Nothing Special   »   [go: up one dir, main page]

WO2019187851A1 - 感光性転写材料、電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法 - Google Patents

感光性転写材料、電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法 Download PDF

Info

Publication number
WO2019187851A1
WO2019187851A1 PCT/JP2019/006758 JP2019006758W WO2019187851A1 WO 2019187851 A1 WO2019187851 A1 WO 2019187851A1 JP 2019006758 W JP2019006758 W JP 2019006758W WO 2019187851 A1 WO2019187851 A1 WO 2019187851A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive
photosensitive layer
transfer material
touch panel
mass
Prior art date
Application number
PCT/JP2019/006758
Other languages
English (en)
French (fr)
Inventor
達也 霜山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020510447A priority Critical patent/JP7048723B2/ja
Priority to CN201980014044.0A priority patent/CN111742261A/zh
Publication of WO2019187851A1 publication Critical patent/WO2019187851A1/ja
Priority to US16/984,469 priority patent/US20210011376A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/0275Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with dithiol or polysulfide compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present disclosure relates to a photosensitive transfer material, an electrode protective film, a laminate, a capacitive input device, and a method for manufacturing a touch panel.
  • the input device as described above includes a resistance film type and a capacitance type.
  • An electrostatic capacitance type input device has an advantage that a light-transmitting conductive film is simply formed on a single substrate.
  • electrode patterns are extended in directions intersecting with each other, and when a finger or the like comes in contact, the capacitance between the electrodes is detected to detect an input position.
  • Transparent resin layer on the side opposite to the surface where the finger is input for the purpose of protecting the wiring pattern (for example, metal wiring such as copper wire) gathered in the electrode pattern and frame part of the capacitive input device Is provided.
  • Patent Document 1 includes a first step of providing a photosensitive layer made of a photosensitive resin composition containing a binder polymer, a photopolymerizable compound, a photopolymerization initiator, and a thiol compound on a substrate; A second step of curing a predetermined portion of the photosensitive layer by irradiation with actinic rays; a third step of removing a portion other than the predetermined portion of the photosensitive layer to form a cured film pattern of the predetermined portion of the photosensitive layer; And a method for forming a cured resin film pattern, in which the photosensitive resin composition contains an oxime ester compound and / or a phosphine oxide compound as the photopolymerization initiator.
  • Patent Document 2 discloses [A] a copolymer having a polymer unit derived from an ethylenically unsaturated carboxylic acid and / or a polymer unit derived from an ethylenically unsaturated carboxylic acid anhydride, and [B] an ethylenically unsaturated bond. [C] a photopolymerization initiator and [D] the following formula (1) or (2):
  • R 1 is a methylene group or an alkylene group having 2 to 20 carbon atoms
  • R 2 is a methylene group or a linear or branched alkylene group having 2 to 6 carbon atoms
  • m is 1 to Represents an integer of 20
  • R is the same or different and represents —H, —OH or the following formula (2 ′)
  • R 3 is a methylene group or a linear or branched alkylene group having 2 to 6 carbon atoms, provided that at least one of four Rs is a group represented by the above formula (2 ′) And)
  • the photosensitive resin composition used for formation of the spacer for liquid crystal display elements characterized by containing the thiol compound represented by these is described.
  • Patent Document 3 contains a polymerizable compound having an ethylenically unsaturated bond as Component A, a polymerization initiator as Component B, a thiol compound as Component S, and an organic solvent as Component D.
  • A includes a urethane (meth) acrylate having 6 or more functional groups, the ratio of the urethane (meth) acrylate having 6 or more functional groups in the component A is 70 to 100% by mass, and the content of the component S is curable.
  • a curable composition characterized by 1 to 20% by mass relative to the total solid content of the composition is described.
  • the problem to be solved by one embodiment of the present invention is to provide a photosensitive transfer material having low tackiness and excellent bending resistance after curing.
  • Another problem to be solved by other embodiments of the present invention is to provide an electrode protective film, a laminate, a capacitive input device, and a touch panel manufacturing method using the photosensitive transfer material. is there.
  • Means for solving the above problems include the following aspects. ⁇ 1> It has a temporary support and a photosensitive layer, and the photosensitive layer contains a binder polymer, a radical polymerizable compound having an ethylenically unsaturated group, a photopolymerization initiator, and a thiol compound.
  • the content of the thiol compound is 5% by mass or more based on the total mass of the photosensitive layer, and the total content M RS of the radical polymerizable compound and the thiol compound with respect to the total mass of the photosensitive layer.
  • ⁇ 2> The photosensitive transfer material according to ⁇ 1>, wherein the photosensitive layer further contains a blocked isocyanate compound.
  • ⁇ 3> The photosensitive transfer material according to ⁇ 1> or ⁇ 2>, wherein the thiol compound is a bifunctional or higher functional thiol compound.
  • ⁇ 4> The photosensitive transfer material according to any one of ⁇ 1> or ⁇ 2>, wherein the thiol compound includes a compound represented by the following formula 1.
  • n an integer of 1 to 6
  • A represents an n-valent organic group having 1 to 15 carbon atoms, or a group represented by Formula 2 below, and each R 1 independently represents a carbon number. 1 to 15 divalent organic groups are represented. However, when A represents the group represented by the following formula 2, n represents 3.
  • R 2 to R 4 each independently represent a divalent organic group having 1 to 15 carbon atoms, and a wavy line represents a bonding position with an oxygen atom adjacent to A in Formula 1 above.
  • ⁇ 5> The value of the ratio of the content of M B of the binder polymer with respect to the total mass of the total content M RS and the photosensitive layer of the above radical polymerizable compound to the total weight of the photosensitive layer and the thiol compound,
  • the photosensitive transfer material according to any one of ⁇ 1> to ⁇ 4>, wherein M RS / M B 0.4 to 1.2.
  • ⁇ 6> The photosensitive transfer material according to any one of ⁇ 1> to ⁇ 5>, wherein the content of the thiol compound is 5% by mass to 40% by mass with respect to the total mass of the photosensitive layer.
  • ⁇ 7> The photosensitive transfer material according to any one of ⁇ 1> to ⁇ 6>, wherein the binder polymer includes a resin having a structural unit having a radical polymerizable group.
  • ⁇ 8> The photosensitive transfer material according to ⁇ 2>, wherein the blocked isocyanate compound has a radical polymerizable group.
  • ⁇ 9> The photosensitive transfer material according to any one of ⁇ 1> to ⁇ 8>, which is a photosensitive transfer material for forming a protective film in a touch panel.
  • An electrode protective film obtained by curing the photosensitive layer from which the temporary support has been removed from the photosensitive transfer material according to any one of ⁇ 1> to ⁇ 9>.
  • ⁇ 11> A laminate having the photosensitive layer after removing the temporary support from the photosensitive transfer material according to any one of ⁇ 1> to ⁇ 9> on a substrate.
  • ⁇ 12> A capacitive input device having the electrode protective film according to ⁇ 10> or the laminate according to ⁇ 11>.
  • ⁇ 13> Preparing a touch panel substrate having a structure in which at least one of the touch panel electrode and the touch panel wiring is disposed on the substrate, and disposing at least one of the touch panel electrode and the touch panel wiring of the touch panel substrate.
  • a photosensitive layer is formed on the surface on the side using the photosensitive transfer material according to any one of ⁇ 1> to ⁇ 9>, and the above-described touch panel substrate is formed on the touch panel substrate.
  • Pattern-exposing the photosensitive layer, and developing the pattern-exposed photosensitive layer to obtain a protective film for a touch panel that protects at least a part of at least one of the electrode for touch panel and the wiring for touch panel The manufacturing method of the touch panel containing this.
  • the manufacturing method of the electrode protective film, laminated body, electrostatic capacitance type input device, and touch panel using the said photosensitive transfer material can be provided.
  • the notation that does not indicate substitution and non-substitution includes those not having a substituent and those having a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • “mass%” and “wt%” are synonymous, and “part by mass” and “part by weight” are synonymous.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
  • the term “process” is included in the term as long as the intended purpose of the process is achieved, even when the process is not clearly distinguished from other processes.
  • “(meth) acrylic acid” is a concept including both acrylic acid and methacrylic acid
  • “(meth) acrylate” is a concept including both acrylate and methacrylate
  • the “) acryloyl group” is a concept including both an acryloyl group and a methacryloyl group.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) in the present disclosure use columns of TSKgel GMHxL, TSKgel G4000HxL, and TSKgel G2000HxL (both trade names manufactured by Tosoh Corporation) unless otherwise specified.
  • the molecular weight was detected by a gel permeation chromatography (GPC) analyzer using a solvent THF (tetrahydrofuran) and a differential refractometer and converted using polystyrene as a standard substance.
  • GPC gel permeation chromatography
  • the proportion of the structural unit in the resin represents a mass proportion unless otherwise specified.
  • the molecular weight when there is a molecular weight distribution represents a weight average molecular weight (Mw) unless otherwise specified.
  • a photosensitive transfer material includes a temporary support and a photosensitive layer, and the photosensitive layer includes a binder polymer, a radical polymerizable compound having an ethylenically unsaturated group, and a photopolymerization initiator.
  • the photosensitive transfer material according to the present disclosure can be suitably used as a photosensitive transfer material for a touch panel, can be more suitably used as a photosensitive transfer material for forming a protective film in a touch panel, and can be used for forming an electrode protective film in a touch panel. It can be particularly suitably used as a photosensitive transfer material.
  • M B 0.1 to 2.0
  • the hardness of the photosensitive layer and the adhesiveness of the surface can be within an appropriate range, and the tackiness can be lowered.
  • the photosensitive transfer material includes a photosensitive layer, and the photosensitive layer includes a binder polymer, a radical polymerizable compound having an ethylenically unsaturated group, a photopolymerization initiator, and a thiol compound.
  • the content of the thiol compound is 5% by mass or more with respect to the total mass of the photosensitive layer, and the total content M of the radical polymerizable compound and the thiol compound with respect to the total mass of the photosensitive layer.
  • the photosensitive layer contains a thiol compound.
  • the content of the thiol compound in the photosensitive layer is 5% by mass or more with respect to the total mass of the photosensitive layer. From the viewpoints of tackiness and bending resistance after curing, 5% by mass to 40% by mass. It is preferably 5% by mass to 35% by mass, more preferably 5.5% by mass to 30% by mass, and particularly preferably 6.5% by mass to 25% by mass.
  • a thiol compound may be used individually by 1 type, or may use 2 or more types together.
  • the content of M B of the binder polymer with respect to the total mass of the total content M RS and the photosensitive layer of the radical polymerizable compound to the total weight of the photosensitive layer and the thiol compound
  • the thiol compound a monofunctional thiol compound or a polyfunctional thiol compound is preferably used. Among these, from the viewpoint of hardness after curing, it is preferable to include a bifunctional or higher functional thiol compound (polyfunctional thiol compound), and more preferably a polyfunctional thiol compound.
  • the polyfunctional thiol compound means a compound having two or more mercapto groups (thiol groups) in the molecule.
  • a low molecular compound having a molecular weight of 100 or more is preferable, specifically, a molecular weight of 100 to 1,500 is more preferable, and 150 to 1,000 is still more preferable.
  • the number of functional groups of the polyfunctional thiol compound is preferably from 2 to 10 functions, more preferably from 2 to 8 functions, and even more preferably from 2 to 6 functions, from the viewpoint of hardness after curing.
  • the polyfunctional thiol compound is preferably an aliphatic polyfunctional thiol compound from the viewpoints of tackiness, bending resistance after curing, and hardness. Further, as the thiol compound, a secondary thiol compound is more preferable from the viewpoint of storage stability of the photosensitive transfer material.
  • polyfunctional thiol compound examples include trimethylolpropane tris (3-mercaptobutyrate), 1,4-bis (3-mercaptobutyryloxy) butane, pentaerythritol tetrakis (3-mercaptobutyrate), 1, 3,5-tris (3-mercaptobutyryloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, trimethylolethanetris (3-mercaptobutyrate), Tris [(3-mercaptopropionyloxy) ethyl] isocyanurate, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate) ), Dipentaerythrito Whyxakis (3-mercaptopropionate), ethylene glycol bisthiopropionate),
  • trimethylolpropane tris (3-mercaptobutyrate), 1,4-bis (3-mercaptobutyryloxy) butane, pentaerythritol tetrakis (3-mercaptobutyrate), 1,3,5-tris ( 3-mercaptobutyryloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, trimethylolethanetris (3-mercaptobutyrate), tris [(3-mercapto Propionyloxy) ethyl] isocyanurate, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate), and dipenta Erythritol hexakis ( - mercaptopropionate) are preferably mentioned.
  • the monofunctional thiol compound either an aliphatic thiol compound or an aromatic thiol compound can be used.
  • Specific examples of the monofunctional aliphatic thiol compound include 1-octanethiol, 1-dodecanethiol, ⁇ -mercaptopropionic acid, methyl-3-mercaptopropionate, 2-ethylhexyl-3-mercaptopropionate, Examples thereof include n-octyl-3-mercaptopropionate, methoxybutyl-3-mercaptopropionate, stearyl-3-mercaptopropionate.
  • Examples of the monofunctional aromatic thiol compound include benzene thiol, toluene thiol, xylene thiol and the like.
  • the thiol compound is preferably a thiol compound having an ester bond, more preferably a compound represented by the following formula 1, from the viewpoint of tackiness, bending resistance after curing, and hardness.
  • n represents an integer of 1 to 6
  • A represents an n-valent organic group having 1 to 15 carbon atoms, or a group represented by Formula 2 below, and each R 1 independently represents a carbon number. 1 to 15 divalent organic groups are represented.
  • R 2 to R 4 each independently represent a divalent organic group having 1 to 15 carbon atoms, and a wavy line represents a bonding position with an oxygen atom adjacent to A in Formula 1 above.
  • A represents the group represented by the following formula 2
  • n represents 3.
  • N in Formula 1 is preferably an integer of 2 to 6 from the viewpoint of hardness after curing.
  • a in Formula 1 is preferably an n-valent aliphatic group having 1 to 15 carbon atoms or a group represented by Formula 2 from the viewpoint of tackiness, bending resistance after curing, and hardness. More preferably an n-valent aliphatic group having 4 to 15 carbon atoms, or a group represented by the above formula 2, and an n-valent aliphatic group having 4 to 10 carbon atoms or the above formula 2.
  • the group represented by formula 2 is more preferred, and the group represented by formula 2 is particularly preferred.
  • a in Formula 1 is an n-valent group consisting of a hydrogen atom and a carbon atom, or a hydrogen atom, a carbon atom and an oxygen atom from the viewpoints of tackiness, bending resistance after curing, hardness and moisture permeability.
  • N-valent group more preferably an n-valent group consisting of a hydrogen atom and a carbon atom, and particularly preferably an n-valent aliphatic hydrocarbon group.
  • Each R 1 in Formula 1 independently tackiness, as well, from the viewpoint of bending resistance and hardness after curing, it is preferably an alkylene group having 2 to 4 carbon atoms is an alkylene group having 1 to 15 carbon atoms More preferred is an alkylene group having 3 carbon atoms, and particularly preferred is a 1,2-propylene group.
  • the alkylene group may be linear or branched.
  • R 2 to R 4 in Formula 2 are each independently preferably an aliphatic group having 2 to 15 carbon atoms from the viewpoint of tackiness, bending resistance after curing and hardness, and having 2 to 15 carbon atoms.
  • An alkylene group or a polyalkyleneoxyalkyl group having 3 to 15 carbon atoms is more preferable, an alkylene group having 2 to 15 carbon atoms is more preferable, and an ethylene group is particularly preferable.
  • the polyfunctional thiol compound is preferably a compound having two or more groups represented by the following formula S-1.
  • R 1S represents a hydrogen atom or an alkyl group
  • a 1S represents —CO— or —CH 2 —
  • a wavy line represents a bonding position with another structure.
  • the alkyl group in R 1S in the formula S-1 is a linear, branched or cyclic alkyl group, and the carbon number is preferably 1 to 16, more preferably 1 to 10.
  • Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, 2-ethylhexyl group and the like.
  • R 1S is particularly preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, or an isopropyl group, and most preferably a methyl group or an ethyl group.
  • polyfunctional thiol compound is particularly preferably a compound represented by the following formula S-2 having a plurality of groups represented by the above formula S-1.
  • R 1S each independently represents a hydrogen atom or an alkyl group
  • a 1S independently represents —CO— or —CH 2 —
  • L 1S represents an nS-valent linking group
  • nS represents an integer of 2 to 8. From the viewpoint of synthesis, it is preferred that all R 1S are the same group, and all A 1S are preferably the same group.
  • R 1S in formula S-2 has the same meaning as R 1S in formula S-1, and the preferred range is also the same.
  • nS is preferably an integer of 2 to 6.
  • L 1S which is an nS-valent linking group in Formula S-2 include — (CH 2 ) mS — (mS represents an integer of 2 to 6), — (CH 2 ) mS ⁇ (CH 2 ) a divalent linking group such as mS O ⁇ mT (CH 2 ) mS — (mS and mT each independently represents an integer of 2 to 6), a trimethylolpropane residue, — (CH 2 ) pS — (pS Represents an integer of 2 to 6.)
  • a trivalent linking group such as an isocyanuric ring having three, Examples thereof include a tetravalent linking group such as a pentaerythritol residue, and a pentavalent or hexavalent linking group such as a dipentaerythr
  • thiol compound examples include, but are not limited to, the following compounds.
  • the photosensitive layer in the photosensitive transfer material according to the present disclosure includes a binder polymer.
  • the binder polymer is preferably an alkali-soluble resin.
  • the acid value of the binder polymer is not particularly limited, but is preferably a binder polymer having an acid value of 60 mgKOH / g or more, and more preferably an alkali-soluble resin having an acid value of 60 mgKOH / g or more from the viewpoint of developability.
  • a carboxyl group-containing (meth) acrylic resin having an acid value of 60 mgKOH / g or more is particularly preferable.
  • the binder polymer has an acid value
  • the three-dimensional crosslinking density can be increased by thermally crosslinking with a compound capable of reacting with an acid by heating.
  • the carboxyl group of the carboxyl group-containing (meth) acrylic resin is dehydrated and hydrophobized, thereby contributing to improvement in wet heat resistance.
  • the carboxyl group-containing (meth) acrylic resin (hereinafter sometimes referred to as the specific polymer A) having an acid value of 60 mgKOH / g or more is not particularly limited as long as the above acid value is satisfied. It can be appropriately selected and used.
  • a binder polymer which is a carboxyl group-containing (meth) acrylic resin having an acid value of 60 mgKOH / g or more and paragraphs 0033- of JP2010-237589A
  • a carboxyl group-containing (meth) acrylic resin having an acid value of 60 mgKOH / g or more can be preferably used as the specific polymer A in the present embodiment.
  • the (meth) acrylic resin refers to a resin including at least one of a structural unit derived from (meth) acrylic acid and a structural unit derived from (meth) acrylic acid ester.
  • a preferable range of the copolymerization ratio of the monomer having a carboxyl group in the specific polymer A is 5% by mass to 50% by mass, and more preferably 5% by mass to 40% by mass with respect to the total mass of the specific polymer A. More preferably, it is in the range of 10% by mass to 30% by mass.
  • the specific polymer A may have a reactive group, and means for introducing the reactive group into the specific polymer A include a hydroxyl group, a carboxyl group, a primary amino group, a secondary amino group, an aceto Examples include a method of reacting an acetyl group, a sulfonic acid and the like with an epoxy compound, a blocked isocyanate, an isocyanate, a vinyl sulfone compound, an aldehyde compound, a methylol compound, a carboxylic acid anhydride, and the like.
  • the reactive group is preferably a radical polymerizable group, more preferably an ethylenically unsaturated group, and particularly preferably a (meth) acryloxy group.
  • a binder polymer especially the specific polymer A have a structural unit which has an aromatic ring from a viewpoint of the water vapor transmission rate and intensity
  • the monomer that forms the structural unit having an aromatic ring include styrene, tert-butoxystyrene, methylstyrene, ⁇ -methylstyrene, benzyl (meth) acrylate, and the like.
  • the structural unit having an aromatic ring it is preferable to contain at least one structural unit represented by the formula P-2 described later.
  • the structural unit having an aromatic ring is preferably a structural unit derived from a styrene compound.
  • the proportion of the structural unit having an aromatic ring is preferably 5% by mass to 90% by mass with respect to the total mass of the binder polymer, and 10% by mass to 70%. More preferably, it is more preferably 20% by mass to 50% by mass.
  • a binder polymer, especially the specific polymer A have a structural unit which has an aliphatic cyclic skeleton from a viewpoint of tack property and the intensity
  • Specific examples of the monomer that forms the structural unit having an aliphatic cyclic skeleton include dicyclopentanyl (meth) acrylate, cyclohexyl (meth) acrylate, and isobornyl (meth) acrylate.
  • Preferred examples of the aliphatic ring contained in the structural unit having an aliphatic cyclic skeleton include a dicyclopentane ring, a cyclohexane ring, an isoboron ring, and a tricyclodecane ring. Among these, a tricyclodecane ring is particularly preferable.
  • the proportion of the structural unit having an aliphatic cyclic skeleton is preferably 5% by mass to 90% by mass with respect to the total mass of the binder polymer. It is more preferably 10% by mass to 80% by mass, and further preferably 20% by mass to 70% by mass.
  • the binder polymer particularly the specific polymer A, preferably has a structural unit having a radical polymerizable group from the viewpoint of tackiness and strength after curing, and has a structural unit having an ethylenically unsaturated group. It is more preferable.
  • a (meth) acryl group is preferable, and a (meth) acryloxy group is more preferable.
  • the binder polymer contains a structural unit having an ethylenically unsaturated group, the proportion of the structural unit having an ethylenically unsaturated group is preferably 5% by mass to 70% by mass with respect to the total mass of the binder polymer. It is more preferably 10% by mass to 50% by mass, and further preferably 20% by mass to 40% by mass.
  • the specific polymer A the following compound A-1 or compound A-2 is preferable, and compound A-1 is more preferable.
  • the ratio of each structural unit shown below can be suitably changed according to the objective.
  • the proportion of each structural unit in A-1 and A-2 is a mass ratio.
  • Me represents a methyl group.
  • the acid value of the binder polymer used in the present disclosure is preferably 60 mgKOH / g to 200 mgKOH / g, more preferably 60 mgKOH / g to 150 mgKOH / g, and 60 mgKOH / g to 110 mgKOH / g. Further preferred.
  • the acid value means a value measured according to the method described in JIS K0070 (1992).
  • the transparent resin layer described later contains a (meth) acrylic resin having an acid group. And the adhesiveness between the transparent resin layer can be improved.
  • the weight average molecular weight of the specific polymer A is preferably 10,000 or more, and more preferably 20,000 to 100,000.
  • any film-forming resin other than the specific polymer can be appropriately selected according to the purpose and used.
  • a film having good surface hardness and heat resistance is preferable, an alkali-soluble resin is more preferable, and among the alkali-soluble resins, a known photosensitive siloxane is used.
  • a resin material etc. can be mentioned preferably.
  • the binder polymer used in the present disclosure preferably includes a polymer containing a structural unit having a carboxylic anhydride structure (hereinafter also referred to as a specific polymer B).
  • a specific polymer B By including the specific polymer B, it is more excellent in developability and strength after curing.
  • the carboxylic anhydride structure may be either a chain carboxylic anhydride structure or a cyclic carboxylic anhydride structure, but is preferably a cyclic carboxylic anhydride structure.
  • the ring having a cyclic carboxylic acid anhydride structure is preferably a 5- to 7-membered ring, more preferably a 5-membered ring or a 6-membered ring, and even more preferably a 5-membered ring.
  • the cyclic carboxylic acid anhydride structure may be condensed or combined with another ring structure to form a polycyclic structure, but preferably does not form a polycyclic structure.
  • the polycyclic structure is preferably a bicyclo structure or a spiro structure.
  • the number of other ring structures condensed or bonded to the cyclic carboxylic acid anhydride structure is preferably 1 to 5, and more preferably 1 to 3.
  • examples of other ring structures include a cyclic hydrocarbon group having 3 to 20 carbon atoms, a heterocyclic group having 3 to 20 carbon atoms, and the like. Although it does not specifically limit as a heterocyclic group, An aliphatic heterocyclic group and an aromatic heterocyclic group are mentioned.
  • heterocyclic group a 5-membered ring or a 6-membered ring is preferable, and a 5-membered ring is especially preferable.
  • the heterocyclic group is preferably a heterocyclic group containing at least one oxygen atom (for example, an oxolane ring, an oxane ring, a dioxane ring, etc.).
  • the structural unit having a carboxylic acid anhydride structure is a structural unit containing a divalent group in which two hydrogen atoms are removed from the compound represented by the following formula P-1 in the main chain, or the following formula P It is preferably a structural unit in which a monovalent group obtained by removing one hydrogen atom from a compound represented by -1 is bonded to the main chain directly or via a divalent linking group.
  • R A1a represents a substituent
  • n 1a R A1a s may be the same or different.
  • Z 1a represents a divalent group forming a ring containing —C ( ⁇ O) —O—C ( ⁇ O) —.
  • n 1a represents an integer of 0 or more.
  • Examples of the substituent represented by R A1a include the same substituents that the carboxylic anhydride structure described above may have, and the preferred ranges are also the same.
  • Z 1a is preferably an alkylene group having 2 to 4 carbon atoms, more preferably an alkylene group having 2 or 3 carbon atoms, and particularly preferably an alkylene group having 2 carbon atoms.
  • the partial structure represented by Formula P-1 may be condensed or combined with another ring structure to form a polycyclic structure, but preferably does not form a polycyclic structure.
  • Examples of the other ring structures herein include those similar to the above-described other ring structures that may be condensed or bonded to the carboxylic anhydride structure, and preferred ranges thereof are also the same.
  • n 1a represents an integer of 0 or more.
  • Z 1a represents an alkylene group having 2 to 4 carbon atoms
  • n 1a is preferably an integer of 0 to 4, more preferably an integer of 0 to 2, and still more preferably 0.
  • a plurality of R A1a may be the same or different.
  • a plurality of R A1a may combine with each other to form a ring, but preferably does not combine with each other to form a ring.
  • the structural unit having a carboxylic anhydride structure is preferably a structural unit derived from an unsaturated carboxylic anhydride, more preferably a structural unit derived from an unsaturated cyclic carboxylic anhydride. More preferably, it is a structural unit derived from an aliphatic cyclic carboxylic anhydride, more preferably a structural unit derived from maleic anhydride or itaconic anhydride, and a structural unit derived from maleic anhydride. Is particularly preferred.
  • Rx represents a hydrogen atom, a methyl group, a CH 2 OH group, or a CF 3 group
  • Me represents a methyl group
  • the structural unit having a carboxylic acid anhydride structure is preferably at least one of the structural units represented by any one of the above formulas a2-1 to a2-21. More preferably, it is one of the structural units represented by any one of a2-21.
  • the structural unit having a carboxylic acid anhydride structure is represented by the structural unit represented by the formula a2-1 and the formula a2-2 from the viewpoint of improving the sweat resistance of the cured film and reducing the development residue when used as a photosensitive transfer material. It is preferable to include at least one of the structural units represented, and it is more preferable to include the structural unit represented by Formula a2-1.
  • the proportion of structural units having a carboxylic acid anhydride structure in the specific polymer B exceeds 0 mol% with respect to the total amount of the specific polymer B, 60 It is preferably not more than mol%, more preferably 5 mol% to 40 mol%, still more preferably 10 mol% to 35 mol%.
  • the ratio of the “structural unit” is defined by a molar ratio, the “structural unit” is synonymous with the “monomer unit”.
  • the “monomer unit” may be modified after polymerization by a polymer reaction or the like. The same applies to the following.
  • the specific polymer B preferably contains at least one structural unit represented by the following formula P-2. This further improves the hydrophobicity and strength of the formed cured film.
  • R P1 represents a hydroxyl group, an alkyl group, an aryl group, an alkoxy group, a carboxy group, or a halogen atom
  • R P2 represents a hydrogen atom, an alkyl group, or an aryl group
  • nP represents 0 to 5 Represents an integer.
  • nP is an integer of 2 or more, two or more R P1 may be the same or different.
  • R P1 is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a carboxy group, an F atom, a Cl atom, a Br atom, or an I atom.
  • an alkyl group having 1 to 4 carbon atoms, a phenyl group, an alkoxy group having 1 to 4 carbon atoms, a Cl atom, or a Br atom is more preferable.
  • R P2 is preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, A hydrogen atom, a methyl group, or an ethyl group is more preferable, and a hydrogen atom is particularly preferable.
  • NP is preferably an integer of 0 to 3, more preferably 0 or 1, and still more preferably 0.
  • the structural unit represented by Formula P-2 is preferably a structural unit derived from a styrene compound.
  • the styrene compound include styrene, p-methylstyrene, ⁇ -methylstyrene, ⁇ , p-dimethylstyrene, p-ethylstyrene, pt-butylstyrene, 1,1-diphenylethylene, and the like. Methyl styrene is preferred, and styrene is particularly preferred.
  • the styrene compound for forming the structural unit represented by Formula P-2 may be only one type or two or more types.
  • the proportion of the structural unit represented by the formula P-2 in the specific polymer B (when there are two or more types, the total proportion is below) The same)) is preferably 5 mol% to 90 mol%, more preferably 30 mol% to 90 mol%, and more preferably 40 mol% to 90 mol% with respect to the total amount of the specific polymer B. More preferably.
  • the specific polymer B may contain at least one other structural unit other than the structural unit having a carboxylic anhydride structure and the structural unit represented by Formula P-2.
  • the other structural units preferably do not contain an acid group.
  • the structural unit derived from a monofunctional ethylenically unsaturated compound is mentioned.
  • the monofunctional ethylenically unsaturated compound known compounds can be used without any particular limitation.
  • the proportion of other structural units in the specific polymer B is preferably 10 mol% or more and less than 100 mol% with respect to the total amount of the specific polymer B, and 50 mol % Or more and less than 100% by mass.
  • the weight average molecular weight of the binder polymer is not particularly limited but is preferably more than 3,000, more preferably more than 3,000 and not more than 60,000, and more preferably 5,000 to 50,000. Further preferred.
  • a binder polymer may be used individually by 1 type, or may contain 2 or more types.
  • the content of the binder polymer in the photosensitive layer is preferably 10% by mass to 90% by mass and more than 20% by mass with respect to the total mass of the photosensitive layer from the viewpoint of photosensitivity and the strength of the cured film. More preferably, it is 80 mass% or less, More preferably, it is 30 mass% or more and 70 mass% or less.
  • the photosensitive layer in the photosensitive transfer material according to the present disclosure contains a radical polymerizable compound having an ethylenically unsaturated group (hereinafter also simply referred to as “ethylenically unsaturated compound”).
  • the radically polymerizable compound having an ethylenically unsaturated group is a component that contributes to the photosensitivity (that is, photocurability) of the photosensitive layer and the strength of the cured film.
  • An ethylenically unsaturated compound is a compound having one or more ethylenically unsaturated groups.
  • the photosensitive layer preferably contains a bifunctional or higher functional ethylenically unsaturated compound as the ethylenically unsaturated compound.
