WO2019193666A1 - User terminal and wireless base station - Google Patents
User terminal and wireless base station Download PDFInfo
- Publication number
- WO2019193666A1 WO2019193666A1 PCT/JP2018/014365 JP2018014365W WO2019193666A1 WO 2019193666 A1 WO2019193666 A1 WO 2019193666A1 JP 2018014365 W JP2018014365 W JP 2018014365W WO 2019193666 A1 WO2019193666 A1 WO 2019193666A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- tci
- dci
- signal
- user terminal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the present disclosure relates to a user terminal and a radio base station in a next-generation mobile communication system.
- Non-patent Document 1 In the UMTS (Universal Mobile Telecommunications System) network, Long Term Evolution (LTE) has been specified for the purpose of higher data rates and low delay (Non-patent Document 1).
- LTE Long Term Evolution
- LTE-A also referred to as LTE Advanced, LTE Rel. 10, 11 or 12
- LTE also referred to as LTE Rel. 8 or 9
- Successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Rel. 13, 14 or (Also referred to as after 15).
- a user terminal In an existing LTE system (for example, LTE Rel. 8-13), a user terminal (UE: User Equipment) is based on downlink control information (DCI: Downlink Control Information, also called DL assignment) from a radio base station. Then, reception of a downlink shared channel (for example, PDSCH: Physical Downlink Shared Channel) is controlled. Further, the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
- DCI Downlink Control Information
- PUSCH Physical Uplink Shared Channel
- BF beam forming
- the user terminal transmits a QCL relationship (a TCI state (a TCI field)) indicated by a value of a predetermined field in the DCI (for example, a field for transmission configuration indication (TCI: Transmission Configuration Indicator or Transmission Configuration Indicator)).
- a TCI state for example, a field for transmission configuration indication (TCI: Transmission Configuration Indicator or Transmission Configuration Indicator)
- TCI Transmission Configuration Indicator or Transmission Configuration Indicator
- TCI state also referred to as a TCI state
- information for example, tci-PresentInDCI
- the present invention has been made in view of such a point, and even when it is controlled whether or not a predetermined field (for example, a TCI field) is present in DCI, the processing load related to detection of the DCI is reduced.
- a predetermined field for example, a TCI field
- An object is to provide a possible user terminal and a radio base station.
- a user terminal includes: a receiving unit that receives downlink control information (DCI); and the DCI sets a field for a transmission configuration instruction (TCI) for at least one control resource set within a predetermined bandwidth. And a control unit that controls reception of the DCI in all control resource sets within the predetermined bandwidth based on information indicating whether or not the information is included.
- DCI downlink control information
- TCI transmission configuration instruction
- the processing load related to detection of the DCI can be reduced.
- FIG. 1 is a diagram illustrating an example of DCI transmitted by PDCCH of each CORESET.
- FIG. 2 is a diagram showing an example of DCI transmitted by each CORESET PDCCH according to the first mode.
- FIG. 3 is a diagram illustrating an example of a TCI field value according to the first aspect. It is a figure which shows an example of schematic structure of the radio
- the user terminal performs information (QCL: Quasi-Co-Location) on the downlink shared channel (for example, PDSCH)
- Control of reception processing for example, at least one of demapping, demodulation, and decoding
- the downlink shared channel for example, PDSCH
- pseudo-collocation is an index indicating the statistical properties of the channel. For example, when one signal and another signal have a QCL relationship, a Doppler shift, a Doppler spread, an average delay, and a delay spread (delay) are set between these different signals. spread) and a spatial parameter (for example, a spatial reception parameter (Spatial Rx Parameter)) can be assumed to be the same.
- QCL may be provided with one or more types (QCL types) having different parameters that can be assumed to be the same.
- QCL types QCL types
- four QCL types A to D having different parameters that can be assumed to be the same may be provided.
- QCL type A QCL that can be assumed to have the same Doppler shift, Doppler spread, average delay and delay spread
- QCL type B QCL that can be assumed to have the same Doppler shift and Doppler spread
- QCL type C QCL that can be assumed to have the same average delay and Doppler shift
- QCL type D QCL that can be assumed to have the same spatial reception parameters
- the state of the transmission configuration instruction (TCI: Transmission Configuration Indication or Transmission Configuration Indicator) (TCI state (TCI-state)) may indicate information related to QSCH of PDSCH (also referred to as QCL information or QCL information for PDSCH). (May be included).
- the PDCL QCL information is, for example, information related to the QCL between the PDSCH (DMRS port for the PDSCH) and a downlink reference signal (DL-RS: Downlink Reference Signal).
- DL-RS Downlink Reference Signal
- Information DL-RS related information
- QCL type information information indicating the QCL type
- the DMRS port is an antenna port for a demodulation reference signal (DMRS).
- the DMRS port may be a DMRS port group including a plurality of DMRS ports, and the DMRS port in this specification may be read as a DMRS port group.
- the DL-RS related information may include at least one of information indicating a DL-RS having a QCL relationship and information indicating a resource of the DL-RS. For example, when a plurality of reference signal sets (RS sets) are set in the user terminal, the DL-RS related information includes the PDSCH (or the DMRS port for PDSCH) and the QCL among the reference signals included in the RS set. A predetermined DL-RS to be related and a resource for the DL-RS may be indicated.
- RS sets reference signal sets
- the DL-RS is a synchronization signal (SS: Synchronization Signal), a broadcast channel (PBCH: Physical Broadcast Channel), a synchronization signal block (SSB: Synchronization Signal Block), a mobility reference signal (MRS: Mobility RS), and a channel state.
- Information reference signal (CSI-RS: Channel Satate Information-Reference Signal), demodulation reference signal (DMRS: DeModulation Reference Signal), beam specific signal, etc., or these are expanded and / or modified. (For example, a signal configured by changing the density and / or the period).
- the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS: Primary Synchronization Signal) and a secondary synchronization signal (SSS: Secondary Synchronization Signal).
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- the SSB may be a signal block including a synchronization signal and a broadcast channel, and may be called an SS / PBCH block or the like.
- each TCI state can indicate (can include) QCL information for PDSCH.
- M (M ⁇ 1) TCI states Q pieces of QCL information for M PDSCHs) are notified (configured) from the radio base station by higher layer signaling (for example, RRC signaling). May be.
- the number M of TCI states set in the user terminal may be limited by at least one of the user terminal capability (UE capability) and the QCL type.
- the DCI used for PDSCH scheduling may include a predetermined field (for example, a TCI field, a TCI field, or a TCI state field) indicating a TCI state (PDCL QCL information).
- the DCI may be used for scheduling of PDSCH of one cell, and may be called, for example, DL assignment, DCI format 1_0, DCI format 1_1, and the like.
- the TCI field may be configured with a predetermined number of bits (for example, 3 bits). Whether or not the TCI field is included in the DCI may be controlled by information notified from the radio base station to the user terminal.
- the information may be information (tci-PresentInDCI) indicating whether the TCI field is present in DCI (present or absent), or may be set in the user terminal by higher layer signaling.
- tci-PresentInDCI is enabled means that predetermined upper layer control information (for example, an information item “ControlResourceSet” for setting at least one of a time resource and a frequency resource of CORESET) is tci ⁇ PresentInDCI may be included.
- the higher layer control information may not include the tci-PresentInDCI.
- the TCI field in DCI is 0 bit, and when the tci-PresentInDCI is enabled, the TCI field in DCI may be 3 bits. .
- the value of the TCI field in the DCI may indicate one of the TCI states set in advance by higher layer signaling.
- TCI states When more than 8 types of TCI states are set in the user terminal, 8 or less types of TCI states may be activated (designated) by a MAC control element (MAC CE: Medium Access Control Control Element).
- MAC CE Medium Access Control Control Element
- the value of the TCI field in DCI may indicate one of the TCI states activated by the MAC CE.
- the user terminal determines the QCL of the PDSCH (or the DMRS port of the PDSCH) based on the TCI state indicated by the TCI field value in the DCI. For example, the user terminal assumes that the DMRS port (or DMRS port group) of the PDSCH of the serving cell is a DL-RS and a QCL corresponding to the TCI state notified by DCI (for example, decoding) Processing and / or demodulation processing, etc.). Thereby, the reception precision of PDSCH can be improved.
- CORESET Control Resource Set
- BWP Bandwidth Part
- CORESET Control Resource Set
- the BWP is a partial band set in a carrier (also referred to as a cell, a serving cell, a component carrier (CC)), and is also referred to as a partial band.
- the BWP may include a BWP for uplink (UL) (UL BWP, uplink BWP) and a BWP for downlink (DL: Downlink) (DL BWP, downlink BWP).
- UL BWP uplink
- DL BWP downlink
- Each BWP provided with the predetermined number of CORESETs may be a DL BWP.
- CORESET is a resource region to which a downlink control channel (PDCCH: Physical Downlink Control Channel) can be allocated, and may include a predetermined frequency domain resource and a time domain resource (for example, 1 or 2 OFDM symbols).
- PDCCH Physical Downlink Control Channel
- One or more search spaces may be provided in the CORESET.
- the provision of a search space in CORESET indicates that control is performed based on the CORESET when setting a resource area for the search space.
- the user terminal detects DCI for the user terminal by monitoring (blind decoding) the DCI transmitted via the PDCCH in the CORESET (or the search space in the CORESET).
- the following parameters may be given to the user terminal by higher layer signaling for CORESET # p (for example, 0 ⁇ p ⁇ 3) set in each DL BWP. That is, the following parameters may be notified (set) to the user terminal for each CORESET.
- CORESET index for example, CORESET-ID
- the processing load for DCI detection (blind decoding) at the user terminal may increase.
- FIG. 1 is a diagram illustrating an example of DCI transmitted by each CORESET PDCCH.
- FIG. 1 shows the case where two CORESET # 0 and # 1 are set in the user terminal in DL BWP, but the number of CORESETs set in the user terminal is not limited to two, but one or three or more It may be.
- the DCI format 1_1 is shown as an example of the DCI, but is not limited thereto.
- tci-PresentInDCI is validated for CORESET # 0 and tci-PresentInDCI is invalidated for CORESET # 1, but this is only an example and is not limited thereto.
- DCI format 1_1 transmitted by PDCCH in CORESET # 0 includes a TCI field.
- DCI format 1_1 transmitted by PDCCH in CORESET # 0 does not include a TCI field.
- the size of the same DCI format 1_1 may be different between CORESET # 0 and # 1 set in the user terminal.
- the size of DCI format 1_1 of CORESET # 0 may be 3 bits larger than the size of DCI format 1_1 of CORESET # 1.
- the DCI monitored by the user terminal in one slot is a predetermined type (for example, four types or five types). Etc.) is assumed to be limited to the size (number of bits). Also, DCI to which a cyclic redundancy check (CRC) that is scrambled (masked) by a user-specific identifier (for example, C-RNTI: Cell-Radio Network Temporary Identifier) is added is a predetermined type per slot. It is assumed that the size is limited to (for example, three types or four types).
- CRC cyclic redundancy check
- the processing load for DCI detection (blind decoding) in the user terminal may increase.
- the present inventors based on information (for example, tci-PresentInDCI) indicating whether or not a TCI field exists in DCI for at least one CORESET in DL BWP, all CORESETs in the DL BWP.
- information for example, tci-PresentInDCI
- a single downlink BWP is assumed as the predetermined bandwidth, but the present invention is not limited to this.
- the present embodiment may be applied to DCI reception control in CORESET set in one or more DL BWPs, for example.
- information indicating whether DCI includes a TCI field is “tci-PresentInDCI”, but the name of the information is not limited to this.
- the user terminal enables tci-PresentInDCI (information indicating whether DCI includes a TCI field) for at least one CORESET within a predetermined bandwidth (for example, DL BWP).
- a predetermined bandwidth for example, DL BWP.
- the DCI transmitted by all CORESET within the predetermined bandwidth may be, for example, the DCI format 1_1.
- the user terminal may control the reception of the PDSCH scheduled by the DCI based on the TCI field value in the DCI transmitted in the CORESET in which tci-PresentInDCI is enabled.
- the TCI field value in the DCI transmitted in the CORESET in which tci-PresentInDCI is not validated may be a predetermined value (for example, “0” or “1”).
- the user terminal may receive tci-PresentInDCI for each CORESET in which tci-PresentInDCI is validated. For CORESET in which tci-PresentInDCI is not validated (invalidated), tci-PresentInDCI may not be received. Further, the user terminal may receive tci-PresentInDCI by higher layer signaling.
- the upper layer signaling may be, for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof.
- the broadcast information is, for example, at least one of a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), an RMSI (Remaining Minimum System Information), and an OSI (Other System Information). Also good.
- FIG. 2 is a diagram illustrating an example of DCI transmitted by each CORESET PDCCH according to the first mode. In FIG. 2, the difference from FIG. 1 will be mainly described.
- tci-PresentInDCI is validated for at least one CORESET (here, CORESET # 0) set in DL BWP. For this reason, the user terminal assumes that DCI transmitted in all CORESET (here, CORESET # 0 and # 1) set in the DL BWP includes a TCI field.
- DCI format 1_1 transmitted by PDCCH in CORESET # 0 may include a TCI field.
- tci-PresentInDCI is not activated for CORESET # 1, but tci-PresentInDCI of CORESET # 0 is validated, so that DCI format 1_1 transmitted by PDCCH in CORESET # 1 includes a TCI field. Good.
