage of the control terminal of the driving transistor maintains the reference signal and the driving transistor
  • the sum of the threshold voltages for a period of time causes the voltage of the first terminal of the driving transistor to rise for the first time.
  • the voltage of the control terminal of the driving transistor is changed by the sum of the reference signal and the threshold voltage of the driving transistor.
  • Threshold for data signal and drive transistor The sum of the value voltages causes the voltage at the first end of the driving transistor to rise for the second time on the basis of the first rise.
  • the voltage at the first end of the driving transistor is raised twice during the entire compensation phase. , the internal compensation range is increased, and the problem of insufficient charging time of the data signal is also avoided; in another aspect, in the compensation phase, the sum of the reference signal supplied to the control terminal of the driving transistor and the threshold voltage of the driving transistor and the data signal and The sum of the threshold voltages of the driving transistors writes the internal loss voltage to the first end of the driving transistor to eliminate the influence of the internal loss on the driving transistor, and ensures the uniformity of the brightness of each pixel display.
  • FIG. 1 is a schematic diagram of a 3T1C pixel circuit including a driving transistor DK, a capacitor C, and an electroluminescent element OLED connected to the driving transistor DK;
  • the control terminal G is connected to the data line DATA through the first switching transistor T1.
  • the first terminal S of the driving transistor DK is connected to the reset line SENSE through a second switching transistor T2, and the second end of the driving transistor DK is connected to the first power signal.
  • VDD the first pole of the electroluminescent element OLED is connected to the first end S of the driving transistor DK
  • the second pole of the electroluminescent element OLED is connected to the second power signal VSS
  • the two ends of the capacitor C are respectively connected to the control end of the driving transistor DK G is connected to the first end S.
  • the control terminal G of the first switching transistor T1 receives the first scan signal G1, and the control terminal G of the second switching transistor T2 receives the second scan signal G2.
  • the data line DATA is used to provide a preset signal, and the reset line SENSE is used to provide a reset signal VL.
  • the transistors may be P-type transistors or N-type transistors, and all of the transistors may be enhancement transistors or depletion transistors, and are not particularly limited herein.
  • the 3T1C pixel circuit shown in FIG. 1 is only one of a plurality of pixel circuits corresponding to the pixel circuit drive compensation method.
  • the pixel circuit driving compensation method will be described by taking the 3T1C pixel circuit shown in FIG. 1 and the transistors in the 3T1C pixel circuit as N-type transistors as an example and in conjunction with the operation timing chart of the 3T1C pixel circuit shown in FIG. 2 . . It should be noted that when the transistors are all N-type transistors, each transistor is turned on at a high level, and the low level is turned off, the first power signal VDD is at a high level, and the second power signal VSS is at a low level. The first extreme anode of the electroluminescent element OLED, the second very cathode of the electroluminescent element OLED.
  • the preset signal is supplied to the control terminal G of the driving transistor DK to reset the control terminal G of the driving transistor DK and provide a reset signal.
  • VL to the first end S of the driving transistor DK to reset the first terminal S of the driving transistor DK; wherein the preset signal is the threshold voltage of the reference signal Vref and the driving transistor DK
  • the first scan signal G1 and the second scan signal G2 are both at a high level. As shown in FIG. 3, the first switching transistor T1 and the second switching transistor T2 are both turned on, and the data line DATA is provided.
  • the preset signal is transmitted to the control terminal G of the driving transistor DK through the first switching transistor T1. Since the reset signal is in the reset phase (ie, the t1 phase), the preset signal is the reference signal Vref and the threshold voltage Vth of the driving transistor DK. Therefore, the voltage of the control terminal G of the drive transistor DK becomes Vref+Vth, that is, the voltage of the control terminal G of the drive transistor DK is reset to Vref+Vth.
  • the reset signal VL provided by the reset line SENSE is transmitted to the first terminal S of the driving transistor DK through the second switching transistor T2 to reset the first terminal S of the driving transistor DK.
  • a preset signal is supplied to the control terminal G of the driving transistor DK to write the preset signal to the control terminal G of the driving transistor DK, and Writing an internal loss voltage of the driving transistor DK to the first terminal S of the driving transistor DK;
  • the compensation phase ie, the t2 phase
  • the compensation phase may include a first external compensation phase (ie, a t21 phase) and a second external a compensation phase (ie, stage t22); in the first external compensation phase (ie, stage t21), the preset signal is a sum of a reference signal Vref and a threshold voltage Vth of the driving transistor DK;
  • the preset signal is the sum of the data signal Vdata and the threshold voltage Vth of the drive transistor DK.
  • the first scan signal G1 is at a high level
  • the second scan signal G2 is at a low level.
  • the first switching transistor T1 is turned on, and the second switching transistor T2 is turned off, and the data is turned off.
  • the preset signal provided by the line DATA is transmitted to the control terminal G of the driving transistor DK through the first switching transistor T1, the predetermined signal is written to the control terminal G of the driving transistor DK, and the inside of the driving transistor DK is A loss voltage is written to the first terminal S of the drive transistor DK.
  • the compensation phase (ie, the t2 phase) may include a first external compensation phase (ie, a t21 phase) and a second external compensation phase (ie, a t22 phase).
  • the preset signal is the sum of the reference signal Vref and the threshold voltage Vth of the driving transistor DK, and at this time, the voltage of the control terminal G of the driving transistor DK becomes Vref+Vth. Since the second switching transistor T2 is turned off, the preset signal (Vref+Vth) charges the first terminal S of the driving transistor DK through the driving transistor DK, so that the voltage of the first terminal S of the driving transistor DK is original. The voltage is raised on the basis of a ⁇ V1.
  • the preset signal is the sum of the data signal Vdata and the threshold voltage Vth of the driving transistor DK.
  • the voltage of the control terminal G of the driving crystal DK tube is changed.
  • the preset signal (Vdata+Vth) charges the first terminal S of the driving transistor DK through the driving transistor DK, so that the voltage of the first terminal S of the driving transistor DK is the first time
  • a second lift was carried out, and the voltage of the second lift was ⁇ V2.
  • the internal loss voltage is obtained by the sum of the reference signal Vref supplied to the control terminal G of the drive transistor DK and the threshold voltage Vth of the drive transistor DK and the sum of the data signal Vdata and the threshold voltage Vth of the drive transistor DK ( That is, ⁇ V) is written to the first terminal S of the driving transistor DK to eliminate the influence of internal loss on the driving transistor DK, and the uniformity of display luminance of each pixel is ensured.
  • the preset signal is the sum of the reference signal Vref and the threshold voltage Vth of the driving transistor DK.
  • the preset signal is the data signal Vdata and the threshold voltage Vth of the driving transistor DK.
  • the reference signal Vref and the data signal Vdata are respectively corrected by the threshold voltage Vth of the driving transistor DK to write the threshold voltage Vth of the driving transistor DK to the control terminal G of the driving transistor DK by external compensation to eliminate the driving.
  • the threshold voltage Vth of the transistor DK affects the current of the driving transistor DK, and the uniformity of display brightness of each pixel is ensured.
  • the mobility of the driving transistor DK is The compensation voltage is determined as the internal loss voltage. Based on this, ⁇ V1 and ⁇ V2 respectively raised in the first external compensation phase and the second external compensation phase are the mobility compensation voltage of the driving transistor DK, that is, the migration of the driving transistor DK in the first external compensation phase.