  • the bifunctional or higher functional ethylenically unsaturated compound means a compound having two or more ethylenically unsaturated groups in one molecule.
  • a (meth) acryloyl group is more preferable.
  • a (meth) acrylate compound is preferable.
  • the photosensitive layer is composed of a bifunctional ethylenically unsaturated compound (preferably a bifunctional (meth) acrylate compound) and a trifunctional or higher functional ethylenically unsaturated compound (preferably from the viewpoint of curability after curing. (Trifunctional or higher functional (meth) acrylate compound).
  • bifunctional ethylenically unsaturated compound there is no restriction
  • the bifunctional ethylenically unsaturated compound include tricyclodecane dimethanol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, and 1,6-hexane. Examples include diol di (meth) acrylate.
  • bifunctional ethylenically unsaturated compound examples include tricyclodecane dimethanol diacrylate (A-DCP, Shin-Nakamura Chemical Co., Ltd.), tricyclodecane dimethanol dimethacrylate (DCP, Shin Nakamura Chemical Co., Ltd.), 1,9-nonanediol diacrylate (A-NOD-N, Shin-Nakamura Chemical Co., Ltd.), 1,6-hexanediol diacrylate (A-HD-N, Shin Nakamura Chemical Co., Ltd.).
  • A-DCP tricyclodecane dimethanol diacrylate
  • DCP Shin Nakamura Chemical Co., Ltd.
  • DCP Shin Nakamura Chemical Co., Ltd.
  • 1,9-nonanediol diacrylate A-NOD-N, Shin-Nakamura Chemical Co., Ltd.
  • 1,6-hexanediol diacrylate A-HD-N, Shin Nakamura Chemical Co.
  • the trifunctional or higher functional ethylenically unsaturated compound is not particularly limited and may be appropriately selected from known compounds.
  • Examples of the trifunctional or higher functional ethylenically unsaturated compound include dipentaerythritol (tri / tetra / penta / hexa) (meth) acrylate, pentaerythritol (tri / tetra) (meth) acrylate, and trimethylolpropane tri (meth).
  • Examples include acrylate, ditrimethylolpropane tetra (meth) acrylate, isocyanuric acid (meth) acrylate, and (meth) acrylate compounds having a glycerin tri (meth) acrylate skeleton.
  • (tri / tetra / penta / hexa) (meth) acrylate is a concept including tri (meth) acrylate, tetra (meth) acrylate, penta (meth) acrylate, and hexa (meth) acrylate.
  • (Tri / tetra) (meth) acrylate” is a concept including tri (meth) acrylate and tetra (meth) acrylate.
  • Examples of the ethylenically unsaturated compound include a caprolactone-modified compound of (meth) acrylate compound (KAYARAD (registered trademark) DPCA-20 manufactured by Nippon Kayaku Co., Ltd., A-9300-1CL manufactured by Shin-Nakamura Chemical Co., Ltd.), Alkylene oxide modified compound of (meth) acrylate compound (KAYARAD RP-1040 manufactured by Nippon Kayaku Co., Ltd., ATM-35E, A-9300 manufactured by Shin-Nakamura Chemical Co., Ltd., EBECRYL (registered trademark) 135 manufactured by Daicel Ornex Co., Ltd. Etc.), and ethoxylated glycerin triacrylate (A-GLY-9E manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • KAYARAD registered trademark
  • DPCA-20 Alkylene oxide modified compound of (meth) acrylate compound
  • ATM-35E Alkylene oxide modified compound of (meth)
  • Examples of the ethylenically unsaturated compound include urethane (meth) acrylate compounds (preferably trifunctional or higher functional urethane (meth) acrylate compounds).
  • Examples of the tri- or more functional urethane (meth) acrylate compound include 8UX-015A (manufactured by Taisei Fine Chemical Co., Ltd.), UA-32P (manufactured by Shin-Nakamura Chemical Co., Ltd.), UA -1100H (manufactured by Shin-Nakamura Chemical Co., Ltd.) and the like.
  • an ethylenically unsaturated compound contains the ethylenically unsaturated compound which has an acid group from a viewpoint of developability improvement.
  • the acid group include a phosphoric acid group, a sulfonic acid group, and a carboxy group, and a carboxy group is preferable.
  • PETA pentaerythritol tri- and tetraacrylate
  • DPHA dipentaerythritol penta- and hexaacrylate
  • Etc Etc.
  • the ethylenically unsaturated compound having an acid group is preferably at least one selected from the group consisting of a bifunctional or higher functional ethylenically unsaturated compound containing a carboxy group and a carboxylic acid anhydride thereof. Thereby, developability and strength of the cured film are increased.
  • the bifunctional or higher functional ethylenically unsaturated compound containing a carboxy group is not particularly limited and can be appropriately selected from known compounds.
  • Examples of the bifunctional or higher functional ethylenically unsaturated compound containing a carboxy group include Aronix (registered trademark) TO-2349 (manufactured by Toagosei Co., Ltd.), Aronix M-520 (manufactured by Toagosei Co., Ltd.), or Aronix M-510 (manufactured by Toagosei Co., Ltd.) can be preferably used.
  • the ethylenically unsaturated compound having an acid group is also preferably a polymerizable compound having an acid group described in paragraphs 0025 to 0030 of JP-A No. 2004-239942. The contents of this publication are incorporated herein.
  • the weight average molecular weight (Mw) of the ethylenically unsaturated compound used in the present disclosure is preferably 200 to 3,000, more preferably 250 to 2,600, still more preferably 280 to 2,200, and 300 to 2, 200 is particularly preferred.
  • Mw weight average molecular weight
  • the ratio of the content of ethylenically unsaturated compounds having a molecular weight of 300 or less is relative to all the ethylenically unsaturated compounds contained in the photosensitive layer. 30 mass% or less is preferable, 25 mass% or less is more preferable, and 20 mass% or less is still more preferable.
  • An ethylenically unsaturated compound may be used individually by 1 type, or may use 2 or more types together.
  • the content of the ethylenically unsaturated compound in the photosensitive layer is preferably 1% by mass to 70% by mass, more preferably 5% by mass to 70% by mass, with respect to the total mass of the photosensitive layer. 70% by mass is more preferable, 20% by mass to 60% by mass is particularly preferable, and 20% by mass to 50% by mass is most preferable.
  • the content of the bifunctional ethylenically unsaturated compound is included in the photosensitive layer.
  • the content is preferably 10% by mass to 90% by mass, more preferably 20% by mass to 85% by mass, and still more preferably 30% by mass to 80% by mass with respect to all the ethylenically unsaturated compounds.
  • the content of the trifunctional or higher functional ethylenically unsaturated compound is preferably 10% by mass to 90% by mass, and preferably 15% by mass to all the ethylenically unsaturated compounds contained in the photosensitive layer.
  • the content of the bifunctional or higher ethylenically unsaturated compound is 40% by mass or more and 100% with respect to the total content of the bifunctional ethylenically unsaturated compound and the trifunctional or higher ethylenically unsaturated compound. It is preferably less than mass%, more preferably 40 mass% to 90 mass%, further preferably 50 mass% to 80 mass%, and particularly preferably 50 mass% to 70 mass%. .
  • the photosensitive layer may further contain a monofunctional ethylenically unsaturated compound.
  • the bifunctional or higher functional ethylenically unsaturated compound is the main component in the ethylenically unsaturated compound contained in the photosensitive layer. It is preferable.
  • the content of the bifunctional or higher functional ethylenically unsaturated compound depends on the ethylenic unsaturated content contained in the photosensitive layer.
  • the content is preferably 60% by mass to 100% by mass, more preferably 80% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass with respect to the total content of saturated compounds.
  • the photosensitive layer contains an ethylenically unsaturated compound having an acid group (preferably a bifunctional or higher functional ethylenically unsaturated compound containing a carboxy group or a carboxylic acid anhydride thereof), an acid group is added.
  • the content of the ethylenically unsaturated compound is preferably 1% by mass to 50% by mass, more preferably 1% by mass to 20% by mass, and still more preferably 1% by mass to 10% by mass with respect to the photosensitive layer.
  • the photosensitive layer in the photosensitive transfer material according to the present disclosure contains a photopolymerization initiator.
  • a photoinitiator A well-known photoinitiator can be used.
  • the photopolymerization initiator examples include a photopolymerization initiator having an oxime ester structure (hereinafter also referred to as “oxime-based photopolymerization initiator”) and a photopolymerization initiator having an ⁇ -aminoalkylphenone structure (hereinafter referred to as “ ⁇ - An aminoalkylphenone photopolymerization initiator ”), a photopolymerization initiator having an ⁇ -hydroxyalkylphenone structure (hereinafter also referred to as“ ⁇ -hydroxyalkylphenone polymerization initiator ”), an acylphosphine oxide structure.
  • oxime-based photopolymerization initiator a photopolymerization initiator having an oxime ester structure
  • ⁇ - An aminoalkylphenone photopolymerization initiator a photopolymerization initiator having an ⁇ -aminoalkylphenone structure
  • ⁇ - An aminoalkylphenone photopolymerization initiator a
  • N-phenylglycine photopolymerization initiator photopolymerization initiator having an N-phenylglycine structure
  • N-phenylglycine photopolymerization initiator photopolymerization initiator having an N-phenylglycine structure
  • the photopolymerization initiator is at least selected from the group consisting of an oxime photopolymerization initiator, an ⁇ -aminoalkylphenone photopolymerization initiator, an ⁇ -hydroxyalkylphenone polymerization initiator, and an N-phenylglycine photopolymerization initiator.
  • 1 type is preferably included, and more preferably at least one selected from the group consisting of an oxime photopolymerization initiator, an ⁇ -aminoalkylphenone photopolymerization initiator, and an N-phenylglycine photopolymerization initiator. .
  • photopolymerization initiator for example, polymerization initiators described in paragraphs 0031 to 0042 of JP2011-95716A and paragraphs 0064 to 0081 of JP2015-014783A may be used.
  • photopolymerization initiators include 1- [4- (phenylthio)]-1,2-octanedione-2- (O-benzoyloxime) (trade name: IRGACURE (registered trademark) OXE-01, BASF Corporation 1)-[9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] ethanone-1- (O-acetyloxime) (trade name: IRGACURE OXE-02, manufactured by BASF) 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone (trade name: IRGACURE 379EG, manufactured by BASF), 2- Methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one (trade name: IRGACURE 907, manufactured by BASF), 2- Droxy-1- ⁇ 4- [4- (2-hydroxy) [
  • a photoinitiator may be used individually by 1 type, or may use 2 or more types together. Although there is no restriction
  • the photosensitive layer in the photosensitive transfer material according to the present disclosure preferably further contains a blocked isocyanate compound from the viewpoint of hardness after curing.
  • the blocked isocyanate compound means “a compound having a structure in which an isocyanate group of an isocyanate is protected (masked) with a blocking agent”.
  • the dissociation temperature of the blocked isocyanate compound is preferably 100 ° C. to 160 ° C., more preferably 130 ° C. to 150 ° C.
  • the dissociation temperature of the blocked isocyanate in the present specification refers to “the deprotection reaction of the blocked isocyanate when measured by DSC (Differential scanning calorimetry) analysis using a differential scanning calorimeter (DSC6200, manufactured by Seiko Instruments Inc.)”. The temperature of the accompanying endothermic peak.
  • Examples of the blocking agent having a dissociation temperature of 100 ° C. to 160 ° C. include pyrazole compounds (3,5-dimethylpyrazole, 3-methylpyrazole, 4-bromo-3,5-dimethylpyrazole, 4-nitro-3,5-dimethyl Pyrazole, etc.), active methylene compounds (malonic acid diesters (dimethyl malonate, diethyl malonate, di-n-butyl malonate, di-2-ethylhexyl malonate), etc.), triazole compounds (such as 1,2,4-triazole), And oxime compounds (formal oxime, acetald oxime, acetoxime, methyl ethyl ketoxime, cyclohexanone oxime and the like having a structure represented by —C ( ⁇ N—OH) — in the molecule).
  • an oxime compound or a pyrazole compound is preferable, and an oxime compound having a structure represented by
  • the blocked isocyanate compound preferably has an isocyanurate structure from the viewpoint of improving the brittleness of the film and improving the adhesion with the transfer target.
  • a blocked isocyanate compound having an isocyanurate structure can be prepared, for example, by protecting hexamethylene diisocyanate by isocyanuration.
  • a compound having an oxime structure using an oxime compound as a blocking agent is more likely to have a dissociation temperature within a preferable range than a compound having no oxime structure, and a viewpoint of reducing development residue. To preferred.
  • the blocked isocyanate compound used in the present disclosure preferably has a radical polymerizable group from the viewpoint of hardness after curing.
  • a radical polymerizable group from the viewpoint of hardness after curing.
  • a well-known polymeric group can be used, for example, ethylenically unsaturated groups, such as (meth) acryloxy group, (meth) acrylamide group, styryl group, glycidyl group, etc. And a group having an epoxy group.
  • the polymerizable group is preferably an ethylenically unsaturated group, more preferably a (meth) acryloxy group, from the viewpoint of the surface shape of the cured film obtained, the development speed, and the reactivity.
  • blocked isocyanate compound used in the present disclosure a commercially available blocked isocyanate compound can also be exemplified.
  • a commercially available blocked isocyanate compound can also be exemplified.
  • Karenz AOI-BM, Karenz MOI-BM, Karenz, Karenz MOI-BP (all manufactured by Showa Denko KK), block type Duranate series (manufactured by Asahi Kasei Chemicals Co., Ltd.) and the like can be mentioned.
  • the blocked isocyanate compound used in the present disclosure preferably has a molecular weight of 200 to 3,000, more preferably 250 to 2,600, and particularly preferably 280 to 2,200.
  • a block isocyanate compound may be used individually by 1 type, or may use 2 or more types together.
  • the content of the blocked isocyanate compound is preferably 1% by mass to 50% by mass and more preferably 5% by mass to 30% by mass with respect to the total mass of the photosensitive layer.
  • the photosensitive layer may contain a surfactant.
  • a surfactant for example, surfactants described in paragraph 0017 of Japanese Patent No. 4502784 and paragraphs 0060 to 0071 of JP-A-2009-237362, known fluorosurfactants and the like can be used.
  • a fluorine-based surfactant is preferable.
  • MegaFac (registered trademark) F551 manufactured by DIC Corporation
  • the content of the surfactant is preferably 0.01% by mass to 3% by mass, more preferably 0.05% by mass to the total mass of the photosensitive layer. 1% by mass is more preferable, and 0.1% by mass to 0.8% by mass is even more preferable.
  • the photosensitive layer may contain at least one polymerization inhibitor.
  • a polymerization inhibitor for example, a thermal polymerization inhibitor (also referred to as a polymerization inhibitor) described in paragraph 0018 of Japanese Patent No. 4502784 can be used.
  • phenothiazine, phenoxazine or 4-methoxyphenol can be preferably used.
  • the content of the polymerization inhibitor is preferably 0.01% by mass to 3% by mass with respect to the total mass of the photosensitive layer, and 0.01% by mass to 1% by mass is more preferable, and 0.01% by mass to 0.8% by mass is even more preferable.
  • the photosensitive layer preferably further contains a metal oxidation inhibitor.
  • the metal oxidation inhibitor is preferably a compound having a heteroaromatic ring having a nitrogen atom.
  • the compound having a heteroaromatic ring having a nitrogen atom may have a substituent.
  • the heteroaromatic ring having a nitrogen atom is preferably an imidazole ring, a triazole ring, a tetrazole ring, a thiazole ring, a thiadiazole ring, or a condensed ring of any one of these with another aromatic ring, an imidazole ring, a triazole ring, More preferably, it is a tetrazole ring or a condensed ring of any one of these and another aromatic ring.
  • the “other aromatic ring” forming the condensed ring may be a monocyclic ring or a heterocyclic ring, but is preferably a monocyclic ring, more preferably a benzene ring or a naphthalene ring, and even more preferably a benzene ring.
  • Specific examples include imidazole, benzimidazole, triazole, benzotriazole, tetrazole, and mercaptothiadiazole.
  • the content of the metal oxidation inhibitor is preferably 0.01% by mass to 20% by mass, and preferably 0.05% by mass to the total mass of the photosensitive layer. 10 mass% is more preferable, and 0.1 mass% to 5 mass% is still more preferable.
  • the photosensitive layer preferably further contains a hydrogen donating compound.
  • the hydrogen-donating compound has functions such as further improving the sensitivity of the photopolymerization initiator to actinic rays or suppressing polymerization inhibition of the polymerizable compound by oxygen.
  • Examples of such hydrogen donating compounds include amines such as M.I. R. Sander et al., “Journal of Polymer Society”, Volume 10, 3173 (1972), Japanese Patent Publication No. 44-20189, Japanese Patent Publication No. 51-82102, Japanese Patent Publication No. 52-134692, Japanese Patent Publication No. 59-138205. No.
  • hydrogen-donating compound examples include amino acid compounds (eg, N-phenylglycine), organometallic compounds described in JP-B-48-42965 (eg, tributyltin acetate), JP-B-55. -34414, a hydrogen donor described in JP-A-6-308727, and a sulfur compound (eg, trithiane).
  • amino acid compounds eg, N-phenylglycine
  • organometallic compounds described in JP-B-48-42965 eg, tributyltin acetate
  • JP-B-55. -34414 examples of the hydrogen-donating compound
  • a sulfur compound eg, trithiane
  • the content of these hydrogen-donating compounds is preferably in the range of 0.1% by mass or more and 30% by mass or less with respect to the total mass of the photosensitive layer, from the viewpoint of improving the curing rate due to the balance between polymerization growth rate and chain transfer.
  • the range of 0.1% by mass to 25% by mass is more preferable, and the range of 0.5% by mass to 20% by mass is more preferable.
  • the photosensitive layer may contain other components other than the components described above.
  • other components include thermal polymerization inhibitors described in paragraph 0018 of Japanese Patent No. 4502784, other additives described in paragraphs 0058 to 0071 of JP 2000-310706 A, and the like.
  • the said photosensitive layer may contain at least 1 sort (s) of particle
  • grains for example, metal oxide particle
  • grains for example, metal oxide particle
  • Metals of the metal oxide particles include semimetals such as B, Si, Ge, As, Sb, and Te.
  • the average primary particle diameter of the particles is preferably 1 to 200 nm, more preferably 3 to 80 nm. The average primary particle size is calculated by measuring the particle size of 200 arbitrary particles using an electron microscope and arithmetically averaging the measurement results. When the particle shape is not spherical, the longest side is the particle diameter.
  • the content of the particles is preferably 0% by mass to 35% by mass, more preferably 0% by mass to 10% by mass, still more preferably 0% by mass to 5% by mass, based on the total mass of the photosensitive layer.
  • the content is more preferably 1% by mass to 1% by mass, and particularly preferably 0% by mass (that is, the photosensitive layer does not contain particles).
  • the said photosensitive layer may contain a trace amount colorant (a pigment, dye, etc.) as another component, it is preferable not to contain a colorant substantially from a viewpoint of transparency.
  • the content of the colorant in the photosensitive layer is preferably less than 1% by mass and more preferably less than 0.1% by mass with respect to the total mass of the photosensitive layer.
  • the thickness of the photosensitive layer is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and particularly preferably 12 ⁇ m or less.
  • the thickness of the photosensitive layer is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and particularly preferably 3 ⁇ m or more from the viewpoint of production suitability.
  • the refractive index of the photosensitive layer is preferably 1.47 to 1.56, more preferably 1.50 to 1.53, further preferably 1.50 to 1.52, and 1.51 to 1.52. Particularly preferred.
  • “refractive index” refers to a refractive index at a wavelength of 550 nm.
  • the “refractive index” in the present disclosure means a value measured by ellipsometry with visible light having a wavelength of 550 nm at a temperature of 23 ° C. unless otherwise specified.
  • a well-known method can be used.
  • coating the photosensitive resin composition containing a solvent on a temporary support body, and making it dry as needed is mentioned.
  • a coating method a known method can be used, and examples thereof include a printing method, a spray method, a roll coating method, a bar coating method, a curtain coating method, a spin coating method, and a die coating method (that is, a slit coating method).
  • the die coating method is preferable.
  • known methods such as natural drying, heat drying, and reduced pressure drying can be applied singly or in combination.
  • the formation of the photosensitive layer may contain at least one solvent from the viewpoint of forming the photosensitive layer by coating.
  • the solvent a commonly used solvent can be used without particular limitation.
  • an organic solvent is preferable.
  • the organic solvent include methyl ethyl ketone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate (also known as 1-methoxy-2-propyl acetate), diethylene glycol ethyl methyl ether, cyclohexanone, methyl isobutyl ketone, ethyl lactate, ethyl lactate, and caprolactam. N-propanol, 2-propanol and the like.
  • the solvent to be used may contain a mixed solvent which is a mixture of these compounds.
  • a mixed solvent of methyl ethyl ketone and propylene glycol monomethyl ether acetate, a mixed solvent of methyl ethyl ketone, propylene glycol monomethyl ether acetate and propylene glycol monomethyl ether, or a mixed solvent of diethylene glycol ethyl methyl ether and propylene glycol monomethyl ether acetate is preferable.
  • the solid content of the photosensitive resin composition is preferably 5% by mass to 80% by mass, more preferably 5% by mass to 40% by mass with respect to the total mass of the photosensitive resin composition. 5% by mass to 30% by mass is particularly preferable.
  • the viscosity (25 ° C.) of the photosensitive resin composition is preferably 1 mPa ⁇ s to 50 mPa ⁇ s, more preferably 2 mPa ⁇ s to 40 mPa ⁇ s from the viewpoint of applicability, and 3 mPa ⁇ s. s to 30 mPa ⁇ s is particularly preferable.
  • the viscosity is measured using, for example, VISCOMETER TV-22 (manufactured by Toki Sangyo Co., Ltd.).
  • the surface tension (25 ° C.) of the photosensitive resin composition is preferably 5 mN / m to 100 mN / m from the viewpoint of applicability, and is preferably 10 mN / m to 80 mN / m. More preferred is 15 mN / m to 40 mN / m.
  • the surface tension is, for example, Automatic Surface Tensiometer. Measured using CBVP-Z (Kyowa Interface Science Co., Ltd.).
  • Solvents described in paragraphs 0054 and 0055 of US Patent Application Publication No. 2005/280733 may also be used as the solvent, and the contents of this specification are incorporated herein.
  • an organic solvent (high boiling point solvent) having a boiling point of 180 ° C. to 250 ° C. can be used as a solvent, if necessary.
  • the photosensitive transfer material according to the present disclosure has a temporary support.
  • the temporary support is preferably a film, and more preferably a resin film.
  • a film that is flexible and does not cause significant deformation, shrinkage, or elongation under pressure, or under pressure and heating can be used.
  • a film include a polyethylene terephthalate film, a cellulose triacetate film, a polystyrene film, a polyimide film, and a polycarbonate film.
  • a biaxially stretched polyethylene terephthalate film is particularly preferable.
  • the film used as a temporary support body is a thing without a deformation
  • the thickness of the temporary support is not particularly limited, but is preferably 5 ⁇ m to 200 ⁇ m, and particularly preferably 10 ⁇ m to 150 ⁇ m from the viewpoint of ease of handling and versatility.
  • the photosensitive transfer material according to the present disclosure may further include a transparent resin layer on the side opposite to the side where the temporary support is present when viewed from the photosensitive layer (for example, specific examples of the photosensitive transfer material described later). reference).
  • a preferred example of the transparent resin layer is a refractive index adjusting layer.
  • the touch panel protective layer is formed by transferring the refractive index adjustment layer and the photosensitive layer of the photosensitive transfer material to the touch panel substrate including the transparent electrode pattern.
  • the transparent electrode pattern is more difficult to be visually recognized (that is, the concealability of the transparent electrode pattern is further improved).
  • the phenomenon in which the transparent electrode pattern is visually recognized is generally referred to as “bone appearance”.
  • JP-A-2014-10814 and JP-A-2014-108541 can be referred to as appropriate for the phenomenon in which the transparent electrode pattern is visually recognized and the concealability of the transparent electrode pattern.
  • the transparent resin layer is preferably disposed adjacent to the photosensitive layer.
  • the refractive index of the transparent resin layer is preferably higher than the refractive index of the photosensitive layer from the viewpoint of suppressing bone appearance.
  • the refractive index of the transparent resin layer is preferably 1.50 or more, more preferably 1.55 or more, and particularly preferably 1.60 or more.
  • the upper limit of the refractive index of the transparent resin layer is not particularly limited, but is preferably 2.10 or less, more preferably 1.85 or less, still more preferably 1.78 or less, and particularly preferably 1.74 or less.
  • the transparent resin layer may have photocurability (that is, photosensitivity), may have thermosetting properties, or may have both photocuring properties and thermosetting properties. From the viewpoint of forming a cured film having excellent strength by photocuring after transfer, the transparent resin layer preferably has photocurability. Moreover, it is preferable that a transparent resin layer has thermosetting property from a viewpoint which can improve the intensity
  • the transparent resin layer preferably has alkali solubility (for example, solubility in a weak alkaline aqueous solution).
  • the embodiment in which the transparent resin layer has photosensitivity has an advantage that after the transfer, the photosensitive layer and the transparent resin layer transferred onto the substrate can be collectively patterned by one photolithography.
  • the film thickness of the transparent resin layer is preferably 500 nm or less, more preferably 110 nm or less, and particularly preferably 100 nm or less.
  • the film thickness of the transparent resin layer is preferably 20 nm or more, more preferably 50 nm or more, further preferably 55 nm or more, and particularly preferably 60 nm or more.
  • the refractive index of the transparent resin layer is preferably adjusted according to the refractive index of the transparent electrode pattern.
  • the refractive index of the transparent resin layer is preferably 1.60 or more.
  • the upper limit of the refractive index of the transparent resin layer in this case is not particularly limited, but is preferably 2.1 or less, more preferably 1.85 or less, still more preferably 1.78 or less, and particularly preferably 1.74 or less.
  • the refractive index of the transparent resin layer exceeds 2.0, such as a transparent electrode pattern made of IZO (Indium Zinc Oxide), the refractive index of the transparent resin layer is 1.70 or more. 1.85 or less is preferable.
  • the method for controlling the refractive index of the transparent resin layer is not particularly limited. For example, a method using a resin having a predetermined refractive index alone, a method using a resin and metal oxide particles or metal particles, a metal salt and a resin, and the like. And the like using the complex.
  • the transparent resin layer has an inorganic particle having a refractive index of 1.50 or more (more preferably 1.55 or more, particularly preferably 1.60 or more), a refractive index of 1.50 or more (more preferably 1.55 or more, Particularly preferably 1.60 or more) and at least selected from the group consisting of polymerizable monomers having a refractive index of 1.50 or more (more preferably 1.55 or more, particularly preferably 1.60 or more). It is preferable to contain 1 type. In this embodiment, it is easy to adjust the refractive index of the transparent resin layer to 1.50 or more (more preferably 1.55 or more, particularly preferably 1.60 or more).
  • the transparent resin layer preferably contains a binder polymer, an ethylenically unsaturated compound, and particles.
  • the components of the transparent resin layer the components of the curable transparent resin layer described in paragraphs 0019 to 0040 and 0144 to 0150 of JP2014-108541A, paragraphs 0024 to 0035 of JP2014-10814 and Reference can be made to the components of the transparent layer described in 0110 to 0112, the components of the composition having an ammonium salt described in paragraphs 0034 to 0056 of WO2016 / 009980, and the like.
  • the transparent resin layer preferably contains at least one metal oxidation inhibitor.
  • a member for example, formed on the substrate
  • the surface of the conductive member can be treated. This surface treatment imparts a metal oxidation inhibiting function (protective property) to a member that is in direct contact with the transparent resin layer. What was mentioned above is mentioned as a metal oxidation inhibitor.
  • the transparent resin layer may contain other components other than the components described above. Other components that can be contained in the transparent resin layer include the same components as those contained in the photosensitive layer described above.
  • the transparent resin layer preferably contains a surfactant as another component.
  • a transparent resin layer there is no limitation in particular in the formation method of a transparent resin layer.
  • a method for forming a transparent resin layer a composition for forming a transparent resin layer containing an aqueous solvent is applied on the above-described photosensitive layer formed on a temporary support, and dried as necessary.
  • the method of forming by is mentioned.
  • Specific examples of the coating and drying methods are the same as the specific examples of coating and drying when forming the photosensitive layer, respectively.
  • the composition for forming a transparent resin layer can contain each component of the transparent resin layer described above.
  • the composition for forming a transparent resin layer contains, for example, a binder polymer, an ethylenically unsaturated compound, particles, and an aqueous solvent.
  • a composition having an ammonium salt described in paragraphs 0034 to 0056 of International Publication No. 2016/009980 is also preferable.
  • the photosensitive transfer material according to the present disclosure may further include a protective film on the side opposite to the temporary support as viewed from the photosensitive layer.
  • the protective film is preferably opposite to the temporary support as viewed from the transparent resin layer. Placed on the side.
  • the protective film include a polyethylene terephthalate film, a polypropylene film, a polystyrene film, and a polycarbonate film.
  • the protective film for example, those described in paragraphs 0083 to 0087 and 0093 of JP-A-2006-259138 may be used.
  • the photosensitive transfer material according to the present disclosure may further include a thermoplastic resin layer between the temporary support and the photosensitive layer.
  • a thermoplastic resin layer when the photosensitive transfer material includes a thermoplastic resin layer, when the photosensitive transfer material is transferred to a substrate to form a laminate, bubbles are less likely to be generated in each element of the laminate.
  • image unevenness or the like hardly occurs and excellent display characteristics can be obtained.
  • the thermoplastic resin layer preferably has alkali solubility.
  • the thermoplastic resin layer functions as a cushion material that absorbs irregularities on the substrate surface during transfer.
  • the unevenness on the substrate surface includes already formed images, electrodes, wirings, and the like.
  • the thermoplastic resin layer preferably has a property that can be deformed in accordance with the unevenness.
  • the thermoplastic resin layer preferably contains an organic polymer substance described in JP-A-5-72724, and the softening point of the polymer according to the Vicat method (specifically, American Material Testing Method ASTM D1 ASTM D1235). It is more preferable to include an organic polymer substance having a softening point of about 80 ° C. or less according to the measurement method.
  • the thickness of the thermoplastic resin layer is preferably 3 ⁇ m to 30 ⁇ m, more preferably 4 ⁇ m to 25 ⁇ m, still more preferably 5 ⁇ m to 20 ⁇ m.
  • the thickness of the thermoplastic resin layer is 3 ⁇ m or more, the followability with respect to the irregularities on the substrate surface is improved, so that the irregularities on the substrate surface can be absorbed more effectively.
  • the thickness of the thermoplastic resin layer is 30 ⁇ m or less, process suitability is further improved. For example, the load of drying (solvent removal) when applying and forming a thermoplastic resin layer on the temporary support is further reduced, and the development time of the thermoplastic resin layer after transfer is shortened.
  • the thermoplastic resin layer can be formed by applying a composition for forming a thermoplastic resin layer containing a solvent and a thermoplastic organic polymer to a temporary support and drying it as necessary.
  • Specific examples of the coating and drying methods are the same as the specific examples of coating and drying when forming the photosensitive layer, respectively.
  • the solvent is not particularly limited as long as it dissolves the polymer component forming the thermoplastic resin layer, and is an organic solvent (for example, methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether acetate, n-propanol, and 2-propanol). ).
  • the viscosity of the thermoplastic resin layer measured at 100 ° C. is preferably 1,000 to 10,000 Pa ⁇ s. Moreover, it is preferable that the viscosity of the thermoplastic resin layer measured at 100 ° C. is lower than the viscosity of the photosensitive layer measured at 100 ° C.
  • the photosensitive transfer material according to the present disclosure may further include an intermediate layer between the temporary support and the photosensitive layer.