- tci-PresentInDCI when tci-PresentInDCI is enabled for at least one CORESET (here, CORESET # 0) set in the DL BWP, not only the DCI transmitted by the CORESET # 0. , DCI transmitted in CORESET # 1 in which tci-PresentInDCI is not validated also includes a TCI field. For this reason, since the size of the same DCI format becomes equal between CORESET in DL BWP, the processing load of the detection of the said DCI format in a user terminal can be reduced.
- FIG. 3 is a diagram illustrating an example of a TCI field value according to the first aspect.
- DCI transmitted in CORESET (for example, CORESET # 0 in FIG. 2) in which tci-PresentInDCI is validated is a TCI field value indicating the above-mentioned TCI state (QCL information for PDSCH). May be included.
- the TCI field value of DCI transmitted in CORESET (for example, CORESET # 1 in FIG. 2) in which tci-PresentInDCI is not validated is a predetermined value (for example, “000” or “001”). May be.
- Whether or not the TCI field value in the DCI is a dummy may be determined depending on whether or not tci-PresentInDCI is CORESET that is valid.
- the user terminal determines the PDSCH scheduled by the DCI based on the TCI field value of the DCI transmitted in the CORESET (for example, CORESET # 0 in FIG. 2) with tci-PresentInDCI enabled.
- the TCI state may be determined, and PDSCH reception may be controlled based on the TCI state.
- the user terminal may ignore the TCI field value of DCI transmitted in CORESET (for example, CORESET # 1 in FIG. 2) where tci-PresentInDCI is not activated.
- the DCI sizes can be made equal, so that the processing load related to the detection of the DCI at the user terminal Can be reduced.
- the present embodiment can be applied to reception processing of other signals, other channels, or other information (for example, DCI (DCI format 0_0, DCI format 0_1) or other DCI for scheduling an uplink shared channel). .
- the QCL may be read as QCL (spatially quasi co-located) in space.
- wireless communication system Wireless communication system
- communication is performed using at least one combination of the plurality of aspects.
- FIG. 4 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
- carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
- DC dual connectivity
- the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), 5G +, NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these Good.
- the radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange
- the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
- CC cells
- Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
- a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
- the same carrier may be used.
- the configuration of the frequency band used by each radio base station is not limited to this.
- the user terminal 20 can perform communication using time division duplex (TDD) and / or frequency division duplex (FDD) in each cell.
- TDD time division duplex
- FDD frequency division duplex
- a single neurology may be applied, or a plurality of different neurology may be applied.
- Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, filtering process, windowing process, and the like.
- the wireless base station 11 and the wireless base station 12 are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
- the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
- the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
- RNC radio network controller
- MME mobility management entity
- Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
- the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
- the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
- the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
- Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
- orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
- SC-FDMA single carrier-frequency division multiple access
- Frequency Division Multiple Access and / or OFDMA is applied.
- OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
- SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method.
- the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
- downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Moreover, MIB (Master Information Block) is transmitted by PBCH.
- PDSCH downlink shared channel
- PBCH Physical Broadcast Channel
- SIB System Information Block
- MIB Master Information Block
- the downlink L1 / L2 control channel is a downlink control channel (PDCCH (Physical Downlink Control Channel) and / or EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel).
- PDCH Physical Downlink Control Channel
- EPDCCH Enhanced Physical Downlink Control Channel
- PCFICH Physical Control Format Indicator Channel
- PHICH Physical Hybrid-ARQ Indicator Channel
- DCI Downlink Control Information
- DCI Downlink Control Information
- scheduling information may be notified by DCI.
- DCI that schedules DL data reception may be called DL assignment, DCI format 1_0, and DCI format 1_1.
- DCI that schedules UL data transmission is UL grant, DCI format 0_0, and DCI format 0_1. May be called.
- an uplink shared channel (PUSCH) shared by each user terminal 20
- an uplink control channel (PUCCH: Physical Uplink Control Channel)
- a random access channel (PRACH: Physical Random Access Channel)
- User data, higher layer control information, etc. are transmitted by PUSCH.
- downlink channel quality information CQI: Channel Quality Indicator
- delivery confirmation information CQI: Delivery confirmation information
- SR Scheduling Request
- a random access preamble for establishing connection with the cell is transmitted by the PRACH.
- a cell-specific reference signal CRS
- CSI-RS channel state information reference signal
- DMRS demodulation reference signal
- PRS Positioning Reference Signal
- a measurement reference signal SRS: Sounding Reference Signal
- a demodulation reference signal DMRS
- the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
- FIG. 5 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment.
- the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
- the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
- User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access
- Retransmission control for example, HARQ transmission processing
- scheduling transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
- IFFT Inverse Fast Fourier Transform
- precoding processing precoding processing, and other transmission processing
- the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
- the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
- the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
- the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure.
- the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
- the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
- the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
- the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
- the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
- FFT fast Fourier transform
- IDFT inverse discrete Fourier transform
- Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
- the call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
- the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
- the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
- CPRI Common Public Radio Interface
- X2 interface May be.
- the transmission / reception unit 103 may further include an analog beam forming unit that performs analog beam forming.
- the analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. can do.
- the transmission / reception antenna 101 can be configured by an array antenna, for example.
- the transmission / reception unit 103 is configured to be able to apply single BF and multi-BF.
- the transmission / reception unit 103 may transmit a signal using a transmission beam or may receive a signal using a reception beam.
- the transmission / reception unit 103 may transmit and / or receive a signal using a predetermined beam determined by the control unit 301.
- the transceiver 103 transmits a downlink (DL) signal (including at least one of a DL data signal (downlink shared channel), a DL control signal (downlink control channel), and a DL reference signal) to the user terminal 20. Then, an uplink (UL) signal (including at least one of a UL data signal, a UL control signal, and a UL reference signal) is received from the user terminal 20.
- DL downlink
- DL control signal downlink control channel
- UL uplink
- the transmission / reception part 103 transmits DCI with respect to the user terminal 20 using a downlink control channel. Further, the transmission / reception unit 103 may transmit information (for example, tci-PresentInDCI) indicating whether or not the DCI includes a TCI field.
- information for example, tci-PresentInDCI
- FIG. 6 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment.
- the functional block of the characteristic part in this Embodiment is mainly shown, and it may be assumed that the radio base station 10 also has another functional block required for radio
- the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
- the control unit (scheduler) 301 controls the entire radio base station 10.
- the control unit 301 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
- the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like.
- the control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
- the control unit 301 schedules system information, downlink data signals (for example, signals transmitted by PDSCH), downlink control signals (for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.) (for example, resource Control). In addition, the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal.
- downlink data signals for example, signals transmitted by PDSCH
- downlink control signals for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.
- resource Control for example, resource Control
- the control unit 301 controls scheduling such as a synchronization signal (for example, PSS / SSS) and a downlink reference signal (for example, CRS, CSI-RS, DMRS).
- a synchronization signal for example, PSS / SSS
- a downlink reference signal for example, CRS, CSI-RS, DMRS
- the control unit 301 uses the digital BF (for example, precoding) by the baseband signal processing unit 104 and / or the analog BF (for example, phase rotation) by the transmission / reception unit 103 to form a transmission beam and / or a reception beam. May be performed.
- digital BF for example, precoding
- analog BF for example, phase rotation
- control unit 301 may control the relationship of pseudo collocation (QCL) among a plurality of signals, and may control at least one of setting, generation, and transmission of information (TCI state) related to QCL.
- QCL pseudo collocation
- TCI state transmission of information
- control unit 301 controls at least one of generation and transmission of DCI.
- control unit 301 includes information (for example, tci-PresentInDCI) indicating whether DCI includes a TCI field (field for TCI) for at least one control resource set set within a predetermined bandwidth. ) Is controlled, the generation of DCI in all control resource sets within the predetermined bandwidth is controlled.
- information for example, tci-PresentInDCI
- control unit 301 activates information indicating whether the DCI includes a TCI field for at least one control resource set within the predetermined bandwidth (for example, tci-PresentInDCI).
- the TCI field may be included in the DCI transmitted in all control resource sets within the predetermined bandwidth.
- control unit 301 controls the TCI state of the downlink shared channel scheduled by the DCI in the TCI field in the DCI transmitted in the control resource set in which the information (for example, tci-PresentInDCI) is enabled.
- a value indicating (QCL information) may be set.
- control unit 301 may set a predetermined value in the TCI field in the DCI transmitted in a control resource set in which the information (for example, tci-PresentInDCI) is not validated.
- control unit 301 may control transmission of information (for example, tci-PresentInDCI) indicating whether or not the DCI includes a TCI field.
- the control unit 301 may control transmission of the information for each control resource set in which the information (for example, tci-PresentInDCI) is validated.
- the control unit 301 may control transmission of the information by higher layer signaling.
- the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
- the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
- the transmission signal generation unit 302 generates, for example, a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301.
- the DL assignment and UL grant are both DCI and follow the DCI format.
- the downlink data signal is subjected to coding processing, modulation processing, and the like according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
- CSI Channel State Information
- the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
- the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
- the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
- the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
- the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
- the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301.
- the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
- the measurement unit 305 performs measurement on the received signal.
- the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
- the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal.
- the measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
- Signal strength for example, RSSI (Received Signal Strength Indicator)
- propagation path information for example, CSI
- the measurement result may be output to the control unit 301.
- FIG. 7 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment.
- the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
- the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may be configured to include one or more.
- the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
- the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
- the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
- the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure.
- the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
- the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
- the downlink user data is transferred to the application unit 205.
- the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
- uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
- the baseband signal processing unit 204 performs transmission processing for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, etc. 203.
- the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
- the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
- the transmission / reception unit 203 may further include an analog beam forming unit that performs analog beam forming.
- the analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. can do.
- the transmission / reception antenna 201 can be configured by, for example, an array antenna.
- the transmission / reception unit 203 is configured to be able to apply single BF and multi-BF.
- the transmission / reception unit 203 may transmit a signal using a transmission beam, or may receive a signal using a reception beam.
- the transmission / reception unit 203 may transmit and / or receive a signal using a predetermined beam determined by the control unit 401.
- the transceiver 203 receives a downlink (DL) signal (including at least one of a DL data signal (downlink shared channel), a DL control signal (downlink control channel), and a DL reference signal) from the radio base station 10,
- DL downlink
- DL control signal downlink control channel
- UL uplink
- the transmission / reception unit 203 receives DCI for the user terminal 20 using the downlink control channel. Further, the transmission / reception unit 203 may receive information (for example, tci-PresentInDCI) indicating whether or not the DCI includes a TCI field.
- information for example, tci-PresentInDCI
- FIG. 8 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment.
- the functional block of the characteristic part in this Embodiment is mainly shown, and it may be assumed that the user terminal 20 also has another functional block required for radio
- the baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
- the control unit 401 controls the entire user terminal 20.
- the control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
- the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like.
- the control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
- the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404.
- the control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of retransmission control for the downlink control signal and / or the downlink data signal.
- the control unit 401 uses the digital BF (for example, precoding) by the baseband signal processing unit 204 and / or the analog BF (for example, phase rotation) by the transmission / reception unit 203 to form a transmission beam and / or a reception beam. May be performed.
- digital BF for example, precoding
- analog BF for example, phase rotation
- control unit 401 controls processing related to DCI reception (for example, at least one of detection, blind decoding, demodulation, and decoding).
- control unit 401 includes information (for example, tci-PresentInDCI) indicating whether or not the DCI includes a TCI field (a TCI field) for at least one control resource set set within a predetermined bandwidth. ) Is controlled, reception of DCI is controlled in all control resource sets within the predetermined bandwidth.
- control unit 401 activates information indicating whether the DCI includes a TCI field for at least one control resource set within the predetermined bandwidth (for example, tci-PresentInDCI). It may be assumed that the DCI transmitted in all control resource sets within the predetermined bandwidth includes a field for the TCI.
- control unit 401 is configured to perform downlink shared channel scheduling by the DCI based on the TCI field value in the DCI transmitted in the control resource set in which the information (for example, tci-PresentInDCI) is enabled. May be controlled.
- a predetermined value may be set in the TCI field in the DCI transmitted in the control resource set in which the information (for example, tci-PresentInDCI) is not validated.
- control unit 401 may control reception of information (for example, tci-PresentInDCI) indicating whether or not the DCI includes a TCI field.
- the control unit 401 may control reception of the information for each control resource set in which the information (for example, tci-PresentInDCI) is validated.
- the control unit 401 may control transmission of the information by higher layer signaling.
- the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
- the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
- the transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
- CSI channel state information
- the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
- the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
- the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
- the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
- the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure. Further, the reception signal processing unit 404 can constitute a reception unit according to the present disclosure.
- the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
- the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401.
- the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
- the measurement unit 405 performs measurement on the received signal.
- the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
- the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
- the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
- the measurement result may be output to the control unit 401.
- each functional block is realized using one device physically and / or logically coupled, or directly and / or two or more devices physically and / or logically separated. Alternatively, it may be realized indirectly by connecting (for example, using wired and / or wireless) and using these plural devices.
- the radio base station, the user terminal, and the like in this embodiment may function as a computer that performs the processing of each aspect of this embodiment.
- FIG. 9 is a diagram illustrating an example of the hardware configuration of the radio base station and the user terminal according to the present embodiment.
- the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
- the term “apparatus” can be read as a circuit, a device, a unit, or the like.
