Nothing Special   »   [go: up one dir, main page]

WO2019112263A1 - Modified conjugated diene-based polymer and rubber composition comprising same - Google Patents

Modified conjugated diene-based polymer and rubber composition comprising same Download PDF

Info

Publication number
WO2019112263A1
WO2019112263A1 PCT/KR2018/015145 KR2018015145W WO2019112263A1 WO 2019112263 A1 WO2019112263 A1 WO 2019112263A1 KR 2018015145 W KR2018015145 W KR 2018015145W WO 2019112263 A1 WO2019112263 A1 WO 2019112263A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
alkyl group
formula
independently
Prior art date
Application number
PCT/KR2018/015145
Other languages
French (fr)
Korean (ko)
Inventor
오정환
서유석
최재훈
김민수
김노마
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180151386A external-priority patent/KR102179487B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880063284.5A priority Critical patent/CN111164118B/en
Priority to RU2020114365A priority patent/RU2790165C2/en
Priority to BR112020008059-4A priority patent/BR112020008059B1/en
Priority to JP2020506812A priority patent/JP6918202B2/en
Priority to EP18884915.2A priority patent/EP3722342B1/en
Priority to US16/753,106 priority patent/US11414510B2/en
Publication of WO2019112263A1 publication Critical patent/WO2019112263A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to a modified conjugated diene polymer excellent in workability and excellent in tensile properties and viscoelastic properties, and a rubber composition containing the modified conjugated diene polymer.
  • Natural rubbers, polyisoprene rubbers, polybutadiene rubbers, and the like are known as rubber materials having a small hysteresis loss, but these have a problem that wet road surface resistance is small.
  • a conjugated diene polymer or copolymer such as styrene-butadiene rubber (hereinafter referred to as SBR) or butadiene rubber (hereinafter referred to as BR) has been produced by emulsion polymerization or solution polymerization and is used as a rubber for a tire .
  • the greatest advantage of solution polymerization over emulsion polymerization is that vinyl structure content and styrene content, which define rubber properties, can be arbitrarily controlled and molecular weight and physical properties, etc., can be controlled by coupling, It can be adjusted. Therefore, it is easy to change the structure of the finally prepared SBR or BR, and it is possible to reduce the movement of chain ends due to bonding or modification of chain ends and increase the bonding force with fillers such as silica or carbon black, It is widely used as a rubber material.
  • solution-polymerized SBR When such a solution-polymerized SBR is used as a rubber material for a tire, by increasing the vinyl content in the SBR, it is possible to increase the glass transition temperature of the rubber to control tire properties such as running resistance and braking force, Proper control can reduce fuel consumption.
  • the solution-polymerized SBR is prepared by using an anionic polymerization initiator, and chain ends of the formed polymer are bonded or denatured by using various modifiers.
  • 4,397,994 discloses a technique in which an active anion at the chain terminal of a polymer obtained by polymerizing styrene-butadiene in a nonpolar solvent using alkyllithium, a monofunctional initiator, is bonded using a binder such as a tin compound Respectively.
  • the polymerization of SBR or BR can be carried out by batch or continuous polymerization.
  • batch polymerization the molecular weight distribution of the produced polymer is narrow, which is advantageous in terms of improvement in physical properties.
  • the processability is poor.
  • the continuous polymerization the polymerization is continuously performed, and the productivity is excellent, and the processability is improved, but the polymer has a wide molecular weight distribution and poor physical properties. Therefore, there is a continuing need for research to improve both productivity, processability and physical properties at the same time when manufacturing SBR or BR.
  • Patent Document 1 US4397994 A
  • Patent Document 2 JP1994-271706 A
  • the present invention has been conceived to solve the problems of the prior art, and it is an object of the present invention to provide a modified conjugated diene polymer excellent in physical properties such as tensile properties and excellent in viscoelastic properties, And to provide a rubber composition.
  • the molecular weight distribution curve by Gel Permeation Chromatography has an unimodal form, and the molecular weight distribution (PDI; MWD) of 1.0 or more and less than 1.7, and a modification agent-derived functional group selected from the group consisting of a modifier derived from a modifying initiator at one end and a modifier represented by any one of the following formulas (2) to (4)
  • the modified conjugated diene polymer is a reaction product of a compound represented by the following formula (1) with an organometallic compound:
  • R 1 to R 3 are each independently hydrogen; An alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms, a heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; Or a heterocyclic group having 3 to 30 carbon atoms,
  • R 4 is a single bond; An alkylene group having 1 to 20 carbon atoms which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or an arylene group having 6 to 20 carbon atoms which is substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms,
  • R 5 is an alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms; A heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; A heterocyclic group having 3 to 30 carbon atoms; Or a functional group represented by the following formula (1a) or (1b)
  • n is an integer of 1 to 5
  • at least one of R 5 is a functional group represented by the following formula (1a) or (1b), and when n is an integer of 2 to 5, a plurality of R 5 may be the same or different,
  • R 6 is an alkylene group having 1 to 20 carbon atoms which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or an arylene group having 6 to 20 carbon atoms which is substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms,
  • R 7 and R 8 each independently represent an alkylene group having 1 to 20 carbon atoms which is substituted or unsubstituted with an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms,
  • R 9 is hydrogen; An alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms; A heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; A heterocyclic group having 3 to 30 carbon atoms,
  • X is N, O or S atom, and when X is O or S, R 9 is not present,
  • R 10 is an alkylene group having 1 to 20 carbon atoms, which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or an arylene group having 6 to 20 carbon atoms which is substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms,
  • R 11 and R 12 each independently represent an alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms; A heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; A heterocyclic group having 3 to 30 carbon atoms,
  • R a1 and R a4 independently represent a single bond or an alkylene group having 1 to 10 carbon atoms
  • R a2 and R a3 are each independently an alkyl group having 1 to 10 carbon atoms
  • R a5 is a 5-membered heterocyclic group having 2 to 4 carbon atoms and containing at least one heteroatom selected from the group consisting of N, O and S,
  • n 1 is an integer of 1 to 3
  • n 2 is an integer of 0 to 2
  • a 1 and A 2 independently represent an alkylene group having 1 to 20 carbon atoms
  • R b1 to R b4 are each independently an alkyl group having 1 to 20 carbon atoms
  • R b5 and R b6 are independently hydrogen or an alkyl group having 1 to 10 carbon atoms
  • R b7 to R b10 are each independently hydrogen or an alkyl group having 1 to 10 carbon atoms
  • R c1 is hydrogen or an alkyl group having 1 to 10 carbon atoms
  • R c2 to R c4 independently represent an alkylene group having 1 to 10 carbon atoms
  • R c5 to R c8 independently represent an alkyl group having 1 to 10 carbon atoms
  • a 5 is or , wherein R c9 to R c12 independently represent hydrogen or an alkyl group having 1 to 10 carbon atoms,
  • n 1 and m 2 are each independently an integer of 0 to 3, and m 1 + m 2 ⁇ 1.
  • the present invention also provides a rubber composition comprising the modified conjugated diene polymer and a filler.
  • the modified conjugated diene polymer according to the present invention is produced by continuous polymerization in which the polymerization conversion is controlled so that the molecular weight distribution curve by gel permeation chromatography has a unimodal shape and a molecular weight distribution is less than 1.7 and is excellent in workability But also has excellent tensile properties and viscoelastic properties.
  • the modified conjugated diene polymer according to the present invention may further include a functional group derived from a modifying initiator at one end and a functional group derived from a modifier at another end.
  • Example 1 shows a molecular weight distribution curve of the modified conjugated diene polymer of Example 1 according to an embodiment of the present invention by gel permeation chromatography (GPC).
  • FIG 3 shows the molecular weight distribution curve of the modified conjugated diene polymer of Reference Example 1 by gel permeation chromatography (GPC) according to an embodiment of the present invention.
  • FIG 4 shows the molecular weight distribution curve of the modified conjugated diene polymer of Reference Example 2 by Gel Permeation Chromatography (GPC) according to an embodiment of the present invention.
  • alkyl group may mean a monovalent aliphatic saturated hydrocarbon, and includes linear alkyl groups such as methyl, ethyl, propyl, and butyl; May be meant to include all branched alkyl groups such as isopropyl, sec-butyl, tert-butyl and neo-pentyl.
  • the term 'alkylene group' may mean a bivalent aliphatic saturated hydrocarbon such as methylene, ethylene, propylene, and butylene.
  • alkenyl group &quot in the present invention may mean an alkyl group containing one or more double bonds.
  • " alkynyl group " in the present invention may mean an alkyl group containing one or two or more triple bonds.
  • cycloalkyl group may mean a cyclic saturated hydrocarbon or a cyclic unsaturated hydrocarbon containing one or more unsaturated bonds.
  • aryl group may mean a cyclic aromatic hydrocarbon, and may also refer to a monocyclic aromatic hydrocarbon having one ring formed, or a polycyclic aromatic hydrocarbon having two or more rings bonded thereto hydrocarbon < / RTI >
  • heteroalkyl group &quot may mean an alkyl group in which the carbon atoms in the alkyl group (excluding the terminal carbon atoms) are substituted with one or more heteroatoms, wherein the heteroatoms are N, O and S ≪ / RTI >
  • heteroalkenyl group &quot may mean an alkenyl group in which a carbon atom (except the terminal carbon atom) in the alkenyl group is substituted with one or more heteroatoms, wherein the heteroatom is N, O, and S, respectively.
  • heteroalkynyl group &quot in the present invention may mean an alkynyl group in which a carbon atom (except the terminal carbon atom) in the alkynyl group is substituted with one or more hetero atoms, wherein the hetero atom is N, O, and S, respectively.
  • " heterocyclic group " in the present invention may be a cyclic saturated hydrocarbon, or a cycloalkyl group in which a carbon atom in a cyclic unsaturated hydrocarbon containing at least one unsaturated bond is substituted with at least one hetero atom, wherein the hetero atom is N , O, and S, < / RTI >
  • " derived unit " and " derived functional group " in the present invention may mean an ingredient, structure or the substance itself resulting from a substance.
  • " single bond " in the present invention may mean a single covalent bond itself not including a separate atom or a molecular end.
  • a substituent or a functional group may be the same or different, and may be substituted or unsubstituted with a substituent or a functional group, unless otherwise specified.
  • the present invention provides a modified conjugated diene polymer which is produced by continuous polymerization and has excellent processability and narrow molecular weight distribution and excellent physical properties.
  • the modified conjugated diene polymer according to an embodiment of the present invention has a molecular weight distribution curve by gel permeation chromatography (GPC) in an unimodal form and a molecular weight distribution (PDI; MWD) of 1.0 or more
  • GPC gel permeation chromatography
  • PDI molecular weight distribution
  • a modifying agent-derived functional group selected from the following formulas (2) to (4) at the other end the modifying initiator being represented by the following formula Is a reaction product of an organic compound and an organic metal compound.
  • R 1 to R 3 are each independently hydrogen; An alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms, a heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; Or a heterocyclic group having 3 to 30 carbon atoms, R 4 is a single bond; An alkylene group having 1 to 20 carbon atoms which is substituted or unsubstituted with a substituent, a cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent, Or substituted with a substituent or unsubstituted arylene group of a ring having 6 to 20 carbon
  • R 6 represents an alkylene group having 1 to 20 carbon atoms, which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms as a substituent, and the substituent here is an aryl group having 1 to 10 carbon alkyl group, having 5 to 10, a cycloalkyl group, or a group having 6 to 20 carbon atoms of, R 7, and R 8 is each independently an alkyl group having 1 to 10 carbon alkyl group, having 5 to 10, a cycloalkyl group, or aryl group having 6 to 20 substituted or unsubstituted 1 to 20 carbon atoms of, R 9 is hydrogen; An alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl
  • R 10 is an alkylene group having 1 to 20 carbon atoms, which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms as a substituent, and the substituent here is an aryl group having 1 to 10 carbon alkyl group, having 5 to 10, a cycloalkyl group, or a group having 6 to 20 carbon atoms of, R 11, and R 12 each independently represents an alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms; A heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkylene
  • R a1 and R a4 are independently a single bond or an alkylene group having 1 to 10 carbon atoms
  • R a2 and R a3 are each independently an alkyl group having 1 to 10 carbon atoms
  • R a5 is N
  • n 1 is an integer of 1 to 3
  • n 2 is an integer of 0 to 2
  • n is an integer of 1 to 3
  • a 1 and A 2 independently represent an alkylene group having 1 to 20 carbon atoms
  • R b1 to R b4 independently represent an alkyl group having 1 to 20 carbon atoms
  • R b5 and R b6 independently represent hydrogen Or an alkyl group having 1 to 10 carbon atoms
  • a 3 and A 4 independently represent or
  • R b7 to R b10 are each independently hydrogen or an alkyl group having 1 to 10 carbon atoms
  • R c1 is hydrogen or an alkyl group having 1 to 10 carbon atoms
  • R c2 to R c4 are each independently an alkylene group having 1 to 10 carbon atoms
  • R c5 to R c8 are each independently a group having 1 to 10 carbon atoms Alkyl group, A < 5 > or
  • R c9 to R c12 are each independently hydrogen or an alkyl group having 1 to 10 carbon atoms
  • m 1 and m 2 are each independently an integer of 0 to 3, and m 1 + m 2 ⁇ 1.
  • the modified conjugated diene polymer may include a repeating unit derived from a conjugated diene monomer, a functional group derived from a denaturation initiator, and a functional group derived from a denaturant.
  • the repeating unit derived from the conjugated dienic monomer may mean a repeating unit formed by polymerization of the conjugated diene monomer, and the functional group derived from the modifying initiator and the functional group derived from the denaturing agent are each a modifying initiator derived from a modifying initiator or a modifier Functional group.
  • the modified conjugated diene polymer may be a copolymer comprising a conjugated diene monomer-derived repeating unit, an aromatic vinyl monomer-derived repeating unit, a denaturation initiator-derived functional group and a denaturant-derived functional group .
  • the repeating unit derived from an aromatic vinyl monomer may mean a repeating unit formed by polymerization of an aromatic vinyl monomer.
  • the conjugated diene-based monomer may be 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, -1,3-butadiene, and 2-halo-1,3-butadiene (wherein halo means a halogen atom).
  • aromatic vinyl monomer examples include aromatic vinyl monomers such as styrene,? -Methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexylstyrene, 4- 2-pyrrolidino ethyl) styrene, 4- (2-pyrrolidinoethyl) styrene, 4- (2-pyrrolidinoethyl) styrene, ) styrene) and 3- (2-pyrrolidino-1-methylethyl) styrene) may be used.
  • aromatic vinyl monomers such as styrene,? -Methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexylstyrene
  • the modified conjugated diene polymer may be a copolymer further comprising a repeating unit derived from a dienic monomer having 1 to 10 carbon atoms together with the repeating unit derived from the conjugated diene monomer.
  • the diene-based monomer-derived repeating unit may be a repeating unit derived from a diene-based monomer different from the conjugated diene-based monomer, and the diene-based monomer different from the conjugated diene-based monomer may be 1,2-butadiene .
  • the modified conjugated diene polymer when the modified conjugated diene polymer is a copolymer further comprising a diene monomer, the modified conjugated diene polymer may contain more than 0% by weight to 1% by weight, more than 0% by weight to 0.1% by weight, More than 0% by weight to 0.01% by weight, or more than 0% by weight to 0.001% by weight, and it is effective to prevent gel formation within this range.
  • the copolymer may be a random copolymer, and in this case, there is an effect of excellent balance among physical properties.
  • the random copolymer may mean that the repeating units constituting the copolymer are randomly arranged.
  • the modified conjugated diene polymer according to an embodiment of the present invention may have a number average molecular weight (Mn) of 1,000 g / mol to 2,000,000 g / mol, 10,000 g / mol to 1,000,000 g / mol, or 100,000 g / mol to 800,000 g / mol and may have a weight average molecular weight (Mw) of 1,000 g / mol to 3,000,000 g / mol, 10,000 g / mol to 2,000,000 g / mol, or 100,000 g / mol to 2,000,000 g / mol, (Mp) of from 1,000 g / mol to 3,000,000 g / mol, from 10,000 g / mol to 2,000,000 g / mol, or from 100,000 g / mol to 2,000,000 g / mol.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • the modified conjugated diene polymer may have a molecular weight distribution (PDI: MWD: Mw / Mn) of 1.0 or more and less than 1.7 or 1.1 or more to less than 1.7, and exhibits excellent tensile properties and viscoelastic properties, The balance between the physical properties is excellent.
  • PDI molecular weight distribution
  • the modified conjugated diene polymer may have a ratio of the weight average molecular weight (Mw) to the peak top molecular weight (Mp) of 0.7 to 1.4, and the tensile property, the abrasion resistance and the viscoelastic property are excellent within this range, There is an excellent effect of balance between the two.
  • the modified conjugated diene polymer has a molecular weight distribution curve by gel permeation chromatography (GPC) having an unimodal shape, which is a molecular weight distribution in a polymer polymerized by continuous polymerization , It may mean that the modified conjugated diene polymer has uniform properties. That is, the modified conjugated diene polymer according to one embodiment of the present invention may be produced by continuous polymerization to have a molecular weight distribution curve of not less than 1.0 and less than 1.7, while having a molecular weight distribution curve of unimodal form.
  • GPC gel permeation chromatography
  • the molecular weight distribution curve of the produced modified conjugated diene polymer has a multimodal molecular weight distribution curve of bimodal or more.
  • the growth of each chain can be substantially uniform since the polymerization reaction is initiated after all of the raw materials are introduced and the chain growth can occur from the starting point generated by the plurality of initiators at the same time, It may be in the form of a unimodal with a narrow molecular weight distribution with a constant molecular weight of the polymer chains produced.
  • the start of the reaction and the introduction of the starting material are continuously performed, and the starting point at which the reaction is initiated is different, Polymer chains having various molecular weights can be produced when the polymerization reaction is completed, since initiation starts from the beginning of the reaction, starts in the middle of the reaction, and starts at the end of the reaction. As a result, a specific peak does not appear predominantly in the curve showing the distribution of the molecular weight, so that the molecular weight distribution curve is broad as a single peak. Even if the chain in which polymerization is initiated at the end of the reaction is coupled, the molecular weight of the chain And the distribution of the molecular weight distribution can remain the same.
  • the conditions for modification may be adjusted so as to have a unimodal form, but in this case, the entire polymer is not coupled or the entire polymer is coupled. , And in other cases, the molecular weight distribution curve of Unimodule can not be shown.
  • the molecular weight distribution curve of the modified conjugated diene polymer shows a distribution of Unimodal, even when all of the polymers are coupled, only the polymers having the same level of molecular weight are present, May be poor and the functional properties capable of interacting with the filler such as silica or carbon black may be deteriorated due to the decrease in the coupling property, and in the opposite case, when all of the polymer is not coupled,
  • the functional groups at the end of the polymer, which must interact with the filler such as silica or carbon black may interfere with the interaction with the filler because the interfacial interaction between the polymer terminal functional groups becomes more prevalent than the filler, So that the batch polymerization method While in case of producing a polymer so as to have a controlled molecular weight distribution curve of yunimo month and may have poor workability and physical properties of the formulation produced modified conjugated diene-based polymer problems, and in particular decrease the workability remarkably.
  • the modified conjugated diene polymer having the number of couplings of 1 means that all of the polymer chains are not coupled
  • the modified conjugated diene polymer having the coupling number of F means that all the polymer chains are coupled.
  • the modified conjugated diene polymer according to an embodiment of the present invention may have a molecular weight distribution curve of unimodal shape, but the number of couplings is larger than 1 and smaller than the number of functional groups of the modifier used (1 ⁇ C.N. ⁇ F).
  • the modified conjugated diene polymer may have a Si content of 50 ppm or more, 100 ppm or more, 100 ppm to 10,000 ppm, or 100 ppm to 5,000 ppm, based on the weight of the modified conjugated diene polymer, There is an effect of excellent mechanical properties such as tensile properties and viscoelastic characteristics of the rubber composition containing the polymer.
  • the Si content may refer to the content of Si atoms present in the modified conjugated diene-based polymer.
  • the Si atom may be derived from a modifier-derived functional group.
  • the Si content may be one measured by an ICP analysis method, and the ICP analysis method may be an ICP-OES (Optima 7300DV).
  • ICP-OES Optima 7300DV
  • the inductively coupled plasma emission spectrometer about 0.7 g of a sample was placed in a platinum crucible and about 1 mL of concentrated sulfuric acid (98% by weight, electronic grade) was added and heated at 300 ⁇ for 3 hours, Was conducted in an electric furnace (Thermo Scientific, Lindberg Blue M) with the program of the following steps 1 to 3,
  • step 2 initial temp 180 ° C, rate (temp / hr) 85 ° C / hr, temp (holdtime) 370 ° C
  • step 3 initial temp 370 ° C, rate (temp / hr) 47 ° C / hr, temp (holdtime) 510 ° C
  • the sample used in the above ICP analysis method may be a sample obtained by removing the residual monomer and the residual denaturant from the denatured conjugated diene polymer sample obtained by removing the solvent by stirring in hot water heated with steam. Further, if oil is added to the sample, it may be a sample after the oil is extracted (removed).
  • the modified conjugated diene polymer may have an N content of 50 ppm or more, 100 ppm or more, 100 ppm to 10,000 ppm or 100 ppm to 5,000 ppm based on the total weight, and the modified conjugated diene polymer
  • the rubber composition containing the polymer has excellent mechanical properties such as tensile properties and viscoelastic properties.
  • the N content may refer to the content of N atoms present in the modified conjugated diene polymer, wherein the N atom may be derived from a modifier-derived functional group.
  • the N content may be one measured by an NSX analysis method, and the NSX analysis method may be measured by using a trace nitrogen analyzer (NSX-2100H).
  • NSX-2100H a trace nitrogen analyzer
  • the Nitrogen Quantitative Analyzer when used, an autosampler (Horizontal furnace, PMT & Nitrogen detector) is turned on and 250 ml / min of Ar, 350 ml / min of O 2 , 300 ml / min, the heater was set at 800 ° C, and the analyzer was stabilized by waiting for about 3 hours. After the analyzer was stabilized, calibration curves of 5 ppm, 10 ppm, 50 ppm, 100 ppm, and 500 ppm were prepared using the Nitrogen standard (AccuStandard S-22750-01-5 ml) A straight line was created using the ratio of posterior density to area. Then, a ceramic boat containing 20 mg of the sample was placed in an automatic sampler of the analyzer, and the area was measured. The N content was calculated using the area of the obtained sample and the calibration curve.
  • an autosampler Horizontal furnace, PMT & Nitrogen detector
  • the sample used in the NSX analysis method may be a sample obtained by removing the residual monomer and the residual denaturant from the denatured conjugated diene polymer sample obtained by removing the solvent by stirring in hot water heated by steam. Further, if oil is added to the sample, it may be a sample after the oil is extracted (removed).
  • the modified conjugated diene polymer may have a Mooney moderation rate measured at 100 ° C of 0.7 or more, 0.7 or more and 3.0 or less, 0.7 or more and 2.5 or less or 0.7 or more and 2.0 or less.
  • the mooney relaxation rate represents a change in stress caused by a reaction with the same amount of strain, and may be measured using a Mooney viscometer. Specifically, the mooney relaxation rate was 27 ⁇ 3 g after allowing the polymer to stand at room temperature (23 ⁇ 5 ° C.) for 30 minutes or more at 100 ° C. and a rotor speed of 2 ⁇ 0.02 rpm using a large rotor of Monsanto MV2000E The Mooney viscosity was measured while a torque was applied by operating a platen, and then the slope value of the Mooney viscosity change as the torque was released was measured to obtain an absolute value thereof.
  • the mooney relaxation rate can be used as an index of the branch structure of the polymer. For example, when comparing polymers having the same Mooney viscosity, the mooney relaxation rate becomes smaller as the number of branches becomes larger.
  • the modified conjugated diene polymer may have a Mooney viscosity at 100 ° C of 30 or more, 40 to 150, or 40 to 140, and within this range, the modified conjugated diene polymer has excellent processability and productivity.
  • the modified conjugated diene polymer preferably has a shrinking factor (g ') of 0.8 or more, more preferably 0.8 or more and 3.0 or less, determined by gel permeation chromatography-light scattering method measurement using a viscosity detector, More preferably 0.8 or more and 1.3 or less, still more preferably 1.0 or more and 1.3 or less.
  • g ' shrinking factor
  • the shrinkage factor g 'determined by the gel permeation chromatography-photolithographic method is the ratio of the intrinsic viscosity of the polymer having a branch to the intrinsic viscosity of a linear polymer having the same absolute molecular weight, Can be used as an index of the branch structure of the polymer, that is, the ratio of the branch, for example, as the shrinkage factor decreases, the branching index of the polymer tends to increase, The more branches are used, the smaller the shrinkage factor can be used as an indicator of branching.
  • the shrinkage factor was calculated based on the solution viscosity and the light scattering method by measuring the chromatogram using a gel chromatography-light scattering measurement apparatus equipped with a viscosity detector. Specifically, the shrinkage factor was measured using a column comprising a polystyrene- An absolute molecular weight and an intrinsic viscosity corresponding to each absolute molecular weight were obtained using a GPC-light scattering measurement apparatus equipped with a light scattering detector and a viscosity detector connected to each other, and the intrinsic viscosity of the linear polymer corresponding to the absolute molecular weight was calculated , And the shrinkage factor was determined as a ratio of intrinsic viscosity corresponding to each absolute molecular weight.
  • the shrinkage factor was determined by injecting a sample into a GPC-light scattering measurement apparatus (Viscotek TDAmax, Malvern) equipped with a light scattering detector and a viscosity detector with two columns connected with a polystyrene-based gel as a filler, to obtain, by calculating a Light scattering detector and a viscosity after from the detector obtained the intrinsic viscosity of the absolute molecular weight [ ⁇ ], to the intrinsic viscosity of the linear polymer on the absolute molecular weights by the following formula 3 [ ⁇ ] 0, each of the absolute molecular weight
  • the average value of the ratio of the corresponding intrinsic viscosity ([?] / [?] 0 ) is shown by the shrinkage factor.
  • the eluent was prepared by mixing 20 mL of a mixed solution of N, N, N ', N'-tetramethylethylenediamine (N, N, N', N'- tetramethylethylenediamine, tetrahydrofuran and 1 L of tetrahydrofuran, ) was used, and a column was PL Olexix (Agilent). The column was measured at an oven temperature of 40 ° C. and a THF flow rate of 1.0 mL / min. The sample was prepared by dissolving 15 mg of polymer in 10 mL of THF .
  • M is an absolute molecular weight
  • the modified conjugated diene polymer may have a vinyl content of 5 wt% or more, 10 wt% or more, or 10 wt% to 60 wt%.
  • the vinyl content refers to the content of the 1,2-added conjugated diene monomer, not 1,4-added to 100% by weight of the conjugated diene-based copolymer composed of the monomer having vinyl group and the aromatic vinyl monomer .
  • the modified conjugated diene polymer has a unimodal molecular weight distribution curve by gel permeation chromatography (GPC) and has a weight average molecular weight in terms of standard polystyrene reduced by gel permeation chromatography
  • GPC gel permeation chromatography
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mp peak top molecular weight
  • Si content and the N content are respectively 50 ppm or more by weight and the mooney relaxation ratio measured at 100 ° C is 0.7 or more .
  • the modified conjugated diene polymer may have a polymer component having a molecular weight of 100,000 g / mol or more in terms of standard polystyrene reduced by gel permeation chromatography (GPC) with a unimodal form,
  • the conjugated diene polymer may have a number-average molecular weight of 0.8 or more as determined by a gel permeation chromatography-light scattering method equipped with a viscosity detector.
  • the modification initiator according to an embodiment of the present invention is produced by reacting a compound represented by the following general formula (1) with an organometallic compound, introducing a functional group at one end of a polymer chain It can be done.
  • R 1 to R 3 are each independently hydrogen; An alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms, a heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; Or a heterocyclic group having 3 to 30 carbon atoms, R 4 is a single bond; An alkylene group having 1 to 20 carbon atoms which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or substituted with a substituent or unsubstituted arylene group of a ring having 6 to 20 carbon atoms
  • R 6 represents an alkylene group having 1 to 20 carbon atoms, which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms as a substituent, and the substituent here is an aryl group having 1 to 10 carbon alkyl group, having 5 to 10, a cycloalkyl group, or a group having 6 to 20 carbon atoms of, R 7, and R 8 is each independently an alkyl group having 1 to 10 carbon alkyl group, having 5 to 10, a cycloalkyl group, or aryl group having 6 to 20 substituted or unsubstituted 1 to 20 carbon atoms of, R 9 is hydrogen; An alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl
  • R 10 is an alkylene group having 1 to 20 carbon atoms, which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms as a substituent, and the substituent here is an aryl group having 1 to 10 carbon alkyl group, having 5 to 10, a cycloalkyl group, or a group having 6 to 20 carbon atoms of, R 11, and R 12 each independently represents an alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms; A heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkylene
  • R 1 to R 3 are each independently selected from the group consisting of hydrogen; An alkyl group having 1 to 10 carbon atoms; An alkenyl group having 2 to 10 carbon atoms; Or an alkynyl group having 2 to 10 carbon atoms, R 4 is a single bond; Or an unsubstituted alkylene group having 1 to 10 carbon atoms; R 5 is an alkyl group having 1 to 10 carbon atoms; An alkenyl group having 2 to 10 carbon atoms; An alkynyl group having 2 to 10 carbon atoms; Or a functional group represented by the following formula (1a) or (1b): wherein R 6 is an unsubstituted alkylene group having 1 to 10 carbon atoms, R 7 and R 8 each independently represent an unsubstituted group having 1 to 10 carbon atoms R 9 is an alkyl group having 1 to 10 carbon atoms; A cycloalkyl group having 5 to 20 carbon atoms; An aryl
  • the compound represented by Formula 1 may be a compound represented by Formula 1-1 or Formula 1-3.
  • the organometallic compound may be an organic alkali metal compound and may be one or more selected from, for example, an organic lithium compound, an organosodium compound, an organic potassium compound, an organic rubidium compound, and an organic cesium compound.
  • the organometallic compound is preferably selected from the group consisting of methyl lithium, ethyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, tert- But may be one or more selected from lithium, n-eicolithium, 4-butylphenyllithium, 4-tolylithium, cyclohexyllithium, 3,5-di-n-heptylcyclohexyllithium and 4-cyclopentyllithium.
  • the modifier according to the present invention may be a modifier for modifying the other end of the conjugated diene polymer, and may be a silica-affinity modifier, for example.
  • the silica affinity modifier may be a modifier containing a silica affinity functional group in a compound used as a modifier, and the silica affinity functional group is excellent in affinity with a filler, particularly a silica type filler, May refer to a functional group capable of interaction between the modifier-derived functional groups.
  • the modifier may be a compound represented by the general formula (2), wherein R a1 and R a4 are independently a single bond or an alkylene group having 1 to 5 carbon atoms , R a2 and R a3 are each independently an alkyl group having 1 to 5 carbon atoms and R a5 is a 5-membered heterocyclic group having 2 to 4 carbon atoms and containing at least one hetero atom selected from the group consisting of N, O and S
  • the heterocyclic group may be substituted or unsubstituted with a (trialkoxysilyl) alkyl group
  • the alkyl group in the (trialkoxysilyl) alkyl group is an alkyl group having 1 to 5 carbon atoms
  • the alkoxy group may have 1 to 5 carbon atoms Or an alkoxy group.
  • the 5-membered heterocyclic group may specifically be a 5-membered heterocyclic group containing N.
  • the compound represented by the above formula (2) can be obtained by reacting N- (3- (1H-imidazol-1-yl) propyl) -3- (1H- Propyl-3- (1H-imidazol-1-yl) -N - ((triethoxysilyl) methyl) propan-1 -amine),
  • the modifier may be a compound represented by the general formula (3), wherein A 1 and A 2 independently represent an alkylene group having 1 to 10 carbon atoms , R b1 to R b4 are each independently an alkyl group having 1 to 10 carbon atoms, R b5 and R b6 are independently hydrogen or an alkyl group having 1 to 10 carbon atoms, A 3 and A 4 are independently of each other or , Wherein R b7 to R b10 may independently be hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • the compound represented by the formula (3) may be a compound represented by the following formula (3-1) or (3-2).
  • a 1 and A 2 are each independently an alkylene group having 1 to 10 carbon atoms
  • R b1 to R b4 are independently an alkyl group having 1 to 10 carbon atoms.
  • the compound represented by Formula 3 may be a 1,3-bis (3- (1H-imidazol-1-yl) propyl) 1,1,3,3-tetramethoxydisiloxane (3- (1H-imidazol-1-yl) propyl) -1,1,3,3-tetramethoxydisiloxane), 1,3- 3,3-tetraethoxydisiloxane (1,3-bis (3-
  • the modifier may be a compound represented by the general formula (4), wherein R c1 is hydrogen or an alkyl group having 1 to 5 carbon atoms, R c2 to R c4 R c5 to R c8 independently represent an alkyl group having 1 to 5 carbon atoms, and A 5 represents an alkyl group having 1 to 5 carbon atoms, or , Wherein R c9 to R c12 independently of each other may be hydrogen or an alkyl group having 1 to 5 carbon atoms.
  • the compound represented by the general formula (4) is a compound represented by the following general formula (1): N- (3- (1H- imidazol- Propyl) -3- (triethoxysilyl) -N- (3- (1 H-imidazol-1-
  • the present invention also provides a method for producing the same.
  • the polymer has a specific structure and may have a specific molecular weight distribution diagram and shape.
  • the structure of such a polymer can be expressed by physical properties such as shrinkage factor, mooni relaxation rate, coupling number, and the molecular weight distribution diagram and its form can be expressed by the PDI value and the shape of the molecular weight distribution curve and coupling number,
  • metamorphosis with metamorphic initiators can affect structure and molecular weight distributions and their morphology.
  • the present invention also provides a process for producing the modified conjugated diene polymer.
  • the conjugated diene-based monomer or the conjugated diene-based monomer and the aromatic vinyl monomer are polymerized in a hydrocarbon solvent in the presence of a modifying initiator, Preparing a polymer (S1); And (S2) reacting or coupling at least one selected from among the active polymer prepared in the step (S1) and a modifier selected from the following formulas (2) to (4), wherein the step (S1)
  • the polymerization initiator is a reaction product prepared by reacting a compound represented by the following general formula (1) with an organometallic compound. .
  • R 1 to R 5 , R a1 to R a5 , R b1 to R b6 , R c1 to R c8 , A 1 to A 5 , n, n 1 to n 2 , m 1 and m 2 are as defined above.
  • the hydrocarbon solvent is not particularly limited, but may be one or more selected from the group consisting of n-pentane, n-hexane, n-heptane, isooctane, cyclohexane, toluene, benzene and xylene.
  • the conjugated diene monomer and the aromatic vinyl monomer are as defined above.
  • the modification initiator is used in an amount of 0.01 mmol to 10 mmol, 0.05 mmol to 5 mmol, 0.1 mmol to 2 mmol, 0.1 mmol to 1 mmol, or 0.15 to 0.8 mmol based on 100 g of the total monomer Can be used.
  • the polymerization in the step (S1) may be anionic polymerization, for example, a living anionic polymerization having an anionic active site at the polymerization end by an anionic growth polymerization reaction.
  • the polymerization in the step (S1) may be an elevated temperature polymerization, an isothermal polymerization or a constant temperature polymerization (adiabatic polymerization), and the above-mentioned constant temperature polymerization may include the step of polymerizing the modifying initiator in its own reaction heat,
  • the temperature-raising polymerization may mean a polymerization method in which the temperature is increased by applying heat to the modifying initiator after the addition of the modifying initiator. In the isothermal polymerization, after the modifying initiator is charged, heat is applied to heat May be increased or the heat may be taken to maintain the temperature of the polymerizer at a constant level.
  • the polymerization in the step (S1) may further include a diene compound having 1 to 10 carbon atoms in addition to the conjugated diene monomer.
  • a diene compound having 1 to 10 carbon atoms in addition to the conjugated diene monomer.
  • the diene compound may be 1,2-butadiene.
  • the polymerization in the step (S1) may be carried out at a temperature of, for example, 80 DEG C or lower, -20 DEG C to 80 DEG C, 0 DEG C to 80 DEG C, 0 DEG C to 70 DEG C, or 10 DEG C to 70 DEG C,
  • the polymer having high linearity can be easily produced to improve the Mooney relaxation rate and the shrinkage factor of the polymer, and further, the molecular weight distribution of the polymer can be narrowly controlled to improve the physical properties.
  • the active polymer produced by the step (S1) may refer to a polymer to which a polymer anion and an organometallic cation are bonded.
  • the method for producing the modified conjugated diene-based polymer may be carried out by a continuous polymerization method in a plurality of reactors including two or more polymerization reactors and a denaturing reactor.
  • the step (S1) may be carried out continuously in two or more polymerization reactors including the first reactor, and the number of the polymerization reactors may be determined flexibly according to reaction conditions and environment.
  • the continuous polymerization method may refer to a reaction process in which a reactant is continuously supplied to a reactor and the produced reaction product is continuously discharged. According to the continuous polymerization method, the productivity and processability are excellent and the uniformity of the produced polymer is excellent.
  • the polymerization conversion ratio in the first reactor may be 50% or less, 10% to 50%, or 20% to 50% Within this range, it is possible to induce a polymer having a linear structure at the time of polymerization by suppressing the side reaction generated when the polymer is formed after the initiation of the polymerization reaction.
  • the linear structure polymer has a low branching degree, when the polymer is prepared by controlling the polymerization conversion ratio to 50% or less in the first reactor as described above, the mooney relaxation rate and shrinkage factor of the polymer can be increased Furthermore, it is possible to narrow the molecular weight distribution of the polymer and to improve the physical properties.
  • the polymerization conversion can be controlled according to the reaction temperature, the residence time of the reactor, and the like.
  • the polymerization conversion rate can be determined, for example, by measuring the solid concentration on the polymer solution containing the polymer in the polymerization of the polymer.
  • a cylindrical vessel is mounted at the exit of each polymerization reactor to secure the polymer solution, The polymer solution filled in the cylindrical vessel is placed in an aluminum container, and then the polymer solution is filled in the cylindrical vessel.
  • the weight (B) of a cylindrical container having been transferred to an aluminum dish and from which the polymer solution has been removed is measured, and the aluminum container containing the polymer solution is dried in an oven at 140 ⁇ for 30 minutes, And may be calculated according to the following equation (1).
  • the polymerized material polymerized in the first reactor is sequentially transferred to the polymerization reactor before the denaturing reactor, and polymerization can proceed until the final polymerization conversion rate reaches 95% or more.
  • the polymerization conversion ratio by each reactor can be appropriately adjusted for each reactor in order to control the molecular weight distribution.
  • the polymer retention time in the first reactor may be 1 minute to 40 minutes, 1 minute to 30 minutes, or 5 minutes to 30 minutes, It is possible to control the conversion rate easily, thereby making it possible to narrow the molecular weight distribution of the polymer. Thus, there is an effect of improving the physical properties.
  • polymer in the present invention means that during the step (S1), polymerization is carried out in each reactor before the step (S1) or the step (S2) is completed to obtain an active polymer or a modified conjugated diene polymer , And may mean a polymer having a polymerization conversion of less than 95% in which polymerization is carried out in the reactor.
  • the active polymer produced in the step (S1) has a polydispersed index (MWD) of less than 1.5, more than 1.0 and less than 1.5, or 1.1 To less than 1.5, and the modified conjugated diene polymer produced through the modification reaction or coupling with the modifier within this range has a narrow molecular weight distribution and has an excellent effect of improving the physical properties.
  • MWD polydispersed index
  • the polymerization in the step (S1) may be carried out in the presence of a polar additive.
  • the polar additive may be added in a proportion of 0.001 g to 50 g, 0.001 g to 10 g, or 0.005 g to 0.1 g based on 100 g of the total monomer can do.
  • the polar additive may be added at a ratio of 0.001 g to 10 g, 0.005 g to 5 g, and 0.005 g to 4 g based on 1 mmol of the total amount of the modifying initiator.
  • the polar additive include at least one selected from the group consisting of tetrahydrofuran, 2,2-di (2-tetrahydrofuryl) propane, diethyl ether, cycloamyl ether, dipropyl ether, ethylene methyl ether, ethylene dimethyl ether, diethyl glycol, dimethyl ether , Tertiary butoxyethoxyethane, bis (3-dimethylaminoethyl) ether, (dimethylaminoethyl) ethyl ether, trimethylamine, triethylamine, tripropylamine, N, N, N ' And may be at least one selected from the group consisting of ethylenediamine, sodium mentholate and 2-ethyl tetrahydrofuryl ether, preferably 2,2-di (2-tetrahydro (2-ethyl tetrahydrofurfuryl ether), and the polar additive (s) may be selected from the group consisting of
  • the reaction or coupling in the step (S2) may be carried out in a denaturing reactor, wherein the modifier is used in an amount of 0.01 mmol to 10 mmol based on 100 g of the total monomer have.
  • the modifier may be used in a molar ratio of 1: 0.1 to 10, 1: 0.1 to 5, or 1: 0.1 to 1: 3 based on 1 mole of the modifier initiator of the step (S1).
  • the denaturant may be introduced into the denaturing reactor, and the step (S2) may be carried out in a denaturing reactor.
  • the modifier may be added to a transfer part for transferring the active polymer produced in step (S1) to a denaturing reactor for carrying out step (S2), and a mixture of the active polymer and the denaturant in the transfer part Reaction or coupling may proceed.
  • the method for producing the modified conjugated diene polymer according to one embodiment of the present invention is a method capable of satisfying the characteristics of the above-described modified conjugated diene polymer.
  • the polymerization conversion rate at the time of transferring from the first reactor to the second reactor under the continuous process in the above production method needs to be satisfactory and various polymerization conditions are controlled in other polymerization conditions,
  • the physical properties of the modified conjugated diene polymer according to the present invention can be realized.
  • the present invention provides a rubber composition comprising the modified conjugated diene polymer.
  • the rubber composition may contain the modified conjugated diene polymer in an amount of 10 wt% or more, 10 wt% to 100 wt%, or 20 wt% to 90 wt%, and the tensile strength, abrasion resistance, etc. Is excellent in mechanical properties and excellent in balance among physical properties.
  • the rubber composition comprising the modified conjugated diene polymer according to the present invention may have a Mooney viscosity (ML1 + 4, 100 DEG C) at 100 DEG C of from 50 to 80, which can be used as an index capable of exhibiting processability characteristics have.
  • the lower the Mooney viscosity of the rubber composition the better the processing characteristics can be, but in addition, the smaller the 'difference' between the Mooney viscosity of the rubber composition, i.e. the blend, and the Mooney viscosity of the modified conjugated diene polymer, And it may be preferable that the difference in Mooney viscosity variation, i.e., increase or decrease, is 20 or less.
  • the rubber composition may further include other rubber components, if necessary, in addition to the modified conjugated diene polymer, wherein the rubber component may be contained in an amount of 90 wt% or less based on the total weight of the rubber composition.
  • the other rubber component may be contained in an amount of 1 part by weight to 900 parts by weight based on 100 parts by weight of the modified conjugated diene polymer.
  • the rubber component may be, for example, natural rubber or synthetic rubber, and specific examples thereof include natural rubber (NR) containing cis-1,4-polyisoprene; Modified natural rubbers such as epoxidized natural rubber (ENR), deproteinized natural rubber (DPNR), and hydrogenated natural rubber, which are modified or refined with the general natural rubber; Butadiene copolymers (SBR), polybutadiene (BR), polyisoprenes (IR), butyl rubbers (IIR), ethylene-propylene copolymers, polyisobutylene-co-isoprene, neoprene, poly Butadiene), poly (styrene-co-butadiene), poly (styrene-co-butadiene) Synthetic rubber such as polysulfide rubber, acrylic rubber, urethane rubber, silicone rubber, epichlorohydrin rubber, halogenated butyl rubber and the like, and any one or a mixture of two or more thereof may be used.
  • the rubber composition may include, for example, 0.1 to 200 parts by weight, or 10 to 120 parts by weight of a filler based on 100 parts by weight of the modified conjugated diene polymer of the present invention.
  • the filler may be, for example, a silica-based filler.
  • Specific examples of the filler include wet silica (hydrated silicic acid), dry silica (silicic anhydride), calcium silicate, aluminum silicate or colloidal silica, It can be a wet silica with the most compatible effect of wet grip.
  • the rubber composition may further include a carbon-based filler, if necessary.
  • a silane coupling agent may be used together with the silane coupling agent for improving the reinforcing property and the low exothermic property.
  • the silane coupling agent may be bis (3-triethoxysilylpropyl) , Bis (3-triethoxysilylpropyl) triesulfide, bis (3-triethoxysilylpropyl) disulfide, bis Propyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 3-triethoxysilylpropyl-N, N-d
  • the compounding amount of the silane coupling agent is usually The silane coupling agent may be used in an amount of 1 part by weight to 20 parts by weight, or 5 parts by weight to 15 parts by weight based on 100 parts by weight of silica. Within this range, the effect as a coupling agent is The effect of preventing the gelation of the rubber component is exhibited.
  • the rubber composition according to an embodiment of the present invention may be sulfur-crosslinkable and may further include a vulcanizing agent.
  • the vulcanizing agent may be specifically a sulfur powder and may be contained in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the rubber component. Within this range, the vulcanized rubber composition is required to have the required elastic modulus and strength, It has excellent effect.
  • the rubber composition according to one embodiment of the present invention may contain various additives commonly used in the rubber industry, such as vulcanization accelerators, process oils, antioxidants, plasticizers, antioxidants, scorch inhibitors, zinc white, stearic acid, a thermosetting resin, or a thermoplastic resin.
  • additives commonly used in the rubber industry such as vulcanization accelerators, process oils, antioxidants, plasticizers, antioxidants, scorch inhibitors, zinc white, stearic acid, a thermosetting resin, or a thermoplastic resin.
  • vulcanization accelerator examples include thiazole compounds such as M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide) and CZ (N-cyclohexyl-2-benzothiazyl sulfenamide) (Diphenylguanidine) may be used, and may be included in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the rubber component.
  • thiazole compounds such as M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide) and CZ (N-cyclohexyl-2-benzothiazyl sulfenamide) (Diphenylguanidine) may be used, and may be included in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the rubber component.
  • the process oil may be a paraffinic, naphthenic, or aromatic compound, which acts as a softening agent in the rubber composition. Considering the aromatic process oil, hysteresis loss, and low temperature characteristics in consideration of tensile strength and abrasion resistance Naphthenic or paraffinic process oils may be used.
  • the process oil may be contained in an amount of 100 parts by weight or less based on 100 parts by weight of the rubber component. Within this range, the process oil has an effect of preventing the tensile strength and the low heat build-up (low fuel consumption) of the vulcanized rubber from being lowered.
  • antioxidants examples include 2,6-di-t-butylparacresol, dibutylhydroxytoluenil, 2,6-bis ((dodecylthio) methyl) (dodecylthio) methyl) -4-nonylphenol or 2-methyl-4,6-bis ((octylthio) methyl) phenol) May be used in an amount of 0.1 part by weight to 6 parts by weight based on 100 parts by weight of the rubber component.
  • antioxidants examples include N-isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'- , 2,4-trimethyl-1,2-dihydroquinoline, or high-temperature condensates of diphenylamine and acetone, and may be used in an amount of 0.1 part by weight to 6 parts by weight based on 100 parts by weight of the rubber component.
  • the rubber composition according to one embodiment of the present invention can be obtained by kneading the rubber composition using a kneader such as Banbury mixer, roll, internal mixer or the like by the compounding formulation, This excellent rubber composition can be obtained.
  • a kneader such as Banbury mixer, roll, internal mixer or the like
  • the rubber composition can be applied to various members such as tire tread, under-tread, sidewall, carcass coated rubber, belt coated rubber, bead filler, pancake fur, or bead coated rubber, vibration proof rubber, belt conveyor, Can be useful for the production of various industrial rubber products.
  • the present invention provides a tire produced using the rubber composition.
  • the tire may be a tire or a tire tread.
  • Two vacuum-dried 4L stainless steel pressure vessels were prepared.
  • 6922 g of cyclohexane, 85 g of the compound represented by the following formula 1-3 and 60 g of tetramethylethylenediamine were added to prepare a first reaction solution.
  • 180 g of 2.0 M n-butyllithium and 6,926 g of cyclohexane were added to the second pressure vessel to prepare a second reaction solution.
  • the molar ratio of the compound represented by Formula 1-3, n-butyllithium and tetramethylethylenediamine was 1: 1: 1.
  • the first reaction solution was fed to the first continuous channel at an injection rate of 1.0 g / min and the second continuous channel was fed into the continuous reactor using a mass flow meter 2 reaction solution at an injection rate of 1.0 g / min.
  • the temperature of the continuous reactor was maintained at -10 ° C, the inner pressure was maintained at 3 bar by using a backpressure regulator, and the residence time in the reactor was adjusted to be within 10 minutes. The reaction was terminated to obtain a modifying initiator.
  • Two vacuum-dried 4L stainless steel pressure vessels were prepared.
  • 6922 g of cyclohexane, 120 g of the compound represented by the following formula 1-1 and 60 g of tetramethylethylenediamine were added to prepare a first reaction solution.
  • 180 g of 2.0 M n-butyl lithium in liquid phase and 6,926 g of cyclohexane were charged into a second pressure vessel to prepare a second reaction solution.
  • the molar ratio of the compound represented by the formula (1-1), n-butyllithium and tetramethylethylenediamine was 1: 1: 1.
  • the first reaction solution was fed to the first continuous channel at an injection rate of 1.0 g / min and the second continuous channel was fed into the continuous reactor using a mass flow meter 2 reaction solution at an injection rate of 1.0 g / min.
  • the temperature of the continuous reactor was maintained at -10 ° C, the inner pressure was maintained at 3 bar by using a backpressure regulator, and the residence time in the reactor was adjusted to be within 10 minutes. The reaction was terminated to obtain a modifying initiator.
  • Two vacuum-dried 4L stainless steel pressure vessels were prepared.
  • 6922 g of cyclohexane, 145 g of the compound represented by the following formula (1-2) and 60 g of tetramethylethylenediamine were added to prepare a first reaction solution.
  • 180 g of 2.0 M n-butyl lithium in liquid phase and 6,926 g of cyclohexane were charged into a second pressure vessel to prepare a second reaction solution.
  • the molar ratio of the compound represented by the formula (1-1), n-butyllithium and tetramethylethylenediamine was 1: 1: 1.
  • the first reaction solution was fed to the first continuous channel at an injection rate of 1.0 g / min and the second continuous channel was fed into the continuous reactor using a mass flow meter 2 reaction solution at an injection rate of 1.0 g / min.
  • the temperature of the continuous reactor was maintained at -10 ° C, the inner pressure was maintained at 3 bar by using a backpressure regulator, and the residence time in the reactor was adjusted to be within 10 minutes. The reaction was terminated to obtain a modifying initiator.
  • a 1,3-butadiene solution in which 60 wt% of 1,3-butadiene was dissolved in n-hexane was injected into the second reactor at a rate of 0.7 kg / h.
  • the temperature of the second reactor was maintained at 65 ° C., and when the conversion of polymerization reached 95% or more, the polymer was transferred from the second reactor to the third reactor through the transfer pipe.
  • IR1520 (BASF) solution dissolved at 30 wt% as an antioxidant was injected into the polymerization solution discharged from the third reactor at a rate of 170 g / h and stirred.
  • the resultant polymer was put into hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • the modification initiator prepared in Production Example 2 was continuously fed into the first reactor at a rate of 350.0 g / h instead of the modifier initiator prepared in Production Example 1 as the modifier initiator in Example 1, and the polymerization conversion was 40% (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- Propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) propyl) propane-1- (3- (1H-imidazol-1-yl) propyl) 1,1,3,3-tetraethoxysilane instead of the solution (solvent: n-hexane) (1,3-bis (3-
  • a first reactor of a continuous reactor in which three reactors were connected in series 6.5 kg / h of a styrene solution in which 60 wt% of styrene was dissolved in n-hexane, 60 wt% of 1,3-butadiene in n-hexane Butadiene solution in which the dissolved 1,3-butadiene solution was 7.7 kg / h, n-hexane 47.0 kg / h, 1,2-butadiene in 1,2-butadiene in n-hexane was dissolved in 40.0 g / 50.0 g / h of a solution in which 10% by weight of N, N, N ', N'-tetramethylethylenediamine (TMEDA) was dissolved in n-hexane as a polar additive, 400.0 g / h.
  • TEDA N, N, N ', N'-tetramethylethylenediamine
  • the temperature of the first reactor was maintained at 55 ⁇ ⁇ , and when the polymerization conversion became 41%, the polymer was transferred from the first reactor to the second reactor through the transfer pipe.
  • a 1,3-butadiene solution in which 60 wt% of 1,3-butadiene was dissolved in n-hexane was injected into the second reactor at a rate of 2.3 kg / h.
  • the temperature of the second reactor was maintained at 65 ° C, and when the polymerization conversion reached 95%, the polymer was transferred from the second reactor to the third reactor through the transfer pipe.
  • IR1520 (BASF) solution dissolved at 30 wt% as an antioxidant was injected into the polymerization solution discharged from the third reactor at a rate of 170 g / h and stirred.
  • the resultant polymer was put into hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • the modification initiator prepared in Production Example 2 was continuously fed into the first reactor at a rate of 350.0 g / h instead of the modification initiator prepared in Production Example 3 as the modifier initiator in Example 3, and the polymerization conversion was 42% (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- Propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) propyl) propane-1- (3- (1H-imidazol-1-yl) propyl) 1,1,3,3-tetraethoxysilane instead of the solution (solvent: n-hexane) (1,3-bis (3-
  • the modification initiator prepared in Production Example 1 was continuously fed into the first reactor at a rate of 300.0 g / h instead of the modification initiator prepared in Production Example 3 as the modifier initiator in Example 3, and the polymerization conversion was 43% (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- Propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) propyl) propane-1- propyl) -3- (trimethoxysilyl) propane-1-amine (solvent: n-hexane) ) - N- (3- (1H-1,2,4-triazol-1-yl) propyl) -3- (trimethoxysilyl) - Except that a solution in which N- (3- (trimethoxysilyl) propyl) propan-1-amine was dissolved (solvent: n-hexane) was continuously supplied, Conjugated
  • a 1,3-butadiene solution in which 60 wt% of 1,3-butadiene was dissolved in n-hexane was injected into the second reactor at a rate of 0.7 kg / h.
  • the temperature of the second reactor was maintained at 65 ° C., and when the conversion of polymerization reached 95% or more, the polymer was transferred from the second reactor to the third reactor through the transfer pipe.
  • solvent solvent: n-hexane
  • Li 1: 1 mol
  • IR1520 (BASF) solution dissolved at 30 wt% as an antioxidant was injected into the polymerization solution discharged from the third reactor at a rate of 170 g / h and stirred.
  • the resultant polymer was put into hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • Example 1 The procedure of Example 1 was repeated except that the first reactor temperature was maintained at 75 ⁇ and the polymerisation was transferred from the first reactor to the second reactor through the transfer pipe when the polymerization conversion reached 78% To obtain a modified conjugated diene polymer.
  • Example 1 Except that in Example 1, when the polymerization conversion rate reached 42%, the polymerized product was transferred from the first reactor to the second reactor through the transfer pipe and the reaction was carried out without introducing the denaturant into the third reactor. The same procedure as in Example 1 was carried out to prepare a terminally stiffened conjugated diene polymer.
  • Example 2 In the same manner as in Example 1 except that a n-butyllithium solution in which 5 wt% of n-butyllithium was dissolved in n-hexane instead of the modifying initiator prepared in Production Example 1 was used as a modifying initiator at a rate of 30.0 g / In the same manner as in Example 1, to prepare a terminally-modified conjugated diene-based polymer.
  • styrene unit (SM) and vinyl (Vinyl) content in each polymer were measured and analyzed using Varian VNMRS 500 MHz NMR.
  • 1,1,2,2-tetrachloroethane was used as the solvent.
  • the solvent peak was calculated to be 5.97 ppm, 7.2 to 6.9 ppm for random styrene, 6.9 to 6.2 ppm for block styrene, 5.8 to 5.1 ppm 1,4-vinyl, and 5.1 to 4.5 ppm are 1,2-vinyl peaks, and styrene unit and vinyl content were calculated.
  • Weight average molecular weight (Mw), number average molecular weight (Mn) and peak top molecular weight (Mp) were measured at 40 ° C by GPC (Gel Permeation Chromatography) analysis and a molecular weight distribution curve was obtained.
  • the molecular weight distribution (PDI, MWD, Mw / Mn) was obtained from the measured weight average molecular weight and number average molecular weight.
  • the GPC was prepared by combining two columns of PLgel Olexis (Polymer Laboratories) columns and a column of PLgel mixed-C (Polymer Laboratories) column.
  • the GPC standard material was PS (polystyrene) .
  • the GPC measurement solvent was prepared by mixing 2% by weight of an amine compound in tetrahydrofuran. The molecular weight distribution curves obtained at this time are shown in Figs. 1 to 4. Fig.
  • the coupling can have the respective examples and before its use the modifying agent or coupling agent in the comparative examples were collected some polymer to obtain a peak molecular weight (Mp 1) of the polymer, each of the modified conjugated diene-based peak molecular weight of the polymer after (Mp 2 ) was obtained and was calculated by the following equation (2).
  • the Mooney viscosity (MV, (ML1 + 4, @ 100 ° C) MU) was measured using MV-2000 (ALPHA Technologies) at 100 ° C using Rotor Speed 2 ⁇ 0.02 rpm, Large Rotor, Was allowed to stand at room temperature (23 ⁇ 3 ° C) for more than 30 minutes, 27 ⁇ 3 g was taken, filled in the die cavity, platen was operated and measured for 4 minutes to obtain Mooney viscosity.
  • the slope value (absolute value) of the Mooney viscosity change appearing as the torque was loosened was measured to obtain the Mooney relaxation rate as an absolute value.
  • step 2 initial temp 180 ° C, rate (temp / hr) 85 ° C / hr, temp (holdtime) 370 ° C
  • step 3 initial temp 370 ° C, rate (temp / hr) 47 ° C / hr, temp (holdtime) 510 ° C
  • the shrinkage factor was obtained by injecting a sample into a GPC-light scattering measurement apparatus (Viscotek TDAmax, Malvern) equipped with a light scattering detector and a viscosity detector with two columns connected with a polystyrene-based gel as a filler, obtaining an absolute molecular weight from a light scattering detector, and the viscosity after from the detector obtained the intrinsic viscosity of the absolute molecular weight [ ⁇ ], for calculating the intrinsic viscosity of a linear polymer [ ⁇ ] 0 for the absolute molecular weight by the equation (3), of an intrinsic viscosity corresponding to the absolute molecular weight
  • the average value of the ratio ([?] / [?] 0 ) is shown by the shrinkage factor.
  • the eluent was prepared by mixing 20 mL of a mixed solution of N, N, N ', N'-tetramethylethylenediamine (N, N, N', N'- tetramethylethylenediamine, tetrahydrofuran and 1 L of tetrahydrofuran, ) was used, and a column was PL Olexix (Agilent). The column was measured at an oven temperature of 40 ° C. and a THF flow rate of 1.0 mL / min. The sample was prepared by dissolving 15 mg of polymer in 10 mL of THF .
  • M is an absolute molecular weight
  • the modified conjugated diene polymers of Examples 1 to 5 prepared according to one embodiment of the present invention all satisfy the range of required properties. Specifically, it can be predicted that the molecular weight distribution curve by gel permeation chromatography is in the form of unimodal and at the same time PDI value is 1.0 or more and less than 1.7, the formability is remarkably excellent and the compounding property is excellent. It can be predicted that the linearity is excellent and that the shrink factor is not less than 0.8 and that the balance between the physical properties is excellent.
  • the general modified conjugated diene polymer has a poor PDI value of less than 1.7 but a bimodal molecular weight distribution curve as in Comparative Example 1, and thus the processability is poor.
  • the molecular weight distribution curve form of the Unimodule may appear, but this is not the case in the extreme case where the coupling number is the minimum value or the maximum value of the number of functional groups of the modifier, i.e. the entire polymer is not coupled by the modifier Example 1), the whole of the polymer was coupled by a modifier (Reference Example 2), and the modified conjugated diene polymer of such a batch polymerization leads to deterioration of the compounding properties. It can be known from the evaluation result.
  • the modified or unmodified conjugated diene-based polymers of Examples, Comparative Examples and Reference Examples were compounded under the conditions shown in Table 4 below as raw material rubbers.
  • the raw materials in Table 4 are each parts by weight based on 100 parts by weight of raw rubber.
  • the rubber specimen is kneaded through the first stage kneading and the second stage kneading.
  • first stage kneading raw rubber, silica (filler), organosilane coupling agent, process oil, zincifying agent, stearic acid, antioxidant, antioxidant and wax were kneaded using a Banbury mixer equipped with a temperature control device.
  • the initial temperature of the kneader was controlled at 70 ⁇ ⁇ , and a primary blend was obtained at an outlet temperature of 145 ⁇ ⁇ to 155 ⁇ ⁇ .
  • the above-mentioned primary blend was cooled to room temperature, and then the primary blend, sulfur, rubber promoter and vulcanization accelerator were added to the kneader and mixed at a temperature of 100 DEG C or lower to obtain a second blend. Then, the rubber specimens were prepared by curing at 160 ° C for 20 minutes.
  • Tensile properties of each test piece were measured in accordance with the tensile test method of ASTM 412, and the tensile strength at the time of cutting the test piece and the tensile stress at 300% elongation (300% modulus) were measured. Specifically, the tensile properties were measured at a rate of 50 cm / min at room temperature using a Universal Test Machin 4204 (Instron) tensile tester.
  • the viscoelastic properties were determined by measuring the viscoelastic behavior of the dynamic deformation at 10 Hz frequency and at each measurement temperature (-60 °C ⁇ 60 °C) in the film tension mode using a dynamic mechanical analyzer (GABO).
  • the lower values of tan ⁇ at high temperature of 60 ° C. show a lower hysteresis loss and an excellent resistance to low-flow resistance (ie, fuel economy) as shown in Tables 5 and 6,
  • the viscoelastic characteristic is expressed by indexing (%) after specifying the reference value, which means that the higher the numerical value is, the better.
  • the Mooney viscosity (MV, (ML1 + 4, @ 100 ° C) MU) of the second blend obtained in the above 1) rubber specimens was measured to compare the workability characteristics of the respective polymers. And shows excellent workability characteristics.
  • each secondary compound was allowed to stand at room temperature (23 ⁇ 3 ° C) for 30 minutes or more using a MV-2000 (ALPHA Technologies) at a rotor speed of 2 ⁇ 0.02 rpm and a large rotor at 100 ° C., ⁇ 3 g was taken, filled into the die cavity, and platen operated for 4 minutes.
  • MV-2000 APHA Technologies
  • Comparative Example 3 the PDI value, shrink factor, and mooni relaxation ratio were not satisfied as described above. As a result, the tensile property and the viscoelastic property were poorer than those of Examples It can be seen that the vessel is noticeable. In Comparative Examples 2, 4 and 5 in which the modifier according to the present invention and the modifier initiator were not applied, the tensile and viscoelastic properties were similarly poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention relates to a modified conjugated diene-based polymer and, more specifically, to: a modified conjugated diene-based polymer prepared by continuous polymerization so as to have a particular polymer structure, a molecular weight distribution, and a form thereof, thereby having excellent physical properties by having a narrow molecular weight distribution, while having excellent processability; and a rubber composition comprising the same.