  • the rate compensation voltage is compensated, and when the compensation of the mobility compensation voltage of the driving transistor DK is not completed in the first external compensation phase, the mobility compensation voltage of the driving transistor DK is continuously compensated in the second external compensation phase until the driving is completed.
  • the mobility of the transistor DK compensates for the compensation of the voltage. It should be noted that, when the compensation of the mobility compensation voltage of the driving transistor DK is completed in the first external compensation phase, only the sum of the data signal Vdata and the threshold voltage Vth of the driving transistor DK is converted in the second external compensation phase. .
  • the mobility compensation voltage of the driving transistor DK and the driving transistor DK are The amount of change in the threshold voltage Vth is determined as the internal loss voltage.
  • the mobility compensation voltage is positively correlated with the mobility of the drive transistor DK.
  • ⁇ V1 and ⁇ V2 respectively raised in the first external compensation phase and the second external compensation phase are the amount of change of the mobility compensation voltage of the driving transistor DK and the threshold voltage of the driving transistor DK, that is, The first external compensation phase compensates for the mobility compensation voltage of the driving transistor DK and the threshold voltage of the driving transistor DK, and does not complete the mobility compensation voltage to the driving transistor DK and the driving transistor DK in the first external compensation phase.
  • the amount of change in the mobility compensation voltage of the driving transistor DK and the threshold voltage of the driving transistor DK is continuously compensated in the second external compensation phase until the mobility compensation voltage to the driving transistor DK is completed.
  • the compensation of the amount of change in the threshold voltage of the drive transistor DK is completed in the first external compensation phase, only the data signal Vdata and the driving are performed in the second external compensation phase. The sum of the threshold voltages Vth of the transistors DK is converted.
  • the driving transistor DK is turned on under the action of the data signal Vdata and the threshold voltage Vth of the driving transistor DK and the internal loss voltage, and is The driving current is outputted by the first power supply signal VDD of the pixel circuit to drive the electroluminescent element to emit light.
  • the first scan signal G1 and the second scan signal G2 are both low level, as shown in FIG.
  • Vgs is the voltage difference between the gate and the source of the drive transistor DK
  • Vg is the gate voltage of the drive transistor DK
  • Vs is the source voltage of the drive transistor DK
  • ⁇ n is the mobility of the driving transistor DK
  • C ox is the capacitance per unit area of the gate oxide of the driving transistor DK
  • the aspect ratio of the driving transistor DK, Voled is the voltage of the electroluminescent element.
  • the driving current of the driving transistor DK is independent of the threshold voltage Vth of the driving transistor DK, and since ⁇ V is the compensated internal loss voltage, internal loss is also avoided for the driving transistor DK.
  • the current effect ensures the uniformity of the brightness of each pixel display.
  • the drive current has a larger current drive capability.
  • the threshold voltage Vth of the driving crystal for correcting the reference voltage and the data voltage is calculated by the sensing phase (not shown in FIG. 2) of the pixel circuit, specifically, the sensing by the pixel circuit.
  • the manner in which the threshold voltage Vth of the driving transistor DK is calculated in stages includes three. among them:
  • Method 1 in the sensing phase of the pixel circuit (not shown in FIG. 2), the current signal flowing through the driving transistor DK is extracted through the sensing line of the pixel circuit, and based on the flow through the driving transistor DK
  • the current signal uses an external electrical compensation circuit to calculate the threshold voltage Vth of the drive transistor DK.
  • the reset line SENSE is used as a sensing line, and a current signal flowing through the driving transistor DK is extracted through the reset line SENSE, and the extracted stream is extracted.
  • the current signal via the drive transistor DK is transmitted to an external electrical compensation circuit that calculates the threshold voltage Vth of the drive transistor DK based on the current signal of the drive transistor DK.
  • the arrow shown in FIG. 6 is the direction in which the current signal flowing through the driving transistor DK is extracted.
  • Method 2 in the sensing phase of the pixel circuit (not shown in FIG. 2), extracting a current signal flowing through the electroluminescent element through the sensing line of the pixel circuit, and based on flowing through the electroluminescent element
  • the current signal uses an external electrical compensation circuit to calculate the threshold voltage Vth of the drive transistor DK.
  • the reset line SENSE is used as a sensing line, and a current signal flowing through the electroluminescent element is extracted through the reset line SENSE, and the extracted signal is extracted.
  • the current signal flowing through the electroluminescent element is transmitted to an external electrical compensation circuit that calculates the threshold voltage Vth of the drive transistor DK based on the current signal flowing through the electroluminescent element.
  • the arrow shown in Figure 7 is the direction in which the current signal flowing through the electroluminescent element is extracted.
  • the brightness value of the electroluminescent element is obtained by the external optical compensation circuit, and the brightness value is calculated according to the brightness value of the electroluminescent element.
  • the threshold voltage Vth of the driving transistor DK is driven.
  • the electroluminescent element can be photographed by a CCD camera in the external optical compensation circuit 1, and the photographed image is analyzed to obtain the luminance value of the electroluminescent element, and then according to the brightness value.
  • the threshold voltage Vth of the driving transistor DK is calculated in conjunction with the luminance-grayscale model of the electroluminescent element.
  • the present exemplary embodiment also provides a pixel circuit driving method for providing a preset signal to a control terminal of a driving transistor in a pixel circuit.
  • the signal generating method may include step S810, and step S820, wherein:
  • Step S810 providing a reference signal and a data signal.
  • Step S820 generating the preset signal according to the reference signal, the data signal, and a threshold voltage of the driving transistor, wherein, in a first external compensation phase of the pixel circuit, the preset signal is the And a sum of the threshold voltage of the driving transistor and the reference signal, in a second external compensation phase of the pixel circuit, the preset signal being a sum of a threshold voltage of the driving transistor and the data signal.
  • the reference signal and the data signal may be respectively corrected according to a threshold voltage of the driving transistor, so that the corrected voltage of the reference signal is the reference signal and the a sum of threshold voltages, the corrected voltage of the data signal is the sum of the data signal and the threshold voltage, and then the corrected reference signal or the corrected data signal may be gated according to each working phase of the pixel circuit To generate a preset signal. That is, the corrected reference signal is gated in the first external compensation phase, and the corrected data signal is gated in the second external compensation phase.
  • the threshold voltage is obtained by acquiring a threshold voltage of the driving transistor from an external compensation circuit during an induction phase of the pixel circuit.
  • the external compensation circuit can include an external electrical compensation circuit and an external optical compensation circuit. Since the method of obtaining the threshold voltage of the driving transistor by the external compensation circuit has been described in detail in the above-described pixel circuit driving compensation method, it will not be described herein.
  • the preset signal is generated according to the reference signal, the data signal, and a threshold voltage of the driving transistor, wherein, in a first external compensation phase of the pixel circuit, the preset signal is a sum of a threshold voltage of the driving transistor and the reference signal, in a second external compensation phase of the pixel circuit, the preset signal being a sum of a threshold voltage of the driving transistor and the data signal.
  • the preset signal is the sum of the reference signal and the threshold voltage of the driving transistor in the first external compensation phase
  • the preset signal is the sum of the threshold voltage of the data signal and the driving transistor, that is, The threshold voltages of the driving transistors respectively correct the reference signal and the data signal to write the threshold voltage of the driving transistor to the control terminal of the driving transistor by external compensation, thereby eliminating the influence of the threshold voltage of the driving transistor on the current of the driving transistor, The uniformity of the display brightness of each pixel is ensured; on the other hand, in the first external compensation phase, the voltage of the control terminal of the driving transistor maintains the sum of the reference signal and the threshold voltage of the driving transistor for a period of time, and the voltage of the first end of the driving transistor is driven.
