Nothing Special   »   [go: up one dir, main page]

WO2019105434A1 - 一种资源分配方法、终端以及基站 - Google Patents

一种资源分配方法、终端以及基站 Download PDF

Info

Publication number
WO2019105434A1
WO2019105434A1 PCT/CN2018/118288 CN2018118288W WO2019105434A1 WO 2019105434 A1 WO2019105434 A1 WO 2019105434A1 CN 2018118288 W CN2018118288 W CN 2018118288W WO 2019105434 A1 WO2019105434 A1 WO 2019105434A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
aul
terminal
base station
resource
Prior art date
Application number
PCT/CN2018/118288
Other languages
English (en)
French (fr)
Inventor
李晓翠
徐凯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810289231.7A external-priority patent/CN109862616B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019105434A1 publication Critical patent/WO2019105434A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a resource allocation method, a terminal, and a base station.
  • the spectrum used by wireless communication systems is divided into two categories, a licensed spectrum and an unlicensed spectrum.
  • a licensed spectrum For commercial mobile communication systems, operators need to auction licensed spectrum. After obtaining authorization, they can use the corresponding spectrum to carry out mobile communication operations.
  • Unlicensed spectrum does not require an auction, and anyone can legally use these bands.
  • the main research contents include Specify support for multiple starting and ending positions in a subframe for UL and DL on SCell with Frame structure type 3, That is, research is conducted on the start and end positions of the uplink-downlink for authorized-assisted access (LAA).
  • LAA authorized-assisted access
  • the uplink resources are dynamically notified by the base station through Downlink Control Information (DCI), but For autonomous uplink (AUL), the uplink resource is semi-statically allocated by the base station through high-level signaling.
  • DCI Downlink Control Information
  • AUL autonomous uplink
  • SUL scheduled uplink
  • the base station may schedule the terminal (UE) to transmit SUL data on the resources of the AUL, which may cause the scheduled resources to collide with the AUL resources.
  • the embodiment of the invention provides a resource allocation method, a terminal and a base station.
  • the problem of colliding SUL resources with AUL resources in the prior art is solved.
  • an embodiment of the present invention provides a method for resource allocation, where the method includes: receiving, by a terminal, a first message sent by a base station, where the first message is used to indicate that the terminal performs an automatic uplink transmission of an AUL offset, where The offset value is greater than or equal to 1 orthogonal frequency division multiplexing (OFDM) symbol, less than or equal to 5 OFDM symbols; the terminal determines the starting position of the automatic uplink transmission AUL according to the starting position and the offset of the SUL. The terminal transmits the corresponding data according to the location of the AUL data transmission and the location of the SUL data transmission.
  • OFDM orthogonal frequency division multiplexing
  • An embodiment of the present invention provides a method for allocating resources, by using an offset included in a first message sent by a base station, and a starting position of the SUL, determining a location where the AUL is performed, such that a location of the AUL data transmission and a location of the SUL data transmission Do not overlap, thereby effectively avoiding collision between SUL and AUL resources, and improving channel utilization.
  • the first message includes one or more offsets.
  • the terminal determines, according to the starting position and the offset of the SUL, the starting position of the automatic uplink transmission AUL, including: when the first message includes multiple offsets, the terminal is offset from multiple An offset is selected in the quantity, and the starting position of the automatic uplink transmission AUL is determined according to the selected offset and the starting position of the SUL.
  • the first message includes high layer signaling, downlink control information DCI, or broadcast message.
  • the embodiment of the present invention provides a method for resource allocation, where the method includes: the base station sends a first message to the terminal, where the first message is used to indicate that the terminal performs an automatic uplink transmission of the AUL offset, offset.
  • the value of the quantity is greater than or equal to 1 orthogonal frequency division multiplexing (OFDM) symbol, less than or equal to 5 OFDM symbols.
  • OFDM orthogonal frequency division multiplexing
  • the first message includes one or more offsets.
  • the method before the base station sends the first message to the terminal, the method further includes: the base station configuring one or more offsets by using a radio resource control RRC message, a downlink control information DCI, or a broadcast message.
  • the first message includes high layer signaling, downlink control information DCI, or broadcast message.
  • the embodiment of the present invention provides a method for resource allocation, where the method includes: receiving, by the terminal, a second message sent by the base station, where the second message is used to indicate whether the base station is on the pre-configured automatic uplink transmission AUL resource.
  • the scheduled uplink transmission SUL is transmitted; the terminal determines whether to perform AUL transmission on the pre-configured AUL resource according to the second message.
  • the embodiment of the present invention provides a method for allocating resources, and determining whether to perform AUL transmission on a pre-configured AUL resource by using a second message sent by the base station, thereby effectively avoiding collision between the SUL and the AUL resource, and improving channel utilization.
  • the terminal when the second message indicates that the base station does not transmit the SUL on the pre-configured AUL resource, the terminal performs AUL transmission on the pre-configured resource.
  • the terminal cancels the AUL transmission on the pre-configured resource.
  • the second message includes high layer signaling, downlink control information DCI, or broadcast message.
  • the embodiment of the present invention provides a resource allocation method, where the resource allocation method includes: the base station sends a second message to the terminal, where the second message is used to indicate whether the base station transmits on the pre-configured automatic uplink transmission AUL resource.
  • the scheduled uplink transmission SUL is such that the terminal determines whether to perform AUL transmission on the pre-configured AUL resource according to the second message.
  • the base station sends the second message to the terminal, specifically: the base station sends the second message by using a radio resource control RRC message, a downlink control information DCI, or a broadcast message.
  • the second message is high layer signaling, downlink control information DCI or broadcast message.
  • an embodiment of the present invention provides a terminal, where the terminal includes: a receiving unit, a processing unit, and a sending unit, where the receiving unit is configured to receive a first message sent by the base station, where the first message is used to instruct the terminal to perform Automatically transmitting an offset of the AUL, wherein the value of the offset is greater than or equal to 1 OFDM symbol, less than or equal to 5 OFDM symbols; and the processing unit is configured to start according to the SUL And an offset determining a location for performing automatic uplink transmission of the AUL; and a transmitting unit configured to separately transmit the corresponding data according to the location of the AUL data transmission and the location of the SUL data transmission.
  • the terminal provided by the embodiment of the present invention, the first message sent by the base station, the first message is used to indicate that the terminal performs the automatic uplink transmission AUL offset, and further, the automatic uplink is determined by the offset and the starting position of the SUL.
  • the location of the AUL is transmitted such that the location of the AUL data transmission and the location of the SUL data transmission do not overlap, thereby effectively avoiding collision between the SUL and the AUL resource, and improving channel utilization.
  • the first message includes one or more offsets.
  • the processing unit is further configured to: when the first message includes multiple offsets, select an offset from the plurality of offsets, and determine to automatically according to the selected offset.
  • the first message is high layer signaling, downlink control information DCI or broadcast message.
  • the embodiment of the present invention provides a base station, where the base station includes: a sending unit, configured to send a first message to the terminal, where the first message is used to indicate that the terminal performs an automatic uplink transmission of the AUL offset, the offset.
  • the value is greater than or equal to 1 orthogonal frequency division multiplexing (OFDM) OFDM symbol, less than or equal to 5 OFDM symbols.
  • OFDM orthogonal frequency division multiplexing
  • the first message includes one or more offsets.
  • the base station further includes: a processing unit; and a processing unit, configured to configure one or more offsets by using a radio resource control RRC message, a downlink control information DCI, or a broadcast message.
  • a processing unit configured to configure one or more offsets by using a radio resource control RRC message, a downlink control information DCI, or a broadcast message.
  • the first message includes high layer signaling, downlink control information DCI, or broadcast message.
  • the embodiment of the present invention provides a terminal, where the terminal includes: a receiving unit and a processing unit, where the receiving unit is configured to receive a second message sent by the base station, where the second message is used to indicate whether the base station is pre-configured
  • the automatic uplink transmission AUL resource transmits the scheduled uplink transmission SUL; the processing unit is configured to determine, according to the second message, whether to perform AUL transmission on the pre-configured AUL resource.
  • the terminal provided by the embodiment of the present invention by using the second message sent by the base station, is used to indicate whether the base station transmits the scheduled on the pre-configured automatic uplink transmission AUL resource. Uplinking the SUL, and further determining whether to perform AUL transmission on the pre-configured AUL resource according to the second message, thereby preventing the SUL from colliding with the AUL resource.
  • the terminal when the second message indicates that the base station does not transmit the SUL on the pre-configured AUL resource, the terminal further includes: a transmission unit, and a transmission unit, configured to perform AUL transmission on the pre-configured resource.