Description

변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물Modified conjugated diene polymer and rubber composition containing the same
관련 출원(들)과의 상호인용Cross-reference with related application (s)
본 출원은 2017년 12월 05일자 한국 특허 출원 10-2017-0165575호 및 2018년 11월 29일자 한국 특허 출원 10-2018-0151386호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.The present application claims the benefit of priority based on Korean Patent Application No. 10-2017-0165575, dated December 05, 2017, and Korean Patent Application No. 10-2018-0151386, dated November 29, 2018, The disclosure of which is incorporated herein by reference in its entirety.
기술분야Technical field
본 발명은 가공성이 뛰어나면서도, 인장특성 및 점탄성 특성이 우수한 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물에 관한 것이다.The present invention relates to a modified conjugated diene polymer excellent in workability and excellent in tensile properties and viscoelastic properties, and a rubber composition containing the modified conjugated diene polymer.
최근 자동차에 대한 저연비화의 요구에 따라, 타이어용 고무 재료로서 구름 저항이 적고, 내마모성, 인장 특성이 우수하며, 젖은 노면 저항성으로 대표되는 조정 안정성도 겸비한 공액디엔계 중합체가 요구되고 있다.Recently, as a rubber material for a tire, there has been demanded a conjugated diene polymer having low rolling resistance, excellent abrasion resistance, tensile properties, and adjustment stability represented by wet road surface resistance, in accordance with recent demand for low fuel consumption in automobiles.
타이어의 구름 저항을 감소시키기 위해서는 가황 고무의 히스테리시스 손실을 작게 하는 방안이 있으며, 이러한 가황 고무의 평가 지표로서는 50℃ 내지 80℃의 반발탄성, tan δ, 굿리치 발열 등이 이용된다. 즉, 상기 온도에서의 반발탄성이 크거나 tan δ, 굿리치 발열이 작은 고무 재료가 바람직하다.In order to reduce the rolling resistance of the tire, there is a method of reducing the hysteresis loss of the vulcanized rubber. As the evaluation index of such vulcanized rubber, repulsive elasticity of 50 DEG C to 80 DEG C, tan delta, Goodrich heat, and the like are used. That is, a rubber material having a large rebound resilience at that temperature or a small tan δ and Goodrich heating is preferable.
히스테리시스 손실이 작은 고무 재료로서는, 천연 고무, 폴리이소프렌 고무 또는 폴리부타디엔 고무 등이 알려져 있지만, 이들은 젖은 노면 저항성이 작은 문제가 있다. 이에 최근에는 스티렌-부타디엔 고무(이하, SBR이라 함) 또는 부타디엔 고무(이하, BR이라 함)와 같은 공액디엔계 중합체 또는 공중합체가 유화중합이나 용액중합에 의해 제조되어 타이어용 고무로서 이용되고 있다. 이 중, 유화중합에 비해 용액중합이 갖는 최대의 장점은 고무 물성을 규정하는 비닐 구조 함량 및 스티렌 함량을 임의로 조절할 수 있고, 커플링(coupling)이나, 변성(modification) 등에 의해 분자량 및 물성 등을 조절할 수 있다는 점이다. 따라서, 최종 제조된 SBR 이나 BR의 구조 변화가 용이하고, 사슬 말단의 결합이나 변성으로 사슬 말단의 움직임을 줄이고 실리카 또는 카본블랙 등의 충전제와의 결합력을 증가시킬 수 있어 용액중합에 의한 SBR이 타이어용 고무 재료로 많이 사용된다.Natural rubbers, polyisoprene rubbers, polybutadiene rubbers, and the like are known as rubber materials having a small hysteresis loss, but these have a problem that wet road surface resistance is small. Recently, a conjugated diene polymer or copolymer such as styrene-butadiene rubber (hereinafter referred to as SBR) or butadiene rubber (hereinafter referred to as BR) has been produced by emulsion polymerization or solution polymerization and is used as a rubber for a tire . Of these, the greatest advantage of solution polymerization over emulsion polymerization is that vinyl structure content and styrene content, which define rubber properties, can be arbitrarily controlled and molecular weight and physical properties, etc., can be controlled by coupling, It can be adjusted. Therefore, it is easy to change the structure of the finally prepared SBR or BR, and it is possible to reduce the movement of chain ends due to bonding or modification of chain ends and increase the bonding force with fillers such as silica or carbon black, It is widely used as a rubber material.
이러한 용액중합 SBR이 타이어용 고무 재료로 사용되는 경우, 상기 SBR 내의 비닐 함량을 증가시킴으로써 고무의 유리전이온도를 상승시켜 주행저항 및 제동력과 같은 타이어 요구 물성을 조절할 수 있을 뿐만 아니라, 유리전이온도를 적절히 조절함으로써 연료소모를 줄일 수 있다. 상기 용액중합 SBR은 음이온 중합 개시제를 사용하여 제조하며, 형성된 중합체의 사슬 말단을 여러 가지 변성제를 이용하여 결합시키거나, 변성시켜 사용되고 있다. 예를 들어, 미국특허 제4,397,994호에는 일관능성 개시제인 알킬리튬을 이용하여 비극성 용매 하에서 스티렌-부타디엔을 중합하여 얻어진 중합체의 사슬 말단의 활성 음이온을 주석화합물과 같은 결합제를 사용하여 결합시킨 기술을 제시하였다.When such a solution-polymerized SBR is used as a rubber material for a tire, by increasing the vinyl content in the SBR, it is possible to increase the glass transition temperature of the rubber to control tire properties such as running resistance and braking force, Proper control can reduce fuel consumption. The solution-polymerized SBR is prepared by using an anionic polymerization initiator, and chain ends of the formed polymer are bonded or denatured by using various modifiers. For example, U.S. Patent No. 4,397,994 discloses a technique in which an active anion at the chain terminal of a polymer obtained by polymerizing styrene-butadiene in a nonpolar solvent using alkyllithium, a monofunctional initiator, is bonded using a binder such as a tin compound Respectively.
한편, 상기 SBR 또는 BR의 중합은 회분식(batch) 또는 연속식 중합에 의해 실시될 수 있는데, 회분식 중합에 의하는 경우, 제조된 중합체의 분자량 분포가 좁아 물성 개선 측면에서 장점이 있으나, 생산성이 낮고, 가공성이 열악한 문제점이 있고, 연속식 중합에 의하는 경우, 중합이 연속적으로 이루어져 생산성이 뛰어나고, 가공성 개선 측면에서 장점이 있으나, 분자량 분포가 넓어 물성이 열악한 문제점이 있다. 이에, SBR 또는 BR 제조 시, 생산성, 가공성 및 물성을 모두 동시에 개선시키기 위한 연구가 지속적으로 요구되고 있는 실정이다.On the other hand, the polymerization of SBR or BR can be carried out by batch or continuous polymerization. In the case of batch polymerization, the molecular weight distribution of the produced polymer is narrow, which is advantageous in terms of improvement in physical properties. However, , There is a problem that the processability is poor. In the case of the continuous polymerization, the polymerization is continuously performed, and the productivity is excellent, and the processability is improved, but the polymer has a wide molecular weight distribution and poor physical properties. Therefore, there is a continuing need for research to improve both productivity, processability and physical properties at the same time when manufacturing SBR or BR.
[선행기술문헌][Prior Art Literature]
(특허문헌 1) US4397994 A(Patent Document 1) US4397994 A
(특허문헌 2) JP1994-271706 A(Patent Document 2) JP1994-271706 A
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 연속식 중합에 의해 제조되어 가공성이 뛰어나면서도, 인장 특성 등의 물성이 우수하고, 점탄성 특성이 뛰어난 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물을 제공하는 것을 목적으로 한다.Disclosure of the Invention The present invention has been conceived to solve the problems of the prior art, and it is an object of the present invention to provide a modified conjugated diene polymer excellent in physical properties such as tensile properties and excellent in viscoelastic properties, And to provide a rubber composition.
상기의 과제를 해결하기 위한 본 발명의 일 실시예에 따르면, 본 발명은 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선이 유니모달(unimodal) 형태를 갖고, 분자량 분포(PDI; MWD)가 1.0 이상 1.7 미만이며, 일 말단에 변성 개시제 유래 작용기를 포함하고, 다른 일 말단에 하기 화학식 2 내지 화학식 4로 표시되는 변성제 중 선택된 어느 하나의 변성제 유래 작용기를 포함하며, 상기 변성 개시제는 하기 화학식 1로 표시되는 화합물과 유기금속 화합물과의 반응 생성물인 것인 변성 공액디엔계 중합체를 제공한다:According to one embodiment of the present invention, the molecular weight distribution curve by Gel Permeation Chromatography (GPC) has an unimodal form, and the molecular weight distribution (PDI; MWD) of 1.0 or more and less than 1.7, and a modification agent-derived functional group selected from the group consisting of a modifier derived from a modifying initiator at one end and a modifier represented by any one of the following formulas (2) to (4) Wherein the modified conjugated diene polymer is a reaction product of a compound represented by the following formula (1) with an organometallic compound:
[화학식 1][Chemical Formula 1]
Figure PCTKR2018015145-appb-I000001
Figure PCTKR2018015145-appb-I000001
상기 화학식 1에서, In Formula 1,
R1 내지 R3는 각각 독립적으로 수소; 탄소수 1 내지 30의 알킬기; 탄소수 2내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기, 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 또는 탄소수 3 내지 30의 헤테로고리기이며, R 1 to R 3 are each independently hydrogen; An alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms, a heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; Or a heterocyclic group having 3 to 30 carbon atoms,
R4는 단일결합; 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고, R 4 is a single bond; An alkylene group having 1 to 20 carbon atoms which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or an arylene group having 6 to 20 carbon atoms which is substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms,
R5는 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기; 또는 하기 화학식 1a 또는 화학식 1b로 표시되는 작용기이며,R 5 is an alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms; A heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; A heterocyclic group having 3 to 30 carbon atoms; Or a functional group represented by the following formula (1a) or (1b)
n은 1 내지 5의 정수이고, R5 중 적어도 하나는 하기 화학식 1a 또는 화학식 1b로 표시되는 작용기이며, n이 2 내지 5의 정수인 경우 복수 개의 R5는 서로 동일하거나 상이할 수 있고, n is an integer of 1 to 5, at least one of R 5 is a functional group represented by the following formula (1a) or (1b), and when n is an integer of 2 to 5, a plurality of R 5 may be the same or different,
[화학식 1a][Formula 1a]
Figure PCTKR2018015145-appb-I000002
Figure PCTKR2018015145-appb-I000002
상기 화학식 1a에서, In formula (1a)
R6은 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고,R 6 is an alkylene group having 1 to 20 carbon atoms which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or an arylene group having 6 to 20 carbon atoms which is substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms,
R7 및 R8은 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기이며, R 7 and R 8 each independently represent an alkylene group having 1 to 20 carbon atoms which is substituted or unsubstituted with an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms,
R9는 수소; 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기이고, R 9 is hydrogen; An alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms; A heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; A heterocyclic group having 3 to 30 carbon atoms,
X는 N, O 또는 S 원자이며, X가 O 또는 S인 경우 R9는 존재하지 않으며, X is N, O or S atom, and when X is O or S, R 9 is not present,
[화학식 1b][Chemical Formula 1b]
Figure PCTKR2018015145-appb-I000003
Figure PCTKR2018015145-appb-I000003
상기 화학식 1b에서,In the above formula (1b)
R10은 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고,R 10 is an alkylene group having 1 to 20 carbon atoms, which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or an arylene group having 6 to 20 carbon atoms which is substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms,
R11 및 R12는 각각 독립적으로 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기이며,R 11 and R 12 each independently represent an alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms; A heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; A heterocyclic group having 3 to 30 carbon atoms,
[화학식 2](2)
Figure PCTKR2018015145-appb-I000004
Figure PCTKR2018015145-appb-I000004
상기 화학식 2에서, In Formula 2,
Ra1 및 Ra4는 서로 독립적으로 단일결합, 또는 탄소수 1 내지 10의 알킬렌기이고, R a1 and R a4 independently represent a single bond or an alkylene group having 1 to 10 carbon atoms,
Ra2 및 Ra3는 서로 독립적으로 탄소수 1 내지 10의 알킬기이고, R a2 and R a3 are each independently an alkyl group having 1 to 10 carbon atoms,
Ra5는 N, O 및 S로 이루어진 군으로부터 선택되는 1종 이상의 헤테로 원자를 포함하는 탄소수 2 내지 4의 5원 헤테로고리기이고, R a5 is a 5-membered heterocyclic group having 2 to 4 carbon atoms and containing at least one heteroatom selected from the group consisting of N, O and S,
n1은 1 내지 3의 정수이고, n 1 is an integer of 1 to 3,
n2는 0 내지 2의 정수이며, n 2 is an integer of 0 to 2,
[화학식 3](3)
Figure PCTKR2018015145-appb-I000005
Figure PCTKR2018015145-appb-I000005
상기 화학식 3에서, In Formula 3,
A1 및 A2는 서로 독립적으로 탄소수 1 내지 20의 알킬렌기이고, A 1 and A 2 independently represent an alkylene group having 1 to 20 carbon atoms,
Rb1 내지 Rb4는 서로 독립적으로 탄소수 1 내지 20의 알킬기이고, R b1 to R b4 are each independently an alkyl group having 1 to 20 carbon atoms,
Rb5 및 Rb6은 서로 독립적으로 수소 또는 탄소수 1 내지 10의 알킬기이고, R b5 and R b6 are independently hydrogen or an alkyl group having 1 to 10 carbon atoms,
A3 및 A4는 서로 독립적으로
Figure PCTKR2018015145-appb-I000006
또는
Figure PCTKR2018015145-appb-I000007
이고, 여기에서 Rb7 내지 Rb10은 서로 독립적으로 수소, 또는 탄소수 1 내지 10의 알킬기이며,
A 3 and A 4 independently of one another
Figure PCTKR2018015145-appb-I000006
or
Figure PCTKR2018015145-appb-I000007
, Wherein R b7 to R b10 are each independently hydrogen or an alkyl group having 1 to 10 carbon atoms,
[화학식 4][Chemical Formula 4]
Figure PCTKR2018015145-appb-I000008
Figure PCTKR2018015145-appb-I000008
상기 화학식 4에서, In Formula 4,
Rc1은 수소 또는 탄소수 1 내지 10의 알킬기이고, R c1 is hydrogen or an alkyl group having 1 to 10 carbon atoms,
Rc2 내지 Rc4는 서로 독립적으로 탄소수 1 내지 10의 알킬렌기이고, R c2 to R c4 independently represent an alkylene group having 1 to 10 carbon atoms,
Rc5 내지 Rc8은 서로 독립적으로 탄소수 1 내지 10의 알킬기이고,R c5 to R c8 independently represent an alkyl group having 1 to 10 carbon atoms,
A5
Figure PCTKR2018015145-appb-I000009
또는
Figure PCTKR2018015145-appb-I000010
이고, 여기에서 Rc9 내지 Rc12는 서로 독립적으로 수소, 또는 탄소수 1 내지 10의 알킬기이며,
A 5 is
Figure PCTKR2018015145-appb-I000009
or
Figure PCTKR2018015145-appb-I000010
, Wherein R c9 to R c12 independently represent hydrogen or an alkyl group having 1 to 10 carbon atoms,
m1 및 m2는 서로 독립적으로 0 내지 3의 정수이되, m1+m2≥1 이다.m 1 and m 2 are each independently an integer of 0 to 3, and m 1 + m 2 ≥1.
또한, 본 발명은 상기 변성 공액디엔계 중합체 및 충전제를 포함하는 고무 조성물을 제공한다.The present invention also provides a rubber composition comprising the modified conjugated diene polymer and a filler.
본 발명에 따른 변성 공액디엔계 중합체는, 중합 전환율을 조절한 연속식 중합에 의하여 제조됨으로써 겔 투과 크로마토그래피에 의한 분자량 분포 곡선이 유니모달 형태를 가지면서 분자량 분포가 1.7 미만으로 좁아, 가공성이 뛰어나면서도 인장특성 및 점탄성 특성이 뛰어난 효과가 있다. 또한, 본 발명에 따른 변성 공액디엔계 중합체는 일 말단에 변성 개시제 유래 작용기를 포함하고, 다른 일 말단에 변성제 유래 작용기를 포함함으로써 점탄성 특성이 더욱 향상될 수 있다. The modified conjugated diene polymer according to the present invention is produced by continuous polymerization in which the polymerization conversion is controlled so that the molecular weight distribution curve by gel permeation chromatography has a unimodal shape and a molecular weight distribution is less than 1.7 and is excellent in workability But also has excellent tensile properties and viscoelastic properties. In addition, the modified conjugated diene polymer according to the present invention may further include a functional group derived from a modifying initiator at one end and a functional group derived from a modifier at another end.
본 명세서에 첨부되는 다음의 도면은 본 발명의 구체적인 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 안된다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate exemplary embodiments of the invention and, together with the description of the invention, It should not be construed as limited.
도 1은, 본 발명의 일 실시예에 따른 실시예 1의 변성 공액디엔계 중합체의 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선을 나타낸 것이다. 1 shows a molecular weight distribution curve of the modified conjugated diene polymer of Example 1 according to an embodiment of the present invention by gel permeation chromatography (GPC).
도 2는, 본 발명의 일 실시예에 따른 비교예 1의 변성 공액디엔계 중합체의 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선을 나타낸 것이다.2 shows a molecular weight distribution curve of the modified conjugated diene polymer of Comparative Example 1 by gel permeation chromatography (GPC) according to an embodiment of the present invention.
도 3은, 본 발명의 일 실시예에 따른 참조예 1의 변성 공액디엔계 중합체의 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선을 나타낸 것이다.3 shows the molecular weight distribution curve of the modified conjugated diene polymer of Reference Example 1 by gel permeation chromatography (GPC) according to an embodiment of the present invention.
도 4는, 본 발명의 일 실시예에 따른 참조예 2의 변성 공액디엔계 중합체의 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선을 나타낸 것이다.4 shows the molecular weight distribution curve of the modified conjugated diene polymer of Reference Example 2 by Gel Permeation Chromatography (GPC) according to an embodiment of the present invention.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in detail in order to facilitate understanding of the present invention.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms and words used in the description of the present invention and in the claims should not be construed to be limited to ordinary or dictionary terms and the inventor should appropriately interpret the concept of the term appropriately The present invention should be construed in accordance with the meaning and concept consistent with the technical idea of the present invention.
본 발명에서 용어 '알킬기(alkyl group)'는 1가의 지방족 포화 탄화수소를 의미할 수 있고, 메틸, 에틸, 프로필 및 부틸 등의 선형 알킬기; 이소프로필(isopropyl), 세크부틸(sec-butyl), 터셔리부틸(tert-butyl) 및 네오펜틸(neo-pentyl) 등의 분지형 알킬기를 모두 포함하는 의미일 수 있다.In the present invention, the term "alkyl group" may mean a monovalent aliphatic saturated hydrocarbon, and includes linear alkyl groups such as methyl, ethyl, propyl, and butyl; May be meant to include all branched alkyl groups such as isopropyl, sec-butyl, tert-butyl and neo-pentyl.
본 발명에서 용어 '알킬렌기(alkylene group)'는 메틸렌, 에틸렌, 프로필렌 및 부틸렌 등과 같은 2가의 지방족 포화 탄화수소를 의미할 수 있다.In the present invention, the term 'alkylene group' may mean a bivalent aliphatic saturated hydrocarbon such as methylene, ethylene, propylene, and butylene.
본 발명에서 용어 '알케닐기(alkenyl group)'는 이중결합을 1개 또는 2개 이상 포함하는 알킬기를 의미할 수 있다.The term " alkenyl group " in the present invention may mean an alkyl group containing one or more double bonds.
본 발명에서 용어 '알카이닐기(alkynyl group)'는 삼중결합을 1개 또는 2개 이상 포함하는 알킬기를 의미할 수 있다.The term " alkynyl group " in the present invention may mean an alkyl group containing one or two or more triple bonds.
본 발명에서 용어 '시클로알킬기(cycloalkyl group)'는 환형의 포화 탄화수소, 또는 불포화 결합을 1개 또는 2개 이상 포함하는 환형의 불포화 탄화수소를 모두 포함하는 의미일 수 있다. In the present invention, the term "cycloalkyl group" may mean a cyclic saturated hydrocarbon or a cyclic unsaturated hydrocarbon containing one or more unsaturated bonds.
본 발명에서 용어 '아릴기(aryl group)'는 환형의 방향족 탄화수소를 의미할 수 있고, 또한 1개의 환이 형성된 단환 방향족 탄화수소(monocyclic aromatic hydrocarbon), 또는 2개 이상의 환이 결합된 다환 방향족 탄화수소(polycyclic aromatic hydrocarbon)을 모두 포함하는 의미일 수 있다. In the present invention, the term "aryl group" may mean a cyclic aromatic hydrocarbon, and may also refer to a monocyclic aromatic hydrocarbon having one ring formed, or a polycyclic aromatic hydrocarbon having two or more rings bonded thereto hydrocarbon < / RTI >
본 발명에서 용어 '헤테로알킬기(heteroalkyl group)'는 알킬기 내의 탄소원자(말단의 탄소 원자는 제외)가 1개 이상의 헤테로원자로 치환된 알킬기를 의미할 수 있고, 여기에서 헤테로원자는 N, O 및 S에서 선택된 것일 수 있다.The term " heteroalkyl group " as used herein may mean an alkyl group in which the carbon atoms in the alkyl group (excluding the terminal carbon atoms) are substituted with one or more heteroatoms, wherein the heteroatoms are N, O and S ≪ / RTI >
본 발명에서 용어 '헤테로알케닐기(heteroalkenyl group)'는 알케닐기 내의 탄소 원자(말단의 탄소 원자는 제외)가 1개 이상의 헤테로원자로 치환된 알케닐기를 의미할 수 있고, 여기에서 헤테로원자는 N, O 및 S에서 선택된 것일 수 있다. The term " heteroalkenyl group " as used herein may mean an alkenyl group in which a carbon atom (except the terminal carbon atom) in the alkenyl group is substituted with one or more heteroatoms, wherein the heteroatom is N, O, and S, respectively.
본 발명에서 용어 '헤테로알카이닐기(heteroalkynyl group)'는 알카이닐기 내의 탄소 원자(말단의 탄소 원자는 제외)가 1개 이상의 헤테로원자로 치환된 알카이닐기를 의미할 수 있고, 여기에서 헤테로원자는 N, O 및 S에서 선택된 것일 수 있다. The term " heteroalkynyl group " in the present invention may mean an alkynyl group in which a carbon atom (except the terminal carbon atom) in the alkynyl group is substituted with one or more hetero atoms, wherein the hetero atom is N, O, and S, respectively.
본 발명에서 용어 '헤테로고리기'는 환형의 포화 탄화수소, 또는 불포화 결합을 1개 이상 포함하는 환형의 불포화 탄화수소 내의 탄소 원자가 1개 이상의 헤테로원자로 치환된 시클로알킬기일 수 있고, 여기에서 헤테로원자는 N, O 및 S에서 선택된 것일 수 있다.The term " heterocyclic group " in the present invention may be a cyclic saturated hydrocarbon, or a cycloalkyl group in which a carbon atom in a cyclic unsaturated hydrocarbon containing at least one unsaturated bond is substituted with at least one hetero atom, wherein the hetero atom is N , O, and S, < / RTI >
본 발명에서 용어 '유래 단위' 및 '유래 작용기'는 어떤 물질로부터 기인한 성분, 구조 또는 그 물질 자체를 의미할 수 있다. The term " derived unit " and " derived functional group " in the present invention may mean an ingredient, structure or the substance itself resulting from a substance.
본 발명에서 용어 '단일결합'은 별도의 원자 또는 분자단을 포함하지 않는 단일 공유 결합 자체를 의미할 수 있다.The term " single bond " in the present invention may mean a single covalent bond itself not including a separate atom or a molecular end.
본 발명에서 치환기 또는 작용기는 특별한 언급이 없는 한, 동일하거나 상이한 치환기 또는 작용기로 치환되거나 비치환된 것일 수 있다.In the present invention, a substituent or a functional group may be the same or different, and may be substituted or unsubstituted with a substituent or a functional group, unless otherwise specified.
본 발명은 연속 중합에 의해 제조되어, 가공성이 뛰어나면서도, 분자량 분포가 좁아 물성이 우수한 변성 공액디엔계 중합체를 제공한다. The present invention provides a modified conjugated diene polymer which is produced by continuous polymerization and has excellent processability and narrow molecular weight distribution and excellent physical properties.
본 발명의 일 실시예에 따른 변성 공액디엔계 중합체는 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선이 유니모달(unimodal) 형태를 갖고, 분자량 분포(PDI; MWD)가 1.0 이상 1.7 미만이며, 일 말단에 변성 개시제 유래 작용기를 포함하고, 다른 일 말단에 하기 화학식 2 내지 화학식 4로 표시되는 변성제 중 선택된 어느 하나의 변성제 유래 작용기를 포함하며, 상기 변성 개시제는 하기 화학식 1로 표시되는 화합물과 유기금속 화합물과의 반응 생성물인 것을 특징으로 한다.The modified conjugated diene polymer according to an embodiment of the present invention has a molecular weight distribution curve by gel permeation chromatography (GPC) in an unimodal form and a molecular weight distribution (PDI; MWD) of 1.0 or more A modifying agent-derived functional group selected from the following formulas (2) to (4) at the other end, the modifying initiator being represented by the following formula Is a reaction product of an organic compound and an organic metal compound.
[화학식 1][Chemical Formula 1]
Figure PCTKR2018015145-appb-I000011
Figure PCTKR2018015145-appb-I000011
상기 화학식 1에서, R1 내지 R3는 각각 독립적으로 수소; 탄소수 1 내지 30의 알킬기; 탄소수 2내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기, 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 또는 탄소수 3 내지 30의 헤테로고리기이며, R4는 단일결합; 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기;치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고, R5는 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기; 또는 하기 화학식 1a 또는 화학식 1b로 표시되는 작용기이며, n은 1 내지 5의 정수이고, R5 중 적어도 하나는 하기 화학식 1a 또는 화학식 1b로 표시되는 작용기이며, n이 2 내지 5의 정수인 경우 복수 개의 R5는 서로 동일하거나 상이할 수 있고, In Formula 1, R 1 to R 3 are each independently hydrogen; An alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms, a heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; Or a heterocyclic group having 3 to 30 carbon atoms, R 4 is a single bond; An alkylene group having 1 to 20 carbon atoms which is substituted or unsubstituted with a substituent, a cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent, Or substituted with a substituent or unsubstituted arylene group of a ring having 6 to 20 carbon atoms, where the substituent is an aryl group having 1 to 10 carbon alkyl group, having 5 to 10, a cycloalkyl group, or a group having 6 to 20 carbon atoms of, R 5 is An alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms; A heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; A heterocyclic group having 3 to 30 carbon atoms; Or a functional group represented by the following formula (1a) or (1b), n is an integer of 1 to 5, at least one of R 5 is a functional group represented by the following formula (1a) or (1b), and when n is an integer of 2 to 5, R < 5 > may be the same or different from each other,
[화학식 1a][Formula 1a]
Figure PCTKR2018015145-appb-I000012
Figure PCTKR2018015145-appb-I000012
상기 화학식 1a에서, R6은 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고, R7 및 R8은 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기이며, R9는 수소; 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기이고, X는 N, O 또는 S 원자이며, X가 O 또는 S인 경우 R9는 존재하지 않으며, In Formula 1a, R 6 represents an alkylene group having 1 to 20 carbon atoms, which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms as a substituent, and the substituent here is an aryl group having 1 to 10 carbon alkyl group, having 5 to 10, a cycloalkyl group, or a group having 6 to 20 carbon atoms of, R 7, and R 8 is each independently an alkyl group having 1 to 10 carbon alkyl group, having 5 to 10, a cycloalkyl group, or aryl group having 6 to 20 substituted or unsubstituted 1 to 20 carbon atoms of, R 9 is hydrogen; An alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms; A heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; Having 3 to 30 of a heterocyclic group, X is a N, O or S atom, and when X is O or S, R 9 is not present,
[화학식 1b][Chemical Formula 1b]
Figure PCTKR2018015145-appb-I000013
Figure PCTKR2018015145-appb-I000013
상기 화학식 1b에서, R10은 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고, R11 및 R12는 각각 독립적으로 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기이며, In Formula 1b, R 10 is an alkylene group having 1 to 20 carbon atoms, which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms as a substituent, and the substituent here is an aryl group having 1 to 10 carbon alkyl group, having 5 to 10, a cycloalkyl group, or a group having 6 to 20 carbon atoms of, R 11, and R 12 each independently represents an alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms; A heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; A heterocyclic group having 3 to 30 carbon atoms,
[화학식 2](2)
Figure PCTKR2018015145-appb-I000014
Figure PCTKR2018015145-appb-I000014
상기 화학식 2에서, Ra1 및 Ra4는 서로 독립적으로 단일결합, 또는 탄소수 1 내지 10의 알킬렌기이고, Ra2 및 Ra3는 서로 독립적으로 탄소수 1 내지 10의 알킬기이고, Ra5는 N, O 및 S로 이루어진 군으로부터 선택되는 1종 이상의 헤테로 원자를 포함하는 탄소수 2 내지 4의 5원 헤테로고리기이고, n1은 1 내지 3의 정수이고, n2는 0 내지 2의 정수이며,Wherein R a1 and R a4 are independently a single bond or an alkylene group having 1 to 10 carbon atoms, R a2 and R a3 are each independently an alkyl group having 1 to 10 carbon atoms, and R a5 is N, O And S, n 1 is an integer of 1 to 3, n 2 is an integer of 0 to 2, and n is an integer of 1 to 3,
[화학식 3](3)
Figure PCTKR2018015145-appb-I000015
Figure PCTKR2018015145-appb-I000015
상기 화학식 3에서, A1 및 A2는 서로 독립적으로 탄소수 1 내지 20의 알킬렌기이고, Rb1 내지 Rb4는 서로 독립적으로 탄소수 1 내지 20의 알킬기이고, Rb5 및 Rb6은 서로 독립적으로 수소 또는 탄소수 1 내지 10의 알킬기이고, A3 및 A4는 서로 독립적으로
Figure PCTKR2018015145-appb-I000016
또는
Figure PCTKR2018015145-appb-I000017
이고, 여기에서 Rb7 내지 Rb10은 서로 독립적으로 수소, 또는 탄소수 1 내지 10의 알킬기이며,
In the above formula (3), A 1 and A 2 independently represent an alkylene group having 1 to 20 carbon atoms, R b1 to R b4 independently represent an alkyl group having 1 to 20 carbon atoms, R b5 and R b6 independently represent hydrogen Or an alkyl group having 1 to 10 carbon atoms, and A 3 and A 4 independently represent
Figure PCTKR2018015145-appb-I000016
or
Figure PCTKR2018015145-appb-I000017
, Wherein R b7 to R b10 are each independently hydrogen or an alkyl group having 1 to 10 carbon atoms,
[화학식 4][Chemical Formula 4]
Figure PCTKR2018015145-appb-I000018
Figure PCTKR2018015145-appb-I000018
상기 화학식 4에서, Rc1은 수소 또는 탄소수 1 내지 10의 알킬기이고, Rc2 내지 Rc4는 서로 독립적으로 탄소수 1 내지 10의 알킬렌기이고, Rc5 내지 Rc8은 서로 독립적으로 탄소수 1 내지 10의 알킬기이고, A5
Figure PCTKR2018015145-appb-I000019
또는
Figure PCTKR2018015145-appb-I000020
이고, 여기에서 Rc9 내지 Rc12는 서로 독립적으로 수소, 또는 탄소수 1 내지 10의 알킬기이며, m1 및 m2는 서로 독립적으로 0 내지 3의 정수이되, m1+m2≥1 이다.
Wherein R c1 is hydrogen or an alkyl group having 1 to 10 carbon atoms, R c2 to R c4 are each independently an alkylene group having 1 to 10 carbon atoms, and R c5 to R c8 are each independently a group having 1 to 10 carbon atoms Alkyl group, A < 5 >
Figure PCTKR2018015145-appb-I000019
or
Figure PCTKR2018015145-appb-I000020
Wherein R c9 to R c12 are each independently hydrogen or an alkyl group having 1 to 10 carbon atoms, m 1 and m 2 are each independently an integer of 0 to 3, and m 1 + m 2 ≥1.
본 발명의 일 실시예에 따르면, 상기 변성 공액디엔계 중합체는 공액디엔계 단량체 유래 반복 단위, 변성 개시제 유래 작용기 및 변성제 유래 작용기를 포함하는 것일 수 있다. 상기 공액디엔계 단량체 유래 반복 단위는 공액디엔계 단량체가 중합 시 이루는 반복 단위를 의미할 수 있고, 상기 변성 개시제 유래 작용기 및 변성제 유래 작용기는 각각 중합체 사슬의 말단에 존재하는 변성 개시제 또는 변성제로부터 유래된 작용기를 의미할 수 있다.According to one embodiment of the present invention, the modified conjugated diene polymer may include a repeating unit derived from a conjugated diene monomer, a functional group derived from a denaturation initiator, and a functional group derived from a denaturant. The repeating unit derived from the conjugated dienic monomer may mean a repeating unit formed by polymerization of the conjugated diene monomer, and the functional group derived from the modifying initiator and the functional group derived from the denaturing agent are each a modifying initiator derived from a modifying initiator or a modifier Functional group.
또한, 본 발명의 다른 일 실시예에 따르면, 상기 변성 공액디엔계 중합체는 공액디엔계 단량체 유래 반복 단위, 방향족 비닐 단량체 유래 반복 단위, 변성 개시제 유래 작용기 및 변성제 유래 작용기를 포함하는 공중합체일 수 있다. 여기에서, 상기 방향족 비닐 단량체 유래 반복 단위는 방향족 비닐 단량체가 중합 시 이루는 반복 단위를 의미할 수 있다. According to another embodiment of the present invention, the modified conjugated diene polymer may be a copolymer comprising a conjugated diene monomer-derived repeating unit, an aromatic vinyl monomer-derived repeating unit, a denaturation initiator-derived functional group and a denaturant-derived functional group . Here, the repeating unit derived from an aromatic vinyl monomer may mean a repeating unit formed by polymerization of an aromatic vinyl monomer.
본 발명의 일 실시예에 따르면, 상기 공액디엔계 단량체는 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 피페릴렌, 3-부틸-1,3-옥타디엔, 이소프렌, 2-페닐-1,3-부타디엔 및 2-할로-1,3-부타디엔(할로는 할로겐 원자를 의미한다)으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.According to an embodiment of the present invention, the conjugated diene-based monomer may be 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, -1,3-butadiene, and 2-halo-1,3-butadiene (wherein halo means a halogen atom).