- the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
- processor 1001 may be implemented by one or more chips.
- Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
- the processor 1001 controls the entire computer by operating an operating system, for example.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
- CPU central processing unit
- the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
- the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
- programs program codes
- software modules software modules
- data data
- the like data
- the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
- the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
- the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the present embodiment.
- the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
- the storage 1003 may be referred to as an auxiliary storage device.
- the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
- FDD frequency division duplex
- TDD time division duplex
- the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
- the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
- the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
- DSP digital signal processor
- ASIC Application Specific Integrated Circuit
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- the channel and / or symbol may be a signal (signaling).
- the signal may be a message.
- the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
- a component carrier CC: Component Carrier
- CC Component Carrier
- the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
- Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
- a subframe may be composed of one or more slots in the time domain.
- the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
- the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
- the slot may be a time unit based on the numerology.
- the slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot.
- Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
- one subframe may be called a transmission time interval (TTI)
- TTI transmission time interval
- a plurality of consecutive subframes may be called a TTI
- TTI slot or one minislot
- a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
- TTI means, for example, a minimum time unit for scheduling in wireless communication.
- a radio base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
- the definition of TTI is not limited to this.
- the TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a code word, or may be a processing unit such as scheduling or link adaptation.
- a time interval for example, the number of symbols
- a transport block, a code block, and / or a code word is actually mapped may be shorter than the TTI.
- one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
- a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
- a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
- a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Also, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
- One or more RBs include physical resource block (PRB), sub-carrier group (SCG), resource element group (REG), PRB pair, RB pair, etc. May be called.
- the resource block may be configured by one or a plurality of resource elements (RE: Resource Element).
- RE Resource Element
- 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
- the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
- the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and included in the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
- the information, parameters, and the like described in this specification may be expressed using absolute values, may be expressed using relative values from a predetermined value, or other corresponding information may be used. May be represented.
- the radio resource may be indicated by a predetermined index.
- names used for parameters and the like are not limited names in any way.
- various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
- information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
- the name is not limited in any way.
- information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
- Information, signals, and the like may be input / output via a plurality of network nodes.
- the input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
- information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (master information block (MIB), system information block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
- DCI downlink control information
- UCI uplink control information
- RRC Radio Resource Control
- MIB master information block
- SIB system information block
- MAC Medium Access Control
- the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
- the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
- the MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
- notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
- the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
- the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
- software, instructions, information, etc. may be transmitted / received via a transmission medium.
- software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
- system and “network” used in this specification are used interchangeably.
- base station BS
- radio base station eNB
- gNB gNodeB
- cell a cell group
- carrier cell group
- carrier a base station
- a base station may also be called in terms such as a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a reception point, a femtocell, and a small cell.
- the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: Remote Radio Head)) can also provide communication services.
- a base station subsystem eg, an indoor small base station (RRH: Remote Radio Head)
- RRH Remote Radio Head
- the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage.
- MS mobile station
- UE user equipment
- a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
- the radio base station in this specification may be read by the user terminal.
- each aspect of the present disclosure / this embodiment may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device). Good.
- the user terminal 20 may have a function that the wireless base station 10 has.
- words such as “up” and “down” may be read as “side”.
- the uplink channel may be read as a side channel.
- a user terminal in this specification may be read by a radio base station.
- the wireless base station 10 may have a function that the user terminal 20 has.
- the operation performed by the base station may be performed by the upper node in some cases.
- various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
- MME Mobility Management Entity
- S-GW Serving-Gateway
- each aspect / this embodiment described in this specification may be used alone, in combination, or may be switched according to execution. Further, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / this embodiment described in this specification may be changed as long as there is no contradiction. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
- Each aspect described in this specification / this embodiment includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system, 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access) ), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registration) (Trademark), systems using other appropriate wireless communication methods, and / or next-generation systems extended based on them may be applied.
- LTE Long Term Evolution
- LTE-A Long Term Evolution-Advanced
- the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
- any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
- determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
- “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
- connection is any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
- the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
- the radio frequency domain can be considered “connected” or “coupled” to each other, such as with electromagnetic energy having wavelengths in the microwave and / or light (both visible and invisible) regions.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
One embodiment of this user terminal comprises: a reception unit that receives downlink control information (DCI); and a control unit that, when information that indicates whether the DCI for at least one control resource set that is within a prescribed bandwidth includes a transmission configuration indication (TCI) field is validated, assumes that the DCI that is transmitted by all control resource sets that are within the prescribed bandwidth includes the TCI field.
Description
本開示は、次世代移動通信システムにおけるユーザ端末及び無線基地局に関する。
The present disclosure relates to a user terminal and a radio base station in a next-generation mobile communication system.
UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延等を目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。
In the UMTS (Universal Mobile Telecommunications System) network, Long Term Evolution (LTE) has been specified for the purpose of higher data rates and low delay (Non-patent Document 1).
また、LTE(LTE Rel.8又は9ともいう)からの更なる広帯域化及び高速化を目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11又は12ともいう)が仕様化され、LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.13、14又は15以降等ともいう)も検討されている。
Also, LTE-A (also referred to as LTE Advanced, LTE Rel. 10, 11 or 12) has been specified for the purpose of further widening and speeding up from LTE (also referred to as LTE Rel. 8 or 9), and LTE. Successor systems (for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Rel. 13, 14 or (Also referred to as after 15).
既存のLTEシステム(例えば、LTE Rel.8-13)では、ユーザ端末(UE:User Equipment)は、無線基地局からの下り制御情報(DCI:Downlink Control Information、DLアサインメント等ともいう)に基づいて、下り共有チャネル(例えば、PDSCH:Physical Downlink Shared Channel)の受信を制御する。また、ユーザ端末は、DCI(ULグラント等ともいう)に基づいて、上り共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)の送信を制御する。
In an existing LTE system (for example, LTE Rel. 8-13), a user terminal (UE: User Equipment) is based on downlink control information (DCI: Downlink Control Information, also called DL assignment) from a radio base station. Then, reception of a downlink shared channel (for example, PDSCH: Physical Downlink Shared Channel) is controlled. Further, the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
将来の無線通信システム(例えば、NR、5G、5G+又はRel.15以降)では、ビームフォーミング(BF:Beam Forming)を利用して通信を行うことが検討されている。BFを利用した通信品質を向上するために、複数の信号間の疑似コロケーション(QCL:Quasi-Co-Location)の関係(QCL関係)を考慮して信号の送信及び受信の少なくとも一つを制御することが検討されている。
In future wireless communication systems (for example, NR, 5G, 5G +, or Rel. 15 or later), it is considered to perform communication using beam forming (BF). In order to improve communication quality using BF, at least one of signal transmission and reception is controlled in consideration of a pseudo-co-location (QCL) relationship (QCL relationship) between a plurality of signals. It is being considered.
具体的には、ユーザ端末は、DCI内の所定フィールド(例えば、送信構成指示(TCI:Transmission Configuration Indication又はTransmission Configuration Indicator)用のフィールド(TCIフィールド))の値が示すQCL関係(TCIの状態(TCI状態)等ともいう)に基づいて、当該DCIによりスケジューリングされる下り共有チャネル(例えば、PDSCH)の受信を制御することが検討されている。また、当該DCI内にTCIフィールドが存在するか否かを示す情報(例えば、tci-PresentInDCI)がユーザ端末に通知されることも検討されている。
Specifically, the user terminal transmits a QCL relationship (a TCI state (a TCI field)) indicated by a value of a predetermined field in the DCI (for example, a field for transmission configuration indication (TCI: Transmission Configuration Indicator or Transmission Configuration Indicator)). Control of reception of a downlink shared channel (for example, PDSCH) scheduled by the DCI based on the TCI state (also referred to as a TCI state). In addition, it is considered that information (for example, tci-PresentInDCI) indicating whether a TCI field exists in the DCI is notified to the user terminal.
しかしながら、所定の帯域幅(例えば、帯域幅部分(BWP:Bandwidth Part))内に設定される各制御リソースセット(CORESET:Control Resource Set)について、DCI内に上記所定フィールドが存在するか否か(present or absent)を示す情報(例えば、tci-PresentInDCI)が通知される場合、ユーザ端末におけるDCIの検出(ブラインド復号)のための処理負荷が増大する恐れがある。
However, whether or not the predetermined field exists in the DCI for each control resource set (CORESET: Control Resource Set) set in a predetermined bandwidth (for example, a bandwidth part (BWP: Bandwidth Part)) ( When information indicating present or absent (for example, tci-PresentInDCI) is notified, the processing load for DCI detection (blind decoding) in the user terminal may increase.
本発明はかかる点に鑑みてなされたものであり、DCI内に所定フィールド(例えば、TCIフィールド)が存在するか否かが制御される場合であっても、当該DCIの検出に関する処理負荷を軽減可能なユーザ端末及び無線基地局を提供することを目的の一つとする。
The present invention has been made in view of such a point, and even when it is controlled whether or not a predetermined field (for example, a TCI field) is present in DCI, the processing load related to detection of the DCI is reduced. An object is to provide a possible user terminal and a radio base station.
本発明の一態様に係るユーザ端末は、下り制御情報(DCI)を受信する受信部と、所定の帯域幅内の少なくとも一つの制御リソースセットについて前記DCIが送信構成指示(TCI)用のフィールドを含むか否かを示す情報に基づいて、前記所定の帯域幅内の全ての制御リソースセットにおける前記DCIの受信を制御する制御部と、を具備することを特徴とする。
A user terminal according to an aspect of the present invention includes: a receiving unit that receives downlink control information (DCI); and the DCI sets a field for a transmission configuration instruction (TCI) for at least one control resource set within a predetermined bandwidth. And a control unit that controls reception of the DCI in all control resource sets within the predetermined bandwidth based on information indicating whether or not the information is included.
本発明の一態様によれば、DCI内に所定フィールド(例えば、TCIフィールド)が存在するか否かが制御される場合であっても、当該DCIの検出に関する処理負荷を軽減できる。
According to one aspect of the present invention, even when it is controlled whether or not a predetermined field (for example, a TCI field) exists in DCI, the processing load related to detection of the DCI can be reduced.
(PDSCH用のQCL)
将来の無線通信システム(例えば、Rel.15~、5G、5G+、NR等)では、ユーザ端末は、下り共有チャネル(例えば、PDSCH)の疑似コロケーション(QCL:Quasi-Co-Location)に関する情報(QCL情報)に基づいて、当該下り共有チャネルの受信処理(例えば、デマッピング、復調、復号の少なくとも一つ)を制御することが検討されている。 (QCL for PDSCH)
In a future wireless communication system (for example, Rel. 15 to 5G, 5G +, NR, etc.), the user terminal performs information (QCL: Quasi-Co-Location) on the downlink shared channel (for example, PDSCH) Control of reception processing (for example, at least one of demapping, demodulation, and decoding) of the downlink shared channel is under consideration based on (information).
将来の無線通信システム(例えば、Rel.15~、5G、5G+、NR等)では、ユーザ端末は、下り共有チャネル(例えば、PDSCH)の疑似コロケーション(QCL:Quasi-Co-Location)に関する情報(QCL情報)に基づいて、当該下り共有チャネルの受信処理(例えば、デマッピング、復調、復号の少なくとも一つ)を制御することが検討されている。 (QCL for PDSCH)
In a future wireless communication system (for example, Rel. 15 to 5G, 5G +, NR, etc.), the user terminal performs information (QCL: Quasi-Co-Location) on the downlink shared channel (for example, PDSCH) Control of reception processing (for example, at least one of demapping, demodulation, and decoding) of the downlink shared channel is under consideration based on (information).
ここで、疑似コロケーション(QCL)とは、チャネルの統計的性質を示す指標である。例えば、ある信号と他の信号がQCLの関係である場合、これらの異なる複数の信号間において、ドップラーシフト(doppler shift)、ドップラースプレッド(doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(Spatial parameter)(例えば、空間受信パラメータ(Spatial Rx Prameter))の少なくとも一つが同一であると仮定できることをいう。
Here, pseudo-collocation (QCL) is an index indicating the statistical properties of the channel. For example, when one signal and another signal have a QCL relationship, a Doppler shift, a Doppler spread, an average delay, and a delay spread (delay) are set between these different signals. spread) and a spatial parameter (for example, a spatial reception parameter (Spatial Rx Parameter)) can be assumed to be the same.
QCLには、同一であると仮定できるパラメータが異なる一以上のタイプ(QCLタイプ)が設けられてもよい。例えば、同一であると仮定できるパラメータが異なる4つのQCLタイプA~Dが設けられてもよい。
QCL may be provided with one or more types (QCL types) having different parameters that can be assumed to be the same. For example, four QCL types A to D having different parameters that can be assumed to be the same may be provided.