  • the intermediate layer is preferably disposed between the thermoplastic resin layer and the photosensitive layer.
  • the component of the intermediate layer include polyvinyl alcohol, polyvinyl pyrrolidone, cellulose, or a resin that is a mixture containing at least two of these.
  • those described as “separation layer” in JP-A-5-72724 can also be used as the intermediate layer.
  • the intermediate layer includes, for example, a solvent that does not dissolve the thermoplastic resin layer, and an intermediate layer. It can be formed by applying a composition for forming an intermediate layer containing the above resin as a component of the layer and drying it as necessary. Specific examples of the coating and drying methods are the same as the specific examples of coating and drying when forming the photosensitive layer, respectively.
  • a composition for forming a thermoplastic resin layer is applied onto a temporary support and dried to form a thermoplastic resin layer.
  • the intermediate layer-forming composition is applied onto the thermoplastic resin layer and dried to form the intermediate layer.
  • a photosensitive resin composition containing an organic solvent is applied onto the intermediate layer and dried to form a photosensitive layer.
  • the organic solvent in this case is preferably an organic solvent that does not dissolve the intermediate layer.
  • FIG. 1 is a schematic cross-sectional view of a photosensitive transfer material 10 which is a specific example of the photosensitive transfer material according to the present disclosure.
  • the photosensitive transfer material 10 has a laminated structure of a protective film 16 / transparent resin layer 20A / photosensitive layer 18A / temporary support 12 (that is, the temporary support 12 and the photosensitive layer 18A.
  • the transparent resin layer 20 ⁇ / b> A and the protective film 16 are stacked in this order).
  • the photosensitive transfer material according to the present disclosure is not limited to the photosensitive transfer material 10, and for example, the transparent resin layer 20A and the protective film 16 may be omitted. Further, at least one of the above-described thermoplastic resin layer and intermediate layer may be provided between the temporary support 12 and the photosensitive layer 18A.
  • the transparent resin layer 20A is a layer disposed on the side opposite to the side where the temporary support 12 is present when viewed from the photosensitive layer 18A, and is a layer having a refractive index of 1.50 or more at a wavelength of 550 nm.
  • the photosensitive transfer material 10 is a negative material (negative film).
  • the manufacturing method of the photosensitive transfer material 10 is not particularly limited.
  • the method for producing the photosensitive transfer material 10 includes, for example, a step of forming the photosensitive layer 18A on the temporary support 12, a step of forming the transparent resin layer 20A on the photosensitive layer 18A, and a step of forming on the transparent resin layer 20A. And a step of forming the protective film 16 in this order.
  • ammonia is volatilized as described in Paragraph 0056 of International Publication No. 2016/009980 between the step of forming the transparent resin layer 20 ⁇ / b> A and the step of forming the protective film 16. You may include the process to make.
  • the electrode protective film according to the present disclosure is an electrode protective film obtained by curing the photosensitive layer from which the temporary support is removed from the photosensitive transfer material according to the present disclosure.
  • the electrode protective film according to the present disclosure is preferably an electrode protective film of a capacitive input device, and more preferably an electrode protective film for a touch panel.
  • the laminate according to the present disclosure described below includes the electrode protective film according to the present disclosure.
  • the laminate according to the present disclosure has, on the substrate, the photosensitive layer after removing the temporary support from the photosensitive transfer material according to the present disclosure in order from the substrate side. Further, the photosensitive layer in the laminate may be a cured photosensitive layer (also referred to as a cured film).
  • the capacitance-type input device according to the present disclosure includes the electrode protective film according to the present disclosure or the laminate according to the present disclosure.
  • the substrate is preferably a substrate including an electrode of a capacitive input device.
  • the electrode of the capacitive input device may be a transparent electrode pattern or a lead wiring.
  • the electrode of the capacitive input device is preferably an electrode pattern, and more preferably a transparent electrode pattern.
  • the refractive index of the transparent resin layer is higher than the refractive index of the photosensitive layer.
  • the refractive index of the transparent resin layer is preferably 1.6 or more.
  • the substrate a glass substrate or a resin substrate is preferable. Further, the substrate is preferably a transparent substrate, and more preferably a transparent resin substrate. The meaning of transparency is as described above.
  • the refractive index of the substrate is preferably 1.50 to 1.52.
  • the glass substrate for example, a tempered glass such as Corning Gorilla Glass (registered trademark) can be used.
  • the resin substrate it is preferable to use at least one of those having no optical distortion and those having high transparency. For example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), triacetyl cellulose (TAC) ), Polyimide (PI), polybenzoxazole (PBO), and cycloolefin polymer (COP).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • TAC triacetyl cellulose
  • PI polyimide
  • PBO polybenzoxazole
  • COP cyclo
  • a preferable example of the capacitive input device is a touch panel.
  • positioned at least in the image display area of a touch panel is mentioned, for example.
  • the touch panel electrode may extend from the image display area to the frame of the touch panel.
  • routing wiring (extraction wiring) arranged in the frame portion of the touch panel can be given.
  • the transparent electrode pattern and the lead wiring are electrically connected by laminating a part of the lead wiring on the portion of the transparent electrode pattern extending to the frame of the touch panel. Are preferred.
  • the material of the transparent electrode pattern is preferably a metal oxide film such as ITO (indium tin oxide) or IZO (indium zinc oxide).
  • metal is preferable.
  • the metal that is the material of the routing wiring include gold, silver, copper, molybdenum, aluminum, titanium, chromium, zinc, and manganese, and alloys composed of two or more of these metal elements.
  • copper, molybdenum, aluminum or titanium is preferable, and copper is particularly preferable.
  • the electrode protective film for a touch panel according to the present disclosure is provided so as to cover the electrode or the like directly or via another layer in order to protect the electrode or the like (that is, at least one of the touch panel electrode and the touch panel wiring).
  • the preferable range of the thickness of the electrode protective film for a touch panel is the same as the preferable range of the thickness of the photosensitive layer described above.
  • the electrode protective film according to the present disclosure may have an opening.
  • the opening can be formed by dissolving a non-exposed portion of the photosensitive layer with a developer. In this case, even when the touch panel electrode protective film is formed under a high temperature lamination condition using a photosensitive transfer material, the development residue in the opening of the touch panel electrode protective film is suppressed.
  • the touch panel may further include a first refractive index adjustment layer between the electrode and the electrode protective layer for the touch panel (see, for example, a first specific example of the touch panel described later).
  • the preferred embodiment of the first refractive index adjusting layer is the same as the preferred embodiment of the transparent resin layer that can be provided in the photosensitive transfer material.
  • the first refractive index adjustment layer may be formed by applying and drying the first refractive index adjustment layer forming composition, or separately transferring the refractive index adjustment layer of the photosensitive transfer material including the refractive index adjustment layer. May be formed.
  • the touch panel having the first refractive index adjustment layer preferably uses the photosensitive transfer material according to the present disclosure having the transparent resin layer, and transfers the photosensitive layer and the transparent resin layer in the photosensitive transfer material. It is preferable to form by.
  • the electrode protective layer for the touch panel is formed from the photosensitive layer in the photosensitive transfer material
  • the first refractive index adjusting layer is formed from the transparent resin layer in the photosensitive transfer material.
  • the touch panel or the touch panel substrate may include a second refractive index adjustment layer between the substrate and the electrode (for example, refer to a first specific example of the touch panel described later).
  • the preferred embodiment of the second refractive index adjusting layer is the same as the preferred embodiment of the transparent resin layer that can be provided in the photosensitive transfer material.
  • the touch panel includes the first refractive index adjustment layer (more preferably, the aspect in which the first refractive index adjustment layer and the second refractive index adjustment layer are provided), it is difficult to visually recognize electrodes or the like (that is, so-called bone appearance is suppressed).
  • the structure of the capacitive input device described in Japanese Patent Application Laid-Open No. 2014-10814 or Japanese Patent Application Laid-Open No. 2014-108541 may be referred to.
  • FIG. 2 is a schematic cross-sectional view of a touch panel 30 that is a first specific example of the touch panel according to the present disclosure. More specifically, FIG. 2 is a schematic cross-sectional view of the image display area of the touch panel 30.
  • the touch panel 30 includes a substrate 32, a second refractive index adjustment layer 36, a transparent electrode pattern 34 as a touch panel electrode, a first refractive index adjustment layer 20, and a touch panel electrode protective film. 18 have a structure arranged in this order.
  • the touch panel electrode protective film 18 and the first refractive index adjustment layer 20 cover the entire transparent electrode pattern 34.
  • the touch panel according to the present disclosure is not limited to this aspect.
  • the touch panel electrode protective film 18 and the first refractive index adjustment layer 20 may cover at least a part of the transparent electrode pattern 34.
  • the second refractive index adjustment layer 36 and the first refractive index adjustment layer 20 are respectively directly or other than the first region 40 where the transparent electrode pattern 34 exists and the second region 42 where the transparent electrode pattern 34 does not exist. It is preferred to coat continuously through the layers. Thereby, the transparent electrode pattern 34 becomes less visible.
  • the second refractive index adjusting layer 36 and the first refractive index adjusting layer 20 are preferably covered directly rather than covering both the first region 40 and the second region 42 via other layers. Examples of the “other layer” include an insulating layer, an electrode pattern other than the transparent electrode pattern 34, and the like.
  • the first refractive index adjustment layer 20 is stacked over both the first region 40 and the second region 42.
  • the first refractive index adjustment layer 20 is adjacent to the second refractive index adjustment layer 36 and is also adjacent to the transparent electrode pattern 34.
  • the shape of the end portion of the transparent electrode pattern 34 at the portion in contact with the second refractive index adjustment layer 36 is a taper shape as shown in FIG. 2, it follows the taper shape (that is, with the same inclination as the taper angle). ),
  • the first refractive index adjusting layer 20 is preferably laminated.
  • an ITO transparent electrode pattern is suitable.
  • the transparent electrode pattern 34 can be formed by the following method, for example.
  • An electrode thin film (for example, an ITO film) is formed by sputtering on the substrate 32 on which the second refractive index adjustment layer 36 is formed.
  • An etching protective layer is formed by applying an etching photosensitive resist on the electrode thin film or by transferring an etching photosensitive film.
  • the etching protective layer is patterned into a desired pattern shape by exposure and development.
  • a portion of the electrode thin film not covered with the patterned etching protective layer is removed by etching.
  • the electrode thin film is formed into a pattern having a desired shape (that is, the transparent electrode pattern 34).
  • the etching protective layer patterned with the stripping solution is removed.
  • the first refractive index adjustment layer 20 and the touch panel electrode protective film 18 are formed on the substrate 32 (that is, the touch panel substrate) on which the second refractive index adjustment layer 36 and the transparent electrode pattern 34 are sequentially provided as follows, for example. Formed on top. First, the photosensitive transfer material 10 shown in FIG. 1 (that is, the photosensitive transfer material 10 having a laminated structure of protective film 16 / transparent resin layer 20A / photosensitive layer 18A / temporary support 12) is prepared. Next, the protective film 16 is removed from the photosensitive transfer material 10.
  • the photosensitive transfer material 10 from which the protective film 16 has been removed is laminated on a substrate 32 (that is, a touch panel substrate) on which the second refractive index adjusting layer 36 and the transparent electrode pattern 34 are sequentially provided.
  • Lamination is performed in a direction in which the transparent resin layer 20A of the photosensitive transfer material 10 from which the protective film 16 is removed and the transparent electrode pattern 34 are in contact with each other.
  • a laminated body having a laminated structure of temporary support 12 / photosensitive layer 18A / transparent resin layer 20A / transparent electrode pattern 34 / second refractive index adjusting layer 36 / substrate 32 is obtained.
  • the temporary support 12 is removed from the laminate.
  • the laminate from which the temporary support 12 has been removed is subjected to pattern exposure, whereby the photosensitive layer 18A and the transparent resin layer 20A are cured in a pattern.
  • Curing in the pattern of the photosensitive layer 18A and the transparent resin layer 20A may be performed separately by separate pattern exposure, but is preferably performed simultaneously by one pattern exposure.
  • the non-exposed portion (that is, the non-cured portion) of the photosensitive layer 18A and the transparent resin layer 20A is removed by development, whereby the touch panel electrode protective film 18 (which is a patterned cured product of the photosensitive layer 18A) ( The pattern shape is not shown) and the first refractive index adjustment layer 20 (the pattern shape is not shown), which is a cured product of the pattern of the transparent resin layer 20A, is obtained.
  • Development of the photosensitive layer 18A and the transparent resin layer 20A after pattern exposure may be performed separately by separate development, but is preferably performed simultaneously by one development.
  • the structure of the capacitive input device described in Japanese Patent Application Laid-Open No. 2014-10814 or Japanese Patent Application Laid-Open No. 2014-108541 may be referred to.
  • FIG. 3 is a schematic cross-sectional view of a touch panel 90 which is a second specific example of the touch panel according to the present disclosure.
  • the touch panel 90 has an image display area 74 and an image non-display area 75.
  • the touch panel 90 includes touch panel electrodes on both surfaces of the substrate 32.
  • the touch panel 90 includes a first transparent electrode pattern 70 on one surface of the substrate 32 and a second transparent electrode pattern 72 on the other surface.
  • the lead wiring 56 is connected to each of the first transparent electrode pattern 70 and the second transparent electrode pattern 72.
  • the routing wiring 56 is, for example, a copper wiring.
  • the touch panel electrode protective film 18 is formed on one surface of the substrate 32 so as to cover the first transparent electrode pattern 70 and the lead wiring 56. On the other surface of 2, the touch panel electrode protective film 18 is formed so as to cover the second transparent electrode pattern 72 and the lead wiring 56.
  • the first refractive index adjustment layer and the second refractive index adjustment layer in the first specific example may be provided on one surface and the other surface of the substrate 32, respectively.
  • a preferred manufacturing method of the touch panel according to the present disclosure is as follows.
  • a step of preparing a touch panel substrate having a structure in which an electrode or the like (that is, at least one of a touch panel electrode and a touch panel wiring) is disposed on the substrate (hereinafter also referred to as a “preparation step”);
  • a step of forming a photosensitive layer using the photosensitive transfer material according to the present disclosure on the surface of the touch panel substrate on which electrodes and the like are disposed hereinafter also referred to as “photosensitive layer forming step”);
  • a step of pattern exposure of the photosensitive layer formed on the surface of the touch panel substrate hereinafter also referred to as “pattern exposure step”);
  • Developing a pattern-exposed photosensitive layer to obtain an electrode protective film for a touch panel that protects at least a part of the electrode or the like (
  • a touch panel provided with the electrode protective film for touch panels excellent in bending tolerance can be manufactured. Further, in the above preferable production method, even when the photosensitive layer is formed under the high temperature lamination condition using the photosensitive transfer material according to the present disclosure, development residue is generated in the non-exposed portion of the photosensitive layer after development. It is suppressed.
  • the preparation step is a step for convenience, and is a step of preparing a touch panel substrate having a structure in which electrodes and the like (that is, at least one of touch panel electrodes and touch panel wiring) are arranged on the substrate.
  • the preparation step may be a step of simply preparing a touch panel substrate manufactured in advance, or a step of manufacturing a touch panel substrate.
  • substrate for touch panels is as above-mentioned in the 1st specific example of a touch panel, and the 2nd specific example of a touch panel.
  • the photosensitive layer forming step is a step of forming a photosensitive layer using the photosensitive transfer material according to the present disclosure on the surface of the touch panel substrate on which the electrodes and the like are disposed.
  • the photosensitive transfer material according to the present disclosure is laminated on the surface of the touch panel substrate on which the electrodes and the like are disposed, and the photosensitive layer of the photosensitive transfer material according to the present disclosure is disposed on the surface.
  • a photosensitive layer is formed on the surface.
  • Lamination transfer of the photosensitive layer
  • a known laminator such as a vacuum laminator or an auto-cut laminator.
  • the laminating temperature is preferably 80 ° C. to 150 ° C., more preferably 90 ° C. to 150 ° C., and particularly preferably 100 ° C. to 150 ° C.
  • the lamination temperature refers to the rubber roller temperature.
  • the substrate temperature at the time of lamination include 10 ° C. to 150 ° C., 20 ° C.
  • the substrate temperature during lamination is preferably 10 ° C. to 80 ° C., more preferably 20 ° C. to 60 ° C., and particularly preferably 30 ° C. to 50 ° C.
  • the linear pressure during lamination is preferably 0.5 N / cm to 20 N / cm, more preferably 1 N / cm to 10 N / cm, and particularly preferably 1 N / cm to 5 N / cm.
  • the conveying speed during lamination is preferably 0.5 m / min to 5 m / min, and more preferably 1.5 m / min to 3 m / min.
  • a photosensitive transfer material having a laminated structure of protective film / photosensitive layer / intermediate layer / thermoplastic resin layer / temporary support is used, first, the protective film is peeled from the photosensitive transfer material to remove the photosensitive layer. Next, the photosensitive transfer material and the touch panel substrate are bonded together so that the exposed photosensitive layer is in contact with the surface on which the electrodes of the touch panel substrate are disposed, and then heating and pressurization are performed. Apply.
  • the photosensitive layer of the photosensitive transfer material is transferred onto the surface of the touch panel substrate on which the electrodes and the like are arranged, and the temporary support / thermoplastic resin layer / intermediate layer / photosensitive layer / electrodes / A laminated body having a laminated structure of the substrates is formed.
  • the portion of “electrodes / substrate / substrate” is a touch panel substrate.
  • the temporary support is peeled off from the laminate as necessary.
  • pattern exposure to be described later can be performed while leaving the temporary support.
  • the pattern exposure step is a step of pattern exposing the photosensitive layer formed on the touch panel substrate.
  • the pattern exposure refers to exposure in a pattern exposure mode, that is, an exposure mode in which an exposed part and a non-exposed part exist.
  • the exposed portion in the pattern exposure is cured to finally become a cured film.
  • the non-exposed portion in the pattern exposure is not cured and is removed (dissolved) by the developer in the next development step.
  • the non-exposed portion can form an opening of the cured film after the development process.
  • the pattern exposure may be exposure through a mask or digital exposure using a laser or the like.
  • any light source capable of irradiating light in a wavelength region capable of curing the photosensitive layer can be appropriately selected and used.
  • the light source include various lasers, light emitting diodes (LEDs), ultrahigh pressure mercury lamps, high pressure mercury lamps, and metal halide lamps.
  • Exposure is preferably 5mJ / cm 2 ⁇ 200mJ / cm 2, more preferably 10mJ / cm 2 ⁇ 200mJ / cm 2.
  • the pattern exposure may be performed after the temporary support is peeled off, or exposed before the temporary support is peeled off, and then The temporary support may be peeled off.
  • heat treatment so-called PEB (Post Exposure Bake)
  • PEB Post Exposure Bake
  • the development step is to develop an electrode protective film for a touch panel that protects at least a part of electrodes and the like by developing the photosensitive layer that has been subjected to pattern exposure (that is, by dissolving a non-exposed portion in pattern exposure in a developer). It is a process to obtain.
  • the developer used for development is not particularly limited, and a known developer such as the developer described in JP-A-5-72724 can be used.
  • an alkaline aqueous solution is preferably used.
  • the alkaline compound that can be contained in the alkaline aqueous solution include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide. , Tetrabutylammonium hydroxide, choline (2-hydroxyethyltrimethylammonium hydroxide), and the like.
  • the pH of the alkaline aqueous solution at 25 ° C. is preferably 8 to 13, more preferably 9 to 12, and particularly preferably 10 to 12.
  • the content of the alkaline compound in the alkaline aqueous solution is preferably 0.1% by mass to 5% by mass and more preferably 0.1% by mass to 3% by mass with respect to the total mass of the alkaline aqueous solution.
  • the developer may contain an organic solvent that is miscible with water.
  • the organic solvent include methanol, ethanol, 2-propanol, 1-propanol, butanol, diacetone alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, benzyl alcohol, acetone, methyl ethyl ketone.
  • the concentration of the organic solvent is preferably 0.1% by mass to 30% by mass.
  • the developer may contain a known surfactant.
  • the concentration of the surfactant is preferably 0.01% by mass to 10% by mass.
  • the liquid temperature of the developer is preferably 20 ° C. to 40 ° C.
  • Examples of the development method include paddle development, shower development, shower and spin development, and dip development.
  • a non-exposed portion of the photosensitive layer is removed by spraying a developer onto the photosensitive layer after pattern exposure in a shower shape.
  • a photosensitive transfer material comprising a photosensitive layer and at least one of a thermoplastic resin layer and an intermediate layer
  • An alkaline liquid having low solubility of the photosensitive layer may be sprayed in a shower shape, and at least one of the thermoplastic resin layer and the intermediate layer (both when both are present) may be removed in advance.
  • after development it is preferable to remove the development residue by rubbing with a brush or the like while spraying a cleaning agent or the like with a shower.
  • the liquid temperature of the developer is preferably 20 ° C. to 40 ° C.
  • the development step may include a step of performing the development and a step of heat-treating the cured film obtained by the development (hereinafter also referred to as “post-bake”).
  • post-bake a step of performing the development and a step of heat-treating the cured film obtained by the development
  • the post-baking temperature is preferably 100 ° C. to 160 ° C., more preferably 130 ° C. to 160 ° C.
  • the resistance value of the transparent electrode pattern can also be adjusted by this post-baking.
  • the photosensitive layer contains a carboxy group-containing (meth) acrylic resin, at least a part of the carboxy group-containing (meth) acrylic resin can be changed to a carboxylic acid anhydride by post-baking. Thereby, it is excellent in developability and the intensity
  • the development step may include a step of performing the development and a step of exposing the cured film obtained by the development (hereinafter also referred to as “post-exposure”).
  • post-exposure a step of performing the development and a step of exposing the cured film obtained by the development
  • the post-exposure and post-bake steps are preferably performed in this order.
  • the preferable manufacturing method of the touch panel according to the present disclosure may include other processes other than the processes described above.
  • a process for example, a cleaning process
  • a normal photolithography process can be applied without particular limitation.
  • An image display device includes the capacitive input device according to the present disclosure, preferably the touch panel according to the present disclosure (for example, the touch panels of the first and second specific examples).
  • a liquid crystal display device having a structure in which the touch panel according to the present disclosure is overlapped with a known liquid crystal display element is preferable.
  • Examples of the structure of an image display device including a touch panel include “Latest Touch Panel Technology” (Techno Times, issued July 6, 2009), Yuji Mitani supervision, “Touch Panel Technology and Development”, CM Publishing (2004). 12), FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292 can be applied.
  • the present disclosure will be described more specifically with reference to examples. Materials, usage amounts, ratios, processing contents, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present disclosure. Therefore, the scope of the present disclosure is not limited to the specific examples shown below. Unless otherwise specified, “part” and “%” are based on mass. In the following examples, the weight average molecular weight of the resin is a weight average molecular weight determined in terms of polystyrene by gel permeation chromatography (GPC).
  • the obtained photosensitive resin composition solution was applied onto a temporary support having a thickness of 16 ⁇ m, which was a polyethylene terephthalate film, using a slit nozzle, and a photosensitive layer having a thickness of 8 ⁇ m was formed after drying.
  • a protective film polyethylene phthalate film having a thickness of 16 ⁇ m was pressure-bonded on the photosensitive layer to prepare photosensitive transfer materials of Examples 1 to 39 and Comparative Examples 1 to 5, respectively.
  • the lamination conditions were a lami roll temperature of 110 ° C., a linear pressure of 3 N / cm, and a conveyance speed of 2 m / min. Thereafter, double-sided exposure was performed using a proximity type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultra-high pressure mercury lamp with an exposure amount of 100 mJ / cm 2 (i-line) through a temporary support. After the temporary supports on both sides are peeled off, both sides are further exposed at an exposure amount of 375 mJ / cm 2 (i-line) and then post-baked at 145 ° C. for 30 minutes to cure the photosensitive layer and to form a cured film. Formed.
  • a proximity type exposure machine manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.
  • bending resistance evaluation sample was evaluated as follows.
  • the bending resistance evaluation sample was cut into a 5 cm ⁇ 12 cm rectangle.
  • the cut specimen 102 for evaluating bending resistance is attached to the upper and lower metal plates 106 with two spacers A104 having a height of 5 cm, and fixed in a U-shape. Further, a 1 kg weight 108 was placed on the upper metal plate.
  • the bending resistance evaluation sample 102, the two spacers A104, and the two spacers B110 are not visible directly when viewed from the upper side in the gravity direction, but are indicated by dotted lines.
  • A has the highest bending resistance and E has the lowest bending resistance. Any one of A, B, and C is suitable for practical use, and A is most preferable.
  • A The smallest gap that does not crack is 4 mm or less
  • B The smallest gap that does not crack is greater than 4 mm and less than 5 mm
  • C The smallest gap that does not crack is greater than 5 mm and less than 6 mm
  • D The smallest that does not crack Gap is larger than 6 mm and not larger than 7 mm
  • E The smallest gap where no crack is generated is larger than 7 mm
  • the whole surface exposure was carried out with the exposure amount of 100 mJ / cm ⁇ 2 > (i line) through the temporary support body using the proximity type exposure machine (Hitachi High-Tech Electronics Engineering Co., Ltd. product) which has an ultrahigh pressure mercury lamp.
  • the film was further exposed at an exposure amount of 375 mJ / cm 2 (i-line) and then post-baked at 145 ° C. for 30 minutes to cure the photosensitive layer and form a cured film. .
  • a hardness evaluation sample having a photosensitive layer / glass layer structure having a thickness of 8 ⁇ m was obtained.
  • the hardness of the cured film was evaluated as follows. Using a Fischer Instruments HM2000 hardness tester, an indentation test is performed under the conditions of Berkovich indenter (triangular pyramid indenter), load speed 20.0 mN / min, maximum load 20.0 mN, and the Martens hardness (HM) is calculated from the maximum indentation depth. Asked. In the following evaluation criteria, any of A, B, and C is suitable for practical use, and A is most preferable.
  • the obtained photosensitive transfer material was cut into a 5 cm ⁇ 18 cm rectangle, and the protective film was peeled off.
  • a PFA (polytetrafluoroethylene) film having a thickness of 500 ⁇ m was cut into a 10 cm ⁇ 15 cm rectangle and fixed to a horizontal surface.
  • the PFA film and the photosensitive transfer material are stacked so that the PFA film and the surface of the cut photosensitive transfer material on which the photosensitive layer is formed are stacked, and a rectangular parallelepiped shape having a bottom portion of 4 cm ⁇ 6 cm is formed thereon.
  • a 70 g weight was placed.
  • tackiness index value A value obtained by dividing the frictional force by 70 (hereinafter also referred to as “tackiness index value”) was used as an index of tackiness.
  • any of A, B, and C is suitable for practical use, and A is most preferable.
  • tackiness index value is less than 2.
  • B The tackiness index value is 2 or more and less than 4.
  • C The tackiness index value is 4 or more and less than 6.
  • D The tackiness index value is 6 or more and less than 10.
  • E The tackiness index value is 10 or more.
  • the temporary support was peeled from the formed laminate A, and the transfer material from which the protective film was peeled was laminated on the photosensitive layer in the same manner as described above. This process of peeling the temporary support and laminating the transfer material was further repeated three times to form a laminate B having a temporary support / photosensitive layer / membrane filter laminated structure having a total film thickness of 40 ⁇ m.
  • An exposure dose of 100 mJ / cm 2 (i) was applied to the photosensitive layer of the obtained laminate B via a temporary support using a proximity type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultrahigh pressure mercury lamp. Line).
  • the film was further exposed at an exposure amount of 375 mJ / cm 2 (i-line) and then post-baked at 145 ° C. for 30 minutes to cure the photosensitive layer and form a cured film. .
  • a moisture permeability measurement sample having a laminated structure of a cured film / membrane filter having a total film thickness of 40 ⁇ m was obtained.
  • the water vapor permeability (WVTR) (unit: g / (m 2 ⁇ day)) of the circular sample was calculated from the mass change of the measuring cup with the lid before and after being left standing. The above measurement was performed three times, and the average value of WVTR in the three measurements was calculated. Based on the average value of WVTR, the water vapor transmission rate (WVTR) was evaluated according to the following evaluation criteria. In the following evaluation criteria, any one of A, B, and C is preferable, A or B is more preferable, and A is most preferable. In the measurement, as described above, the WVTR of a circular sample having a cured film / membrane filter laminated structure was measured. However, since the WVTR of the membrane filter is extremely high as compared with the WVTR of the cured film, in the above measurement, the WVTR of the cured film itself is actually measured.
  • the photosensitive transfer materials of Examples 1 to 39 have lower tackiness and excellent bending resistance after curing than the photosensitive transfer materials of Comparative Examples 1 to 5. From Tables 1 to 3, the photosensitive transfer materials of Examples 1 to 39 are excellent in hardness and moisture permeability after curing.
  • the ratio of each structural unit in the above A-1 to A-3 is a mass ratio.
  • Me represents a methyl group.
  • MegaFuck F551A fluorine-based interface Activator, manufactured by DIC Corporation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