상기 방향족 비닐 단량체는 일례로 스티렌, α-메틸스티렌, 3-메틸스티렌, 4-메틸스티렌, 4-프로필스티렌, 1-비닐나프탈렌, 4-시클로헥실스티렌, 4-(p-메틸페닐)스티렌, 1-비닐-5-헥실나프탈렌, 3-(2-피롤리디노 에틸)스티렌(3-(2-pyrrolidino ethyl)styrene), 4-(2-피롤리디노 에틸)스티렌(4-(2-pyrrolidino ethyl)styrene) 및 3-(2-피롤리디노-1-메틸 에틸)-α-메틸스티렌(3-(2-pyrrolidino-1-methyl ethyl)styrene)으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.Examples of the aromatic vinyl monomer include aromatic vinyl monomers such as styrene,? -Methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexylstyrene, 4- 2-pyrrolidino ethyl) styrene, 4- (2-pyrrolidinoethyl) styrene, 4- (2-pyrrolidinoethyl) styrene, ) styrene) and 3- (2-pyrrolidino-1-methylethyl) styrene) may be used.
또 다른 예로, 상기 변성 공액디엔계 중합체는, 상기 공액디엔계 단량체 유래 반복 단위와 함께 탄소수 1 내지 10의 디엔계 단량체 유래 반복 단위를 더 포함하는 공중합체일 수 있다. 상기 디엔계 단량체 유래 반복 단위는 상기 공액디엔계 단량체와는 상이한 디엔계 단량체로부터 유래된 반복 단위일 수 있고, 상기 공액디엔계 단량체와는 상이한 디엔계 단량체는 일례로 1,2-부타디엔일 수 있다. 상기 변성 공액디엔계 중합체가 디엔계 단량체를 더 포함하는 공중합체인 경우, 상기 변성 공액디엔계 중합체는 디엔계 단량체 유래 반복 단위를 0 초과 중량% 내지 1 중량%, 0 초과 중량% 내지 0.1 중량%, 0 초과 중량% 내지 0.01 중량%, 또는 0 초과 중량% 내지 0.001 중량%로 포함할 수 있고, 이 범위 내에서 겔 생성을 방지하는 효과가 있다.As another example, the modified conjugated diene polymer may be a copolymer further comprising a repeating unit derived from a dienic monomer having 1 to 10 carbon atoms together with the repeating unit derived from the conjugated diene monomer. The diene-based monomer-derived repeating unit may be a repeating unit derived from a diene-based monomer different from the conjugated diene-based monomer, and the diene-based monomer different from the conjugated diene-based monomer may be 1,2-butadiene . When the modified conjugated diene polymer is a copolymer further comprising a diene monomer, the modified conjugated diene polymer may contain more than 0% by weight to 1% by weight, more than 0% by weight to 0.1% by weight, More than 0% by weight to 0.01% by weight, or more than 0% by weight to 0.001% by weight, and it is effective to prevent gel formation within this range.
본 발명의 일 실시예에 따르면, 상기 공중합체는 랜덤 공중합체일 수 있고, 이 경우 각 물성 간의 밸런스가 우수한 효과가 있다. 상기 랜덤 공중합체는 공중합체를 이루는 반복 단위가 무질서하게 배열된 것을 의미할 수 있다.According to one embodiment of the present invention, the copolymer may be a random copolymer, and in this case, there is an effect of excellent balance among physical properties. The random copolymer may mean that the repeating units constituting the copolymer are randomly arranged.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 수평균 분자량(Mn)이 1,000 g/mol 내지 2,000,000 g/mol, 10,000 g/mol 내지 1,000,000 g/mol, 또는 100,000 g/mol 내지 800,000 g/mol일 수 있고, 중량평균 분자량(Mw)가 1,000 g/mol 내지 3,000,000 g/mol, 10,000 g/mol 내지 2,000,000 g/mol, 또는 100,000 g/mol 내지 2,000,000 g/mol일 수 있으며, 피크톱 분자량(Mp)가 1,000 g/mol 내지 3,000,000 g/mol, 10,000 g/mol 내지 2,000,000 g/mol, 또는 100,000 g/mol 내지 2,000,000 g/mol일 수 있다. 이 범위 내에서 구름 저항 및 젖은 노면 저항성이 우수한 효과가 있다. 또 다른 예로, 상기 변성 공액디엔계 중합체는 분자량 분포(PDI; MWD; Mw/Mn)가 1.0 이상 1.7 미만, 또는 1.1 이상 내지 1.7 미만일 수 있고, 이 범위 내에서 인장특성 및 점탄성 특성이 우수하고, 각 물성 간의 밸런스가 뛰어난 효과가 있다.The modified conjugated diene polymer according to an embodiment of the present invention may have a number average molecular weight (Mn) of 1,000 g / mol to 2,000,000 g / mol, 10,000 g / mol to 1,000,000 g / mol, or 100,000 g / mol to 800,000 g / mol and may have a weight average molecular weight (Mw) of 1,000 g / mol to 3,000,000 g / mol, 10,000 g / mol to 2,000,000 g / mol, or 100,000 g / mol to 2,000,000 g / mol, (Mp) of from 1,000 g / mol to 3,000,000 g / mol, from 10,000 g / mol to 2,000,000 g / mol, or from 100,000 g / mol to 2,000,000 g / mol. Within this range, rolling resistance and wet road surface resistance are excellent. As another example, the modified conjugated diene polymer may have a molecular weight distribution (PDI: MWD: Mw / Mn) of 1.0 or more and less than 1.7 or 1.1 or more to less than 1.7, and exhibits excellent tensile properties and viscoelastic properties, The balance between the physical properties is excellent.
또 다른 예로, 상기 변성 공액디엔계 중합체는 중량평균 분자량(Mw)과 피크톱 분자량(Mp)의 비가 0.7 내지 1.4일 수 있고, 이 범위 내에서 인장특성, 내마모성 및 점탄성 특성이 우수하고, 각 물성 간의 밸런스가 뛰어난 효과가 있다. As another example, the modified conjugated diene polymer may have a ratio of the weight average molecular weight (Mw) to the peak top molecular weight (Mp) of 0.7 to 1.4, and the tensile property, the abrasion resistance and the viscoelastic property are excellent within this range, There is an excellent effect of balance between the two.
이와 동시에, 상기 변성 공액디엔계 중합체는 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선이 유니모달(unimodal) 형태를 갖는 것으로, 이는 연속식 중합에 의해 중합된 중합체에서 나타나는 분자량 분포로써, 변성 공액디엔계 중합체가 균일할 특성을 갖는 것을 의미할 수 있다. 즉, 본 발명의 일 실시예에 따른 변성 공액디엔계 중합체는 연속식 중합에 의해 제조되어, 유니모달 형태의 분자량 분포 곡선을 가지면서도, 분자량 분포가 1.0 이상 1.7 미만인 것일 수 있다.At the same time, the modified conjugated diene polymer has a molecular weight distribution curve by gel permeation chromatography (GPC) having an unimodal shape, which is a molecular weight distribution in a polymer polymerized by continuous polymerization , It may mean that the modified conjugated diene polymer has uniform properties. That is, the modified conjugated diene polymer according to one embodiment of the present invention may be produced by continuous polymerization to have a molecular weight distribution curve of not less than 1.0 and less than 1.7, while having a molecular weight distribution curve of unimodal form.
일반적으로, 공액디엔계 중합체를 회분식 중합방법으로 제조하고 변성반응을 시킬 경우 제조된 변성 공액디엔계 중합체의 분자량 분포 곡선은 바이모달(bimodal) 이상의 다봉의 분자량 분포곡선을 가진다. 구체적으로, 회분식 중합의 경우 원료들이 모두 투입된 이후에 중합 반응이 개시되어 다수의 개시제에 의해 발생되는 개시점으로부터 사슬의 성장이 동시에 일어날 수 있기 때문에 각 사슬의 성장이 대체로 균일할 수 있고, 이에 따라 제조된 중합체 사슬들의 분자량이 일정하여 분자량 분포가 상당히 좁은 유니모달 형태일 수 있다. 그러나, 변성제를 투입하여 변성반응을 시키는 경우에는 '변성이 되지 않는 경우'와 '변성 및 커플링 되는 경우', 2가지 경우의 수가 발생할 수 있고, 이에 따라 중합체 사슬들 사이에서 분자량의 차이가 큰 2개의 그룹이 형성될 수 있으며, 결국 분자량 분포 곡선의 피크가 2개 이상인 다봉의 분자량 분포 곡선을 형성하게 된다. 한편, 본 발명의 일 실시예에 따른 연속식 중합방법의 경우, 회분식 중합과 달리 반응의 개시와 원료의 투입이 연속적으로 수행되고, 반응이 개시되는 개시점이 생성되는 시점이 상이하며, 이에 따라 중합 개시가 반응 초기부터 시작된 것, 반응 중간에 시작된 것, 반응 말기에 시작된 것 등이 다양하기 때문에 중합 반응을 완료하였을 때에는 다양한 분자량을 갖는 중합체 사슬들이 제조된다. 이에 따라 분자량의 분포를 나타내는 곡선에서 특정 피크가 우세하게 나타나지 않아 단일한 피크로서 분자량 분포 곡선이 넓게 나타나며, 반응 말기에 중합이 개시된 사슬이 커플링되어도 반응 초기에 중합이 개시된 사슬의 분자량과 유사할 수 있어 분자량 분포의 다양성은 동일하게 유지될 수 있으므로 여전히 유니모달의 분포 곡선이 유지되는 것이 일반적인 경우다.Generally, when the conjugated diene polymer is prepared by the batch polymerization method and the modification reaction is carried out, the molecular weight distribution curve of the produced modified conjugated diene polymer has a multimodal molecular weight distribution curve of bimodal or more. Specifically, in the case of the batch polymerization, the growth of each chain can be substantially uniform since the polymerization reaction is initiated after all of the raw materials are introduced and the chain growth can occur from the starting point generated by the plurality of initiators at the same time, It may be in the form of a unimodal with a narrow molecular weight distribution with a constant molecular weight of the polymer chains produced. However, when a denaturing agent is added to a denaturing reaction, there are two cases where the denaturation does not occur and the case where denaturation and coupling occur. Thus, the difference in molecular weight between the polymer chains is large Two groups may be formed, thereby forming a molecular weight distribution curve of a double bond having a peak of a molecular weight distribution curve of two or more. On the other hand, in the continuous polymerization method according to one embodiment of the present invention, unlike the batch polymerization, the start of the reaction and the introduction of the starting material are continuously performed, and the starting point at which the reaction is initiated is different, Polymer chains having various molecular weights can be produced when the polymerization reaction is completed, since initiation starts from the beginning of the reaction, starts in the middle of the reaction, and starts at the end of the reaction. As a result, a specific peak does not appear predominantly in the curve showing the distribution of the molecular weight, so that the molecular weight distribution curve is broad as a single peak. Even if the chain in which polymerization is initiated at the end of the reaction is coupled, the molecular weight of the chain And the distribution of the molecular weight distribution can remain the same.
다만, 회분식 중합방법으로 중합체를 제조하고 변성하는 경우에도 유니모달의 형태를 가지도록 변성 조건을 조절할 수는 있으나, 이 경우에는 중합체 전체가 커플링되지 않은 것이거나, 중합체 전체가 커플링된 것이어야 하고, 그 이외의 경우에는 유니모달의 분자량 분포 곡선을 나타낼 수 없다.However, even when a polymer is produced and modified by a batch polymerization method, the conditions for modification may be adjusted so as to have a unimodal form, but in this case, the entire polymer is not coupled or the entire polymer is coupled. , And in other cases, the molecular weight distribution curve of Unimodule can not be shown.
또한, 전술한 것과 같이 회분식 중합방법으로 제조되었음에도 변성 공액디엔계 중합체의 분자량 분포 곡선이 유니모달의 분포를 나타내는 경우로서 중합체 전부가 커플링된 경우에는 모두 동등 수준의 분자량을 갖는 중합체들만 존재함으로써 가공성이 열악할 수 있고, 실리카 또는 카본블랙 등의 충전제와 상호작용할 수 있는 관능기가 커플링으로 인하여 감소함으로 인해 배합물성이 열악할 수 있으며, 반대의 경우로서, 중합체 전부가 커플링되지 않은 경우에는 가공시 실리카 또는 카본블랙 등의 충전제와 상호작용을 하여야 하는 중합체 말단의 관능기가 충전제보다 중합체 말단 관능기 서로간 상호작용이 우세하게 되어 충전제와의 상호작용을 방해하는 현상이 발생될 수 있고 이에 가공성이 상당히 열악해질 수 있으므로, 결국 회분식 중합방법으로 중합체를 제조하면서 유니모달의 분자량 분포 곡선을 갖도록 조절하는 경우 제조된 변성 공액디엔계 중합체의 가공성 및 배합물성이 떨어지는 문제가 있을 수 있고, 특히 가공성이 현저하게 떨어질 수 있다.In addition, although the molecular weight distribution curve of the modified conjugated diene polymer shows a distribution of Unimodal, even when all of the polymers are coupled, only the polymers having the same level of molecular weight are present, May be poor and the functional properties capable of interacting with the filler such as silica or carbon black may be deteriorated due to the decrease in the coupling property, and in the opposite case, when all of the polymer is not coupled, The functional groups at the end of the polymer, which must interact with the filler such as silica or carbon black, may interfere with the interaction with the filler because the interfacial interaction between the polymer terminal functional groups becomes more prevalent than the filler, So that the batch polymerization method While in case of producing a polymer so as to have a controlled molecular weight distribution curve of yunimo month and may have poor workability and physical properties of the formulation produced modified conjugated diene-based polymer problems, and in particular decrease the workability remarkably.
한편, 변성 공액디엔계 중합체의 커플링 여부는 커플링 수(Coupling Number, C.N.)로 확인할 수 있으며, 여기에서 커플링 수는 중합체의 변성 후, 변성제에 존재하는 중합체가 결합할 수 있는 관능기 수에 의존적인 수치이다. 즉, 중합체 사슬 간 커플링이 없고 말단 변성만 이루어진 중합체와 하나의 변성제에 다수의 중합체 사슬이 커플링된 중합체의 비율을 나타내는 것으로 1≤C.N≤F의 범위를 가질 수 있으며, 이 때 F는 변성제에서, 활성중합체 말단과 반응할 수 있는 관능기 수를 의미하는 것이다. 다시 말해, 커플링 수가 1인 변성 공액디엔계 중합체는 중합체 사슬 모두가 커플링되지 않은 것을 의미하고, 커플링 수가 F인 변성 공액디엔계 중합체는 중합체 사슬 모두가 커플링된 것을 의미한다.On the other hand, whether or not the modified conjugated diene polymer is coupled can be confirmed by the coupling number (CN), where the number of the functional groups after the denaturation of the polymer Dependent. That is, it may have a range of 1 < / RTI > < = CN < / = F, which indicates the ratio of a polymer having only a terminal modification and a polymer having a plurality of polymer chains coupled to one modification agent, Refers to the number of functional groups capable of reacting with the active polymer end. In other words, the modified conjugated diene polymer having the number of couplings of 1 means that all of the polymer chains are not coupled, and the modified conjugated diene polymer having the coupling number of F means that all the polymer chains are coupled.
따라서, 본 발명의 일 실시예에 따른 변성 공액디엔계 중합체는 분자량 분포 곡선이 유니모달 형태이면서도 커플링수가 1 보다는 크고 사용된 변성제의 관능기 수보다는 작은 것일 수 있다(1<C.N.<F).Therefore, the modified conjugated diene polymer according to an embodiment of the present invention may have a molecular weight distribution curve of unimodal shape, but the number of couplings is larger than 1 and smaller than the number of functional groups of the modifier used (1 <C.N. <F).
또 다른 예로, 상기 변성 공액디엔계 중합체는 Si 함량이 중량을 기준으로, 50 ppm 이상, 100 ppm 이상, 100 ppm 내지 10,000 ppm, 또는 100 ppm 내지 5,000 ppm일 수 있고, 이 범위 내에서 변성 공액디엔계 중합체를 포함하는 고무 조성물의 인장 특성 및 점탄성 특성 등의 기계적 물성이 뛰어난 효과가 있다. 상기 Si 함량은 상기 변성 공액디엔계 중합체 내에 존재하는 Si 원자의 함량을 의미할 수 있다. 한편, 상기 Si 원자는 변성제 유래 작용기로부터 유래된 것일 수 있다.As another example, the modified conjugated diene polymer may have a Si content of 50 ppm or more, 100 ppm or more, 100 ppm to 10,000 ppm, or 100 ppm to 5,000 ppm, based on the weight of the modified conjugated diene polymer, There is an effect of excellent mechanical properties such as tensile properties and viscoelastic characteristics of the rubber composition containing the polymer. The Si content may refer to the content of Si atoms present in the modified conjugated diene-based polymer. On the other hand, the Si atom may be derived from a modifier-derived functional group.
상기 Si 함량은 일례로 ICP 분석 방법을 통해 측정된 것일 수 있고, 상기 ICP 분석 방법은 유도 결합 플라즈마 발광 분석기(ICP-OES; Optima 7300DV)를 이용하여 측정된 것일 수 있다. 상기 유도 결합 플라즈마 발광 분석기를 이용하는 경우, 시료 약 0.7 g을 백금 도가니(Pt crucible)에 넣고, 진한 황산(98 중량%, Electronic grade) 약 1 mL를 넣어, 300℃에서 3시간 동안 가열하고, 시료를 전기로(Thermo Scientific, Lindberg Blue M)에서, 하기 스텝(step) 1 내지 3의 프로그램으로 회화를 진행한 후,The Si content may be one measured by an ICP analysis method, and the ICP analysis method may be an ICP-OES (Optima 7300DV). When the inductively coupled plasma emission spectrometer was used, about 0.7 g of a sample was placed in a platinum crucible and about 1 mL of concentrated sulfuric acid (98% by weight, electronic grade) was added and heated at 300 캜 for 3 hours, Was conducted in an electric furnace (Thermo Scientific, Lindberg Blue M) with the program of the following steps 1 to 3,
1) step 1: initial temp 0℃, rate (temp/hr) 180 ℃/hr, temp(holdtime) 180 ℃ (1hr)1) initial temp 0 ° C, rate (temp / hr) 180 ° C / hr, temp (holdtime) 180 ° C (1hr)
2) step 2: initial temp 180℃, rate (temp/hr) 85 ℃/hr, temp(holdtime) 370 ℃ (2hr)2) step 2: initial temp 180 ° C, rate (temp / hr) 85 ° C / hr, temp (holdtime) 370 ° C
3) step 3: initial temp 370℃, rate (temp/hr) 47 ℃/hr, temp(holdtime) 510 ℃ (3hr)3) step 3: initial temp 370 ° C, rate (temp / hr) 47 ° C / hr, temp (holdtime) 510 ° C
잔류물에 진한 질산(48 중량%) 1 mL, 진한 불산(50 중량%) 20 ㎕를 가하고, 백금 도가니를 밀봉하여 30분 이상 흔들어(shaking)준 후, 시료에 붕산(boric acid) 1 mL를 넣고 0℃에서 2시간 이상 보관한 후, 초순수(ultrapure water) 30 mL에 희석하여, 회화를 진행하여 측정한 것일 수 있다.Add 1 mL of concentrated nitric acid (48% by weight) and 20 μL of concentrated hydrofluoric acid (50% by weight) to the residue. Seal the platinum crucible for 30 minutes or more and shake it. Then add 1 mL of boric acid , Stored at 0 ° C for 2 hours or more, diluted in ultrapure water (30 mL), and subjected to filtration.
이 때 상기의 ICP 분석 방법에 사용되는 시료는 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 변성 공액 디엔계 중합체 시료로서, 잔류 모노머 및 잔류 변성제를 제거한 시료일 수 있다. 또한, 상기의 시료에 오일이 첨가되어 있다면, 오일이 추출(제거)된 후의 시료일 수 있다.At this time, the sample used in the above ICP analysis method may be a sample obtained by removing the residual monomer and the residual denaturant from the denatured conjugated diene polymer sample obtained by removing the solvent by stirring in hot water heated with steam. Further, if oil is added to the sample, it may be a sample after the oil is extracted (removed).
또 다른 예로, 상기 변성 공액디엔계 중합체는 총 중량을 기준으로 N 함량이 50 ppm 이상, 100 ppm 이상, 100 ppm 내지 10,000 ppm 또는 100 ppm 내지 5,000 ppm일 수 있고, 이 범위 내에서 변성 공액디엔계 중합체를 포함하는 고무 조성물의 인장 특성 및 점탄성 특성 등의 기계적 물성이 뛰어난 효과가 있다. 상기 N 함량은 상기 변성 공액디엔계 중합체 내에 존재하는 N 원자의 함량을 의미할 수 있고, 이때 상기 N 원자는 변성제 유래 작용기로부터 유래된 것일 수 있다.As another example, the modified conjugated diene polymer may have an N content of 50 ppm or more, 100 ppm or more, 100 ppm to 10,000 ppm or 100 ppm to 5,000 ppm based on the total weight, and the modified conjugated diene polymer The rubber composition containing the polymer has excellent mechanical properties such as tensile properties and viscoelastic properties. The N content may refer to the content of N atoms present in the modified conjugated diene polymer, wherein the N atom may be derived from a modifier-derived functional group.
상기 N 함량은 일례로 NSX 분석 방법을 통해 측정된 것일 수 있고, 상기 NSX 분석 방법은 극미량 질소 정량분석기 (NSX-2100H)를 이용하여 측정된 것일 수 있다. The N content may be one measured by an NSX analysis method, and the NSX analysis method may be measured by using a trace nitrogen analyzer (NSX-2100H).
예시적으로, 상기 극미량 질소 정량분석기를 이용하는 경우, 극미량 질소 정량분석기(Auto sampler, Horizontal furnace, PMT & Nitrogen detector)를 켜고 Ar을 250 ml/min, O2를 350 ml/min, ozonizer 300 ml/min으로 캐리어 가스 유량을 설정하고, heater를 800℃로 설정한 후 약 3시간 동안 대기하여 분석기를 안정화시켰다. 분석기가 안정화된 후 Nitrogen standard(AccuStandard S-22750-01-5 ml)를 이용하여 검량선 범위 5 ppm, 10 ppm, 50 ppm, 100 ppm 및 500 ppm의 검량선을 작성하고 각 농도에 해당하는 Area를 얻은 후 농도 대 Area의 비율을 이용하여 직선을 작성하였다. 이후, 시료 20 mg가 담긴 세라믹 보트를 상기 분석기의 Auto sampler에 놓고 측정하여 area를 얻었다. 얻어진 시료의 area와 상기 검량선을 이용하여 N 함량을 계산하였다. For example, when the Nitrogen Quantitative Analyzer is used, an autosampler (Horizontal furnace, PMT & Nitrogen detector) is turned on and 250 ml / min of Ar, 350 ml / min of O 2 , 300 ml / min, the heater was set at 800 ° C, and the analyzer was stabilized by waiting for about 3 hours. After the analyzer was stabilized, calibration curves of 5 ppm, 10 ppm, 50 ppm, 100 ppm, and 500 ppm were prepared using the Nitrogen standard (AccuStandard S-22750-01-5 ml) A straight line was created using the ratio of posterior density to area. Then, a ceramic boat containing 20 mg of the sample was placed in an automatic sampler of the analyzer, and the area was measured. The N content was calculated using the area of the obtained sample and the calibration curve.
이 때 상기의 NSX 분석 방법에 사용되는 시료는 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 변성 공액 디엔계 중합체 시료로서, 잔류 모노머 및 잔류 변성제를 제거한 시료일 수 있다. 또한, 상기의 시료에 오일이 첨가되어 있다면, 오일이 추출(제거)된 후의 시료일 수 있다.In this case, the sample used in the NSX analysis method may be a sample obtained by removing the residual monomer and the residual denaturant from the denatured conjugated diene polymer sample obtained by removing the solvent by stirring in hot water heated by steam. Further, if oil is added to the sample, it may be a sample after the oil is extracted (removed).
또 다른 예로, 상기 변성 공액디엔계 중합체는 100℃에서 측정된 무니 완화율이 0.7 이상, 0.7 이상 3.0 이하, 0.7 이상 2.5 이하 또는 0.7 이상 2.0 이하인 것일 수 있다. As another example, the modified conjugated diene polymer may have a Mooney moderation rate measured at 100 ° C of 0.7 or more, 0.7 or more and 3.0 or less, 0.7 or more and 2.5 or less or 0.7 or more and 2.0 or less.
여기에서, 상기 무니 완화율은 동일 양의 변성(strain)에 대한 반응으로 나타나는 스트레스(stress)의 변화를 나타내는 것으로, 무니점도계를 사용하여 측정한 것일 수 있다. 구체적으로 상기 무니 완화율은 Monsanto社 MV2000E의 Large Rotor를 사용하여 100℃ 및 Rotor Speed 2±0.02 rpm의 조건에서, 중합체를 실온(23±5℃)에서 30분이상 방치한 후 27±3 g을 채취하여 다이 캐비티 내부에 채워 놓고 플래턴(platen)을 작동시켜 토크(torque)를 인가하면서 무니점도를 측정하고, 이후 토크가 풀리면서 나타나는 무니점도 변화의 기울기 값을 측정하여 이의 절대값으로 얻었다. Here, the mooney relaxation rate represents a change in stress caused by a reaction with the same amount of strain, and may be measured using a Mooney viscometer. Specifically, the mooney relaxation rate was 27 ± 3 g after allowing the polymer to stand at room temperature (23 ± 5 ° C.) for 30 minutes or more at 100 ° C. and a rotor speed of 2 ± 0.02 rpm using a large rotor of Monsanto MV2000E The Mooney viscosity was measured while a torque was applied by operating a platen, and then the slope value of the Mooney viscosity change as the torque was released was measured to obtain an absolute value thereof.
한편, 무니 완화율은 해당 중합체의 분지구조의 지표로서 사용할 수 있으며, 예컨대 무니점도가 동등한 중합체를 비교하는 경우 분지가 많을수록 무니 완화율이 작아지기 때문에 분지도의 지표로서 사용할 수 있다. On the other hand, the mooney relaxation rate can be used as an index of the branch structure of the polymer. For example, when comparing polymers having the same Mooney viscosity, the mooney relaxation rate becomes smaller as the number of branches becomes larger.
또한, 상기 변성 공액디엔계 중합체는 무니점도(Mooney viscosity)가 100℃에서, 30 이상, 40 내지 150, 또는 40 내지 140일 수 있고, 이 범위 내에서 가공성 및 생산성이 우수한 효과가 있다.The modified conjugated diene polymer may have a Mooney viscosity at 100 ° C of 30 or more, 40 to 150, or 40 to 140, and within this range, the modified conjugated diene polymer has excellent processability and productivity.
또 다른 예로, 상기 변성 공액디엔계 중합체는 점도 검출기를 구비한 겔 투과 크로마토그래피-광산란법 측정에 의해 구해지는 수축인자(g')가 0.8 이상, 구체적으로는 0.8 이상 3.0 이하, 더 구체적으로는 0.8 이상 1.3 이하, 보다 더 구체적으로는 1.0 이상 1.3 이하인 것일 수 있다.As another example, the modified conjugated diene polymer preferably has a shrinking factor (g ') of 0.8 or more, more preferably 0.8 or more and 3.0 or less, determined by gel permeation chromatography-light scattering method measurement using a viscosity detector, More preferably 0.8 or more and 1.3 or less, still more preferably 1.0 or more and 1.3 or less.
여기에서, 상기 겔 투과 크로마토그래피-광산랍법 측정에 의해 구해지는 수축인자(g')는 동일한 절대 분자량을 갖는 선형의 중합체의 고유점도에 대한 분지를 갖는 중합체의 고유점도의 비율로, 분지를 갖는 중합체의 분지구조의 지표, 즉 분지가 차지하는 비율의 지표로서 사용할 수 있으며, 예를 들어 상기 수축인자가 감소함에 따라 해당 중합체의 분지수는 증가하는 경향이 있으며, 따라서 절대 분자량이 동등한 중합체를 비교하는 경우 분지가 많을수록 수축인자가 작아지기 때문에 분지도의 지표로서 사용할 수 있다. Here, the shrinkage factor g 'determined by the gel permeation chromatography-photolithographic method is the ratio of the intrinsic viscosity of the polymer having a branch to the intrinsic viscosity of a linear polymer having the same absolute molecular weight, Can be used as an index of the branch structure of the polymer, that is, the ratio of the branch, for example, as the shrinkage factor decreases, the branching index of the polymer tends to increase, The more branches are used, the smaller the shrinkage factor can be used as an indicator of branching.
또한, 상기 수축인자는 점도 검출기를 구비한 겔 크로마토그래피-광산란 측정장치를 사용하여 크로마토그램을 측정하고, 용액점도 및 광산란법에 기초하여 산출한 것으로, 구체적으로는 폴리스티렌계 겔을 충전제로 한 컬럼 2자루가 연결된 광산란 검출기 및 점도 검출기가 구비된 GPC-광산란 측정장치를 사용하여 절대 분자량과, 각 절대 분자량에 해당하는 고유점도를 얻고, 상기 절대 분자량에 해당하는 선형 중합체의 고유점도를 산출한 후, 각 절대 분자량에 대응하는 고유점도의 비로써 수축인자를 구하였다. 예시적으로, 상기 수축인자는 폴리스티렌계 겔을 충전제로 한 컬럼 2자루가 연결된 광산란 검출기 및 점도 검출기가 구비된 GPC-광산란 측정장치(Viscotek TDAmax, Malvern 社)에 시료를 주입해서 광산란 검출기로부터 절대 분자량을 얻고, 광산란 검출기와 점도 검출기로부터 절대 분자량에 대한 고유점도[η]를 얻은 후, 하기 수학식 3을 통하여 상기 절대 분자량에 대한 선형 중합체의 고유점도[η]0를 산출하여, 각 절대 분자량에 대응하는 고유점도의 비([η]/ [η]0)의 평균값을 수축인자로 나타내었다. 이때, 용리액은 테트라히드로푸란과 N,N,N',N'-테트라메틸에틸렌디아민의 혼합 용액(N,N,N',N'-테트라메틸에틸렌디아민 20 mL를 테트라히드로푸란 1L에 혼합시켜 조정함)을 사용하고, 칼럼은 PL Olexix(Agilent 社)사용하였으며, 오븐 온도 40℃, THF 유량 1.0 mL/분의 조건에서 측정하였으며, 시료는 10 mL의 THF에 중합체 15 ㎎을 용해시켜 준비하였다. The shrinkage factor was calculated based on the solution viscosity and the light scattering method by measuring the chromatogram using a gel chromatography-light scattering measurement apparatus equipped with a viscosity detector. Specifically, the shrinkage factor was measured using a column comprising a polystyrene- An absolute molecular weight and an intrinsic viscosity corresponding to each absolute molecular weight were obtained using a GPC-light scattering measurement apparatus equipped with a light scattering detector and a viscosity detector connected to each other, and the intrinsic viscosity of the linear polymer corresponding to the absolute molecular weight was calculated , And the shrinkage factor was determined as a ratio of intrinsic viscosity corresponding to each absolute molecular weight. Illustratively, the shrinkage factor was determined by injecting a sample into a GPC-light scattering measurement apparatus (Viscotek TDAmax, Malvern) equipped with a light scattering detector and a viscosity detector with two columns connected with a polystyrene-based gel as a filler, to obtain, by calculating a Light scattering detector and a viscosity after from the detector obtained the intrinsic viscosity of the absolute molecular weight [η], to the intrinsic viscosity of the linear polymer on the absolute molecular weights by the following formula 3 [η] 0, each of the absolute molecular weight The average value of the ratio of the corresponding intrinsic viscosity ([?] / [?] 0 ) is shown by the shrinkage factor. At this time, the eluent was prepared by mixing 20 mL of a mixed solution of N, N, N ', N'-tetramethylethylenediamine (N, N, N', N'- tetramethylethylenediamine, tetrahydrofuran and 1 L of tetrahydrofuran, ) Was used, and a column was PL Olexix (Agilent). The column was measured at an oven temperature of 40 ° C. and a THF flow rate of 1.0 mL / min. The sample was prepared by dissolving 15 mg of polymer in 10 mL of THF .
[수학식 3] &Quot; (3) &quot;
[η]0=10-3.883M0.771 [η] 0 = 10 -3.883 M 0.771
상기 수학식 3에서 M은 절대 분자량이다.In the above formula (3), M is an absolute molecular weight.
또한, 상기 변성 공액디엔계 중합체는 비닐 함량이 5 중량% 이상, 10 중량% 이상, 또는 10 중량% 내지 60 중량%일 수 있다. 여기에서, 상기 비닐 함량은 비닐기를 갖는 단량체와 방향족 비닐계 단량체로 이루어진 공액디엔계 공중합체 100 중량%에 대하여 1,4-첨가가 아닌 1,2-첨가된 공액디엔계 단량체의 함량을 의미할 수 있다.The modified conjugated diene polymer may have a vinyl content of 5 wt% or more, 10 wt% or more, or 10 wt% to 60 wt%. Here, the vinyl content refers to the content of the 1,2-added conjugated diene monomer, not 1,4-added to 100% by weight of the conjugated diene-based copolymer composed of the monomer having vinyl group and the aromatic vinyl monomer .
또 다른 예로, 상기 변성 공액디엔계 중합체는 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선이 유니모달(unimodal) 형태를 갖고, 겔 투과 크로마토그래피에 의한 표준 폴리스티렌 환산 분자량에 있어서 중량평균 분자량(Mw)이 1,000 g/mol 내지 3,000,000 g/mol이고, 중량평균 분자량(Mw)과 수평균 분자량(Mn)의 비(Mw/Mn)가 1.0 이상 1.7 미만이고, 중량평균 분자량(Mw)과 피크톱 분자량(Mp)의 비(Mw/Mp)가 0.7 내지 1.4이고, Si 함량 및 N 함량이 각각 중량을 기준으로 50 ppm 이상이고, 100℃에서 측정된 무니 완화율이 0.7 이상인 것일 수 있다. 아울러, 상기 변성 공액디엔계 중합체는 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 표준 폴리스티렌 환산 분자량에 있어서 분자량 100,000 g/mol 이상의 중합체 성분이 유니모달 형태를 갖는 것일 수 있으며, 또한, 상기 변성 공액디엔계 중합체는 수평균 분자량이 점도 검출기를 구비한 겔 투과 크로마토그래피-광산란법 측정에 의해 구해지는 수축인자가 0.8 이상인 것일 수 있다.As another example, the modified conjugated diene polymer has a unimodal molecular weight distribution curve by gel permeation chromatography (GPC) and has a weight average molecular weight in terms of standard polystyrene reduced by gel permeation chromatography A weight average molecular weight (Mw) of from 1,000 g / mol to 3,000,000 g / mol and a ratio (Mw / Mn) of a weight average molecular weight (Mw) to a number average molecular weight (Mn) (Mw / Mp) of the peak top molecular weight (Mp) is 0.7 to 1.4, the Si content and the N content are respectively 50 ppm or more by weight and the mooney relaxation ratio measured at 100 ° C is 0.7 or more . In addition, the modified conjugated diene polymer may have a polymer component having a molecular weight of 100,000 g / mol or more in terms of standard polystyrene reduced by gel permeation chromatography (GPC) with a unimodal form, The conjugated diene polymer may have a number-average molecular weight of 0.8 or more as determined by a gel permeation chromatography-light scattering method equipped with a viscosity detector.
한편, 본 발명의 일 실시예에 따른 상기 변성 개시제는 하기 화학식 1로 표시되는 화합물과 유기금속 화합물을 반응시켜 생성된 것으로, 중합을 개시하면서, 동시에 중합되어 형성된 중합체 사슬의 일 말단에 작용기를 도입시킬 수 있는 것일 수 있다. Meanwhile, the modification initiator according to an embodiment of the present invention is produced by reacting a compound represented by the following general formula (1) with an organometallic compound, introducing a functional group at one end of a polymer chain It can be done.
[화학식 1][Chemical Formula 1]
Figure PCTKR2018015145-appb-I000021
Figure PCTKR2018015145-appb-I000021
상기 화학식 1에서, R1 내지 R3는 각각 독립적으로 수소; 탄소수 1 내지 30의 알킬기; 탄소수 2내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기, 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 또는 탄소수 3 내지 30의 헤테로고리기이며, R4는 단일결합; 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고, R5는 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기; 또는 하기 화학식 1a 또는 화학식 1b로 표시되는 작용기이며, n은 1 내지 5의 정수이고, R5 중 적어도 하나는 하기 화학식 1a 또는 화학식 1b로 표시되는 작용기이며, n이 2 내지 5의 정수인 경우 복수 개의 R5는 서로 동일하거나 상이할 수 있고, In Formula 1, R 1 to R 3 are each independently hydrogen; An alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms, a heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; Or a heterocyclic group having 3 to 30 carbon atoms, R 4 is a single bond; An alkylene group having 1 to 20 carbon atoms which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or substituted with a substituent or unsubstituted arylene group of a ring having 6 to 20 carbon atoms, where the substituent is an aryl group having 1 to 10 carbon alkyl group, having 5 to 10, a cycloalkyl group, or a group having 6 to 20 carbon atoms of, R 5 is An alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms; A heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; A heterocyclic group having 3 to 30 carbon atoms; Or a functional group represented by the following formula (1a) or (1b), n is an integer of 1 to 5, at least one of R 5 is a functional group represented by the following formula (1a) or (1b), and when n is an integer of 2 to 5, R &lt; 5 &gt; may be the same or different from each other,
[화학식 1a][Formula 1a]
Figure PCTKR2018015145-appb-I000022
Figure PCTKR2018015145-appb-I000022