  • the first rise is performed.
  • the voltage of the control terminal of the driving transistor is changed from the sum of the reference signal and the threshold voltage of the driving transistor to the sum of the threshold voltage of the data signal and the driving transistor, which will drive the transistor.
  • the voltage at the first end is raised for the first time
  • the voltage of the first end of the driving transistor is raised twice in the whole compensation phase, which increases the internal compensation range and avoids the problem of insufficient charging time of the data signal;
  • the internal loss voltage is written to the first end of the driving transistor by the sum of the reference signal supplied to the control terminal of the driving transistor and the threshold voltage of the driving transistor and the sum of the threshold voltage of the data signal and the driving transistor In order to eliminate the influence of internal loss on the current of the driving transistor, the uniformity of display brightness of each pixel is ensured.
  • the exemplary embodiment also provides a pixel circuit driving device for providing a preset signal to a control terminal of a driving transistor in a pixel circuit.
  • the pixel circuit driving device 900 may include: providing a module 901 and a generating module 902, wherein:
  • the generating module 902 is configured to generate the preset signal according to the reference signal, the data signal, and a threshold voltage of the driving transistor, where the preset is in a first external compensation phase of the pixel circuit
  • the signal is a sum of a threshold voltage of the driving transistor and the reference signal, and in a second external compensation phase of the pixel circuit, the preset signal is a sum of a threshold voltage of the driving transistor and the data signal.
  • the present exemplary embodiment also provides a display device including the above-described pixel circuit driving device.
  • the display device can keep the display brightness of the electroluminescent elements driven by the respective pixel circuits consistent, thereby avoiding the occurrence of cross-color and splash screen phenomenon, thereby improving the display image quality.
  • the display device may include any product or component having a display function, such as a mobile phone, a tablet computer, a television, a notebook computer, a digital photo frame, a navigator, and the like.
  • modules or units of equipment for action execution are mentioned in the detailed description above, such division is not mandatory. Indeed, in accordance with embodiments of the present disclosure, the features and functions of two or more modules or units described above may be embodied in one module or unit. Conversely, the features and functions of one of the modules or units described above may be further divided into multiple modules or units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

一种像素电路驱动补偿方法、像素电路驱动方法及装置(900)、显示装置。像素电路驱动补偿方法包括:在像素电路的补偿阶段(t2),提供一预设信号至驱动晶体管(DK)的控制端(G),以将预设信号写入驱动晶体管(DK)的控制端(G),并将驱动晶体管(DK)的内部损耗电压写入驱动晶体管(DK)的第一端(S);其中,补偿阶段(t2)包括第一外部补偿阶段(t21)和第二外部补偿阶段(t22);在第一外部补偿阶段(t21),预设信号为参考信号(Vref)与驱动晶体管(DK)的阈值电压(Vth)之和;在第二外部补偿阶段(t22),预设信号为数据信号(Vdata)与驱动晶体管(DK)的阈值电压(Vth)之和。可消除阈值电压(Vth)以及内部损耗对驱动晶体管(DK)的电流影响,保证了各像素显示亮度的均一性;同时增大了内部补偿范围,避免了数据信号(Vdata)充电时间不足的问题。

Description

电路驱动补偿方法、电路驱动方法及装置、显示装置
本公开要求申请日为2017年12月13日、申请号为CN201711331651.9、发明创造名称为《电路驱动补偿方法、电路驱动方法及装置、显示装置》的发明专利申请的优先权。
技术领域