タック性が低く、硬化後の曲げ耐性に優れる感光性転写材料の提供。 感光性転写材料は仮支持体、及び、感光性層を有し、上記感光性層が、バインダーポリマーと、エチレン性不飽和基を有するラジカル重合性化合物と、光重合開始剤と、チオール化合物とを含有し、上記チオール化合物の含有量が、上記感光性層の全質量に対し、5質量%以上であり、上記感光性層の全質量に対する上記ラジカル重合性化合物と上記チオール化合物の総含有量MRSと上記感光性層の全質量に対する上記バインダーポリマーの含有量Mとの比の値が、MRS/M=0.1~2.0である。

Description

感光性転写材料、電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法
 本開示は、感光性転写材料、電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法に関する。
 携帯電話、カーナビゲーション、パーソナルコンピュータ、券売機、銀行の端末などの電子機器では、近年、液晶装置などの表面にタブレット型の入力装置が配置される。液晶装置の画像表示領域に表示された指示画像を参照しながら、指示画像が表示されている箇所に指又はタッチペンなどを触れることで、指示画像に対応する情報の入力が行える装置がある。
 既述の如き入力装置(以下、タッチパネルと称することがある。)には、抵抗膜型、静電容量型などがある。静電容量型入力装置は、単に一枚の基板に透光性導電膜を形成すればよいという利点がある。かかる静電容量型入力装置では、例えば、互いに交差する方向に電極パターンを延在させて、指などが接触した際、電極間の静電容量が変化することを検知して入力位置を検出するタイプの装置がある。
 静電容量型入力装置の電極パターンや枠部にまとめられた引き回し配線(例えば銅線などの金属配線)などを保護する等の目的で、指などで入力する表面とは反対側に透明樹脂層が設けられている。
 これらの静電容量型入力装置を使用するにあたり、例えば、光源からの入射光の正反射近傍から少し離れた位置においてタッチパネルの表面を目視すると、内部に存在する透明電極パターンが目視され、外観上支障を来すことがある。したがって、タッチパネル等の表面において透明電極パターンの隠蔽性を向上させることが求められている。
 感光性樹脂組成物を用いる樹脂硬化膜のパターン形成方法としては、特許文献1に記載のものが挙げられる。
 特許文献1には、基材上に、バインダーポリマーと、光重合性化合物と、光重合開始剤と、チオール化合物と、を含有する感光性樹脂組成物からなる感光層を設ける第1工程と、上記感光層の所定部分を活性光線の照射により硬化させる第2工程と、上記感光層の上記所定部分以外を除去し、上記感光層の上記所定部分の硬化膜パターンを形成する第3工程と、を備え、上記感光性樹脂組成物が上記光重合開始剤としてオキシムエステル化合物及び/又はホスフィンオキサイド化合物を含む、樹脂硬化膜パターンの形成方法が記載されている。
 また、感光性樹脂組成物としては、特許文献2又は3に記載のものが挙げられる。
 特許文献2には、〔A〕エチレン性不飽和カルボン酸に由来する重合単位および/またはエチレン性不飽和カルボン酸無水物に由来する重合単位を有する共重合体、〔B〕エチレン性不飽和結合を有する重合性化合物、〔C〕光重合開始剤並びに〔D〕下記式(1)または(2):
Figure JPOXMLDOC01-appb-C000003
(式(1)において、Rは、メチレン基または炭素数2~20のアルキレン基であり、Rはメチレン基または炭素数2~6の直鎖もしくは分岐アルキレン基でありそしてmは1~20の整数を表わす)
Figure JPOXMLDOC01-appb-C000004
(式(2)において、Rは、同一もしくは異なり、-H、-OHまたは下記式(2’)
Figure JPOXMLDOC01-appb-C000005
で表わされる基であり、Rはメチレン基または炭素数2~6の直鎖もしくは分岐アルキレン基である、但し4つのRの少なくとも1つは上記式(2’)で表わされる基であるものとする、)
で表わされるチオール化合物を含有することを特徴とする、液晶表示素子用スペーサーの形成に用いられる感光性樹脂組成物が記載されている。
 特許文献3には、成分Aとして、エチレン性不飽和結合を有する重合性化合物、成分Bとして、重合開始剤、成分Sとして、チオール化合物、及び、成分Dとして、有機溶剤、を含有し、成分Aが、6官能以上のウレタン(メタ)アクリレートを含み、成分A中の上記6官能以上のウレタン(メタ)アクリレートの割合が、70~100質量%であり、成分Sの含有量が、硬化性組成物の全固形分に対し、1~20質量%であることを特徴とする硬化性組成物が記載されている。
国際公開第2013/084872号 特開2008-77067号公報 国際公開第2015/072533号
 本発明の一実施形態が解決しようとする課題は、タック性が低く、及び、硬化後の曲げ耐性に優れる感光性転写材料を提供することである。
 また、本発明の他の実施形態が解決しようとする課題は、上記感光性転写材料を用いた電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法を提供することである。
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 仮支持体、及び、感光性層を有し、上記感光性層が、バインダーポリマーと、エチレン性不飽和基を有するラジカル重合性化合物と、光重合開始剤と、チオール化合物とを含有し、上記チオール化合物の含有量が、上記感光性層の全質量に対し、5質量%以上であり、上記感光性層の全質量に対する上記ラジカル重合性化合物と上記チオール化合物の総含有量MRSと上記感光性層の全質量に対する上記バインダーポリマーの含有量Mとの比の値が、MRS/M=0.1~2.0である感光性転写材料。
<2> 上記感光性層が、ブロックイソシアネート化合物を更に含有する<1>に記載の感光性転写材料。
<3> 上記チオール化合物が、2官能以上のチオール化合物である<1>又は<2>に記載の感光性転写材料。
<4> 上記チオール化合物が、下記式1で表される化合物を含む<1>又は<2>のいずれか1つに記載の感光性転写材料。
Figure JPOXMLDOC01-appb-C000006
 式1中、nは1~6の整数を表し、Aは炭素数1~15のn価の有機基、又は、下記式2で表される基を表し、Rはそれぞれ独立に、炭素数1~15の二価の有機基を表す。ただし、Aが下記式2で表される基を表す場合、nは3を表す。
 