・QCLタイプA:ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッドが同一であると仮定できるQCL
・QCLタイプB:ドップラーシフト及びドップラースプレッドが同一であると仮定できるQCL
・QCLタイプC:平均遅延及びドップラーシフトが同一であると仮定できるQCL
・QCLタイプD:空間受信パラメータが同一であると仮定できるQCL QCL type A: QCL that can be assumed to have the same Doppler shift, Doppler spread, average delay and delay spread
QCL type B: QCL that can be assumed to have the same Doppler shift and Doppler spread
QCL type C: QCL that can be assumed to have the same average delay and Doppler shift
QCL type D: QCL that can be assumed to have the same spatial reception parameters
・QCLタイプB:ドップラーシフト及びドップラースプレッドが同一であると仮定できるQCL
・QCLタイプC:平均遅延及びドップラーシフトが同一であると仮定できるQCL
・QCLタイプD:空間受信パラメータが同一であると仮定できるQCL QCL type A: QCL that can be assumed to have the same Doppler shift, Doppler spread, average delay and delay spread
QCL type B: QCL that can be assumed to have the same Doppler shift and Doppler spread
QCL type C: QCL that can be assumed to have the same average delay and Doppler shift
QCL type D: QCL that can be assumed to have the same spatial reception parameters
送信構成指示(TCI:Transmission Configuration Indication又はTransmission Configuration Indicator)の状態(TCI状態(TCI-state))は、PDSCHのQCLに関する情報(QCL情報又はPDSCH用のQCL情報等ともいう)を示してもよい(含んでもよい)。
The state of the transmission configuration instruction (TCI: Transmission Configuration Indication or Transmission Configuration Indicator) (TCI state (TCI-state)) may indicate information related to QSCH of PDSCH (also referred to as QCL information or QCL information for PDSCH). (May be included).
当該PDSCH用のQCL情報は、例えば、当該PDSCH(当該PDSCH用のDMRSポート)と下り参照信号(DL-RS:Downlink Reference Signal)とのQCLに関する情報であり、例えば、QCL関係となるDL-RSに関する情報(DL-RS関連情報)及び上記QCLタイプを示す情報(QCLタイプ情報)の少なくとも一つを含んでもよい。
The PDCL QCL information is, for example, information related to the QCL between the PDSCH (DMRS port for the PDSCH) and a downlink reference signal (DL-RS: Downlink Reference Signal). Information (DL-RS related information) and information indicating the QCL type (QCL type information) may be included.
ここで、DMRSポートは、復調用参照信号(DMRS:Demodulation Reference Signal)のアンテナポートである。DMRSポートは、複数のDMRSポートを含むDMRSポートグループであってもよく、本明細書におけるDMRSポートは、DMRSポートグループと読み替えられてもよい。
Here, the DMRS port is an antenna port for a demodulation reference signal (DMRS). The DMRS port may be a DMRS port group including a plurality of DMRS ports, and the DMRS port in this specification may be read as a DMRS port group.
当該DL-RS関連情報は、QCL関係となるDL-RSを示す情報及び当該DL-RSのリソースを示す情報の少なくとも一つを含んでもよい。例えば、ユーザ端末に複数の参照信号セット(RSセット)が設定される場合、当該DL-RS関連情報は、当該RSセットに含まれる参照信号の中でPDSCH(又はPDSCH用のDMRSポート)とQCL関係となる所定のDL-RS及び当該DL-RS用のリソースを示してもよい。
The DL-RS related information may include at least one of information indicating a DL-RS having a QCL relationship and information indicating a resource of the DL-RS. For example, when a plurality of reference signal sets (RS sets) are set in the user terminal, the DL-RS related information includes the PDSCH (or the DMRS port for PDSCH) and the QCL among the reference signals included in the RS set. A predetermined DL-RS to be related and a resource for the DL-RS may be indicated.
ここで、DL-RSは、同期信号(SS:Synchronaization Signal)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、同期信号ブロック(SSB:Synchronaization Signal Block)、モビリティ参照信号(MRS:Mobility RS)、チャネル状態情報参照信号(CSI-RS:Channel Satate Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、ビーム固有の信号などの少なくとも1つ、又はこれらを拡張及び/又は変更して構成される信号(例えば、密度及び/又は周期を変更して構成される信号)であってもよい。
Here, the DL-RS is a synchronization signal (SS: Synchronization Signal), a broadcast channel (PBCH: Physical Broadcast Channel), a synchronization signal block (SSB: Synchronization Signal Block), a mobility reference signal (MRS: Mobility RS), and a channel state. Information reference signal (CSI-RS: Channel Satate Information-Reference Signal), demodulation reference signal (DMRS: DeModulation Reference Signal), beam specific signal, etc., or these are expanded and / or modified. (For example, a signal configured by changing the density and / or the period).
同期信号は、例えば、プライマリ同期信号(PSS:Primary Synchronaization Signal)及びセカンダリ同期信号(SSS:Secondary Synchronaization Signal)の少なくとも一つであってもよい。SSBは、同期信号及びブロードキャストチャネルを含む信号ブロックであってもよく、SS/PBCHブロック等と呼ばれてもよい。
The synchronization signal may be, for example, at least one of a primary synchronization signal (PSS: Primary Synchronization Signal) and a secondary synchronization signal (SSS: Secondary Synchronization Signal). The SSB may be a signal block including a synchronization signal and a broadcast channel, and may be called an SS / PBCH block or the like.
以上のように、各TCI状態は、PDSCH用のQCL情報を示すことができる(含むことができる)。ユーザ端末に対しては、M(M≧1)個のTCI状態(M個のPDSCH用のQCL情報)が上位レイヤシグナリング(例えば、RRCシグナリング)により無線基地局から通知(設定(configure))されてもよい。なお、ユーザ端末に設定されるTCI状態の数Mは、ユーザ端末の能力(UE capability)及びQCLタイプの少なくとも一つによって制限されてもよい。
As described above, each TCI state can indicate (can include) QCL information for PDSCH. To the user terminal, M (M ≧ 1) TCI states (Q pieces of QCL information for M PDSCHs) are notified (configured) from the radio base station by higher layer signaling (for example, RRC signaling). May be. The number M of TCI states set in the user terminal may be limited by at least one of the user terminal capability (UE capability) and the QCL type.
PDSCHのスケジューリングに用いられるDCIは、TCI状態(PDSCH用のQCL情報)を示す所定のフィールド(例えば、TCI用のフィールド、TCIフィールド又はTCI状態フィールド等ともいう)を含んでもよい。当該DCIは、一つのセルのPDSCHのスケジューリングに用いられてもよく、例えば、DLアサインメント、DCIフォーマット1_0、DCIフォーマット1_1等と呼ばれてもよい。
The DCI used for PDSCH scheduling may include a predetermined field (for example, a TCI field, a TCI field, or a TCI state field) indicating a TCI state (PDCL QCL information). The DCI may be used for scheduling of PDSCH of one cell, and may be called, for example, DL assignment, DCI format 1_0, DCI format 1_1, and the like.
TCIフィールドは、所定ビット数(例えば、3ビット)で構成されてもよい。当該TCIフィールドがDCIに含まれるか否かは、無線基地局からユーザ端末に通知される情報によって制御されてもよい。当該情報は、DCI内にTCIフィールドが存在するか否か(present or absent)かを示す情報(tci-PresentInDCI)であってもよく、上位レイヤシグナリングによりユーザ端末に設定されてもよい。
The TCI field may be configured with a predetermined number of bits (for example, 3 bits). Whether or not the TCI field is included in the DCI may be controlled by information notified from the radio base station to the user terminal. The information may be information (tci-PresentInDCI) indicating whether the TCI field is present in DCI (present or absent), or may be set in the user terminal by higher layer signaling.
例えば、tci-PresentInDCIが有効化される(enabled)とは、所定の上位レイヤ制御情報(例えば、CORESETの時間リソース及び周波数リソースの少なくとも一つを設定するための情報項目”ControlResourceSet”)にtci-PresentInDCIが含まれることであってもよい。一方、当該tci-PresentInDCIが無効化される(disabled)又は有効化されないとは当該上位レイヤ制御情報にtci-PresentInDCIが含まれないことであってもよい。
For example, “tci-PresentInDCI is enabled” means that predetermined upper layer control information (for example, an information item “ControlResourceSet” for setting at least one of a time resource and a frequency resource of CORESET) is tci− PresentInDCI may be included. On the other hand, if the tci-PresentInDCI is disabled or not enabled, the higher layer control information may not include the tci-PresentInDCI.
また、tci-PresentInDCIが有効化されない(not enabled)場合、DCI内のTCIフィールドは0ビットであり、当該tci-PresentInDCIが有効化される場合、DCI内のTCIフィールドは3ビットであってもよい。
Further, when tci-PresentInDCI is not enabled (not enabled), the TCI field in DCI is 0 bit, and when the tci-PresentInDCI is enabled, the TCI field in DCI may be 3 bits. .
また、DCIがxビット(例えば、x=3)のTCIフィールドを含む場合、無線基地局は、最大2^x(例えば、x=3の場合、8)種類のTCI状態を上位レイヤシグナリングによりユーザ端末に予め設定(configure)してもよい。DCI内のTCIフィールドの値(TCIフィールド値)は、上位レイヤシグナリングにより予め設定されたTCI状態の一つを示してもよい。
In addition, when the DCI includes a TCI field of x bits (for example, x = 3), the radio base station can transmit a maximum of 2 ^ x (for example, 8 for x = 3) types of TCI states by higher layer signaling. You may configure in advance in the terminal. The value of the TCI field in the DCI (TCI field value) may indicate one of the TCI states set in advance by higher layer signaling.
8種類を超えるTCI状態がユーザ端末に設定される場合、MAC制御要素(MAC CE:Medium Access Control Control Element)により、8種類以下のTCI状態がアクティブ化(指定)されてもよい。DCI内のTCIフィールドの値は、MAC CEによりアクティブ化されたTCI状態の一つを示してもよい。
When more than 8 types of TCI states are set in the user terminal, 8 or less types of TCI states may be activated (designated) by a MAC control element (MAC CE: Medium Access Control Control Element). The value of the TCI field in DCI may indicate one of the TCI states activated by the MAC CE.
ユーザ端末は、DCI内のTCIフィールド値が示すTCI状態に基づいて、PDSCH(又はPDSCHのDMRSポート)のQCLを決定する。例えば、ユーザ端末は、サービングセルのPDSCHのDMRSポート(又は、DMRSポートグループ)が、DCIで通知されたTCI状態に対応するDL-RSとQCLであると想定してPDSCHの受信処理(例えば、復号処理及び/又は復調処理等)を制御する。これにより、PDSCHの受信精度を向上できる。
The user terminal determines the QCL of the PDSCH (or the DMRS port of the PDSCH) based on the TCI state indicated by the TCI field value in the DCI. For example, the user terminal assumes that the DMRS port (or DMRS port group) of the PDSCH of the serving cell is a DL-RS and a QCL corresponding to the TCI state notified by DCI (for example, decoding) Processing and / or demodulation processing, etc.). Thereby, the reception precision of PDSCH can be improved.
(CORESET)
サービングセルにおいてユーザ端末の設定される各帯域幅部分(BWP:Bandwidth Part)について、所定数(例えば、3個以下)の制御リソースセット(CORESET:Control Resource Set)がユーザ端末に与えられてもよい。 (CORESET)
For each bandwidth part (BWP: Bandwidth Part) set by the user terminal in the serving cell, a predetermined number (for example, 3 or less) of control resource sets (CORESET: Control Resource Set) may be given to the user terminal.
サービングセルにおいてユーザ端末の設定される各帯域幅部分(BWP:Bandwidth Part)について、所定数(例えば、3個以下)の制御リソースセット(CORESET:Control Resource Set)がユーザ端末に与えられてもよい。 (CORESET)
For each bandwidth part (BWP: Bandwidth Part) set by the user terminal in the serving cell, a predetermined number (for example, 3 or less) of control resource sets (CORESET: Control Resource Set) may be given to the user terminal.
ここで、BWPとは、キャリア(セル、サービングセル、コンポーネントキャリア(CC:Component Carrier)等ともいう)内に設定される部分的な帯域であり、部分帯域等とも呼ばれる。BWPは、上り(UL:Uplink)用のBWP(UL BWP、上りBWP)及び下り(DL:Downlink)用のBWP(DL BWP、下りBWP)を有してもよい。上記所定数のCORESETが与えられる各BWPは、DL BWPであってもよい。
Here, the BWP is a partial band set in a carrier (also referred to as a cell, a serving cell, a component carrier (CC)), and is also referred to as a partial band. The BWP may include a BWP for uplink (UL) (UL BWP, uplink BWP) and a BWP for downlink (DL: Downlink) (DL BWP, downlink BWP). Each BWP provided with the predetermined number of CORESETs may be a DL BWP.
CORESETとは、下り制御チャネル(PDCCH:Physical Downlink Control Channel)が割り当てられ得るリソース領域であり、所定の周波数領域リソースと時間領域リソース(例えば1又は2OFDMシンボルなど)を含んで構成されてもよい。CORESET内には、一以上のサーチスペースが設けられてもよい。ここで、CORESET内にサーチスペースが設けられるとは、当該サーチスペースに対するリソース領域を設定する際に、当該CORESETに基づいて制御することを示す。
CORESET is a resource region to which a downlink control channel (PDCCH: Physical Downlink Control Channel) can be allocated, and may include a predetermined frequency domain resource and a time domain resource (for example, 1 or 2 OFDM symbols). One or more search spaces may be provided in the CORESET. Here, the provision of a search space in CORESET indicates that control is performed based on the CORESET when setting a resource area for the search space.
ユーザ端末は、CORESET(又はCORESET内のサーチスペース)内で、PDCCHを介して送信されるDCIを監視(monitor)(ブラインド復号)して当該ユーザ端末に対するDCIを検出する。
The user terminal detects DCI for the user terminal by monitoring (blind decoding) the DCI transmitted via the PDCCH in the CORESET (or the search space in the CORESET).