  • the processing unit when the second message indicates that the base station does not transmit the SUL on the pre-configured AUL resource, the processing unit is further configured to: cancel the AUL transmission on the pre-configured resource.
  • the second message includes high layer signaling, downlink control information DCI, or broadcast message.
  • the embodiment of the present invention provides a base station, where the base station includes: a sending unit, configured to send a second message to the terminal, where the second message is used to indicate whether the base station transmits the scheduling on the pre-configured automatic uplink transmission AUL resource.
  • the uplink transmits the SUL, so that the terminal determines whether to perform AUL transmission on the pre-configured AUL resource according to the second message.
  • the sending unit is specifically configured to: send the second message by using a radio resource control RRC message, a downlink control information DCI, or a broadcast message.
  • the second message is high layer signaling, downlink control information DCI or broadcast message.
  • the terminal determines, according to the offset included by the first message sent by the base station, and the starting position of the SUL, the location of the automatic uplink transmission AUL, so that the AUL data transmission is performed.
  • the location of the SUL data transmission does not overlap with the location of the SUL data transmission, thereby solving the problem that the SUL resource collides with the AUL resource transmission.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for allocating resources according to an embodiment of the present invention
  • Figure 3 is a schematic diagram of transmission data
  • FIG. 5 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another terminal according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of another method for allocating resources according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another terminal according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • the system includes: a terminal and a base station.
  • the terminal can establish a communication connection with the base station.
  • the base station (BS) involved in the present application is a device deployed in a radio access network to provide a wireless communication function for a communication node.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the name of a device having a base station function may be different.
  • an evolved Node B evolved Node B: eNB or eNodeB
  • Node B In the 3G network, it is called Node B and so on.
  • the above devices for providing wireless communication functions to terminals are collectively referred to as a base station or a BS.
  • the terminals in the embodiments of the present application include, but are not limited to, a mobile phone, a tablet, a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR).
  • Terminal equipment wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation A wireless terminal in a transportation safety, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • FIG. 2 is a flowchart of a method for allocating resources according to an embodiment of the present invention. As shown in FIG. 2, the resource allocation method may include the following steps:
  • Step S201 The base station sends a first message to the terminal, where the first message is used to indicate that the terminal performs the offset of the AUL, where the value of the offset is greater than or equal to one orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbol, less than or equal to 5 OFDM symbols.
  • OFDM orthogonal frequency division multiplexing
  • the method for the base station to send the first message may include, but is not limited to, the base station transmitting the radio resource control (RRC) message, the downlink control information (DCI), or the broadcast message.
  • RRC radio resource control
  • DCI downlink control information
  • Step S202 The terminal receives the first message sent by the base station.
  • Step S203 The terminal determines a location for performing automatic uplink transmission of the AUL according to the starting position and the offset of the SUL.
  • the first message may include one or more offsets.
  • the terminal determines, according to the offset and the starting position of the SUL, a location for performing automatic uplink transmission of the AUL.
  • the terminal selects an offset from the plurality of offsets, and determines a location for performing automatic uplink transmission of the AUL according to the offset and the starting position of the SUL.
  • the method of selecting an offset from a plurality of offsets may be randomly selected, or may be selected according to a rule, and will not be described herein.
  • multiple offsets may be the same or different.
  • TDM time division multiplexing
  • the UE1 and the UE2 listen to the post talk (LBT). After transmitting the guaranteed SUL data, the UE1 and the UE2 independently send the AUL, where the AUL is in the SUL. Based on the data transmission start position, some offset values may be randomly selected, and the offset value is greater than or equal to 1 OFDM symbol, less than or equal to 5 OFDM symbols, and is backed off during the offset, thereby avoiding collision with the SUL transmission.
  • a subframe has a time length of 1 ms, includes 2 slots, and has 7 OFDM symbols in one slot, and then has 14 OFDM symbols in one subframe.
  • the SUL starts from The start position may be either symbol 0 or symbol 7.
  • the value of the offset may not be less than or equal to 0 OFDM symbols, and may not be greater than 6 OFDM symbols. Therefore, the offset value can be greater than 1 OFDM symbol and less than or equal to 5 OFDM.
  • the channel when the UE needs to transmit data on the unlicensed spectrum, the channel is first detected. As shown in FIG. 3, UE1 and UE2 transmit data on the unlicensed spectrum, and when channel busy is detected, backoff is required, and when the backoff is completed, the channel is accessed because the starting position of the SUL uplink transmission is fixed. Therefore, when UE1 and UE2 perform AUL transmission, the offset value is added after the SUL start position is added, and the initial transmission position of the AUL is determined and data is transmitted from the position, so that collision with the SUL transmission can be avoided.
  • the uplink transmission uses frequency division multiplexing (FDM) mode, in which case multiple offsets are the same.
  • FDM frequency division multiplexing
  • an interlacing structure is adopted in the frequency domain, and different UEs may occupy one or more interlacings, for example, UE1 and UE2 in FIG. 4, because the time-frequency resources are already pre-
  • the AUL resource is configured, and multiple AUL UEs are simultaneously transmitted on the resource. Therefore, in order not to send a collision with the SUL resource and ensure that the AUL UE can transmit at the same time, the same offset value is configured to different AUL UEs.
  • the base station can configure multiple offsets in the following ways.
  • the base station can perform a semi-static configuration of a set of offset values through high-layer signaling, such as RRC signaling.
  • the UE When the UE performs AUL transmission, it can perform random selection in a set of offset values, thereby avoiding transmission with the UE.
  • the SUL collided.
  • a set of offset values can be set within a threshold range within which an AUL can be transmitted by selecting an offset value from a set of offset values.
  • the semi-static means that the base station configures a set of offset values in a certain period, and the set of offset values is constant during the period.
  • the base station may notify the UE by using high layer signaling or broadcast signaling, or may notify the UE in the common search space of the DCI, so that all AUL UEs may adopt the same offset value to avoid The UE transmits a SUL collision.
  • Offset can be represented by several bits, for example, 2bit.
  • the 2bit information is shown in the following table:
  • the position at which the AUL is transmitted is determined according to the offset value; for example, when the offset value is 0, it is determined that the AUL is transmitted at the 00 position.
  • the embodiment of the present invention provides a method for allocating resources, which determines the starting position of the AUL by using the offset included in the first message sent by the base station and the starting position of the SUL, thereby effectively avoiding collision between the SUL and the AUL resource. Improve channel utilization.
  • the embodiment of the present invention provides a terminal for implementing the method for allocating resources provided in the foregoing embodiment.
  • the terminal may include: a receiving unit 510, a processing unit 520, and a sending unit 530.
  • the receiving unit 510 is configured to receive a first message sent by the base station, where the first message is used to indicate that the terminal performs an automatic uplink transmission AUL offset, where the value of the offset is greater than or equal to 1 OFDM symbol, and less than or equal to 5 OFDM.
  • a processing unit 520 configured to determine, according to a starting position and an offset of the SUL, a location for performing automatic uplink transmission of the AUL; and a sending unit 530, configured to separately transmit corresponding data according to the location of the AUL data transmission and the location of the SUL data transmission .
  • the terminal provided by the embodiment of the present invention sends a first message sent by the base station, where the first message is used to indicate that the terminal performs an automatic uplink transmission of the AUL offset, and further, passes the SUL.
  • the starting position and the offset determine the location of the automatic uplink transmission AUL, so that the location of the SUL data transmission and the location of the AUL data transmission do not overlap, thereby effectively avoiding collision between the SUL and the AUL resource, and improving channel utilization.
  • the first message includes one or more offsets.
  • the processing unit 620 is further configured to: when the first message includes multiple offsets, select an offset from the multiple offsets, and according to the selected offset And the starting position of the SUL determines the location at which the AUL is automatically uplinked.
  • the first message includes high layer signaling, downlink control information DCI, or broadcast message.
  • the terminal provided by the embodiment of the present invention may be implemented as follows to implement the method for allocating resources in the foregoing embodiment of the present invention.
  • the terminal includes: a receiver 610, a processor 620, and Transmitter 630.
  • the receiving unit 510 in the aforementioned embodiment of FIG. 5 may be implemented by the receiver 610.
  • the first message is information received by the receiver 610 from the base station.
  • the first message is used to indicate that the terminal performs an automatic uplink transmission AUL offset, where the value of the offset is greater than or equal to 1 OFDM symbol and less than or equal to 5 OFDM symbols.
  • Processing unit 520 can be implemented by processor 620.