상기 화학식 1a에서, R6은 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고, R7 및 R8은 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기이며, R9는 수소; 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기이고, X는 N, O 또는 S 원자이며, X가 O 또는 S인 경우 R9는 존재하지 않으며, In Formula 1a, R 6 represents an alkylene group having 1 to 20 carbon atoms, which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms as a substituent, and the substituent here is an aryl group having 1 to 10 carbon alkyl group, having 5 to 10, a cycloalkyl group, or a group having 6 to 20 carbon atoms of, R 7, and R 8 is each independently an alkyl group having 1 to 10 carbon alkyl group, having 5 to 10, a cycloalkyl group, or aryl group having 6 to 20 substituted or unsubstituted 1 to 20 carbon atoms of, R 9 is hydrogen; An alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms; A heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; Having 3 to 30 of a heterocyclic group, X is a N, O or S atom, and when X is O or S, R 9 is not present,
[화학식 1b][Chemical Formula 1b]
Figure PCTKR2018015145-appb-I000023
Figure PCTKR2018015145-appb-I000023
상기 화학식 1b에서, R10은 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고, R11 및 R12는 각각 독립적으로 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기이다.In Formula 1b, R 10 is an alkylene group having 1 to 20 carbon atoms, which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms as a substituent, and the substituent here is an aryl group having 1 to 10 carbon alkyl group, having 5 to 10, a cycloalkyl group, or a group having 6 to 20 carbon atoms of, R 11, and R 12 each independently represents an alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms; A heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; And a heterocyclic group having 3 to 30 carbon atoms.
구체적으로, 상기 화학식 1로 표시되는 화합물은, 화학식 1에서 R1 내지 R3는 각각 독립적으로 수소; 탄소수 1 내지 10의 알킬기; 탄소수 2내지 10의 알케닐기; 또는 탄소수 2 내지 10의 알카이닐기이고, R4는 단일결합; 또는 비치환된 탄소수 1 내지 10의 알킬렌기이고, R5는 탄소수 1 내지 10의 알킬기; 탄소수 2 내지 10의 알케닐기; 탄소수 2 내지 10의 알카이닐기; 또는 하기 화학식 1a 또는 화학식 1b로 표시되는 작용기이며, 상기 화학식 1a에서, R6은 비치환된 탄소수 1 내지 10의 알킬렌기이고, R7 및 R8은 각각 독립적으로 비치환된 탄소수 1 내지 10의 알킬렌기이고, R9는 탄소수 1 내지 10의 알킬기; 탄소수 5 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 또는 탄소수 3 내지 20의 헤테로고리기이고, 상기 화학식 1b에서, R10은 비치환된 탄소수 1 내지 10의 알킬렌기이고, R11 및 R12는 각각 독립적으로 탄소수 1 내지 10의 알킬기; 탄소수 5 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 또는 탄소수 3 내지 20의 헤테로고리기인 것일 수 있다.Specifically, in the compound represented by Formula 1, R 1 to R 3 are each independently selected from the group consisting of hydrogen; An alkyl group having 1 to 10 carbon atoms; An alkenyl group having 2 to 10 carbon atoms; Or an alkynyl group having 2 to 10 carbon atoms, R 4 is a single bond; Or an unsubstituted alkylene group having 1 to 10 carbon atoms; R 5 is an alkyl group having 1 to 10 carbon atoms; An alkenyl group having 2 to 10 carbon atoms; An alkynyl group having 2 to 10 carbon atoms; Or a functional group represented by the following formula (1a) or (1b): wherein R 6 is an unsubstituted alkylene group having 1 to 10 carbon atoms, R 7 and R 8 each independently represent an unsubstituted group having 1 to 10 carbon atoms R 9 is an alkyl group having 1 to 10 carbon atoms; A cycloalkyl group having 5 to 20 carbon atoms; An aryl group having 6 to 20 carbon atoms; Or a heterocyclic group having 3 to 20 carbon atoms, wherein R 10 is an unsubstituted alkylene group having 1 to 10 carbon atoms, R 11 and R 12 each independently represent an alkyl group having 1 to 10 carbon atoms; A cycloalkyl group having 5 to 20 carbon atoms; An aryl group having 6 to 20 carbon atoms; Or a heterocyclic group having 3 to 20 carbon atoms.
보다 더 구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1 내지 화학식 1-3으로 표시되는 화합물인 것일 수 있다. More specifically, the compound represented by Formula 1 may be a compound represented by Formula 1-1 or Formula 1-3.
[화학식 1-1][Formula 1-1]
Figure PCTKR2018015145-appb-I000024
Figure PCTKR2018015145-appb-I000024
[화학식 1-2][Formula 1-2]
Figure PCTKR2018015145-appb-I000025
Figure PCTKR2018015145-appb-I000025
[화학식 1-3][Formula 1-3]
Figure PCTKR2018015145-appb-I000026
Figure PCTKR2018015145-appb-I000026
또한, 상기 유기금속 화합물은 유기알칼리 금속 화합물일 수 있고, 예컨대 유기리튬 화합물, 유기나트륨 화합물, 유기칼륨 화합물, 유기루비듐 화합물 및 유기세슘 화합물 중에서 선택된 1종 이상인 것일 수 있다. In addition, the organometallic compound may be an organic alkali metal compound and may be one or more selected from, for example, an organic lithium compound, an organosodium compound, an organic potassium compound, an organic rubidium compound, and an organic cesium compound.
구체적으로, 상기 유기금속 화합물은 메틸리튬, 에틸리튬, 이소프로필리튬, n-부틸리튬, sec-부틸리튬, tert-부틸리튬, n-데실리튬, tert-옥틸리튬, 페닐리튬, 1-나프틸리튬, n-에이코리튬, 4-부틸페닐리튬, 4-톨릴리튬, 시클로헥실리튬, 3,5-디-n-헵틸시클로헥실리튬 및 4-시클로펜틸리튬 중에서 선택된 1종 이상인 것일 수 있다. Specifically, the organometallic compound is preferably selected from the group consisting of methyl lithium, ethyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, tert- But may be one or more selected from lithium, n-eicolithium, 4-butylphenyllithium, 4-tolylithium, cyclohexyllithium, 3,5-di-n-heptylcyclohexyllithium and 4-cyclopentyllithium.
또한, 본 발명에 따른 상기 변성제는 공액디엔계 중합체의 나머지 일 말단을 변성시키기 위한 변성제일 수 있고, 구체적인 예로 실리카 친화성 변성제일 수 있다. 상기 실리카 친화성 변성제는 변성제로 이용되는 화합물 내에 실리카 친화성 작용기를 함유하는 변성제를 의미하는 것일 수 있고, 상기 실리카 친화성 작용기는 충전제, 특히 실리카계 충전제와 친화성이 우수하여, 실리카계 충전제와 변성제 유래 작용기 간의 상호작용이 가능한 작용기를 의미하는 것일 수 있다.Further, the modifier according to the present invention may be a modifier for modifying the other end of the conjugated diene polymer, and may be a silica-affinity modifier, for example. The silica affinity modifier may be a modifier containing a silica affinity functional group in a compound used as a modifier, and the silica affinity functional group is excellent in affinity with a filler, particularly a silica type filler, May refer to a functional group capable of interaction between the modifier-derived functional groups.
구체적으로, 본 발명의 일 실시예에 따르면, 상기 변성제는 화학식 2로 표시되는 화합물일 수 있고, 상기 화학식 2에서 Ra1 및 Ra4는 서로 독립적으로 단일결합, 또는 탄소수 1 내지 5의 알킬렌기이고, Ra2 및 Ra3는 서로 독립적으로 탄소수 1 내지 5의 알킬기이고, Ra5는 N, O 및 S로 이루어진 군으로부터 선택되는 1종 이상의 헤테로 원자를 포함하는 탄소수 2 내지 4의 5원 헤테로고리기이고, 여기에서 상기 헤테로고리기는 (트리알콕시실릴)알킬기로 치환되거나 또는 비치환될 수 있고, 상기 (트리알콕시실릴)알킬기에서 알킬기는 탄소수 1 내지 5의 알킬기이고, 상기 알콕시기는 탄소수 1 내지 5의 알콕시기인 것일 수 있다. 또한, 상기 5원 헤테로고리기는 구체적으로는 N을 포함하는 5원 헤테로고리기인 것일 수 있다. Specifically, according to one embodiment of the present invention, the modifier may be a compound represented by the general formula (2), wherein R a1 and R a4 are independently a single bond or an alkylene group having 1 to 5 carbon atoms , R a2 and R a3 are each independently an alkyl group having 1 to 5 carbon atoms and R a5 is a 5-membered heterocyclic group having 2 to 4 carbon atoms and containing at least one hetero atom selected from the group consisting of N, O and S Wherein the heterocyclic group may be substituted or unsubstituted with a (trialkoxysilyl) alkyl group, the alkyl group in the (trialkoxysilyl) alkyl group is an alkyl group having 1 to 5 carbon atoms, and the alkoxy group may have 1 to 5 carbon atoms Or an alkoxy group. The 5-membered heterocyclic group may specifically be a 5-membered heterocyclic group containing N. [
보다 구체적인 예로, 상기 화학식 2로 표시되는 화합물은 N-(3-(1H-이미다졸-1-일)프로필)-3-(1H-이미다졸-1-일)-N-((트리에톡시실릴)메틸)프로판-1-아민(N-(3-(1H-imidazol-1-yl)propyl)-3-(1H-imidazol-1-yl)-N-((triethoxysilyl)methyl)propan-1-amine),As a more specific example, the compound represented by the above formula (2) can be obtained by reacting N- (3- (1H-imidazol-1-yl) propyl) -3- (1H- Propyl-3- (1H-imidazol-1-yl) -N - ((triethoxysilyl) methyl) propan-1 -amine),
N-(3-(1H-1,2,4-트리아졸-1-일)프로필)-3-(트리메톡시실릴)-N-((트리메톡시실릴)프로필)프로판-1-아민(N-(3-(1H-1,2,4-triazole-1-yl)propyl)-3-(trimethoxysilyl)-N-((trimethoxysilyl)propyl)propan-1-amine), N-(3-(1H-1,2,4-트리아졸-1-일)프로필)-3-(트리메톡시실릴)-N-(3-(트리메톡시실릴)프로필)프로판-1-아민(N-(3-(1H-1,2,4-triazol-1-yl)propyl)-3-(trimethoxysilyl)-N-(3-(trimethoxysilyl)propyl)propan-1-amine) 및 3-(트리메톡시실릴)-N-(3-트리메톡시실릴)프로필)-N-(3-(1-(3-(트리메톡시실릴)프로필)-1H-1,2,4-트리아졸-3-일)프로필)프로판-1-아민(3-(trimethoxysilyl)-N-(3-(trimethoxysilyl)propyl)-N-(3-(1-(3-(trimethoxysilyl)propyl)-1H-1,2,4-triazol-3-yl)propyl)propan-1-amine)으로 이루어진 군으로부터 선택된 1종일 수 있다.(Trimethoxysilyl) propyl) propane-1-amine (prepared by reacting N- (3- (1H-1,2,4-triazol- Propyl) propan-1-amine, N- (3- (1H-1,2,4-triazol-1-yl) propyl) -3- (trimethoxysilyl) -N- (trimethoxysilyl) Propyl) propane-1-amine (N- (3-methoxyphenyl) propyl) (Trimethoxysilyl) -N- (3- (trimethoxysilyl) propyl) propan-1-amine and 3- (trimethoxysilyl) (3-trimethoxysilyl) propyl) -N- (3- (1- (3- (trimethoxysilyl) propyl) -1H-1,2,4- triazol- ) -3-trimethoxysilyl) -N- (3- (trimethoxysilyl) propyl) -N- (3- (1- (3- (trimethoxysilyl) propyl) -1H-1,2,4-triazole -3-yl) propyl) propan-1-amine).
또한, 구체적으로, 본 발명의 다른 일 실시예에 따르면, 상기 변성제는 화학식 3으로 표시되는 화합물일 수 있고, 상기 화학식 3에서, A1 및 A2는 서로 독립적으로 탄소수 1 내지 10의 알킬렌기이고, Rb1 내지 Rb4는 서로 독립적으로 탄소수 1 내지 10의 알킬기이고, Rb5 및 Rb6은 서로 독립적으로 수소 또는 탄소수 1 내지 10의 알킬기이고, A3 및 A4는 서로 독립적으로
Figure PCTKR2018015145-appb-I000027
또는
Figure PCTKR2018015145-appb-I000028
이고, 여기에서 Rb7 내지 Rb10은 서로 독립적으로 수소, 또는 탄소수 1 내지 10의 알킬기일 수 있다.
According to another embodiment of the present invention, the modifier may be a compound represented by the general formula (3), wherein A 1 and A 2 independently represent an alkylene group having 1 to 10 carbon atoms , R b1 to R b4 are each independently an alkyl group having 1 to 10 carbon atoms, R b5 and R b6 are independently hydrogen or an alkyl group having 1 to 10 carbon atoms, A 3 and A 4 are independently of each other
Figure PCTKR2018015145-appb-I000027
or
Figure PCTKR2018015145-appb-I000028
, Wherein R b7 to R b10 may independently be hydrogen or an alkyl group having 1 to 10 carbon atoms.
더 구체적으로, 상기 화학식 3으로 표시되는 화합물은 하기 화학식 3-1 또는 화학식 3-2로 표시되는 화합물인 것일 수 있다. More specifically, the compound represented by the formula (3) may be a compound represented by the following formula (3-1) or (3-2).
[화학식 3-1][Formula 3-1]
Figure PCTKR2018015145-appb-I000029
Figure PCTKR2018015145-appb-I000029
[화학식 3-2][Formula 3-2]
Figure PCTKR2018015145-appb-I000030
Figure PCTKR2018015145-appb-I000030
상기 화학식 3-1 및 화학식 3-2에서, A1 및 A2는 서로 독립적으로 탄소수 1 내지 10의 알킬렌기이고, Rb1 내지 Rb4는 서로 독립적으로 탄소수 1 내지 10의 알킬기이다.In the formulas (3-1) and (3-2), A 1 and A 2 are each independently an alkylene group having 1 to 10 carbon atoms, and R b1 to R b4 are independently an alkyl group having 1 to 10 carbon atoms.
보다 구체적인 예로, 상기 화학식 3으로 표시되는 화합물은 1,3-비스(3-(1H-이미다졸-1-일)프로필)1,1,3,3-테트라메톡시디실록산(1,3-bis(3-(1H-imidazol-1-yl)propyl)-1,1,3,3-tetramethoxydisiloxane), 1,3-비스(3-(1H-이미다졸-1-일)프로필)1,1,3,3-테트라에톡시디실록산(1,3-bis(3-As a more specific example, the compound represented by Formula 3 may be a 1,3-bis (3- (1H-imidazol-1-yl) propyl) 1,1,3,3-tetramethoxydisiloxane (3- (1H-imidazol-1-yl) propyl) -1,1,3,3-tetramethoxydisiloxane), 1,3- 3,3-tetraethoxydisiloxane (1,3-bis (3-
(1H-imidazol-1-yl)propyl)-1,1,3,3-tetraethoxydisiloxane), 및 1,3-비스(3-(1H-이미다졸-1-일)프로필)1,1,3,3-테트라프로폭시디실록산(1,3-bis(3-(1H-imidazol-1-yl)propyl)-1,1,3,3-tetrapropoxydisiloxane)으로부터 선택된 1종일 수 있다.(1H-imidazol-1-yl) propyl) -1,1,3,3-tetraethoxydisiloxane), and 1,3- (1,3-bis (3- (1H-imidazol-1-yl) propyl) -1,1,3,3-tetrapropoxydisiloxane).
또한, 구체적으로, 본 발명의 다른 일 실시예에 따르면, 상기 변성제는 화학식 4로 표시되는 화합물일 수 있고, 상기 화학식 4에서 Rc1은 수소 또는 탄소수 1 내지 5의 알킬기이고, Rc2 내지 Rc4는 서로 독립적으로 탄소수 1 내지 5의 알킬렌기이고, Rc5 내지 Rc8은 서로 독립적으로 탄소수 1 내지 5의 알킬기이고, A5
Figure PCTKR2018015145-appb-I000031
또는
Figure PCTKR2018015145-appb-I000032
이고, 여기에서 Rc9 내지 Rc12는 서로 독립적으로 수소, 또는 탄소수 1 내지 5의 알킬기인 것일 수 있다.
According to another embodiment of the present invention, the modifier may be a compound represented by the general formula (4), wherein R c1 is hydrogen or an alkyl group having 1 to 5 carbon atoms, R c2 to R c4 R c5 to R c8 independently represent an alkyl group having 1 to 5 carbon atoms, and A 5 represents an alkyl group having 1 to 5 carbon atoms,
Figure PCTKR2018015145-appb-I000031
or
Figure PCTKR2018015145-appb-I000032
, Wherein R c9 to R c12 independently of each other may be hydrogen or an alkyl group having 1 to 5 carbon atoms.
보다 구체적인 예로, 상기 화학식 4로 표시되는 화합물은 N-(3-(1H-이미다졸-1-일)프로필)-3-(트리에톡시실릴)-N-(3-(트리에톡시실릴)프로필)프로판-1-아민(N-(3-(1H-imidazol-1-yl)propyl)- 3-(triethoxysilyl)-N-(3-As a more specific example, the compound represented by the general formula (4) is a compound represented by the following general formula (1): N- (3- (1H- imidazol- Propyl) -3- (triethoxysilyl) -N- (3- (1 H-imidazol-1-
(triethoxysilyl)propyl)propan-1-amine) 및 3-(4,5-디하이드로-1H-이미다졸-1-일)-N,N-비스(3-(트리에톡시실릴)프로필)프로판-1-아민(3-(4,5-dihydro-1H-imidazol-1-yl)-N,N-bis(3-(triethoxysilyl)propyl)propan-1-amine)으로부터 선택된 1종일 수 있다.(triethoxysilyl) propyl) propan-1-amine and 3- (4,5-dihydro-1H-imidazol-1-yl) -N, Propan-1-amine), or a mixture thereof. The present invention also provides a method for producing the same.
전술한 것과 같이, 본 발명의 일 실시예에 따른 변성 공액디엔계 중합체는, 중합체가 특정 구조를 가지며, 특유의 분자량 분포도 및 형태를 가질 수 있다. 이러한 중합체의 구조는 수축인자, 무니 완화율, 커플링 수와 같은 물성으로 표현될 수 있으며, 상기 분자량 분포도와 그 형태는 PDI 값과 분자량 분포 곡선의 형태, 그리고 커플링 수로 발현될 수 있고, 변성제와 변성 개시제에 의한 양말단 변성은 구조 및 분자량 분포도와 그 형태에 영향을 줄 수 있다. 이러한 중합체의 구조를 표현해 주는 파라미터들과 분자량 분포와 관련된 특징은 후술하는 제조방법에 따라 만족될 수 있으며, 이러한 제조방법을 통해 제조되는 것이 상기한 특징을 만족시키는 데에 바람직하지만, 상기한 특징을 모두 만족하는 경우에는, 본 발명에서 구현하고자 하는 효과를 달성할 수 있다.As described above, in the modified conjugated diene polymer according to one embodiment of the present invention, the polymer has a specific structure and may have a specific molecular weight distribution diagram and shape. The structure of such a polymer can be expressed by physical properties such as shrinkage factor, mooni relaxation rate, coupling number, and the molecular weight distribution diagram and its form can be expressed by the PDI value and the shape of the molecular weight distribution curve and coupling number, And metamorphosis with metamorphic initiators can affect structure and molecular weight distributions and their morphology. The parameters expressing the structure of such a polymer and the characteristics related to the molecular weight distribution can be satisfied according to the production method described later, and although it is preferable for the preparation through such a production method to satisfy the above-mentioned characteristics, If all are satisfied, the effect to be implemented in the present invention can be achieved.
또한, 본 발명은 상기 변성 공액디엔계 중합체의 제조방법을 제공한다. The present invention also provides a process for producing the modified conjugated diene polymer.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체 제조방법은 탄화수소 용매 중에서, 변성 개시제 존재 하에 공액디엔계 단량체 또는 공액디엔계 단량체 및 방향족 비닐 단량체를 중합하여 상기 변성 개시제 유래 작용기가 도입된 활성 중합체를 제조하는 단계(S1); 및 상기 (S1) 단계에서 제조된 활성 중합체와 하기 화학식 2 내지 화학식 4로 표시되는 변성제 중 선택된 어느 하나의 변성제를 반응 또는 커플링시키는 단계(S2)를 포함하고, 상기 (S1) 단계는 2기 이상의 중합 반응기에서 연속적으로 실시되며, 상기 중합 반응기 중 제1 반응기에서의 중합 전환율은 50% 이하인 것이고, 상기 변성 개시제는 하기 화학식 1로 표시되는 화합물과 유기금속 화합물을 반응시켜 제조된 반응 생성물인 것일 수 있다.In the method for producing a modified conjugated diene-based polymer according to an embodiment of the present invention, the conjugated diene-based monomer or the conjugated diene-based monomer and the aromatic vinyl monomer are polymerized in a hydrocarbon solvent in the presence of a modifying initiator, Preparing a polymer (S1); And (S2) reacting or coupling at least one selected from among the active polymer prepared in the step (S1) and a modifier selected from the following formulas (2) to (4), wherein the step (S1) The polymerization initiator is a reaction product prepared by reacting a compound represented by the following general formula (1) with an organometallic compound. .
[화학식 1][Chemical Formula 1]
Figure PCTKR2018015145-appb-I000033
Figure PCTKR2018015145-appb-I000033
[화학식 2](2)
Figure PCTKR2018015145-appb-I000034
Figure PCTKR2018015145-appb-I000034
[화학식 3](3)
Figure PCTKR2018015145-appb-I000035
Figure PCTKR2018015145-appb-I000035
[화학식 4][Chemical Formula 4]
Figure PCTKR2018015145-appb-I000036
Figure PCTKR2018015145-appb-I000036
상기 화학식 1 내지 화학식 4에서, R1 내지 R5, Ra1 내지 Ra5, Rb1 내지 Rb6, Rc1 내지 Rc8, A1 내지 A5, n, n1 내지 n2, m1 및 m2 은 앞서 정의한 바와 같다. In the above Chemical Formulas 1 to 4, R 1 to R 5 , R a1 to R a5 , R b1 to R b6 , R c1 to R c8 , A 1 to A 5 , n, n 1 to n 2 , m 1 and m 2 are as defined above.
상기 탄화수소 용매는 특별히 제한되는 것은 아니나, 예컨대 n-펜탄, n-헥산, n-헵탄, 이소옥탄, 시클로 헥산, 톨루엔, 벤젠 및 크실렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.The hydrocarbon solvent is not particularly limited, but may be one or more selected from the group consisting of n-pentane, n-hexane, n-heptane, isooctane, cyclohexane, toluene, benzene and xylene.
또한, 상기 공액디엔계 단량체 및 방향족 비닐 단량체는 앞서 정의한 바와 같다. The conjugated diene monomer and the aromatic vinyl monomer are as defined above.
본 발명의 일 실시예에 따르면, 상기 변성 개시제는 단량체 총 100 g을 기준으로 0.01 mmol 내지 10 mmol, 0.05 mmol 내지 5 mmol, 0.1 mmol 내지 2 mmol, 0.1 mmol 내지 1 mmol, 또는 0.15 내지 0.8 mmol로 사용할 수 있다. According to one embodiment of the present invention, the modification initiator is used in an amount of 0.01 mmol to 10 mmol, 0.05 mmol to 5 mmol, 0.1 mmol to 2 mmol, 0.1 mmol to 1 mmol, or 0.15 to 0.8 mmol based on 100 g of the total monomer Can be used.
상기 (S1) 단계의 중합은 일례로 음이온 중합일 수 있고, 구체적인 예로 음이온에 의한 성장 중합 반응에 의해 중합 말단에 음이온 활성 부위를 갖는 리빙 음이온 중합일 수 있다. 또한, 상기 (S1) 단계의 중합은 승온 중합, 등온 중합 또는 정온 중합(단열 중합)일 수 있고, 상기 정온 중합은 변성 개시제를 투입한 이후 임의로 열을 가하지 않고 자체 반응열로 중합시키는 단계를 포함하는 중합방법을 의미할 수 있고, 상기 승온 중합은 상기 변성 개시제를 투입한 이후 임의로 열을 가하여 온도를 증가시키는 중합방법을 의미할 수 있으며, 상기 등온 중합은 상기 변성 개시제를 투입한 이후 열을 가하여 열을 증가시키거나 열을 뺏어 중합물의 온도를 일정하게 유지하는 중합방법을 의미할 수 있다.The polymerization in the step (S1) may be anionic polymerization, for example, a living anionic polymerization having an anionic active site at the polymerization end by an anionic growth polymerization reaction. The polymerization in the step (S1) may be an elevated temperature polymerization, an isothermal polymerization or a constant temperature polymerization (adiabatic polymerization), and the above-mentioned constant temperature polymerization may include the step of polymerizing the modifying initiator in its own reaction heat, And the temperature-raising polymerization may mean a polymerization method in which the temperature is increased by applying heat to the modifying initiator after the addition of the modifying initiator. In the isothermal polymerization, after the modifying initiator is charged, heat is applied to heat May be increased or the heat may be taken to maintain the temperature of the polymerizer at a constant level.
또한, 본 발명의 일 실시예에 따르면, 상기 (S1) 단계의 중합은 상기 공액디엔계 단량체 이외에 탄소수 1 내지 10의 디엔계 화합물을 더 포함하여 실시될 수 있고, 이 경우 장시간 운전 시 반응기 벽면에 겔이 형성되는 것을 방지하는 효과가 있다. 상기 디엔계 화합물 일례로 1,2-부타디엔일 수 있다.According to an embodiment of the present invention, the polymerization in the step (S1) may further include a diene compound having 1 to 10 carbon atoms in addition to the conjugated diene monomer. In this case, There is an effect of preventing the gel from being formed. An example of the diene compound may be 1,2-butadiene.
상기 (S1) 단계의 중합은 일례로 80℃ 이하, -20℃ 내지 80℃, 0℃ 내지 80℃, 0℃ 내지 70℃, 또는 10℃ 내지 70℃의 온도범위에서 실시될 수 있고, 이 범위 내에서 선형성이 높은 중합체의 제조가 용이하여 중합체의 무니완화율 및 수축인자를 개선할 수 있으며, 나아가 중합체의 분자량 분포를 좁게 조절하여 물성 개선이 뛰어난 효과가 있다.The polymerization in the step (S1) may be carried out at a temperature of, for example, 80 DEG C or lower, -20 DEG C to 80 DEG C, 0 DEG C to 80 DEG C, 0 DEG C to 70 DEG C, or 10 DEG C to 70 DEG C, The polymer having high linearity can be easily produced to improve the Mooney relaxation rate and the shrinkage factor of the polymer, and further, the molecular weight distribution of the polymer can be narrowly controlled to improve the physical properties.
상기 (S1) 단계에 의해 제조된 활성 중합체는 중합체 음이온과 유기 금속 양이온이 결합된 중합체를 의미할 수 있다. The active polymer produced by the step (S1) may refer to a polymer to which a polymer anion and an organometallic cation are bonded.
본 발명의 일 실시예에 따르면, 상기 변성 공액디엔계 중합체 제조방법은 2기 이상의 중합 반응기 및 변성 반응기를 포함하는 복수의 반응기에서 연속식 중합방법에 의해 실시될 수 있다. 구체적인 예로, 상기 (S1) 단계는 제1 반응기를 포함하여 2기 이상의 중합 반응기에서 연속적으로 실시될 수 있고, 상기 중합 반응기의 수는 반응 조건 및 환경에 따라 탄력적으로 결정될 수 있다. 상기 연속식 중합방법은 반응기에 반응물을 연속적으로 공급하고, 생성된 반응 생성물을 연속적으로 배출하는 반응 공정을 의미할 수 있다. 상기 연속식 중합방법에 의하는 경우, 생산성 및 가공성이 우수하고, 제조되는 중합체의 균일성이 뛰어난 효과가 있다.According to one embodiment of the present invention, the method for producing the modified conjugated diene-based polymer may be carried out by a continuous polymerization method in a plurality of reactors including two or more polymerization reactors and a denaturing reactor. As a specific example, the step (S1) may be carried out continuously in two or more polymerization reactors including the first reactor, and the number of the polymerization reactors may be determined flexibly according to reaction conditions and environment. The continuous polymerization method may refer to a reaction process in which a reactant is continuously supplied to a reactor and the produced reaction product is continuously discharged. According to the continuous polymerization method, the productivity and processability are excellent and the uniformity of the produced polymer is excellent.
또한, 본 발명의 일 실시예에 따르면, 상기 중합 반응기에서 연속적으로 활성 중합체 제조 시, 제1 반응기에서의 중합 전환율은 50% 이하, 10% 내지 50%, 또는 20% 내지 50% 일 수 있고, 이 범위 내에서 중합 반응기 개시된 후, 중합체가 형성되면서 발생되는 부반응을 억제하여 중합 시, 선형(linear) 구조의 중합체를 유도할 수 있다. 이 때, 선형 구조의 중합체는 분지도가 낮으므로, 전술한 바와 같이 제1 반응기에서의 중합 전환율을 50% 이하로 조절하여 중합체를 제조하는 경우, 중합체의 무니완화율 및 수축인자를 높일 수 있고 나아가 중합체의 분자량 분포를 좁게 조절하는 것이 가능하여, 물성 개선이 뛰어난 효과가 있다.Further, according to one embodiment of the present invention, in continuously producing the active polymer in the polymerization reactor, the polymerization conversion ratio in the first reactor may be 50% or less, 10% to 50%, or 20% to 50% Within this range, it is possible to induce a polymer having a linear structure at the time of polymerization by suppressing the side reaction generated when the polymer is formed after the initiation of the polymerization reaction. At this time, since the linear structure polymer has a low branching degree, when the polymer is prepared by controlling the polymerization conversion ratio to 50% or less in the first reactor as described above, the mooney relaxation rate and shrinkage factor of the polymer can be increased Furthermore, it is possible to narrow the molecular weight distribution of the polymer and to improve the physical properties.
이때, 상기 중합 전환율은 반응온도, 반응기 체류시간 등에 따라 조절될 수 있다.At this time, the polymerization conversion can be controlled according to the reaction temperature, the residence time of the reactor, and the like.
상기 중합 전환율은 일례로 중합체의 중합 시, 중합체를 포함하는 중합체 용액 상의 고체 농도를 측정하여 결정될 수 있고, 구체적인 예로, 상기 중합체 용액을 확보하기 위해 각 중합 반응기의 출구에 실린더형 용기를 장착하여 일정양의 중합체 용액을 실린더형 용기에 채우고, 상기 실린더형 용기를 반응기로부터 분리하여 중합체 용액이 충진되어 있는 실린더의 무게(A)를 측정한 후, 실린더형 용기에 충진되어 있는 중합체 용액을 알루미늄 용기, 일례로 알루미늄 디쉬에 옮기고 중합체 용액이 제거된 실린더형 용기의 무게(B)를 측정하고, 중합체 용액이 담긴 알루미늄 용기를 140℃의 오븐에서 30분 간 건조시키고, 건조된 중합체의 무게(C)를 측정한 뒤, 하기 수학식 1에 따라 계산한 것일 수 있다.The polymerization conversion rate can be determined, for example, by measuring the solid concentration on the polymer solution containing the polymer in the polymerization of the polymer. As a concrete example, a cylindrical vessel is mounted at the exit of each polymerization reactor to secure the polymer solution, The polymer solution filled in the cylindrical vessel is placed in an aluminum container, and then the polymer solution is filled in the cylindrical vessel. For example, the weight (B) of a cylindrical container having been transferred to an aluminum dish and from which the polymer solution has been removed is measured, and the aluminum container containing the polymer solution is dried in an oven at 140 캜 for 30 minutes, And may be calculated according to the following equation (1).
[수학식 1][Equation 1]
Figure PCTKR2018015145-appb-I000037
Figure PCTKR2018015145-appb-I000037
한편, 상기 제1 반응기에서 중합된 중합물은 변성 반응기 전의 중합 반응기까지 순차적으로 이송되어 최종적으로 중합 전환율이 95% 이상이 될 때까지 중합이 진행될 수 있고, 제1 반응기에서 중합된 이후, 제2 반응기, 또는 제2 반응기 내지 변성 반응기 전의 중합 반응기까지 각 반응기별 중합 전환율은 분자량 분포의 조절을 위해 각 반응기 별로 적절히 조절하여 실시될 수 있다.On the other hand, the polymerized material polymerized in the first reactor is sequentially transferred to the polymerization reactor before the denaturing reactor, and polymerization can proceed until the final polymerization conversion rate reaches 95% or more. After polymerization in the first reactor, , Or from the second reactor to the polymerization reactor before the denatured reactor, the polymerization conversion ratio by each reactor can be appropriately adjusted for each reactor in order to control the molecular weight distribution.
한편, 상기 (S1) 단계에서, 활성 중합체 제조 시, 제1 반응기에서의 중합물 체류 시간은 1분 내지 40분, 1분 내지 30분, 또는 5분 내지 30분일 수 있고, 이 범위 내에서, 중합 전환율의 조절이 용이하고, 이에 따라 중합체의 분자량 분포를 좁게 조절하는 것이 가능하고, 이에 따라, 물성 개선이 뛰어난 효과가 있다.On the other hand, in the step (S1), in the production of the active polymer, the polymer retention time in the first reactor may be 1 minute to 40 minutes, 1 minute to 30 minutes, or 5 minutes to 30 minutes, It is possible to control the conversion rate easily, thereby making it possible to narrow the molecular weight distribution of the polymer. Thus, there is an effect of improving the physical properties.
본 발명에서 용어 '중합물'은 (S1) 단계 또는 (S2) 단계가 완료되어, 활성 중합체, 또는 변성 공액디엔계 중합체를 수득하기에 앞서, (S1) 단계 실시 중, 각 반응기 내에서 중합이 실시되고 있는 중합체 형태의 중간체를 의미할 수 있고, 반응기 내에서 중합이 실시되고 있는 중합 전환율 95% 미만의 중합체를 의미할 수 있다.The term "polymer" in the present invention means that during the step (S1), polymerization is carried out in each reactor before the step (S1) or the step (S2) is completed to obtain an active polymer or a modified conjugated diene polymer , And may mean a polymer having a polymerization conversion of less than 95% in which polymerization is carried out in the reactor.
본 발명의 일 실시예에 따르면, 상기 (S1) 단계에서 제조된 활성 중합체의 분자량 분포(PDI, polydispersed index; MWD, molecular weight distribution; Mw/Mn)는 1.5 미만, 1.0 이상 내지 1.5 미만, 또는 1.1 이상 내지 1.5 미만일 수 있고, 이 범위 내에서 변성제와의 변성 반응 또는 커플링을 통해 제조되는 변성 공액디엔계 중합체의 분자량 분포가 좁아, 물성 개선이 뛰어난 효과가 있다.According to one embodiment of the present invention, the active polymer produced in the step (S1) has a polydispersed index (MWD) of less than 1.5, more than 1.0 and less than 1.5, or 1.1 To less than 1.5, and the modified conjugated diene polymer produced through the modification reaction or coupling with the modifier within this range has a narrow molecular weight distribution and has an excellent effect of improving the physical properties.
한편, 상기 (S1) 단계의 중합은 극성 첨가제를 포함하여 실시될 수 있고, 상기 극성 첨가제는 단량체 총 100g을 기준으로 0.001g 내지 50g, 0.001g 내지 10g, 또는 0.005g 내지 0.1g의 비율로 첨가할 수 있다. 또 다른 예로, 상기 극성첨가제는 변성 개시제 총 1 mmol을 기준으로 0.001g 내지 10g, 0.005g 내지 5g, 0.005g 내지 4g의 비율로 첨가할 수 있다.The polymerization in the step (S1) may be carried out in the presence of a polar additive. The polar additive may be added in a proportion of 0.001 g to 50 g, 0.001 g to 10 g, or 0.005 g to 0.1 g based on 100 g of the total monomer can do. As another example, the polar additive may be added at a ratio of 0.001 g to 10 g, 0.005 g to 5 g, and 0.005 g to 4 g based on 1 mmol of the total amount of the modifying initiator.
상기 극성 첨가제는 일례로 테트라하이드로퓨란, 2,2-디(2-테트라하이드로퓨릴)프로판, 디에틸에테르, 시클로아밀에테르, 디프로필에테르, 에틸렌메틸에테르, 에틸렌디메틸에테르, 디에틸글리콜, 디메틸에테르, 3차 부톡시에톡시에탄, 비스(3-디메틸아미노에틸)에테르, (디메틸아미노에틸)에틸에테르, 트리메틸아민, 트리에틸아민, 트리프로필아민, N,N,N',N'-테트라메틸에틸렌디아민, 소듐멘톨레이트(sodium mentholate) 및 2-에틸테트라하이드로퍼푸릴 에테르(2-ethyl tetrahydrofurfuryl ether) 로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 2,2-디(2-테트라하이드로퓨릴)프로판, 트리에틸아민, 테트라메틸에틸렌디아민, 소듐멘톨레이트(sodium mentholate) 또는 2-에틸테트라하이드로퍼푸릴 에테르(2-ethyl tetrahydrofurfuryl ether)일 수 있으며, 상기 극성 첨가제를 포함하는 경우 공액디엔계 단량체, 또는 공액디엔계 단량체 및 방향족 비닐계 단량체를 공중합시키는 경우 이들의 반응 속도 차이를 보완해줌으로써 랜덤 공중합체를 용이하게 형성할 수 있도록 유도하는 효과가 있다.Examples of the polar additive include at least one selected from the group consisting of tetrahydrofuran, 2,2-di (2-tetrahydrofuryl) propane, diethyl ether, cycloamyl ether, dipropyl ether, ethylene methyl ether, ethylene dimethyl ether, diethyl glycol, dimethyl ether , Tertiary butoxyethoxyethane, bis (3-dimethylaminoethyl) ether, (dimethylaminoethyl) ethyl ether, trimethylamine, triethylamine, tripropylamine, N, N, N ' And may be at least one selected from the group consisting of ethylenediamine, sodium mentholate and 2-ethyl tetrahydrofuryl ether, preferably 2,2-di (2-tetrahydro (2-ethyl tetrahydrofurfuryl ether), and the polar additive (s) may be selected from the group consisting of sodium chloride, When including the effect of inducing a conjugated diene monomer, or a conjugated diene monomer and aromatic vinyl case of copolymerizing a monomer of these reaction rates so that the random copolymer by giving it up for the difference can be easily formed.
본 발명의 일 실시예에 따르면, 상기 (S2) 단계의 반응 또는 커플링은 변성 반응기에서 실시될 수 있고, 이 때, 상기 변성제는 단량체 총 100g을 기준으로 0.01 mmol 내지 10 mmol의 양으로 사용할 수 있다. 또 다른 예로, 상기 변성제는 상기 (S1) 단계의 변성 개시제 1몰을 기준으로, 1:0.1 내지 10, 1: 0.1 내지 5, 또는 1:0.1 내지 1:3의 몰비로 사용할 수 있다.According to an embodiment of the present invention, the reaction or coupling in the step (S2) may be carried out in a denaturing reactor, wherein the modifier is used in an amount of 0.01 mmol to 10 mmol based on 100 g of the total monomer have. As another example, the modifier may be used in a molar ratio of 1: 0.1 to 10, 1: 0.1 to 5, or 1: 0.1 to 1: 3 based on 1 mole of the modifier initiator of the step (S1).