本公开涉及显示技术领域,尤其涉及一种像素电路驱动补偿方法、一种像素电路驱动方法及装置、显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)作为一种电流型发光器件,因其所具有的自发光、快速响应、宽视角和可制作在柔性衬底上等特点而越来越多地被应用于高性能显示领域当中。OLED显示装置按照驱动方式的不同可分为PMOLED(Passive Matrix Driving OLED,无源矩阵驱动有机发光二极管)和AMOLED(Active Matrix Driving OLED,有源矩阵驱动有机发光二极管)两种。由于AMOLED显示器具有低制造成本、高应答速度、省电、可用于便携式设备的直流驱动、工作温度范围大等优点,AMOLED得到了显示技术开发商日益广泛的关注。
在现有的AMOLED显示面板中,每个OLED均依靠阵列基板上与各OLED对应的像素电路驱动其发光实现显示。
然而,在像素电路中,驱动晶体管的迁移率、阈值电压、导线上的电阻等因素可能使驱动各OLED的驱动电流不一致,进而导致显示面板显示亮度不均匀。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种像素电路驱动补偿方法、一种像素电路驱动方法及装置、显示装置,进而至少在一定程度上克服由于相关技术的限制和缺陷而导致的一个或者多个问题。
根据本公开的一个方面,提供一种像素电路驱动补偿方法,所述像素电路包括驱动晶体管,包括:
在所述像素电路的补偿阶段,提供一预设信号至所述驱动晶体管的控制端,以将所述预设信号写入所述驱动晶体管的控制端,并将所述驱动晶体管的内部损耗电压写入所述驱动晶体管的第一端;
其中:所述补偿阶段包括第一外部补偿阶段和第二外部补偿阶段;
在所述第一外部补偿阶段,所述预设信号为参考信号与所述驱动晶体管的阈值电压之和;
在所述第二外部补偿阶段,所述预设信号为数据信号与所述驱动晶体管的阈值电压之和。
在本公开的一种示例性实施例中,所述方法还包括:
在所述像素电路的复位阶段,提供所述预设信号至所述驱动晶体管的控制端,以对所述驱动晶体管的控制端进行复位,并提供一复位信号至所述驱动晶体管的第一端,以对所述驱动晶体管的第一端进行复位;其中,所述预设信号为所述参考信号与所述驱动晶体管的阈值电压之和。
在本公开的一种示例性实施例中,所述方法还包括:
在所述像素电路的发光阶段,所述驱动晶体管在所述数据信号和所述驱动晶体管的阈值电压以及所述内部损耗电压的作用下导通,并在所述像素电路的第一电源信号的作用下输出驱动电流,以驱动电致发光元件进行发光。
在本公开的一种示例性实施例中,所述方法还包括:
在所述像素电路的感应阶段,通过所述像素电路的感应线抽取流经所述驱动晶体管的电流信号,并基于流经所述驱动晶体管的电流信号利用一外部电学补偿电路计算所述驱动晶体管的阈值电压。
在本公开的一种示例性实施例中,所述方法还包括:
在所述像素电路的感应阶段,通过所述像素电路的感应线抽取流经电致发光元件的电流信号,并基于流经所述电致发光元件的电流信号利用一外部电学补偿电路计算所述驱动晶体管的阈值电压。
在本公开的一种示例性实施例中,所述方法还包括:
在所述像素电路的感应阶段,通过所述外部光学补偿电路获取电致发光元件的亮度值,并根据所述电致发光元件的亮度值计算所述驱动晶体管的阈值电压。
在本公开的一种示例性实施例中,所述驱动晶体管的阈值电压在所述第一外部补偿阶段和所述第二外部补偿阶段之间保持不变时,将所述驱动晶体管的迁移率补偿电压确定为所述内部损耗电压。
在本公开的一种示例性实施例中,所述驱动晶体管的阈值电压在所述第一外部补偿阶段和所述第二外部补偿阶段之间发生变化时,将所述驱动晶体管的迁移率补偿电压和所述驱动晶体管的阈值电压的变化量确定为所述内部损耗电压。
根据本公开的一个方面,提供一种像素电路驱动方法,用于为像素电路中的驱动晶体管的控制端提供预设信号,包括:
提供一参考信号和一数据信号;
根据所述参考信号、所述数据信号以及所述驱动晶体管的阈值电压生成所述预设信 号,其中,在所述像素电路的第一外部补偿阶段,所述预设信号为所述驱动晶体管的阈值电压和所述参考信号之和,在所述像素电路的第二外部补偿阶段,所述预设信号为所述驱动晶体管的阈值电压和所述数据信号之和。
在本公开的一种示例性实施例中,所述方法还包括:
在所述像素电路的感应阶段,从外部补偿电路中获取所述驱动晶体管的阈值电压。
在本公开的一种示例性实施例中,所述外部补偿电路包括外部电学补偿电路以及外部光学补偿电路。
根据本公开的一个方面,提供一种像素电路驱动装置,用于为像素电路中的驱动晶体管的控制端提供预设信号,包括:
提供模块,用于提供一参考信号和一数据信号;
生成模块,用于根据所述参考信号、所述数据信号以及所述驱动晶体管的阈值电压生成所述预设信号,其中,在所述像素电路的第一外部补偿阶段,所述预设信号为所述驱动晶体管的阈值电压和所述参考信号之和,在所述像素电路的第二外部补偿阶段,所述预设信号为所述驱动晶体管的阈值电压和所述数据信号之和。
根据本公开的一个方面,提供一种显示装置,包括上述任意一项所述的像素电路驱动装置。
本公开某些示例性实施例提供的像素电路驱动补偿方法、一种像素电路驱动方法及装置、显示装置,该像素电路驱动补偿方法在所述像素电路的补偿阶段,提供一预设信号至所述驱动晶体管的控制端,其中,补偿阶段包括第一外部补偿阶段和第二外部补偿阶段,在所述第一外部补偿阶段,所述预设信号为参考信号与所述驱动晶体管的阈值电压之和;在所述第二外部补偿阶段,所述预设信号为数据信号与所述驱动晶体管的阈值电压之和。一方面,由于在第一外部补偿阶段,预设信号为参考信号与驱动晶体管的阈值电压之和,在第二外部补偿阶段,预设信号为数据信号与驱动晶体管的阈值电压之和,即通过驱动晶体管的阈值电压分别对参考信号和数据信号进行修正,以通过外部补偿的方式将驱动晶体管的阈值电压写入驱动晶体管的控制端,进而消除驱动晶体管的阈值电压对驱动晶体管的电流影响,保证了各像素显示亮度的均一性;另一方面,在第一外部补偿阶段,驱动晶体管的控制端的电压保持参考信号与驱动晶体管的阈值电压之和一段时间,将驱动晶体管的第一端的电压进行了第一次抬升,在第二外部补偿阶段到来时,驱动晶体管的控制端的电压由参考信号与驱动晶体管的阈值电压之和变为数据信号与驱动晶体管的阈值电压之和,将驱动晶体管的第一端的电压在第一次抬升的基础上进行了第二次抬升,显然,在整个补偿阶段,对驱动晶体管的第一端的电压进行了两次抬升,增大了内部补偿范围,同时也避免了数据信号充电时间不足的问题;又一方面,在补偿阶段,通过提供至驱动晶体管的控制端的参考信号与驱动晶体管的阈值电压之和以及数据信号与驱动晶体管的阈值电压之和,将内部损耗电压写入驱动晶体管的第一端,以消除内部损耗对驱动晶体管的电流影响,保证了各像素显示亮度的均一性。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
附图说明
通过参照附图来详细描述其示例性实施例,本公开的上述和其它特征及优点将变得更加明显。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1为本公开一示例性实施例中提供的一种3T1C像素电路的示意图;
图2为本公开一示例性实施例中提供的3T1C像素电路的工作时序图;
图3为本公开一示例性实施例中提供的3T1C像素电路在复位阶段的等效电路图;
图4为本公开一示例性实施例中提供的3T1C像素电路在补偿阶段的等效电路图;
图5为本公开一示例性实施例中提供的3T1C像素电路在发光阶段的等效电路图;
图6为本公开一示例性实施例中提供的抽取流经驱动晶体管的电流信号的示意图;
图7为本公开一示例性实施例中提供的抽取流经电致发光元件的电流信号的示意图;
图8为本公开一示例性实施例中提供的通过所述外部光学补偿电路获取电致发光元件的亮度值的示意图;
图9为本公开一示例性实施例中提供的一种像素电路驱动装置的框图;
附图标记说明:
T1:第一开关晶体管;
T2:第二开关晶体管;
DK:驱动晶体管;
C:电容;
G1:第一扫描信号;
G2:第二扫描信号;
DATA:数据线;
SENSE:复位线;
VDD:第一电源信号;
VSS:第二电源信号;
1:外部光学补偿电路;
t1:复位阶段;
t2:补偿阶段;
t3:发光阶段;
t21:第一外部补偿阶段;
t22:第二外部补偿阶段;
G;驱动晶体管的控制端;