  • Transmitting unit 530 can be implemented by transmitter 630.
  • the terminal can also include a memory.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the terminal may include: a sending unit 710.
  • the sending unit 710 is configured to send, to the terminal, a first message, where the first message is used to indicate that the terminal performs an automatic uplink transmission AUL offset, where the value of the offset is greater than or equal to 1 OFDM symbol, and less than or equal to 5 OFDM symbols. .
  • the first message includes one or more offsets.
  • the base station further includes: a processing unit 720;
  • the processing unit 720 is configured to configure one or more offsets by using a radio resource control RRC message, a downlink control information DCI, or a broadcast message. For example, processing unit 720 can semi-statically configure a set of offsets through higher layer signaling, such as RRC signaling.
  • the first message is high layer signaling, downlink control information DCI or broadcast message.
  • FIG. 8 is a schematic structural diagram of another base station according to an embodiment of the present invention. As shown in FIG. 8, the terminal includes a receiver 810 and a processor 820.
  • the transmitting unit 710 in the aforementioned embodiment of FIG. 7 may be implemented by the transmitter 810.
  • the first message is used to indicate that the terminal performs an automatic uplink transmission AUL offset, and the offset is greater than or equal to 1 OFDM symbol and less than or equal to 5 OFDM symbols.
  • the processing unit 720 can be implemented by the processor 820. Specifically, the processor 820 is configured to configure one or more offsets by using a radio resource control RRC message, downlink control information DCI, or a broadcast message.
  • the base station can also include a memory and a transmitter.
  • FIG. 9 is a flowchart of another method for allocating resources according to an embodiment of the present invention. As shown in FIG. 9, the resource allocation method may include the following steps:
  • Step S901 The base station sends the second indication information to the terminal.
  • the method for the base station to send the second message may include, but is not limited to, the base station transmitting the radio resource control (RRC) message, the downlink control information (DCI), or the broadcast message. Two messages.
  • RRC radio resource control
  • DCI downlink control information
  • Step S902 The terminal receives the second message sent by the base station, where the second message is used to indicate whether the base station schedules the SUL transmission on the pre-configured AUL resource, so that the terminal determines whether to perform AUL transmission on the pre-configured AUL resource according to the second message.
  • Step S903 The terminal determines, according to the second message, whether to perform AUL transmission on the pre-configured AUL resource.
  • the terminal performs AUL transmission on the pre-configured resource.
  • the terminal cancels the AUL transmission on the pre-configured resource.
  • the common search space is detected, and if the common search space detects an indication of the UL burst duration (the indication information is used for When the length of the time-frequency resource of the LAA SUL is transmitted, and the SUL time-frequency resource overlaps with the time-frequency resource of the pre-configured AUL, the AUL UE determines the correlation of transmitting the SUL uplink data according to the relevant indication of the UL burst duration. Subframe time-frequency resources, and abandon AUL transmission on the relevant subframe time-frequency resources, thereby avoiding collision with SUL resources and ensuring SUL data transmission.
  • the UE may be notified by adding a few bits of information in the common search space of the PDCCH, whether the base station schedules the SUL to be sent on the time-frequency resource of the AUL.
  • the base station notifies the UE by adding 1-bit information to the common search space of the PDCCH, and whether the base station schedules the SUL to be transmitted on the time-frequency resource of the AUL, and the 1-bit information may be within or outside the byte of the common search space.
  • the base station when the base station schedules the SUL to be sent on the AUL resource, the base station notifies the AUL UE by dynamic signaling, and does not send the AUL data in the resource range of the corresponding overlap; if the 1-bit information is 0, the base station does not schedule the SUL.
  • the resource is sent on the AUL time-frequency resource. At this time, the AUL UE can normally send the AUL data. If the 1 bit information is taken as 1, the base station schedules the SUL resource to be sent on the AUL time-frequency resource. At this time, the AUL UE is according to the UL burst.
  • the information such as duration determines the time-frequency resource of the overlapped subframe, and cancels the transmission of the AUL data on the time-frequency resource of the corresponding subframe, avoids the collision of the transmission resource, and ensures the normal transmission of the SUL.
  • the second message is high layer signaling, downlink control information DCI or broadcast message.
  • the embodiment of the present invention provides a method for allocating resources, and determining whether to perform AUL transmission on a pre-configured AUL resource by using a second message sent by the base station, thereby effectively avoiding collision between the SUL and the AUL resource, and improving channel utilization.
  • the method described in the foregoing embodiment may enable the terminal to determine whether to perform AUL transmission on the pre-configured AUL resource.
  • the embodiment of the present invention provides a terminal, which is used to implement the method for allocating resources provided in the foregoing embodiment. As shown in FIG. 10, the terminal may include: a receiving unit 1010 and a processing unit 1020.
  • FIG. 10 is a schematic structural diagram of a terminal according to an embodiment of the present invention. As shown in FIG. 10, the terminal may include: a receiving unit 1010 and a processing unit 1020;
  • the receiving unit 1010 is configured to receive a second message sent by the base station, where the second message is used to indicate whether the base station transmits the scheduled uplink transmission SUL on the pre-configured automatic uplink transmission AUL resource, and the processing unit 1020 is configured to determine, according to the second message, Whether to perform AUL transmission on the pre-configured AUL resource.
  • the terminal provided by the embodiment of the present invention by using the second message sent by the base station, is used to indicate whether the base station transmits the scheduled on the pre-configured automatic uplink transmission AUL resource. Uplinking the SUL, and further determining whether to perform AUL transmission on the pre-configured AUL resource according to the second message, thereby preventing the SUL from colliding with the AUL resource.
  • the terminal when the second message indicates that the base station does not transmit the SUL on the pre-configured AUL resource; the terminal further includes: a transmitting unit 1030;
  • the transmitting unit 1030 is configured to perform AUL transmission on the pre-configured resource.
  • the processing unit 1020 is further configured to: cancel the AUL transmission on the pre-configured resource.
  • the second message is high layer signaling, downlink control information DCI or broadcast message.
  • the terminal provided by the embodiment of the present invention may be implemented as follows to implement the method for allocating resources in the foregoing embodiment of the present invention. As shown in FIG. 11, the terminal includes: a receiver 1110 and a processor 1120.
  • the receiving unit 1010 in the embodiment described above with respect to FIG. 10 may be implemented by the receiver 710.
  • the second message wherein the second message is information received by the receiver 1110 from the base station.
  • the second message is used to indicate whether the base station transmits the scheduled uplink transmission SUL on the pre-configured automatic uplink transmission AUL resource.
  • Processing unit 1020 can be implemented by processor 1120.
  • the terminal can also include a memory and a transmitter.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present invention. As shown in FIG. 12, the terminal may include: a sending unit 1210.
  • the sending unit 1210 is configured to send a second message to the terminal, where the second message is used to indicate whether the base station transmits the scheduled uplink transmission SUL on the pre-configured automatic uplink transmission AUL resource, so that the terminal determines, according to the second message, whether it is pre-configured.
  • AUL transmission is performed on the AUL resource.
  • the sending unit 1210 is specifically configured to: send, by using a radio resource control RRC message, a downlink control information DCI, or a broadcast message, a second message.
  • the second message is high layer signaling, downlink control information DCI or broadcast message.
  • FIG. 13 is a schematic structural diagram of another base station according to an embodiment of the present invention. As shown in FIG. 13, the base station includes a transmitter 1310.
  • the transmitting unit 1210 in the aforementioned embodiment of FIG. 12 may be implemented by the transmitter 1310.
  • the second message is used to indicate whether the base station transmits the scheduled uplink transmission SUL on the pre-configured automatic uplink transmission AUL resource, so that the terminal determines whether to perform AUL transmission on the pre-configured AUL resource according to the second message.
  • the second message is sent by using a radio resource control RRC message, a downlink control information DCI, or a broadcast message.
  • the base station can also include a processor, a memory, and a receiver.
  • the terminal determines, according to the offset included by the first message sent by the base station, and the starting position of the SUL, the location of the automatic uplink transmission AUL, where the offset
  • the value of the quantity is greater than or equal to 1 OFDM symbol, and is less than or equal to 5 OFDM symbols, so that the location of the SUL data transmission and the location of the AUL data transmission do not overlap, thereby solving the problem that the SUL resource collides with the AUL resource transmission.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein can be implemented in hardware, a software module executed by a processor, or a combination of both.
  • the software module can be placed in random access memory (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.
  • RAM random access memory
  • ROM read only memory
  • electrically programmable ROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例涉及一种资源分配方法、终端以及基站。该资源分配方法包括:终端接收基站发送的第一消息,第一消息用于指示终端进行自动上行传输AUL的偏移量,其中,偏移量的值大于或等于1个OFDM符号,小于或等于5个OFDM符号;终端根据调度的上行传输SUL的起始位置和偏移量确定进行自动上行传输AUL的位置,终端根据AUL数据传输的位置和SUL数据传输的位置分别传输相应的数据。AUL数据传输的位置和SUL传输数据的位置不重叠,进而解决SUL资源与AUL资源发送碰撞的问题。