Figure JPOXMLDOC01-appb-C000007
 式2中、R~Rはそれぞれ独立に、炭素数1~15の二価の有機基を表し、波線部分は、上記式1におけるAに隣接する酸素原子との結合位置を表す。
<5> 上記感光性層の全質量に対する上記ラジカル重合性化合物と上記チオール化合物の総含有量MRSと上記感光性層の全質量に対する上記バインダーポリマーの含有量Mとの比の値が、MRS/M=0.4~1.2である<1>~<4>のいずれか1つに記載の感光性転写材料。
<6> 上記チオール化合物の含有量が、上記感光性層の全質量に対し、5質量%~40質量%である<1>~<5>のいずれか1つに記載の感光性転写材料。
<7> 上記バインダーポリマーが、ラジカル重合性基を有する構成単位を有する樹脂を含む<1>~<6>のいずれか1つに記載の感光性転写材料。
<8> 上記ブロックイソシアネート化合物が、ラジカル重合性基を有する<2>に記載の感光性転写材料。
<9> タッチパネルにおける保護膜形成用感光性転写材料である<1>~<8>のいずれか1つに記載の感光性転写材料。
<10> <1>~<9>のいずれか1つに記載の感光性転写材料から上記仮支持体が取り除かれた上記感光性層を硬化してなる電極保護膜。
<11> 基板上に、<1>~<9>のいずれか1つに記載の感光性転写材料から上記仮支持体を除いた後の上記感光性層を有する積層体。
<12> <10>に記載の電極保護膜、又は、<11>に記載の積層体を有する静電容量型入力装置。
<13> 基板上にタッチパネル用電極及びタッチパネル用配線の少なくとも一方が配置された構造を有するタッチパネル用基板を準備することと、上記タッチパネル用基板の上記タッチパネル用電極及びタッチパネル用配線の少なくとも一方が配置された側の面の上に、<1>~<9>のいずれか1つに記載の感光性転写材料を用いて感光性層を形成することと、上記タッチパネル用基板上に形成された上記感光性層をパターン露光することと、パターン露光された上記感光性層を現像することにより、上記タッチパネル用電極及びタッチパネル用配線の少なくとも一方の少なくとも一部を保護するタッチパネル用保護膜を得ることと、を含むタッチパネルの製造方法。
 本発明の一実施形態によれば、タック性が低く、硬化後の曲げ耐性に優れる感光性転写材料を提供することができる。
 また、本発明の他の実施形態によれば、上記感光性転写材料を用いた電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法を提供することができる。
本開示に係る感光性転写材料の一例を示す概略断面図である。 本開示に係るタッチパネルの第1具体例を示す概略断面図である。 本開示に係るタッチパネルの第2具体例を示す概略断面図である。 曲げ耐性評価における、水平方向から見た場合の、高さdに曲げ耐性評価用試料102を曲げる前の模式図である。 曲げ耐性評価における、重力方向上側から見た場合の、高さdに曲げ耐性評価用試料102を曲げる前の模式図である。 曲げ耐性評価における、水平方向から見た場合の、高さdに曲げ耐性評価用試料102を曲げた後の模式図である。
 以下において、本開示の内容について詳細に説明する。以下に記載する構成要件の説明は、本開示の代表的な実施態様に基づいてなされることがあるが、本開示はそのような実施態様に限定されるものではない。
 なお、本開示において、数値範囲を示す「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本開示における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 また、本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 更に、本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する上記複数の物質の合計量を意味する。
 本開示において、「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、「(メタ)アクリル酸」は、アクリル酸及びメタクリル酸の両方を包含する概念であり、「(メタ)アクリレート」は、アクリレート及びメタクリレートの両方を包含する概念であり、「(メタ)アクリロイル基」は、アクリロイル基及びメタクリロイル基の両方を包含する概念である。
 また、本開示における重量平均分子量(Mw)及び数平均分子量(Mn)は、特に断りのない限り、TSKgel GMHxL、TSKgel G4000HxL、TSKgel G2000HxL(何れも東ソー(株)製の商品名)のカラムを使用したゲルパーミエーションクロマトグラフィ(GPC)分析装置により、溶媒THF(テトラヒドロフラン)、示差屈折計により検出し、標準物質としてポリスチレンを用いて換算した分子量である。
 本開示において、樹脂中の構成単位の割合は、特に断りが無い限り、質量割合を表す。
 本開示において、分子量分布がある場合の分子量は、特に断りが無い限り、重量平均分子量(Mw)を表す。
 以下、本開示を詳細に説明する。
(感光性転写材料)
 本開示に係る感光性転写材料は、仮支持体、及び、感光性層を有し、上記感光性層が、バインダーポリマーと、エチレン性不飽和基を有するラジカル重合性化合物と、光重合開始剤と、チオール化合物とを含有し、上記チオール化合物の含有量が、上記感光性層の全質量に対し、5質量%以上であり、上記感光性層の全質量に対する上記ラジカル重合性化合物と上記チオール化合物の総含有量MRSと上記感光性層の全質量に対する上記バインダーポリマーの含有量Mとの比の値が、MRS/M=0.1~2.0である。
 本開示に係る感光性転写材料は、タッチパネル用感光性転写材料として好適に用いることができ、タッチパネルにおける保護膜形成用感光性転写材料としてより好適に用いることができ、タッチパネルにおける電極保護膜形成用感光性転写材料として特に好適に用いることができる。
 本発明者が鋭意検討した結果、上記構成をとることにより、タック性が低く、硬化後の曲げ耐性に優れる感光性転写材料を提供することができることを見出した。
 これによる優れた効果の作用機構は明確ではないが、以下のように推定している。
 感光性層がチオール化合物を5質量%以上含有することにより、チオール化合物がエチレン性不飽和基を有するラジカル重合性化合物と反応し、チオエーテル結合が生じ、得られる硬化膜の柔軟性が向上し、硬化後の曲げ耐性に優れる。上記感光性層の全質量に対する上記ラジカル重合性化合物と上記チオール化合物の総含有量MRSと上記感光性層の全質量に対する上記バインダーポリマーの含有量Mとの比の値が、MRS/M=0.1~2.0であることにより、感光性層の硬度及び表面の粘着性を適度な範囲とすることができ、タック性を低くすることができる。
<感光性層>
 本開示に係る感光性転写材料は、感光性層を有し、上記感光性層が、バインダーポリマーと、エチレン性不飽和基を有するラジカル重合性化合物と、光重合開始剤と、チオール化合物とを含有し、上記チオール化合物の含有量が、上記感光性層の全質量に対し、5質量%以上であり、上記感光性層の全質量に対する上記ラジカル重合性化合物と上記チオール化合物の総含有量MRSと上記感光性層の全質量に対する上記バインダーポリマーの含有量Mとの比の値が、MRS/M=0.1~2.0である。
<<チオール化合物>>
 上記感光性層は、チオール化合物を含有する。
 上記感光性層におけるチオール化合物の含有量は、上記感光性層の全質量に対し、5質量%以上であり、タック性、及び、硬化後の曲げ耐性の観点から、5質量%~40質量%が好ましく、5質量%~35質量%がより好ましく、5.5質量%~30質量%が更に好ましく、6.5質量%~25質量%が特に好ましい。
 チオール化合物は、1種単独で使用しても、2種以上を併用してもよい。
 また、上記感光性層において、上記感光性層の全質量に対する上記ラジカル重合性化合物と上記チオール化合物の総含有量MRSと上記感光性層の全質量に対する上記バインダーポリマーの含有量Mとの比の値は、MRS/M=0.1~2.0であり、タック性、並びに、硬化後の曲げ耐性及び硬度の観点から、MRS/M=0.2~1.8であることが好ましく、MRS/M=0.3~1.5であることがより好ましく、MRS/M=0.4~1.2であることが特に好ましい。
 チオール化合物としては、単官能チオール化合物、又は、多官能チオール化合物が好適に用いられる。中でも、硬化後の硬度の観点から、2官能以上のチオール化合物(多官能チオール化合物)を含むことが好ましく、多官能チオール化合物であることがより好ましい。
 本開示において多官能チオール化合物とは、メルカプト基(チオール基)を分子内に2個以上有する化合物を意味する。多官能チオール化合物としては、分子量100以上の低分子化合物が好ましく、具体的には、分子量100~1,500であることがより好ましく、150~1,000が更に好ましい。
 多官能チオール化合物の官能基数としては、硬化後の硬度の観点から、2官能~10官能が好ましく、2官能~8官能がより好ましく、2官能~6官能が更に好ましい。
 また、多官能チオール化合物としては、タック性、並びに、硬化後の曲げ耐性及び硬度の観点から、脂肪族多官能チオール化合物であることが好ましい。
 更に、チオール化合物としては、感光性転写材料の保存安定性の観点から、第二級チオール化合物がより好ましい。
 多官能チオール化合物として具体的には、トリメチロールプロパントリス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリメチロールエタントリス(3-メルカプトブチレート)、トリス[(3-メルカプトプロピオニルオキシ)エチル]イソシアヌレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、エチレングリコールビスチオプロピオネート、1,2-ベンゼンジチオール、1,3-ベンゼンジチオール、1,2-エタンジチオール、1,3-プロパンジチオール、1,6-ヘキサメチレンジチオール、2,2’-(エチレンジチオ)ジエタンチオール、meso-2,3-ジメルカプトコハク酸、p-キシレンジチオール、m-キシレンジチオール、ジ(メルカプトエチル)エーテル等を例示することができる。
 これらの中でも、トリメチロールプロパントリス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリメチロールエタントリス(3-メルカプトブチレート)、トリス[(3-メルカプトプロピオニルオキシ)エチル]イソシアヌレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、及び、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)が好ましく挙げられる。
 単官能チオール化合物としては、脂肪族チオール化合物、及び、芳香族チオール化合物のどちらも用いることができる。
 単官能脂肪族チオール化合物としては、具体的には、1-オクタンチオール、1-ドデカンチオール、β-メルカプトプロピオン酸、メチル-3-メルカプトプロピオネート、2-エチルヘキシル-3-メルカプトプロピオネート、n-オクチル-3-メルカプトプロピオネート、メトキシブチル-3-メルカプトプロピオネート、ステアリル-3-メルカプトプロピオネート等が挙げられる。
 単官能芳香族チオール化合物としては、ベンゼンチオール、トルエンチオール、キシレンチオール等が挙げられる。
 上記チオール化合物は、タック性、並びに、硬化後の曲げ耐性及び硬度の観点から、エステル結合を有するチオール化合物であることが好ましく、下記式1で表される化合物を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000008
 式1中、nは1~6の整数を表し、Aは炭素数1~15のn価の有機基、又は、下記式2で表される基を表し、Rはそれぞれ独立に、炭素数1~15の二価の有機基を表す。
Figure JPOXMLDOC01-appb-C000009
 式2中、R~Rはそれぞれ独立に、炭素数1~15の二価の有機基を表し、波線部分は、上記式1におけるAに隣接する酸素原子との結合位置を表す。ただし、Aが下記式2で表される基を表す場合、nは3を表す。
 式1におけるnは、硬化後の硬度の観点から、2~6の整数であることが好ましい。
 式1におけるAは、タック性、並びに、硬化後の曲げ耐性及び硬度の観点から、炭素数1~15のn価の脂肪族基、又は、上記式2で表される基であることが好ましく、炭素数4~15のn価の脂肪族基、又は、上記式2で表される基であることがより好ましく、炭素数4~10のn価の脂肪族基、又は、上記式2で表される基であることが更に好ましく、上記式2で表される基であることが特に好ましい。
 また、式1におけるAは、タック性、並びに、硬化後の曲げ耐性、硬度及び透湿性の観点から、水素原子及び炭素原子からなるn価の基、又は、水素原子、炭素原子及び酸素原子からなるn価の基であることが好ましく、水素原子及び炭素原子からなるn価の基であることがより好ましく、n価の脂肪族炭化水素基であることが特に好ましい。
 式1におけるRはそれぞれ独立に、タック性、並びに、硬化後の曲げ耐性及び硬度の観点から、炭素数1~15のアルキレン基であることが好ましく、炭素数2~4のアルキレン基であることがより好ましく、炭素数3のアルキレン基であることが更に好ましく、1,2-プロピレン基であることが特に好ましい。上記アルキレン基は、直鎖状であっても、分岐を有していてもよい。
 式2におけるR~Rはそれぞれ独立に、タック性、並びに、硬化後の曲げ耐性及び硬度の観点から、炭素数2~15の脂肪族基であることが好ましく、炭素数2~15のアルキレン基、又は、炭素数3~15のポリアルキレンオキシアルキル基であることがより好ましく、炭素数2~15のアルキレン基であることが更に好ましく、エチレン基であることが特に好ましい。
 また、多官能チオール化合物としては、下記式S-1で表される基を2個以上有する化合物が好ましい。
Figure JPOXMLDOC01-appb-C000010
 式S-1中、R1Sは水素原子又はアルキル基を表し、A1Sは-CO-又は-CH2-を表し、波線部分は他の構造との結合位置を表す。
 多官能チオール化合物としては、式S-1で表される基を2以上6以下有する化合物が好ましい。
 式S-1中のR1Sにおけるアルキル基としては、直鎖、分岐又は環状のアルキル基であり、炭素数の範囲としては1~16が好ましく、1~10がより好ましい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、へキシル基、2-エチルへキシル基等であり、メチル基、エチル基、プロピル基又はイソプロピル基が好ましい。
 R1Sとしては、水素原子、メチル基、エチル基、プロピル基、又は、イソプロピル基が特に好ましく、メチル基又はエチル基が最も好ましい。
 更に、多官能チオール化合物としては、上記式S-1で表される基を複数個有する下記式S-2で表される化合物であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000011
 式S-2中、R1Sはそれぞれ独立に、水素原子又はアルキル基を表し、A1Sはそれぞれ独立に、-CO-又は-CH2-を表し、L1SはnS価の連結基を表し、nSは2~8の整数を表す。合成上の観点からは、R1Sは全て同じ基であることが好ましく、また、A1Sは全て同じ基であることが好ましい。
 式S-2中のR1Sは、上記式S-1中のR1Sと同義であり、好ましい範囲も同様である。nSは2~6の整数が好ましい。
 式S-2中のnS価の連結基であるL1Sとしては、例えば-(CH2mS-(mSは2~6の整数を表す。)、-(CHmS{(CHmSO}mT(CHmS-(mS及びmTはそれぞれ独立に2~6の整数を表す。)などの二価の連結基、トリメチロールプロパン残基、-(CH2pS-(pSは2~6の整数を表す。)を3個有するイソシアヌル環などの三価の連結基、
ペンタエリスリトール残基などの四価の連結基、ジペンタエリスリトール残基などの五価又は六価の連結基が挙げられる。
 チオール化合物として具体的には、以下の化合物が好ましく挙げられるが、これらに限定されないことは、言うまでもない。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
<<バインダーポリマー>>
 本開示に係る感光性転写材料における感光性層は、バインダーポリマーを含む。
 上記バインダーポリマーは、アルカリ可溶性樹脂であることが好ましい。
 上記バインダーポリマーの酸価は、特に制限はないが、現像性の観点から、酸価60mgKOH/g以上のバインダーポリマーであることが好ましく、酸価60mgKOH/g以上のアルカリ可溶性樹脂であることがより好ましく、酸価60mgKOH/g以上のカルボキシル基含有(メタ)アクリル樹脂であることが特に好ましい。
 バインダーポリマーが、酸価を有することで、加熱により酸と反応可能な化合物と熱架橋し、3次元架橋密度を高めることができると推定される。また、カルボキシル基含有(メタ)アクリル樹脂のカルボキシル基が無水化され、疎水化することにより湿熱耐性の改善に寄与すると推定される。
 酸価60mgKOH/g以上のカルボキシル基含有(メタ)アクリル樹脂(以下、特定重合体Aと称することがある。)としては、上記酸価の条件を満たす限りにおいて特に制限はなく、公知の樹脂から適宜選択して用いることができる。
 例えば、特開2011-95716号公報の段落0025に記載のポリマーのうちの酸価60mgKOH/g以上のカルボキシル基含有(メタ)アクリル樹脂であるバインダーポリマー、特開2010-237589号公報の段落0033~0052に記載のポリマーのうちの酸価60mgKOH/g以上のカルボキシル基含有(メタ)アクリル樹脂等が、本実施形態における特定重合体Aとして好ましく用いることができる。
 ここで、(メタ)アクリル樹脂は、(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸エステルに由来する構成単位の少なくとも一方を含む樹脂を指す。
 (メタ)アクリル樹脂中における(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸エステルに由来する構成単位の合計割合は、30モル%以上が好ましく、50モル%以上がより好ましい。
 特定重合体Aにおける、カルボキシル基を有するモノマーの共重合比の好ましい範囲は、特定重合体A全質量に対して、5質量%~50質量%であり、より好ましくは5質量%~40質量%、更に好ましくは10質量%~30質量%の範囲内である。
 特定重合体Aは、反応性基を有していてもよく、反応性基を特定重合体Aに導入する手段としては、水酸基、カルボキシル基、第一級アミノ基、第二級アミノ基、アセトアセチル基、スルホン酸などに、エポキシ化合物、ブロックイソシアネート、イソシアネート、ビニルスルホン化合物、アルデヒド化合物、メチロール化合物、カルボン酸無水物などを反応させる方法が挙げられる。
 これらの中でも、反応性基としては、ラジカル重合性基であることが好ましく、エチレン性不飽和基であることがより好ましく、(メタ)アクリロキシ基であることが特に好ましい。
 また、バインダーポリマー、特に特定重合体Aは、硬化後の透湿度及び強度の観点から、芳香環を有する構成単位を有することが好ましい。
 芳香環を有する構成単位を形成するモノマーとしては、スチレン、tert-ブトキシスチレン、メチルスチレン、α-メチルスチレン、ベンジル(メタ)アクリレート等が挙げられる。
 芳香環を有する構成単位としては、後述する式P-2で表される構成単位を少なくとも1種含有することが好ましい。また、芳香環を有する構成単位としては、スチレン化合由来の構成単位であることが好ましい。
 バインダーポリマーが芳香環を有する構成単位を含有する場合、芳香環を有する構成単位の割合は、バインダーポリマーの全質量に対し、5質量%~90質量%であることが好ましく、10質量%~70質量%であることがより好ましく、20質量%~50質量%であることが更に好ましい。
 また、バインダーポリマー、特に特定重合体Aは、タック性、及び、硬化後の強度の観点から、脂肪族環式骨格を有する構成単位を有することが好ましい。
 脂肪族環式骨格を有する構成単位を形成するモノマーとして、具体的には、ジシクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等が挙げられる。
 上記脂肪族環式骨格を有する構成単位が有する脂肪族環としては、ジシクロペンタン環、シクロヘキサン環、イソボロン環、トリシクロデカン環等が好ましく挙げられる。中でも、トリシクロデカン環が特に好ましく挙げられる。
 バインダーポリマーが脂肪族環式骨格を有する構成単位を含有する場合、脂肪族環式骨格を有する構成単位の割合は、バインダーポリマーの全質量に対し、5質量%~90質量%であることが好ましく、10質量%~80質量%であることがより好ましく、20質量%~70質量%であることが更に好ましい。
 また、バインダーポリマー、特に特定重合体Aは、タック性、及び、硬化後の強度の観点から、ラジカル重合性基を有する構成単位を有することが好ましく、エチレン性不飽和基を有する構成単位を有することがより好ましい。
 エチレン性不飽和基としては、(メタ)アクリル基が好ましく、(メタ)アクリロキシ基がより好ましい。
 バインダーポリマーがエチレン性不飽和基を有する構成単位を含有する場合、エチレン性不飽和基を有する構成単位の割合は、バインダーポリマーの全質量に対し、5質量%~70質量%であることが好ましく、10質量%~50質量%であることがより好ましく、20質量%~40質量%であることが更に好ましい。
 特定重合体Aとしては、以下に示す化合物A-1又は化合物A-2が好ましく、化合物A-1が更に好ましい。なお、以下に示す各構成単位の割合は目的に応じて適宜変更することができる。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
上記A-1~A-2における各構成単位の割合は、質量比である。また、Meはメチル基を表す。
 本開示に用いられるバインダーポリマーの酸価は、60mgKOH/g~200mgKOH/gであることが好ましく、60mgKOH/g~150mgKOH/gであることがより好ましく、60mgKOH/g~110mgKOH/gであることが更に好ましい。
 本明細書において、酸価は、JIS K0070(1992年)に記載の方法に従って、測定された値を意味する。
 上記バインダーポリマーが、酸価60mgKOH/g以上のバインダーポリマーを含むことで、既述の利点に加え、後述する透明樹脂層が酸基を有する(メタ)アクリル樹脂を含有することにより、感光性層と透明樹脂層との層間密着性を高めることができる。
 特定重合体Aの重量平均分子量は、1万以上が好ましく、2万~10万がより好ましい。
 また、上記バインダーポリマーは、上記特定ポリマー以外にも、任意の膜形成樹脂を目的に応じて適宜選択して用いることができる。感光性転写材料を静電容量型入力装置の電極保護膜として用いる観点から、表面硬度、耐熱性が良好な膜が好ましく、アルカリ可溶性樹脂がより好ましく、アルカリ可溶性樹脂の中でも、公知の感光性シロキサン樹脂材料などを好ましく挙げることができる。
 本開示に用いられるバインダーポリマーとしては、カルボン酸無水物構造を有する構成単位を含む重合体(以下、特定重合体Bとも称する。)を含むことが好ましい。特定重合体Bを含むことにより、現像性、及び、硬化後の強度により優れる。
 カルボン酸無水物構造は、鎖状カルボン酸無水物構造及び環状カルボン酸無水物構造のいずれであってもよいが、環状カルボン酸無水物構造であることが好ましい。
 環状カルボン酸無水物構造の環としては、5~7員環が好ましく、5員環又は6員環がより好ましく、5員環が更に好ましい。
 また、環状カルボン酸無水物構造は、他の環構造と縮環又は結合して多環構造を形成していてもよいが、多環構造を形成していないことが好ましい。
 環状カルボン酸無水物構造に他の環構造が縮環又は結合して多環構造を形成している場合、多環構造としては、ビシクロ構造又はスピロ構造が好ましい。
 多環構造において、環状カルボン酸無水物構造に対し縮環又は結合している他の環構造の数としては、1~5が好ましく、1~3がより好ましい。
 他の環構造としては、炭素数3~20の環状の炭化水素基、炭素数3~20のヘテロ環基等が挙げられる。
 ヘテロ環基としては、特に限定されないが、脂肪族ヘテロ環基及び芳香族ヘテロ環基が挙げられる。
 また、ヘテロ環基としては、5員環又は6員環が好ましく、5員環が特に好ましい。
 また、ヘテロ環基としては、酸素原子を少なくとも一つ含有するヘテロ環基(例えば、オキソラン環、オキサン環、ジオキサン環等)が好ましい。
 カルボン酸無水物構造を有する構成単位は、下記式P-1で表される化合物から水素原子を2つ除いた2価の基を主鎖中に含む構成単位であるか、又は、下記式P-1で表される化合物から水素原子を1つ除いた1価の基が主鎖に対して直接又は2価の連結基を介して結合している構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 式P-1中、RA1aは置換基を表し、n1a個のRA1aは、同一でも異なっていてもよい。
 Z1aは、-C(=O)-O-C(=O)-を含む環を形成する2価の基を表す。n1aは0以上の整数を表す。
 RA1aで表される置換基としては、上述したカルボン酸無水物構造が有していてもよい置換基と同様のものが挙げられ、好ましい範囲も同様である。
 Z1aとしては、炭素数2~4のアルキレン基が好ましく、炭素数2又は3のアルキレン基がより好ましく、炭素数2のアルキレン基が特に好ましい。
 式P-1で表される部分構造は、他の環構造と縮環又は結合して多環構造を形成していてもよいが、多環構造を形成していないことが好ましい。
 ここでいう他の環構造としては、上述した、カルボン酸無水物構造と縮環又は結合してもよい他の環構造と同様のものが挙げられ、好ましい範囲も同様である。
 n1aは、0以上の整数を表す。
 Z1aが炭素数2~4のアルキレン基を表す場合、n1aは0~4の整数が好ましく、0~2の整数がより好ましく、0が更に好ましい。
 n1aが2以上の整数を表す場合、複数存在するRA1aは、同一でも異なっていてもよい。また、複数存在するRA1aは、互いに結合して環を形成してもよいが、互いに結合して環を形成していないことが好ましい。
 カルボン酸無水物構造を有する構成単位は、不飽和カルボン酸無水物に由来する構成単位であることが好ましく、不飽和環式カルボン酸無水物に由来する構成単位であることがより好ましく、不飽和脂肪族環式カルボン酸無水物に由来する構成単位であることが更に好ましく、無水マレイン酸又は無水イタコン酸に由来する構成単位であることが更に好ましく、無水マレイン酸に由来する構成単位であることが特に好ましい。
 以下、カルボン酸無水物構造を有する構成単位の具体例を挙げるが、カルボン酸無水物構造を有する構成単位はこれらの具体例に限定されるものではない。
 下記の構成単位中、Rxは、水素原子、メチル基、CHOH基、又はCF基を表し、Meは、メチル基を表す。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 カルボン酸無水物構造を有する構成単位としては、上記式a2-1~式a2-21のいずれかで表される構成単位のうちの少なくとも1種であることが好ましく、上記式a2-1~式a2-21のいずれかで表される構成単位のうちの1種であることがより好ましい。
 カルボン酸無水物構造を有する構成単位は、硬化膜の耐汗性向上及び感光性転写材料とした場合の現像残渣低減の観点から、式a2-1で表される構成単位及び式a2-2で表される構成単位の少なくとも一方を含むことが好ましく、式a2-1で表される構成単位を含むことがより好ましい。
 特定重合体Bにおけるカルボン酸無水物構造を有する構成単位の割合(2種以上である場合には合計割合。以下同じ。)は、特定重合体Bの全量に対し、0モル%を超え、60モル%以下であることが好ましく、5モル%~40モル%であることがより好ましく、10モル%~35モル%であることが更に好ましい。
 なお、本開示において、「構成単位」の割合をモル比で規定する場合、当該「構成単位」は「モノマー単位」と同義であるものとする。また、本開示において当該「モノマー単位」は、高分子反応等により重合後に修飾されていてもよい。以下においても同様である。
 特定重合体Bは、下記式P-2で表される構成単位を少なくとも1種含有することが好ましい。これにより、形成される硬化膜の疎水性及び強度がより向上する。
Figure JPOXMLDOC01-appb-C000019
 式P-2中、RP1は、水酸基、アルキル基、アリール基、アルコキシ基、カルボキシ基、又はハロゲン原子を表し、RP2は、水素原子、アルキル基又はアリール基を表し、nPは0~5の整数を表す。nPが2以上の整数である場合、2つ以上存在するRP1は、同一であっても異なっていてもよい。
 RP1としては、炭素数1~10のアルキル基、炭素数6~12のアリール基、炭素数1~10のアルコキシ基、カルボキシ基、F原子、Cl原子、Br原子、又はI原子であることが好ましく、炭素数1~4のアルキル基、フェニル基、炭素数1~4のアルコキシ基、Cl原子、又はBr原子であることがより好ましい。
 RP2としては、水素原子、炭素数1~10のアルキル基、又は炭素原子6~12のアリール基であることが好ましく、水素原子又は炭素数1~4のアルキル基であることがより好ましく、水素原子、メチル基、又はエチル基であることが更に好ましく、水素原子であることが特に好ましい。
 nPは、0~3の整数であることが好ましく、0又は1であることがより好ましく、0であることが更に好ましい。
 式P-2で表される構成単位としては、スチレン化合物に由来する構成単位であることが好ましい。
 スチレン化合物としては、スチレン、p-メチルスチレン、α-メチルスチレン、α,p-ジメチルスチレン、p-エチルスチレン、p-t-ブチルスチレン、1,1-ジフェニルエチレン等が挙げられ、スチレン又はα-メチルスチレンが好ましく、スチレンが特に好ましい。
 式P-2で表される構成単位を形成するためのスチレン化合物は、1種のみであっても2種以上であってもよい。
 特定重合体Bが式P-2で表される構成単位を含有する場合、特定重合体Bにおける式P-2で表される構成単位の割合(2種以上である場合には合計割合。以下同じ。)は、特定重合体Bの全量に対し、5モル%~90モル%であることが好ましく、30モル%~90モル%であることがより好ましく、40モル%~90モル%であることが更に好ましい。
 特定重合体Bは、カルボン酸無水物構造を有する構成単位及び式P-2で表される構成単位以外のその他の構成単位を少なくとも1種含んでいてもよい。
 その他の構成単位は、酸基を含有しないことが好ましい。
 その他の構成単位としては特に限定されないが、単官能エチレン性不飽和化合物に由来する構成単位が挙げられる。
 上記単官能エチレン性不飽和化合物としては、公知の化合物を特に限定なく用いることができ、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、カルビトール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、エポキシ(メタ)アクリレート等の(メタ)アクリル酸誘導体;N-ビニルピロリドン、N-ビニルカプロラクタム等のN-ビニル化合物;アリルグリシジルエーテル等のアリル化合物の誘導体;等が挙げられる。
 特定重合体Bにおけるその他の構成単位の割合(2種以上である場合には合計割合)は、特定重合体Bの全量に対し、10モル%以上100モル%未満であることが好ましく、50モル%以上100質量%未満であることがより好ましい。
 バインダーポリマーの重量平均分子量は、特に制限はないが、3,000を超えることが好ましく、3,000を超え60,000以下であることがより好ましく、5,000~50,000であることが更に好ましい。
 バインダーポリマーは、1種単独で使用しても、2種以上を含有してもよい。
 上記感光性層におけるバインダーポリマーの含有量は、感光性及び硬化膜の強度の観点から、上記感光性層の全質量に対し、10質量%~90質量%であることが好ましく、20質量%以上80質量%以下であることがより好ましく、30質量%以上70質量%以下であることが更に好ましい。
<<エチレン性不飽和基を有するラジカル重合性化合物>>
 本開示に係る感光性転写材料における感光性層は、エチレン性不飽和基を有するラジカル重合性化合物(以下、単に「エチレン性不飽和化合物」ともいう。)を含有する。
 エチレン性不飽和基を有するラジカル重合性化合物は、上記感光性層の感光性(すなわち、光硬化性)及び硬化膜の強度に寄与する成分である。
 また、エチレン性不飽和化合物は、1つ以上のエチレン性不飽和基を有する化合物である。
 上記感光性層は、エチレン性不飽和化合物として、2官能以上のエチレン性不飽和化合物を含むことが好ましい。
 ここで、2官能以上のエチレン性不飽和化合物とは、一分子中にエチレン性不飽和基を2つ以上有する化合物を意味する。
 エチレン性不飽和基としては、(メタ)アクリロイル基がより好ましい。
 エチレン性不飽和化合物としては、(メタ)アクリレート化合物が好ましい。
 上記感光性層は、硬化後の硬化性の観点から、2官能のエチレン性不飽和化合物(好ましくは、2官能の(メタ)アクリレート化合物)と、3官能以上のエチレン性不飽和化合物(好ましくは、3官能以上の(メタ)アクリレート化合物)と、を含有することが特に好ましい。
 2官能のエチレン性不飽和化合物としては、特に制限はなく、公知の化合物の中から適宜選択できる。
 2官能のエチレン性不飽和化合物としては、トリシクロデカンジメタノールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等が挙げられる。
 2官能のエチレン性不飽和化合物としては、より具体的には、トリシクロデカンジメタノールジアクリレート(A-DCP、新中村化学工業(株)製)、トリシクロデカンジメタノールジメタクリレート(DCP、新中村化学工業(株)製)、1,9-ノナンジオールジアクリレート(A-NOD-N、新中村化学工業(株)製)、1,6-ヘキサンジオールジアクリレート(A-HD-N、新中村化学工業(株)製)等が挙げられる。
 3官能以上のエチレン性不飽和化合物としては、特に制限はなく、公知の化合物の中から適宜選択できる。
 3官能以上のエチレン性不飽和化合物としては、例えば、ジペンタエリスリトール(トリ/テトラ/ペンタ/ヘキサ)(メタ)アクリレート、ペンタエリスリトール(トリ/テトラ)(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、イソシアヌル酸(メタ)アクリレート、グリセリントリ(メタ)アクリレート骨格の(メタ)アクリレート化合物、等が挙げられる。
 ここで、「(トリ/テトラ/ペンタ/ヘキサ)(メタ)アクリレート」は、トリ(メタ)アクリレート、テトラ(メタ)アクリレート、ペンタ(メタ)アクリレート、及びヘキサ(メタ)アクリレートを包含する概念であり、「(トリ/テトラ)(メタ)アクリレート」は、トリ(メタ)アクリレート及びテトラ(メタ)アクリレートを包含する概念である。