또한, 본 발명의 일 실시예에 따르면, 상기 변성제는 변성 반응기에 투입될 수 있고, 상기 (S2) 단계는 변성 반응기에서 실시될 수 있다. 또 다른 예로, 상기 변성제는 상기 (S1) 단계에서 제조된 활성 중합체를 (S2) 단계를 실시하기 위한 변성 반응기로 이송하기 위한 이송부에 투입될 수 있고, 상기 이송부 내에서 활성 중합체와 변성제의 혼합에 의해 반응 또는 커플링이 진행될 수 있다.According to an embodiment of the present invention, the denaturant may be introduced into the denaturing reactor, and the step (S2) may be carried out in a denaturing reactor. As another example, the modifier may be added to a transfer part for transferring the active polymer produced in step (S1) to a denaturing reactor for carrying out step (S2), and a mixture of the active polymer and the denaturant in the transfer part Reaction or coupling may proceed.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체의 제조방법은, 전술한 변성 공액디엔계 중합체의 특성을 만족시킬 수 있는 방법이며, 상기한 것과 같이 본 발명에서 달성하고자 하는 효과는 위 특징을 만족하였을 경우 달성될 수 있지만, 적어도 상기 제조방법에 있어서 연속식 공정 하에서 제1 반응기에서 제2 반응기로 이송할 때의 중합 전환율은 만족할 필요가 있고, 이 외의 중합 조건들의 경우 다양하게 제어됨으로써, 본 발명에 따른 변성 공액디엔계 중합체가 갖는 물성을 구현할 수 있다.The method for producing the modified conjugated diene polymer according to one embodiment of the present invention is a method capable of satisfying the characteristics of the above-described modified conjugated diene polymer. The polymerization conversion rate at the time of transferring from the first reactor to the second reactor under the continuous process in the above production method needs to be satisfactory and various polymerization conditions are controlled in other polymerization conditions, The physical properties of the modified conjugated diene polymer according to the present invention can be realized.
아울러, 본 발명은 상기의 변성 공액디엔계 중합체를 포함하는 고무 조성물을 제공한다.In addition, the present invention provides a rubber composition comprising the modified conjugated diene polymer.
상기 고무 조성물은 상기 변성 공액디엔계 중합체를 10 중량% 이상, 10 중량% 내지 100 중량%, 또는 20 중량% 내지 90 중량%의 양으로 포함하는 것일 수 있고, 이 범위 내에서 인장 강도, 내마모성 등의 기계적 물성이 우수하고, 각 물성 간의 밸런스가 뛰어난 효과가 있다.The rubber composition may contain the modified conjugated diene polymer in an amount of 10 wt% or more, 10 wt% to 100 wt%, or 20 wt% to 90 wt%, and the tensile strength, abrasion resistance, etc. Is excellent in mechanical properties and excellent in balance among physical properties.
본 발명에 따른 상기 변성 공액디엔계 중합체를 포함하는 고무 조성물은 100℃에서의 무니 점도(ML1+4, 100℃)가 50 내지 80일 수 있고, 이는 가공성 특성을 나타낼 수 있는 지표로서 활용될 수 있다. The rubber composition comprising the modified conjugated diene polymer according to the present invention may have a Mooney viscosity (ML1 + 4, 100 DEG C) at 100 DEG C of from 50 to 80, which can be used as an index capable of exhibiting processability characteristics have.
또한, 가공 특성은 상기 고무 조성물의 무니 점도가 낮을수록 우수한 것으로 평가될 수 있으나, 추가적으로 고무 조성물, 즉 배합물의 무니 점도와 변성 공액디엔계 중합체의 무니 점도의 '차이'가 작을수록 우수한 것으로 평가될 수 있으며, 무니 점도 변화량, 즉 증가 또는 감소에 따른 차이가 20 이하인 것이 바람직할 수 있다.In addition, the lower the Mooney viscosity of the rubber composition, the better the processing characteristics can be, but in addition, the smaller the 'difference' between the Mooney viscosity of the rubber composition, i.e. the blend, and the Mooney viscosity of the modified conjugated diene polymer, And it may be preferable that the difference in Mooney viscosity variation, i.e., increase or decrease, is 20 or less.
또한, 상기 고무 조성물은 상기 변성 공액디엔계 중합체 외에 필요에 따라 다른 고무 성분을 더 포함할 수 있고, 이 때 상기 고무 성분은 고무 조성물 총 중량에 대하여 90 중량% 이하의 함량으로 포함될 수 있다. 구체적인 예로 상기 다른 고무 성분은 상기 변성 공액디엔계 중합체 100 중량부에 대하여 1 중량부 내지 900 중량부로 포함되는 것일 수 있다.In addition, the rubber composition may further include other rubber components, if necessary, in addition to the modified conjugated diene polymer, wherein the rubber component may be contained in an amount of 90 wt% or less based on the total weight of the rubber composition. As a specific example, the other rubber component may be contained in an amount of 1 part by weight to 900 parts by weight based on 100 parts by weight of the modified conjugated diene polymer.
상기 고무 성분은 일례로 천연고무 또는 합성고무일 수 있으며, 구체적인 예로 시스-1,4-폴리이소프렌을 포함하는 천연고무(NR); 상기 일반적인 천연고무를 변성 또는 정제한, 에폭시화 천연고무(ENR), 탈단백 천연고무(DPNR), 수소화 천연고무 등의 변성 천연고무; 스티렌-부타디엔 공중합체(SBR), 폴리부타디엔(BR), 폴리이소프렌(IR), 부틸고무(IIR), 에틸렌-프로필렌 공중합체, 폴리이소부틸렌-코-이소프렌, 네오프렌, 폴리(에틸렌-코-프로필렌), 폴리(스티렌-코-부타디엔), 폴리(스티렌-코-이소프렌), 폴리(스티렌-코-이소프렌-코-부타디엔), 폴리(이소프렌-코-부타디엔), 폴리(에틸렌-코-프로필렌-코-디엔), 폴리설파이드 고무, 아크릴 고무, 우레탄 고무, 실리콘 고무, 에피클로로히드린 고무, 할로겐화 부틸 고무 등과 같은 합성고무일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.The rubber component may be, for example, natural rubber or synthetic rubber, and specific examples thereof include natural rubber (NR) containing cis-1,4-polyisoprene; Modified natural rubbers such as epoxidized natural rubber (ENR), deproteinized natural rubber (DPNR), and hydrogenated natural rubber, which are modified or refined with the general natural rubber; Butadiene copolymers (SBR), polybutadiene (BR), polyisoprenes (IR), butyl rubbers (IIR), ethylene-propylene copolymers, polyisobutylene-co-isoprene, neoprene, poly Butadiene), poly (styrene-co-butadiene), poly (styrene-co-butadiene) Synthetic rubber such as polysulfide rubber, acrylic rubber, urethane rubber, silicone rubber, epichlorohydrin rubber, halogenated butyl rubber and the like, and any one or a mixture of two or more thereof may be used.
상기 고무 조성물은 일례로 본 발명의 변성 공액디엔계 중합체 100 중량부에 대하여 0.1 중량부 내지 200 중량부, 또는 10 중량부 내지 120 중량부의 충전제를 포함하는 것일 수 있다. 상기 충전제는 일례로 실리카계 충전제일 수 있고, 구체적인 예로 습식 실리카(함수규산), 건식 실리카(무수규산), 규산칼슘, 규산알루미늄 또는 콜로이드 실리카 등일 수 있으며, 바람직하게는 파괴 특성의 개량 효과 및 웨트 그립성(wet grip)의 양립 효과가 가장 뛰어난 습식 실리카일 수 있다. 또한, 상기 고무 조성물은 필요에 따라 카본계 충전제를 더 포함할 수 있다.The rubber composition may include, for example, 0.1 to 200 parts by weight, or 10 to 120 parts by weight of a filler based on 100 parts by weight of the modified conjugated diene polymer of the present invention. The filler may be, for example, a silica-based filler. Specific examples of the filler include wet silica (hydrated silicic acid), dry silica (silicic anhydride), calcium silicate, aluminum silicate or colloidal silica, It can be a wet silica with the most compatible effect of wet grip. Further, the rubber composition may further include a carbon-based filler, if necessary.
또 다른 예로, 상기 충전제로 실리카가 사용되는 경우 보강성 및 저발열성 개선을 위한 실란 커플링제가 함께 사용될 수 있고, 구체적인 예로 상기 실란 커플링제는 비스(3-트리에톡시실릴프로필)테트라술피드, 비스(3-트리에톡시실릴프로필)트리술피드, 비스(3-트리에톡시실릴프로필)디술피드, 비스(2-트리에톡시실릴에틸)테트라술피드, 비스(3-트리메톡시실릴프로필)테트라술피드, 비스(2-트리메톡시실릴에틸)테트라술피드, 3-머캅토프로필트리메톡시실란, 3-머캅토프로필트리에톡시실란, 2-머캅토에틸트리메톡시실란, 2-머캅토에틸트리에톡시실란, 3-트리메톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 3-트리에톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 2-트리에톡시실릴에틸-N,N-디메틸티오카르바모일테트라술피드, 3-트리메톡시실릴프로필벤조티아졸릴테트라술피드, 3-트리에톡시실릴프로필벤졸릴테트라술피드, 3-트리에톡시실릴프로필메타크릴레이트모노술피드, 3-트리메톡시실릴프로필메타크릴레이트모노술피드, 비스(3-디에톡시메틸실릴프로필)테트라술피드, 3-머캅토프로필디메톡시메틸실란, 디메톡시메틸실릴프로필-N,N-디메틸티오카르바모일테트라술피드 또는 디메톡시메틸실릴프로필벤조티아졸릴테트라술피드 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 바람직하게는 보강성 개선 효과를 고려할 때 비스(3-트리에톡시실릴프로필)폴리술피드 또는 3-트리메톡시실릴프로필벤조티아질테트라술피드일 수 있다.As another example, when silica is used as the filler, a silane coupling agent may be used together with the silane coupling agent for improving the reinforcing property and the low exothermic property. For example, the silane coupling agent may be bis (3-triethoxysilylpropyl) , Bis (3-triethoxysilylpropyl) triesulfide, bis (3-triethoxysilylpropyl) disulfide, bis Propyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide Feed, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyltetrasulfide, 3-trimethyl 3-triethoxysilylpropylbenzyltetrasulfide, 3-triethoxysilylpropylmethacrylate monosulfide, 3-trimethoxysilylpropylmethacrylate monosulfide, 3-trimethoxysilylpropylmethacrylate monosulfide, , Bis (3-diethoxymethylsilylpropyl) tetrasulfide, 3-mercaptopropyldimethoxymethylsilane, dimethoxymethylsilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, or dimethoxymethylsilylpropylbenzo Thiazolyl tetrasulfide, etc., and any one or a mixture of two or more thereof may be used. Preferably, it may be bis (3-triethoxysilylpropyl) polysulfide or 3-trimethoxysilylpropylbenzothiazetetrasulfide, considering the effect of improving the reinforcing property.
또한, 본 발명의 일 실시예에 따른 상기 고무 조성물은, 고무 성분으로서 활성 부위에 실리카와의 친화성이 높은 작용기가 도입된 변성 공액디엔계 중합체가 사용되고 있기 때문에, 실란 커플링제의 배합량은 통상의 경우보다 저감될 수 있고, 이에 따라, 상기 실란 커플링제는 실리카 100 중량부에 대하여 1 중량부 내지 20 중량부, 또는 5 중량부 내지 15 중량부로 사용될 수 있으며, 이 범위 내에서 커플링제로서의 효과가 충분히 발휘되면서도 고무 성분의 겔화를 방지하는 효과가 있다.Further, since the modified conjugated diene polymer in which a functional group having high affinity for silica is introduced into the active site as the rubber component according to an embodiment of the present invention is used, the compounding amount of the silane coupling agent is usually The silane coupling agent may be used in an amount of 1 part by weight to 20 parts by weight, or 5 parts by weight to 15 parts by weight based on 100 parts by weight of silica. Within this range, the effect as a coupling agent is The effect of preventing the gelation of the rubber component is exhibited.
본 발명의 일 실시예에 따른 상기 고무 조성물은 황 가교성일 수 있고, 가황제를 더 포함할 수 있다. 상기 가황제는 구체적으로 황 분말일 수 있고, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 10 중량부로 포함될 수 있으며, 이 범위 내에서 가황 고무 조성물의 필요한 탄성률 및 강도를 확보함과 동시에 저연비성이 뛰어난 효과가 있다.The rubber composition according to an embodiment of the present invention may be sulfur-crosslinkable and may further include a vulcanizing agent. The vulcanizing agent may be specifically a sulfur powder and may be contained in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the rubber component. Within this range, the vulcanized rubber composition is required to have the required elastic modulus and strength, It has excellent effect.
본 발명의 일 실시예에 따른 상기 고무 조성물은 상기한 성분들 외에, 통상 고무 공업계에서 사용되는 각종 첨가제, 구체적으로는 가황 촉진제, 공정유, 산화방지제, 가소제, 노화 방지제, 스코치 방지제, 아연화(zinc white), 스테아르산, 열경화성 수지, 또는 열가소성 수지 등을 더 포함할 수 있다.The rubber composition according to one embodiment of the present invention may contain various additives commonly used in the rubber industry, such as vulcanization accelerators, process oils, antioxidants, plasticizers, antioxidants, scorch inhibitors, zinc white, stearic acid, a thermosetting resin, or a thermoplastic resin.
상기 가황 촉진제는 일례로 M(2-머캅토벤조티아졸), DM(디벤조티아질디술피드), CZ(N-시클로헥실-2-벤조티아질술펜아미드) 등의 티아졸계 화합물, 혹은 DPG(디페닐구아니딘) 등의 구아니딘계 화합물이 사용될 수 있고, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 포함될 수 있다.Examples of the vulcanization accelerator include thiazole compounds such as M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide) and CZ (N-cyclohexyl-2-benzothiazyl sulfenamide) (Diphenylguanidine) may be used, and may be included in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the rubber component.
상기 공정유는 고무 조성물 내에서 연화제로서 작용하는 것으로, 일례로 파라핀계, 나프텐계, 또는 방향족계 화합물일 수 있고, 인장 강도 및 내마모성을 고려할 때 방향족계 공정유가, 히스테리시스 손실 및 저온 특성을 고려할 때 나프텐계 또는 파라핀계 공정유가 사용될 수 있다. 상기 공정유는 일례로 고무 성분 100 중량부에 대하여 100 중량부 이하의 함량으로 포함될 수 있고, 이 범위 내에서 가황 고무의 인장 강도, 저발열성(저연비성)의 저하를 방지하는 효과가 있다.The process oil may be a paraffinic, naphthenic, or aromatic compound, which acts as a softening agent in the rubber composition. Considering the aromatic process oil, hysteresis loss, and low temperature characteristics in consideration of tensile strength and abrasion resistance Naphthenic or paraffinic process oils may be used. The process oil may be contained in an amount of 100 parts by weight or less based on 100 parts by weight of the rubber component. Within this range, the process oil has an effect of preventing the tensile strength and the low heat build-up (low fuel consumption) of the vulcanized rubber from being lowered.
상기 산화방지제는 일례로 2,6-디-t-부틸파라크레졸, 디부틸히드록시톨루엔일, 2,6-비스((도데실티오)메틸)-4-노닐페놀(2,6-bis((dodecylthio)methyl)-4-nonylphenol) 또는 2-메틸-4,6-비스((옥틸티오)메틸)페놀(2-methyl-4,6-bis((octylthio)methyl)phenol)일 수 있고, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 6 중량부로 사용될 수 있다.Examples of the antioxidant include 2,6-di-t-butylparacresol, dibutylhydroxytoluenil, 2,6-bis ((dodecylthio) methyl) (dodecylthio) methyl) -4-nonylphenol or 2-methyl-4,6-bis ((octylthio) methyl) phenol) May be used in an amount of 0.1 part by weight to 6 parts by weight based on 100 parts by weight of the rubber component.
상기 노화방지제는 일례로 N-이소프로필-N'-페닐-p-페닐렌디아민, N-(1,3-디메틸부틸)-N'-페닐-p-페닐렌디아민, 6-에톡시-2,2,4-트리메틸-1,2-디히드로퀴놀린, 또는 디페닐아민과 아세톤의 고온 축합물 등일 수 있고, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 6 중량부로 사용될 수 있다.Examples of the antioxidant include N-isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'- , 2,4-trimethyl-1,2-dihydroquinoline, or high-temperature condensates of diphenylamine and acetone, and may be used in an amount of 0.1 part by weight to 6 parts by weight based on 100 parts by weight of the rubber component.
본 발명의 일 실시예에 따른 상기 고무 조성물은 상기 배합 처방에 의해 밴버리 믹서, 롤, 인터널 믹서 등의 혼련기를 사용하여 혼련함으로써 수득될 수 있고, 성형 가공 후 가황 공정에 의해 저발열성이며 내마모성이 우수한 고무 조성물이 수득될 수 있다.The rubber composition according to one embodiment of the present invention can be obtained by kneading the rubber composition using a kneader such as Banbury mixer, roll, internal mixer or the like by the compounding formulation, This excellent rubber composition can be obtained.
이에 따라 상기 고무 조성물은 타이어 트레드, 언더 트레드, 사이드 월, 카카스 코팅 고무, 벨트 코팅 고무, 비드 필러, 췌이퍼, 또는 비드 코팅 고무 등의 타이어의 각 부재나, 방진고무, 벨트 컨베이어, 호스 등의 각종 공업용 고무 제품의 제조에 유용할 수 있다.Accordingly, the rubber composition can be applied to various members such as tire tread, under-tread, sidewall, carcass coated rubber, belt coated rubber, bead filler, pancake fur, or bead coated rubber, vibration proof rubber, belt conveyor, Can be useful for the production of various industrial rubber products.
아울러, 본 발명은 상기 고무 조성물을 이용하여 제조된 타이어를 제공한다.In addition, the present invention provides a tire produced using the rubber composition.
상기 타이어는 타이어 또는 타이어 트레드를 포함하는 것일 수 있다.The tire may be a tire or a tire tread.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to examples. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments of the present invention are provided to enable those skilled in the art to more fully understand the present invention.
제조예 1Production Example 1
진공 건조시킨 4L 스테인레스 스틸 압력용기 2개를 준비하였다. 첫번째 압력용기에 시클로헥산 6,922 g, 하기 화학식 1-3으로 표시되는 화합물 85 g 및 테트라메틸에틸렌디아민 60 g을 투입하여 제1 반응 용액을 제조하였다. 이와 동시에, 두번째 압력 용기에 액상의 2.0 M n-부틸리튬 180 g 및 시클로헥산 6,926 g을 투입하여 제2 반응 용액을 제조하였다. 이 때, 화학식 1-3으로 표시되는 화합물, n-부틸리튬 및 테트라메틸에틸렌디아민의 몰비는 1:1:1이였다. 각 압력 용기의 압력은 7bar로 유지시킨 상태에서, 질량 유량계를 이용하여 연속식 반응기 내에, 제1 연속식 채널로 제1 반응 용액을 1.0 g/min의 주입 속도로, 제2 연속식 채널로 제2 반응용액을 1.0 g/min의 주입 속도로 각각 주입하였다. 이 때, 연속식 반응기의 온도는 -10 ℃를 유지하였고, 내부 압력은 백프레셔 레귤레이터(backpressure regulator)를 이용하여 3 bar를 유지하였으며, 반응기 내의 체류시간은 10분 이내가 되도록 조절하였다. 반응을 종료하여 변성 개시제를 수득하였다. Two vacuum-dried 4L stainless steel pressure vessels were prepared. In the first pressure vessel, 6,922 g of cyclohexane, 85 g of the compound represented by the following formula 1-3 and 60 g of tetramethylethylenediamine were added to prepare a first reaction solution. At the same time, 180 g of 2.0 M n-butyllithium and 6,926 g of cyclohexane were added to the second pressure vessel to prepare a second reaction solution. At this time, the molar ratio of the compound represented by Formula 1-3, n-butyllithium and tetramethylethylenediamine was 1: 1: 1. With the pressure of each pressure vessel being maintained at 7 bar, the first reaction solution was fed to the first continuous channel at an injection rate of 1.0 g / min and the second continuous channel was fed into the continuous reactor using a mass flow meter 2 reaction solution at an injection rate of 1.0 g / min. At this time, the temperature of the continuous reactor was maintained at -10 ° C, the inner pressure was maintained at 3 bar by using a backpressure regulator, and the residence time in the reactor was adjusted to be within 10 minutes. The reaction was terminated to obtain a modifying initiator.
[화학식 1-3][Formula 1-3]
Figure PCTKR2018015145-appb-I000038
Figure PCTKR2018015145-appb-I000038
제조예 2Production Example 2
진공 건조시킨 4L 스테인레스 스틸 압력용기 2개를 준비하였다. 첫번째 압력용기에 시클로헥산 6,922 g, 하기 화학식 1-1로 표시되는 화합물 120 g 및 테트라메틸에틸렌디아민 60 g을 투입하여 제1 반응 용액을 제조하였다. 이와 동시에, 두번째 압력 용기에 액상의 2.0M n-부틸리튬 180 g 및 시클로헥산 6,926 g을 투입하여 제2 반응 용액을 제조하였다. 이 때, 화학식 1-1로 표시되는 화합물, n-부틸리튬 및 테트라메틸에틸렌디아민의 몰비는 1:1:1이였다. 각 압력 용기의 압력은 7bar로 유지시킨 상태에서, 질량 유량계를 이용하여 연속식 반응기 내에, 제1 연속식 채널로 제1 반응 용액을 1.0 g/min의 주입 속도로, 제2 연속식 채널로 제2 반응용액을 1.0 g/min의 주입 속도로 각각 주입하였다. 이 때, 연속식 반응기의 온도는 -10 ℃를 유지하였고, 내부 압력은 백프레셔 레귤레이터(backpressure regulator)를 이용하여 3 bar를 유지하였으며, 반응기 내의 체류시간은 10분 이내가 되도록 조절하였다. 반응을 종료하여 변성 개시제를 수득하였다.Two vacuum-dried 4L stainless steel pressure vessels were prepared. In the first pressure vessel, 6,922 g of cyclohexane, 120 g of the compound represented by the following formula 1-1 and 60 g of tetramethylethylenediamine were added to prepare a first reaction solution. At the same time, 180 g of 2.0 M n-butyl lithium in liquid phase and 6,926 g of cyclohexane were charged into a second pressure vessel to prepare a second reaction solution. At this time, the molar ratio of the compound represented by the formula (1-1), n-butyllithium and tetramethylethylenediamine was 1: 1: 1. With the pressure of each pressure vessel being maintained at 7 bar, the first reaction solution was fed to the first continuous channel at an injection rate of 1.0 g / min and the second continuous channel was fed into the continuous reactor using a mass flow meter 2 reaction solution at an injection rate of 1.0 g / min. At this time, the temperature of the continuous reactor was maintained at -10 ° C, the inner pressure was maintained at 3 bar by using a backpressure regulator, and the residence time in the reactor was adjusted to be within 10 minutes. The reaction was terminated to obtain a modifying initiator.
[화학식 1-1][Formula 1-1]
Figure PCTKR2018015145-appb-I000039
Figure PCTKR2018015145-appb-I000039
제조예 3Production Example 3
진공 건조시킨 4L 스테인레스 스틸 압력용기 2개를 준비하였다. 첫번째 압력용기에 시클로헥산 6,922 g, 하기 화학식 1-2로 표시되는 화합물 145 g 및 테트라메틸에틸렌디아민 60 g을 투입하여 제1 반응 용액을 제조하였다. 이와 동시에, 두번째 압력 용기에 액상의 2.0M n-부틸리튬 180 g 및 시클로헥산 6,926 g을 투입하여 제2 반응 용액을 제조하였다. 이 때, 화학식 1-1로 표시되는 화합물, n-부틸리튬 및 테트라메틸에틸렌디아민의 몰비는 1:1:1이였다. 각 압력 용기의 압력은 7bar로 유지시킨 상태에서, 질량 유량계를 이용하여 연속식 반응기 내에, 제1 연속식 채널로 제1 반응 용액을 1.0 g/min의 주입 속도로, 제2 연속식 채널로 제2 반응용액을 1.0 g/min의 주입 속도로 각각 주입하였다. 이 때, 연속식 반응기의 온도는 -10 ℃를 유지하였고, 내부 압력은 백프레셔 레귤레이터(backpressure regulator)를 이용하여 3 bar를 유지하였으며, 반응기 내의 체류시간은 10분 이내가 되도록 조절하였다. 반응을 종료하여 변성 개시제를 수득하였다.Two vacuum-dried 4L stainless steel pressure vessels were prepared. In the first pressure vessel, 6,922 g of cyclohexane, 145 g of the compound represented by the following formula (1-2) and 60 g of tetramethylethylenediamine were added to prepare a first reaction solution. At the same time, 180 g of 2.0 M n-butyl lithium in liquid phase and 6,926 g of cyclohexane were charged into a second pressure vessel to prepare a second reaction solution. At this time, the molar ratio of the compound represented by the formula (1-1), n-butyllithium and tetramethylethylenediamine was 1: 1: 1. With the pressure of each pressure vessel being maintained at 7 bar, the first reaction solution was fed to the first continuous channel at an injection rate of 1.0 g / min and the second continuous channel was fed into the continuous reactor using a mass flow meter 2 reaction solution at an injection rate of 1.0 g / min. At this time, the temperature of the continuous reactor was maintained at -10 ° C, the inner pressure was maintained at 3 bar by using a backpressure regulator, and the residence time in the reactor was adjusted to be within 10 minutes. The reaction was terminated to obtain a modifying initiator.
[화학식 1-2][Formula 1-2]
Figure PCTKR2018015145-appb-I000040
Figure PCTKR2018015145-appb-I000040
실시예 1Example 1
3기의 반응기가 직렬로 연결된 연속 반응기 중 제1기 반응기에, n-헥산에 스티렌이 60 중량%로 용해된 스티렌 용액을 3.3 kg/h, n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 12.5 kg/h, n-헥산 47.4 kg/h, n-헥산에 1,2-부타디엔이 2.0 중량%로 용해된 1,2-부타디엔 용액을 40 g/h, 극성첨가제로 n-헥산에 2,2-(디-2(테트라하이드로퓨릴)프로판이 10 중량%로 용해된 2,2-디(2-테트라하이드로퓨릴)프로판(DTP) 용액을 25.0 g/h, 제조예 1에서 제조된 변성 개시제를 300.0 g/h의 속도로 주입하였다. 이때, 제1기 반응기의 온도는 50℃가 되도록 유지하였으며, 중합 전환율이 43%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하였다.In a first reactor of a continuous reactor in which three reactors were connected in series, 3.3 kg / h of a styrene solution in which 60 wt% of styrene was dissolved in n-hexane, 60 wt% of 1,3-butadiene in n-hexane, Butadiene solution dissolved in n-hexane at a concentration of 12.5 kg / h, n-hexane at 47.4 kg / h, and n-hexane at a concentration of 2.0 wt% , A solution of 2,2-di (2-tetrahydrofuryl) propane (DTP) in which 10% by weight of 2,2- (di-2 (tetrahydrofuryl) propane was dissolved in n-hexane as a polar additive at 25.0 g / h and the modifying initiator prepared in Preparation Example 1 were injected at a rate of 300.0 g / h. At this time, the temperature of the first reactor was maintained at 50 ° C. When the polymerization conversion rate reached 43% , And the polymer was transferred from the first reactor to the second reactor.
이어서, 제2 반응기에 n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 0.7 kg/h의 속도로 주입하였다. 이때, 제2기 반응기의 온도는 65℃가 되도록 유지하였으며, 중합 전환율이 95% 이상이 되었을 때, 이송 배관을 통해, 제2 반응기에서 제3 반응기로 중합물을 이송하였다. Subsequently, a 1,3-butadiene solution in which 60 wt% of 1,3-butadiene was dissolved in n-hexane was injected into the second reactor at a rate of 0.7 kg / h. At this time, the temperature of the second reactor was maintained at 65 ° C., and when the conversion of polymerization reached 95% or more, the polymer was transferred from the second reactor to the third reactor through the transfer pipe.
상기 제2 반응기에서 제3 반응기로 중합물을 이송하여, 변성제로 N-(3-(1H-이미다졸-1-일)프로필)-3-(트리에톡시실릴)-N-(3-(트리에톡시실릴)프로필)프로판-1-아민(N-(3-(1H-imidazol-1-yl)propyl)- 3-(triethoxysilyl)-N-(3-(triethoxysilyl)propyl)propan-1-amine)이 용해된 용액(용매: n-헥산)을 제3 반응기에 연속적으로 투입하였다[변성제:act. Li=1:1 mol]. 제3 반응기의 온도는 65℃가 되도록 유지하였다.The polymerizate was transferred from the second reactor to the third reactor so that the amount of N- (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) Propyl) propan-1-amine (N- (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- ) (Solvent: n-hexane) was continuously added to the third reactor (denaturant: act. Li = 1: 1 mol]. The temperature of the third reactor was maintained at 65 ° C.
이후, 제3 반응기에서 배출된 중합 용액에 산화방지제로 30 중량%로 용해된 IR1520(BASF社) 용액을 170 g/h의 속도로 주입하여 교반하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거하여 변성 공액디엔계 중합체를 제조하였다. Thereafter, IR1520 (BASF) solution dissolved at 30 wt% as an antioxidant was injected into the polymerization solution discharged from the third reactor at a rate of 170 g / h and stirred. The resultant polymer was put into hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
실시예 2Example 2
실시예 1에 있어서, 변성 개시제로 제조예 1에서 제조된 변성 개시제 대신에 제조예 2에서 제조된 변성 개시제를 350.0 g/h의 속도로 제1 반응기에 연속적으로 공급하고, 중합 전환율이 40 %가 되었을 때 이송배관을 통해 제1 반응기에서 제2 반응기로 중합물을 이송하며, 변성제로 N-(3-(1H-이미다졸-1-일)프로필)-3-(트리에톡시실릴)-N-(3-(트리에톡시실릴)프로필)프로판-1-아민(N-(3-(1H-imidazol-1-yl)propyl)- 3-(triethoxysilyl)-N-(3-(triethoxysilyl)propyl)propan-1-amine)이 용해된 용액(용매: n-헥산) 대신에 1,3-비스(3-(1H-이미다졸-1-일)프로필)1,1,3,3-테트라에톡시디실록산(1,3-bis(3-The modification initiator prepared in Production Example 2 was continuously fed into the first reactor at a rate of 350.0 g / h instead of the modifier initiator prepared in Production Example 1 as the modifier initiator in Example 1, and the polymerization conversion was 40% (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- Propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) propyl) propane-1- (3- (1H-imidazol-1-yl) propyl) 1,1,3,3-tetraethoxysilane instead of the solution (solvent: n-hexane) (1,3-bis (3-
(1H-imidazol-1-yl)propyl)-1,1,3,3-tetraethoxydisiloxane) 이 용해된 용액(용매: n-헥산)을 연속적으로 공급한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 변성 공액디엔계 중합체를 제조하였다[변성제:act. Li=1:1 mol].Except that a solution (solvent: n-hexane) in which a (1H-imidazol-1-yl) propyl) -1,1,3,3-tetraethoxydisiloxane To prepare a modified conjugated diene polymer (denaturant: act. Li = 1: 1 mol].
실시예 3Example 3
3기의 반응기가 직렬로 연결된 연속 반응기 중 제1 반응기에, n-헥산에 스티렌이 60 중량%로 용해된 스티렌 용액을 6.5 kg/h, n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 7.7 kg/h, n-헥산 47.0 kg/h, n-헥산에 1,2-부타디엔이 2.0 중량%로 용해된 1,2-부타디엔 용액을 40.0 g/h, 극성첨가제로 n-헥산에 N,N,N',N'-테트라메틸에틸렌디아민(TMEDA)이 10 중량%로 용해된 용액을 50.0 g/h, 중합 개시제로 제조예 3에서 제조된 변성개시제를 400.0 g/h의 속도로 주입하였다. In a first reactor of a continuous reactor in which three reactors were connected in series, 6.5 kg / h of a styrene solution in which 60 wt% of styrene was dissolved in n-hexane, 60 wt% of 1,3-butadiene in n-hexane Butadiene solution in which the dissolved 1,3-butadiene solution was 7.7 kg / h, n-hexane 47.0 kg / h, 1,2-butadiene in 1,2-butadiene in n-hexane was dissolved in 40.0 g / 50.0 g / h of a solution in which 10% by weight of N, N, N ', N'-tetramethylethylenediamine (TMEDA) was dissolved in n-hexane as a polar additive, 400.0 g / h.
이 때, 제1 반응기의 온도는 55℃가 되도록 유지하였으며, 중합 전환율이 41%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하였다.At this time, the temperature of the first reactor was maintained at 55 占 폚, and when the polymerization conversion became 41%, the polymer was transferred from the first reactor to the second reactor through the transfer pipe.
이어서, 제2 반응기에 n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 2.3 kg/h의 속도로 주입하였다. 이 때, 제2 반응기의 온도는 65℃가 되도록 유지하였으며, 중합 전환율이 95%가 되었을 때, 이송 배관을 통해, 제2 반응기에서 제3 반응기로 중합물을 이송하였다.Subsequently, a 1,3-butadiene solution in which 60 wt% of 1,3-butadiene was dissolved in n-hexane was injected into the second reactor at a rate of 2.3 kg / h. At this time, the temperature of the second reactor was maintained at 65 ° C, and when the polymerization conversion reached 95%, the polymer was transferred from the second reactor to the third reactor through the transfer pipe.
상기 제2 반응기에서 제3 반응기로 중합물을 이송하여, 변성제로 N-(3-(1H-이미다졸-1-일)프로필)-3-(트리에톡시실릴)-N-(3-(트리에톡시실릴)프로필)프로판-1-아민(N-(3-(1H-imidazol-1-yl)propyl)- 3-(triethoxysilyl)-N-(3-(triethoxysilyl)propyl)propan-1-amine)이 용해된 용액(용매: n-헥산)을 제3 반응기에 투입하였다[변성제:act. Li=1:1 mol]. 제3 반응기의 온도는 65℃가 되도록 유지하였다. The polymerizate was transferred from the second reactor to the third reactor so that the amount of N- (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) Propyl) propan-1-amine (N- (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- ) (Solvent: n-hexane) was added to the third reactor (denaturant: act. Li = 1: 1 mol]. The temperature of the third reactor was maintained at 65 ° C.
이 후, 제3 반응기에서 배출된 중합 용액에 산화방지제로 30중량%로 용해된 IR1520(BASF社) 용액을 170 g/h의 속도로 주입하여 교반하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거하여 변성 공액디엔계 중합체를 제조하였다. Thereafter, IR1520 (BASF) solution dissolved at 30 wt% as an antioxidant was injected into the polymerization solution discharged from the third reactor at a rate of 170 g / h and stirred. The resultant polymer was put into hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
실시예 4Example 4
실시예 3에 있어서, 변성 개시제로 제조예 3에서 제조된 변성 개시제 대신에 제조예 2에서 제조된 변성 개시제를 350.0 g/h의 속도로 제1 반응기에 연속적으로 공급하고, 중합 전환율이 42 %가 되었을 때 이송배관을 통해 제1 반응기에서 제2 반응기로 중합물을 이송하며, 변성제로 N-(3-(1H-이미다졸-1-일)프로필)-3-(트리에톡시실릴)-N-(3-(트리에톡시실릴)프로필)프로판-1-아민(N-(3-(1H-imidazol-1-yl)propyl)- 3-(triethoxysilyl)-N-(3-(triethoxysilyl)propyl)propan-1-amine)이 용해된 용액(용매: n-헥산) 대신에 1,3-비스(3-(1H-이미다졸-1-일)프로필)1,1,3,3-테트라에톡시디실록산(1,3-bis(3-The modification initiator prepared in Production Example 2 was continuously fed into the first reactor at a rate of 350.0 g / h instead of the modification initiator prepared in Production Example 3 as the modifier initiator in Example 3, and the polymerization conversion was 42% (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- Propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) propyl) propane-1- (3- (1H-imidazol-1-yl) propyl) 1,1,3,3-tetraethoxysilane instead of the solution (solvent: n-hexane) (1,3-bis (3-
(1H-imidazol-1-yl)propyl)-1,1,3,3-tetraethoxydisiloxane) 이 용해된 용액(용매: n-헥산)을 연속적으로 공급한 것을 제외하고는 상기 실시예 3과 동일하게 실시하여 변성 공액디엔계 중합체를 제조하였다[변성제:act. Li=1:1 mol].Except that a solution (solvent: n-hexane) in which a (1H-imidazol-1-yl) propyl) -1,1,3,3-tetraethoxydisiloxane To prepare a modified conjugated diene polymer (denaturant: act. Li = 1: 1 mol].
실시예 5Example 5
실시예 3에 있어서, 변성 개시제로 제조예 3에서 제조된 변성 개시제 대신에 제조예 1에서 제조된 변성 개시제를 300.0 g/h의 속도로 제1 반응기에 연속적으로 공급하고, 중합 전환율이 43 %가 되었을 때 이송배관을 통해 제1 반응기에서 제2 반응기로 중합물을 이송하며, 변성제로 N-(3-(1H-이미다졸-1-일)프로필)-3-(트리에톡시실릴)-N-(3-(트리에톡시실릴)프로필)프로판-1-아민(N-(3-(1H-imidazol-1-yl)propyl)- 3-(triethoxysilyl)-N-(3-(triethoxysilyl)propyl)propan-1-amine)이 용해된 용액(용매: n-헥산) 대신에 N-(3-(1H-1,2,4-트리아졸-1-릴)프로필)-3-(트리메톡시실릴)-N-(3-(트리메톡시실릴)프로필)프로판-1-아민(N-(3-(1H-1,2,4-triazol-1-yl)propyl)-3-(trimethoxysilyl)-N-(3-(trimethoxysilyl)propyl)propan-1-amine)이 용해된 용액(용매: n-헥산)을 연속적으로 공급한 것을 제외하고는 상기 실시예 3과 동일하게 실시하여 변성 공액디엔계 중합체를 제조하였다[변성제:act. Li=1:1 mol].The modification initiator prepared in Production Example 1 was continuously fed into the first reactor at a rate of 300.0 g / h instead of the modification initiator prepared in Production Example 3 as the modifier initiator in Example 3, and the polymerization conversion was 43% (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- Propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) propyl) propane-1- propyl) -3- (trimethoxysilyl) propane-1-amine (solvent: n-hexane) ) - N- (3- (1H-1,2,4-triazol-1-yl) propyl) -3- (trimethoxysilyl) - Except that a solution in which N- (3- (trimethoxysilyl) propyl) propan-1-amine was dissolved (solvent: n-hexane) was continuously supplied, Conjugated diene to prepare a polymer [modifier: act. Li = 1: 1 mol].
비교예 1Comparative Example 1