Description

一种资源分配方法、终端以及基站
本申请要求2017年11月30日递交中国专利局、申请号为201711240390.X的中国专利申请,以及2018年3月30日递交中国专利局、申请号为201810289231.7的中国专利申请的优先权,其全文通过引用包含于本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种资源分配方法、终端以及基站。
背景技术
无线通信系统使用的频谱,分为两类,授权频谱(licensed spectrum)和非授权频谱(unlicensed spectrum)。对于商用的移动通信系统,运营商需要拍卖授权频谱,获得授权后,可以使用相应的频谱开展移动通信的运营活动。非授权频谱不需要拍卖,任何人都可以合法的使用这些频段。在3GPP RAN#75次会议上,“enhancements to LTE operation in unlicensed spectrum”立项成功,其中主要的研究内容包括Specify support for multiple starting and ending positions in a subframe for UL and DL on SCell with Frame structure type 3,即针对授权辅助接入(licensed-assisted access,LAA)上下行的开始结束位置进行研究。在RAN1 90次会议中,有关自动上行传输达成了如下的agreement:The support of autonomous uplink access with frame structure type 3is specified within the scope of Release 15FeLAA WI.即:在REL.15开始对子帧类型3的自动上行传输开始进行研究。
在现有通用移动通信技术的长期演进(long term evolution,LTE)增强型授权辅助接入(eLAA)中,上行资源都是基站通过下行控制信息(Downlink Control Information,DCI)动态通知的,而对于eLAA自动上行传输(autonomous uplink,AUL)而言,上行资源是基站通过高层信令半静态分配的,当有紧急或者重要业务时(调度的上行传输(scheduled uplink,SUL)的优先级高于AUL),基站会调度终端(UE)在AUL的资源上发送SUL数据,从而可能导致调度的资源与AUL资源发生碰撞。
发明内容
本发明实施例提供了一种资源分配方法、终端以及基站。解决现有技术中SUL资源与AUL资源发生碰撞的问题。
第一方面,本发明实施例提供了一种资源分配的方法,该资源分配方法包括:终端接收基站发送的第一消息,第一消息用于指示终端进行自动上行传输AUL的偏移量,其中,偏移量的值大于或等于1个正交频分复用技术OFDM符号,小于或等于5个OFDM符号;终端根据SUL的起始位置和偏移量确定进行自动上行传输AUL的起始位置;终端根据AUL数据传输的位置和SUL数据传输的位置分别传输相应的数据。
本发明实施例提供了一种分配资源方法,通过基站发送的第一消息包括的偏移量,以及SUL的起始位置,确定进行AUL的位置,使得AUL数据传输的位置和SUL数据传输 的位置不重叠,从而有效避免SUL与AUL资源发生碰撞,提高信道利用率。
在一个可能的实施例中,第一消息包括一个或者多个偏移量。
在一个可能的实施例中,终端根据SUL的起始位置和偏移量确定进行自动上行传输AUL的起始位置,包括:当第一消息包括多个偏移量时,终端从多个偏移量中选择一个偏移量,并根据选择的偏移量和SUL的起始位置确定进行自动上行传输AUL的起始位置。
在一个可能的实施例中,第一消息包括高层信令、下行控制信息DCI或广播消息。
第二方面,本发明实施例提供了一种资源分配的方法,该资源分配方法包括:基站向终端发送第一消息,第一消息用于指示终端进行自动上行传输AUL的偏移量,偏移量的值大于或等于1个正交频分复用技术OFDM符号,小于或等于5个OFDM符号。
在一个可能的实施例中,第一消息包括一个或者多个偏移量。
在一个可能的实施例中,基站向终端发送第一消息之前,方法还包括:基站通过无线资源控制RRC消息、下行控制信息DCI或者广播消息配置一个或多个偏移量。
在一个可能的实施例中,第一消息包括高层信令、下行控制信息DCI或广播消息。
第三方面,本发明实施例提供了一种资源分配的方法,该资源分配方法包括:终端接收基站发送的第二消息,第二消息用于指示基站是否在预配置的自动上行传输AUL资源上传输调度的上行传输SUL;终端根据第二消息确定是否在预配置的AUL资源上进行AUL传输。
本发明实施例提供了一种分配资源方法,通过基站发送的第二消息,确定是否在预配置的AUL资源上进行AUL传输,从而有效避免SUL与AUL资源发生碰撞,提高信道利用率。
在一个可能的实施例中,当第二消息若指示基站没有在预配置的AUL资源上传输SUL时,终端在预配置的资源上进行AUL传输。
在一个可能的实施例中,当第二消息若指示基站在预配置的AUL资源上传输SUL时,终端取消在预配置的资源上进行AUL传输。
在一个可能的实施例中,第二消息包括高层信令、下行控制信息DCI或广播消息。
第四方面,本发明实施例提供了一种资源分配的方法,该资源分配方法包括:基站向终端发送第二消息,第二消息用于指示基站是否在预配置的自动上行传输AUL资源上传输调度的上行传输SUL,以便终端根据第二消息确定是否在预配置的AUL资源上进行AUL传输。
在一个可能的实施例中,基站向终端发送第二消息,具体包括:基站通过无线资源控制RRC消息、下行控制信息DCI或者广播消息发送第二消息。
在一个可能的实施例中,第二消息为高层信令、下行控制信息DCI或广播消息。
第五方面,本发明实施例提供了一种终端,该终端包括:接收单元、处理单元和发送单元;其中,接收单元,用于接收基站发送的第一消息,第一消息用于指示终端进行自动上行传输AUL的偏移量,其中,偏移量的值大于或等于1个正交频分复用技术OFDM符号,小于或等于5个OFDM符号;处理单元,用于根据SUL的起始位置和偏移量确定进行自动上行传输AUL的位置;发送单元,用于根据AUL数据传输的位置和SUL数据传输的位置分别传输相应的数据。
本发明实施例提供的终端,通过基站发送的第一消息,该第一消息用于指示终端进行 自动上行传输AUL的偏移量,进一步,通过偏移量和SUL的起始位置确定进行自动上行传输AUL的位置,使得AUL数据传输的位置和SUL数据传输的位置不重叠,从而有效避免SUL与AUL资源发生碰撞,提高信道利用率。
在一个可能的实施例中,第一消息包括一个或者多个偏移量。
在一个可能的实施例中,处理单元,还用于:当第一消息包括多个偏移量时,从多个偏移量中选择一个偏移量,并根据选择的偏移量确定进行自动上行传输AUL的起始位置。
在一个可能的实施例中,第一消息为高层信令、下行控制信息DCI或广播消息。
第六方面,本发明实施例提供了一种基站,该基站包括:发送单元,用于向终端发送第一消息,第一消息用于指示终端进行自动上行传输AUL的偏移量,偏移量的值大于或等于1个正交频分复用技术OFDM符号,小于或等于5个OFDM符号。
在一个可能的实施例中,第一消息包括一个或者多个偏移量。
在一个可能的实施例中,该基站还包括:处理单元;处理单元,用于通过无线资源控制RRC消息、下行控制信息DCI或者广播消息配置一个或多个偏移量。
在一个可能的实施例中,第一消息包括高层信令、下行控制信息DCI或广播消息。
第七方面,本发明实施例提供了一种终端,该终端包括:接收单元和处理单元;其中,接收单元,用于接收基站发送的第二消息,第二消息用于指示基站是否在预配置的自动上行传输AUL资源上传输调度的上行传输SUL;处理单元,用于根据第二消息确定是否在预配置的AUL资源上进行AUL传输。
在本申请的实施例中,通过上述示例,本发明实施例提供的终端,通过基站发送的第二消息,该第二消息用于指示基站是否在预配置的自动上行传输AUL资源上传输调度的上行传输SUL,进一步,根据第二消息确定是否在预配置的AUL资源上进行AUL传输,进而避免SUL与AUL资源发生碰撞。
在一个可能的实施例中,当第二消息若指示基站没有在预配置的AUL资源上传输SUL时;终端还包括:传输单元;传输单元,用于在预配置的资源上进行AUL传输。
在一个可能的实施例中,当第二消息若指示基站没有在预配置的AUL资源上传输SUL时;处理单元,还用于:取消在在预配置的资源上进行AUL传输。
在一个可能的实施例中,第二消息包括高层信令、下行控制信息DCI或广播消息。