例えば、ユーザ端末には、各DL BWPに設定されるCORESET#p(例えば、0≦p<3)について、以下のパラメータが上位レイヤシグナリングにより与えられてもよい。すなわち、以下のパラメータは、CORESET毎にユーザ端末に通知(設定)されてもよい。
・CORESETのインデックスを示す情報(例えば、CORESET-ID)
・PDCCHの復調用参照信号(DMRS:Demodulation Reference Signal)のスクランブル系列(scrambling sequence)の初期値(initialization value)を示す情報(例えば、PDCCH-DMRS-Scrambling-ID)
・CORESETを構成する連続する(consecutive)シンボル数(例えば、CORESET-time-duration)
・CORESETを構成する所定数のリソースブロック(物理リソースブロック(PRB:Physical Resource Block))を示す情報(例えば、CORESET-freq-dom)
・CORESET内の制御チャネル要素(CCE:Control Channel Element)からリソース要素グループ(REG:Resource Element Group)へのマッピングタイプ(例えば、インターリーブ又は非インターリーブ)を示す情報(例えば、CORESET-CCE-to-REG-mapping-type)
・所定数のREGを含むグループ(REGバンドル)のサイズ(REGバンドル内のREG数)を示す情報(例えば、CORESET-REG-bundle-size)
・REGバンドルのインターリーバ用の巡回シフト(CS:Cyclic Shift、CS量又はCSインデックス)を示す情報(例えば、CORESET-shift-index)
・PDCCH受信用のDMRSのアンテナポートのQCL情報(アンテナポート擬似コロケーション等ともいう)
・CORESET#p内でPDCCHによって送信されるDCI(例えば、DCIフォーマット1_0又はDCIフォーマット1_1)内のTCIフィールドの有無(presence or absence)の指示(inidication)(例えば、TCI-PresentInDCI) For example, the following parameters may be given to the user terminal by higher layer signaling for CORESET # p (for example, 0 ≦ p <3) set in each DL BWP. That is, the following parameters may be notified (set) to the user terminal for each CORESET.
-Information indicating the CORESET index (for example, CORESET-ID)
Information indicating an initialization value of a scrambling sequence of a demodulation reference signal (DMRS) of PDCCH (for example, PDCCH-DMRS-Scrambling-ID)
・ Consecutive number of symbols constituting CORESET (for example, CORESET-time-duration)
Information (for example, CORESET-freq-dom) indicating a predetermined number of resource blocks (physical resource block (PRB)) constituting the CORESET
Information indicating a mapping type (for example, interleaved or non-interleaved) from a control channel element (CCE) to a resource element group (REG) in CORESET (for example, CORESET-CCE-to-REG) -mapping-type)
Information indicating the size of the group (REG bundle) including the predetermined number of REGs (number of REGs in the REG bundle) (for example, CORESET-REG-bundle-size)
Information indicating a cyclic shift (CS: Cyclic Shift, CS amount or CS index) for the interleaver of the REG bundle (for example, CORESET-shift-index)
・ QCL information of DMRS antenna port for PDCCH reception (also called antenna port pseudo-collocation etc.)
Indication of presence / absence (presence or absence) of TCI field in DCI (for example, DCI format 1_0 or DCI format 1_1) transmitted by PDCCH in CORESET # p (for example, TCI-PresentInDCI)
・CORESETのインデックスを示す情報(例えば、CORESET-ID)
・PDCCHの復調用参照信号(DMRS:Demodulation Reference Signal)のスクランブル系列(scrambling sequence)の初期値(initialization value)を示す情報(例えば、PDCCH-DMRS-Scrambling-ID)
・CORESETを構成する連続する(consecutive)シンボル数(例えば、CORESET-time-duration)
・CORESETを構成する所定数のリソースブロック(物理リソースブロック(PRB:Physical Resource Block))を示す情報(例えば、CORESET-freq-dom)
・CORESET内の制御チャネル要素(CCE:Control Channel Element)からリソース要素グループ(REG:Resource Element Group)へのマッピングタイプ(例えば、インターリーブ又は非インターリーブ)を示す情報(例えば、CORESET-CCE-to-REG-mapping-type)
・所定数のREGを含むグループ(REGバンドル)のサイズ(REGバンドル内のREG数)を示す情報(例えば、CORESET-REG-bundle-size)
・REGバンドルのインターリーバ用の巡回シフト(CS:Cyclic Shift、CS量又はCSインデックス)を示す情報(例えば、CORESET-shift-index)
・PDCCH受信用のDMRSのアンテナポートのQCL情報(アンテナポート擬似コロケーション等ともいう)
・CORESET#p内でPDCCHによって送信されるDCI(例えば、DCIフォーマット1_0又はDCIフォーマット1_1)内のTCIフィールドの有無(presence or absence)の指示(inidication)(例えば、TCI-PresentInDCI) For example, the following parameters may be given to the user terminal by higher layer signaling for CORESET # p (for example, 0 ≦ p <3) set in each DL BWP. That is, the following parameters may be notified (set) to the user terminal for each CORESET.
-Information indicating the CORESET index (for example, CORESET-ID)
Information indicating an initialization value of a scrambling sequence of a demodulation reference signal (DMRS) of PDCCH (for example, PDCCH-DMRS-Scrambling-ID)
・ Consecutive number of symbols constituting CORESET (for example, CORESET-time-duration)
Information (for example, CORESET-freq-dom) indicating a predetermined number of resource blocks (physical resource block (PRB)) constituting the CORESET
Information indicating a mapping type (for example, interleaved or non-interleaved) from a control channel element (CCE) to a resource element group (REG) in CORESET (for example, CORESET-CCE-to-REG) -mapping-type)
Information indicating the size of the group (REG bundle) including the predetermined number of REGs (number of REGs in the REG bundle) (for example, CORESET-REG-bundle-size)
Information indicating a cyclic shift (CS: Cyclic Shift, CS amount or CS index) for the interleaver of the REG bundle (for example, CORESET-shift-index)
・ QCL information of DMRS antenna port for PDCCH reception (also called antenna port pseudo-collocation etc.)
Indication of presence / absence (presence or absence) of TCI field in DCI (for example, DCI format 1_0 or DCI format 1_1) transmitted by PDCCH in CORESET # p (for example, TCI-PresentInDCI)
以上のように、各DL BWPの各CORESETに対して、DCI内にTCIフィールドが存在するか(present)又は存在しない(absent)かを示す情報(例えば、tci-PresentInDCI)がユーザ端末に設定される場合、ユーザ端末におけるDCIの検出(ブラインド復号)のための処理負荷が増大する恐れがある。
As described above, for each CORESET of each DL BWP, information (for example, tci-PresentInDCI) indicating whether the TCI field is present (present) or not present (absent) is set in the user terminal. In this case, the processing load for DCI detection (blind decoding) at the user terminal may increase.
図1は、各CORESETのPDCCHによって送信されるDCIの一例を示す図である。なお、図1では、DL BWP内に2つのCORESET#0及び#1がユーザ端末に設定される場合を示すが、ユーザ端末に設定されるCORESETの数は、2に限られず、1又は3以上であってもよい。
FIG. 1 is a diagram illustrating an example of DCI transmitted by each CORESET PDCCH. FIG. 1 shows the case where two CORESET # 0 and # 1 are set in the user terminal in DL BWP, but the number of CORESETs set in the user terminal is not limited to two, but one or three or more It may be.
また、図1では、DCIの一例としてDCIフォーマット1_1を示すが、これに限られない。また、図1では、CORESET#0についてtci-PresentInDCIが有効化され、CORESET#1についてtci-PresentInDCIが無効化されるものとするが、一例にすぎず、これに限られない。
In FIG. 1, the DCI format 1_1 is shown as an example of the DCI, but is not limited thereto. In FIG. 1, tci-PresentInDCI is validated for CORESET # 0 and tci-PresentInDCI is invalidated for CORESET # 1, but this is only an example and is not limited thereto.
例えば、図1に示すように、CORESET#0についてtci-PresentInDCIが有効化される場合、CORESET#0内のPDCCHによって送信されるDCIフォーマット1_1は、TCIフィールドを含む。一方、CORESET#1についてtci-PresentInDCIが有効化されない場合、CORESET#0内のPDCCHによって送信されるDCIフォーマット1_1には、TCIフィールドを含まない。
For example, as shown in FIG. 1, when tci-PresentInDCI is enabled for CORESET # 0, DCI format 1_1 transmitted by PDCCH in CORESET # 0 includes a TCI field. On the other hand, when tci-PresentInDCI is not validated for CORESET # 1, DCI format 1_1 transmitted by PDCCH in CORESET # 0 does not include a TCI field.
この結果、図1では、ユーザ端末に設定されるCORESET#0及び#1間で同じDCIフォーマット1_1のサイズが異なる恐れがある。例えば、3ビットのTCIフィールドの場合、CORESET#0のDCIフォーマット1_1のサイズは、CORESET#1のDCIフォーマット1_1のサイズより3ビット多くなる恐れがある。
As a result, in FIG. 1, the size of the same DCI format 1_1 may be different between CORESET # 0 and # 1 set in the user terminal. For example, in the case of a 3-bit TCI field, the size of DCI format 1_1 of CORESET # 0 may be 3 bits larger than the size of DCI format 1_1 of CORESET # 1.
上記将来の無線通信システムでは、ユーザ端末におけるブラインド復号のための処理負荷を抑制するために、1スロットでユーザ端末によって監視(monitor)されるDCIは、所定種類(例えば、4種類、あるいは5種類など)のサイズ(ビット数)に制限することが想定される。また、ユーザ固有の識別子(例えば、C-RNTI:Cell-Radio Network Temporary Identifier)でスクランブル(マスク)される巡回冗長検査(CRC:Cyclic Redundancy Check)が付加されるDCIも、1スロットあたり、所定種類(例えば、3種類、あるいは4種類など)のサイズに制限することが想定される。
In the future wireless communication system, in order to suppress the processing load for blind decoding in the user terminal, the DCI monitored by the user terminal in one slot is a predetermined type (for example, four types or five types). Etc.) is assumed to be limited to the size (number of bits). Also, DCI to which a cyclic redundancy check (CRC) that is scrambled (masked) by a user-specific identifier (for example, C-RNTI: Cell-Radio Network Temporary Identifier) is added is a predetermined type per slot. It is assumed that the size is limited to (for example, three types or four types).
一方、図1に示すように、同一のDCIフォーマットについてCORESET毎に異なるサイズが想定される場合、当該ユーザ端末におけるDCIの検出(ブラインド復号)のための処理負荷が増大する恐れがある。
On the other hand, as shown in FIG. 1, when different sizes are assumed for each CORESET for the same DCI format, the processing load for DCI detection (blind decoding) in the user terminal may increase.
そこで、本発明者等は、DL BWP内の少なくとも一つのCORESETについてDCI内にTCIフィールドが存在するか否かを示す情報(例えば、tci-PresentInDCI)に基づいて、当該DL BWP内の全てのCORESETにおけるDCIの受信を制御することを着想した。
Therefore, the present inventors, based on information (for example, tci-PresentInDCI) indicating whether or not a TCI field exists in DCI for at least one CORESET in DL BWP, all CORESETs in the DL BWP. Inspired to control the reception of DCI in
以下、本実施の形態について、図面を参照して詳細に説明する。以下では、所定の帯域幅として単一の下りBWPを想定するが、これに限られない。本実施の形態は、例えば、一以上のDL BWP内に設定されるCORESETにおけるDCIの受信制御に適用されてもよい。また、以下では、DCIがTCIフィールドを含むか否かを示す情報が、「tci-PresentInDCI」であるものとするが、当該情報の名称はこれに限られない。
Hereinafter, the present embodiment will be described in detail with reference to the drawings. In the following, a single downlink BWP is assumed as the predetermined bandwidth, but the present invention is not limited to this. The present embodiment may be applied to DCI reception control in CORESET set in one or more DL BWPs, for example. In the following, it is assumed that information indicating whether DCI includes a TCI field is “tci-PresentInDCI”, but the name of the information is not limited to this.
(第1の態様)
第1の態様では、ユーザ端末は、所定の帯域幅(例えば、DL BWP)内の少なくとも一つのCORESETについてtci-PresentInDCI(DCIがTCIフィールドを含むか否かを示す情報)が有効化される場合、当該所定の帯域幅内の全てのCORESETで送信されるDCIがTCIフィールドを含むと想定する。前記当該所定の帯域幅内の全てのCORESETで送信されるDCIは、例えば、DCIフォーマット1_1であってもよい。 (First aspect)
In the first aspect, the user terminal enables tci-PresentInDCI (information indicating whether DCI includes a TCI field) for at least one CORESET within a predetermined bandwidth (for example, DL BWP). Suppose that the DCI transmitted in all CORESET within the predetermined bandwidth includes a TCI field. The DCI transmitted by all CORESET within the predetermined bandwidth may be, for example, the DCI format 1_1.
第1の態様では、ユーザ端末は、所定の帯域幅(例えば、DL BWP)内の少なくとも一つのCORESETについてtci-PresentInDCI(DCIがTCIフィールドを含むか否かを示す情報)が有効化される場合、当該所定の帯域幅内の全てのCORESETで送信されるDCIがTCIフィールドを含むと想定する。前記当該所定の帯域幅内の全てのCORESETで送信されるDCIは、例えば、DCIフォーマット1_1であってもよい。 (First aspect)
In the first aspect, the user terminal enables tci-PresentInDCI (information indicating whether DCI includes a TCI field) for at least one CORESET within a predetermined bandwidth (for example, DL BWP). Suppose that the DCI transmitted in all CORESET within the predetermined bandwidth includes a TCI field. The DCI transmitted by all CORESET within the predetermined bandwidth may be, for example, the DCI format 1_1.