 エチレン性不飽和化合物としては、(メタ)アクリレート化合物のカプロラクトン変性化合物(日本化薬(株)製KAYARAD(登録商標)DPCA-20、新中村化学工業(株)製A-9300-1CL等)、(メタ)アクリレート化合物のアルキレンオキサイド変性化合物(日本化薬(株)製KAYARAD RP-1040、新中村化学工業(株)製ATM-35E、A-9300、ダイセル・オルネクス社製 EBECRYL(登録商標) 135等)、エトキシル化グリセリントリアクリレート(新中村化学工業(株)製A-GLY-9E等)等も挙げられる。
 エチレン性不飽和化合物としては、ウレタン(メタ)アクリレート化合物(好ましくは3官能以上のウレタン(メタ)アクリレート化合物)も挙げられる。
 3官能以上のウレタン(メタ)アクリレート化合物としては、例えば、8UX-015A(大成ファインケミカル(株)製)、UA-32P(新中村化学工業(株)製)、UA
-1100H(新中村化学工業(株)製)等が挙げられる。
 また、エチレン性不飽和化合物は、現像性向上の観点から、酸基を有するエチレン性不飽和化合物を含むことが好ましい。
 酸基としては、例えば、リン酸基、スルホン酸基、及び、カルボキシ基が挙げられ、カルボキシ基が好ましい。
 酸基を有するエチレン性不飽和化合物としては、例えば、酸基を有する3~4官能のエチレン性不飽和化合物(ペンタエリスリトールトリ及びテトラアクリレート(PETA)骨格にカルボキシ基を導入したもの(酸価=80~120mgKOH/g))、酸基を有する5~6官能のエチレン性不飽和化合物(ジペンタエリスリトールペンタ及びヘキサアクリレート(DPHA)骨格にカルボキシ基を導入したもの(酸価=25~70mgKOH/g))、等が挙げられる。
 これら酸基を有する3官能以上のエチレン性不飽和化合物は、必要に応じ、酸基を有する2官能のエチレン性不飽和化合物と併用してもよい。
 酸基を有するエチレン性不飽和化合物としては、カルボキシ基を含有する2官能以上のエチレン性不飽和化合物及びそのカルボン酸無水物よりなる群から選ばれる少なくとも1種が好ましい。これにより現像性、及び、硬化膜の強度が高まる。
 カルボキシ基を含有する2官能以上のエチレン性不飽和化合物は、特に制限されず、公知の化合物の中から適宜選択できる。
 カルボキシ基を含有する2官能以上のエチレン性不飽和化合物としては、例えば、アロニックス(登録商標)TO-2349(東亞合成(株)製)、アロニックスM-520(東亞合成(株)製)、又は、アロニックスM-510(東亞合成(株)製)を好ましく用いることができる。
 酸基を有するエチレン性不飽和化合物は、特開2004-239942号公報の段落0025~0030に記載の酸基を有する重合性化合物であることも好ましい。この公報の内容は本明細書に組み込まれる。
 本開示に用いられるエチレン性不飽和化合物の重量平均分子量(Mw)としては、200~3,000が好ましく、250~2,600がより好ましく、280~2,200が更に好ましく、300~2,200が特に好ましい。
 また、上記感光性層に用いられるエチレン性不飽和化合物のうち、分子量300以下のエチレン性不飽和化合物の含有量の割合は、上記感光性層に含有されるすべてのエチレン性不飽和化合物に対して、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が更に好ましい。
 エチレン性不飽和化合物は、1種単独で使用しても、2種以上を併用してもよい。
 上記感光性層におけるエチレン性不飽和化合物の含有量は、上記感光性層の全質量に対し、1質量%~70質量%が好ましく、5質量%~70質量%がより好ましく、10質量%~70質量%が更に好ましく、20質量%~60質量%が特に好ましく、20質量%~50質量%が最も好ましい。
 また、上記感光性層が2官能のエチレン性不飽和化合物と3官能以上のエチレン性不飽和化合物とを含有する場合、2官能のエチレン性不飽和化合物の含有量は、上記感光性層に含まれる全てのエチレン性不飽和化合物に対し、10質量%~90質量%が好ましく、20質量%~85質量%がより好ましく、30質量%~80質量%が更に好ましい。
 また、この場合、3官能以上のエチレン性不飽和化合物の含有量は、上記感光性層に含まれる全てのエチレン性不飽和化合物に対し、10質量%~90質量%が好ましく、15質量%~80質量%がより好ましく、20質量%~70質量%が更に好ましい。
 また、この場合、2官能以上のエチレン性不飽和化合物の含有量は、2官能のエチレン性不飽和化合物と3官能以上のエチレン性不飽和化合物との総含有量に対し、40質量%以上100質量%未満であることが好ましく、40質量%~90質量%であることがより好ましく、50質量%~80質量%であることが更に好ましく、50質量%~70質量%であることが特に好ましい。
 また、上記感光性層が2官能以上のエチレン性不飽和化合物を含有する場合、上記感光性層は、更に単官能エチレン性不飽和化合物を含有してもよい。
 更に、上記感光性層が2官能以上のエチレン性不飽和化合物を含有する場合、上記感光性層に含有されるエチレン性不飽和化合物において、2官能以上のエチレン性不飽和化合物が主成分であることが好ましい。
 具体的には、上記感光性層が2官能以上のエチレン性不飽和化合物を含有する場合において、2官能以上のエチレン性不飽和化合物の含有量は、上記感光性層に含有されるエチレン性不飽和化合物の総含有量に対し、60質量%~100質量%が好ましく、80質量%~100質量%がより好ましく、90質量%~100質量%が特に好ましい。
 また、上記感光性層が、酸基を有するエチレン性不飽和化合物(好ましくは、カルボキシ基を含有する2官能以上のエチレン性不飽和化合物又はそのカルボン酸無水物)を含有する場合、酸基を有するエチレン性不飽和化合物の含有量は、上記感光性層に対し、1質量%~50質量%が好ましく、1質量%~20質量%がより好ましく、1質量%~10質量%が更に好ましい。
<<光重合開始剤>>
 本開示に係る感光性転写材料における感光性層は、光重合開始剤を含有する。
 光重合開始剤としては特に制限はなく、公知の光重合開始剤を用いることができる。
 光重合開始剤としては、オキシムエステル構造を有する光重合開始剤(以下、「オキシム系光重合開始剤」ともいう。)、α-アミノアルキルフェノン構造を有する光重合開始剤(以下、「α-アミノアルキルフェノン系光重合開始剤」ともいう。)、α-ヒドロキシアルキルフェノン構造を有する光重合開始剤(以下、「α-ヒドロキシアルキルフェノン系重合開始剤」ともいう。)、アシルフォスフィンオキサイド構造を有する光重合開始剤(以下、「アシルフォスフィンオキサイド系光重合開始剤」ともいう。)、N-フェニルグリシン構造を有する光重合開始剤(以下、「N-フェニルグリシン系光重合開始剤」ともいう。)等が挙げられる。
 光重合開始剤は、オキシム系光重合開始剤、α-アミノアルキルフェノン系光重合開始剤、α-ヒドロキシアルキルフェノン系重合開始剤及びN-フェニルグリシン系光重合開始剤よりなる群から選ばれる少なくとも1種を含むことが好ましく、オキシム系光重合開始剤、α-アミノアルキルフェノン系光重合開始剤及びN-フェニルグリシン系光重合開始剤よりなる群から選ばれる少なくとも1種を含むことがより好ましい。
 また、光重合開始剤としては、例えば、特開2011-95716号公報の段落0031~0042、特開2015-014783号公報の段落0064~0081に記載された重合開始剤を用いてもよい。
 光重合開始剤の市販品としては、1-[4-(フェニルチオ)]-1,2-オクタンジオン-2-(O-ベンゾイルオキシム)(商品名:IRGACURE(登録商標) OXE-01、BASF社製)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセチルオキシム)(商品名:IRGACURE OXE-02、BASF社製)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(商品名:IRGACURE 379EG、BASF社製)、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(商品名:IRGACURE 907、BASF社製)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン(商品名:IRGACURE 127、BASF社製)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(商品名:IRGACURE 369、BASF社製)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(商品名:IRGACURE 1173、BASF社製)、1-ヒドロキシシクロヘキシルフェニルケトン(商品名:IRGACURE 184、BASF社製)、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名:IRGACURE 651、BASF社製)、オキシムエステル系(商品名:Lunar 6、DKSHジャパン(株)製)などが挙げられる。
 光重合開始剤は、1種単独で使用しても、2種以上を併用してもよい。
 上記感光性層における光重合開始剤の含有量は、特に制限はないが、上記感光性層の全質量に対し、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1.0質量%以上が更に好ましい。
 また、光重合開始剤の含有量は、感光性層の全質量に対し、10質量%以下が好ましく、5質量%以下がより好ましい。
<<ブロックイソシアネート化合物>>
 本開示に係る感光性転写材料における感光性層は、硬化後の硬度の観点から、ブロックイソシアネート化合物を更に含有することが好ましい。
 なお、ブロックイソシアネート化合物とは、「イソシアネートのイソシアネート基をブロック剤で保護(マスク)した構造を有する化合物」のことをいう。
 ブロックイソシアネート化合物の解離温度は、100℃~160℃であることが好ましく、130℃~150℃であることがより好ましい。
 本明細書中におけるブロックイソシアネートの解離温度とは、「示差走査熱量計(セイコーインスツルメンツ(株)製、DSC6200)によりDSC(Differential scanning calorimetry)分析にて測定した場合に、ブロックイソシアネートの脱保護反応に伴う吸熱ピークの温度」のことをいう。
 解離温度が100℃~160℃であるブロック剤としては、ピラゾール化合物(3,5-ジメチルピラゾール、3-メチルピラゾール、4-ブロモ-3,5-ジメチルピラゾール、4-ニトロ-3,5-ジメチルピラゾールなど)、活性メチレン化合物(マロン酸ジエステル(マロン酸ジメチル、マロン酸ジエチル、マロン酸ジn-ブチル、マロン酸ジ2-エチルヘキシル)など)、トリアゾール化合物(1,2,4-トリアゾールなど)、オキシム化合物(ホルムアルドオキシム、アセトアルドオキシム、アセトオキシム、メチルエチルケトオキシム、シクロヘキサノンオキシムなどの分子内に-C(=N-OH)-で表される構造を有する化合物)などが挙げられる。中でも、保存安定性の観点から、オキシム化合物、又は、ピラゾール化合物が好ましく、オキシム化合物が特に好ましい。
 また、ブロックイソシアネート化合物がイソシアヌレート構造を有することが膜の脆性改良、被転写体との密着力向上等の観点から好ましい。イソシアヌレート構造を有するブロックイソシアネート化合物は、例えばヘキサメチレンジイソシアネートをイソシアヌレート化して保護することにより調製することができる。
 イソシアヌレート構造を有するブロックイソシアネート化合物の中でも、オキシム化合物をブロック剤として用いたオキシム構造を有する化合物が、オキシム構造を有さない化合物よりも解離温度を好ましい範囲にしやすく、現像残渣を少なくしやすい観点から好ましい。
 本開示に用いられるブロックイソシアネート化合物は、硬化後の硬度の観点から、ラジカル重合性基を有することが好ましい。
 ラジカル重合性基としては、特に制限はなく、公知の重合性基を用いることができ、例えば、(メタ)アクリロキシ基、(メタ)アクリルアミド基、スチリル基等のエチレン性不飽和基、グリシジル基等のエポキシ基を有する基などが挙げられる。中でも、重合性基としては、得られる硬化膜における表面の面状、現像速度及び反応性の観点から、エチレン性不飽和基であることが好ましく、(メタ)アクリロキシ基であることがより好ましい。
 本開示に用いられるブロックイソシアネート化合物としては、市販のブロックイソシアネート化合物を挙げることもできる。例えば、カレンズAOI-BM、カレンズMOI-BM、カレンズ、カレンズMOI-BP(いずれも昭和電工(株)製)、ブロック型のデュラネートシリーズ(旭化成ケミカルズ(株)製)などを挙げることができる。
 本開示に用いられるブロックイソシアネート化合物は、分子量が200~3,000であることが好ましく、250~2,600であることがより好ましく、280~2,200であることが特に好ましい。
 本開示においては、ブロックイソシアネート化合物を1種単独で使用しても、2種以上を併用してもよい。
 ブロックイソシアネート化合物の含有量は、感光性層の全質量に対して、1質量%~50質量%であることが好ましく、5質量%~30質量%であることがより好ましい。
<<界面活性剤>>
 上記感光性層は、界面活性剤を含有してもよい。
 界面活性剤としては、例えば、特許第4502784号公報の段落0017及び特開2009-237362号公報の段落0060~0071に記載の界面活性剤、公知のフッ素系界面活性剤等を用いることができる。
 界面活性剤としては、フッ素系界面活性剤が好ましい。
 フッ素系界面活性剤の市販品としては、メガファック(登録商標)F551(DIC(株)製)が挙げられる。
 上記感光性層が界面活性剤を含有する場合、界面活性剤の含有量は、上記感光性層の全質量に対して、0.01質量%~3質量%が好ましく、0.05質量%~1質量%がより好ましく、0.1質量%~0.8質量%が更に好ましい。
<<重合禁止剤>>
 上記感光性層は、重合禁止剤を少なくとも1種含有してもよい。
 重合禁止剤としては、例えば、特許第4502784号公報の段落0018に記載された熱重合防止剤(重合禁止剤ともいう)を用いることができる。
 中でも、フェノチアジン、フェノキサジン又は4-メトキシフェノールを好適に用いることができる。
 上記感光性層が重合禁止剤を含有する場合、重合禁止剤の含有量は、上記感光性層の全質量に対して、0.01質量%~3質量%が好ましく、0.01質量%~1質量%がより好ましく、0.01質量%~0.8質量%が更に好ましい。
<<金属酸化抑制剤>>
 上記感光性層は、金属酸化抑制剤を更に含有することが好ましい。
 金属酸化抑制剤は、窒素原子を有する複素芳香環を有する化合物であることが好ましい。窒素原子を有する複素芳香環を有する化合物は、置換基を有してもよい。
 窒素原子を有する複素芳香環としては、イミダゾール環、トリアゾール環、テトラゾール環、チアゾール環、チアジアゾール環、又は、これらのいずれか1つと他の芳香環との縮合環が好ましく、イミダゾール環、トリアゾール環、テトラゾール環又はこれらのいずれか1つと他の芳香環との縮合環であることがより好ましい。
 縮合環を形成する「他の芳香環」は、単素環でも複素環でもよいが、単素環が好ましく、ベンゼン環又はナフタレン環がより好ましく、ベンゼン環が更に好ましい。
 具体的には、イミダゾール、ベンズイミダゾール、トリアゾール、ベンゾトリアゾール、テトラゾール、および、メルカプトチアジアゾールが挙げられる。
 上記感光性層が金属酸化抑制剤を含有する場合、金属酸化抑制剤の含有量は、感光性層の全質量に対し、0.01質量%~20質量%が好ましく、0.05質量%~10質量%がより好ましく、0.1質量%~5質量%が更に好ましい。
<<水素供与性化合物>>
 上記感光性層は、水素供与性化合物を更に含有することが好ましい。
 本開示において水素供与性化合物は、光重合開始剤の活性光線に対する感度を一層向上させる、或いは酸素による重合性化合物の重合阻害を抑制する等の作用を有する。
 このような水素供与性化合物の例としては、アミン類、例えば、M.R.Sanderら著「Journal of Polymer Society」第10巻3173頁(1972)、特公昭44-20189号公報、特開昭51-82102号公報、特開昭52-134692号公報、特開昭59-138205号公報、特開昭60-84305号公報、特開昭62-18537号公報、特開昭64-33104号公報、Research Disclosure 33825号記載の化合物等が挙げられ、具体的には、トリエタノールアミン、p-ジメチルアミノ安息香酸エチルエステル、p-ホルミルジメチルアニリン、p-メチルチオジメチルアニリン等が挙げられる。
 また、水素供与性化合物の更に別の例としては、アミノ酸化合物(例、N-フェニルグリシン等)、特公昭48-42965号公報記載の有機金属化合物(例、トリブチル錫アセテート等)、特公昭55-34414号公報記載の水素供与体、特開平6-308727号公報記載のイオウ化合物(例、トリチアン等)等が挙げられる。
 これら水素供与性化合物の含有量は、重合成長速度と連鎖移動のバランスによる硬化速度の向上の観点から、感光性層の全質量に対し、0.1質量%以上30質量%以下の範囲が好ましく、0.1質量%以上25質量%以下の範囲がより好ましく、0.5質量%以上20質量%以下の範囲が更に好ましい。
<<その他の成分>>
 上記感光性層は、上述した成分以外のその他の成分を含有していてもよい。
 その他の成分としては、例えば、特許第4502784号公報の段落0018に記載の熱重合防止剤、特開2000-310706号公報の段落0058~0071に記載のその他の添加剤、等が挙げられる。
 また、上記感光性層は、その他の成分として、屈折率や光透過性を調節することを目的として、粒子(例えば金属酸化物粒子)を少なくとも1種含んでもよい。
 金属酸化物粒子の金属には、B、Si、Ge、As、Sb、Te等の半金属も含まれる。硬化膜の透明性の観点から、粒子(例えば金属酸化物粒子)の平均一次粒子径は、1~200nmが好ましく、3~80nmがより好ましい。平均一次粒子径は、電子顕微鏡を用いて任意の粒子200個の粒子径を測定し、測定結果を算術平均することにより算出される。粒子の形状が球形でない場合には、最も長い辺を粒子径とする。
 粒子の含有量は、上記感光性層の全質量に対して、0質量%~35質量%が好ましく、0質量%~10質量%がより好ましく、0質量%~5質量%が更に好ましく、0質量%~1質量%が更に好ましく、0質量%(即ち、上記感光性層に粒子が含まれないこと)が特に好ましい。
 また、上記感光性層は、その他の成分として、微量の着色剤(顔料、染料、等)を含有してもよいが、透明性の観点から、着色剤を実質的に含有しないことが好ましい。
 具体的には、上記感光性層における着色剤の含有量は、上記感光性層の全質量に対し、1質量%未満が好ましく、0.1質量%未満がより好ましい。
 上記感光性層の厚さは、20μm以下が好ましく、15μm以下がより好ましく、12μm以下が特に好ましい。
 上記感光性層の厚さが、20μm以下であると、感光性転写材料全体の薄膜化、感光性層又は得られる硬化膜の透過率向上、感光性層又は得られる硬化膜の黄着色化抑制等の面で有利である。
 上記感光性層の厚さは、製造適性の観点から、1μm以上が好ましく、2μm以上がより好ましく、3μm以上が特に好ましい。
 上記感光性層の屈折率としては、1.47~1.56が好ましく、1.50~1.53がより好ましく、1.50~1.52が更に好ましく、1.51~1.52が特に好ましい。
 本開示において、「屈折率」は、波長550nmにおける屈折率を指す。
 本開示における「屈折率」は、特に断りが無い限り、温度23℃において波長550nmの可視光で、エリプソメトリーによって測定した値を意味する。
 上記感光性層の形成方法には、特に限定はなく、公知の方法を用いることができる。
 上記感光性層の形成方法の一例として、仮支持体上に、溶剤を含有する感光性樹脂組成物を塗布し、必要に応じ乾燥させることにより形成する方法が挙げられる。
 塗布の方法としては、公知の方法を用いることができ、例えば、印刷法、スプレー法、ロールコート法、バーコート法、カーテンコート法、スピンコート法、ダイコート法(即ち、スリットコート法)等が挙げられ、ダイコート法が好ましい。
 乾燥の方法としては、自然乾燥、加熱乾燥、減圧乾燥等の公知の方法を、単独で、又は複数組み合わせて適用することができる。
-溶剤-
 上記感光性層の形成には、塗布による感光性層の形成の観点から、溶剤を少なくとも1種含有してもよい。
 溶剤としては、通常用いられる溶剤を特に制限なく用いることができる。
 溶剤としては、有機溶剤が好ましい。
 有機溶剤としては、例えば、メチルエチルケトン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート(別名:1-メトキシ-2-プロピルアセテート)、ジエチレングリコールエチルメチルエーテル、シクロヘキサノン、メチルイソブチルケトン、乳酸エチル、乳酸メチル、カプロラクタム、n-プロパノール、2-プロパノールなどを挙げることができる。また、使用する溶剤は、これらの化合物の混合物である混合溶剤を含有してもよい。
 溶剤としては、メチルエチルケトンとプロピレングリコールモノメチルエーテルアセテートとの混合溶剤、メチルエチルケトンとプロピレングリコールモノメチルエーテルアセテートとプロピレングリコールモノメチルエーテルとの混合溶剤、又はジエチレングリコールエチルメチルエーテルとプロピレングリコールモノメチルエーテルアセテートとの混合溶剤が好ましい。
 溶剤を使用する場合、感光性樹脂組成物の固形分含有量としては、感光性樹脂組成物の全質量に対し、5質量%~80質量%が好ましく、5質量%~40質量%がより好ましく、5質量%~30質量%が特に好ましい。
 また、溶剤を使用する場合、感光性樹脂組成物の粘度(25℃)は、塗布性の観点から、1mPa・s~50mPa・sが好ましく、2mPa・s~40mPa・sがより好ましく、3mPa・s~30mPa・sが特に好ましい。
 粘度は、例えば、VISCOMETER TV-22(東機産業(株)製)を用いて測定する。
 感光性樹脂組成物が溶剤を含有する場合、感光性樹脂組成物の表面張力(25℃)は、塗布性の観点から、5mN/m~100mN/mが好ましく、10mN/m~80mN/mがより好ましく、15mN/m~40mN/mが特に好ましい。
 表面張力は、例えば、Automatic Surface Tensiometer
 CBVP-Z(協和界面科学(株)製)を用いて測定する。
 溶剤としては、米国特許出願公開第2005/282073号明細書の段落0054及び0055に記載のSolventを用いることもでき、この明細書の内容は本明細書に組み込まれる。
 また、溶剤として、必要に応じて沸点が180℃~250℃である有機溶剤(高沸点溶剤)を使用することもできる。
<仮支持体>
 本開示に係る感光性転写材料は、仮支持体を有する。
 仮支持体は、フィルムであることが好ましく、樹脂フィルムであることがより好ましい。
 仮支持体としては、可撓性を有し、かつ、加圧下、又は、加圧及び加熱下において、著しい変形、収縮又は伸びを生じないフィルムを用いることができる。
 このようなフィルムとして、例えば、ポリエチレンテレフタレートフィルム、トリ酢酸セルロースフィルム、ポリスチレンフィルム、ポリイミドフィルム、及びポリカーボネートフィルムが挙げられる。
 中でも、2軸延伸ポリエチレンテレフタレートフィルムが特に好ましい。
 また、仮支持体として使用するフィルムは、シワ等の変形や、傷がないものであることが好ましい。
 仮支持体の厚みは、特に制限はないが、5μm~200μmであることが好ましく、取扱い易さ及び汎用性の観点から、10μm~150μmであることが特に好ましい。
<透明樹脂層>
 本開示に係る感光性転写材料は、更に、感光性層からみて仮支持体が存在する側とは反対側に、透明樹脂層を備えてもよい(例えば、後述する感光性転写材料の具体例参照)。
 透明樹脂層としては、屈折率調整層が好ましく挙げられる。
 屈折率調整層を備える態様の感光性転写材料によれば、透明電極パターンを備えるタッチパネル用基板に対し、感光性転写材料の屈折率調整層及び感光性層を転写することによりタッチパネル用保護層を形成した場合において、透明電極パターンがより視認されにくくなる(すなわち、透明電極パターンの隠蔽性がより向上する。)。透明電極パターンが視認される現象は、一般に、「骨見え」と称されている。
 透明電極パターンが視認される現象、及び、透明電極パターンの隠蔽性については、特開2014-10814号公報及び特開2014-108541号公報を適宜参照できる。
 透明樹脂層は、感光性層に隣接して配置されることが好ましい。
 透明樹脂層の屈折率は、骨見え抑制の観点から、感光性層の屈折率よりも高いことが好ましい。
 透明樹脂層の屈折率は、好ましくは1.50以上、より好ましくは1.55以上、特に好ましくは1.60以上である。
 透明樹脂層の屈折率の上限は特に制限されないが、2.10以下が好ましく、1.85以下がより好ましく、1.78以下が更に好ましく、1.74以下が特に好ましい。
 透明樹脂層は、光硬化性(すなわち、感光性)を有してもよいし、熱硬化性を有していてもよいし、光硬化性及び熱硬化性の両方を有してもよい。
 転写後の光硬化により、強度に優れた硬化膜を形成する観点からは、透明樹脂層は光硬化性を有することが好ましい。
 また、熱硬化により、硬化膜の強度をより向上させることができる観点から、透明樹脂層は熱硬化性を有することが好ましい。 透明樹脂層は、アルカリ可溶性(例えば、弱アルカリ水溶液に対する溶解性)を有することが好ましい。
 透明樹脂層が感光性を有する態様は、転写後において、基板上に転写された感光性層及び透明樹脂層を、一度のフォトリソグラフィによってまとめてパターニングできるという利点を有する。
 透明樹脂層の膜厚としては、500nm以下が好ましく、110nm以下がより好ましく、100nm以下が特に好ましい。
 また、透明樹脂層の膜厚は、20nm以上が好ましく、50nm以上がより好ましく、55nm以上が更に好ましく、60nm以上が特に好ましい。
 透明樹脂層の屈折率は、透明電極パターンの屈折率に応じて調整することが好ましい。
 例えば、ITOからなる透明電極パターンのように透明電極パターンの屈折率が1.8~2.0の範囲である場合は、透明樹脂層の屈折率は、1.60以上が好ましい。この場合の透明樹脂層の屈折率の上限は特に制限されないが、2.1以下が好ましく、1.85以下がより好ましく、1.78以下が更に好ましく、1.74以下が特に好ましい。
 また、例えば、IZO(Indium Zinc Oxide;酸化インジウム亜鉛)からなる透明電極パターンのように、透明電極パターンの屈折率が2.0を超える場合は、透明樹脂層の屈折率は、1.70以上1.85以下が好ましい。
 透明樹脂層の屈折率を制御する方法は、特に制限されず、例えば、所定の屈折率の樹脂を単独で用いる方法、樹脂と金属酸化物粒子又は金属粒子とを用いる方法、金属塩と樹脂との複合体を用いる方法、等が挙げられる。
 透明樹脂層は、屈折率が1.50以上(より好ましくは1.55以上、特に好ましくは1.60以上)である無機粒子、屈折率が1.50以上(より好ましくは1.55以上、特に好ましくは1.60以上)である樹脂、及び、屈折率が1.50以上(より好ましくは1.55以上、特に好ましくは1.60以上)である重合性モノマーからなる群から選ばれる少なくとも1種を含有することが好ましい。
 この態様であると、透明樹脂層の屈折率を1.50以上(より好ましくは1.55以上、特に好ましくは1.60以上)に調整し易い。
 また、透明樹脂層は、バインダーポリマー、エチレン性不飽和化合物、及び、粒子を含有することが好ましい。
 透明樹脂層の成分については、特開2014-108541号公報の段落0019~0040及び0144~0150に記載されている硬化性透明樹脂層の成分、特開2014-10814号公報の段落0024~0035及び0110~0112に記載されている透明層の成分、国際公開第2016/009980号の段落0034~段落0056に記載されているアンモニウム塩を有する組成物の成分等を参照することができる。
 また、透明樹脂層は、金属酸化抑制剤を少なくとも1種含有することが好ましい。
 透明樹脂層が金属酸化抑制剤を含有する場合には、透明樹脂層を基板(即ち、転写対象物)上に転写する際に、透明樹脂層と直接接する部材(例えば、基板上に形成された導電性部材)を表面処理することができる。この表面処理は、透明樹脂層と直接接する部材に対し金属酸化抑制機能(保護性)を付与する。
 金属酸化抑制剤としては、上述したものが挙げられる。
 透明樹脂層は、上述した成分以外のその他の成分を含有していてもよい。
 透明樹脂層に含有され得るその他の成分としては、上述した感光性層に含まれる各成分と同様のものが挙げられる。
 透明樹脂層は、その他の成分として、界面活性剤を含有することが好ましい。
 透明樹脂層の形成方法には特に限定はない。
 透明樹脂層の形成方法の一例として、仮支持体上に形成された上述の感光性層上に、水系溶剤を含有する態様の透明樹脂層形成用組成物を塗布し、必要に応じ乾燥させることにより形成する方法が挙げられる。
 塗布及び乾燥の方法の具体例は、それぞれ、感光性層を形成する際の塗布及び乾燥の具体例と同様である。
 透明樹脂層形成用組成物は、上述した透明樹脂層の各成分を含有し得る。
 透明樹脂層形成用組成物は、例えば、バインダーポリマー、エチレン性不飽和化合物、粒子、及び水系溶剤を含有する。
 また、透明樹脂層形成用組成物としては、国際公開第2016/009980号の段落0034~0056に記載されている、アンモニウム塩を有する組成物も好ましい。
<保護フィルム>
 本開示に係る感光性転写材料は、更に、感光性層からみて仮支持体とは反対側に、保護フィルムを備えていてもよい。
 本開示に係る感光性転写材料が、感光性層からみて仮支持体とは反対側に透明樹脂層を備える場合には、保護フィルムは、好ましくは、透明樹脂層からみて仮支持体とは反対側に配置される。
 保護フィルムとしては、例えば、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、ポリスチレンフィルム、及びポリカーボネートフィルムが挙げられる。
 保護フィルムとしては、例えば、特開2006-259138号公報の段落0083~0087及び0093に記載のものを用いてもよい。
<熱可塑性樹脂層>
 本開示に係る感光性転写材料は、更に、仮支持体と感光性層との間に、熱可塑性樹脂層を備えていてもよい。
 感光性転写材料が熱可塑性樹脂層を備える場合には、感光性転写材料を基板に転写して積層体を形成した場合に、積層体の各要素に気泡が発生しにくくなる。この積層体を画像表示装置に用いた場合には、画像ムラなどが発生し難くなり、優れた表示特性が得られる。
 熱可塑性樹脂層は、アルカリ可溶性を有することが好ましい。
 熱可塑性樹脂層は、転写時において、基板表面の凹凸を吸収するクッション材として機能する。
 基板表面の凹凸には、既に形成されている、画像、電極、配線なども含まれる。熱可塑性樹脂層は、凹凸に応じて変形し得る性質を有していることが好ましい。
 熱可塑性樹脂層は、特開平5-72724号公報に記載の有機高分子物質を含むことが好ましく、ヴィカー(Vicat)法(具体的には、アメリカ材料試験法エーエステーエムデーASTMD1235によるポリマー軟化点測定法)による軟化点が約80℃以下の有機高分子物質を含むことがより好ましい。
 熱可塑性樹脂層の厚さとしては、3μm~30μmが好ましく、4μm~25μmがより好ましく、5μm~20μmが更に好ましい。
 熱可塑性樹脂層の厚さが3μm以上であると、基板表面の凹凸に対する追従性が向上するので、基板表面の凹凸をより効果的に吸収できる。
 熱可塑性樹脂層の厚さが30μm以下であると、プロセス適性がより向上する。例えば、仮支持体に熱可塑性樹脂層を塗布形成する際の乾燥(溶剤除去)の負荷がより軽減され、また、転写後の熱可塑性樹脂層の現像時間が短縮される。
 熱可塑性樹脂層は、溶剤及び熱可塑性の有機高分子を含む熱可塑性樹脂層形成用組成物を仮支持体に塗布し、必要に応じ乾燥させることによって形成され得る。
 塗布及び乾燥の方法の具体例は、それぞれ、感光性層を形成する際の塗布及び乾燥の具体例と同様である。
 溶剤としては、熱可塑性樹脂層を形成する高分子成分を溶解するものであれば、特に制限されず、有機溶剤(例えば、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、n-プロパノール、及び2-プロパノール)が挙げられる。
 熱可塑性樹脂層は、100℃で測定した粘度が1,000~10,000Pa・sであることが好ましい。また、100℃で測定した熱可塑性樹脂層の粘度が、100℃で測定した感光性層の粘度よりも低いことが好ましい
<中間層>
 本開示に係る感光性転写材料は、更に、仮支持体と感光性層との間に、中間層を備えていてもよい。
 本開示に係る感光性転写材料が熱可塑性樹脂層を備える場合、中間層は、好ましくは、熱可塑性樹脂層と感光性層との間に配置される。
 中間層の成分としては、例えば、ポリビニルアルコール、ポリビニルピロリドン、セルロース、又は、これらのうちの少なくとも2種を含む混合物である樹脂が挙げられる。
 また、中間層としては、特開平5-72724号公報に「分離層」として記載されているものを用いることもできる。
 仮支持体上に熱可塑性樹脂層、中間層、及び感光性層をこの順に備える態様の感光性転写材料を製造する場合において、中間層は、例えば、熱可塑性樹脂層を溶解しない溶剤と、中間層の成分としての上記樹脂と、を含有する中間層形成用組成物を塗布し、必要に応じ乾燥させることによって形成され得る。塗布及び乾燥の方法の具体例は、それぞれ、感光性層を形成する際の塗布及び乾燥の具体例と同様である。
 上記の場合、例えば、まず、仮支持体上に熱可塑性樹脂層形成用組成物を塗布し、乾燥させて熱可塑性樹脂層を形成する。次いで、この熱可塑性樹脂層上に中間層形成用組成物を塗布し、乾燥させて中間層を形成する。その後、中間層上に、有機溶剤を含有する態様の感光性樹脂組成物を塗布し、乾燥させて感光性層を形成する。この場合の有機溶剤は、中間層を溶解しない有機溶剤であることが好ましい。
<感光性転写材料の具体例>
 図1は、本開示に係る感光性転写材料の一具体例である感光性転写材料10の概略断面図である。
 図1に示されるように、感光性転写材料10は、保護フィルム16/透明樹脂層20A/感光性層18A/仮支持体12の積層構造(即ち、仮支持体12と、感光性層18Aと、透明樹脂層20Aと、保護フィルム16と、がこの順に配置された積層構造)を有する。
 ただし、本開示に係る感光性転写材料は、感光性転写材料10であることには限定されず、例えば、透明樹脂層20A及び保護フィルム16は省略されていてもよい。また、仮支持体12と感光性層18Aとの間に、上述の熱可塑性樹脂層及び中間層の少なくとも一方を備えていてもよい。