第八方面,本发明实施例提供了一种基站,该基站包括:发送单元,用于向终端发送第二消息,第二消息用于指示基站是否在预配置的自动上行传输AUL资源上传输调度的上行传输SUL,以便终端根据第二消息确定是否在预配置的AUL资源上进行AUL传输。
在一个可能的实施例中,发送单元,具体用于:通过无线资源控制RRC消息、下行控制信息DCI或者广播消息发送第二消息。
在一个可能的实施例中,第二消息为高层信令、下行控制信息DCI或广播消息。
基于本发明实施例提供的一种分配资源方法、终端以及基站,终端根据基站发送的第一消息包括的偏移量,以及SUL的起始位置确定进行自动上行传输AUL的位置,使得AUL数据传输的位置和SUL数据传输的位置不重叠,进而解决SUL资源与AUL资源发送碰撞的问题。
附图说明
图1为本发明实施例提供的通信系统架构示意图;
图2为本发明实施例提供了一种分配资源方法的流程图;
图3为传输数据示意图;
图4为频域上采用交织结构的示意图;
图5为本发明实施例提供了一种终端的结构示意图;
图6为本发明实施例提供了另一种终端的结构示意图;
图7为本发明实施例提供了一种基站的结构示意图;
图8为本发明实施例提供了另一种基站的结构示意图;
图9为本发明实施例了另一种分配资源方法的流程图;
图10为本发明实施例提供了一种终端的结构示意图;
图11为本发明实施例提供了另一种终端的结构示意图;
图12为本发明实施例提供了一种基站的结构示意图;
图13为本发明实施例提供了另一种基站的结构示意图
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。
图1为本发明实施例提供的通信系统架构示意图。该系统包括:终端和基站。终端可以和基站之间建立通信连接。
本申请所涉及到的基站(base station,BS)是一种部署在无线接入网中用以为通信节点提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB简称:eNB或者eNodeB),在第三代3G网络中,称为节点B(Node B)等等。为方便描述,本申请中,上述为终端提供无线通信功能的装置统称为基站或BS。
本申请各实施例中的终端包括但不限于:手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
下面通过图2和图9对本发明实施例提供的分配资源方法的处理过程进行详细描述。
图2为本发明实施例提供了一种分配资源方法的流程图。如图2所示,该资源分配方法可以包括以下步骤:
步骤S201:基站向终端发送第一消息,第一消息用于指示终端进行AUL的偏移量,其中,偏移量的值大于或等于1个正交频分复用技术(orthogonal frequency division multiplexing,OFDM)符号,小于或等于5个OFDM符号。
在一个可能的实施例中,基站发送第一消息的方法可包括但不限于:基站通过无线资源控制(radio resource control,RRC)消息、下行控制信息(downlink control information, DCI)或者广播消息发送第一消息。
步骤S202:终端接收基站发送的第一消息。
步骤S203:终端根据SUL的起始位置和偏移量确定进行自动上行传输AUL的位置。
在一个可能的实施例中,第一消息可包括一个或者多个偏移量。
具体地,当第一消息包括一个偏移量时,终端根据该偏移量和SUL的起始位置确定进行自动上行传输AUL的位置。或者,当第一消息包括多个偏移量时,终端从多个偏移量中选择一个偏移量,并根据该偏移量和SUL的起始位置确定进行自动上行传输AUL的位置。从多个偏移量中选择一个偏移量的方式可以是随机选取,也可根据规律进行选取,在此不赘述。
需要说明的是,多个偏移量可以是相同的也可以是不同的。
假设,上行传输采用时分复用(TDM)模式,此时的多个偏移量不同或相同的。
具体地,不同UE占用不同时间段的资源,SUL上行传输的起始位置是固定的,例如,符号0开始。那么为了避免AUL与SUL发生资源碰撞,保证SUL数据的传输,UE1和UE2先听后发(listen before talk,LBT),在发送保证SUL数据之后,UE1和UE2自主发送AUL,其中,AUL在SUL数据发送起始位置的基础上可以随机选择一些offset值,该offset值大于或等于1个OFDM符号,小于或等于5个OFDM符号,并在该offset期间进行退避,从而避免和SUL传输发生碰撞。
需要说明的是,一个子帧时间长度为1ms,包含2个时隙,一个时隙中有7个OFDM符号,那么在一个子帧有14个OFDM符号,在本发明实施例中,SUL的起始位置可以为符号0,也可以为符号7,为了避免AUL传输数据的位置,offset的取值不能小于或等于0OFDM符号,也不能大于6OFDM符号。故offset值可以大于1个OFDM符号,小于或等于5个OFDM。
在一些实施例中,UE需要在非授权频谱上发送数据时,首先要对信道进行检测。如图3所示,UE1和UE2在该非授权频谱上发送数据,检测到信道繁忙(channel busy),则需要进行退避,当退避结束后接入信道,因为SUL上行传输的起始位置是固定的,所以UE1和UE2进行AUL传输时,在SUL起始位置的基础上加上offset值后确定AUL的起始发送位置并从该位置开始发送数据,从而可以避免与SUL传输发生碰撞。
假设,上行传输采用频分复用(FDM)模式,此时多个偏移量是相同的。
具体地,如图4所示,在频域上采用交织(interlacing)结构,不同的UE可以占用一个或者多个interlacing,例如附图4中的UE1和UE2,而因为该时频资源都已经预配置给AUL资源,且多个AUL UE同时在该资源上传输,因此为了不与SUL资源发送碰撞,并保证AUL UE可以同时传输,从而配置相同的offset值给不同的AUL UE。
在一个可能的实施例中,基站可以通过以下几种方式配置多个偏移量。
在TDM模式下,基站可以通过高层信令,比如RRC信令,半静态的配置一组offset值,当UE进行AUL传输时,可以在一组offset值中进行随机的选择,从而避免和UE传输SUL发生碰撞。一组offset值可以设置在一个阈值范围内,在该范围内可以从一组offset值中选择一个offset值传输AUL。其中,半静态是指基站在一定周期内配置一组offset值,并在该周期内该一组offset值是不变的。
在FDM模式下,基站可通过高层信令或者广播信令通知UE,也可以在DCI的公共搜 索空间(common search space)中通知给UE,从而所有的AUL UE可以采用相同的offset值,避免与UE传输SUL发生碰撞。
Offset可以通过几bit进行表示,例如,2bit,该2bit信息如下表所示:
index Offset value
00 Offset 0
01 Offset 1
10 Offset 2
11 Offset 3
上表中,根据offset值,确定传输AUL的位置;例如,当offset值为0时,确定在00位置处传输AUL。
本发明实施例提供了一种分配资源方法,通过基站发送的第一消息包括的偏移量,以及SUL的起始位置,确定进行AUL的起始位置,从而有效避免SUL与AUL资源发生碰撞,提高信道利用率。
上述实施例描述的方法,可使终端确定进行AUL的起始位置。相应地,本发明实施例提供一种终端,用以实现前述实施例中提供的分配资源方法,如图5所示,该终端可包括:接收单元510、处理单元520和发送单元530。
接收单元510,用于接收基站发送的第一消息,第一消息用于指示终端进行自动上行传输AUL的偏移量,偏移量的值大于或等于1个OFDM符号,小于或等于5个OFDM符号;处理单元520,用于根据SUL的起始位置和偏移量确定进行自动上行传输AUL的位置;发送单元530,用于根据AUL数据传输的位置和SUL数据传输的位置分别传输相应的数据。
在本申请的实施例中,通过上述示例,本发明实施例提供的终端,通过基站发送的第一消息,该第一消息用于指示终端进行自动上行传输AUL的偏移量,进一步,通过SUL的起始位置和偏移量确定进行自动上行传输AUL的位置,使得SUL数据传输的位置和AUL数据传输的位置不重叠,从而有效避免SUL与AUL资源发生碰撞,提高信道利用率。
在一个可能的实施例中,第一消息包括一个或者多个偏移量。
在一个可能的实施例中,处理单元620,还用于:当第一消息包括多个偏移量时,从所述多个偏移量中选择一个偏移量,并根据选择的偏移量和SUL的起始位置确定进行自动上行传输AUL的位置。
在一个可能的实施例中,第一消息包括高层信令、下行控制信息DCI或广播消息。
另外,本发明实施例提供的终端还可以采用的实现方式如下,用以实现前述本发明实施例中的分配资源方法,如图6所示,所述终端包括:接收器610、处理器620和发射器630。