具体的には、ユーザ端末は、tci-PresentInDCIが有効化されるCORESET内で送信されるDCI内のTCIフィールド値に基づいて、該DCIによりスケジューリングされるPDSCHの受信を制御してもよい。
Specifically, the user terminal may control the reception of the PDSCH scheduled by the DCI based on the TCI field value in the DCI transmitted in the CORESET in which tci-PresentInDCI is enabled.
また、tci-PresentInDCIが有効化されないCORESET内で送信される前記DCI内の前記TCIフィールド値は、予め定められた値(例えば、「0」又は「1」)であってもよい。
In addition, the TCI field value in the DCI transmitted in the CORESET in which tci-PresentInDCI is not validated may be a predetermined value (for example, “0” or “1”).
また、ユーザ端末は、tci-PresentInDCIが有効化されるCORESET毎にtci-PresentInDCIを受信してもよい。なお、tci-PresentInDCIが有効化されない(無効化される)CORESETについては、tci-PresentInDCIは受信されなくともよい。また、ユーザ端末は、上位レイヤシグナリングによりtci-PresentInDCIを受信してもよい。
Also, the user terminal may receive tci-PresentInDCI for each CORESET in which tci-PresentInDCI is validated. For CORESET in which tci-PresentInDCI is not validated (invalidated), tci-PresentInDCI may not be received. Further, the user terminal may receive tci-PresentInDCI by higher layer signaling.
ここで、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、RMSI(Remaining Minimum System Information)、OSI(Other System Information)の少なくとも一つなどであってもよい。
Here, the upper layer signaling may be, for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof. The broadcast information is, for example, at least one of a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), an RMSI (Remaining Minimum System Information), and an OSI (Other System Information). Also good.
図2は、第1の態様に係る各CORESETのPDCCHによって送信されるDCIの一例を示す図である。図2では、図1との相違点を中心に説明する。
FIG. 2 is a diagram illustrating an example of DCI transmitted by each CORESET PDCCH according to the first mode. In FIG. 2, the difference from FIG. 1 will be mainly described.
図2では、DL BWP内に設定される少なくとも一つのCORESET(ここでは、CORESET#0)についてtci-PresentInDCIが有効化される。このため、ユーザ端末は、DL BWP内に設定される全てのCORESET(ここでは、CORESET#0及び#1)で送信されるDCIがTCIフィールドを含むと想定する。
In FIG. 2, tci-PresentInDCI is validated for at least one CORESET (here, CORESET # 0) set in DL BWP. For this reason, the user terminal assumes that DCI transmitted in all CORESET (here, CORESET # 0 and # 1) set in the DL BWP includes a TCI field.
具体的には、図2に示すように、CORESET#0についてtci-PresentInDCIが有効化される場合、当該CORESET#0内のPDCCHによって送信されるDCIフォーマット1_1は、TCIフィールドを含んでもよい。
Specifically, as shown in FIG. 2, when tci-PresentInDCI is enabled for CORESET # 0, DCI format 1_1 transmitted by PDCCH in CORESET # 0 may include a TCI field.
また、CORESET#1についてtci-PresentInDCIが有効化されないが、CORESET#0のtci-PresentInDCIが有効化されるので、当該CORESET#1内のPDCCHによって送信されるDCIフォーマット1_1は、TCIフィールドを含んでもよい。
Also, tci-PresentInDCI is not activated for CORESET # 1, but tci-PresentInDCI of CORESET # 0 is validated, so that DCI format 1_1 transmitted by PDCCH in CORESET # 1 includes a TCI field. Good.
このように、図2では、DL BWP内に設定される少なくとも一つのCORESET(ここでは、CORESET#0)についてtci-PresentInDCIが有効化されると、当該CORESET#0で送信されるDCIだけでなく、tci-PresentInDCIが有効化されないCORESET#1で送信されるDCIも、TCIフィールドを含む。このため、DL BWP内のCORESET間で同一のDCIフォーマットのサイズが等しくなるので、ユーザ端末における当該DCIフォーマットの検出の処理負荷を軽減できる。
As described above, in FIG. 2, when tci-PresentInDCI is enabled for at least one CORESET (here, CORESET # 0) set in the DL BWP, not only the DCI transmitted by the CORESET # 0. , DCI transmitted in CORESET # 1 in which tci-PresentInDCI is not validated also includes a TCI field. For this reason, since the size of the same DCI format becomes equal between CORESET in DL BWP, the processing load of the detection of the said DCI format in a user terminal can be reduced.
図3は、第1の態様に係るTCIフィールド値の一例を示す図である。図3に示すように、tci-PresentInDCIが有効化されるCORESET(例えば、図2のCORESET#0)内で送信されるDCIは、上述のTCI状態(PDSCH用のQCL情報)を示すTCIフィールド値を含んでもよい。
FIG. 3 is a diagram illustrating an example of a TCI field value according to the first aspect. As shown in FIG. 3, DCI transmitted in CORESET (for example, CORESET # 0 in FIG. 2) in which tci-PresentInDCI is validated is a TCI field value indicating the above-mentioned TCI state (QCL information for PDSCH). May be included.
一方、tci-PresentInDCIが有効化されないCORESET(例えば、図2のCORESET#1)内で送信されるDCIのTCIフィールド値は、予め定められた値(例えば、「000」又は「001」)であってもよい。
On the other hand, the TCI field value of DCI transmitted in CORESET (for example, CORESET # 1 in FIG. 2) in which tci-PresentInDCI is not validated is a predetermined value (for example, “000” or “001”). May be.
当該予め定められた値が図3で所定のTCI状態を示す値と同一である場合(例えば、予め定められた値が「000」である場合、TCI状態#0を示す)、ユーザ端末は、tci-PresentInDCIが有効化であるCORESETであるか否かによって、DCI内のTCIフィールド値がダミーであるか否かを決定してもよい。
When the predetermined value is the same as the value indicating the predetermined TCI state in FIG. 3 (for example, when the predetermined value is “000”, the user terminal indicates TCI state # 0), Whether or not the TCI field value in the DCI is a dummy may be determined depending on whether or not tci-PresentInDCI is CORESET that is valid.
具体的には、ユーザ端末は、tci-PresentInDCIが有効化であるCORESET(例えば、図2のCORESET#0)内で送信されるDCIのTCIフィールド値に基づいて、当該DCIによりスケジューリングされるPDSCHのTCI状態を決定し、当該TCI状態に基づいてPDSCHの受信を制御してもよい。
Specifically, the user terminal determines the PDSCH scheduled by the DCI based on the TCI field value of the DCI transmitted in the CORESET (for example, CORESET # 0 in FIG. 2) with tci-PresentInDCI enabled. The TCI state may be determined, and PDSCH reception may be controlled based on the TCI state.
一方、ユーザ端末は、tci-PresentInDCIが有効化されないCORESET(例えば、図2のCORESET#1)内で送信されるDCIのTCIフィールド値を無視してもよい。
On the other hand, the user terminal may ignore the TCI field value of DCI transmitted in CORESET (for example, CORESET # 1 in FIG. 2) where tci-PresentInDCI is not activated.
以上のように、第1の態様では、DCI内にTCIフィールドが存在するか否かが制御される場合であっても、DCIのサイズを等しくできるので、ユーザ端末における当該DCIの検出に関する処理負荷を軽減できる。
As described above, in the first aspect, even when it is controlled whether or not the TCI field is present in the DCI, the DCI sizes can be made equal, so that the processing load related to the detection of the DCI at the user terminal Can be reduced.
(その他の態様)
上記第1の態様では、TCI状態に基づいてPDSCHの復調に利用する場合について説明するが、本実施の形態はこれに限られない。本実施の形態は、他の信号、他のチャネル又は他の情報(例えば、上り共有チャネルをスケジューリングするDCI(DCIフォーマット0_0、DCIフォーマット0_1)又は他のDCI)の受信処理について適用することができる。 (Other aspects)
In the first aspect described above, the case of using for demodulation of PDSCH based on the TCI state will be described, but the present embodiment is not limited to this. The present embodiment can be applied to reception processing of other signals, other channels, or other information (for example, DCI (DCI format 0_0, DCI format 0_1) or other DCI for scheduling an uplink shared channel). .
上記第1の態様では、TCI状態に基づいてPDSCHの復調に利用する場合について説明するが、本実施の形態はこれに限られない。本実施の形態は、他の信号、他のチャネル又は他の情報(例えば、上り共有チャネルをスケジューリングするDCI(DCIフォーマット0_0、DCIフォーマット0_1)又は他のDCI)の受信処理について適用することができる。 (Other aspects)
In the first aspect described above, the case of using for demodulation of PDSCH based on the TCI state will be described, but the present embodiment is not limited to this. The present embodiment can be applied to reception processing of other signals, other channels, or other information (for example, DCI (DCI format 0_0, DCI format 0_1) or other DCI for scheduling an uplink shared channel). .
また、QCLは、空間におけるQCL(spatially quasi co-located)と読み替えられてもよい。
Also, the QCL may be read as QCL (spatially quasi co-located) in space.
(無線通信システム)
以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記複数の態様の少なくとも一つの組み合わせを用いて通信が行われる。 (Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the present embodiment will be described. In this wireless communication system, communication is performed using at least one combination of the plurality of aspects.
以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記複数の態様の少なくとも一つの組み合わせを用いて通信が行われる。 (Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the present embodiment will be described. In this wireless communication system, communication is performed using at least one combination of the plurality of aspects.
図4は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
FIG. 4 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment. In the radio communication system 1, carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、5G+、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
The wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), 5G +, NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these Good.
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
The radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange | positioned at the macrocell C1 and each small cell C2. The arrangement, the number, and the like of each cell and user terminal 20 are not limited to the mode shown in the figure.
ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
The user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier). On the other hand, a carrier having a relatively high frequency band (for example, 3.5 GHz, 5 GHz, etc.) and a wide bandwidth may be used between the user terminal 20 and the radio base station 12, or The same carrier may be used. The configuration of the frequency band used by each radio base station is not limited to this.
また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
Further, the user terminal 20 can perform communication using time division duplex (TDD) and / or frequency division duplex (FDD) in each cell. In each cell (carrier), a single neurology may be applied, or a plurality of different neurology may be applied.
ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、フィルタリング処理、ウィンドウイング処理などの少なくとも1つを示してもよい。
Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, filtering process, windowing process, and the like.
無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
The wireless base station 11 and the wireless base station 12 (or between the two wireless base stations 12) are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
The radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30. The upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
The radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. The radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point. Hereinafter, when the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
In the radio communication system 1, as a radio access method, orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier. SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method. The uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
In the wireless communication system 1, downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Moreover, MIB (Master Information Block) is transmitted by PBCH.
下りL1/L2制御チャネルは、下り制御チャネル(PDCCH(Physical Downlink Control Channel)及び/又はEPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)の少なくとも一つを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
The downlink L1 / L2 control channel is a downlink control channel (PDCCH (Physical Downlink Control Channel) and / or EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel). Including at least one of Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメント、DCIフォーマット1_0、DCIフォーマット1_1と呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラント、DCIフォーマット0_0、DCIフォーマット0_1と呼ばれてもよい。
Note that scheduling information may be notified by DCI. For example, DCI that schedules DL data reception may be called DL assignment, DCI format 1_0, and DCI format 1_1. DCI that schedules UL data transmission is UL grant, DCI format 0_0, and DCI format 0_1. May be called.
無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクチャネル品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
In the wireless communication system 1, as an uplink channel, an uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) is used. User data, higher layer control information, etc. are transmitted by PUSCH. Further, downlink channel quality information (CQI: Channel Quality Indicator), delivery confirmation information, scheduling request (SR: Scheduling Request), and the like are transmitted by PUCCH. A random access preamble for establishing connection with the cell is transmitted by the PRACH.
無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
In the wireless communication system 1, as downlink reference signals, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DMRS: DeModulation Reference Signal), Positioning Reference Signal (PRS), etc. are transmitted. In the wireless communication system 1, a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like are transmitted as uplink reference signals. The DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
<無線基地局>
図5は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。 <Wireless base station>
FIG. 5 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment. Theradio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
図5は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。 <Wireless base station>
FIG. 5 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment. The
下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
In the baseband signal processing unit 104, with respect to user data, PDCP (Packet Data Convergence Protocol) layer processing, user data division / combination, RLC (Radio Link Control) retransmission control and other RLC layer transmission processing, MAC (Medium Access) Control) Retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing are performed and the transmission / reception unit 103. The downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
The transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal. The radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101. The transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. In addition, the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
On the other hand, for the upstream signal, the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102. The transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102. The transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
The baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106. The call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
The transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. The transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
なお、送受信部103は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成することができる。また、送受信アンテナ101は、例えばアレーアンテナにより構成することができる。また、送受信部103は、シングルBF、マルチBFを適用できるように構成されている。
The transmission / reception unit 103 may further include an analog beam forming unit that performs analog beam forming. The analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. can do. In addition, the transmission / reception antenna 101 can be configured by an array antenna, for example. Further, the transmission / reception unit 103 is configured to be able to apply single BF and multi-BF.