 透明樹脂層20Aは、感光性層18Aからみて仮支持体12が存在する側とは反対側に配置された層であり、波長550nmにおける屈折率が1.50以上である層である。
 感光性転写材料10は、ネガ型材料(ネガ型フィルム)である。
 感光性転写材料10の製造方法は、特に制限されない。
 感光性転写材料10の製造方法は、例えば、仮支持体12上に感光性層18Aを形成する工程と、感光性層18A上に透明樹脂層20Aを形成する工程と、透明樹脂層20A上に保護フィルム16を形成する工程と、をこの順に含む。
 感光性転写材料10の製造方法は、透明樹脂層20Aを形成する工程と保護フィルム16を形成する工程との間に、国際公開第2016/009980号の段落0056に記載されている、アンモニアを揮発させる工程を含んでもよい。
(電極保護膜、積層体、及び、静電容量型入力装置)
 本開示に係る電極保護膜は、本開示に係る感光性転写材料から、上記仮支持体が取り除かれた感光性層を硬化してなる電極保護膜である。
 本開示に係る電極保護膜は、静電容量型入力装置の電極保護膜であることが好ましく、タッチパネル用電極保護膜であることがより好ましい。
 以下に述べる本開示に係る積層体は、本開示に係る電極保護膜を有する。
 本開示に係る積層体は、基板上に、本開示に係る感光性転写材料から上記仮支持体を除いた後の感光性層を上記基板側から順に有する。また、上記積層体における上記感光性層は、硬化した感光性層(硬化膜ともいう。)であってもよい。
 本開示に係る静電容量型入力装置は、本開示に係る電極保護膜、又は、本開示に係る積層体を有する。
 上記基板は、静電容量型入力装置の電極を含む基板であることが好ましい。
 静電容量型入力装置の電極は、透明電極パターンであっても、引き回し配線であってもよい。積層体は、静電容量型入力装置の電極が、電極パターンであることが好ましく、透明電極パターンであることがより好ましい。
 本開示に係る積層体においては、透明電極パターンの隠蔽性を良好にする観点から、基板と、透明電極パターンと、透明電極パターンに隣接して配置された透明樹脂層と、透明樹脂層に隣接して配置された感光性層と、を有し、透明樹脂層の屈折率が感光性層の屈折率よりも高いことが好ましい。透明樹脂層の屈折率は、1.6以上であることが好ましい。
 上記基板としては、ガラス基板又は樹脂基板が好ましい。
 また、基板は、透明な基板であることが好ましく、透明な樹脂基板であることがより好ましい。透明の意味については、上述のとおりである。
 基板の屈折率は、1.50~1.52が好ましい。
 ガラス基板としては、例えば、コーニング社のゴリラガラス(登録商標)などの強化ガラスを用いることができる。
 樹脂基板としては、光学的に歪みがないもの及び透明度が高いものの少なくとも一方を用いることが好ましく、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、トリアセチルセルロース(TAC)、ポリイミド(PI)、ポリベンゾオキサゾール(PBO)、シクロオレフィンポリマー(COP)等の樹脂からなる基板が挙げられる。
 透明な基板の材質としては、特開2010-86684号公報、特開2010-152809号公報、及び特開2010-257492号公報に記載されている材質が好ましく用いられる。
 上記静電容量型入力装置としては、タッチパネルが好適に挙げられる。
 タッチパネル用電極としては、例えば、タッチパネルの少なくとも画像表示領域に配置される透明電極パターンが挙げられる。タッチパネル用電極は、画像表示領域からタッチパネルの枠部にまで延びていてもよい。
 タッチパネル用配線としては、例えば、タッチパネルの枠部に配置される引き回し配線(取り出し配線)が挙げられる。
 タッチパネル用基板及びタッチパネルの好ましい態様は、透明電極パターンのタッチパネルの枠部に延びている部分に、引き回し配線の一部が積層されることにより、透明電極パターンと引き回し配線とが電気的に接続されている態様が好適である。
 透明電極パターンの材質としては、ITO(酸化インジウムスズ)、IZO(酸化インジウム亜鉛)等の金属酸化膜が好ましい。
 引き回し配線の材質としては、金属が好ましい。引き回し配線の材質である金属としては、金、銀、銅、モリブデン、アルミニウム、チタン、クロム、亜鉛及びマンガン、並びに、これらの金属元素の2種以上からなる合金が挙げられる。引き回し配線の材質としては、銅、モリブデン、アルミニウム又はチタンが好ましく、銅が特に好ましい。
 本開示に係るタッチパネル用電極保護膜は、電極等(すなわち、タッチパネル用電極及びタッチパネル用配線の少なくとも一方)を保護する目的で、電極等を直接又は他の層を介して覆うように設けられる。
 タッチパネル用電極保護膜の厚さの好ましい範囲は、上述した感光性層の厚さの好ましい範囲と同様である。
 本開示に係る電極保護膜、好ましくはタッチパネル用電極保護膜は、開口部を有していてもよい。
 上記開口部は、感光性層の非露光部が現像液によって溶解されることによって形成され得る。
 この場合において、タッチパネル用電極保護膜が、感光性転写材料を用いて高温のラミネート条件で形成された場合においても、タッチパネル用電極保護膜の開口部における現像残渣が抑制される。
 タッチパネルは、更に、電極等とタッチパネル用電極保護層との間に第一屈折率調整層を備えていてもよい(例えば、後述するタッチパネルの第1具体例参照)。
 第一屈折率調整層の好ましい態様は、感光性転写材料に備えられ得る透明樹脂層の好ましい態様と同様である。第一屈折率調整層は、第一屈折率調整層形成用組成物の塗布及び乾燥によって形成されてもよいし、別途、屈折率調整層を備える感光性転写材料の屈折率調整層を転写することによって形成されてもよい。
 第一屈折率調整層を備える態様のタッチパネルは、好ましくは、透明樹脂層を備える態様の本開示に係る感光性転写材料を用い、感光性転写材料における感光性層及び透明樹脂層を転写することによって形成することが好ましい。この場合、感光性転写材料における感光性層からタッチパネル用電極保護層が形成され、感光性転写材料における透明樹脂層から第一屈折率調整層が形成される。
 また、タッチパネル又はタッチパネル用基板は、基板と電極等との間に、第二屈折率調整層を備えていてもよい(例えば、後述するタッチパネルの第1具体例参照)。
 第二屈折率調整層の好ましい態様は、感光性転写材料に備えられ得る透明樹脂層の好ましい態様と同様である。
 タッチパネルが第一屈折率調整層を備える態様(より好ましくは第一屈折率調整層及び第二屈折率調整層を備える態様)は、電極等が視認されにくくなる(即ち、いわゆる骨見えが抑制される)という利点を有する。
 タッチパネルの構造については、特開2014-10814号公報又は特開2014-108541号公報に記載の静電容量型入力装置の構造を参照してもよい。
<タッチパネルの第1具体例>
 図2は、本開示に係るタッチパネルの第1具体例であるタッチパネル30の概略断面図である。より詳細には、図2は、タッチパネル30の画像表示領域の概略断面図である。
 図2に示されるように、タッチパネル30は、基板32と、第二屈折率調整層36と、タッチパネル用電極としての透明電極パターン34と、第一屈折率調整層20と、タッチパネル用電極保護膜18と、がこの順序で配置された構造を有する。
 タッチパネル30では、タッチパネル用電極保護膜18及び第一屈折率調整層20が、透明電極パターン34の全体を覆っている。しかし本開示に係るタッチパネルはこの態様には限定されない。タッチパネル用電極保護膜18及び第一屈折率調整層20は、透明電極パターン34の少なくとも一部を覆っていればよい。
 また、第二屈折率調整層36及び第一屈折率調整層20は、それぞれ、透明電極パターン34が存在する第1領域40及び透明電極パターン34が存在しない第2領域42を、直接又は他の層を介して連続して被覆することが好ましい。これにより、透明電極パターン34がより視認されにくくなる。
 第二屈折率調整層36及び第一屈折率調整層20は、第1領域40及び第2領域42の両方を、他の層を介して被覆するよりも、直接被覆することが好ましい。「他の層」としては、例えば、絶縁層、透明電極パターン34以外の電極パターン、等が挙げられる。
 第一屈折率調整層20は、第1領域40及び第2領域42の両方にまたがって積層されている。第一屈折率調整層20は、第二屈折率調整層36と隣接しており、更に、透明電極パターン34とも隣接している。
 第二屈折率調整層36と接触する箇所における透明電極パターン34の端部の形状が、図2に示される如きテーパー形状である場合は、テーパー形状に沿って(すなわち、テーパー角と同じ傾きで)、第一屈折率調整層20が積層されていることが好ましい。
 透明電極パターン34としては、ITO透明電極パターンが好適である。
 透明電極パターン34は、例えば、以下の方法により形成できる。
 第二屈折率調整層36が形成された基板32の上に、スパッタリングにより電極用薄膜(例えばITO膜)を形成する。この電極用薄膜の上に、エッチング用感光性レジストを塗布することにより、又は、エッチング用感光性フィルムを転写することにより、エッチング保護層を形成する。次いで、露光及び現像により、このエッチング保護層を所望とするパターン形状にパターニングする。次いで、エッチングにより、電極用薄膜のうちパターニングされたエッチング保護層に覆われていない部分を除去する。これにより、電極用薄膜を所望の形状のパターン(すなわち、透明電極パターン34)とする。続いて、剥離液によりパターニングされたエッチング保護層を除去する。
 第一屈折率調整層20及びタッチパネル用電極保護膜18は、例えば以下のようにして、第二屈折率調整層36及び透明電極パターン34が順次設けられた基板32(即ち、タッチパネル用基板)の上に形成される。
 まず、図1に示した感光性転写材料10(すなわち、保護フィルム16/透明樹脂層20A/感光性層18A/仮支持体12の積層構造を有する感光性転写材料10)を準備する。
 次に、感光性転写材料10から保護フィルム16を取り除く。
 次に、保護フィルム16が取り除かれた感光性転写材料10を、第二屈折率調整層36及び透明電極パターン34が順次設けられた基板32(即ち、タッチパネル用基板)の上にラミネートする。ラミネートは、保護フィルム16が取り除かれた感光性転写材料10の透明樹脂層20Aと、透明電極パターン34と、が接する向きで行う。このラミネートにより、仮支持体12/感光性層18A/透明樹脂層20A/透明電極パターン34/第二屈折率調整層36/基板32の積層構造を有する積層体が得られる。
 次に、積層体から仮支持体12を取り除く。
 次に、仮支持体12が取り除かれた積層体をパターン露光することにより、感光性層18A及び透明樹脂層20Aをパターン状に硬化させる。感光性層18A及び透明樹脂層20Aのパターン状に硬化は、それぞれ別個のパターン露光によって別個に行ってもよいが、1回のパターン露光によって同時に行うことが好ましい。
 次に、現像によって感光性層18A及び透明樹脂層20Aの非露光部(即ち、非硬化部)を除去することにより、感光性層18Aのパターン状の硬化物であるタッチパネル用電極保護膜18(パターン形状については不図示)、及び、透明樹脂層20Aのパターン状の硬化物である第一屈折率調整層20(パターン形状については不図示)をそれぞれ得る。パターン露光後の感光性層18A及び透明樹脂層20Aの現像は、それぞれ別個の現像によって別個に行ってもよいが、1回の現像によって同時に行うことが好ましい。
 ラミネート、パターン露光、現像の好ましい態様は後述する。
 タッチパネルの構造については、特開2014-10814号公報又は特開2014-108541号公報に記載の静電容量型入力装置の構造を参照してもよい。
<タッチパネルの第2具体例>
 図3は、本開示に係るタッチパネルの第2具体例であるタッチパネル90の概略断面図である。
 図3に示されるように、タッチパネル90は、画像表示領域74及び画像非表示領域75を有する。
 図3に示されるように、タッチパネル90は、基板32の両面にタッチパネル用電極を備えている。詳細には、タッチパネル90は、基板32の一方の面に第1透明電極パターン70を備え、他方の面に第2透明電極パターン72を備えている。
 タッチパネル90では、第1透明電極パターン70及び第2透明電極パターン72のそれぞれに、引き回し配線56が接続されている。引き回し配線56は、例えば銅配線である。
 タッチパネル90では、基板32の一方の面において、第1透明電極パターン70及び引き回し配線56を覆うようにタッチパネル用電極保護膜18が形成されており、基板3
2の他方の面において、第2透明電極パターン72及び引き回し配線56を覆うようにタッチパネル用電極保護膜18が形成されている。
 基板32の一方の面及び他方の面には、それぞれ、第1具体例における第一屈折率調整層及び第二屈折率調整層が設けられていてもよい。
<タッチパネルの製造方法>
 本開示に係るタッチパネルを製造する方法には、特に制限はないが、以下の製造方法が好ましい。
 本開示に係るタッチパネルの好ましい製造方法は、
 基板上に電極等(すなわち、タッチパネル用電極及びタッチパネル用配線の少なくとも一方)が配置された構造を有するタッチパネル用基板を準備する工程(以下、「準備工程」ともいう。)と、
 タッチパネル用基板の電極等が配置された側の面の上に、本開示に係る感光性転写材料を用いて感光性層を形成する工程(以下、「感光性層形成工程」ともいう。)と、
 タッチパネル用基板の上記面の上に形成された感光性層をパターン露光する工程(以下、「パターン露光工程」ともいう。)と、
 パターン露光された感光性層を現像することにより、電極等の少なくとも一部を保護するタッチパネル用電極保護膜を得る工程(以下、「現像工程」ともいう。)と、
を含む。
 上記好ましい製造方法によれば、曲げ耐性に優れたタッチパネル用電極保護膜を備えるタッチパネルを製造できる。
 また、上記好ましい製造方法では、本開示に係る感光性転写材料を用い高温のラミネート条件で感光性層を形成した場合においても、現像後の感光性層の非露光部において、現像残渣の発生が抑制される。
 以下、上記好ましい製造方法の各工程について説明する。
<準備工程>
 準備工程は、便宜上の工程であり、基板上に電極等(すなわち、タッチパネル用電極及びタッチパネル用配線の少なくとも一方)が配置された構造を有するタッチパネル用基板を準備する工程である。
 準備工程は、予め製造されたタッチパネル用基板を単に準備するだけの工程であってもよいし、タッチパネル用基板を製造する工程であってもよい。
 タッチパネル用基板の好ましい態様は、タッチパネルの第1具体例及びタッチパネルの第2具体例にて上述のとおりである。
<感光性層形成工程>
 感光性層形成工程は、タッチパネル用基板の電極等が配置された側の面の上に、本開示に係る感光性転写材料を用いて感光性層を形成する工程である。
 以下、感光性層形成工程において、本開示に係る感光性転写材料を用いる態様について説明する。
 この態様では、本開示に係る感光性転写材料をタッチパネル用基板の電極等が配置された側の面の上にラミネートし、本開示に係る感光性転写材料の感光性層を上記面の上に転写することにより、上記面の上に感光性層を形成する。
 ラミネート(感光性層の転写)は、真空ラミネーター、オートカットラミネーター等の公知のラミネーターを用いて行うことができる。
 ラミネート条件としては、一般的な条件を適用できる。
 ラミネート温度としては、80℃~150℃が好ましく、90℃~150℃がより好ましく、100℃~150℃が特に好ましい。
 上述のとおり、本開示に係る感光性転写材料を用いる態様では、ラミネート温度が高温(例えば120℃~150℃)である場合においても、熱かぶりによる現像残渣の発生が抑制される。
 ゴムローラーを備えたラミネーターを用いる場合、ラミネート温度は、ゴムローラー温度を指す。
 ラミネート時の基板温度には特に制限はない。ラミネート時の基板温度としては、10℃~150℃が挙げられ、20℃~150℃が好ましく、30℃~150℃がより好ましい。基板として樹脂基板を用いる場合には、ラミネート時の基板温度としては、10℃~80℃が好ましく、20℃~60℃がより好ましく、30℃~50℃が特に好ましい。
 また、ラミネート時の線圧としては、0.5N/cm~20N/cmが好ましく、1N/cm~10N/cmがより好ましく、1N/cm~5N/cmが特に好ましい。
 また、ラミネート時の搬送速度(ラミネート速度)としては、0.5m/分~5m/分が好ましく、1.5m/分~3m/分がより好ましい。
 保護フィルム/感光性層/中間層/熱可塑性樹脂層/仮支持体の積層構造を有する感光性転写材料を用いる場合には、まず、感光性転写材料から保護フィルムを剥離して感光性層を露出させ、次いで、露出した感光性層とタッチパネル用基板の電極等が配置された側の面とが接するようにして、感光性転写材料とタッチパネル用基板とを貼り合わせ、次いで加熱及び加圧を施す。これにより、感光性転写材料の感光性層が、タッチパネル用基板の電極等が配置された側の面上に転写され、仮支持体/熱可塑性樹脂層/中間層/感光性層/電極等/基板の積層構造を有する積層体が形成される。この積層構造のうち、「電極等/基板」の部分が、タッチパネル用基板である。
 その後、必要に応じ、上記積層体から仮支持体を剥離する。ただし、仮支持体を残したまま、後述のパターン露光を行うこともできる。
 タッチパネル用基板上に感光性転写材料の感光性層を転写し、パターン露光し、現像する方法の例としては、特開2006-23696号公報の段落0035~0051の記載を参照することもできる。
<パターン露光工程>
 パターン露光工程は、タッチパネル用基板上に形成された感光性層をパターン露光する工程である。
 ここで、パターン露光とは、パターン状に露光する態様、すなわち、露光部と非露光部とが存在する態様の露光を指す。
 タッチパネル用基板上の感光性層のうち、パターン露光における露光部が硬化され、最終的に硬化膜となる。
 一方、タッチパネル用基板上の感光性層のうち、パターン露光における非露光部は硬化せず、次の現像工程で、現像液によって除去(溶解)される。非露光部は、現像工程後、硬化膜の開口部を形成し得る。
 パターン露光は、マスクを介した露光でもよいし、レーザー等を用いたデジタル露光でもよい。
 パターン露光の光源としては、感光性層を硬化し得る波長域の光(例えば、365nm又は405nm)を照射できるものであれば適宜選定して用いることができる。光源としては、例えば、各種レーザー、発光ダイオード(LED)、超高圧水銀灯、高圧水銀灯、及び、メタルハライドランプが挙げられる。露光量は、好ましくは5mJ/cm~200mJ/cmであり、より好ましくは10mJ/cm~200mJ/cmである。
 感光性転写材料を用いて基板上に感光性層を形成した場合には、パターン露光は、仮支持体を剥離してから行ってもよいし、仮支持体を剥離する前に露光し、その後、仮支持体を剥離してもよい。
 また、露光工程では、パターン露光後であって現像前に、感光性層に対し熱処理(いわゆるPEB(Post Exposure Bake))を施してもよい。
<現像工程>
 現像工程は、パターン露光された感光性層を現像することにより(即ち、パターン露光における非露光部を現像液に溶解させることにより)、電極等の少なくとも一部を保護するタッチパネル用電極保護膜を得る工程である。
 現像に用いる現像液は特に制限されず、特開平5-72724号公報に記載の現像液など、公知の現像液を用いることができる。
 現像液としては、アルカリ性水溶液を用いることが好ましい。
 アルカリ性水溶液に含有され得るアルカリ性化合物としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、コリン(2-ヒドロキシエチルトリメチルアンモニウムヒドロキシド)、等が挙げられる。
 アルカリ性水溶液の25℃におけるpHとしては、8~13が好ましく、9~12がより好ましく、10~12が特に好ましい。
 アルカリ性水溶液中におけるアルカリ性化合物の含有量は、アルカリ性水溶液全質量に対し、0.1質量%~5質量%が好ましく、0.1質量%~3質量%がより好ましい。
 現像液は、水に対して混和性を有する有機溶剤を含有してもよい。
 有機溶剤としては、例えば、メタノール、エタノール、2-プロパノール、1-プロパノール、ブタノール、ジアセトンアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-ブチルエーテル、ベンジルアルコール、アセトン、メチルエチルケトン、シクロヘキサノン、ε-カプロラクトン、γ-ブチロラクトン、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホルアミド、乳酸エチル、乳酸メチル、ε-カプロラクタム、及び、N-メチルピロリドンを挙げることができる。
 有機溶剤の濃度は、0.1質量%~30質量%が好ましい。
 現像液は、公知の界面活性剤を含んでもよい。界面活性剤の濃度は0.01質量%~10質量%が好ましい。
 現像液の液温度は20℃~40℃が好ましい。
 現像の方式としては、例えば、パドル現像、シャワー現像、シャワー及びスピン現像、ディップ現像、等の方式が挙げられる。
 シャワー現像を行う場合、パターン露光後の感光性層に現像液をシャワー状に吹き付けることにより、感光性層の非露光部を除去する。感光性層と熱可塑性樹脂層及び中間層の少なくとも一方とを備える感光性転写材料を用いた場合には、これらの層の基板上への転写後であって感光性層の現像の前に、感光性層の溶解性が低いアルカリ性の液をシャワー状に吹き付け、熱可塑性樹脂層及び中間層の少なくとも一方(両方存在する場合には両方)を予め除去してもよい。
 また、現像の後に、洗浄剤などをシャワーにより吹き付けつつブラシなどで擦ることにより、現像残渣を除去することが好ましい。
 現像液の液温度は、20℃~40℃が好ましい。
 現像工程は、上記現像を行う段階と、上記現像によって得られた硬化膜を加熱処理(以下、「ポストベーク」ともいう)する段階と、を含んでいてもよい。
 基板が樹脂基板である場合には、ポストベークの温度は、100℃~160℃が好ましく、130℃~160℃がより好ましい。
 このポストベークにより、透明電極パターンの抵抗値を調整することもできる。
 また、感光性層がカルボキシ基含有(メタ)アクリル樹脂を含む場合には、ポストベークにより、カルボキシ基含有(メタ)アクリル樹脂の少なくとも一部をカルボン酸無水物に変化させることができる。これにより、現像性、及び、硬化膜の強度に優れる。
 また、現像工程は、上記現像を行う段階と、上記現像によって得られた硬化膜を露光(以下、「ポスト露光」ともいう。)する段階と、を含んでいてもよい。
 現像工程がポスト露光する段階及びポストベークする段階を含む場合、好ましくは、ポスト露光、ポストベークの順序で実施する。
 パターン露光、現像などについては、例えば、特開2006-23696号公報の段落0035~0051の記載を参照することもできる。
 本開示に係るタッチパネルの好ましい製造方法は、上述した工程以外のその他の工程を含んでいてもよい。その他の工程としては、通常のフォトリソ工程に設けられることがある工程(例えば、洗浄工程など)を特に制限なく適用できる。
(画像表示装置)
 本開示に係る画像表示装置は、本開示に係る静電容量型入力装置、好ましくは本開示に係るタッチパネル(例えば、第1~第2具体例のタッチパネル)を備える。
 本開示に係る画像表示装置としては、本開示に係るタッチパネルを公知の液晶表示素子と重ね合わせた構造を有する液晶表示装置が好ましい。
 タッチパネルを備える画像表示装置の構造としては、例えば、『最新タッチパネル技術』(2009年7月6日発行(株)テクノタイムズ)、三谷雄二監修、『タッチパネルの技術と開発』、シーエムシー出版(2004,12)、FPD International 2009 Forum T-11講演テキストブック、Cypress Semiconductor Corporation アプリケーションノートAN2292に開示されている構造を適用することができる。
 以下に実施例を挙げて本開示を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本開示の趣旨を逸脱しない限り、適宜、変更することができる。従って、本開示の範囲は以下に示す具体例に限定されるものではない。なお、特に断りのない限り、「部」、「%」は質量基準である。
 なお、以下の実施例において、樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算で求めた重量平均分子量である。
(実施例1~39、及び、比較例1~5)
<感光性樹脂組成物の調製>
 下記表1~表3に示す組成の固形分割合となるように材料を混合し、更に、有機溶媒を加えて、固形分100質量部あたり、プロピレングリコールモノメチルエーテルアセテート(PGMEA、(株)ダイセル製)25.5質量部、プロピレングリコールモノメチルエーテル(MFG、和光純薬工業(株)製)67.8質量部、メチルエチルケトン(MEK、丸善石油化学(株)製)151.5質量部が含まれる溶液とすることで、実施例1~39、及び、比較例1~5の感光性樹脂組成物溶液を調製した。
<感光性転写材料の作製>
 ポリエチレンテレフタレートフィルムである厚み16μmの仮支持体の上に、スリット状ノズルを用いて、得られた感光性樹脂組成物溶液を塗布し、乾燥後膜厚が8μmの感光性層を形成した。感光性層の上に保護フィルム(厚さ16μmのポリエチレンフタレートフィルム)を圧着し、実施例1~39、及び、比較例1~5の感光性転写材料をそれぞれ作製した。
<曲げ耐性の評価>
-曲げ耐性評価用試料の作製-
 得られた感光性転写材料を、保護フィルムを剥離してから、145℃30分間の熱処理をした東洋紡(株)製ポリエチレンテレフタレートフィルムのコスモシャインA4300(厚み50μm)の両方の面の上にラミネートし、仮支持体/厚さ8μmの感光性層/コスモシャインA4300(厚み50μm)/厚さ8μmの感光性層/仮支持体の層構造を有する積層体Aを形成した。ラミネートの条件は、ラミロール温度110℃、線圧3N/cm、搬送速度2m/分とした。
 その後、超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株)製)を用いて、仮支持体を介して露光量100mJ/cm(i線)で両面露光した。両面の仮支持体を剥離してから、更に露光量375mJ/cm(i線)で両面露光した後、145℃、30分間のポストベークを行うことにより、感光性層を硬化させて硬化膜を形成した。
 このようにして、厚さ8μmの硬化された感光性層/コスモシャインA4300(厚み50μm)/厚さ8μmの硬化された感光性層からなる曲げ耐性評価用試料を得た。
-曲げ耐性の評価-
 曲げ耐性評価用試料を用い、以下のようにして曲げ耐性を評価した。
 上述の曲げ耐性評価用試料を5cm×12cmの長方形に裁断した。裁断した曲げ耐性評価用試料102を図4及び図5に示すように、高さ5cmの2個のスペーサーA104を介して上下の金属板106にテープで貼り合せ、U字の形に固定し、更に上側の金属板の上に1kgのおもり108を載せた。
 なお、図5において、曲げ耐性評価用試料102、2個のスペーサーA104、及び、2個のスペーサーB110は、重力方向上側から見た場合は、直接視認できないが、点線により記載した。
 次に、図4及び図5に示すように、指定のGap(高さd)の2個のスペーサーB110を金属板106に載せたのち、スペーサーA104を金属板106の外側(図4及び図5の矢印の向き)に同時に手で移動させることで、上側の金属板106をスペーサーB110の上まで自由落下させた(図6の状態)。
 上記動作(図4の状態と図6の状態との繰り返し)を15回繰り返した後の曲げ耐性評価用試料を金属板106からテープを剥がして外したのち、曲げ耐性評価用試料102の表面のクラックの有無を目視で確認した。
 このスペーサーB110のGap(高さd)を変えながら、上記の動作を行い、クラックが発生しない最も小さいGap(スペーサーB110の高さd)を求めた。下記評価基準において、Aが曲げ耐性が最も良く、Eが曲げ耐性が最も悪い。A、B、Cのいずれかであれば、実用に適し、Aが最も好ましい。
  A:クラックが発生しない最も小さいGapが4mm以下
  B:クラックが発生しない最も小さいGapが4mmより大きく5mm以下
  C:クラックが発生しない最も小さいGapが5mmより大きく6mm以下
  D:クラックが発生しない最も小さいGapが6mmより大きく7mm以下
  E:クラックが発生しない最も小さいGapが7mmより大きい
<硬度の評価>
-硬度評価用試料の作製-
 得られた感光性転写材料を4.5cm×9cmの大きさに裁断し、保護フィルムを剥離してから、5cm×10cmの大きさのガラス(イーグルXG、コーニング社製)上にラミネートし、仮支持体/厚さ8μmの感光性層/ガラスの層構造を有する積層体を形成した。ラミネートの条件は、ラミロール温度110℃、線圧3N/cm、搬送速度2m/分とした。
 その後、超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株)製)を用いて、仮支持体を介して露光量100mJ/cm(i線)で全面露光した。仮支持体を剥離してから、更に露光量375mJ/cm(i線)で露光した後、145℃、30分間のポストベークを行うことにより、感光性層を硬化させて硬化膜を形成した。
 このようにして、厚さ8μmの感光性層/ガラスの層構造を有する硬度評価用試料を得た。
-硬化膜の硬度の評価-
 硬度評価用試料を用い、以下のようにして硬化膜の硬度を評価した。
 フィッシャーインスツルメンツ社製HM2000型硬度計を用い、Berkovich圧子(三角錐圧子)、負荷速度20.0mN/分、最大荷重20.0mNの条件で押し込み試験を行い、最大押し込み深さよりマルテンス硬度(HM)を求めた。
 下記評価基準において、A、B、Cのいずれかであれば、実用に適し、Aが最も好ましい。
  A:マルテンス硬度が190N/mm以上
  B:マルテンス硬度が160N/mm以上190N/mm未満
  C:マルテンス硬度が130N/mm以上160N/mm未満
  D:マルテンス硬度が100N/mm以上130N/mm未満
  E:マルテンス硬度が100N/mm未満
<タック性の評価>
 得られた感光性転写材料を5cm×18cmの長方形に裁断し、保護フィルムを剥離した。厚み500μmのPFA(ポリテトラフルオロエチレン)フィルムを10cm×15cmの長方形に裁断し、水平な面に固定した。PFAフィルムと上記裁断した感光性転写材料の上記感光性層が形成された面とが接するように、上記PFAフィルムと上記感光性転写材料とを重ね、その上に底部4cm×6cmの直方体形状の70gの重りを乗せた。SHIMPO製Force Gauge Standを用いて、上記重ねた感光性転写材料を長辺と平行な水平方向に一定速度で引き、上記重りの荷重がかかった状態での摩擦力(単位:N)を測定した。
 摩擦力を70で割った値(以下、「タック性指標値」ともいう。)をタック性の指標とした。下記評価基準において、A、B、Cのいずれかであれば実用に適し、Aが最も好ましい。
-タック性の評価基準-
  A:タック性指標値が2未満である。
  B:タック性指標値が2以上4未満である。
  C:タック性指標値が4以上6未満である。
  D:タック性指標値が6以上10未満である。
  E:タック性指標値が10以上である。
<透湿度の評価>
〔透湿度測定用試料の作製〕
 各実施例又は比較例の感光性転写材料を、保護フィルムを剥離してから、住友電気工業(株)製PTFE(四フッ化エチレン樹脂)メンブレンフィルターFP-100-100上にラミネートし、仮支持体/厚さ8μmの感光性層/メンブレンフィルターの層構造を有する積層体Aを形成した。ラミネートの条件は、メンブレンフィルター温度40℃、ラミロール温度110℃、線圧3N/cm、搬送速度2m/分とした。
 形成した積層体Aから仮支持体を剥離し、感光性層に保護フィルムを剥離した転写材料を上記と同様にラミネートした。この、仮支持体を剥離し転写材料をラミネートする工程を更に3回繰り返して、仮支持体/合計膜厚40μmの感光性層/メンブレンフィルターの積層構造を有する積層体Bを形成した。
 得られた積層体Bの感光性層を、超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株)製)を用いて、仮支持体を介して露光量100mJ/cm(i線)で露光した。仮支持体を剥離してから、更に露光量375mJ/cm(i線)で露光した後、145℃、30分間のポストベークを行うことにより、感光性層を硬化させて硬化膜を形成した。
 以上により、合計膜厚40μmの硬化膜/メンブレンフィルターの積層構造を有する透湿度測定用試料を得た。
〔水蒸気透過度(WVTR)の測定〕
 透湿度測定用試料を用い、JIS-Z-0208(1976)を参考にして、カップ法による透湿度測定を実施した。以下、詳細を説明する。
 まず、透湿度測定用試料から直径70mmの円形試料を切り出した。次に、測定カップ内に乾燥させた20gの塩化カルシウムを入れ、次いで上記円形試料によって蓋をすることにより、蓋付き測定カップを準備した。
 この蓋付き測定カップを、恒温恒湿槽内にて65℃、90%RHの条件で24時間放置した。上記放置前後での蓋付き測定カップの質量変化から、円形試料の水蒸気透過度(WVTR)(単位:g/(m・day))を算出した。
 上記測定を3回実施し、3回の測定でのWVTRの平均値を算出した。WVTRの平均値に基づき、下記評価基準に従い、水蒸気透過度(WVTR)を評価した。下記評価基準において、A、B、Cのいずれかであることが好ましく、A又はBがより好ましく、Aが最も好ましい。
 なお、上記測定では、上述のとおり、硬化膜/メンブレンフィルターの積層構造を有する円形試料のWVTRを測定した。しかし、メンブレンフィルターのWVTRが硬化膜のWVTRと比較して極めて高いことから、上記測定では、実質的には、硬化膜自体のWVTRを測定したことになる。
〔水蒸気透過度(WVTR)の評価基準〕
  A:WVTRの平均値が140g/(m・day)未満
  B:WVTRの平均値が140g/(m・day)以上170g/(m・day)未満
  C:WVTRの平均値が170g/(m・day)以上200g/(m・day)未満
  D:WVTRの平均値が200g/(m・day)以上250g/(m・day)未満
  E:WVTRの平均値が250g/(m・day)以上
 以下の表1~表3に評価結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 上記表1~表3より、実施例1~39の感光性転写材料は、比較例1~5の感光性転写材料と比べ、タック性が低く、硬化後の曲げ耐性に優れることがわかる。
 また、上記表1~表3より、実施例1~39の感光性転写材料は、硬化後の硬度及び透湿度にも優れる。
 以下、上述した以外の表1~表3に記載の成分の詳細について記載する。
 A-1:下記に示す構造の樹脂(Mw=20,000)
 A-2:下記に示す構造の樹脂(Mw=27,000)
 A-3:下記に示す構造の樹脂(Mw=20,000)
Figure JPOXMLDOC01-appb-C000023
 