20 L 오토클레이브 반응기에 스티렌 180 g, 1,3-부타디엔 800 g, n-헥산 5000 g 및 극성첨가제로 2,2-디(2-테트라하이드로퓨릴)프로판 1.2 g을 넣은 후 반응기 내부 온도를 50℃로 승온하였다. 반응기 내부 온도가 50℃에 도달했을 때, 제조예 1에서 제조된 변성 개시제를 4.7 mmol을 투입하여 단열 승온 반응을 진행시켰다. 20 여분 경과 후 1,3-부타디엔 20 g을 투입하여 중합체 사슬 말단을 부타디엔으로 캡핑(capping)하였다. 5분 후, N-(3-(1H-이미다졸-1-일)프로필)-3-(트리에톡시실릴)-N-(3-(트리에톡시실릴)프로필)프로판-1-아민(N-(3-(1H-imidazol-1-yl)propyl)- 3-(triethoxysilyl)-N-(3-(triethoxysilyl)propyl)propan-1-amine) 4.7 mmol을 투입하여 15분 간 반응시켰다. 이후 에탄올을 이용하여 중합반응을 정지시키고, 산화방지제인 IR1520(BASF社)가 n-헥산에 0.3 중량% 녹아있는 용액 45 ml를 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거하여 변성 공액디엔계 중합체를 제조하였다.180 g of styrene, 800 g of 1,3-butadiene, 5000 g of n-hexane and 1.2 g of 2,2-di (2-tetrahydrofuryl) propane as a polar additive were placed in a 20 L autoclave reactor, Lt; 0 &gt; C. When the internal temperature of the reactor reached 50 占 폚, 4.7 mmol of the denaturation initiator prepared in Preparation Example 1 was added to proceed the adiabatic reaction. After 20 minutes, 20 g of 1,3-butadiene was added to cap the end of the polymer chain with butadiene. After 5 minutes, a solution of N- (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) propyl) 4.7 mmol of N- (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) propyl) propan-1-amine was added thereto and reacted for 15 minutes. Thereafter, the polymerization reaction was stopped using ethanol, and 45 ml of a solution in which 0.3 weight% of IR1520 (BASF) was dissolved in n-hexane was added. The resultant polymer was put into hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
비교예 2Comparative Example 2
3기의 반응기가 직렬로 연결된 연속 반응기 중 제1기 반응기에, n-헥산에 스티렌이 60 중량%로 용해된 스티렌 용액을 3.3 kg/h, n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 12.5 kg/h, n-헥산 47.4 kg/h, n-헥산에 1,2-부타디엔이 2.0 중량%로 용해된 1,2-부타디엔 용액을 40 g/h, 극성첨가제로 n-헥산에 2,2-(디-2(테트라하이드로퓨릴)프로판(DTP)이 10 중량%로 용해된 용액을 25.0 g/h, 중합 개시제로 n-헥산에 n-부틸리튬 5 중량%로 용해된 n-부틸리튬 용액을 30.0 g/h의 속도로 주입하였다. 이때, 제1기 반응기의 온도는 50℃가 되도록 유지하였으며, 중합 전환율이 43%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하였다.In a first reactor of a continuous reactor in which three reactors were connected in series, 3.3 kg / h of a styrene solution in which 60 wt% of styrene was dissolved in n-hexane, 60 wt% of 1,3-butadiene in n-hexane, Butadiene solution dissolved in n-hexane at a concentration of 12.5 kg / h, n-hexane at 47.4 kg / h, and n-hexane at a concentration of 2.0 wt% , 25.0 g / h of a solution in which 10% by weight of 2,2- (di-2 (tetrahydrofuryl) propane (DTP) was dissolved in n-hexane as a polar additive, n-butyllithium Butyl lithium solution dissolved at 5 wt% was injected at a rate of 30.0 g / h. At this time, the temperature of the first reactor was kept at 50 ° C, and when the polymerization conversion rate reached 43% The polymer was transferred from the first reactor to the second reactor.
이어서, 제2 반응기에 n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 0.7 kg/h의 속도로 주입하였다. 이때, 제2기 반응기의 온도는 65℃가 되도록 유지하였으며, 중합 전환율이 95% 이상이 되었을 때, 이송 배관을 통해, 제2 반응기에서 제3 반응기로 중합물을 이송하였다. Subsequently, a 1,3-butadiene solution in which 60 wt% of 1,3-butadiene was dissolved in n-hexane was injected into the second reactor at a rate of 0.7 kg / h. At this time, the temperature of the second reactor was maintained at 65 ° C., and when the conversion of polymerization reached 95% or more, the polymer was transferred from the second reactor to the third reactor through the transfer pipe.
상기 제2 반응기에서 제3 반응기로 중합물을 이송하여 커플링제로 디클로로디메틸실란(dichlorodimethylsilane)이 용해된 용액(용매: n-헥산)을 제3 반응기에 투입하였다[커플링제:act. Li=1:1 mol]. 제3 반응기의 온도는 65℃가 되도록 유지하였다.The polymer was transferred from the second reactor to the third reactor to introduce a solution (solvent: n-hexane) in which dichlorodimethylsilane was dissolved as a coupling agent into a third reactor (coupling agent: act. Li = 1: 1 mol]. The temperature of the third reactor was maintained at 65 ° C.
이후, 제3 반응기에서 배출된 중합 용액에 산화방지제로 30 중량%로 용해된 IR1520(BASF社) 용액을 170 g/h의 속도로 주입하여 교반하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거하여 변성 공액디엔계 중합체를 제조하였다.Thereafter, IR1520 (BASF) solution dissolved at 30 wt% as an antioxidant was injected into the polymerization solution discharged from the third reactor at a rate of 170 g / h and stirred. The resultant polymer was put into hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
비교예 3Comparative Example 3
실시예 1에 있어서, 제1 반응기 온도를 75℃로 유지하고, 중합 전환율이 78%가 되었을 때 이송배관을 통해 제1 반응기에서 제2 반응기로 중합물을 이송한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 변성 공액디엔계 중합체를 제조하였다. The procedure of Example 1 was repeated except that the first reactor temperature was maintained at 75 캜 and the polymerisation was transferred from the first reactor to the second reactor through the transfer pipe when the polymerization conversion reached 78% To obtain a modified conjugated diene polymer.
비교예 4Comparative Example 4
실시예 1에 있어서, 중합 전환율이 42%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하고, 제3 반응기에 변성제를 투입하지 않고 반응시킨 것을 제외하고는 상기 실시예 1과 동일하게 실시하여, 단말단 변성 공액디엔계 중합체를 제조하였다. Except that in Example 1, when the polymerization conversion rate reached 42%, the polymerized product was transferred from the first reactor to the second reactor through the transfer pipe and the reaction was carried out without introducing the denaturant into the third reactor. The same procedure as in Example 1 was carried out to prepare a terminally stiffened conjugated diene polymer.
비교예 5Comparative Example 5
실시예 1에 있어서, 변성 개시제로 제조예 1에서 제조된 변성 개시제 대신에 n-헥산에 n-부틸리튬이 5 중량%로 용해된 n-부틸리튬 용액을 30.0 g/h의 속도로 제1 반응기에 연속적으로 투입한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 단말단 변성 공액 디엔계 중합체를 제조하였다.In the same manner as in Example 1 except that a n-butyllithium solution in which 5 wt% of n-butyllithium was dissolved in n-hexane instead of the modifying initiator prepared in Production Example 1 was used as a modifying initiator at a rate of 30.0 g / In the same manner as in Example 1, to prepare a terminally-modified conjugated diene-based polymer.
비교예 6Comparative Example 6
실시예 3에 있어서, 변성 개시제로 제조예 3에서 제조된 변성 개시제 대신에 n-헥산에 n-부틸리튬이 5 중량%로 용해된 n-부틸리튬 용액을 30.0 g/h, 변성제 대신에 커플링제로 n-헥산에 디메틸디클로로실란이 용해된 용액(용매: n-헥산)을 제3 반응기에 연속적으로 투입한 것을 제외하고는 상기 실시예 3과 동일하게 실시하여, 변성 공액디엔계 중합체를 제조하였다[커플링제:act. Li=1:1 mol].In the same manner as in Example 3 except that 30.0 g / h of n-butyllithium solution in which 5 wt% of n-butyllithium was dissolved in n-hexane instead of the modifying initiator prepared in Production Example 3 was used as a modifying initiator, A modified conjugated diene polymer was prepared in the same manner as in Example 3 except that a solution in which dimethyldichlorosilane was dissolved in n-hexane (solvent: n-hexane) was continuously added to the third reactor [Coupling agent: act. Li = 1: 1 mol].
참조예 1Reference Example 1
비교예 1에 있어서, 변성제로 N-(3-(1H-이미다졸-1-일)프로필)-3-(트리에톡시실릴)-N-(3-(트리에톡시실릴)프로필)프로판-1-아민(N-(3-(1H-imidazol-1-yl)propyl)- 3-(triethoxysilyl)-N-(3-(triethoxysilyl)propyl)propan-1-amine) 대신 3-(디메톡시(메틸)실릴)-N,N-디에틸프로판-1-아민을 14.1 mmol로 투입한 것을 제외하고는 상기 비교예 1과 동일하게 실시하여 양말단 변성 공액디엔계 중합체를 제조하였다.In the same manner as in Comparative Example 1, except that N- (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) Except that 3- (dimethoxy) (3-methylphenyl) propane was used instead of 1-amine (N- (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- Methyl) silyl) -N, N-diethylpropan-1-amine (14.1 mmol) were charged in the same manner as in Comparative Example 1, to thereby prepare a conjugated diene polymer.
참조예 2Reference Example 2
비교예 1에 있어서, 변성제로 N-(3-(1H-이미다졸-1-일)프로필)-3-(트리에톡시실릴)-N-(3-(트리에톡시실릴)프로필)프로판-1-아민(N-(3-(1H-imidazol-1-yl)propyl)- 3-(triethoxysilyl)-N-(3-(triethoxysilyl)propyl)propan-1-amine) 대신 3-(디메톡시(메틸)실릴)-N,N-디에틸프로판-1-아민을 2.3 mmol로 투입한 것을 제외하고는 상기 비교예 1과 동일하게 실시하여 양말단 변성 공액디엔계 중합체를 제조하였다.In the same manner as in Comparative Example 1, except that N- (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) Except that 3- (dimethoxy) (3-methylphenyl) propane was used instead of 1-amine (N- (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- Methyl) silyl) -N, N-diethylpropan-1-amine was added in an amount of 2.3 mmol, to obtain a conjugated diene polymer having a terminal end.
실험예 1Experimental Example 1
상기 실시예 및 비교예에서 제조된 각 변성 또는 미변성 공액디엔계 중합체에 대하여 각각 중합체 내 스티렌 단위 및 비닐 함량과 중량평균분자량(Mw, X103 g/mol), 수평균분자량(Mn, X103 g/mol), 분자량 분포(PDI, MWD), 무니점도(MV), 및 Si의 함량을 각각 측정하였다. 결과를 하기 표 1 및 표 2에 나타내었다. Examples and Comparative each modified prepared in Example or unmodified conjugated diene in styrene units each polymer relative to the polymer and the vinyl content and a weight average molecular weight (Mw, X10 3 g / mol ), the number average molecular weight (Mn, X10 3 g / mol), molecular weight distribution (PDI, MWD), Mooney viscosity (MV), and Si content were measured. The results are shown in Tables 1 and 2 below.
1) 스티렌 단위 및 비닐 함량(중량%)1) styrene unit and vinyl content (% by weight)
상기 각 중합체 내 스티렌 단위(SM) 및 비닐(Vinyl) 함량은 Varian VNMRS 500 MHz NMR을 이용하여 측정 및 분석하였다. The styrene unit (SM) and vinyl (Vinyl) content in each polymer were measured and analyzed using Varian VNMRS 500 MHz NMR.
NMR 측정 시 용매는 1,1,2,2-테트라클로로에탄을 사용하였으며, solvent peak는 5.97 ppm으로 계산하고, 7.2~6.9 ppm은 랜덤 스티렌, 6.9~6.2 ppm은 블록 스티렌, 5.8~5.1 ppm은 1,4-비닐, 5.1~4.5 ppm은 1,2-비닐의 피크로 하여 스티렌 단위 및 비닐 함량을 계산하였다. In the NMR measurement, 1,1,2,2-tetrachloroethane was used as the solvent. The solvent peak was calculated to be 5.97 ppm, 7.2 to 6.9 ppm for random styrene, 6.9 to 6.2 ppm for block styrene, 5.8 to 5.1 ppm 1,4-vinyl, and 5.1 to 4.5 ppm are 1,2-vinyl peaks, and styrene unit and vinyl content were calculated.
2) 중량평균분자량(Mw, X103 g/mol), 수평균분자량(Mn, X103 g/mol), 피크톱 분자량(Mp, X103 g/mol), 분자량 분포(PDI, MWD) 및 커플링 수(coupling number, C.N)2) The weight average molecular weight (Mw, X10 3 g / mol), the number average molecular weight (Mn, X10 3 g / mol), the peak top molecular weight (Mp, X10 3 g / mol), the molecular weight distribution (PDI, MWD) The coupling number (CN)
GPC(Gel permeation Chromatography) 분석을 통하여 중량평균분자량(Mw), 수평균분자량(Mn) 및 피크톱 분자량(Mp)을 40 ℃에서 측정하였으며, 분자량 분포 곡선을 얻었다. 또한, 분자량 분포(PDI, MWD, Mw/Mn)는 측정된 각 중량평균분자량과 수평균분자량으로부터 계산하여 얻었다. 구체적으로, 상기 GPC는 PLgel Olexis(Polymer Laboratories 社) 컬럼 두 자루와 PLgel mixed-C(Polymer Laboratories 社) 컬럼 한 자루를 조합하여 사용하고 분자량 계산시 GPC 기준물질 (Standard material)은 PS(polystyrene)을 사용하여 실시하였다. GPC 측정 용매는 테트라하이드로퓨란에 2 중량%의 아민 화합물을 섞어서 제조하였다. 이 때 얻어진 분자량 분포 곡선은 도 1 내지 도 4에 나타내었다.Weight average molecular weight (Mw), number average molecular weight (Mn) and peak top molecular weight (Mp) were measured at 40 ° C by GPC (Gel Permeation Chromatography) analysis and a molecular weight distribution curve was obtained. The molecular weight distribution (PDI, MWD, Mw / Mn) was obtained from the measured weight average molecular weight and number average molecular weight. Specifically, the GPC was prepared by combining two columns of PLgel Olexis (Polymer Laboratories) columns and a column of PLgel mixed-C (Polymer Laboratories) column. In the molecular weight calculation, the GPC standard material was PS (polystyrene) . The GPC measurement solvent was prepared by mixing 2% by weight of an amine compound in tetrahydrofuran. The molecular weight distribution curves obtained at this time are shown in Figs. 1 to 4. Fig.
또한, 커플링 수는 각 실시예 및 비교예에서 변성제 또는 커플링제를 투입하기 전에 일부 중합물을 채취하여 중합체의 피크 분자량(Mp1)을 얻고, 이후 각 변성 공액디엔계 중합체의 피크 분자량(Mp2)을 얻어, 하기와 수학식 2로 계산하였다. In addition, the coupling can have the respective examples and before its use the modifying agent or coupling agent in the comparative examples were collected some polymer to obtain a peak molecular weight (Mp 1) of the polymer, each of the modified conjugated diene-based peak molecular weight of the polymer after (Mp 2 ) Was obtained and was calculated by the following equation (2).
[수학식 2]&Quot; (2) &quot;
커플링 수(C.N)=Mp2/Mp1 Coupling number (CN) = Mp 2 / Mp 1
3) 무니점도 및 무니완화율3) Mooney Viscosity and Mooney Relaxation Rate
무니점도(MV, (ML1+4, @100℃) MU)는 MV-2000(ALPHA Technologies 社)를 이용하여 100℃에서 Rotor Speed 2±0.02 rpm, Large Rotor를 사용하여 측정하였으며, 이때 사용된 시료는 실온(23±3℃)에서 30분 이상 방치한 후 27±3 g을 채취하여 다이 캐비티 내부에 채워 놓고 Platen을 작동시켜 4분 동안 측정하여 무니점도를 얻었다.The Mooney viscosity (MV, (ML1 + 4, @ 100 ° C) MU) was measured using MV-2000 (ALPHA Technologies) at 100 ° C using Rotor Speed 2 ± 0.02 rpm, Large Rotor, Was allowed to stand at room temperature (23 ± 3 ° C) for more than 30 minutes, 27 ± 3 g was taken, filled in the die cavity, platen was operated and measured for 4 minutes to obtain Mooney viscosity.
무니점도 측정 후, 토크가 풀리면서 나타나는 무니점도 변화의 기울기 값(절대값)을 측정하여 절대값으로 무니 완화율을 얻었다.After measuring the Mooney viscosity, the slope value (absolute value) of the Mooney viscosity change appearing as the torque was loosened was measured to obtain the Mooney relaxation rate as an absolute value.
4) Si 함량4) Si content
Si 함량은 ICP 분석 방법으로 유도 결합 플라즈마 발광 분석기(ICP-OES; Optima 7300DV)를 이용하여 측정하였다. 구체적으로, 시료 약 0.7 g을 백금 도가니(Pt crucible)에 넣고, 진한 황산(98 중량%, Electronic grade) 약 1 mL를 넣어, 300℃에서 3시간 동안 가열하고, 시료를 전기로(Thermo Scientific, Lindberg Blue M)에서, 하기 스텝(step) 1 내지 3의 프로그램으로 회화를 진행한 후, The Si content was measured using ICP-OES (Optima 7300DV) using an ICP analysis method. Specifically, about 0.7 g of a sample was placed in a platinum crucible, and about 1 mL of concentrated sulfuric acid (98% by weight, electronic grade) was added and the mixture was heated at 300 ° C for 3 hours. The sample was placed in an electric furnace (Thermo Scientific, Lindberg &lt; / RTI &gt; Blue &lt; RTI ID = 0.0 &gt; M), &
1) step 1: initial temp 0℃, rate (temp/hr) 180 ℃/hr, temp(holdtime) 180℃ (1hr)1) initial temp 0 ° C, rate (temp / hr) 180 ° C / hr, temp (holdtime) 180 ° C (1hr)
2) step 2: initial temp 180℃, rate (temp/hr) 85 ℃/hr, temp(holdtime) 370℃ (2hr)2) step 2: initial temp 180 ° C, rate (temp / hr) 85 ° C / hr, temp (holdtime) 370 ° C
3) step 3: initial temp 370℃, rate (temp/hr) 47 ℃/hr, temp(holdtime) 510℃ (3hr)3) step 3: initial temp 370 ° C, rate (temp / hr) 47 ° C / hr, temp (holdtime) 510 ° C
잔류물에 진한 질산(48 중량%) 1 mL, 진한 불산(50 중량%) 20 ㎕를 가하고, 백금 도가니를 밀봉하여 30분 이상 흔들어(shaking)준 후, 시료에 붕산(boric acid) 1 mL를 넣고 0℃에서 2시간 이상 보관한 후, 초순수(ultrapure water) 30 mL에 희석하여, 회화를 진행하여 측정하였다.Add 1 mL of concentrated nitric acid (48% by weight) and 20 μL of concentrated hydrofluoric acid (50% by weight) to the residue. Seal the platinum crucible for 30 minutes or more and shake it. Then add 1 mL of boric acid , Stored at 0 ° C for 2 hours or more, diluted in 30 mL of ultrapure water, and then subjected to painting.
5) N 함량5) N content
N 함량은 NSX 분석 방법으로, 극미량 질소 정량분석기 (NSX-2100H)를 이용하여 측정하였다. 구체적으로, 극미량 질소 정량분석기(Auto sampler, Horizontal furnace, PMT & Nitrogen detector)를 켜고 Ar을 250 ml/min, O2를 350 ml/min, ozonizer 300 ml/min으로 캐리어 가스 유량을 설정하고, heater를 800℃로 설정한 후 약 3시간 동안 대기하여 분석기를 안정화시켰다. 분석기가 안정화된 후 Nitrogen standard(AccuStandard S-22750-01-5 ml)를 이용하여 검량선 범위 5 ppm, 10 ppm, 50 ppm, 100 ppm 및 500 ppm의 검량선을 작성하고 각 농도에 해당하는 Area를 얻은 후 농도 대 Area의 비율을 이용하여 직선을 작성하였다. 이후, 시료 20 mg가 담긴 세라믹 보트를 상기 분석기의 Auto sampler에 놓고 측정하여 area를 얻었다. 얻어진 시료의 area와 상기 검량선을 이용하여 N 함량을 계산하였다.N content was measured by NSX analysis method using a Nitrogen Quantitative Analyzer (NSX-2100H). Specifically, a carrier gas flow rate was set at 250 ml / min for Ar, 350 ml / min for O 2 , and 300 ml / min for an ozonizer by turning on a micro sampler (Horizontal furnace, PMT & Nitrogen detector) Lt; RTI ID = 0.0 &gt; 800 C &lt; / RTI &gt; for about 3 hours to stabilize the analyzer. After the analyzer was stabilized, calibration curves of 5 ppm, 10 ppm, 50 ppm, 100 ppm, and 500 ppm were prepared using the Nitrogen standard (AccuStandard S-22750-01-5 ml) A straight line was created using the ratio of posterior density to area. Then, a ceramic boat containing 20 mg of the sample was placed in an automatic sampler of the analyzer, and the area was measured. The N content was calculated using the area of the obtained sample and the calibration curve.
6) 수축인자 측정6) Measurement of contraction factor
수축인자는 폴리스티렌계 겔을 충전제로 한 컬럼 2자루가 연결된 광산란 검출기 및 점도 검출기가 구비된 GPC-광산란 측정장치(Viscotek TDAmax, Malvern 社)에 시료를 주입해서 광산란 검출기로부터 절대 분자량을 얻고, 광산란 검출기와 점도 검출기로부터 절대 분자량에 대한 고유점도[η]를 얻은 후, 하기 수학식 3을 통하여 상기 절대 분자량에 대한 선형 중합체의 고유점도[η]0를 산출하여, 각 절대 분자량에 대응하는 고유점도의 비([η]/ [η]0)의 평균값을 수축인자로 나타내었다. 이때, 용리액은 테트라히드로푸란과 N,N,N',N'-테트라메틸에틸렌디아민의 혼합 용액(N,N,N',N'-테트라메틸에틸렌디아민 20 mL를 테트라히드로푸란 1L에 혼합시켜 조정함)을 사용하고, 칼럼은 PL Olexix(Agilent 社)사용하였으며, 오븐 온도 40℃, THF 유량 1.0 mL/분의 조건에서 측정하였으며, 시료는 10 mL의 THF에 중합체 15 ㎎을 용해시켜 준비하였다.The shrinkage factor was obtained by injecting a sample into a GPC-light scattering measurement apparatus (Viscotek TDAmax, Malvern) equipped with a light scattering detector and a viscosity detector with two columns connected with a polystyrene-based gel as a filler, obtaining an absolute molecular weight from a light scattering detector, and the viscosity after from the detector obtained the intrinsic viscosity of the absolute molecular weight [η], for calculating the intrinsic viscosity of a linear polymer [η] 0 for the absolute molecular weight by the equation (3), of an intrinsic viscosity corresponding to the absolute molecular weight The average value of the ratio ([?] / [?] 0 ) is shown by the shrinkage factor. At this time, the eluent was prepared by mixing 20 mL of a mixed solution of N, N, N ', N'-tetramethylethylenediamine (N, N, N', N'- tetramethylethylenediamine, tetrahydrofuran and 1 L of tetrahydrofuran, ) Was used, and a column was PL Olexix (Agilent). The column was measured at an oven temperature of 40 ° C. and a THF flow rate of 1.0 mL / min. The sample was prepared by dissolving 15 mg of polymer in 10 mL of THF .
[수학식 3]&Quot; (3) &quot;
[η]0=10-3.883M0.771 [η] 0 = 10 -3.883 M 0.771
상기 수학식 3에서 M은 절대 분자량이다.In the above formula (3), M is an absolute molecular weight.
Figure PCTKR2018015145-appb-T000001
Figure PCTKR2018015145-appb-T000001
Figure PCTKR2018015145-appb-T000002
Figure PCTKR2018015145-appb-T000002
상기 표 1 및 표 2에서, 개시제, 변성제 및 커플링제의 구체적인 물질은 하기 표 3과 같다.In Table 1 and Table 2, specific materials of the initiator, the modifier, and the coupling agent are shown in Table 3 below.
Figure PCTKR2018015145-appb-T000003
Figure PCTKR2018015145-appb-T000003
상기 표 1 및 2를 참조하면, 본 발명의 일 실시예에 따라 제조된 실시예 1 내지 5의 변성 공액디엔계 중합체는 요구하는 물성들의 범위를 모두 충족하고 있음을 확인할 수 있다. 구체적으로, 겔 투과 크로마토그래피에 의한 분자량 분포 곡선은 유니모달 형태임과 동시에 PDI 값이 1.0 이상 1.7 미만으로서 가공성이 상당히 우수하면서도 배합 물성까지 우수하다는 것을 예측할 수 있고, 무니완화율이 모두 0.7 이상으로서 선형성이 우수함을 예측할 수 있으며, 수축인자가 0.8 이상으로서, 물성 간 균형성이 탁월하다는 점을 예측할 수 있다.Referring to Tables 1 and 2, it can be seen that the modified conjugated diene polymers of Examples 1 to 5 prepared according to one embodiment of the present invention all satisfy the range of required properties. Specifically, it can be predicted that the molecular weight distribution curve by gel permeation chromatography is in the form of unimodal and at the same time PDI value is 1.0 or more and less than 1.7, the formability is remarkably excellent and the compounding property is excellent. It can be predicted that the linearity is excellent and that the shrink factor is not less than 0.8 and that the balance between the physical properties is excellent.
반면에, 제1 반응기에서 제2 반응기로 이송할 때의 중합 전환율을 제어하지 않은 비교예 3은 PDI 값이 높게 나왔으며, 무니 완화율과 수축인자가 특정 값 이하로 평가되어, 물성 간 균형이나 선형성에서 만족스럽지 못한 결과가 나왔음을 확인할 수 있다.On the other hand, in Comparative Example 3 in which the polymerization conversion rate was not controlled in transferring from the first reactor to the second reactor, the PDI value was high, and the mooney relaxation rate and shrinkage factor were evaluated to be below a specific value, It can be confirmed that the linearity is unsatisfactory.
아울러, 배치 중합을 적용한 경우 일반적인 변성 공액디엔계 중합체는 비교예 1과 같이 PDI 값이 1.7 미만으로 작지만 바이모달 형태의 분자량 분포 곡선을 가지기 때문에 가공성이 열악하다는 것을 예측할 수 있고, 배치 중합의 결과 중 참조예 1 및 2와 같이 유니모달의 분자량 분포 곡선 형태가 나타날 수 있지만, 이는 커플링 수가 변성제의 관능기 수의 최소 값이거나 최대 값인 극단적인 경우, 즉 중합체 전부가 변성제에 의해 커플링되지 않거나(참조예 1), 중합체 전부가 변성제에 의해 커플링이 된 것(참조예 2)에 해당하며, 이러한 배치 중합의 변성 공액디엔계 중합체는 배합 물성의 열화로 이어진다는 점은 전술한 설명 내용 및 후술하는 평가 결과로부터 알 수 있다.In addition, when the batch polymerization is applied, it can be predicted that the general modified conjugated diene polymer has a poor PDI value of less than 1.7 but a bimodal molecular weight distribution curve as in Comparative Example 1, and thus the processability is poor. As in Reference Examples 1 and 2, the molecular weight distribution curve form of the Unimodule may appear, but this is not the case in the extreme case where the coupling number is the minimum value or the maximum value of the number of functional groups of the modifier, i.e. the entire polymer is not coupled by the modifier Example 1), the whole of the polymer was coupled by a modifier (Reference Example 2), and the modified conjugated diene polymer of such a batch polymerization leads to deterioration of the compounding properties. It can be known from the evaluation result.
도 1 내지 4는 실시예 1, 비교예 1과, 참조예 1 및 2의 분자량 분포 곡선을 나타낸 것이며, 각각의 분자량 분포 곡선의 형태가 전술한 것과 같이 나타나고 있음을 확인할 수 있다.1 to 4 show the molecular weight distribution curves of Example 1, Comparative Example 1 and Reference Examples 1 and 2, and it can be confirmed that the shape of each molecular weight distribution curve is as described above.
실험예 2Experimental Example 2
상기 실시예, 비교예 및 참조예에서 제조된 각 변성 또는 미변성 공액디엔계 공중합체를 포함하는 고무 조성물 및 이로부터 제조된 성형품의 물성을 비교분석하기 위하여, 인장특성, 점탄성 특성을 각각 측정하여 그 결과를 하기 표 5 및 표 6에 나타내었다. In order to comparatively analyze the physical properties of the rubber compositions comprising the modified or unmodified conjugated diene copolymers prepared in the above Examples, Comparative Examples and Reference Examples and the molded articles produced therefrom, tensile properties and viscoelastic properties were measured The results are shown in Tables 5 and 6 below.
1) 고무 시편의 제조1) Preparation of rubber specimens
실시예, 비교예 및 참조예의 각 변성 또는 미변성 공액디엔계 중합체를 원료 고무로 하여 하기 표 4에 나타낸 배합 조건으로 배합하였다. 표 4 내의 원료는 원료 고무 100 중량부 기준에 대한 각 중량부이다.The modified or unmodified conjugated diene-based polymers of Examples, Comparative Examples and Reference Examples were compounded under the conditions shown in Table 4 below as raw material rubbers. The raw materials in Table 4 are each parts by weight based on 100 parts by weight of raw rubber.
Figure PCTKR2018015145-appb-T000004
Figure PCTKR2018015145-appb-T000004
구체적으로 상기 고무시편은 제1단 혼련 및 제2단 혼련을 통해 혼련된다. 제1단 혼련에서는 온도제어장치를 부속한 반바리 믹서를 사용하여 원료 고무, 실리카(충전제), 유기실란 커플링제, 공정유, 아연화제, 스테아르산, 산화 방지제, 노화 방지제 및 왁스를 혼련하였다. 이때, 혼련기의 초기 온도를 70℃로 제어하고, 배합 완료 후 145℃ 내지 155℃의 배출온도에서 1차 배합물을 얻었다. 제2단 혼련에서는 상기 1차 배합물을 실온까지 냉각한 후, 혼련기에 1차 배합물, 황, 고무촉진제 및 가황촉진제를 가하고, 100℃ 이하의 온도에서 믹싱하여 2차 배합물을 얻었다. 이후, 160℃에서 20분간 큐어링 공정을 거쳐 고무시편을 제조하였다.Specifically, the rubber specimen is kneaded through the first stage kneading and the second stage kneading. In the first stage kneading, raw rubber, silica (filler), organosilane coupling agent, process oil, zincifying agent, stearic acid, antioxidant, antioxidant and wax were kneaded using a Banbury mixer equipped with a temperature control device. At this time, the initial temperature of the kneader was controlled at 70 占 폚, and a primary blend was obtained at an outlet temperature of 145 占 폚 to 155 占 폚. In the second stage kneading, the above-mentioned primary blend was cooled to room temperature, and then the primary blend, sulfur, rubber promoter and vulcanization accelerator were added to the kneader and mixed at a temperature of 100 DEG C or lower to obtain a second blend. Then, the rubber specimens were prepared by curing at 160 ° C for 20 minutes.
2) 인장특성2) Tensile properties
인장특성은 ASTM 412의 인장 시험법에 준하여 각 시험편을 제조하고 상기 시험편의 절단시의 인장강도 및 300% 신장시의 인장응력(300% 모듈러스)를 측정하였다. 구체적으로, 인장특성은 Universal Test Machin 4204(Instron 社) 인장 시험기를 이용하여 실온에서 50 cm/min의 속도로 측정하였다. Tensile properties of each test piece were measured in accordance with the tensile test method of ASTM 412, and the tensile strength at the time of cutting the test piece and the tensile stress at 300% elongation (300% modulus) were measured. Specifically, the tensile properties were measured at a rate of 50 cm / min at room temperature using a Universal Test Machin 4204 (Instron) tensile tester.
3) 점탄성 특성3) Viscoelastic properties
점탄성 특성은 동적 기계 분석기(GABO 社)를 이용하여 Film Tension 모드로 주파수 10 Hz, 각 측정온도(-60℃~60℃)에서 동적 변형에 대한 점탄성 거동을 측정하여 tan δ값을 확인하였다. 측정 값에서 저온 0℃ tan 값이 높은 것일 수록 젖은 노면저항성이 우수하고, 고온 60℃ tan δ 값이 낮은 것일 수록 히스테리시스 손실이 적고, 저주행저항성(연비성)이 우수함을 나타내는 것이나, 하기 표 5 및 표 6에서는 점탄성 특성을 기준 값을 특정한 후 지수화(%)하여 나타내어, 수치가 높을수록 우수한 것을 의미한다.The viscoelastic properties were determined by measuring the viscoelastic behavior of the dynamic deformation at 10 Hz frequency and at each measurement temperature (-60 ℃ ~ 60 ℃) in the film tension mode using a dynamic mechanical analyzer (GABO). The lower values of tan δ at high temperature of 60 ° C. show a lower hysteresis loss and an excellent resistance to low-flow resistance (ie, fuel economy) as shown in Tables 5 and 6, In Table 6, the viscoelastic characteristic is expressed by indexing (%) after specifying the reference value, which means that the higher the numerical value is, the better.
4) 가공성 특성4) Processability characteristics
상기 1) 고무 시편 제조 시 얻어진 2차 배합물의 무니 점도(MV, (ML1+4, @100℃) MU)를 측정하여 각 중합체의 가공성 특성을 비교분석하였으며, 이때 무니점도 측정값이 낮은 것일수록 가공성 특성이 우수함을 나타낸다. The Mooney viscosity (MV, (ML1 + 4, @ 100 ° C) MU) of the second blend obtained in the above 1) rubber specimens was measured to compare the workability characteristics of the respective polymers. And shows excellent workability characteristics.
구체적으로, MV-2000(ALPHA Technologies 社)를 이용하여 100℃에서 Rotor Speed 2±0.02 rpm, Large Rotor를 사용하여, 각 2차 배합물은 실온(23±3℃)에서 30분 이상 방치한 후 27±3 g을 채취하여 다이 캐비티 내부에 채워 놓고 Platen을 작동시켜 4분 동안 측정하였다.Specifically, each secondary compound was allowed to stand at room temperature (23 ± 3 ° C) for 30 minutes or more using a MV-2000 (ALPHA Technologies) at a rotor speed of 2 ± 0.02 rpm and a large rotor at 100 ° C., ± 3 g was taken, filled into the die cavity, and platen operated for 4 minutes.
Figure PCTKR2018015145-appb-T000005
Figure PCTKR2018015145-appb-T000005
상기 표 5에서, 실시예 1 및 실시예 2, 비교예 1, 3 내지 5 및 참조예 1 및 2의 점탄성특성 결과값은 비교예 2의 측정값을 기준으로 지수화(%)하여 나타내었으며, 높을수록 우수한 것을 의미한다.In Table 5, the results of viscoelastic properties of Examples 1 and 2, Comparative Examples 1, 3 to 5, and Reference Examples 1 and 2 are expressed as an index (%) based on the measurement value of Comparative Example 2, It means more excellent.
상기 표 5를 참조하면, 상기 실험예 1에서 중합체의 측정 물성을 통해서 예측한 것과 같이, 실시예 1 및 2의 경우 인장특성에서 인장강도는 비교예들 대비 동등 이상의 수준이면서도 모듈러스가 상당히 우수하게 나타났음을 확인할 수 있고, 점탄성 특성에서 저온에서의 tan δ값은 동등 이상의 수준을 유지하면서도 고온에서의 tan δ값이 크게 향상되었음이 확인되는바, 노면저항성의 손실 없이 연비 특성이 크게 향상되었다는 점을 확인할 수 있었다.Referring to Table 5, as predicted from the measured physical properties of the polymer in Experimental Example 1, in Examples 1 and 2, the tensile strength in the Examples 1 and 2 was much higher than that in Comparative Examples, but the modulus was remarkably excellent And the tan δ value at the low temperature was maintained at a level equal to or higher than that of the viscoelastic property, and it was confirmed that the tan δ value at the high temperature was greatly improved. As a result, it was confirmed that the fuel efficiency was improved without loss of the surface resistance I could.
나아가, 상기 참조예 1 및 2에서와 같이 배치 중합을 통해 제조된 중합체가 유니모달 형태의 분자량 분포 곡선을 갖게 되는 경우에는, 배치 중합 고유의 열악한 가공성은 그대로 갖고 있으면서도 배치 중합에서 장점으로 구현할 수 있는 우수한 배합 물성도 구현하지 못한다는 것을 확인하였다. 한편, 배치 중합 고유의 열악한 가공성은 본 발명에 따른 실시예1과 동일한 개시제 및 동일한 변성제를 적용하고, 커플링 수를 동등 범위로 적용한 비교예 1에서 확인할 수 있다.Further, when the polymer produced through the batch polymerization as in the above Referential Examples 1 and 2 has a unimodal molecular weight distribution curve, it is possible to obtain a polymer having a poor processability inherent to batch polymerization, And it is confirmed that it can not realize excellent compounding properties. On the other hand, poor workability inherent to batch polymerization can be confirmed in Comparative Example 1 in which the same initiator and the same modifier as Example 1 according to the present invention were applied and the number of couplings was applied in the same range.
또한, 비교예 3의 경우, 본 발명의 제조방법에 따르지 않은 결과로 전술한 것과 같이 PDI 값과 수축인자 및 무니완화율의 범위를 만족하지 못하였을뿐더러, 인장 특성 및 점탄성 특성에서 실시예 대비 열악함이 눈에 띄고 있음을 알 수 있다. 그리고 본 발명에 따른 변성제와 변성개시제를 적용하지 않은 비교예 2, 4 및 5의 경우, 마찬가지로 인장 특성 및 점탄성 특성의 열악함이 확인되었다.In Comparative Example 3, the PDI value, shrink factor, and mooni relaxation ratio were not satisfied as described above. As a result, the tensile property and the viscoelastic property were poorer than those of Examples It can be seen that the vessel is noticeable. In Comparative Examples 2, 4 and 5 in which the modifier according to the present invention and the modifier initiator were not applied, the tensile and viscoelastic properties were similarly poor.
Figure PCTKR2018015145-appb-T000006
Figure PCTKR2018015145-appb-T000006
상기 표 6에서, 실시예 3 내지 실시예 5의 점탄성 특성 결과값은 비교예 6의 측정값을 기준으로 지수화(%)하여 나타내었으며, 높을수록 우수한 것을 의미한다.In Table 6, the viscoelastic characteristic results of Examples 3 to 5 are represented by index (%) based on the measurement value of Comparative Example 6, and the higher the better, the better.
상기 표 6은, 공단량체의 함량을 표 5의 세트와 달리하여 평가한 결과 세트이며, 단량체들의 함량을 달리한다고 하여 그 효과가 변화되지 않음은 상기 표 6으로부터 확인할 수 있으며, 표 5에서 확인한 물성 향상 결과와 동일한 결과가 나타났음을 알 수 있다. The results are shown in Table 6. The results are shown in Table 6. The results are shown in Table 6. The results are shown in Table 6. The results are shown in Table 6. It can be seen from Table 6 that the effect is not changed by varying the contents of the monomers, The same result as the improvement result is obtained.