在可选地实施例中,前述图5所述的实施例中的接收单元510可以由接收器610实现。具体地,第一消息为接收器610从基站接收的信息。具体地,第一消息用于指示终端进行自动上行传输AUL的偏移量,偏移量的值大于或等于1个OFDM符号,小于或等于5个OFDM符号。
处理单元520可以由处理器620实现。发送单元530可以由发射器630实现。所述终端还可包括存储器。
图6中各单元涉及的处理过程可参见前述图2所示的实施例,在此不做赘述。
图7为本发明实施例提供了一种基站的结构示意图。如图7所示,该终端可包括:发送单元710。
发送单元710,用于向终端发送第一消息,第一消息用于指示终端进行自动上行传输AUL的偏移量,偏移量的值大于或等于1个OFDM符号,小于或等于5个OFDM符号。
在一个可能的实施例中,第一消息包括一个或者多个偏移量。
在一个可能的实施例中,基站还包括:处理单元720;
处理单元720,用于通过无线资源控制RRC消息、下行控制信息DCI或者广播消息配置一个或多个偏移量。例如,处理单元720,可以通过高层信令,例如RRC信令,半静态配置一组偏移量。
在一个可能的实施例中,第一消息为高层信令、下行控制信息DCI或广播消息。
图8为本发明实施例提供了另一种基站的结构示意图。如图8所示,所述终端包括:接收器810和处理器820。
在可选地实施例中,前述图7所述的实施例中的发送单元710可以由发射器810实现。具体地,第一消息用于指示终端进行自动上行传输AUL的偏移量,偏移量大于或等于1个OFDM符号,小于或等于5个OFDM符号。
处理单元720可以由处理器820实现,具体地,处理器820,用于通过无线资源控制RRC消息、下行控制信息DCI或者广播消息配置一个或多个偏移量。所述基站还可包括存储器和发射器。
图8中各单元涉及的处理过程可参见前述图2所示的实施例,在此不做赘述。
图9为本发明实施例提供了另一种分配资源方法的流程图。如图9所示,该资源分配方法可以包括以下步骤:
步骤S901:基站向终端发送第二指示信息。
在一个可能的实施例中,基站发送第二消息的方法可包括但不限于:基站通过无线资源控制(radio resource control,RRC)消息、下行控制信息(downlink control information,DCI)或者广播消息发送第二消息。
步骤S902:终端接收基站发送的第二消息,第二消息用于指示基站是否在预配置的AUL资源上调度SUL传输,以便终端根据第二消息确定是否在预配置的AUL资源上进行AUL传输。
步骤S903:终端根据第二消息确定是否在预配置的AUL资源上进行AUL传输。
在一个可能的实施例中,第二消息若指示基站没有在预配置的AUL资源上调度SUL传输时,终端在预配置的资源上进行AUL传输。
在一个可能的实施例中,第二消息若指示基站在预配置的AUL资源上调度SUL传输,终端取消在在预配置的资源上进行AUL传输。
具体地,AUL UE在预配置的AUL资源上发送上行数据前,对common search space进行检测,若在common search space中检测到有关于上行数据时长(UL burst duration)的指示(该指示信息用于指示传输LAA SUL的时频资源的长度),并且该SUL时频资源与预配置的AUL的时频资源重叠(overlap)时,AUL UE根据UL burst duration的相关指示,确定传输SUL上行数据的相关子帧时频资源,并放弃在相关子帧时频资源上进行AUL传输,从而避免与SUL资源发生碰撞,保证SUL数据的发送。
在一个可能的实施例中,可以通过在PDCCH的common search space中增加几比特信息,用于通知UE,基站是否调度了SUL在AUL的时频资源上发送。例如,基站通过在PDCCH的common search space中增加1比特信息,通知UE,基站是否调度了SUL在AUL的时频资源上发送,该1bit信息可以为common search space的字节之内或之外。
具体地,当基站调度了SUL在AUL资源上发送时,基站通过动态信令通知AUL UE,在相应的overlap的资源范围内不发送AUL数据;如果该1bit信息为0,则说明基站没有调度SUL资源在AUL时频资源上发送,此时AUL UE可以正常发送AUL数据;而若该1bit信息取1,则说明基站调度了SUL资源在AUL时频资源上发送,此时,AUL UE根据UL burst duration等信息确定overlapped子帧的时频资源,并取消在相应的子帧的时频资源上传输AUL数据,避免发送资源碰撞,并保证SUL的正常传输。
在一个可能的实施例中,第二消息为高层信令、下行控制信息DCI或广播消息。
本发明实施例提供了一种分配资源方法,通过基站发送的第二消息,确定是否在预配置的AUL资源上进行AUL传输,从而有效避免SUL与AUL资源发生碰撞,提高信道利用率。
上述实施例描述的方法,可使终端确定是否在预配置的AUL资源上进行AUL传输。相应地,本发明实施例提供一种终端,用以实现前述实施例中提供的分配资源方法,如图10所示,该终端可包括:接收单元1010和处理单元1020。
图10为本发明实施例提供了一种终端的结构示意图。如图10所示,该终端可包括:接收单元1010和处理单元1020;其中,
接收单元1010,用于接收基站发送的第二消息,第二消息用于指示基站是否在预配置的自动上行传输AUL资源上传输调度的上行传输SUL;处理单元1020,用于根据第二消息确定是否在预配置的AUL资源上进行AUL传输。
在本申请的实施例中,通过上述示例,本发明实施例提供的终端,通过基站发送的第二消息,该第二消息用于指示基站是否在预配置的自动上行传输AUL资源上传输调度的上行传输SUL,进一步,根据第二消息确定是否在预配置的AUL资源上进行AUL传输,进而避免SUL与AUL资源发生碰撞。
在一个可能的实施例中,当第二消息若指示基站没有在预配置的AUL资源上传输SUL时;终端还包括:传输单元1030;
传输单元1030,用于在预配置的资源上进行AUL传输。
在一个可能的实施例中,当第二消息若指示基站没有在预配置的AUL资源上传输SUL时;
处理单元1020,还用于:取消在在预配置的资源上进行AUL传输。
在一个可能的实施例中,第二消息为高层信令、下行控制信息DCI或广播消息。
另外,本发明实施例提供的终端还可以采用的实现方式如下,用以实现前述本发明实施例中的分配资源方法,如图11所示,所述终端包括:接收器1110和处理器1120。
在可选地实施例中,前述图10所述的实施例中的接收单元1010可以由接收器710实现。具体地,第二消息,其中第二消息为接收器1110从基站接收的信息。具体地,第二消 息用于指示基站是否在预配置的自动上行传输AUL资源上传输调度的上行传输SUL。
处理单元1020可以由处理器1120实现。所述终端还可包括存储器和发射器。
图11中各单元涉及的处理过程可参见前述图5所示的实施例,在此不做赘述。
图12为本发明实施例提供了一种基站的结构示意图。如图12所示,该终端可包括:发送单元1210。
发送单元1210,用于向终端发送第二消息,第二消息用于指示基站是否在预配置的自动上行传输AUL资源上传输调度的上行传输SUL,以便终端根据第二消息确定是否在预配置的AUL资源上进行AUL传输。
在一个可能的实施例中,发送单元1210,具体用于:通过无线资源控制RRC消息、下行控制信息DCI或者广播消息发送第二消息。
在一个可能的实施例中,第二消息为高层信令、下行控制信息DCI或广播消息。
图13为本发明实施例提供了另一种基站的结构示意图。如图13所示,所述基站包括:发射器1310。
在可选地实施例中,前述图12所述的实施例中的发送单元1210可以由发射器1310实现。所述第二消息用于指示基站是否在预配置的自动上行传输AUL资源上传输调度的上行传输SUL,以便终端根据第二消息确定是否在预配置的AUL资源上进行AUL传输。具体地,通过无线资源控制RRC消息、下行控制信息DCI或者广播消息发送所述第二消息。
所述基站还可包括处理器、存储器和接收器。
图13中各单元涉及的处理过程可参见前述图9所示的实施例,在此不做赘述。
基于本发明实施例提供的一种分配资源方法、终端以及基站,终端根据基站发送的第一消息包括的偏移量,以及SUL的起始位置确定进行自动上行传输AUL的位置,其中,偏移量的值大于或等于1个OFDM符号,小于或等于5个OFDM符号,使得SUL数据传输的位置和AUL数据传输的位置不重叠,进而解决SUL资源与AUL资源发送碰撞的问题。
专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (30)