 
 
 上記A-1~A-3における各構成単位の割合は、質量比である。また、Meはメチル基を表す。
 SMA EF-40:スチレン/無水マレイン酸=4:1(モル比)の共重合体、酸無水物価1.94mmol/g、重量平均分子量10,500、Cravy Valley社製
 メガファックF551A:フッ素系界面活性剤、DIC(株)製
10:感光性転写材料
12:仮支持体
16:保護フィルム
18:感光性層(タッチパネル用電極保護膜)
20,20A:透明樹脂層(第一屈折率調製層)
30:タッチパネル
32:基板
34:透明電極パターン
36:第二屈折率調整層
40:透明電極パターンが存在する第1領域
42:透明電極パターンが存在しない第2領域
56:引き回し配線
70:第1透明電極パターン
72:第2透明電極パターン
74:画像表示領域
75:画像非表示領域
90:タッチパネル
102:曲げ耐性評価用試料
104:スペーサーA
106:金属板
108:おもり
110:スペーサーB
d:Gap(高さ)
 

 

Claims (13)

  1.  仮支持体、及び、
     感光性層
    を有し、
     前記感光性層が、バインダーポリマーと、エチレン性不飽和基を有するラジカル重合性化合物と、光重合開始剤と、チオール化合物とを含有し、
     前記チオール化合物の含有量が、前記感光性層の全質量に対し、5質量%以上であり、
     前記感光性層の全質量に対する前記ラジカル重合性化合物と前記チオール化合物の総含有量MRSと前記感光性層の全質量に対する前記バインダーポリマーの含有量Mとの比の値が、MRS/M=0.1~2.0である
     感光性転写材料。
  2.  前記感光性層が、ブロックイソシアネート化合物を更に含有する請求項1に記載の感光性転写材料。
  3.  前記チオール化合物が、2官能以上のチオール化合物である請求項1又は請求項2に記載の感光性転写材料。
  4.  前記チオール化合物が、下記式1で表される化合物を含む請求項1又は請求項2に記載の感光性転写材料。
    Figure JPOXMLDOC01-appb-C000001
     式1中、nは1~6の整数を表し、Aは炭素数1~15のn価の有機基、又は、下記式2で表される基を表し、Rはそれぞれ独立に、炭素数1~15の二価の有機基を表す。ただし、Aが下記式2で表される基を表す場合、nは3を表す。
    Figure JPOXMLDOC01-appb-C000002
     式2中、R~Rはそれぞれ独立に、炭素数1~15の二価の有機基を表し、波線部分は、前記式1におけるAに隣接する酸素原子との結合位置を表す。
  5.  前記感光性層の全質量に対する前記ラジカル重合性化合物と前記チオール化合物の総含有量MRSと前記感光性層の全質量に対する前記バインダーポリマーの含有量Mとの比の値が、MRS/M=0.4~1.2である請求項1~請求項4のいずれか1項に記載の感光性転写材料。
  6.  前記チオール化合物の含有量が、前記感光性層の全質量に対し、5質量%~40質量%である請求項1~請求項5のいずれか1項に記載の感光性転写材料。
  7.  前記バインダーポリマーが、ラジカル重合性基を有する構成単位を有する樹脂を含む請求項1~請求項6のいずれか1項に記載の感光性転写材料。
  8.  前記ブロックイソシアネート化合物が、ラジカル重合性基を有する請求項2に記載の感光性転写材料。
  9.  タッチパネルにおける保護膜形成用感光性転写材料である請求項1~請求項8のいずれか1項に記載の感光性転写材料。
  10.  請求項1~請求項9のいずれか1項に記載の感光性転写材料から前記仮支持体が取り除かれた前記感光性層を硬化してなる電極保護膜。
  11.  基板上に、
     請求項1~請求項9のいずれか1項に記載の感光性転写材料から前記仮支持体を除いた後の前記感光性層を有する積層体。
  12.  請求項10に記載の電極保護膜、又は、請求項11に記載の積層体を有する静電容量型入力装置。
  13.  基板上にタッチパネル用電極及びタッチパネル用配線の少なくとも一方が配置された構造を有するタッチパネル用基板を準備することと、
     前記タッチパネル用基板の前記タッチパネル用電極及びタッチパネル用配線の少なくとも一方が配置された側の面の上に、請求項1~請求項9のいずれか1項に記載の感光性転写材料を用いて感光性層を形成することと、
     前記タッチパネル用基板上に形成された前記感光性層をパターン露光することと、
     パターン露光された前記感光性層を現像することにより、前記タッチパネル用電極及びタッチパネル用配線の少なくとも一方の少なくとも一部を保護するタッチパネル用保護膜を得ることと、を含む
     タッチパネルの製造方法。

     
PCT/JP2019/006758 2018-03-29 2019-02-22 感光性転写材料、電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法 WO2019187851A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020510447A JP7048723B2 (ja) 2018-03-29 2019-02-22 感光性転写材料、電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法
CN201980014044.0A CN111742261A (zh) 2018-03-29 2019-02-22 感光性转印材料、电极保护膜、层叠体、静电电容型输入装置及触摸面板的制造方法
US16/984,469 US20210011376A1 (en) 2018-03-29 2020-08-04 Photosensitive transfer material, electrode protective film, laminate, capacitive input device, and manufacturing method of touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018065445 2018-03-29
JP2018-065445 2018-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/984,469 Continuation US20210011376A1 (en) 2018-03-29 2020-08-04 Photosensitive transfer material, electrode protective film, laminate, capacitive input device, and manufacturing method of touch panel

Publications (1)

Publication Number Publication Date
WO2019187851A1 true WO2019187851A1 (ja) 2019-10-03

Family

ID=68059943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006758 WO2019187851A1 (ja) 2018-03-29 2019-02-22 感光性転写材料、電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法

Country Status (5)

Country Link
US (1) US20210011376A1 (ja)
JP (1) JP7048723B2 (ja)
CN (1) CN111742261A (ja)
TW (1) TW201942142A (ja)
WO (1) WO2019187851A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125168A1 (ja) * 2019-12-18 2021-06-24 富士フイルム株式会社 感光性転写材料及びその製造方法、パターン付き金属導電性材料の製造方法、膜、タッチパネル、劣化抑制方法、並びに、積層体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131502A1 (ja) * 2019-12-27 2021-07-01 富士フイルム株式会社 転写フィルム、積層体の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012208200A (ja) * 2011-03-29 2012-10-25 Fujifilm Corp ポジ型感光性樹脂組成物、パターン作製方法、mems構造体及びその作製方法、ドライエッチング方法、ウェットエッチング方法、memsシャッターデバイス、並びに、画像表示装置
JP2014002285A (ja) * 2012-06-19 2014-01-09 Hitachi Chemical Co Ltd 隔壁形成材料、これを用いた感光性エレメント、隔壁の形成方法及び画像表示装置の製造方法
JP2017181959A (ja) * 2016-03-31 2017-10-05 日立化成株式会社 感光性樹脂組成物、感光性樹脂フィルム、硬化物の製造方法、積層体、及び電子部品
WO2018008376A1 (ja) * 2016-07-06 2018-01-11 富士フイルム株式会社 感光性組成物、転写フィルム、硬化膜、並びに、タッチパネル及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4705596A (en) * 1995-06-07 1996-12-30 Pt Sub, Inc. Thiol-containing photosensitive polymeric foam compositions
JP5179080B2 (ja) * 2007-03-22 2013-04-10 株式会社ムラカミ 感光性樹脂組成物、感光性フィルムおよびスクリーン印刷用ステンシル
WO2010043274A1 (en) * 2008-10-17 2010-04-22 Huntsman Advanced Materials (Switzerland) Gmbh Improvements for rapid prototyping apparatus
JP5475350B2 (ja) * 2009-07-02 2014-04-16 太陽ホールディングス株式会社 光硬化性熱硬化性樹脂組成物、そのドライフィルム及び硬化物並びにそれらを用いたプリント配線板
JP2012073589A (ja) * 2010-08-31 2012-04-12 Fujifilm Corp 感光性組成物、感光性フィルム、感光性積層体、永久パターン形成方法、及びプリント基板
JP6527052B2 (ja) * 2015-08-28 2019-06-05 富士フイルム株式会社 転写フィルム、静電容量型入力装置の電極保護膜、積層体、積層体の製造方法および静電容量型入力装置
JP6788971B2 (ja) * 2016-01-14 2020-11-25 東京応化工業株式会社 感光性組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012208200A (ja) * 2011-03-29 2012-10-25 Fujifilm Corp ポジ型感光性樹脂組成物、パターン作製方法、mems構造体及びその作製方法、ドライエッチング方法、ウェットエッチング方法、memsシャッターデバイス、並びに、画像表示装置
JP2014002285A (ja) * 2012-06-19 2014-01-09 Hitachi Chemical Co Ltd 隔壁形成材料、これを用いた感光性エレメント、隔壁の形成方法及び画像表示装置の製造方法
JP2017181959A (ja) * 2016-03-31 2017-10-05 日立化成株式会社 感光性樹脂組成物、感光性樹脂フィルム、硬化物の製造方法、積層体、及び電子部品
WO2018008376A1 (ja) * 2016-07-06 2018-01-11 富士フイルム株式会社 感光性組成物、転写フィルム、硬化膜、並びに、タッチパネル及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125168A1 (ja) * 2019-12-18 2021-06-24 富士フイルム株式会社 感光性転写材料及びその製造方法、パターン付き金属導電性材料の製造方法、膜、タッチパネル、劣化抑制方法、並びに、積層体

Also Published As

Publication number Publication date
CN111742261A (zh) 2020-10-02
US20210011376A1 (en) 2021-01-14
JP7048723B2 (ja) 2022-04-05
JPWO2019187851A1 (ja) 2021-01-07
TW201942142A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
JP6707146B2 (ja) 転写フィルム、電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法
JP7463465B2 (ja) 転写フィルム、電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法
WO2019187850A1 (ja) 感光性転写材料、電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法
CN109416509B (zh) 感光性组合物、转印膜、固化膜、以及触摸面板及其制造方法
JP6989711B2 (ja) 転写フィルム、硬化膜の製造方法、積層体の製造方法、及び、タッチパネルの製造方法
JP7010796B2 (ja) 感光性樹脂組成物、硬化膜、積層体、転写フィルム、及び、タッチパネルの製造方法
US20210171690A1 (en) Photosensitive resin composition, cured film, laminate, transfer film, and manufacturing method of touch panel
WO2019187851A1 (ja) 感光性転写材料、電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法
JP7122819B2 (ja) 感光性組成物、転写フィルム、硬化膜、並びに、タッチパネル及びその製造方法
WO2020195558A1 (ja) 感光性樹脂組成物、転写フィルム、硬化膜、積層体、及び、タッチパネルの製造方法
TWI807093B (zh) 積層體、積層體的製造方法及靜電電容型輸入裝置
CN115698856A (zh) 转印膜、层叠体的制造方法
JP2020091322A (ja) 感光性樹脂組成物、転写フィルム、硬化膜、積層体、及びタッチパネルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510447

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777621

Country of ref document: EP

Kind code of ref document: A1