Claims (15)

  1. 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선이 유니모달(unimodal) 형태를 갖고,The molecular weight distribution curve by Gel Permeation Chromatography (GPC) has an unimodal form,
    분자량 분포(PDI; MWD)가 1.0 이상 1.7 미만이며,A molecular weight distribution (PDI) (MWD) of 1.0 or more and less than 1.7,
    일 말단에 변성 개시제 유래 작용기를 포함하고, 다른 일 말단에 하기 화학식 2 내지 화학식 4로 표시되는 변성제 중 선택된 어느 하나의 변성제 유래 작용기를 포함하며, Derived functional group selected from the group consisting of the following formulas (2) to (4) at the other end thereof,
    상기 변성 개시제는 하기 화학식 1로 표시되는 화합물과 유기금속 화합물과의 반응 생성물인 것인 변성 공액디엔계 중합체:Wherein the modification initiator is a reaction product of a compound represented by the following formula (1) with an organometallic compound:
    [화학식 1][Chemical Formula 1]
    Figure PCTKR2018015145-appb-I000041
    Figure PCTKR2018015145-appb-I000041
    상기 화학식 1에서, In Formula 1,
    R1 내지 R3는 각각 독립적으로 수소; 탄소수 1 내지 30의 알킬기; 탄소수 2내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기, 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 또는 탄소수 3 내지 30의 헤테로고리기이며, R 1 to R 3 are each independently hydrogen; An alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms, a heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; Or a heterocyclic group having 3 to 30 carbon atoms,
    R4는 단일결합; 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고, R 4 is a single bond; An alkylene group having 1 to 20 carbon atoms which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or an arylene group having 6 to 20 carbon atoms which is substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms,
    R5는 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기; 또는 하기 화학식 1a 또는 화학식 1b로 표시되는 작용기이며,R 5 is an alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms; A heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; A heterocyclic group having 3 to 30 carbon atoms; Or a functional group represented by the following formula (1a) or (1b)
    n은 1 내지 5의 정수이고, R5 중 적어도 하나는 하기 화학식 1a 또는 화학식 1b로 표시되는 작용기이며, n이 2 내지 5의 정수인 경우 복수 개의 R5는 서로 동일하거나 상이할 수 있고, n is an integer of 1 to 5, at least one of R 5 is a functional group represented by the following formula (1a) or (1b), and when n is an integer of 2 to 5, a plurality of R 5 may be the same or different,
    [화학식 1a][Formula 1a]
    Figure PCTKR2018015145-appb-I000042
    Figure PCTKR2018015145-appb-I000042
    상기 화학식 1a에서, In formula (1a)
    R6은 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고,R 6 is an alkylene group having 1 to 20 carbon atoms which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or an arylene group having 6 to 20 carbon atoms which is substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms,
    R7 및 R8은 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기이며, R 7 and R 8 each independently represent an alkylene group having 1 to 20 carbon atoms which is substituted or unsubstituted with an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms,
    R9는 수소; 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기이고, R 9 is hydrogen; An alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms; A heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; A heterocyclic group having 3 to 30 carbon atoms,
    X는 N, O 또는 S 원자이며, X가 O 또는 S인 경우 R9는 존재하지 않으며, X is N, O or S atom, and when X is O or S, R 9 is not present,
    [화학식 1b][Chemical Formula 1b]
    Figure PCTKR2018015145-appb-I000043
    Figure PCTKR2018015145-appb-I000043
    상기 화학식 1b에서,In the above formula (1b)
    R10은 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고,R 10 is an alkylene group having 1 to 20 carbon atoms, which is substituted or unsubstituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; Or an arylene group having 6 to 20 carbon atoms which is substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms,
    R11 및 R12는 각각 독립적으로 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 5 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기이며, R 11 and R 12 each independently represent an alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms; A heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 5 to 30 carbon atoms; An aryl group having 6 to 30 carbon atoms; A heterocyclic group having 3 to 30 carbon atoms,
    [화학식 2](2)
    Figure PCTKR2018015145-appb-I000044
    Figure PCTKR2018015145-appb-I000044
    상기 화학식 2에서, In Formula 2,
    Ra1 및 Ra4는 서로 독립적으로 단일결합, 또는 탄소수 1 내지 10의 알킬렌기이고, R a1 and R a4 independently represent a single bond or an alkylene group having 1 to 10 carbon atoms,
    Ra2 및 Ra3는 서로 독립적으로 탄소수 1 내지 10의 알킬기이고, R a2 and R a3 are each independently an alkyl group having 1 to 10 carbon atoms,
    Ra5는 N, O 및 S로 이루어진 군으로부터 선택되는 1종 이상의 헤테로 원자를포함하는 탄소수 2 내지 4의 5원 헤테로고리기이고, R a5 is a 5-membered heterocyclic group having 2 to 4 carbon atoms and containing at least one heteroatom selected from the group consisting of N, O and S,
    n1은 1 내지 3의 정수이고, n 1 is an integer of 1 to 3,
    n2는 0 내지 2의 정수이며, n 2 is an integer of 0 to 2,
    [화학식 3](3)
    Figure PCTKR2018015145-appb-I000045
    Figure PCTKR2018015145-appb-I000045
    상기 화학식 3에서, In Formula 3,
    A1 및 A2는 서로 독립적으로 탄소수 1 내지 20의 알킬렌기이고, A 1 and A 2 independently represent an alkylene group having 1 to 20 carbon atoms,
    Rb1 내지 Rb4는 서로 독립적으로 탄소수 1 내지 20의 알킬기이고, R b1 to R b4 are each independently an alkyl group having 1 to 20 carbon atoms,
    Rb5 및 Rb6은 서로 독립적으로 수소 또는 탄소수 1 내지 10의 알킬기이고, R b5 and R b6 are independently hydrogen or an alkyl group having 1 to 10 carbon atoms,
    A3 및 A4는 서로 독립적으로
    Figure PCTKR2018015145-appb-I000046
    또는
    Figure PCTKR2018015145-appb-I000047
    이고, 여기에서 Rb7 내지 Rb10은 서로 독립적으로 수소, 또는 탄소수 1 내지 10의 알킬기이며,
    A 3 and A 4 independently of one another
    Figure PCTKR2018015145-appb-I000046
    or
    Figure PCTKR2018015145-appb-I000047
    , Wherein R b7 to R b10 are each independently hydrogen or an alkyl group having 1 to 10 carbon atoms,
    [화학식 4][Chemical Formula 4]
    Figure PCTKR2018015145-appb-I000048
    Figure PCTKR2018015145-appb-I000048
    상기 화학식 4에서, In Formula 4,
    Rc1은 수소 또는 탄소수 1 내지 10의 알킬기이고, R c1 is hydrogen or an alkyl group having 1 to 10 carbon atoms,
    Rc2 내지 Rc4는 서로 독립적으로 탄소수 1 내지 10의 알킬렌기이고, R c2 to R c4 independently represent an alkylene group having 1 to 10 carbon atoms,
    Rc5 내지 Rc8은 서로 독립적으로 탄소수 1 내지 10의 알킬기이고,R c5 to R c8 independently represent an alkyl group having 1 to 10 carbon atoms,
    A5
    Figure PCTKR2018015145-appb-I000049
    또는
    Figure PCTKR2018015145-appb-I000050
    이고, 여기에서 Rc9 내지 Rc12는 서로 독립적으로 수소, 또는 탄소수 1 내지 10의 알킬기이며,
    A 5 is
    Figure PCTKR2018015145-appb-I000049
    or
    Figure PCTKR2018015145-appb-I000050
    , Wherein R c9 to R c12 independently represent hydrogen or an alkyl group having 1 to 10 carbon atoms,
    m1 및 m2는 서로 독립적으로 0 내지 3의 정수이되, m1+m2≥1 이다. m 1 and m 2 are each independently an integer of 0 to 3, and m 1 + m 2 ≥1.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 화학식 1에서,In Formula 1,
    R1 내지 R3는 각각 독립적으로 수소; 탄소수 1 내지 10의 알킬기; 탄소수 2내지 10의 알케닐기; 또는 탄소수 2 내지 10의 알카이닐기이고, R 1 to R 3 are each independently hydrogen; An alkyl group having 1 to 10 carbon atoms; An alkenyl group having 2 to 10 carbon atoms; Or an alkynyl group having 2 to 10 carbon atoms,
    R4는 단일결합; 또는 비치환된 탄소수 1 내지 10의 알킬렌기이고, R 4 is a single bond; Or an unsubstituted or substituted alkylene group having 1 to 10 carbon atoms,
    R5는 탄소수 1 내지 10의 알킬기; 탄소수 2 내지 10의 알케닐기; 탄소수 2 내지 10의 알카이닐기; 또는 하기 화학식 1a 또는 화학식 1b로 표시되는 작용기이며, R 5 is an alkyl group having 1 to 10 carbon atoms; An alkenyl group having 2 to 10 carbon atoms; An alkynyl group having 2 to 10 carbon atoms; Or a functional group represented by the following formula (1a) or (1b)
    상기 화학식 1a에서, R6은 비치환된 탄소수 1 내지 10의 알킬렌기이고, R7 및 R8은 각각 독립적으로 비치환된 탄소수 1 내지 10의 알킬렌기이고, R9는 탄소수 1 내지 10의 알킬기; 탄소수 5 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 또는 탄소수 3 내지 20의 헤테로고리기이고, Wherein R 6 is an unsubstituted alkylene group having 1 to 10 carbon atoms, R 7 and R 8 are each independently an unsubstituted alkylene group having 1 to 10 carbon atoms, and R 9 is an alkyl group having 1 to 10 carbon atoms ; A cycloalkyl group having 5 to 20 carbon atoms; An aryl group having 6 to 20 carbon atoms; Or a heterocyclic group having 3 to 20 carbon atoms,
    상기 화학식 1b에서, R10은 비치환된 탄소수 1 내지 10의 알킬렌기이고, R11 및 R12는 각각 독립적으로 탄소수 1 내지 10의 알킬기; 탄소수 5 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 또는 탄소수 3 내지 20의 헤테로고리기인 것인 변성 공액디엔계 중합체.In Formula 1b, R 10 is an unsubstituted alkylene group having 1 to 10 carbon atoms, R 11 and R 12 are each independently an alkyl group having 1 to 10 carbon atoms; A cycloalkyl group having 5 to 20 carbon atoms; An aryl group having 6 to 20 carbon atoms; Or a heterocyclic group having 3 to 20 carbon atoms.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 화학식 2에서, In Formula 2,
    Ra1 및 Ra4는 서로 독립적으로 단일결합, 또는 탄소수 1 내지 5의 알킬렌기이고,R a1 and R a4 independently represent a single bond or an alkylene group having 1 to 5 carbon atoms,
    Ra2 및 Ra3는 서로 독립적으로 탄소수 1 내지 5의 알킬기이고, R a2 and R a3 are each independently an alkyl group having 1 to 5 carbon atoms,
    Ra5는 (트리알콕시실릴)알킬기로 치환 또는 비치환되고, N, O 및 S 로 이루어진 군으로부터 선택된 1종 이상의 헤테로 원자를 포함하는 탄소수 2 내지 4의 5원 헤테로 고리기이고,R a5 is a 5-membered heterocyclic group having 2 to 4 carbon atoms which is substituted or unsubstituted with a (trialkoxysilyl) alkyl group and contains at least one heteroatom selected from the group consisting of N, O and S,
    상기 (트리알콕시실릴)알킬기의 알킬기는 탄소수 1 내지 5의 알킬기이고, 상기 (트리알콕시실릴)알킬기의 알콕시는 탄소수 1 내지 5의 알콕시기이고,The alkyl group of the (trialkoxysilyl) alkyl group is an alkyl group having 1 to 5 carbon atoms, the alkoxy of the (trialkoxysilyl) alkyl group is an alkoxy group having 1 to 5 carbon atoms,
    n1은 1 내지 3의 정수이고, n 1 is an integer of 1 to 3,
    n2는 0 내지 2의 정수인 것인 변성 공액디엔계 중합체.and n 2 is an integer of 0 to 2.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 화학식 3에서, In Formula 3,
    A1 및 A2는 서로 독립적으로 탄소수 1 내지 10의 알킬렌기이고,A 1 and A 2 independently represent an alkylene group having 1 to 10 carbon atoms,
    Rb1 내지 Rb4는 서로 독립적으로 탄소수 1 내지 10의 알킬기이고,R b1 to R b4 are each independently an alkyl group having 1 to 10 carbon atoms,
    Rb5 및 Rb6은 서로 독립적으로 수소 또는 탄소수 1 내지 10의 알킬기이고,R b5 and R b6 are independently hydrogen or an alkyl group having 1 to 10 carbon atoms,
    A3 및 A4는 서로 독립적으로
    Figure PCTKR2018015145-appb-I000051
    또는
    Figure PCTKR2018015145-appb-I000052
    이고, Rb7 내지 Rb10은 서로 독립적으로 수소, 또는 탄소수 1 내지 10의 알킬기인 것인 변성 공액디엔계 중합체.
    A 3 and A 4 independently of one another
    Figure PCTKR2018015145-appb-I000051
    or
    Figure PCTKR2018015145-appb-I000052
    And R b7 to R b10 are each independently hydrogen or an alkyl group having 1 to 10 carbon atoms.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 화학식 3은 하기 화학식 3-1 또는 3-2로 표시되는 화합물인 것인 변성 공액디엔계 중합체:Wherein the formula 3 is a compound represented by the following formula 3-1 or 3-2:
    [화학식 3-1][Formula 3-1]
    Figure PCTKR2018015145-appb-I000053
    Figure PCTKR2018015145-appb-I000053
    [화학식 3-2][Formula 3-2]
    Figure PCTKR2018015145-appb-I000054
    Figure PCTKR2018015145-appb-I000054
    상기 화학식 3-1 및 화학식 3-2에서, In the above formulas (3-1) and (3-2)
    A1 및 A2는 서로 독립적으로 탄소수 1 내지 10의 알킬렌기이고,A 1 and A 2 independently represent an alkylene group having 1 to 10 carbon atoms,
    Rb1 내지 Rb4는 서로 독립적으로 탄소수 1 내지 10의 알킬기이다.R b1 to R b4 are each independently an alkyl group having 1 to 10 carbon atoms.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 화학식 4에서, In Formula 4,
    Rc1은 수소 또는 탄소수 1 내지 5의 알킬기이고,R c1 is hydrogen or an alkyl group having 1 to 5 carbon atoms,
    Rc2 내지 Rc4는 서로 독립적으로 탄소수 1 내지 5의 알킬렌기이고,R c2 to R c4 are each independently an alkylene group having 1 to 5 carbon atoms,
    Rc5 내지 Rc8은 서로 독립적으로 탄소수 1 내지 5의 알킬기이고,R c5 to R c8 each independently represent an alkyl group having 1 to 5 carbon atoms,
    A5
    Figure PCTKR2018015145-appb-I000055
    또는
    Figure PCTKR2018015145-appb-I000056
    이고, Rc9 내지 Rc12는 서로 독립적으로 수소, 또는 탄소수 1 내지 5의 알킬기이며,
    A 5 is
    Figure PCTKR2018015145-appb-I000055
    or
    Figure PCTKR2018015145-appb-I000056
    , R c9 to R c12 independently represent hydrogen or an alkyl group having 1 to 5 carbon atoms,
    m1 및 m2는 서로 독립적으로 0 내지 3의 정수이되, m1+m2≥1인 것인 변성 공액디엔계 중합체.m 1 and m 2 are each independently an integer of 0 to 3, and m 1 + m 2 ≥1.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 변성 공액디엔계 중합체는 수평균 분자량(Mn)이 1,000 g/mol 내지 2,000,000 g/mol이고, 중량평균 분자량(Mw)이 1,000 g/mol 내지 3,000,000 g/mol 인 변성 공액디엔계 중합체.The modified conjugated diene polymer has a number average molecular weight (Mn) of 1,000 g / mol to 2,000,000 g / mol and a weight average molecular weight (Mw) of 1,000 g / mol to 3,000,000 g / mol.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 변성 공액디엔계 중합체는 Si 함량 및 N 함량이 각각 중량을 기준으로 50 ppm 이상인 것인 변성 공액디엔계 중합체.Wherein the modified conjugated diene polymer has an Si content and an N content of 50 ppm or more based on the weight of the modified conjugated diene polymer, respectively.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 변성 공액디엔계 중합체는 100℃에서 측정된 무니 완화율이 0.7 내지 3.0 인 것인 변성 공액디엔계 중합체.Wherein the modified conjugated diene polymer has a Mooney moderation rate measured at 100 캜 of 0.7 to 3.0.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 변성 공액디엔계 중합체는 점도 검출기를 구비한 겔 투과 크로마토그래피-광산란법 측정에 의해 구해지는 수축인자가 0.8 내지 3.0인 것인 변성 공액디엔계 중합체.Wherein the modified conjugated diene polymer has a shrink factor of 0.8 to 3.0 as measured by a gel permeation chromatography-light scattering method equipped with a viscosity detector.
  11. 청구항 1에 있어서,The method according to claim 1,
    상기 변성 공액디엔계 중합체의 커플링 수(C.N.)는 1<C.N.<F이고, 여기에서 F는 상기 변성제의 관능기 수인 것인 변성 공액디엔계 중합체.Wherein the number of the coupling groups (C.N.) of the modified conjugated diene polymer is 1 < C.N. < F, wherein F is the number of functional groups of the modifier.
  12. 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선이 유니모달(unimodal) 형태를 갖고,The molecular weight distribution curve by Gel Permeation Chromatography (GPC) has an unimodal form,
    겔 투과 크로마토그래피에 의한 표준 폴리스티렌 환산 분자량에 있어서 중량평균 분자량(Mw)이 1,000 g/mol 내지 3,000,000 g/mol이고,A weight average molecular weight (Mw) of 1,000 g / mol to 3,000,000 g / mol in terms of standard polystyrene standards by gel permeation chromatography,
    중량평균 분자량(Mw)과 수평균 분자량(Mn)의 비(Mw/Mn)가 1.0 이상 1.7 미만이고,(Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 1.0 or more and less than 1.7,
    중량평균 분자량(Mw)과 피크톱 분자량(Mp)의 비(Mw/Mp)가 0.7 내지 1.4이고,The ratio (Mw / Mp) of the weight average molecular weight (Mw) to the peak top molecular weight (Mp) is 0.7 to 1.4,
    Si 함량 및 N 함량이 각각 중량을 기준으로 50 ppm 이상이고,The Si content and the N content are each at least 50 ppm by weight,
    100℃에서 측정된 무니 완화율이 0.7 이상이고,The mooni relaxation ratio measured at 100 캜 is 0.7 or more,
    점도 검출기를 구비한 겔 투과 크로마토그래피-광산란법 측정에 의해 구해지는 수축인자가 0.8 이상인 것인 변성 공액디엔계 중합체.Wherein the shrinkage factor obtained by gel permeation chromatography-light scattering method measurement equipped with a viscosity detector is 0.8 or more.
  13. 청구항 1 또는 청구항 12에 기재된 변성 공액디엔계 중합체 및 충전제를 포함하는 고무 조성물.A rubber composition comprising the modified conjugated diene polymer according to claim 1 or 12 and a filler.
  14. 청구항 13에 있어서, 14. The method of claim 13,
    상기 고무 조성물은 상기 변성 공액디엔계 중합체 100 중량부에 대하여, 0.1 중량부 내지 200 중량부의 충전제를 포함하는 것인 고무 조성물.Wherein the rubber composition comprises 0.1 to 200 parts by weight of a filler based on 100 parts by weight of the modified conjugated diene polymer.
  15. 청구항 13에 있어서, 14. The method of claim 13,
    상기 충전제는 실리카계 충전제 또는 카본계 충전제인 고무 조성물.Wherein the filler is a silica-based filler or a carbon-based filler.
PCT/KR2018/015145 2017-12-05 2018-11-30 Modified conjugated diene-based polymer and rubber composition comprising same WO2019112263A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880063284.5A CN111164118B (en) 2017-12-05 2018-11-30 Modified conjugated diene polymer and rubber composition containing same
RU2020114365A RU2790165C2 (en) 2017-12-05 2018-11-30 Modified polymer based on conjugated diene and a rubber composition containing it
BR112020008059-4A BR112020008059B1 (en) 2017-12-05 2018-11-30 MODIFIED CONJUGATED DIENE POLYMER AND RUBBER COMPOSITION INCLUDING THE SAME
JP2020506812A JP6918202B2 (en) 2017-12-05 2018-11-30 Modified conjugated diene polymer and rubber composition containing it
EP18884915.2A EP3722342B1 (en) 2017-12-05 2018-11-30 Modified conjugated diene-based polymer and rubber composition comprising same
US16/753,106 US11414510B2 (en) 2017-12-05 2018-11-30 Modified conjugated diene-based polymer and rubber composition including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0165575 2017-12-05
KR20170165575 2017-12-05
KR1020180151386A KR102179487B1 (en) 2017-12-05 2018-11-29 Modified conjugated diene polymer and rubber composition comprising the same
KR10-2018-0151386 2018-11-29