S:驱动晶体管的第一端;
△V1;驱动晶体管的第一端第一次抬升的电压;
△V2;驱动晶体管的第一端第二次抬升的电压;
△V:驱动晶体管的第一端在整个补偿阶段总共抬升的电压;
Vref:参考信号;
Vth:阈值电压;
Vdata:数据信号;
VL:复位信号;
Voled:电致发光元件的电压。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的实施例;相反,提供这些实施例使得本公开将全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有所述特定细节中的一个或更多,或者可以采用其它的方法、组元、材料、装置、步骤等。在其它情况下,不详细示出或描述公知技术方案以避免模糊本公开的各方面。
此外,附图仅为本公开的示意性图解,并非一定是按照比例绘制。图中相同的附图标记标识相同或相似的部分,因而将省略对它们的重复描述。
本示例实施方式中提供了一种像素电路驱动补偿方法,所述像素电路包括驱动晶体管,该驱动晶体管可以为N型晶体管或P型晶体管。该像素电路补偿方法可以包括:在所述像素电路的补偿阶段,提供一预设信号至所述驱动晶体管的控制端,以将所述预设信号写入所述驱动晶体管的控制端,并将所述驱动晶体管的内部损耗电压写入所述驱动晶体管的第一端;其中:所述补偿阶段包括第一外部补偿阶段和第二外部补偿阶段;在所述第一外部补偿阶段,所述预设信号为参考信号与所述驱动晶体管的阈值电压之和;在所述第二外部补偿阶段,所述预设信号为数据信号与所述驱动晶体管的阈值电压之和。
本公开一种示例性实施方式所提供的像素电路驱动补偿方法,一方面,由于在第一外部补偿阶段,预设信号为参考信号与驱动晶体管的阈值电压之和,在第二外部补偿阶段,预设信号为数据信号与驱动晶体管的阈值电压之和,即通过驱动晶体管的阈值电压分别对参考信号和数据信号进行修正,以通过外部补偿的方式将驱动晶体管的阈值电压写入驱动晶体管的控制端,进而消除驱动晶体管的阈值电压对驱动晶体管的 电流影响,保证了各像素显示亮度的均一性;另一方面,在第一外部补偿阶段,驱动晶体管的控制端的电压保持参考信号与驱动晶体管的阈值电压之和一段时间,将驱动晶体管的第一端的电压进行了第一次抬升,在第二外部补偿阶段到来时,驱动晶体管的控制端的电压由参考信号与驱动晶体管的阈值电压之和变为数据信号与驱动晶体管的阈值电压之和,将驱动晶体管的第一端的电压在第一次抬升的基础上进行了第二次抬升,显然,在整个补偿阶段,对驱动晶体管的第一端的电压进行了两次抬升,增大了内部补偿范围,同时也避免了数据信号充电时间不足的问题;又一方面,在补偿阶段,通过提供至驱动晶体管的控制端的参考信号与驱动晶体管的阈值电压之和以及数据信号与驱动晶体管的阈值电压之和,将内部损耗电压写入驱动晶体管的第一端,以消除内部损耗对驱动晶体管的电流影响,保证了各像素显示亮度的均一性。
图1为与像素电路驱动补偿方法对应的一种3T1C像素电路的示意图,该3T1C像素电路包括:驱动晶体管DK、电容C以及一连接该驱动晶体管DK的电致发光元件OLED;该驱动晶体管DK的控制端G通过第一开关晶体管T1与数据线DATA连接,该驱动晶体管DK的第一端S通过一第二开关晶体管T2与复位线SENSE连接,该驱动晶体管DK的第二端连接第一电源信号VDD,电致发光元件OLED的第一极连接驱动晶体管DK的第一端S,电致发光元件OLED的第二极连接第二电源信号VSS,电容C的两端分别与驱动晶体管DK的控制端G和第一端S连接。其中,第一开关晶体管T1的控制端G接收第一扫描信号G1,第二开关晶体管T2的控制端G接收第二扫描信号G2。所述数据线DATA用于提供预设信号,所述复位线SENSE用于提供复位信号VL。
需要说明的是,在图1中的3T1C像素电路中,所述晶体管可以均为P型晶体管或N型晶体管,所有晶体管可以均为增强型晶体管或耗尽型晶体管,此处不做特殊限定,此外,图1中示出的3T1C像素电路仅为与像素电路驱动补偿方法对应的多种像素电路中的一种。
下面,以图1中示出的3T1C像素电路,且3T1C像素电路中的晶体管均为N型晶体管为例并结合图2中所示的3T1C像素电路的工作时序图对像素电路驱动补偿方法进行说明。需要说明的是,在晶体管均为N型晶体管时,各晶体管均为高电平导通,低电平关断,第一电源信号VDD为高电平,第二电源信号VSS为低电平,电致发光元件OLED的第一极为阳极,电致发光元件OLED的第二极为阴极。
在所述像素电路的复位阶段(即t1阶段),提供所述预设信号至所述驱动晶体管DK的控制端G,以对所述驱动晶体管DK的控制端G进行复位,并提供一复位信号VL至所述驱动晶体管DK的第一端S,以对所述驱动晶体管DK的第一端S进行复位;其中,所述预设信号为所述参考信号Vref与所述驱动晶体管DK的阈值电压Vth之和。在本示例性实施例中,第一扫描信号G1和第二扫描信号G2均为高电平,如图3所示,第一开关晶体管T1和第二开关晶体管T2均导通,数据线DATA提供的预设信号通过第一开关晶体管T1传输至驱动晶体管DK的控制端G,由于在复位阶段(即t1阶段), 所述预设信号为参考信号Vref与所述驱动晶体管DK的阈值电压Vth之和,因此,驱动晶体管DK的控制端G的电压变为Vref+Vth,即将驱动晶体管DK的控制端G的电压复位为Vref+Vth。复位线SENSE提供的复位信号VL通过第二开关晶体管T2传输至驱动晶体管DK的第一端S,以对驱动晶体管DK的第一端S进行复位。由上可知,通过对驱动晶体管DK的控制端G和第一端S进行复位,可以消除上一帧信号的影响。
在所述像素电路的补偿阶段(即t2阶段),提供一预设信号至所述驱动晶体管DK的控制端G,以将所述预设信号写入所述驱动晶体管DK的控制端G,并将所述驱动晶体管DK的内部损耗电压写入所述驱动晶体管DK的第一端S;其中:所述补偿阶段(即t2阶段)可以包括第一外部补偿阶段(即t21阶段)和第二外部补偿阶段(即t22阶段);在所述第一外部补偿阶段(即t21阶段),所述预设信号为参考信号Vref与所述驱动晶体管DK的阈值电压Vth之和;在所述第二外部补偿阶段(即t22阶段),所述预设信号为数据信号Vdata与所述驱动晶体管DK的阈值电压Vth之和。在本示例性实施例中,第一扫描信号G1为高电平,第二扫描信号G2为低电平,如图4所示,第一开关晶体管T1导通,第二开关晶体管T2关闭,数据线DATA提供的预设信号通过第一开关晶体管T1传输至驱动晶体管DK的控制端G,将所述预设信号写入所述驱动晶体管DK的控制端G,并将所述驱动晶体管DK的内部损耗电压写入所述驱动晶体管DK的第一端S。
具体的,补偿阶段(即t2阶段)可以包括第一外部补偿阶段(即t21阶段)和第二外部补偿阶段(即t22阶段)。
在所述第一外部补偿阶段(即t21阶段),所述预设信号为参考信号Vref与所述驱动晶体管DK的阈值电压Vth之和,此时,驱动晶体管DK的控制端G的电压变为Vref+Vth。由于第二开关晶体管T2关闭,预设信号(Vref+Vth)通过驱动晶体管DK对所述驱动晶体管的DK的第一端S进行充电,使得所述驱动晶体管DK的第一端S的电压在原有的电压的基础上抬升了一个△V1。
在所述第二外部补偿阶段(即t22阶段),所述预设信号为数据信号Vdata与所述驱动晶体管DK的阈值电压Vth之和,此时,驱动晶体DK管的控制端G的电压变为Vdata+Vth。由于第二开关晶体管T2关闭,预设信号(Vdata+Vth)通过驱动晶体管DK对所述驱动晶体管的DK的第一端S进行充电,使得驱动晶体管DK的第一端S的电压在第一次抬升的基础上进行了第二次抬升,第二次抬升的电压为△V2。
显然,在整个补偿阶段,对驱动晶体管DK的第一端S的电压进行了两次抬升,即在整个补偿阶段,驱动晶体管DK的第一端S的总共抬升的电压△V=△V1+△V2,增大了内部补偿范围,同时也避免了数据信号Vdata充电时间不足的问题。此外,在补偿阶段,通过提供至驱动晶体管DK的控制端G的参考信号Vref与驱动晶体管DK的阈值电压Vth之和以及数据信号Vdata与驱动晶体管DK的阈值电压Vth之和,将内部损耗电压(即△V)写入驱动晶体管DK的第一端S,以消除内部损耗对驱动晶体管 DK的电流影响,保证了各像素显示亮度的均一性。另外,在第一外部补偿阶段,预设信号为参考信号Vref与驱动晶体管DK的阈值电压Vth之和,在第二外部补偿阶段,预设信号为数据信号Vdata与驱动晶体管DK的阈值电压Vth之和,即通过驱动晶体管DK的阈值电压Vth分别对参考信号Vref和数据信号Vdata进行修正,以通过外部补偿的方式将驱动晶体管DK的阈值电压Vth写入驱动晶体管DK的控制端G,以消除驱动晶体管DK的阈值电压Vth对驱动晶体管DK的电流影响,保证了各像素显示亮度的均一性。