  1. 一种资源分配方法,其特征在于,包括:
    终端接收基站发送的第一消息,所述第一消息用于指示所述终端进行自动上行传输AUL的偏移量,其中,所述偏移量的值大于或等于1个正交频分复用技术OFDM符号,小于或等于5个OFDM符号;
    所述终端根据发送调度的上行传输SUL的起始位置和所述偏移量确定进行自动上行传输AUL的位置;
    所述终端根据所述AUL数据传输的位置和SUL数据传输的位置分别传输相应的数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一消息包括一个或者多个偏移量。
  3. 根据权利要求2所述的方法,其特征在于,所述终端根据发送调度的上行传输SUL的起始位置和所述偏移量确定进行自动上行传输AUL的位置,包括:当所述第一消息包括多个偏移量时,所述终端所述从多个偏移量中选择一个偏移量,并根据选择的偏移量和发送SUL的起始位置确定进行自动上行传输AUL的位置。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述第一消息包括高层信令、下行控制信息DCI或广播消息。
  5. 一种资源分配方法,其特征在于,包括:
    基站向终端发送第一消息,所述第一消息用于指示所述终端进行自动上行传输AUL的偏移量,其中,所述偏移量的值大于或等于1个正交频分复用技术OFDM符号,小于或等于5个OFDM符号。
  6. 根据权利要求5所述的方法,其特征在于,所述第一消息包括一个或者多个偏移量。
  7. 根据权利要求6所述的方法,其特征在于,所述基站向终端发送第一消息之前,所述方法还包括:
    所述基站通过无线资源控制RRC消息、下行控制信息DCI或者广播消息配置一个或多个偏移量。
  8. 根据权利要求5至7任一项所述的方法,其特征在于,所述第一消息包括高层信令、下行控制信息DCI或广播消息。
  9. 一种资源分配方法,其特征在于,包括:
    终端接收基站发送的第二消息,所述第二消息用于指示所述基站是否在预配置的自动上行传输AUL资源上传输调度的上行传输SUL;
    所述终端根据所述第二消息确定是否在预配置的AUL资源上进行AUL传输。
  10. 根据权利要求9所述的方法,其特征在于,当所述第二消息若指示基站没有在预配置的AUL资源上传输SUL时,所述终端在预配置的资源上进行AUL传输。
  11. 根据权利要求9所述的方法,其特征在于,当所述第二消息若指示基站在预配置的AUL资源上传输SUL时,所述终端取消在预配置的资源上进行AUL传输。
  12. 根据权利要求9至11任一项所述的方法,其特征在于,所述第二消息包括高层信令、 下行控制信息DCI或广播消息。
  13. 一种资源分配方法,其特征在于,包括:
    基站向终端发送第二消息,所述第二消息用于指示所述指示基站是否在预配置的自动上行传输AUL资源上传输调度的上行传输SUL,以便所述终端根据所述第二消息确定是否在预配置的AUL资源上进行AUL传输。
  14. 根据权利要求13所述的方法,其特征在于,所述基站向终端发送第二消息,具体包括:
    所述基站通过无线资源控制RRC消息、下行控制信息DCI或者广播消息发送所述第二消息。
  15. 根据权利要求12至14任一项所述的方法,其特征在于,所述第二消息包括高层信令、下行控制信息DCI或广播消息。
  16. 一种终端,其特征在于,包括:接收单元、处理单元和发送单元;其中,
    所述接收单元,用于接收基站发送的第一消息,所述第一消息用于指示所述终端进行自动上行传输AUL的偏移量,其中,所述偏移量的值大于或等于1个正交频分复用技术OFDM符号,小于或等于5个OFDM符号;
    所述处理单元,用于根据发送调度的上行传输SUL和所述偏移量确定进行自动上行传输AUL的位置;
    所述发送单元,用于根据所述AUL数据传输的位置和SUL数据传输的位置分别传输相应的数据。
  17. 根据权利要求16所述的终端,其特征在于,第一消息包括一个或者多个偏移量。
  18. 根据权利要求16或17所述的终端,其特征在于,处理单元,还用于:
    当所述第一消息包括多个偏移量时,从所述多个偏移量中选择一个偏移量,并根据选择的偏移量和SUL的起始位置确定进行自动上行传输AUL的位置。
  19. 根据权利要求16至18任一项所述的终端,其特征在于,第一消息包括高层信令、下行控制信息DCI或广播消息。
  20. 一种基站,其特征在于,包括:
    发送单元,用于向终端发送第一消息,所述第一消息用于指示所述终端进行自动上行传输AUL的偏移量,所述偏移量的值大于或等于1个正交频分复用技术OFDM符号,小于或等于5个OFDM符号。
  21. 根据权利要求20所述的基站,其特征在于,所述第一消息包括一个或者多个偏移量。
  22. 根据权利要求21所述的基站,其特征在于,所述基站还包括:处理单元;
    所述处理单元,用于通过无线资源控制RRC消息、下行控制信息DCI或者广播消息配置一个或多个偏移量。
  23. 根据权利要求20至22任一项所述的基站,其特征在于,第一消息包括高层信令、 下行控制信息DCI或广播消息。
  24. 一种终端,其特征在于,包括:接收单元和处理单元;其中,
    所述接收单元,用于接收基站发送的第二消息,所述第二消息用于指示所述基站是否在预配置的自动上行传输AUL资源上传输调度的上行传输SUL;
    所述处理单元,用于根据所述第二消息确定是否在预配置的AUL资源上进行AUL传输。
  25. 根据权利要求24所述的终端,其特征在于,当所述第二消息若指示基站没有在预配置的AUL资源上传输SUL时;所述终端还包括:传输单元;
    所述传输单元,用于在预配置的资源上进行AUL传输。
  26. 根据权利要求24所述的终端,其特征在于,当所述第二消息若指示基站没有在预配置的AUL资源上传输SUL时;
    所述处理单元,还用于:取消在在预配置的资源上进行AUL传输。
  27. 根据权利要求24至26任一项所述的终端,其特征在于,第二消息包括高层信令、下行控制信息DCI或广播消息。
  28. 一种基站,其特征在于,包括:
    发送单元,用于向终端发送第二消息,所述第二消息用于指示所述指示基站是否在预配置的自动上行传输AUL资源上传输调度的上行传输SUL,以便所述终端根据所述第二消息确定是否在预配置的AUL资源上进行AUL传输。
  29. 根据权利要求28所述的基站,其特征在于,所述发送单元,具体用于:通过无线资源控制RRC消息、下行控制信息DCI或者广播消息发送所述第二消息。
  30. 根据权利要求28至29任一项所述的基站,其特征在于,第二消息包括高层信令、下行控制信息DCI或广播消息。
PCT/CN2018/118288 2017-11-30 2018-11-29 一种资源分配方法、终端以及基站 WO2019105434A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711240390 2017-11-30
CN201711240390.X 2017-11-30
CN201810289231.7 2018-03-30
CN201810289231.7A CN109862616B (zh) 2017-11-30 2018-03-30 一种资源分配方法、终端以及基站