送受信部103は、送信ビームを用いて信号を送信してもよいし、受信ビームを用いて信号を受信してもよい。送受信部103は、制御部301によって決定された所定のビームを用いて信号を送信及び/又は受信してもよい。
The transmission / reception unit 103 may transmit a signal using a transmission beam or may receive a signal using a reception beam. The transmission / reception unit 103 may transmit and / or receive a signal using a predetermined beam determined by the control unit 301.
また、送受信部103は、ユーザ端末20に対して下り(DL)信号(DLデータ信号(下り共有チャネル)、DL制御信号(下り制御チャネル)、DL参照信号の少なくとも一つを含む)を送信し、当該ユーザ端末20からの上り(UL)信号(ULデータ信号、UL制御信号、UL参照信号の少なくとも一つを含む)を受信する。
Further, the transceiver 103 transmits a downlink (DL) signal (including at least one of a DL data signal (downlink shared channel), a DL control signal (downlink control channel), and a DL reference signal) to the user terminal 20. Then, an uplink (UL) signal (including at least one of a UL data signal, a UL control signal, and a UL reference signal) is received from the user terminal 20.
また、送受信部103は、下り制御チャネルを用いて、ユーザ端末20に対するDCIを送信する。また、送受信部103は、当該DCIがTCIフィールドを含むか否かを示す情報(例えば、tci-PresentInDCI)を送信してもよい。
Moreover, the transmission / reception part 103 transmits DCI with respect to the user terminal 20 using a downlink control channel. Further, the transmission / reception unit 103 may transmit information (for example, tci-PresentInDCI) indicating whether or not the DCI includes a TCI field.
図6は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
FIG. 6 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. In addition, in this example, the functional block of the characteristic part in this Embodiment is mainly shown, and it may be assumed that the radio base station 10 also has another functional block required for radio | wireless communication.
ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
The baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
The control unit (scheduler) 301 controls the entire radio base station 10. The control unit 301 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
The control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like. The control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。
The control unit 301 schedules system information, downlink data signals (for example, signals transmitted by PDSCH), downlink control signals (for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.) (for example, resource Control). In addition, the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal.
制御部301は、同期信号(例えば、PSS/SSS)、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
The control unit 301 controls scheduling such as a synchronization signal (for example, PSS / SSS) and a downlink reference signal (for example, CRS, CSI-RS, DMRS).
制御部301は、ベースバンド信号処理部104によるデジタルBF(例えば、プリコーディング)及び/又は送受信部103によるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。
The control unit 301 uses the digital BF (for example, precoding) by the baseband signal processing unit 104 and / or the analog BF (for example, phase rotation) by the transmission / reception unit 103 to form a transmission beam and / or a reception beam. May be performed.
また、制御部301は、複数の信号間における疑似コロケーション(QCL)の関係を制御し、QCLに関する情報(TCI状態)の設定、生成、送信の少なくとも一つを制御してもよい。
Also, the control unit 301 may control the relationship of pseudo collocation (QCL) among a plurality of signals, and may control at least one of setting, generation, and transmission of information (TCI state) related to QCL.
また、制御部301は、DCIの生成及び送信の少なくとも一つを制御する。具体的には、制御部301は、所定の帯域幅内に設定される少なくとも一つの制御リソースセットについてDCIがTCIフィールド(TCI用のフィールド)を含むか否かを示す情報(例えば、tci-PresentInDCI)が有効化されるか否かに基づいて、当該所定の帯域幅内の全ての制御リソースセットにおけるDCIの生成を制御する。
In addition, the control unit 301 controls at least one of generation and transmission of DCI. Specifically, the control unit 301 includes information (for example, tci-PresentInDCI) indicating whether DCI includes a TCI field (field for TCI) for at least one control resource set set within a predetermined bandwidth. ) Is controlled, the generation of DCI in all control resource sets within the predetermined bandwidth is controlled.
具体的には、制御部301は、前記所定の帯域幅内の少なくとも一つの制御リソースセットについて前記DCIがTCIフィールドを含むか否かを示す情報(例えば、tci-PresentInDCI)が有効化される場合、前記所定の帯域幅内の全ての制御リソースセットで送信される前記DCIに、前記TCIフィールドを含めてもよい。
Specifically, the control unit 301 activates information indicating whether the DCI includes a TCI field for at least one control resource set within the predetermined bandwidth (for example, tci-PresentInDCI). The TCI field may be included in the DCI transmitted in all control resource sets within the predetermined bandwidth.
また、制御部301は、前記情報(例えば、tci-PresentInDCI)が有効化される制御リソースセット内で送信される前記DCI内の前記TCIフィールドに、前記DCIによりスケジューリングされる下り共有チャネルのTCI状態(QCL情報)を示す値を設定してもよい。
In addition, the control unit 301 controls the TCI state of the downlink shared channel scheduled by the DCI in the TCI field in the DCI transmitted in the control resource set in which the information (for example, tci-PresentInDCI) is enabled. A value indicating (QCL information) may be set.
また、制御部301は、前記情報(例えば、tci-PresentInDCI)が有効化されない制御リソースセット内で送信される前記DCI内の前記TCIフィールドに、予め定められた値を設定してもよい。
Also, the control unit 301 may set a predetermined value in the TCI field in the DCI transmitted in a control resource set in which the information (for example, tci-PresentInDCI) is not validated.
また、制御部301は、当該DCIがTCIフィールドを含むか否かを示す情報(例えば、tci-PresentInDCI)の送信を制御してもよい。制御部301は、前記情報(例えば、tci-PresentInDCI)が有効化される制御リソースセット毎に前記情報の送信を制御してもよい。また、制御部301は、上位レイヤシグナリングにより前記情報の送信を制御してもよい。
Further, the control unit 301 may control transmission of information (for example, tci-PresentInDCI) indicating whether or not the DCI includes a TCI field. The control unit 301 may control transmission of the information for each control resource set in which the information (for example, tci-PresentInDCI) is validated. The control unit 301 may control transmission of the information by higher layer signaling.
送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
The transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303. The transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理などが行われる。
The transmission signal generation unit 302 generates, for example, a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301. The DL assignment and UL grant are both DCI and follow the DCI format. Further, the downlink data signal is subjected to coding processing, modulation processing, and the like according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
The mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103. The mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103. Here, the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20. The reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
The reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301. The reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
The measurement unit 305 performs measurement on the received signal. The measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
For example, the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal. The measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)). Signal strength (for example, RSSI (Received Signal Strength Indicator)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 301.
<ユーザ端末>
図7は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。 <User terminal>
FIG. 7 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment. Theuser terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205. The transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may be configured to include one or more.
図7は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。 <User terminal>
FIG. 7 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment. The
送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
The radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202. The transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202. The transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204. The transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. The transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
The baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal. The downlink user data is transferred to the application unit 205. The application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。
On the other hand, uplink user data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processing unit 204 performs transmission processing for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, etc. 203.
送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it. The radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成することができる。また、送受信アンテナ201は、例えばアレーアンテナにより構成することができる。また、送受信部203は、シングルBF、マルチBFを適用できるように構成されている。
Note that the transmission / reception unit 203 may further include an analog beam forming unit that performs analog beam forming. The analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. can do. Further, the transmission / reception antenna 201 can be configured by, for example, an array antenna. The transmission / reception unit 203 is configured to be able to apply single BF and multi-BF.
送受信部203は、送信ビームを用いて信号を送信してもよいし、受信ビームを用いて信号を受信してもよい。送受信部203は、制御部401によって決定された所定のビームを用いて信号を送信及び/又は受信してもよい。
The transmission / reception unit 203 may transmit a signal using a transmission beam, or may receive a signal using a reception beam. The transmission / reception unit 203 may transmit and / or receive a signal using a predetermined beam determined by the control unit 401.
また、送受信部203は、無線基地局10から下り(DL)信号(DLデータ信号(下り共有チャネル)、DL制御信号(下り制御チャネル)、DL参照信号の少なくとも一つを含む)を受信し、無線基地局10に対して上り(UL)信号(ULデータ信号、UL制御信号、UL参照信号の少なくとも一つを含む)を送信する。
The transceiver 203 receives a downlink (DL) signal (including at least one of a DL data signal (downlink shared channel), a DL control signal (downlink control channel), and a DL reference signal) from the radio base station 10, An uplink (UL) signal (including at least one of a UL data signal, a UL control signal, and a UL reference signal) is transmitted to the radio base station 10.
また、送受信部203は、下り制御チャネルを用いて、ユーザ端末20に対するDCIを受信する。また、送受信部203は、当該DCIがTCIフィールドを含むか否かを示す情報(例えば、tci-PresentInDCI)を受信してもよい。
Also, the transmission / reception unit 203 receives DCI for the user terminal 20 using the downlink control channel. Further, the transmission / reception unit 203 may receive information (for example, tci-PresentInDCI) indicating whether or not the DCI includes a TCI field.
図8は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
FIG. 8 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. In addition, in this example, the functional block of the characteristic part in this Embodiment is mainly shown, and it may be assumed that the user terminal 20 also has another functional block required for radio | wireless communication.
ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
The baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
The control unit 401 controls the entire user terminal 20. The control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
The control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like. The control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
The control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404. The control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of retransmission control for the downlink control signal and / or the downlink data signal.
制御部401は、ベースバンド信号処理部204によるデジタルBF(例えば、プリコーディング)及び/又は送受信部203によるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。
The control unit 401 uses the digital BF (for example, precoding) by the baseband signal processing unit 204 and / or the analog BF (for example, phase rotation) by the transmission / reception unit 203 to form a transmission beam and / or a reception beam. May be performed.
また、制御部401は、DCIの受信に関する処理(例えば、検出、ブラインド復号、復調、復号の少なくとも一つ)を制御する。具体的には、制御部401は、所定の帯域幅内に設定される少なくとも一つの制御リソースセットについてDCIがTCIフィールド(TCI用のフィールド)を含むか否かを示す情報(例えば、tci-PresentInDCI)が有効化されるか否かに基づいて、当該所定の帯域幅内の全ての制御リソースセットにおけるDCIの受信を制御する。
Also, the control unit 401 controls processing related to DCI reception (for example, at least one of detection, blind decoding, demodulation, and decoding). Specifically, the control unit 401 includes information (for example, tci-PresentInDCI) indicating whether or not the DCI includes a TCI field (a TCI field) for at least one control resource set set within a predetermined bandwidth. ) Is controlled, reception of DCI is controlled in all control resource sets within the predetermined bandwidth.
具体的には、制御部401は、前記所定の帯域幅内の少なくとも一つの制御リソースセットについて前記DCIがTCIフィールドを含むか否かを示す情報(例えば、tci-PresentInDCI)が有効化される場合、前記所定の帯域幅内の全ての制御リソースセットで送信される前記DCIが前記TCI用のフィールドを含むと想定してもよい。
Specifically, the control unit 401 activates information indicating whether the DCI includes a TCI field for at least one control resource set within the predetermined bandwidth (for example, tci-PresentInDCI). It may be assumed that the DCI transmitted in all control resource sets within the predetermined bandwidth includes a field for the TCI.
また、制御部401は、前記情報(例えば、tci-PresentInDCI)が有効化される制御リソースセット内で送信される前記DCI内の前記TCIフィールド値に基づいて、前記DCIによりスケジューリングされる下り共有チャネルの受信を制御してもよい。
In addition, the control unit 401 is configured to perform downlink shared channel scheduling by the DCI based on the TCI field value in the DCI transmitted in the control resource set in which the information (for example, tci-PresentInDCI) is enabled. May be controlled.
なお、前記情報(例えば、tci-PresentInDCI)が有効化されない制御リソースセット内で送信される前記DCI内の前記TCIフィールドには、予め定められた値が設定されてもよい。
Note that a predetermined value may be set in the TCI field in the DCI transmitted in the control resource set in which the information (for example, tci-PresentInDCI) is not validated.
また、制御部401は、当該DCIがTCIフィールドを含むか否かを示す情報(例えば、tci-PresentInDCI)の受信を制御してもよい。制御部401は、前記情報(例えば、tci-PresentInDCI)が有効化される制御リソースセット毎に前記情報の受信を制御してもよい。また、制御部401は、上位レイヤシグナリングにより前記情報の送信を制御してもよい。
Further, the control unit 401 may control reception of information (for example, tci-PresentInDCI) indicating whether or not the DCI includes a TCI field. The control unit 401 may control reception of the information for each control resource set in which the information (for example, tci-PresentInDCI) is validated. The control unit 401 may control transmission of the information by higher layer signaling.
送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
The transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403. The transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
The transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
The mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203. The mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。
The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203. Here, the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10. The reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure. Further, the reception signal processing unit 404 can constitute a reception unit according to the present disclosure.
受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
The reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401. The reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. In addition, the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
測定部405は、受信した信号に関する測定を実施する。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
The measurement unit 405 performs measurement on the received signal. The measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
For example, the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal. The measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 401.
<ハードウェア構成>
なお、本実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。 <Hardware configuration>
In addition, the block diagram used for description of this Embodiment has shown the block of the functional unit. These functional blocks (components) are realized by any combination of hardware and / or software. Further, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one device physically and / or logically coupled, or directly and / or two or more devices physically and / or logically separated. Alternatively, it may be realized indirectly by connecting (for example, using wired and / or wireless) and using these plural devices.