需要说明的是,驱动晶体管DK的第一端S的在两次外部补偿中总共抬升的电压△V=△V1+△V2,即为内部损耗电压。
在本示例性实施例中,在所述驱动晶体管DK的阈值电压Vth在所述第一外部补偿阶段和所述第二外部补偿阶段之间保持不变时,将所述驱动晶体管DK的迁移率补偿电压确定为所述内部损耗电压。基于此,在第一外部补偿阶段和第二外部补偿阶段分别抬升的△V1和△V2均为所述驱动晶体管DK的迁移率补偿电压,即在第一外部补偿阶段,对驱动晶体管DK的迁移率补偿电压进行补偿,并在第一外部补偿阶段没有完成对驱动晶体管DK的迁移率补偿电压的补偿时,在第二外部补偿阶段继续补偿驱动晶体管的DK的迁移率补偿电压,直至完成对驱动晶体管DK的迁移率补偿电压的补偿。需要说明的是,在第一外部补偿阶段完成对驱动晶体管DK的迁移率补偿电压的补偿时,在第二外部补偿阶段仅对数据信号Vdata与所述驱动晶体管DK的阈值电压Vth之和进行转化。
在所述驱动晶体管DK的阈值电压Vth在所述第一外部补偿阶段和所述第二外部补偿阶段之间发生变化时,将所述驱动晶体管DK的迁移率补偿电压和所述驱动晶体管DK的阈值电压Vth的变化量确定为所述内部损耗电压。所述迁移率补偿电压与所述驱动晶体管DK的迁移率成正相关。基于此,在第一外部补偿阶段和第二外部补偿阶段分别抬升的△V1和△V2均为所述驱动晶体管DK的迁移率补偿电压和所述驱动晶体管DK的阈值电压的变化量,即在第一外部补偿阶段,对驱动晶体管DK的迁移率补偿电压和驱动晶体管DK的阈值电压的变化量进行补偿,并在第一外部补偿阶段没有完成对驱动晶体管DK的迁移率补偿电压和驱动晶体管DK的阈值电压的变化量的补偿时,在第二外部补偿阶段继续补偿驱动晶体管的DK的迁移率补偿电压和驱动晶体管DK的阈值电压的变化量,直至完成对驱动晶体管DK的迁移率补偿电压和驱动晶体管DK的阈值电压的变化量的补偿。需要说明的是,在第一外部补偿阶段完成对驱动晶体管DK的迁移率补偿电压和驱动晶体管DK的阈值电压的变化量的补偿时,在第二外部补偿阶段仅对数据信号Vdata与所述驱动晶体管DK的阈值电压Vth之和进行转化。
在所述像素电路的发光阶段(即t3阶段),所述驱动晶体管DK在所述数据信号Vdata和所述驱动晶体管DK的阈值电压Vth以及所述内部损耗电压的作用下导通,并在所述像素电路的第一电源信号VDD的作用下输出驱动电流,以驱动电致发光元件进 行发光。在本示例性实施例中,第一扫描信号G1和第二扫描信号G2均为低电平,如图5所示,由于第一开关晶体管T1和第二开关晶体管T2均关闭,此时,驱动晶体管DK的第一端S的电压从V L+△V变为VSS+Voled,即驱动晶体管DK的第一端S的电压变化了VSS+Voled-V L-△V,由于电容两边的电压不能突变,因此在驱动晶体管DK的第一端S的电压变化了VSS+Voled-V L-△V时,驱动晶体管DK的控制端G的电压也将变化VSS+Voled-V L-△V,此时,驱动晶体管DK的控制端G的电压为Vdata+Vth+VSS+Voled-V L-△V。
在此基础上,根据驱动晶体管DK的驱动电流的计算公式:
Figure PCTCN2018118734-appb-000001
其中,Vgs为驱动晶体管DK的栅极和源极之间的电压差、Vg为驱动晶体管DK的栅极电压、Vs为驱动晶体管DK的源极电压。μ n为驱动晶体管DK的迁移率,C ox为驱动晶体管DK的栅氧的单位面积电容,
Figure PCTCN2018118734-appb-000002
驱动晶体管DK的宽长比,Voled为电致发光元件的电压。
由上述驱动晶体管DK驱动电流的计算公式可知,驱动晶体管DK的驱动电流与驱动晶体管DK的阈值电压Vth无关,又由于△V为补偿的内部损耗电压,因此,也避免了内部损耗对驱动晶体管DK的电流影响,保证了各像素显示亮度的均一性。此外,由于对内部损耗和阈值电压Vth均进行补偿,因此,使得驱动电流有更大的电流驱动能力。
在补偿阶段,对参考电压和数据电压进行修正的驱动晶体的阈值电压Vth是通过所述像素电路的感应阶段(图2中未示出)计算得到的,具体的,通过所述像素电路的感应阶段计算驱动晶体管DK的阈值电压Vth的方式包括三种。其中:
方式一、在所述像素电路的感应阶段(图2中未示出),通过所述像素电路的感应线抽取流经所述驱动晶体管DK的电流信号,并基于流经所述驱动晶体管DK的电流信号利用一外部电学补偿电路计算所述驱动晶体管DK的阈值电压Vth。在本示例性实施例中,在感应阶段,如图6所示,将所述复位线SENSE作为感应线,通过所述复位线SENSE抽取流经驱动晶体管DK的电流信号,并将抽取到的流经驱动晶体管DK的电流信号传输至外部电学补偿电路,该外部电学补偿电路根据驱动晶体管DK的电流信号计算驱动晶体管DK的阈值电压Vth。图6所示的箭头为抽取流经驱动晶体管DK的电流信号的方向。
方式二、在所述像素电路的感应阶段(图2中未示出),通过所述像素电路的感应线抽取流经电致发光元件的电流信号,并基于流经所述电致发光元件的电流信号利 用一外部电学补偿电路计算所述驱动晶体管DK的阈值电压Vth。在本示例性实施例中,在感应阶段,如图7所示,将所述复位线SENSE作为感应线,通过所述复位线SENSE抽取流经电致发光元件的电流信号,并将抽取到的流经电致发光元件的电流信号传输至外部电学补偿电路,该外部电学补偿电路根据流经电致发光元件的电流信号计算驱动晶体管DK的阈值电压Vth。图7所示的箭头为抽取流经电致发光元件的电流信号的方向。
方式三、在所述像素电路的感应阶段(图2中未示出),通过所述外部光学补偿电路获取电致发光元件的亮度值,并根据所述电致发光元件的亮度值计算所述驱动晶体管DK的阈值电压Vth。在本示例性实施例中,如图8所示,可以通过外部光学补偿电路1中的CCD照相机对电致发光元件进行拍照,分析拍照图像以获取电致发光元件的亮度值,然后根据亮度值并结合电致发光元件的亮度-灰阶模型计算驱动晶体管DK的阈值电压Vth。
本示例性实施例方式还提供了一种像素电路驱动方法,用于为像素电路中的驱动晶体管的控制端提供预设信号。该信号生成方法可以包括步骤S810、以及步骤S820,其中:
步骤S810、提供一参考信号和一数据信号。
步骤S820、根据所述参考信号、所述数据信号以及所述驱动晶体管的阈值电压生成所述预设信号,其中,在所述像素电路的第一外部补偿阶段,所述预设信号为所述驱动晶体管的阈值电压和所述参考信号之和,在所述像素电路的第二外部补偿阶段,所述预设信号为所述驱动晶体管的阈值电压和所述数据信号之和。
在本示例性实施例中,可以根据所述驱动晶体管的阈值电压分别对所述参考信号和所述数据信号进行修正,以使修正后的所述参考信号的电压为所述参考信号与所述阈值电压之和,修正后的所述数据信号的电压为所述数据信号与所述阈值电压之和,然后,可以根据像素电路的各工作阶段选通修正后的参考信号或修正后的数据信号,以生成预设信号。即,在第一外部补偿阶段选通修正后的参考信号,在第二外部补偿阶段选通修正后的数据信号。
所述阈值电压的获取方法为:在所述像素电路的感应阶段,从外部补偿电路中获取所述驱动晶体管的阈值电压。所述外部补偿电路可以包括外部电学补偿电路以及外部光学补偿电路。由于通过外部补偿电路获取驱动晶体管的阈值电压的方法已经在上述像素电路驱动补偿方法中进行了详细的说明,因此此处不再赘述。
综上所述,根据所述参考信号、所述数据信号以及所述驱动晶体管的阈值电压生成所述预设信号,其中,在所述像素电路的第一外部补偿阶段,所述预设信号为所述驱动晶体管的阈值电压和所述参考信号之和,在所述像素电路的第二外部补偿阶段,所述预设信号为所述驱动晶体管的阈值电压和所述数据信号之和。一方面,由于在第一外部补偿阶段,预设信号为参考信号与驱动晶体管的阈值电压之和,在第二外部补 偿阶段,预设信号为数据信号与驱动晶体管的阈值电压之和,即通过驱动晶体管的阈值电压分别对参考信号和数据信号进行修正,以通过外部补偿的方式将驱动晶体管的阈值电压写入驱动晶体管的控制端,从而消除驱动晶体管的阈值电压对驱动晶体管的电流的影响,保证了各像素显示亮度的均一性;另一方面,在第一外部补偿阶段,驱动晶体管的控制端的电压保持参考信号与驱动晶体管的阈值电压之和一段时间,将驱动晶体管的第一端的电压进行了第一次抬升,在第二外部补偿阶段到来时,驱动晶体管的控制端的电压由参考信号与驱动晶体管的阈值电压之和变为数据信号与驱动晶体管的阈值电压之和,将驱动晶体管的第一端的电压在第一次抬升的基础上进行了第二次抬升,因此,在整个补偿阶段,对驱动晶体管的第一端的电压进行了两次抬升,增大了内部补偿范围,同时也避免了数据信号充电时间不足的问题;又一方面,在补偿阶段,通过提供至驱动晶体管的控制端的参考信号与驱动晶体管的阈值电压之和以及数据信号与驱动晶体管的阈值电压之和,将内部损耗电压写入驱动晶体管的第一端,以消除内部损耗对驱动晶体管的电流影响,保证了各像素显示亮度的均一性。
本示例性实施例方式还提供了一种像素电路驱动装置,用于为像素电路中的驱动晶体管的控制端提供预设信号,参照图9所示,该像素电路驱动装置900可以包括:提供模块901以及生成模块902,其中:
提供模块901,可以用于提供一参考信号和一数据信号;
生成模块902,可以用于根据所述参考信号、所述数据信号以及所述驱动晶体管的阈值电压生成所述预设信号,其中,在所述像素电路的第一外部补偿阶段,所述预设信号为所述驱动晶体管的阈值电压和所述参考信号之和,在所述像素电路的第二外部补偿阶段,所述预设信号为所述驱动晶体管的阈值电压和所述数据信号之和。
需要说明的是,所述像素电路驱动装置的各模块已在对应的像素电路驱动方法中进行了详细的描述,因此,此处不作赘述。
本示例实施方式还提供了一种显示装置,包括上述的像素电路驱动装置。其中,该显示装置的可以使各个像素电路驱动的电致发光元件的显示亮度保持一致,避免了串色和闪屏现象的发生,从而改善了显示画质。在本示例实施方式中,所述显示装置例如可以包括手机、平板电脑、电视机、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才 能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (13)

  1. 一种像素电路驱动补偿方法,所述像素电路包括驱动晶体管,包括:
    在所述像素电路的补偿阶段,提供一预设信号至所述驱动晶体管的控制端,以将所述预设信号写入所述驱动晶体管的控制端,并将所述驱动晶体管的内部损耗电压写入所述驱动晶体管的第一端;
    其中:所述补偿阶段包括第一外部补偿阶段和第二外部补偿阶段;
    在所述第一外部补偿阶段,所述预设信号为参考信号与所述驱动晶体管的阈值电压之和;
    在所述第二外部补偿阶段,所述预设信号为数据信号与所述驱动晶体管的阈值电压之和。
  2. 根据权利要求1所述的像素电路驱动补偿方法,其中,所述方法还包括:
    在所述像素电路的复位阶段,提供所述预设信号至所述驱动晶体管的控制端,以对所述驱动晶体管的控制端进行复位,并提供一复位信号至所述驱动晶体管的第一端,以对所述驱动晶体管的第一端进行复位;其中,所述预设信号为所述参考信号与所述驱动晶体管的阈值电压之和。
  3. 根据权利要求1所述的像素电路驱动补偿方法,其中,所述方法还包括:
    在所述像素电路的发光阶段,所述驱动晶体管在所述数据信号和所述驱动晶体管的阈值电压以及所述内部损耗电压的作用下导通,并在所述像素电路的第一电源信号的作用下输出驱动电流,以驱动电致发光元件进行发光。
  4. 根据权利要求1所述的像素电路驱动补偿方法,其中所述方法还包括:
    在所述像素电路的感应阶段,通过所述像素电路的感应线抽取流经所述驱动晶体管的电流信号,并基于流经所述驱动晶体管的电流信号利用一外部电学补偿电路计算所述驱动晶体管的阈值电压。
  5. 根据权利要求1所述的像素电路驱动补偿方法,其中,所述方法还包括:
    在所述像素电路的感应阶段,通过所述像素电路的感应线抽取流经电致发光元件的电流信号,并基于流经所述电致发光元件的电流信号利用一外部电学补偿电路计算所述驱动晶体管的阈值电压。
  6. 根据权利要求1所述的像素电路驱动补偿方法,其中,所述方法还包括:
    在所述像素电路的感应阶段,通过所述外部光学补偿电路获取电致发光元件的亮度值,并根据所述电致发光元件的亮度值计算所述驱动晶体管的阈值电压。
  7. 根据权利要求1所述的像素电路驱动补偿方法,其中,所述驱动晶体管的阈值电压在所述第一外部补偿阶段和所述第二外部补偿阶段之间保持不变时,将所述驱动晶体管的迁移率补偿电压确定为所述内部损耗电压。
  8. 根据权利要求1所述的像素电路驱动补偿方法,其中,所述驱动晶体管的阈值电压在所述第一外部补偿阶段和所述第二外部补偿阶段之间发生变化时,将所述驱动晶体管的迁移率补偿电压和所述驱动晶体管的阈值电压的变化量确定为所述内部损耗电压。
  9. 一种像素电路驱动方法,用于为像素电路中的驱动晶体管的控制端提供预设信号,包括:
    提供一参考信号和一数据信号;
    根据所述参考信号、所述数据信号以及所述驱动晶体管的阈值电压生成所述预设信号,其中,在所述像素电路的第一外部补偿阶段,所述预设信号为所述驱动晶体管的阈值电压和所述参考信号之和,在所述像素电路的第二外部补偿阶段,所述预设信号为所述驱动晶体管的阈值电压和所述数据信号之和。
  10. 根据权利要求9所述的像素电路驱动方法,其中,所述方法还包括:
    在所述像素电路的感应阶段,从外部补偿电路中获取所述驱动晶体管的阈值电压。
  11. 根据权利要求10所述的像素电路驱动方法,其中,所述外部补偿电路包括外部电学补偿电路以及外部光学补偿电路。
  12. 一种像素电路驱动装置,用于为像素电路中的驱动晶体管的控制端提供预设信号,包括:
    提供模块,用于提供一参考信号和一数据信号;
    生成模块,用于根据所述参考信号、所述数据信号以及所述驱动晶体管的阈值电压生成所述预设信号,其中,在所述像素电路的第一外部补偿阶段,所述预设信号为所述驱动晶体管的阈值电压和所述参考信号之和,在所述像素电路的第二外部补偿阶段,所述预设信号为所述驱动晶体管的阈值电压和所述数据信号之和。
  13. 一种显示装置,其特征在于,包括权利要求12中所述的像素电路驱动装置。
PCT/CN2018/118734 2017-12-13 2018-11-30 电路驱动补偿方法、电路驱动方法及装置、显示装置 WO2019114573A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/624,276 US10977992B2 (en) 2017-12-13 2018-11-30 Circuit drive compensation method, circuit drive method and device, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711331651.9 2017-12-13
CN201711331651.9A CN109920373B (zh) 2017-12-13 2017-12-13 电路驱动补偿方法、电路驱动方法及装置、显示装置

Publications (1)

Publication Number Publication Date
WO2019114573A1 true WO2019114573A1 (zh) 2019-06-20

Family

ID=66818945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118734 WO2019114573A1 (zh) 2017-12-13 2018-11-30 电路驱动补偿方法、电路驱动方法及装置、显示装置

Country Status (3)

Country Link
US (1) US10977992B2 (zh)
CN (1) CN109920373B (zh)
WO (1) WO2019114573A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108053793B (zh) * 2017-12-15 2020-02-04 京东方科技集团股份有限公司 显示装置、显示基板及显示补偿方法和装置
CN111063302A (zh) * 2019-12-17 2020-04-24 深圳市华星光电半导体显示技术有限公司 像素混合补偿电路及像素混合补偿方法
CN112002281B (zh) 2020-09-01 2022-08-09 云谷(固安)科技有限公司 像素电路驱动方法
CN112863444B (zh) * 2021-01-13 2022-05-03 深圳市华星光电半导体显示技术有限公司 驱动电路的补偿电压计算方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140078233A1 (en) * 2012-09-20 2014-03-20 Canon Kabushiki Kaisha Light emitting apparatus, driving circuit of light emitting element, and driving method
CN104751804A (zh) * 2015-04-27 2015-07-01 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关装置
CN105761678A (zh) * 2014-12-31 2016-07-13 乐金显示有限公司 Oled显示装置
CN106205495A (zh) * 2016-09-09 2016-12-07 深圳市华星光电技术有限公司 Amoled像素驱动电路及像素驱动方法
CN106856086A (zh) * 2017-01-23 2017-06-16 京东方科技集团股份有限公司 一种电学补偿方法和显示面板
CN106935192A (zh) * 2017-05-12 2017-07-07 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
CN107342052A (zh) * 2017-08-18 2017-11-10 深圳市华星光电半导体显示技术有限公司 用于oled显示设备的像素驱动电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101095701B1 (ko) * 2009-11-19 2011-12-20 파나소닉 주식회사 표시 패널 장치, 표시 장치 및 그 제어 방법
KR101388286B1 (ko) * 2009-11-24 2014-04-22 엘지디스플레이 주식회사 유기발광다이오드 표시장치 및 그 구동방법
KR102255299B1 (ko) * 2014-11-03 2021-05-24 엘지디스플레이 주식회사 타이밍 컨트롤러, 표시장치 및 구동방법
CN107464526B (zh) * 2017-09-28 2020-02-18 京东方科技集团股份有限公司 一种像素补偿电路、其驱动方法及显示装置
CN110070833B (zh) * 2019-04-19 2020-08-04 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其驱动方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140078233A1 (en) * 2012-09-20 2014-03-20 Canon Kabushiki Kaisha Light emitting apparatus, driving circuit of light emitting element, and driving method
CN105761678A (zh) * 2014-12-31 2016-07-13 乐金显示有限公司 Oled显示装置
CN104751804A (zh) * 2015-04-27 2015-07-01 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关装置
CN106205495A (zh) * 2016-09-09 2016-12-07 深圳市华星光电技术有限公司 Amoled像素驱动电路及像素驱动方法
CN106856086A (zh) * 2017-01-23 2017-06-16 京东方科技集团股份有限公司 一种电学补偿方法和显示面板
CN106935192A (zh) * 2017-05-12 2017-07-07 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
CN107342052A (zh) * 2017-08-18 2017-11-10 深圳市华星光电半导体显示技术有限公司 用于oled显示设备的像素驱动电路

Also Published As

Publication number Publication date
US10977992B2 (en) 2021-04-13
CN109920373B (zh) 2021-05-18
CN109920373A (zh) 2019-06-21
US20200118489A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
US10878751B2 (en) Organic light-emitting diode display with external compensation and anode reset
US11881164B2 (en) Pixel circuit and driving method thereof, and display panel
CN107358915B (zh) 一种像素电路、其驱动方法、显示面板及显示装置
US10769998B2 (en) Pixel circuit and driving method thereof, array substrate, and display panel
WO2018153032A1 (zh) Oled像素的补偿方法和补偿装置、显示装置
WO2018210051A1 (zh) 像素驱动电路及像素驱动方法、显示装置
WO2020140717A1 (zh) 像素电路及其驱动方法、显示面板、显示装置
JP7084314B2 (ja) 画素回路に用いる駆動方法
CN105225636B (zh) 像素驱动电路、驱动方法、阵列基板及显示装置
WO2016202037A1 (zh) Oled像素电路及其显示装置
WO2019109673A1 (zh) 像素电路及其驱动方法、显示面板和显示设备
WO2017031909A1 (zh) 像素电路及其驱动方法、阵列基板、显示面板及显示装置
WO2017045357A1 (zh) 像素电路及其驱动方法、显示基板及显示装置
WO2018219209A1 (zh) 像素补偿电路及补偿方法、显示装置
WO2015188533A1 (zh) 像素驱动电路、驱动方法、阵列基板及显示装置
WO2020192278A1 (zh) 像素电路及其驱动方法、显示基板、显示装置
JP2020503553A (ja) Oled駆動薄膜トランジスタの閾値電圧検出方法
CN104882099B (zh) 一种像素驱动电路、阵列基板和显示装置
WO2016023311A1 (zh) 像素驱动电路及其驱动方法和显示装置
CN106067291A (zh) 一种像素驱动电路及其驱动方法、显示装置
WO2019114573A1 (zh) 电路驱动补偿方法、电路驱动方法及装置、显示装置
CN112785983B (zh) 显示装置
WO2016155161A1 (zh) Oeld像素电路、显示装置及控制方法
CN107369412B (zh) 一种像素电路及其驱动方法、显示装置
CN108389551B (zh) 一种像素电路及其驱动方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.10.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18889595

Country of ref document: EP

Kind code of ref document: A1