Publications (1)

Publication Number Publication Date
WO2019105434A1 true WO2019105434A1 (zh) 2019-06-06

Family

ID=66664702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118288 WO2019105434A1 (zh) 2017-11-30 2018-11-29 一种资源分配方法、终端以及基站

Country Status (1)

Country Link
WO (1) WO2019105434A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702644A (zh) * 2009-11-02 2010-05-05 中兴通讯股份有限公司 一种物理混合重传指示信道的传输方法和装置
CN101777948A (zh) * 2009-01-14 2010-07-14 华为技术有限公司 帧结构的构建方法及帧结构的构建指示方法及网络系统
CN101895927A (zh) * 2009-05-22 2010-11-24 中兴通讯股份有限公司 一种恒定调度的实现方法
US20120051305A1 (en) * 2009-04-14 2012-03-01 Zte Corporation Method for Realizing Hybrid Automatic Retransmission Based on Persistent Scheduling
CN102469048A (zh) * 2010-11-18 2012-05-23 中兴通讯股份有限公司 一种确定下行控制信道搜索空间的方法及系统
CN106507494A (zh) * 2016-12-23 2017-03-15 北京交通大学 基于分组的m2m通信上行半静态调度方法
CN106851822A (zh) * 2017-02-04 2017-06-13 北京佰才邦技术有限公司 传输方法和用户终端
CN107155221A (zh) * 2016-03-03 2017-09-12 华为技术有限公司 应用于超级小区的通信方法和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777948A (zh) * 2009-01-14 2010-07-14 华为技术有限公司 帧结构的构建方法及帧结构的构建指示方法及网络系统
US20120051305A1 (en) * 2009-04-14 2012-03-01 Zte Corporation Method for Realizing Hybrid Automatic Retransmission Based on Persistent Scheduling
CN101895927A (zh) * 2009-05-22 2010-11-24 中兴通讯股份有限公司 一种恒定调度的实现方法
CN101702644A (zh) * 2009-11-02 2010-05-05 中兴通讯股份有限公司 一种物理混合重传指示信道的传输方法和装置
CN102469048A (zh) * 2010-11-18 2012-05-23 中兴通讯股份有限公司 一种确定下行控制信道搜索空间的方法及系统
CN107155221A (zh) * 2016-03-03 2017-09-12 华为技术有限公司 应用于超级小区的通信方法和装置
CN106507494A (zh) * 2016-12-23 2017-03-15 北京交通大学 基于分组的m2m通信上行半静态调度方法
CN106851822A (zh) * 2017-02-04 2017-06-13 北京佰才邦技术有限公司 传输方法和用户终端

Similar Documents

Publication Publication Date Title
US10764914B2 (en) Uplink information processing method and apparatus
JP7375837B2 (ja) 低複雑度の狭帯域端末のためのランダムアクセス手順でのharqメッセージに割り当てられたリソースを示すための方法
KR20230127959A (ko) 비면허 대역을 통해 데이터를 송수신하는 수신 장치 및 송신 장치
CN107466110B (zh) 一种上行信号的发送方法、用户设备
EP2523520B1 (en) Method and device for scheduling request
CN108631964B (zh) 一种数据传输方法和相关设备
US10694498B2 (en) Traffic scheduling in a multi-hop communications system
KR102474512B1 (ko) 이동통신 시스템에서 단말의 제어 정보 수신 방법 및 장치
US20190053210A1 (en) Carrier indication method, user equipment, and base station
KR20160114606A (ko) 통신 디바이스 및 방법
CN108292983A (zh) 业务传输的方法和装置
CN104184540A (zh) D2d通信中的数据传输方法和设备
WO2016045564A1 (en) A method and device of resource allocations for scheduling assignments in device to device communications
WO2018028434A1 (zh) 一种数据传输的方法及装置
EP3429265A1 (en) Resource management method and relevant device
US20230217493A1 (en) Systems and techniques for sidelink communication
KR20180018268A (ko) 이동 통신 시스템에서 상향링크 데이터 스케줄링 방법 및 장치
EP3429111B1 (en) Device and method of performing data transmission in bandwidth parts
US20230089138A1 (en) Communications device, infrastructure equipment and methods for handling uplink collisions
CN109862616B (zh) 一种资源分配方法、终端以及基站
EP3684130B1 (en) Information transmission method and device
US12127227B2 (en) Methods and devices of resource mapping for data transmission and of data receiving
KR20160121781A (ko) 상향링크 자원 할당 방법 및 장치
KR102571817B1 (ko) 비면허 대역을 통해 데이터를 송수신하는 수신 장치 및 송신 장치
WO2019105434A1 (zh) 一种资源分配方法、终端以及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883609

Country of ref document: EP

Kind code of ref document: A1