Publications (1)

Publication Number Publication Date
WO2019112263A1 true WO2019112263A1 (en) 2019-06-13

Family

ID=66750307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015145 WO2019112263A1 (en) 2017-12-05 2018-11-30 Modified conjugated diene-based polymer and rubber composition comprising same

Country Status (1)

Country Link
WO (1) WO2019112263A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397994A (en) 1980-09-20 1983-08-09 Japan Synthetic Rubber Co., Ltd. High vinyl polybutadiene or styrene-butadiene copolymer
JPH06271706A (en) 1993-03-22 1994-09-27 Bridgestone Corp Tread rubber composition
KR20140127716A (en) * 2013-04-25 2014-11-04 주식회사 엘지화학 Method for continuous preparing modified conjugated diene polymers, polymers obtained from the method, and rubber composition comprising the same
KR20150144130A (en) * 2014-06-16 2015-12-24 주식회사 엘지화학 Modified Conjugated Diene Polymer, Modified Rubber Composition And Method For Preparing the Modified Conjugated Diene Polymer
KR20160065733A (en) * 2014-12-01 2016-06-09 주식회사 엘지화학 Polymerization initiator having anionic end comprising amine, method for preparing modified conjugated diene polymer using the same, and rubber composition comprising modified conjugated diene polymer prepared using the same
KR20170076597A (en) * 2015-12-24 2017-07-04 주식회사 엘지화학 Modified diene polymer, preparation method thereof and modifying agent
KR20170102320A (en) * 2015-02-19 2017-09-08 아사히 가세이 가부시키가이샤 Modified conjugated diene polymer, a process for producing the same, and a modified conjugated diene polymer composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397994A (en) 1980-09-20 1983-08-09 Japan Synthetic Rubber Co., Ltd. High vinyl polybutadiene or styrene-butadiene copolymer
JPH06271706A (en) 1993-03-22 1994-09-27 Bridgestone Corp Tread rubber composition
KR20140127716A (en) * 2013-04-25 2014-11-04 주식회사 엘지화학 Method for continuous preparing modified conjugated diene polymers, polymers obtained from the method, and rubber composition comprising the same
KR20150144130A (en) * 2014-06-16 2015-12-24 주식회사 엘지화학 Modified Conjugated Diene Polymer, Modified Rubber Composition And Method For Preparing the Modified Conjugated Diene Polymer
KR20160065733A (en) * 2014-12-01 2016-06-09 주식회사 엘지화학 Polymerization initiator having anionic end comprising amine, method for preparing modified conjugated diene polymer using the same, and rubber composition comprising modified conjugated diene polymer prepared using the same
KR20170102320A (en) * 2015-02-19 2017-09-08 아사히 가세이 가부시키가이샤 Modified conjugated diene polymer, a process for producing the same, and a modified conjugated diene polymer composition
KR20170076597A (en) * 2015-12-24 2017-07-04 주식회사 엘지화학 Modified diene polymer, preparation method thereof and modifying agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3722342A4 *

Similar Documents

Publication Publication Date Title
WO2019112260A1 (en) Modified conjugated diene-based polymer and rubber composition comprising same
WO2018128285A1 (en) Method for preparing modified conjugated diene-based polymer
WO2018128288A1 (en) Modified conjugated diene-based polymer and rubber composition comprising same
WO2019216645A1 (en) Modified conjugated diene-based polymer and rubber composition comprising same
WO2019216636A1 (en) Modified conjugated diene polymer and rubber composition comprising same
WO2017217720A1 (en) Method for preparing modified conjugated diene-based polymer, and modified conjugated diene-based polymer prepared by using same
WO2020013638A1 (en) Modified conjugated diene-based polymer and rubber composition comprising same
WO2018128290A1 (en) Modified conjugated diene-based polymer and rubber composition comprising same
WO2019078653A2 (en) Modified conjugated diene-based polymer and method for preparing same
WO2019112262A1 (en) Modified conjugated diene-based polymer and rubber composition comprising same
WO2022103060A1 (en) Modified conjugated diene-based polymer and rubber composition comprising same
WO2018128291A1 (en) Modified conjugated diene polymer and rubber composition comprising same
WO2018105845A1 (en) Modifier and modified conjugated diene based polymer, and preparation methods therefor
WO2018128289A1 (en) Modified conjugated diene-based polymer and rubber composition comprising same
WO2020130738A1 (en) Modified conjugated diene-based polymer and preparation method therefor
WO2021066543A1 (en) Modified conjugated diene-based polymer, method for producing same, and rubber composition comprising same
WO2018084546A1 (en) Modified conjugated diene-based polymer and method for preparing same
WO2022030794A1 (en) Modified conjugated diene-based polymer, method for preparing same, and rubber composition comprising same
WO2021085829A1 (en) Modified conjugated diene-based polymer and rubber composition comprising same
WO2019112261A1 (en) Modified conjugated diene-based polymer and rubber composition comprising same
WO2017111499A1 (en) Polymer compound, method for preparing modified conjugated diene-based polymer by using same, and modified conjugated diene-based polymer
WO2021107717A1 (en) Modified conjugated diene-based polymer
WO2017111463A1 (en) Modified conjugated diene polymer, production method therefor, and modifier
WO2019112263A1 (en) Modified conjugated diene-based polymer and rubber composition comprising same
WO2019225824A1 (en) Modified conjugated diene-based polymer and rubber composition comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506812

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020114365

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2018884915

Country of ref document: EP

Effective date: 20200706

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020008059

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020008059

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200422