なお、本実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。 <Hardware configuration>
In addition, the block diagram used for description of this Embodiment has shown the block of the functional unit. These functional blocks (components) are realized by any combination of hardware and / or software. Further, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one device physically and / or logically coupled, or directly and / or two or more devices physically and / or logically separated. Alternatively, it may be realized indirectly by connecting (for example, using wired and / or wireless) and using these plural devices.
例えば、本実施の形態における無線基地局、ユーザ端末などは、本実施の形態の各態様の処理を行うコンピュータとして機能してもよい。図9は、本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
For example, the radio base station, the user terminal, and the like in this embodiment may function as a computer that performs the processing of each aspect of this embodiment. FIG. 9 is a diagram illustrating an example of the hardware configuration of the radio base station and the user terminal according to the present embodiment. The wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed by one or more processors simultaneously, sequentially, or using other methods. Note that the processor 1001 may be implemented by one or more chips.
無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。
Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like. For example, the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の本実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
Further, the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the present embodiment is used. For example, the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
The memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the present embodiment.
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
The storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by. The storage 1003 may be referred to as an auxiliary storage device.
通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
Also, the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
The radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
(変形例)
なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。 (Modification)
Note that the terms described in this specification and / or terms necessary for understanding this specification may be replaced with terms having the same or similar meaning. For example, the channel and / or symbol may be a signal (signaling). The signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard. Moreover, a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, etc.
なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。 (Modification)
Note that the terms described in this specification and / or terms necessary for understanding this specification may be replaced with terms having the same or similar meaning. For example, the channel and / or symbol may be a signal (signaling). The signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard. Moreover, a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, etc.
また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
Further, the radio frame may be configured by one or a plurality of periods (frames) in the time domain. Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe. Further, a subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
Furthermore, the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on the numerology. The slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot.
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol. For example, one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot is called a TTI. May be. That is, the subframe and / or TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. There may be. Note that a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
Here, TTI means, for example, a minimum time unit for scheduling in wireless communication. For example, in the LTE system, a radio base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI. The definition of TTI is not limited to this.
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
The TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, a time interval (for example, the number of symbols) in which a transport block, a code block, and / or a code word is actually mapped may be shorter than the TTI.
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
When one slot or one minislot is referred to as a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe. A TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
Note that a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
A resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Also, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks. One or more RBs include physical resource block (PRB), sub-carrier group (SCG), resource element group (REG), PRB pair, RB pair, etc. May be called.
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
Further, the resource block may be configured by one or a plurality of resource elements (RE: Resource Element). For example, 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
Note that the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and included in the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
In addition, the information, parameters, and the like described in this specification may be expressed using absolute values, may be expressed using relative values from a predetermined value, or other corresponding information may be used. May be represented. For example, the radio resource may be indicated by a predetermined index.
本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
In this specification, names used for parameters and the like are not limited names in any way. For example, various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various channels and information elements assigned to them. The name is not limited in any way.
本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
The information, signals, etc. described herein may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
Also, information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer. Information, signals, and the like may be input / output via a plurality of network nodes.
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
The input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
情報の通知は、本明細書において説明した態様/本実施の形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
The notification of information is not limited to the aspect described in this specification / this embodiment, and may be performed using other methods. For example, information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (master information block (MIB), system information block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
The physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. Further, the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like. The MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
In addition, notification of predetermined information (for example, notification of “being X”) is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
The determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false. The comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
Software, whether it is called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, code, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be interpreted broadly.
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
Also, software, instructions, information, etc. may be transmitted / received via a transmission medium. For example, software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
The terms “system” and “network” used in this specification are used interchangeably.
本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
In this specification, “base station (BS)”, “radio base station”, “eNB”, “gNB”, “cell”, “sector”, “cell group”, “carrier” and “component” The term “carrier” may be used interchangeably. A base station may also be called in terms such as a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a reception point, a femtocell, and a small cell.
基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
The base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: Remote Radio Head)) can also provide communication services. The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage.
本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。
In this specification, the terms “mobile station (MS)”, “user terminal”, “user equipment (UE)”, and “terminal” may be used interchangeably. .
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
A mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本開示の各態様/本実施の形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
Also, the radio base station in this specification may be read by the user terminal. For example, each aspect of the present disclosure / this embodiment may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device). Good. In this case, the user terminal 20 may have a function that the wireless base station 10 has. In addition, words such as “up” and “down” may be read as “side”. For example, the uplink channel may be read as a side channel.
同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
Similarly, a user terminal in this specification may be read by a radio base station. In this case, the wireless base station 10 may have a function that the user terminal 20 has.
本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
In this specification, the operation performed by the base station may be performed by the upper node in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
本明細書において説明した各態様/本実施の形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/本実施の形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
Each aspect / this embodiment described in this specification may be used alone, in combination, or may be switched according to execution. Further, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / this embodiment described in this specification may be changed as long as there is no contradiction. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
本明細書において説明した各態様/本実施の形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
Each aspect described in this specification / this embodiment includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system, 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access) ), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registration) (Trademark), systems using other appropriate wireless communication methods, and / or next-generation systems extended based on them may be applied.
本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
As used herein, the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
Any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
As used herein, the term “determining” may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc. In addition, “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be "determining". Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。
As used herein, the terms “connected”, “coupled”, or any variation thereof, is any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
As used herein, when two elements are connected, using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples, the radio frequency domain Can be considered “connected” or “coupled” to each other, such as with electromagnetic energy having wavelengths in the microwave and / or light (both visible and invisible) regions.
本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。
In the present specification, the term “A and B are different” may mean “A and B are different from each other”. Terms such as “leave” and “coupled” may be interpreted in a similar manner.
本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
Where the term “including”, “comprising”, and variations thereof are used in this specification or the claims, these terms are inclusive, as are the terms “comprising”. Intended to be Furthermore, the term “or” as used herein or in the claims is not intended to be an exclusive OR.
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した本実施の形態に限定されないということは明らかである。本発明は、請求の範囲の記載に基づいて定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本発明に対して何ら制限的な意味をもたらさない。
Although the present invention has been described in detail above, it will be apparent to those skilled in the art that the present invention is not limited to the present embodiment described in this specification. The present invention can be implemented as modifications and changes without departing from the spirit and scope of the present invention determined based on the description of the scope of claims. Accordingly, the description herein is for illustrative purposes and does not give any limiting meaning to the present invention.
Claims (6)
- 下り制御情報(DCI)を受信する受信部と、
所定の帯域幅内の少なくとも一つの制御リソースセットについて前記DCIが送信構成指示(TCI)用のフィールドを含むか否かを示す情報が有効化される場合、前記所定の帯域幅内の全ての制御リソースセットで送信される前記DCIが前記TCI用のフィールドを含むと想定する制御部と、
を具備することを特徴とするユーザ端末。 A receiving unit for receiving downlink control information (DCI);
When information indicating whether the DCI includes a field for transmission configuration indication (TCI) is enabled for at least one control resource set within a predetermined bandwidth, all controls within the predetermined bandwidth A controller that assumes that the DCI transmitted in the resource set includes a field for the TCI;
A user terminal comprising: - 前記制御部は、前記情報が有効化される制御リソースセット内で送信される前記DCI内の前記TCI用のフィールド値に基づいて、該DCIによりスケジューリングされる下り共有チャネルの受信を制御することを特徴とする請求項1に記載のユーザ端末。 The control unit controls reception of a downlink shared channel scheduled by the DCI based on a field value for the TCI in the DCI transmitted in a control resource set in which the information is validated. The user terminal according to claim 1, wherein:
- 前記情報が有効化されない制御リソースセット内で送信される前記DCI内の前記TCI用のフィールド値は、予め定められた値であることを特徴とする請求項1又は請求項2に記載のユーザ端末。 The user terminal according to claim 1 or 2, wherein a field value for the TCI in the DCI transmitted in a control resource set in which the information is not validated is a predetermined value. .
- 前記受信部は、前記情報が有効化される制御リソースセット毎に前記情報を受信することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。 4. The user terminal according to claim 1, wherein the receiving unit receives the information for each control resource set for which the information is validated.
- 前記受信部は、上位レイヤシグナリングにより前記情報を受信することを特徴とする請求項4に記載のユーザ端末。 The user terminal according to claim 4, wherein the receiving unit receives the information by higher layer signaling.
- 下り制御情報(DCI)を送信する送信部と、
所定の帯域幅内の少なくとも一つの制御リソースセットについて前記DCIが送信構成指示(TCI)用のフィールドを含むか否かを示す情報が有効化される場合、前記所定の帯域幅内の全ての制御リソースセットで送信される前記DCIに、前記TCI用のフィールドを含める制御部と、
を具備することを特徴とする無線基地局。 A transmission unit for transmitting downlink control information (DCI);
When information indicating whether the DCI includes a field for transmission configuration indication (TCI) is enabled for at least one control resource set within a predetermined bandwidth, all the controls within the predetermined bandwidth A control unit including a field for the TCI in the DCI transmitted by the resource set;
A radio base station comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/014365 WO2019193666A1 (en) | 2018-04-04 | 2018-04-04 | User terminal and wireless base station |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/014365 WO2019193666A1 (en) | 2018-04-04 | 2018-04-04 | User terminal and wireless base station |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019193666A1 true WO2019193666A1 (en) | 2019-10-10 |
Family
ID=68100179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/014365 WO2019193666A1 (en) | 2018-04-04 | 2018-04-04 | User terminal and wireless base station |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019193666A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114868418A (en) * | 2019-11-11 | 2022-08-05 | 株式会社Ntt都科摩 | Terminal and wireless communication method |
CN115299141A (en) * | 2020-03-23 | 2022-11-04 | 株式会社Ntt都科摩 | Terminal device |
CN115836560A (en) * | 2020-04-08 | 2023-03-21 | 株式会社Ntt都科摩 | Terminal, wireless communication method, and base station |
US11617195B2 (en) * | 2018-05-04 | 2023-03-28 | Asustek Computer Inc. | Method and apparatus for downlink control information (DCI) content processing considering active downlink (DL) bandwidth part (BWP) change in a wireless communication system |
EP4118912A4 (en) * | 2020-03-12 | 2023-12-06 | Lenovo (Beijing) Limited | Data transmissions using multiple transmission reception points |
-
2018
- 2018-04-04 WO PCT/JP2018/014365 patent/WO2019193666A1/en active Application Filing
Non-Patent Citations (2)
Title |
---|
"3GPP, 3GPP;TSGRAN;NR;Multiplexing and channel coding (Release 15", 3GPP TS 38.212, 7 December 2017 (2017-12-07), XP051391900 * |
NOKIA ET AL.: "Further proposals on QCL", 3GPP TSG RAN WG1 #92 R1-1803414, vol. 5. 1. 5, 2 March 2018 (2018-03-02), XP051398636 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11617195B2 (en) * | 2018-05-04 | 2023-03-28 | Asustek Computer Inc. | Method and apparatus for downlink control information (DCI) content processing considering active downlink (DL) bandwidth part (BWP) change in a wireless communication system |
CN114868418A (en) * | 2019-11-11 | 2022-08-05 | 株式会社Ntt都科摩 | Terminal and wireless communication method |
EP4118912A4 (en) * | 2020-03-12 | 2023-12-06 | Lenovo (Beijing) Limited | Data transmissions using multiple transmission reception points |
CN115299141A (en) * | 2020-03-23 | 2022-11-04 | 株式会社Ntt都科摩 | Terminal device |
CN115836560A (en) * | 2020-04-08 | 2023-03-21 | 株式会社Ntt都科摩 | Terminal, wireless communication method, and base station |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019215888A1 (en) | User terminal and wireless communication method | |
WO2019244218A1 (en) | User terminal | |
WO2019138499A1 (en) | User terminal and wireless communication method | |
JP7407256B2 (en) | Terminals, wireless communication methods, base stations and systems | |
WO2019244214A1 (en) | User terminal | |
WO2019138528A1 (en) | User terminal and wireless communication method | |
WO2019171518A1 (en) | User terminal and wireless communication method | |
WO2018198343A1 (en) | User terminal and wireless communication method | |
WO2020021725A1 (en) | User terminal and wireless communication method | |
WO2019049282A1 (en) | User terminal and radio communication method | |
WO2019087340A1 (en) | User equipment and wireless communication method | |
JPWO2019224871A1 (en) | User terminal and wireless communication method | |
WO2019171519A1 (en) | User terminal and wireless communication method | |
WO2020016934A1 (en) | User equipment | |
WO2019215794A1 (en) | User terminal and wireless communication method | |
WO2018193594A1 (en) | User terminal and wireless communication method | |
WO2020009144A1 (en) | Terminal and wireless communication method | |
WO2019138555A1 (en) | User terminal and wireless communication method | |
CN110463304B (en) | User terminal and wireless communication method | |
WO2019193666A1 (en) | User terminal and wireless base station | |
WO2019215895A1 (en) | User terminal | |
JPWO2018158923A1 (en) | User terminal and wireless communication method | |
WO2018229928A1 (en) | User terminal and wireless communication method | |
WO2018207369A1 (en) | User terminal and wireless communication method | |
WO2019193735A1 (en) | User terminal and wireless base station |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18913340 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18913340 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |