Nothing Special   »   [go: up one dir, main page]

WO2019187576A1 - Reception device - Google Patents

Reception device Download PDF

Info

Publication number
WO2019187576A1
WO2019187576A1 PCT/JP2019/002507 JP2019002507W WO2019187576A1 WO 2019187576 A1 WO2019187576 A1 WO 2019187576A1 JP 2019002507 W JP2019002507 W JP 2019002507W WO 2019187576 A1 WO2019187576 A1 WO 2019187576A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
radio wave
unit
phase shift
received
Prior art date
Application number
PCT/JP2019/002507
Other languages
French (fr)
Japanese (ja)
Inventor
茂 臼杵
正信 谷島
Original Assignee
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人宇宙航空研究開発機構 filed Critical 国立研究開発法人宇宙航空研究開発機構
Publication of WO2019187576A1 publication Critical patent/WO2019187576A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present invention relates to a receiving device.
  • This application claims priority on March 29, 2018 based on Japanese Patent Application No. 2018-065226 filed in Japan, the contents of which are incorporated herein by reference.
  • ABF Analog Beam Forming
  • DBF Digital Beam Forming
  • ABF In ABF, a beam is formed based on an analog signal corresponding to each radio wave received by each of a plurality of antennas included in a phased array antenna.
  • a receiving apparatus that forms a beam by using an ABF may be able to shorten the time from reception of a radio wave arriving from within the beam to demodulation, as compared with a case in which a beam is formed by using a DBF. . This is because DBF requires processing according to the formation of the beam.
  • the receiving device of the ABF needs to include the same number of phased array antennas as the number of artificial satellites in order to receive radio waves transmitted from each of the plurality of artificial satellites at the same time. It has been.
  • the reception device fails to receive the radio wave transmitted from the artificial satellite due to low estimation accuracy of the orbit of the artificial satellite to be received, for example, from the time when the reception failed. Information that should have been acquired during the time until reception becomes possible is lost, and it may be difficult to resume demodulation of the radio wave.
  • DBF it memorize
  • a receiving apparatus that forms a beam by DBF can receive radio waves transmitted from each of a plurality of artificial satellites passing over the receiving apparatus at the same time by one phased array. For this reason, a receiving device capable of forming a beam by each of ABF and DBF, for example, of the radio wave transmitted from the artificial satellite due to the reason that the estimation accuracy of the orbit of the artificial satellite to be received is low.
  • a beam capable of receiving the radio wave can be re-formed based on the stored digital information, and as a result, the radio wave can be demodulated without losing the radio wave information. Can be easily resumed.
  • the time from reception of radio waves coming from within the formed beam to demodulation is longer than when a beam is formed by ABF. As a result, the receiving apparatus may not be able to provide information desired by the user at a timing desired by the user.
  • the present invention has been made in view of the above-described problems of the prior art, and can shorten the time from reception of radio waves arriving from within a beam to demodulation thereof, and also demodulation of the radio waves.
  • a receiving device capable of resuming demodulation without losing information on the radio wave even if it fails.
  • one embodiment of the present invention provides a phased array antenna in which a plurality of antennas are spaced apart from each other, and a received radio wave received for each of the plurality of antennas.
  • a phase-shifting unit that phase-shifts the phase of the analog signal
  • a first demodulating unit that demodulates a radio wave arriving from within the beam based on the phase of each analog signal phase-shifted by the phase-shifting unit as a target radio wave
  • a conversion unit that converts the analog signal corresponding to the received radio wave into a digital signal
  • the plurality of digital signals converted by the conversion unit
  • a storage unit that stores digital information in a manner that allows reception time synchronization and the first demodulation unit failed to demodulate the target radio wave
  • a second demodulator for demodulating the target wave based on the digital information stored in the storage unit a receiving device comprising a.
  • the present invention it is possible to shorten the time from reception of a radio wave arriving from within a beam to demodulation, and even when demodulation of the radio wave fails, information on the radio wave is lost. It is possible to provide a receiving apparatus that can resume demodulation without performing the above.
  • FIG. 2 is a diagram illustrating an example of a configuration of a receiving device 1.
  • FIG. 3 is a diagram illustrating an example of a functional configuration of a reception control device 20.
  • FIG. 3 is a diagram illustrating an example of a functional configuration of a reception control unit 21.
  • FIG. 6 is a diagram illustrating an example of a flow of processing in which the reception control device 20 stores digital information in a storage unit 214.
  • FIG. It is a figure which shows an example of the flow of a process in which the phase shift control part 215A changes the phase shift amount set to the phase shifter 215B. It is a figure which shows an example of the flow of a process in which the phase shifter 215B changes the phase shift amount of an analog signal.
  • It is a figure which shows an example of the flow of a process which the reception control apparatus 20 demodulates to an object radio wave.
  • FIG. 1 is a diagram illustrating an example of the configuration of the receiving device 1.
  • the receiving device 1 receives radio waves transmitted from one or more transmission sources that transmit radio waves.
  • one or more transmission sources are three artificial satellites S will be described as an example.
  • the three artificial satellites S transmit radio waves modulated according to various types of information to the receiving device 1.
  • the artificial satellite S1, the artificial satellite S2, and the artificial satellite S3 illustrated in FIG. 1 are examples of the three artificial satellites S. Note that some or all of the artificial satellite S1, the artificial satellite S2, and the artificial satellite S3 may have different configurations or may have the same configuration.
  • the receiving device 1 includes a phased array antenna 10 and a reception control device 20.
  • the phased array antenna 10 includes a plurality of antennas 11.
  • the phased array antenna 10 includes antennas 11-1 to 11-N as N antennas 11.
  • N is an integer of 2 or more.
  • N antennas 11 are arranged so as to have a predetermined positional relationship with a space therebetween.
  • Each of the N antennas 11 receives radio waves arriving toward the phased array antenna 10. That is, each of the N antennas 11 is an antenna element of the phased array antenna 10.
  • the radio waves received by each of the N antennas 11 will be referred to as received radio waves.
  • Each of the N antennas 11 outputs an analog signal corresponding to the received received radio wave to the reception control device 20 every time the received radio wave is received.
  • the reception control device 20 forms a beam by ABF (Analog Beam Forming), and demodulates a radio wave coming from the formed beam as a target radio wave.
  • ABF Analog Beam Forming
  • the reception control device 20 acquires from the antenna 11 an analog signal corresponding to the received radio wave received by the antenna 11 for each of the plurality of antennas 11 included in the phased array antenna 10.
  • the reception control device 20 shifts the phase of each acquired analog signal to form a beam.
  • the reception control device 20 demodulates radio waves coming from within the formed beam as the above-described target radio waves.
  • the reception control device 20 forms one or more beams at the same time by DBF (Digital Beam Forming), and demodulates radio waves coming from the formed beams as target radio waves.
  • DBF Digital Beam Forming
  • the reception control device 20 converts an analog signal corresponding to the received radio wave into a digital signal for each received radio wave received for each of the plurality of antennas 11.
  • the reception control device 20 stores digital information indicating each of the converted digital signals in a manner that allows reception time synchronization.
  • a mode in which reception time synchronization is possible is a mode in which digital information indicating digital signals corresponding to received radio waves having the same reception time is associated with each other.
  • the reception control device 20 virtually forms one or more beams based on the stored digital information.
  • the reception control device 20 identifies a beam from which the target radio wave arrives among the one or more formed beams. Then, the reception control device 20 demodulates the radio wave coming from within the identified beam as the target radio wave.
  • the reception control device 20 when the reception control device 20 fails to demodulate the target radio wave based on the beam formed by the ABF, the reception control device 20 virtually forms one or more beams based on the stored digital information.
  • the reception control device 20 demodulates radio waves that arrive from one or more formed beams.
  • the reception control device 20 identifies a target radio wave from one or more demodulated radio waves. Even when the demodulation of the radio wave fails by the first demodulator 22 described later, the demodulation of the radio wave can be resumed based on the stored digital information.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of the reception control device 20.
  • the reception control device 20 includes a reception control unit 21, a first demodulation unit 22, a first information processing device 23, and a second information processing device 24.
  • the second information processing device 24 includes a second demodulator 241.
  • the reception control unit 21 acquires, from the antenna 11, an analog signal corresponding to the received radio wave received by the antenna 11 for each of the plurality of antennas 11 included in the phased array antenna 10.
  • the reception control unit 21 converts the acquired analog signal into a digital signal.
  • the reception control unit 21 stores digital information indicating each converted digital signal in a manner that allows reception time synchronization.
  • the reception control unit 21 shifts the phase of the analog signal for each acquired analog signal.
  • the reception control unit 21 identifies the position of the artificial satellite S that is transmitting the target radio wave based on the forecast value indicated by the forecast value information stored in advance, and receives the signal from the phased array antenna 10 to the identified position.
  • the direction is calculated as the direction of arrival.
  • the reception control unit 21 shifts the phase of each acquired analog signal to a phase in which the direction of the beam is directed to the calculated arrival direction and a phase in which the shape of the beam is a desired shape.
  • the reception control unit 21 outputs each of the plurality of phase-shifted analog signals to the first demodulation unit 22. Further, the reception control unit 21 outputs the stored digital information to the second demodulation unit 241 in response to a request from the second demodulation unit 241 included in the second information processing device 24.
  • FIG. 3 is a diagram illustrating an example of a functional configuration of the reception control unit 21.
  • the reception control unit 21 includes a low noise amplifier 211, a down converter 212, an AD conversion unit 213, and a storage unit 214 as hardware function units connected to the antenna 11 for each of the plurality of antennas 11.
  • N antennas 11 are represented by one antenna 11 in order to prevent the drawing from being complicated. Therefore, in FIG. 3, one low noise amplifier 211 represents N low noise amplifiers 211, one down converter 212 represents N down converters 212, and one AD converter 213 represents N One AD conversion unit 213 is represented, and one storage unit 214 represents N storage units 214.
  • N antennas 11 include two or more antennas 11 belonging to the first group as two or more first antennas, and 2 in a second group different from the first group.
  • the two or more first antennas are antennas that receive the received radio waves used for demodulating the target radio waves.
  • the two or more second antennas are antennas that receive a received radio wave that is used by an error information generation unit 216 described later to demodulate the error radio wave.
  • N antennas 11 are divided into a first group and four second groups of a 21st group, a 22nd group, a 23rd group, and a 24th group.
  • the case will be described.
  • two or more antennas 11 belong to the twenty-first group as two or more twenty-first antennas.
  • two or more antennas 11 belong to the twenty-second group as two or more twenty-second antennas.
  • two or more antennas 11 belong to the twenty-third group as two or more twenty-third antennas.
  • two or more antennas 11 belong to the twenty-fourth group as two or more twenty-fourth antennas.
  • the 21st group, the 22nd group, the 23rd group, and the 24th group will be collectively referred to as the second group unless it is necessary to distinguish them.
  • the first antenna and the second antenna are collectively referred to as the antenna 11 unless it is necessary to distinguish between the first antenna and the second antenna.
  • the phased array antenna 10 may be configured such that part or all of the two or more antennas 11 belonging to the first group behave as the antennas 11 belonging to the second group. That is, the plurality of antennas 11 included in the phased array antenna 10 may be configured to belong to one or both of the first group and the second group.
  • the low noise amplifier 211 amplifies the analog signal acquired from the antenna 11 to which the low noise amplifier 211 is connected.
  • the low noise amplifier 211 outputs the amplified analog signal to the down converter 212.
  • the down converter 212 acquires from the low noise amplifier 211 the analog signal amplified by the low noise amplifier 211 to which the down converter 212 is connected.
  • the down converter 212 includes a frequency conversion unit 212A and a branching unit 212B.
  • the frequency conversion unit 212A converts the frequency of the analog signal acquired by the down converter 212 from the low noise amplifier 211 into a predetermined frequency.
  • the frequency conversion unit 212A outputs an analog signal whose frequency has been converted to the branching unit 212B.
  • the branching unit 212B acquires the analog signal obtained by converting the frequency by the frequency converting unit 212A from the frequency converting unit 212A.
  • the branching unit 212B outputs the acquired analog signal to the AD conversion unit 213 and also outputs it to the phase shift unit 215.
  • the AD conversion unit 213 acquires an analog signal from the branch unit 212B of the down converter 212 to which the AD conversion unit 213 is connected.
  • the AD conversion unit 213 converts the acquired analog signal into a digital signal.
  • the AD conversion unit 213 outputs the converted digital signal to the storage unit 214 as digital information indicating the digital signal, and causes the storage unit 214 to store the digital signal.
  • the storage unit 214 includes an EEPROM (Electrically Erasable Programmable Read-Only Memory), ROM (Read-Only Memory), RAM (Random Access Memory), flash memory, and the like.
  • the storage unit 214 stores the digital information output from the AD conversion unit 213 to which the storage unit 214 is connected.
  • the phase shift unit 215 includes a phase shift control unit 215A.
  • the phase shift unit 215 includes a phase shifter 215B as a hardware function unit connected to the branch unit 212B for each of the plurality of branch units 212B.
  • N phase shifters 215 ⁇ / b> B are represented by one phase shifter 215 ⁇ / b> B in order to prevent the diagram from becoming complicated.
  • the phase shift control unit 215A controls, for each of the N phase shifters 215B, the phase shift amount by which the phase of the analog signal acquired by the phase shifter 215B from the branch unit 212B is shifted. Specifically, the phase shift control unit 215A identifies the position of the artificial satellite S that is transmitting the target radio wave based on the forecast value indicated by the forecast value information stored in advance in a storage unit (not shown), and identifies the identified position. The direction from the phased array antenna 10 is calculated as the aforementioned arrival direction. In addition, the phase shift control unit 215A acquires error information from an error information generation unit 216 described later. The phase shift control unit 215A corrects the calculated arrival direction based on the error information. Details of the process in which the phase shift control unit 215A corrects the arrival direction based on the error information will be described later.
  • the phase shift control unit 215A controls the first phase shifter so that the phase of the analog signal acquired by the first phase shifter is shifted to the desired first phase.
  • the first phase is a phase in which the beam direction is directed to the corrected arrival direction, and the beam has a desired shape.
  • the first phase shifter is a phase shifter 215B connected to each of the two or more first antennas.
  • the beam directed in the arrival direction will be referred to as a first beam.
  • the phase shift control unit 215A controls the 21st phase shifter so that the phase of the analog signal acquired by the 21st phase shifter is shifted to the desired 21st phase.
  • the 21st phase is a phase in which the direction of the beam is directed in a direction shifted by an angle ⁇ that is a predetermined angle in the positive direction of the azimuth direction from the calculated arrival direction, and the beam has a desired shape. It is a phase.
  • the twenty-first phase shifter is a phase shifter 215B connected to each of two or more twenty-first antennas.
  • phase shift control unit 215A controls the 22nd phase shifter so that the phase of the analog signal acquired by the 22nd phase shifter is shifted to the desired 22nd phase.
  • the twenty-second phase is a phase in which the direction of the beam is directed in a direction shifted by an angle ⁇ in the negative direction of the azimuth direction from the calculated arrival direction, and the beam has a desired shape.
  • the twenty-second phase shifter is a phase shifter 215B connected to each of two or more twenty-second antennas.
  • the phase shift control unit 215A controls the 23rd phase shifter so that the phase of the analog signal acquired by the 23rd phase shifter is shifted to the desired 23rd phase.
  • the 23rd phase is a phase in which the direction of the beam is shifted from the calculated arrival direction in a direction shifted by an angle ⁇ in the positive direction of the elevation direction, and the beam has a desired shape.
  • the 23rd phase shifter is a phase shifter 215B connected to each of two or more 23rd antennas.
  • phase shift control unit 215A controls the 24th phase shifter so that the phase of the analog signal acquired by the 24th phase shifter is shifted to the desired 24th phase.
  • the twenty-fourth phase is a phase in which the direction of the beam is directed in a direction shifted by an angle ⁇ in the negative direction of the elevation direction from the calculated arrival direction, and the beam has a desired shape.
  • the 24th phase shifter is a phase shifter 215B connected to each of two or more 24th antennas.
  • the phase shifter 215B acquires an analog signal from the branching unit 212B to which the phase shifter 215B is connected.
  • the phase shifter 215B shifts the phase of the acquired analog signal by the phase amount specified by the phase shift control unit 215A.
  • the phase shifter 215 ⁇ / b> B outputs the phase-shifted analog signal to the first demodulation unit 22 and outputs the analog signal to the error information generation unit 216.
  • the error information generation unit 216 acquires an analog signal from the two or more 21st phase shifters as the two or more 21st analog signals. Further, the error information generation unit 216 acquires an analog signal from the two or more twenty-second phase shifters as the two or more twenty-second analog signals. Further, the error information generation unit 216 acquires an analog signal from two or more 23rd phase shifters as the two or more 23rd analog signals. Further, the error information generation unit 216 acquires an analog signal from the two or more 24th phase shifters as the two or more 24th analog signals. The error information generation unit 216 demodulates radio waves arriving from the 21st beam based on the phases of the two or more acquired 21st analog signals as 21st error radio waves.
  • the error information generation unit 216 demodulates radio waves arriving from within the 22nd beam based on the phases of the two or more acquired 22nd analog signals as 22nd error radio waves. In addition, the error information generation unit 216 demodulates radio waves arriving from the 23rd beam based on the phases of the two or more acquired 23rd analog signals as 23rd error radio waves. In addition, the error information generation unit 216 demodulates radio waves arriving from within the 24th beam based on the phases of the two or more acquired 24th analog signals as 24th error radio waves.
  • the error information generation unit 216 includes the intensities of the demodulated 21st error radio wave, 22nd error radio wave, 23rd error radio wave, and 24th error radio wave, and the 21st beam, 22nd beam, 23rd beam, and 24th beam. Information indicating the direction is generated as the error information described above, and the generated error information is output to the phase shift control unit 215A.
  • the error information generation unit 216 outputs error information indicating that there is no error to the phase shift control unit 215A.
  • the error information may not be output.
  • the phase shift control unit 215A determines that there is no error.
  • the reception control unit 21 may be configured not to include the error information generation unit 216. In this case, the N antennas 11 are all the first antennas belonging to the first group.
  • the first demodulator 22 acquires an analog signal from the two or more first phase shifters 215B as the two or more first analog signals.
  • the first demodulator 22 arrives from the first beam based on the phase of each of the acquired two or more first analog signals, that is, from the first beam formed by combining the two or more first analog signals.
  • the first demodulator 22 outputs target radio wave information indicating the demodulated target radio wave to the first information processing device 23.
  • the multiplexing of the first analog signal may be performed by a known method or may be performed by a method that will be developed in the future, and thus further description is omitted.
  • the function of multiplexing the first analog signal may be configured separately from the first demodulator 22.
  • the first information processing apparatus 23 includes a processor (not shown) such as a CPU (Central Processing Unit), and the processor executes various programs, thereby realizing various functional units.
  • a processor such as a CPU (Central Processing Unit)
  • CPU Central Processing Unit
  • the first information processing device 23 acquires target radio wave information from the first demodulator 22. In addition, the first information processing device 23 receives an operation from the user. The first information processing device 23 performs processing based on the acquired target radio wave information in accordance with an operation received from the user. For example, the process is a process of storing the target radio wave information.
  • the second information processing device 24 includes a second demodulator 241.
  • the second information processing device 24 includes a processor (not shown) such as a CPU, and implements various functional units such as the second demodulator 241 when the processor executes various programs.
  • a processor such as a CPU
  • various functional units such as the second demodulator 241 when the processor executes various programs.
  • the second demodulation unit 241 reads the digital information stored in the storage unit 214 from the storage unit 214 in response to an operation received by the second information processing device 24 from the user.
  • the second demodulator 241 virtually forms one or more beams based on the read digital information.
  • the second demodulator 241 identifies a target radio wave from one or more demodulated radio waves.
  • the second demodulator 241 may be configured to further include the error information generator 216 described above.
  • FIG. 4 is a diagram illustrating an example of a processing flow in which the reception control device 20 stores digital information in the storage unit 214.
  • the combination of the frequency conversion unit 212A, the branching unit 212B, the AD conversion unit 213, and the storage unit 214 connected to an antenna 11 among the N antennas 11 is a frequency conversion unit connected to another antenna 11. Processing similar to the combination of 212A, branching unit 212B, AD conversion unit 213, and storage unit 214 is performed.
  • the frequency conversion unit 212A, the branching unit 212B, the AD conversion unit 213, and the storage unit 214 connected to the target antenna that is one antenna 11 are respectively set as the target frequency conversion unit, the target branching unit, and the target AD conversion.
  • Processing in which the reception control device 20 stores digital information in the storage unit 214 taking as an example processing performed by the target frequency conversion unit, target branching unit, target AD conversion unit, and target storage unit.
  • the process of the flowchart illustrated in FIG. 4 is a process performed by each of the target frequency conversion unit, the target branch unit, the target AD conversion unit, and the target storage unit.
  • the target frequency conversion unit, the target branching unit, the target AD conversion unit, and the target storage unit repeatedly perform the processing from step S110 to step S160 in the flowchart shown in FIG. 4 every time the target antenna receives a received radio wave.
  • the target low noise amplifier acquires an analog signal corresponding to the received radio wave received by the target antenna (step S110).
  • the target low noise amplifier amplifies the acquired analog signal (step S120). Then, the target low noise amplifier outputs the amplified analog signal to the target frequency conversion unit.
  • the target frequency converter acquires the amplified analog signal.
  • the target frequency conversion unit converts the frequency of the acquired analog signal into a predetermined frequency (step S130). Then, the target frequency conversion unit outputs the analog signal whose frequency has been converted to the target branching unit.
  • the target branching unit outputs the acquired analog signal to the phase shifter 215B connected to the target branching unit, and outputs the analog signal to the target AD conversion unit (step S140).
  • the processing performed by the phase shifter 215B that has acquired the analog signal output from the target branching unit in step S140 will be described with reference to the flowchart shown in FIG.
  • the target AD converter converts the acquired analog signal into a digital signal (step S150).
  • the target AD conversion unit generates digital information indicating the converted digital signal, stores the generated digital information in the target storage unit (step S160), and ends the process.
  • each of the frequency conversion unit 212A, the branching unit 212B, the AD conversion unit 213, and the storage unit 214 connected to each of the plurality of antennas 11 performs the processing of step S110 to step S160. That is, the reception control unit 21 repeatedly performs the processing of step S110 to step S160 every time each of the N antennas 11 included in the phased array antenna 10 receives a received radio wave. As a result, the reception control unit 21 can cause the storage unit 214 to store digital information indicating that each of the N antennas 11 included in the phased array antenna 10 indicates a digital signal corresponding to the received radio wave.
  • FIG. 5 is a diagram illustrating an example of a process flow in which the phase shift control unit 215A changes the phase shift amount set in the phase shifter 215B.
  • the phase shift control unit 215A performs the processing from step S210 to step S230 in the flowchart shown in FIG. 5 at a timing before the phase shifter 215B acquires the analog signal from the branching unit 212B, and sets the phase shifter 215B. The amount of phase shift is changed.
  • the phase shift control unit 215A repeatedly performs the processing from step S210 to step S230 every time a predetermined period elapses.
  • the phase shift control unit 215A reads forecast value information stored in advance in a storage unit (not shown) from the storage unit.
  • the phase shift control unit 215A acquires error information from the error information generation unit 216 (step S210).
  • the phase shift control unit 215A identifies the position of the artificial satellite S that is transmitting the target radio wave based on the forecast value indicated by the read forecast value information, and outputs the target position from the phased array antenna 10 to the identified position.
  • the direction is calculated as the arrival direction (step S220).
  • phase shift control unit 215A changes the amount of phase shift set in each phase shifter 215B based on the calculated arrival direction (step S230), and ends the process.
  • the phase shift control unit 215A corrects the arrival direction calculated in step S230 based on the error information acquired in step S210. For example, the phase shift control unit 215A determines the intensity of each of the 21st error radio wave, the 22nd error radio wave, the 23rd error radio wave, and the 24th error radio wave indicated by the error information, the 21st beam, the 22nd beam, the 23rd beam, the The direction of each of the 24 beams is specified. The phase shift control unit 215A calculates the average value of the intensities of the identified 21st error radio wave, 22nd error radio wave, 23rd error radio wave, and 24th error radio wave as the average intensity.
  • the phase shift control unit 215A determines that radio waves of average intensity have arrived based on the calculated average intensity and the identified directions of the 21st beam, 22nd beam, 23rd beam, and 24th beam. Calculate the estimated direction.
  • the phase shift control unit 215A determines that the difference between the calculated direction and the calculated arrival direction is less than a predetermined allowable value, the phase shift control unit 215A does not correct the arrival direction.
  • the phase shift control unit 215A determines that the difference is greater than or equal to the allowable value, the phase shift control unit 215A corrects the arrival direction and calculates a direction between the direction and the arrival direction as a new arrival direction.
  • the phase shift control unit 215A is set to the two or more first phase shifters so that the phases of the analog signals acquired by the two or more first phase shifters are shifted to the first phase. Change the amount of phase shift.
  • the phase shift control unit 215A calculates the directions of the 21st beam, the 22nd beam, the 23rd beam, and the 24th beam based on the corrected arrival directions.
  • the phase shift control unit 215A shifts the phases set to the two or more 21st phase shifters so that the phases of the analog signals acquired by the two or more 21st phase shifters are shifted to the 21st phase. Change the phase amount.
  • phase shift control unit 215A is set to the two or more 22nd phase shifters so that the phases of the analog signals acquired by the two or more 22nd phase shifters are shifted to the 22nd phase. Change the amount of phase shift.
  • the phase shift control unit 215A is set to the two or more 23rd phase shifters so that the phases of the analog signals acquired by the two or more 23rd phase shifters are shifted to the 23rd phase. Change the amount of phase shift.
  • the phase shift control unit 215A is set to the two or more 24th phase shifters so that the phases of the analog signals acquired by the two or more 24th phase shifters are shifted to the 24th phase. Change the amount of phase shift.
  • the phase shift control unit 215A determines the phase shift amount set for each of the N phase shifters 215B based on the forecast value information read in step S210 and the error information acquired in step S210. Change. Thereby, the receiving apparatus 1 can form the first beam in a direction in which the intensity of the target radio wave demodulated by the reception control apparatus 20 is increased. That is, the receiving device 1 can follow the temporal position change of the incoming target radio wave.
  • FIG. 6 is a diagram illustrating an example of a processing flow in which the phase shifter 215B changes the phase shift amount of the analog signal.
  • Each phase shifter 215B repeats the processing from step S250 to step S260 every time an analog signal is output from each branch section 212B.
  • the N phase shifters 215B perform the same processing, in the following, the processing performed by one phase shifter 215B is taken as an example, and the phase shifter 215B connected to the antenna 11-1 is used as an example.
  • a process in which a certain phase shifter 215B-1 changes the phase shift amount of the analog signal will be described.
  • the phase shifter 215B-1 acquires an analog signal from the branching unit 212B to which the phase shifter 215B-1 is connected (step S250).
  • the analog signal acquired from the branching unit 212B by the phase shifter 215B-1 is the analog signal output from the branching unit 212B to the phase shifter 215B-1 in step S140 of the flowchart shown in FIG. It is.
  • phase shifter 215B-1 shifts the phase of the analog signal acquired in step S250 based on the phase shift amount set in phase shifter 215B-1 (step S260).
  • the phase shift amount is a phase shift amount changed (that is, set) by the phase shift control unit 215A in step S230 of the flowchart shown in FIG.
  • the phase shifter 215B-1 outputs the phase-shifted analog signal to the first demodulator 22 and ends the process.
  • the phase shifter 215B-1 outputs the phase-shifted analog signal to the error information generation unit 216 and ends the process.
  • FIG. 7 is a diagram illustrating an example of a process flow in which the reception control device 20 demodulates the target radio wave.
  • the reception control device 20 repeats the processes of steps S310 to S340 every time an analog signal is output from two or more first phase shifters.
  • the first demodulator 22 acquires an analog signal from two or more first phase shifters as the two or more first analog signals.
  • the first demodulator 22 demodulates, as a target radio wave, a radio wave arriving from within the first beam based on the phase of each of the two or more acquired first analog signals (step S310).
  • the process of step S310 performed by the first demodulator 22 may be a process based on a known method or a process based on a method to be developed in the future.
  • the first demodulator 22 determines whether or not demodulation of the target radio wave has failed in step S310 (step S320).
  • the first demodulation unit 22 determines that the demodulation of the target radio wave has failed.
  • the intensity of the target radio wave is equal to or higher than the predetermined threshold
  • the first demodulator 22 determines that the target radio wave has been successfully demodulated.
  • the first demodulator 22 generates target radio wave information indicating the target radio wave, and uses the generated target radio wave information as the first information processing device 23. Output to.
  • the first information processing device 23 acquires target radio wave information and performs processing based on the acquired target radio wave information.
  • the process is, for example, a process of outputting the target radio wave information to another device, a process of storing the target radio wave information, or the like.
  • the first demodulator 22 ends the process.
  • the first demodulation unit 22 outputs information indicating the demodulation failure of the target radio wave to the second information processing device 24.
  • the second demodulation unit 241 included in the second information processing device 24 includes, for example, the latest time after the demodulation failure in the digital information stored in the storage unit 214.
  • the digital information associated with is read from the storage unit 214 (step S330).
  • the second demodulator 241 demodulates radio waves coming from one or more formed beams based on the phase of the digital signal indicated by each of the read digital information.
  • the second demodulator 241 identifies a target radio wave from one or more demodulated radio waves (step S340). Then, the second demodulator 241 generates target radio wave information indicating the specified target radio wave, and performs processing based on the generated target radio wave information.
  • the process is, for example, a process of outputting the target radio wave information to another device, a process of storing the target radio wave information, or the like. Further, the second demodulator 241 outputs beam direction information indicating the beam direction including the arrival direction of the target radio wave specified in step S340 to the phase shift controller 215A.
  • the second demodulator 241 ends the process.
  • the phase shift control unit 215A performs step S220 based on the beam direction information when the target radio wave is successfully demodulated in the process of step S220 of the flowchart illustrated in FIG.
  • the direction of arrival calculated in step 1 is corrected.
  • the phase shift control unit 215A replaces the arrival direction with the direction indicated by the beam direction information.
  • the reception control device 20 can resume the demodulation of the target radio wave by the first demodulation unit 22 even when the demodulation of the target radio wave by the first demodulation unit 22 fails.
  • the second information processing device 24 may be configured to perform the same processing as the processing performed by the error information generation unit 216.
  • FIG. 8 is a diagram illustrating an example of a flow of processing in which the error information generation unit 216 generates error information.
  • the error information generator 216 outputs an analog signal from each of the two or more 21st phase shifters, the two or more twenty-second phase shifters, the two or more twenty-third phase shifters, and the two or more twenty-fourth phase shifters. Each time, the processing of step S410 to step S430 in the flowchart shown in FIG. 8 is repeated.
  • the error information generation unit 216 acquires an analog signal from each phase shifter 215B connected to the second antenna (step S410). Specifically, the error information generation unit 216 acquires two or more 21st analog signals from two or more 21st phase shifters. In addition, the error information generation unit 216 acquires two or more 22nd analog signals from two or more 22nd phase shifters. Further, the error information generation unit 216 acquires two or more 23rd analog signals from two or more 23rd phase shifters. Further, the error information generation unit 216 acquires two or more 24th analog signals from two or more 24th phase shifters.
  • the error information generation unit 216 based on the acquired two or more 21st analog signals, two or more twenty-second analog signals, two or more twenty-third analog signals, and two or more twenty-fourth analog signals, respectively.
  • Each of the 21st error radio wave to the 24th error radio wave is demodulated (step S420).
  • the error information generation unit 216 calculates the intensities of the demodulated 21st error radio wave, 22nd error radio wave, 23rd error radio wave, and 24th error radio wave, and the 21st beam, 22nd beam, 23rd beam, Information indicating the direction of each of the 24th beams is generated as error information, and the generated error information is output to the phase shift control unit 215A (step S430). Then, the error information generation unit 216 ends the process.
  • the error information generation unit 216 generates error information. Thereby, the reception control device 20 can form the first beam in a direction in which the intensity of the target radio wave demodulated by the reception control device 20 is increased.
  • the phase shift control unit 215A described above associates the shape of the beam based on the phase of each analog signal phase-shifted by the phase shifter 215B, the success or failure of demodulation of the target radio wave, and the change in the direction of the beam.
  • the phase of the analog signal corresponding to each received radio wave received for each of the plurality of antennas 11 may be shifted based on a machine learning algorithm in which information including the received information is learned.
  • the algorithm may be, for example, a deep learning algorithm or another algorithm in machine learning. Thereby, the receiving device 1 can perform demodulation of the target radio wave by the first demodulator more reliably and accurately.
  • the second demodulator 241 described above has information including information in which the shape of the beam formed by the second demodulator 241, the success or failure of demodulation of the target radio wave, and the change in the direction of the beam are associated with each other.
  • One or more beams are formed based on the learned machine learning algorithm and the digital information stored in the storage unit 214.
  • the algorithm may be, for example, a deep learning algorithm or another algorithm in machine learning. Thereby, the receiving device 1 can perform demodulation of the target radio wave by the second demodulator 241 more reliably and accurately.
  • the second information processing device 24 described above receives, from the storage unit 214, digital information indicating a digital signal corresponding to the received radio wave received at the time corresponding to the operation based on the operation received from the user.
  • the configuration may be such that the second demodulator 241 reads the data.
  • the second demodulator 241 performs the processes of step S330 and step S340 based on the read digital information. Accordingly, the user can demodulate the target radio wave received by the phased array antenna 10 at a desired time by the reception control device 20 by operating the reception control device 20 at a timing desired by the user. Thereby, the reception control device 20 can demodulate each of the target radio waves received from the plurality of artificial satellites S at the same time by the phased array antenna 10.
  • the reception control device 20 can demodulate the target radio wave. Further, the reception control device 20 can cause the reception control device 20 to demodulate the target radio wave received by the phased array antenna 10 at a desired time, so that the operation of the plurality of artificial satellites S can be performed. This can be done using one phased array antenna 10. That is, the reception control device 20 can also be suitably applied to a constellation in which observation is performed when a plurality of artificial satellites S form a formation in the same time zone. In addition, the reception control device 20 can be suitably applied to high-frequency reception of the target radio wave transmitted from the artificial satellite S in the high latitude earth station.
  • the reception control device 20 uses the digital information by demodulating the target radio wave by the first demodulator 22 when only one artificial satellite S transmits the target radio wave to the reception device 1 at a certain time. In comparison, the time from reception of the target radio wave to demodulation can be shortened. In addition, since the reception device 1 can cause the reception control device 20 to demodulate the target radio wave received by the phased array antenna 10 at a desired time, for example, in an antenna such as a parabolic antenna. There is no tracking singularity associated with the mechanical drive that occurs, and there is no need to secure time for directing the antenna in the initial capture direction of the target radio wave, ie, the initial capture direction of the artificial satellite S. From the above, the receiving device 1 can reduce the operation cost in the satellite operation, improve the operation capability with limited resources, and optimize the beam shape according to the elevation angle, The artificial satellite S can be reliably captured, the reception gain can be stabilized, and the like.
  • the reception control device 20 sets the shape received from the user in the phase shift control unit 215A.
  • At least one of the AD conversion unit 213 and the storage unit 214 described above may be configured to be included in the second information processing device 24.
  • AD conversion unit 213 is an example of a conversion unit.
  • the receiving apparatus 1 includes a phased array antenna (in this example, the phased array antenna 10) in which a plurality of antennas (in this example, the antenna 11) are arranged at intervals, and each of the plurality of antennas.
  • a phase shift unit (in this example, phase shift unit 215) that shifts the phase of the analog signal corresponding to each received radio wave received every time, and a beam based on the phase of each analog signal phase shifted by the phase shift unit
  • the first demodulator in this example, the first demodulator 22
  • a conversion unit (AD conversion unit 213 in this example) for converting into a digital signal, and a plurality of units converted by the conversion unit
  • the storage unit in this example, the storage unit 214) that stores digital information indicating a digital signal in a manner that can synchronize the reception time and the first demodulator fails to demodulate the target radio wave
  • a second demodulator in this example, a second demodulator 241 that demodulates the target radio wave based on the digital information.
  • the receiving apparatus 1 can shorten the time from reception of radio waves arriving from within the beam to demodulation, and even if demodulation of the radio waves fails, The demodulation of the radio wave can be resumed without losing information.
  • the receiving device 1 includes a branching unit (in this example, a branching unit 212B) that outputs each of the plurality of analog signals to the conversion unit and also outputs to the phase shift unit.
  • the conversion unit converts each of the plurality of analog signals acquired from the branch unit into a digital signal
  • the phase shift unit shifts the phase of each of the plurality of analog signals acquired from the branch unit. .
  • the receiving device 1 can efficiently perform demodulation of the target radio wave by ABF and demodulation of the target radio wave by DBF.
  • the plurality of antennas included in the phased array antenna belong to one or both of the first group and the second group, and the first demodulator is phase-shifted by the phase shifter.
  • Radio waves coming from within the first beam which is a beam based on the phase of the analog signal corresponding to each of the received radio waves received by the antenna belonging to the first group (in this example, the first antenna) among the plurality of received radio waves.
  • the error radio wave is demodulated as an error radio wave (in this example, each of the 21st error radio wave to the 24th error radio wave), and error information indicating the intensity of the demodulated error radio wave and the direction of the second beam is generated and generated.
  • the error information generation unit (in this example, the error information generation unit 216) that outputs the error information that has been processed to the phase shift unit is provided, and the phase shift unit is assigned to the first group based on the error information acquired from the error information generation unit.
  • the phase of the analog signal corresponding to each received radio wave is shifted for each of the antennas to which it belongs. Thereby, the receiving device 1 can form the first beam in a direction in which the intensity of the target radio wave to be demodulated is increased.
  • the second demodulator further includes an error information generator.
  • the receiving apparatus 1 can hold
  • the second demodulator when the first demodulator fails to demodulate the target radio wave, the second demodulator outputs beam direction information indicating the direction of the formed beam to the phase shifter, and the phase shifter The phase of the received radio wave is shifted to the phase forming the beam in the direction indicated by the beam direction information acquired from the second demodulator.
  • the receiving device 1 can easily resume the demodulation of the target radio wave by the first demodulation unit even when the first demodulation unit 22 fails to demodulate the target radio wave.
  • the phase shift unit associates the shape of the beam based on the phase of each analog signal phase-shifted by the phase shift unit, the success or failure of demodulation of the target radio wave, and the change in the direction of the beam. Based on a machine learning algorithm in which information including information is learned, the phase of the analog signal corresponding to each of the received radio waves received for each of the plurality of antennas is shifted. Thereby, the receiving device 1 can perform demodulation of the target radio wave by the first demodulator more reliably and accurately.
  • the second demodulator learns information including information in which the shape of the beam formed by the second demodulator, the success or failure of demodulation of the target radio wave, and the change in the direction of the beam are associated with each other.
  • One or more beams are formed based on the machine learning algorithm and the digital information stored in the storage unit. Thereby, the receiving device 1 can perform demodulation of the target radio wave by the second demodulator more reliably and accurately.
  • a program for realizing the function of an arbitrary component in the above-described device is recorded on a computer-readable recording medium, and the program is read into a computer system and executed. You may make it do.
  • the “computer system” includes hardware such as an OS (Operating System) and peripheral devices.
  • the “computer-readable recording medium” means a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD (Compact Disk) -ROM, or a storage device such as a hard disk built in the computer system. .
  • “computer-readable recording medium” means a volatile memory (RAM) inside a computer system that becomes a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line.
  • RAM volatile memory
  • those holding programs for a certain period of time are also included.
  • the above program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the above program may be for realizing a part of the functions described above.
  • the program may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer system.
  • the above-described receiving device it is possible to shorten the time from reception of radio waves arriving from within the beam to demodulation, and even when demodulation of the radio waves fails, information on the radio waves Demodulation can be resumed without loss of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A reception device provided with: a phased array antenna in which a plurality of antennas are arranged; a phase shift unit that shifts the phases of analog signals corresponding to respective received radio waves respectively received by the plurality of antennas; a first demodulation unit that demodulates, as target radio waves, radio waves arriving from within a beam based on the respective phases of the phase-shifted analog signals; a conversion unit that converts, with respect to the respective received radio waves, the analog signals corresponding to the received radio waves to digital signals; a storage unit in which digital information indicating a plurality of digital signals is stored in such a manner that enables reception time synchronization; and a second demodulation unit that, if the first demodulation unit has failed to demodulate the target radio waves, demodulates the target radio waves on the basis of the digital information stored in the storage unit.

Description

受信装置Receiver
 この発明は、受信装置に関する。
 本願は、2018年3月29日に、日本に出願された特願2018-065226号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a receiving device.
This application claims priority on March 29, 2018 based on Japanese Patent Application No. 2018-065226 filed in Japan, the contents of which are incorporated herein by reference.
 アンテナによって電波を受信する受信装置に関する技術の研究や開発が行われている。 Research and development of technologies related to receivers that receive radio waves with antennas are being conducted.
 これに関し、複数のアンテナが互いに間隔を開けて配置されたフェーズドアレイアンテナを備えた受信装置が知られている(特許文献1参照)。 In this regard, there has been known a receiving apparatus including a phased array antenna in which a plurality of antennas are arranged at intervals (see Patent Document 1).
米国特許第7787819号明細書US Pat. No. 7,778,819
 フェーズドアレイアンテナを備えた受信装置がビームを形成する方法としては、ABF(Analog Beam Forming)とDBF(Digital Beam Forming)との2つの方法が知られている。 As a method of forming a beam by a receiving apparatus equipped with a phased array antenna, two methods of ABF (Analog Beam Forming) and DBF (Digital Beam Forming) are known.
 ABFでは、フェーズドアレイアンテナが備える複数のアンテナのそれぞれによって受信された電波それぞれに応じたアナログ信号に基づいてビームが形成される。ABFによってビームを形成する受信装置は、DBFによってビームを形成する場合と比較して、当該ビーム内から到来する電波を受信してから復調するまでの間の時間を短くすることができる場合がある。これは、DBFは、当該ビームの形成に応じた処理が必要であるためである。しかしながら、ABFの当該受信装置は、複数の人工衛星のそれぞれから送信された電波を同時刻に受信するためには、当該人工衛星の数と同じ数のフェーズドアレイアンテナを備える必要があることが知られている。また、当該受信装置は、例えば、電波を受信したい対象となる人工衛星の軌道の推定精度が低い等の理由によって当該人工衛星から送信された電波の受信に失敗した場合、受信に失敗した時間から受信可能となるまでの時間の間に取得されたはずの情報が失われるとともに、当該電波の復調を再開することが困難な場合があった。 In ABF, a beam is formed based on an analog signal corresponding to each radio wave received by each of a plurality of antennas included in a phased array antenna. A receiving apparatus that forms a beam by using an ABF may be able to shorten the time from reception of a radio wave arriving from within the beam to demodulation, as compared with a case in which a beam is formed by using a DBF. . This is because DBF requires processing according to the formation of the beam. However, it is known that the receiving device of the ABF needs to include the same number of phased array antennas as the number of artificial satellites in order to receive radio waves transmitted from each of the plurality of artificial satellites at the same time. It has been. In addition, for example, when the reception device fails to receive the radio wave transmitted from the artificial satellite due to low estimation accuracy of the orbit of the artificial satellite to be received, for example, from the time when the reception failed. Information that should have been acquired during the time until reception becomes possible is lost, and it may be difficult to resume demodulation of the radio wave.
 一方、DBFでは、フェーズドアレイアンテナが備える複数のアンテナのそれぞれによって受信された電波に応じたデジタル信号を示すデジタル情報として記憶し、記憶したデジタル情報に基づいてビームが形成される。DBFによってビームを形成する受信装置は、当該受信装置の上空を通過する複数の人工衛星のそれぞれから送信された電波を、1つのフェーズドアレイによって同時刻に受信することができる。このため、ABFとDBFとのそれぞれによってビームを形成可能な受信装置は、例えば、電波を受信したい対象となる人工衛星の軌道の推定精度が低い等の理由によって当該人工衛星から送信された電波の受信に失敗した場合であっても、記憶したデジタル情報に基づいて、当該電波を受信可能なビームを形成し直すことができ、その結果、当該電波の情報を欠損することなく、当該電波の復調を容易に再開することができる。しかしながら、DBFによってビームを形成する受信装置は、ABFによってビームを形成する場合と比較して、形成したビーム内から到来する電波を受信してから復調するまでの間の時間が長くなってしまう。その結果、受信装置は、ユーザーが所望するタイミングに、ユーザーが所望する情報を提供することができない場合があった。 On the other hand, in DBF, it memorize | stores as digital information which shows the digital signal according to each of the some antenna with which a phased array antenna is equipped, and a beam is formed based on the memorize | stored digital information. A receiving apparatus that forms a beam by DBF can receive radio waves transmitted from each of a plurality of artificial satellites passing over the receiving apparatus at the same time by one phased array. For this reason, a receiving device capable of forming a beam by each of ABF and DBF, for example, of the radio wave transmitted from the artificial satellite due to the reason that the estimation accuracy of the orbit of the artificial satellite to be received is low. Even if reception fails, a beam capable of receiving the radio wave can be re-formed based on the stored digital information, and as a result, the radio wave can be demodulated without losing the radio wave information. Can be easily resumed. However, in a receiving apparatus that forms a beam by DBF, the time from reception of radio waves coming from within the formed beam to demodulation is longer than when a beam is formed by ABF. As a result, the receiving apparatus may not be able to provide information desired by the user at a timing desired by the user.
 そこで本発明は、上記従来技術の問題に鑑みてなされたものであり、ビーム内から到来する電波を受信してから復調するまでの間の時間を短くすることができるとともに、当該電波の復調に失敗した場合であっても当該電波の情報を欠損することなく復調を再開することができる受信装置を提供する。 Accordingly, the present invention has been made in view of the above-described problems of the prior art, and can shorten the time from reception of radio waves arriving from within a beam to demodulation thereof, and also demodulation of the radio waves. Provided is a receiving device capable of resuming demodulation without losing information on the radio wave even if it fails.
 上述した課題を解決するために、本発明の一態様は、複数のアンテナが互いに間隔を開けて配置されたフェーズドアレイアンテナと、前記複数の前記アンテナのそれぞれ毎に受信された受信電波それぞれに応じたアナログ信号の位相を移相する移相部と、前記移相部により移相された前記アナログ信号それぞれの位相に基づくビーム内から到来する電波を対象電波として復調する第1復調部と、前記複数の前記アンテナのそれぞれにより受信された前記受信電波それぞれについて、前記受信電波に応じた前記アナログ信号をデジタル信号に変換する変換部と、前記変換部により変換された前記複数の前記デジタル信号を示すデジタル情報を受信時刻同期が可能な態様で記憶される記憶部と、前記第1復調部が前記対象電波の復調に失敗した場合、前記記憶部に記憶されている前記デジタル情報に基づいて前記対象電波を復調する第2復調部と、を備える受信装置である。 In order to solve the above-described problem, one embodiment of the present invention provides a phased array antenna in which a plurality of antennas are spaced apart from each other, and a received radio wave received for each of the plurality of antennas. A phase-shifting unit that phase-shifts the phase of the analog signal, a first demodulating unit that demodulates a radio wave arriving from within the beam based on the phase of each analog signal phase-shifted by the phase-shifting unit as a target radio wave, For each of the received radio waves received by each of the plurality of antennas, a conversion unit that converts the analog signal corresponding to the received radio wave into a digital signal, and the plurality of digital signals converted by the conversion unit A storage unit that stores digital information in a manner that allows reception time synchronization and the first demodulation unit failed to demodulate the target radio wave If, a second demodulator for demodulating the target wave based on the digital information stored in the storage unit, a receiving device comprising a.
 本発明によれば、ビーム内から到来する電波を受信してから復調するまでの間の時間を短くすることができるとともに、当該電波の復調に失敗した場合であっても当該電波の情報を欠損することなく復調を再開することができる受信装置を提供することができる。 According to the present invention, it is possible to shorten the time from reception of a radio wave arriving from within a beam to demodulation, and even when demodulation of the radio wave fails, information on the radio wave is lost. It is possible to provide a receiving apparatus that can resume demodulation without performing the above.
受信装置1の構成の一例を示す図である。2 is a diagram illustrating an example of a configuration of a receiving device 1. FIG. 受信制御装置20の機能構成の一例を示す図である。3 is a diagram illustrating an example of a functional configuration of a reception control device 20. FIG. 受信制御部21の機能構成の一例を示す図である。3 is a diagram illustrating an example of a functional configuration of a reception control unit 21. FIG. 受信制御装置20がデジタル情報を記憶部214に記憶させる処理の流れの一例を示す図である。6 is a diagram illustrating an example of a flow of processing in which the reception control device 20 stores digital information in a storage unit 214. FIG. 移相制御部215Aが移相器215Bに設定された移相量を変化させる処理の流れの一例を示す図である。It is a figure which shows an example of the flow of a process in which the phase shift control part 215A changes the phase shift amount set to the phase shifter 215B. 移相器215Bがアナログ信号の移相量を変化させる処理の流れの一例を示す図である。It is a figure which shows an example of the flow of a process in which the phase shifter 215B changes the phase shift amount of an analog signal. 受信制御装置20が対象電波を復調する処理の流れの一例を示す図である。It is a figure which shows an example of the flow of a process which the reception control apparatus 20 demodulates to an object radio wave. 誤差情報生成部216が誤差情報を生成する処理の流れの一例を示す図である。It is a figure which shows an example of the flow of the process in which the error information generation part 216 produces | generates error information.
 <実施形態>
 以下、本発明の実施形態について、図面を参照して説明する。
<Embodiment>
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <受信装置の概要>
 まず、実施形態に係る受信装置1の概要について説明する。図1は、受信装置1の構成の一例を示す図である。
<Outline of receiving device>
First, the outline | summary of the receiver 1 which concerns on embodiment is demonstrated. FIG. 1 is a diagram illustrating an example of the configuration of the receiving device 1.
 受信装置1は、電波を送信する1つ以上の送信元から送信された電波を受信する。図1では、一例として、1つ以上の送信元が3つの人工衛星Sである場合について説明する。 The receiving device 1 receives radio waves transmitted from one or more transmission sources that transmit radio waves. In FIG. 1, a case where one or more transmission sources are three artificial satellites S will be described as an example.
 3つの人工衛星Sは、受信装置1に対して各種の情報に応じて変調された電波を送信する。図1に示した人工衛星S1、人工衛星S2、人工衛星S3は、当該3つの人工衛星Sの一例である。なお、人工衛星S1、人工衛星S2、人工衛星S3のうちの一部又は全部は、互いに異なる構成であってもよく、互いに同じ構成であってもよい。 The three artificial satellites S transmit radio waves modulated according to various types of information to the receiving device 1. The artificial satellite S1, the artificial satellite S2, and the artificial satellite S3 illustrated in FIG. 1 are examples of the three artificial satellites S. Note that some or all of the artificial satellite S1, the artificial satellite S2, and the artificial satellite S3 may have different configurations or may have the same configuration.
 受信装置1は、フェーズドアレイアンテナ10と、受信制御装置20を備える。 The receiving device 1 includes a phased array antenna 10 and a reception control device 20.
 フェーズドアレイアンテナ10は、複数のアンテナ11を備える。図1に示した例では、フェーズドアレイアンテナ10は、N個のアンテナ11としてアンテナ11-1~アンテナ11-Nを備えている。ここで、Nは、2以上の整数である。 The phased array antenna 10 includes a plurality of antennas 11. In the example shown in FIG. 1, the phased array antenna 10 includes antennas 11-1 to 11-N as N antennas 11. Here, N is an integer of 2 or more.
 また、フェーズドアレイアンテナ10では、N個のアンテナ11が互いに間隔を開けて予め決められた位置関係となるように配置されている。 Further, in the phased array antenna 10, N antennas 11 are arranged so as to have a predetermined positional relationship with a space therebetween.
 N個のアンテナ11のそれぞれは、フェーズドアレイアンテナ10に向かって到来する電波を受信する。すなわち、N個のアンテナ11のそれぞれは、フェーズドアレイアンテナ10のアンテナエレメントである。以下では、説明の便宜上、N個のアンテナ11それぞれが受信した電波を、受信電波と称して説明する。N個のアンテナ11のそれぞれは、受信電波を受信する毎に、受信した受信電波に応じたアナログ信号を受信制御装置20に出力する。 Each of the N antennas 11 receives radio waves arriving toward the phased array antenna 10. That is, each of the N antennas 11 is an antenna element of the phased array antenna 10. Hereinafter, for convenience of explanation, the radio waves received by each of the N antennas 11 will be referred to as received radio waves. Each of the N antennas 11 outputs an analog signal corresponding to the received received radio wave to the reception control device 20 every time the received radio wave is received.
 受信制御装置20は、ABF(Analog Beam Forming)によってビームを形成し、形成したビーム内から到来する電波を対象電波として復調する。 The reception control device 20 forms a beam by ABF (Analog Beam Forming), and demodulates a radio wave coming from the formed beam as a target radio wave.
 より具体的には、受信制御装置20は、フェーズドアレイアンテナ10が備える複数のアンテナ11のそれぞれについて、アンテナ11により受信された受信電波に応じたアナログ信号をアンテナ11から取得する。受信制御装置20は、取得したアナログ信号それぞれの位相を移相し、ビームを形成する。受信制御装置20は、形成したビーム内から到来する電波を、前述の対象電波として復調する。 More specifically, the reception control device 20 acquires from the antenna 11 an analog signal corresponding to the received radio wave received by the antenna 11 for each of the plurality of antennas 11 included in the phased array antenna 10. The reception control device 20 shifts the phase of each acquired analog signal to form a beam. The reception control device 20 demodulates radio waves coming from within the formed beam as the above-described target radio waves.
 また、受信制御装置20は、DBF(Digital Beam Forming)によって同一時刻において1以上のビームを形成し、形成したビーム内から到来する電波を対象電波として復調する。 Also, the reception control device 20 forms one or more beams at the same time by DBF (Digital Beam Forming), and demodulates radio waves coming from the formed beams as target radio waves.
 より具体的には、受信制御装置20は、複数のアンテナ11のそれぞれ毎に受信された受信電波それぞれについて、受信電波に応じたアナログ信号をデジタル信号に変換する。
 受信制御装置20は、変換したデジタル信号のそれぞれを示すデジタル情報を、受信時刻同期が可能な態様で記憶する。受信時刻同期が可能な態様とは、例えば、受信時刻が互いに同じである受信電波に応じたデジタル信号を示すデジタル情報同士を対応付けた態様である。受信制御装置20は、記憶したデジタル情報に基づいて、1以上のビームを仮想的に形成する。受信制御装置20は、形成した1以上のビームのうち対象電波が到来するビームを特定する。そして、受信制御装置20は、特定したビーム内から到来する電波を対象電波として復調する。
More specifically, the reception control device 20 converts an analog signal corresponding to the received radio wave into a digital signal for each received radio wave received for each of the plurality of antennas 11.
The reception control device 20 stores digital information indicating each of the converted digital signals in a manner that allows reception time synchronization. A mode in which reception time synchronization is possible is a mode in which digital information indicating digital signals corresponding to received radio waves having the same reception time is associated with each other. The reception control device 20 virtually forms one or more beams based on the stored digital information. The reception control device 20 identifies a beam from which the target radio wave arrives among the one or more formed beams. Then, the reception control device 20 demodulates the radio wave coming from within the identified beam as the target radio wave.
 また、受信制御装置20は、ABFによって形成したビームに基づく対象電波の復調に失敗した場合、記憶したデジタル情報に基づいて、1以上のビームを仮想的に形成する。
 受信制御装置20は、形成した1以上のビーム内から到来する電波を復調する。受信制御装置20は、復調した1以上の電波の中から対象電波を特定する。後述する第1復調部22によって当該電波の復調に失敗した場合であっても記憶したデジタル情報に基づいて当該電波の復調を再開することができる。
In addition, when the reception control device 20 fails to demodulate the target radio wave based on the beam formed by the ABF, the reception control device 20 virtually forms one or more beams based on the stored digital information.
The reception control device 20 demodulates radio waves that arrive from one or more formed beams. The reception control device 20 identifies a target radio wave from one or more demodulated radio waves. Even when the demodulation of the radio wave fails by the first demodulator 22 described later, the demodulation of the radio wave can be resumed based on the stored digital information.
 以下では、受信制御装置20の機能構成と、受信制御装置20が行う各種の処理とのそれぞれについて詳しく説明する。 Hereinafter, each of the functional configuration of the reception control device 20 and various processes performed by the reception control device 20 will be described in detail.
 <受信制御装置の機能構成>
 以下、図2及び図3を参照し、受信制御装置20の機能構成について説明する。
<Functional configuration of reception control device>
Hereinafter, the functional configuration of the reception control apparatus 20 will be described with reference to FIGS. 2 and 3.
 図2は、受信制御装置20の機能構成の一例を示す図である。受信制御装置20は、受信制御部21と、第1復調部22と、第1情報処理装置23と、第2情報処理装置24を備える。また、第2情報処理装置24は、第2復調部241を備える。 FIG. 2 is a diagram illustrating an example of a functional configuration of the reception control device 20. The reception control device 20 includes a reception control unit 21, a first demodulation unit 22, a first information processing device 23, and a second information processing device 24. In addition, the second information processing device 24 includes a second demodulator 241.
 受信制御部21は、フェーズドアレイアンテナ10が備える複数のアンテナ11のそれぞれについて、アンテナ11により受信された受信電波に応じたアナログ信号をアンテナ11から取得する。また、受信制御部21は、取得したアナログ信号をデジタル信号に変換する。受信制御部21は、変換したデジタル信号それぞれを示すデジタル情報を、受信時刻同期が可能な態様で記憶する。また、受信制御部21は、取得したアナログ信号のそれぞれについて、アナログ信号の位相を移相する。この際、受信制御部21は、予め記憶された予報値情報が示す予報値に基づいて対象電波を送信している人工衛星Sの位置を特定し、特定した位置へのフェーズドアレイアンテナ10からの方向を到来方向として算出する。受信制御部21は、算出した到来方向にビームの方向が向かう位相、且つ、ビームの形状が所望の形状となる位相へと、取得したアナログ信号それぞれの位相を移相する。
 受信制御部21は、移相した複数のアナログ信号のそれぞれを第1復調部22に出力する。また、受信制御部21は、第2情報処理装置24が備える第2復調部241からの要求に応じて、記憶したデジタル情報を第2復調部241に出力する。
The reception control unit 21 acquires, from the antenna 11, an analog signal corresponding to the received radio wave received by the antenna 11 for each of the plurality of antennas 11 included in the phased array antenna 10. The reception control unit 21 converts the acquired analog signal into a digital signal. The reception control unit 21 stores digital information indicating each converted digital signal in a manner that allows reception time synchronization. The reception control unit 21 shifts the phase of the analog signal for each acquired analog signal. At this time, the reception control unit 21 identifies the position of the artificial satellite S that is transmitting the target radio wave based on the forecast value indicated by the forecast value information stored in advance, and receives the signal from the phased array antenna 10 to the identified position. The direction is calculated as the direction of arrival. The reception control unit 21 shifts the phase of each acquired analog signal to a phase in which the direction of the beam is directed to the calculated arrival direction and a phase in which the shape of the beam is a desired shape.
The reception control unit 21 outputs each of the plurality of phase-shifted analog signals to the first demodulation unit 22. Further, the reception control unit 21 outputs the stored digital information to the second demodulation unit 241 in response to a request from the second demodulation unit 241 included in the second information processing device 24.
 ここで、図3を参照し、受信制御部21の機能構成について説明する。図3は、受信制御部21の機能構成の一例を示す図である。受信制御部21は、複数のアンテナ11のそれぞれ毎にアンテナ11と接続するハードウェア機能部として、低雑音増幅器211と、ダウンコンバーター212と、AD変換部213と、記憶部214を備える。図3では、図が煩雑になるのを防ぐため、1個のアンテナ11によってN個のアンテナ11を表している。このため、図3では、1個の低雑音増幅器211によってN個の低雑音増幅器211を表し、1個のダウンコンバーター212によってN個のダウンコンバーター212を表し、1個のAD変換部213によってN個のAD変換部213を表し、1個の記憶部214によってN個の記憶部214を表している。 Here, the functional configuration of the reception control unit 21 will be described with reference to FIG. FIG. 3 is a diagram illustrating an example of a functional configuration of the reception control unit 21. The reception control unit 21 includes a low noise amplifier 211, a down converter 212, an AD conversion unit 213, and a storage unit 214 as hardware function units connected to the antenna 11 for each of the plurality of antennas 11. In FIG. 3, N antennas 11 are represented by one antenna 11 in order to prevent the drawing from being complicated. Therefore, in FIG. 3, one low noise amplifier 211 represents N low noise amplifiers 211, one down converter 212 represents N down converters 212, and one AD converter 213 represents N One AD conversion unit 213 is represented, and one storage unit 214 represents N storage units 214.
 また、以下では、一例として、フェーズドアレイアンテナ10において、N個のアンテナ11が、第1グループに2以上の第1アンテナとして属する2以上のアンテナ11と、第1グループと異なる第2グループに2以上の第2アンテナとして属する2以上のアンテナ11とに分けられている場合について説明する。ここで、2以上の第1アンテナは、前述の対象電波を復調するために用いられる受信電波を受信するアンテナである。また、2以上の第2アンテナは、後述する誤差情報生成部216が誤差電波を復調するために用いられる受信電波を受信するアンテナである。なお、フェーズドアレイアンテナ10において、第2グループは、1つのみあってもよく、複数あってもよい。以下では、一例として、フェーズドアレイアンテナ10において、N個のアンテナ11が、第1グループと、第21グループ、第22グループ、第23グループ、第24グループの4つの第2グループとに分けられている場合について説明する。この場合、第21グループには、2以上のアンテナ11が、2以上の第21アンテナとして属している。また、当該場合、第22グループには、2以上のアンテナ11が、2以上の第22アンテナとして属している。また、当該場合、第23グループには、2以上のアンテナ11が、2以上の第23アンテナとして属している。また、当該場合、第24グループには、2以上のアンテナ11が、2以上の第24アンテナとして属している。ここで、以下では、説明の便宜上、第21グループ、第22グループ、第23グループ、第24グループのそれぞれを区別する必要がない限り、まとめて第2グループと称して説明する。また、以下では、説明の便宜上、第1アンテナと第2アンテナとを区別する必要がない限り、まとめてアンテナ11と称して説明する。また、フェーズドアレイアンテナ10では、第1グループに属する2以上のアンテナ11のうちの一部又は全部が、第2グループに属するアンテナ11として振る舞うように構成されてもよい。すなわち、フェーズドアレイアンテナ10が備える複数のアンテナ11はそれぞれ、第1グループと第2グループとのいずれか一方又は両方に属する構成であってもよい。 Also, in the following, as an example, in the phased array antenna 10, N antennas 11 include two or more antennas 11 belonging to the first group as two or more first antennas, and 2 in a second group different from the first group. A case where the antenna is divided into two or more antennas 11 belonging to the second antenna will be described. Here, the two or more first antennas are antennas that receive the received radio waves used for demodulating the target radio waves. The two or more second antennas are antennas that receive a received radio wave that is used by an error information generation unit 216 described later to demodulate the error radio wave. In the phased array antenna 10, there may be only one second group or a plurality of second groups. In the following, as an example, in the phased array antenna 10, N antennas 11 are divided into a first group and four second groups of a 21st group, a 22nd group, a 23rd group, and a 24th group. The case will be described. In this case, two or more antennas 11 belong to the twenty-first group as two or more twenty-first antennas. In this case, two or more antennas 11 belong to the twenty-second group as two or more twenty-second antennas. In this case, two or more antennas 11 belong to the twenty-third group as two or more twenty-third antennas. In this case, two or more antennas 11 belong to the twenty-fourth group as two or more twenty-fourth antennas. Here, for convenience of explanation, the 21st group, the 22nd group, the 23rd group, and the 24th group will be collectively referred to as the second group unless it is necessary to distinguish them. In the following, for convenience of explanation, the first antenna and the second antenna are collectively referred to as the antenna 11 unless it is necessary to distinguish between the first antenna and the second antenna. Further, the phased array antenna 10 may be configured such that part or all of the two or more antennas 11 belonging to the first group behave as the antennas 11 belonging to the second group. That is, the plurality of antennas 11 included in the phased array antenna 10 may be configured to belong to one or both of the first group and the second group.
 低雑音増幅器211は、低雑音増幅器211が接続されているアンテナ11から取得したアナログ信号を増幅する。低雑音増幅器211は、増幅したアナログ信号をダウンコンバーター212に出力する。 The low noise amplifier 211 amplifies the analog signal acquired from the antenna 11 to which the low noise amplifier 211 is connected. The low noise amplifier 211 outputs the amplified analog signal to the down converter 212.
 ダウンコンバーター212は、ダウンコンバーター212が接続されている低雑音増幅器211が増幅したアナログ信号を当該低雑音増幅器211から取得する。ここで、ダウンコンバーター212は、周波数変換部212Aと、分岐部212Bを備える。 The down converter 212 acquires from the low noise amplifier 211 the analog signal amplified by the low noise amplifier 211 to which the down converter 212 is connected. Here, the down converter 212 includes a frequency conversion unit 212A and a branching unit 212B.
 周波数変換部212Aは、ダウンコンバーター212が低雑音増幅器211から取得したアナログ信号の周波数を予め決められた周波数に変換する。周波数変換部212Aは、周波数を変換したアナログ信号を分岐部212Bに出力する。
 分岐部212Bは、周波数変換部212Aが周波数を変換したアナログ信号を周波数変換部212Aから取得する。分岐部212Bは、取得したアナログ信号をAD変換部213に出力するとともに移相部215に出力する。
The frequency conversion unit 212A converts the frequency of the analog signal acquired by the down converter 212 from the low noise amplifier 211 into a predetermined frequency. The frequency conversion unit 212A outputs an analog signal whose frequency has been converted to the branching unit 212B.
The branching unit 212B acquires the analog signal obtained by converting the frequency by the frequency converting unit 212A from the frequency converting unit 212A. The branching unit 212B outputs the acquired analog signal to the AD conversion unit 213 and also outputs it to the phase shift unit 215.
 AD変換部213は、AD変換部213が接続されているダウンコンバーター212の分岐部212Bからアナログ信号を取得する。AD変換部213は、取得したアナログ信号をデジタル信号に変換する。AD変換部213は、変換したデジタル信号を、当該デジタル信号を示すデジタル情報として記憶部214に出力し、記憶部214に記憶させる。 The AD conversion unit 213 acquires an analog signal from the branch unit 212B of the down converter 212 to which the AD conversion unit 213 is connected. The AD conversion unit 213 converts the acquired analog signal into a digital signal. The AD conversion unit 213 outputs the converted digital signal to the storage unit 214 as digital information indicating the digital signal, and causes the storage unit 214 to store the digital signal.
 記憶部214は、EEPROM(Electrically Erasable Programmable Read-Only Memory)、ROM(Read-Only Memory)、RAM(Random Access Memory)、フラッシュメモリー等を含む。記憶部214は、記憶部214が接続されたAD変換部213から出力されたデジタル情報を格納する。 The storage unit 214 includes an EEPROM (Electrically Erasable Programmable Read-Only Memory), ROM (Read-Only Memory), RAM (Random Access Memory), flash memory, and the like. The storage unit 214 stores the digital information output from the AD conversion unit 213 to which the storage unit 214 is connected.
 移相部215は、移相制御部215Aを備える。また、移相部215は、複数の分岐部212Bのそれぞれ毎に分岐部212Bと接続するハードウェア機能部として、移相器215Bを備える。図3では、図が煩雑になるのを防ぐため、1個の移相器215BによってN個の移相器215Bを表している。 The phase shift unit 215 includes a phase shift control unit 215A. In addition, the phase shift unit 215 includes a phase shifter 215B as a hardware function unit connected to the branch unit 212B for each of the plurality of branch units 212B. In FIG. 3, N phase shifters 215 </ b> B are represented by one phase shifter 215 </ b> B in order to prevent the diagram from becoming complicated.
 移相制御部215Aは、N個の移相器215Bのそれぞれについて、移相器215Bが分岐部212Bから取得したアナログ信号の位相を移相する移相量を制御する。具体的には、移相制御部215Aは、図示しない記憶部に予め記憶された予報値情報が示す予報値に基づいて対象電波を送信している人工衛星Sの位置を特定し、特定した位置へのフェーズドアレイアンテナ10からの方向を前述の到来方向として算出する。また、移相制御部215Aは、後述する誤差情報生成部216から誤差情報を取得する。移相制御部215Aは、算出した到来方向を、誤差情報に基づいて補正する。移相制御部215Aが誤差情報に基づいて当該到来方向を補正する処理についての詳細は、後述する。 The phase shift control unit 215A controls, for each of the N phase shifters 215B, the phase shift amount by which the phase of the analog signal acquired by the phase shifter 215B from the branch unit 212B is shifted. Specifically, the phase shift control unit 215A identifies the position of the artificial satellite S that is transmitting the target radio wave based on the forecast value indicated by the forecast value information stored in advance in a storage unit (not shown), and identifies the identified position. The direction from the phased array antenna 10 is calculated as the aforementioned arrival direction. In addition, the phase shift control unit 215A acquires error information from an error information generation unit 216 described later. The phase shift control unit 215A corrects the calculated arrival direction based on the error information. Details of the process in which the phase shift control unit 215A corrects the arrival direction based on the error information will be described later.
 移相制御部215Aは、所望の第1位相へと、第1移相器が取得したアナログ信号の位相が移相されるように第1移相器を制御する。第1位相は、補正された到来方向にビームの方向が向かう位相であり、且つ、ビームの形状が所望の形状となる位相である。第1移相器は、2以上の第1アンテナのそれぞれに接続された移相器215Bのことである。以下では、説明の便宜上、当該到来方向に向いているビームを第1ビームと称して説明する。 The phase shift control unit 215A controls the first phase shifter so that the phase of the analog signal acquired by the first phase shifter is shifted to the desired first phase. The first phase is a phase in which the beam direction is directed to the corrected arrival direction, and the beam has a desired shape. The first phase shifter is a phase shifter 215B connected to each of the two or more first antennas. Hereinafter, for convenience of explanation, the beam directed in the arrival direction will be referred to as a first beam.
 また、移相制御部215Aは、所望の第21位相へと、第21移相器が取得したアナログ信号の位相が移相されるように第21移相器を制御する。第21位相は、算出された到来方向からアジマス方向の正方向に予め決められた角度である角度θずれた方向にビームの方向が向かう位相であり、且つ、ビームの形状が所望の形状となる位相である。第21移相器は、2以上の第21アンテナのそれぞれに接続された移相器215Bのことである。 The phase shift control unit 215A controls the 21st phase shifter so that the phase of the analog signal acquired by the 21st phase shifter is shifted to the desired 21st phase. The 21st phase is a phase in which the direction of the beam is directed in a direction shifted by an angle θ that is a predetermined angle in the positive direction of the azimuth direction from the calculated arrival direction, and the beam has a desired shape. It is a phase. The twenty-first phase shifter is a phase shifter 215B connected to each of two or more twenty-first antennas.
 また、移相制御部215Aは、所望の第22位相へと、第22移相器が取得したアナログ信号の位相が移相されるように第22移相器を制御する。第22位相は、算出された到来方向からアジマス方向の負方向に角度θずれた方向にビームの方向が向かう位相であり、且つ、ビームの形状が所望の形状となる位相である。第22移相器は、2以上の第22アンテナのそれぞれに接続された移相器215Bのことである。 Further, the phase shift control unit 215A controls the 22nd phase shifter so that the phase of the analog signal acquired by the 22nd phase shifter is shifted to the desired 22nd phase. The twenty-second phase is a phase in which the direction of the beam is directed in a direction shifted by an angle θ in the negative direction of the azimuth direction from the calculated arrival direction, and the beam has a desired shape. The twenty-second phase shifter is a phase shifter 215B connected to each of two or more twenty-second antennas.
 また、移相制御部215Aは、所望の第23位相へと、第23移相器が取得したアナログ信号の位相が移相されるように第23移相器を制御する。第23位相は、算出された到来方向からエレベーション方向の正方向に角度θずれた方向にビームの方向が向かう位相であり、且つ、ビームの形状が所望の形状となる位相である。第23移相器は、2以上の第23アンテナのそれぞれに接続された移相器215Bのことである。 Further, the phase shift control unit 215A controls the 23rd phase shifter so that the phase of the analog signal acquired by the 23rd phase shifter is shifted to the desired 23rd phase. The 23rd phase is a phase in which the direction of the beam is shifted from the calculated arrival direction in a direction shifted by an angle θ in the positive direction of the elevation direction, and the beam has a desired shape. The 23rd phase shifter is a phase shifter 215B connected to each of two or more 23rd antennas.
 また、移相制御部215Aは、所望の第24位相へと、第24移相器が取得したアナログ信号の位相が移相されるように第24移相器を制御する。第24位相は、算出された到来方向からエレベーション方向の負方向に角度θずれた方向にビームの方向が向かう位相であり、且つ、ビームの形状が所望の形状となる位相である。第24移相器は、2以上の第24アンテナのそれぞれに接続された移相器215Bのことである。 Further, the phase shift control unit 215A controls the 24th phase shifter so that the phase of the analog signal acquired by the 24th phase shifter is shifted to the desired 24th phase. The twenty-fourth phase is a phase in which the direction of the beam is directed in a direction shifted by an angle θ in the negative direction of the elevation direction from the calculated arrival direction, and the beam has a desired shape. The 24th phase shifter is a phase shifter 215B connected to each of two or more 24th antennas.
 移相器215Bは、移相器215Bが接続された分岐部212Bからアナログ信号を取得する。移相器215Bは、取得したアナログ信号の位相を、移相制御部215Aにより指定された位相量移相する。そして、移相器215Bは、移相したアナログ信号を第1復調部22に出力するとともに、当該アナログ信号を誤差情報生成部216に出力する。 The phase shifter 215B acquires an analog signal from the branching unit 212B to which the phase shifter 215B is connected. The phase shifter 215B shifts the phase of the acquired analog signal by the phase amount specified by the phase shift control unit 215A. Then, the phase shifter 215 </ b> B outputs the phase-shifted analog signal to the first demodulation unit 22 and outputs the analog signal to the error information generation unit 216.
 誤差情報生成部216は、2以上の第21移相器からアナログ信号を、当該2以上の第21アナログ信号として取得する。また、誤差情報生成部216は、2以上の第22移相器からアナログ信号を、当該2以上の第22アナログ信号として取得する。また、誤差情報生成部216は、2以上の第23移相器からアナログ信号を、当該2以上の第23アナログ信号として取得する。また、誤差情報生成部216は、2以上の第24移相器からアナログ信号を、当該2以上の第24アナログ信号として取得する。誤差情報生成部216は、取得した2以上の第21アナログ信号それぞれの位相に基づく第21ビーム内から到来する電波を、第21誤差電波として復調する。また、誤差情報生成部216は、取得した2以上の第22アナログ信号それぞれの位相に基づく第22ビーム内から到来する電波を、第22誤差電波として復調する。また、誤差情報生成部216は、取得した2以上の第23アナログ信号それぞれの位相に基づく第23ビーム内から到来する電波を、第23誤差電波として復調する。また、誤差情報生成部216は、取得した2以上の第24アナログ信号それぞれの位相に基づく第24ビーム内から到来する電波を、第24誤差電波として復調する。誤差情報生成部216は、復調した第21誤差電波、第22誤差電波、第23誤差電波、第24誤差電波それぞれの強度と、第21ビーム、第22ビーム、第23ビーム、第24ビームそれぞれの方向とを示す情報を前述の誤差情報として生成し、生成した誤差情報を移相制御部215Aに出力する。 The error information generation unit 216 acquires an analog signal from the two or more 21st phase shifters as the two or more 21st analog signals. Further, the error information generation unit 216 acquires an analog signal from the two or more twenty-second phase shifters as the two or more twenty-second analog signals. Further, the error information generation unit 216 acquires an analog signal from two or more 23rd phase shifters as the two or more 23rd analog signals. Further, the error information generation unit 216 acquires an analog signal from the two or more 24th phase shifters as the two or more 24th analog signals. The error information generation unit 216 demodulates radio waves arriving from the 21st beam based on the phases of the two or more acquired 21st analog signals as 21st error radio waves. In addition, the error information generation unit 216 demodulates radio waves arriving from within the 22nd beam based on the phases of the two or more acquired 22nd analog signals as 22nd error radio waves. In addition, the error information generation unit 216 demodulates radio waves arriving from the 23rd beam based on the phases of the two or more acquired 23rd analog signals as 23rd error radio waves. In addition, the error information generation unit 216 demodulates radio waves arriving from within the 24th beam based on the phases of the two or more acquired 24th analog signals as 24th error radio waves. The error information generation unit 216 includes the intensities of the demodulated 21st error radio wave, 22nd error radio wave, 23rd error radio wave, and 24th error radio wave, and the 21st beam, 22nd beam, 23rd beam, and 24th beam. Information indicating the direction is generated as the error information described above, and the generated error information is output to the phase shift control unit 215A.
 なお、移相制御部215Aが初めて各移相器215Bを制御する前のタイミングにおいて、誤差情報生成部216は、誤差がないことを示す誤差情報を移相制御部215Aに出力する構成であってもよく、当該誤差情報を出力しない構成であってもよい。当該タイミングにおいて当該誤差情報を出力しない場合、移相制御部215Aは、誤差がないと判定する。
 また、受信制御部21は、誤差情報生成部216を備えない構成であってもよい。この場合、N個のアンテナ11は、すべて第1グループに属する第1アンテナである。
Note that, at a timing before the phase shift control unit 215A controls each phase shifter 215B for the first time, the error information generation unit 216 outputs error information indicating that there is no error to the phase shift control unit 215A. Alternatively, the error information may not be output. When the error information is not output at the timing, the phase shift control unit 215A determines that there is no error.
The reception control unit 21 may be configured not to include the error information generation unit 216. In this case, the N antennas 11 are all the first antennas belonging to the first group.
 第1復調部22は、2以上の第1移相器215Bからアナログ信号を、当該2以上の第1アナログ信号として取得する。第1復調部22は、取得した2以上の第1アナログ信号それぞれの位相に基づく第1ビーム、すなわち、当該2以上の第1アナログ信号を合波することによって形成される第1ビーム内から到来する電波を対象電波として復調する。第1復調部22は、復調した対象電波を示す対象電波情報を第1情報処理装置23に出力する。なお、第1アナログ信号の合波については、既知の方法によって行われてもよく、これから開発される方法によって行われてもよいため、これ以上の説明を省略する。また、第1アナログ信号を合波する機能は、第1復調部22と別体に構成されてもよい。 The first demodulator 22 acquires an analog signal from the two or more first phase shifters 215B as the two or more first analog signals. The first demodulator 22 arrives from the first beam based on the phase of each of the acquired two or more first analog signals, that is, from the first beam formed by combining the two or more first analog signals. Demodulate the target radio wave as the target radio wave. The first demodulator 22 outputs target radio wave information indicating the demodulated target radio wave to the first information processing device 23. Note that the multiplexing of the first analog signal may be performed by a known method or may be performed by a method that will be developed in the future, and thus further description is omitted. The function of multiplexing the first analog signal may be configured separately from the first demodulator 22.
 第1情報処理装置23は、CPU(Central Processing Unit)等の図示しないプロセッサーを備え、当該プロセッサーが各種のプログラムを実行することにより、各種の機能部を実現する。 The first information processing apparatus 23 includes a processor (not shown) such as a CPU (Central Processing Unit), and the processor executes various programs, thereby realizing various functional units.
 第1情報処理装置23は、第1復調部22から対象電波情報を取得する。また、第1情報処理装置23は、ユーザーから操作を受け付ける。第1情報処理装置23は、ユーザーから受け付けた操作に応じて、取得した対象電波情報に基づく処理を行う。例えば、当該処理は、当該対象電波情報を記憶する処理等である。 The first information processing device 23 acquires target radio wave information from the first demodulator 22. In addition, the first information processing device 23 receives an operation from the user. The first information processing device 23 performs processing based on the acquired target radio wave information in accordance with an operation received from the user. For example, the process is a process of storing the target radio wave information.
 第2情報処理装置24は、第2復調部241を備える。 The second information processing device 24 includes a second demodulator 241.
 第2情報処理装置24は、CPU等の図示しないプロセッサーを備え、当該プロセッサーが各種のプログラムを実行することにより、第2復調部241等の各種の機能部を実現する。 The second information processing device 24 includes a processor (not shown) such as a CPU, and implements various functional units such as the second demodulator 241 when the processor executes various programs.
 第2復調部241は、第2情報処理装置24がユーザーから受け付けた操作に応じて、記憶部214に記憶されたデジタル情報を記憶部214から読み出す。第2復調部241は、読み出したデジタル情報に基づいて、1以上のビームを仮想的に形成する。第2復調部241は、復調した1以上の電波の中から対象電波を特定する。なお、第2復調部241は、前述の誤差情報生成部216を更に備える構成であってもよい。 The second demodulation unit 241 reads the digital information stored in the storage unit 214 from the storage unit 214 in response to an operation received by the second information processing device 24 from the user. The second demodulator 241 virtually forms one or more beams based on the read digital information. The second demodulator 241 identifies a target radio wave from one or more demodulated radio waves. The second demodulator 241 may be configured to further include the error information generator 216 described above.
 <受信制御装置がデジタル情報を記憶部に記憶させる処理>
 以下、図4を参照し、受信制御装置20がデジタル情報を記憶部214に記憶させる処理について説明する。図4は、受信制御装置20がデジタル情報を記憶部214に記憶させる処理の流れの一例を示す図である。ここで、N個のアンテナ11のうちのあるアンテナ11に接続された周波数変換部212A、分岐部212B、AD変換部213、記憶部214の組み合わせは、他のアンテナ11に接続された周波数変換部212A、分岐部212B、AD変換部213、記憶部214の組み合わせと同様の処理を行う。このため、以下では、1つのアンテナ11である対象アンテナに接続された周波数変換部212A、分岐部212B、AD変換部213、記憶部214のそれぞれを対象周波数変換部、対象分岐部、対象AD変換部、対象記憶部と称し、対象周波数変換部、対象分岐部、対象AD変換部、対象記憶部が行う処理を例に挙げて、受信制御装置20がデジタル情報を記憶部214に記憶させる処理について説明する。すなわち、図4に示したフローチャートの処理は、対象周波数変換部、対象分岐部、対象AD変換部、対象記憶部のそれぞれが行う処理である。対象周波数変換部、対象分岐部、対象AD変換部、対象記憶部は、対象アンテナが受信電波を受信する毎に、図4に示したフローチャートのステップS110~ステップS160の処理を繰り返し行う。
<Processing in which reception control device stores digital information in storage unit>
Hereinafter, with reference to FIG. 4, processing in which the reception control device 20 stores the digital information in the storage unit 214 will be described. FIG. 4 is a diagram illustrating an example of a processing flow in which the reception control device 20 stores digital information in the storage unit 214. Here, the combination of the frequency conversion unit 212A, the branching unit 212B, the AD conversion unit 213, and the storage unit 214 connected to an antenna 11 among the N antennas 11 is a frequency conversion unit connected to another antenna 11. Processing similar to the combination of 212A, branching unit 212B, AD conversion unit 213, and storage unit 214 is performed. Therefore, hereinafter, the frequency conversion unit 212A, the branching unit 212B, the AD conversion unit 213, and the storage unit 214 connected to the target antenna that is one antenna 11 are respectively set as the target frequency conversion unit, the target branching unit, and the target AD conversion. Processing in which the reception control device 20 stores digital information in the storage unit 214, taking as an example processing performed by the target frequency conversion unit, target branching unit, target AD conversion unit, and target storage unit. explain. That is, the process of the flowchart illustrated in FIG. 4 is a process performed by each of the target frequency conversion unit, the target branch unit, the target AD conversion unit, and the target storage unit. The target frequency conversion unit, the target branching unit, the target AD conversion unit, and the target storage unit repeatedly perform the processing from step S110 to step S160 in the flowchart shown in FIG. 4 every time the target antenna receives a received radio wave.
 対象低雑音増幅器は、対象アンテナが受信した受信電波に応じたアナログ信号を取得する(ステップS110)。 The target low noise amplifier acquires an analog signal corresponding to the received radio wave received by the target antenna (step S110).
 次に、対象低雑音増幅器は、取得したアナログ信号を増幅する(ステップS120)。そして、対象低雑音増幅器は、増幅したアナログ信号を、対象周波数変換部に出力する。 Next, the target low noise amplifier amplifies the acquired analog signal (step S120). Then, the target low noise amplifier outputs the amplified analog signal to the target frequency conversion unit.
 次に、対象周波数変換部は、増幅されたアナログ信号を取得する。対象周波数変換部は、取得したアナログ信号の周波数を予め決められた周波数に変換する(ステップS130)。そして、対象周波数変換部は、周波数を変換されたアナログ信号を対象分岐部に出力する。 Next, the target frequency converter acquires the amplified analog signal. The target frequency conversion unit converts the frequency of the acquired analog signal into a predetermined frequency (step S130). Then, the target frequency conversion unit outputs the analog signal whose frequency has been converted to the target branching unit.
 次に、対象分岐部は、取得したアナログ信号を対象分岐部に接続された移相器215Bに出力するとともに、当該アナログ信号を対象AD変換部に出力する(ステップS140)。ステップS140において対象分岐部から出力されたアナログ信号を取得した当該移相器215Bが行う処理については、図6に示したフローチャートにおいて説明する。 Next, the target branching unit outputs the acquired analog signal to the phase shifter 215B connected to the target branching unit, and outputs the analog signal to the target AD conversion unit (step S140). The processing performed by the phase shifter 215B that has acquired the analog signal output from the target branching unit in step S140 will be described with reference to the flowchart shown in FIG.
 次に、対象AD変換部は、取得したアナログ信号をデジタル信号に変換する(ステップS150)。 Next, the target AD converter converts the acquired analog signal into a digital signal (step S150).
 次に、対象AD変換部は、変換したデジタル信号を示すデジタル情報を生成し、生成したデジタル情報を対象記憶部に記憶させ(ステップS160)、処理を終了する。 Next, the target AD conversion unit generates digital information indicating the converted digital signal, stores the generated digital information in the target storage unit (step S160), and ends the process.
 ここで、複数のアンテナ11のそれぞれに接続された周波数変換部212A、分岐部212B、AD変換部213、記憶部214のそれぞれは、ステップS110~ステップS160の処理を行う。すなわち、受信制御部21は、フェーズドアレイアンテナ10が備えるN個のアンテナ11のそれぞれが受信電波を受信する毎に、ステップS110~ステップS160の処理を繰り返し行う。これにより、受信制御部21は、フェーズドアレイアンテナ10が備えるN個のアンテナ11のそれぞれが受信電波に応じたデジタル信号を示すデジタル情報を記憶部214に記憶させることができる。 Here, each of the frequency conversion unit 212A, the branching unit 212B, the AD conversion unit 213, and the storage unit 214 connected to each of the plurality of antennas 11 performs the processing of step S110 to step S160. That is, the reception control unit 21 repeatedly performs the processing of step S110 to step S160 every time each of the N antennas 11 included in the phased array antenna 10 receives a received radio wave. As a result, the reception control unit 21 can cause the storage unit 214 to store digital information indicating that each of the N antennas 11 included in the phased array antenna 10 indicates a digital signal corresponding to the received radio wave.
 <移相制御部が移相器に設定された移相量を変化させる処理>
 以下、図5を参照し、移相制御部215Aが移相器215Bに設定された移相量を変化させる処理について説明する。図5は、移相制御部215Aが移相器215Bに設定された移相量を変化させる処理の流れの一例を示す図である。移相制御部215Aは、移相器215Bがアナログ信号を分岐部212Bから取得する前のタイミングにおいて、図5に示したフローチャートのステップS210~ステップS230の処理を行い、各移相器215Bに設定された移相量を変化させる。また、移相制御部215Aは、予め決められた周期が経過する毎に、ステップS210~ステップS230の処理を繰り返し行う。
<Processing in which the phase shift control unit changes the phase shift amount set in the phase shifter>
Hereinafter, with reference to FIG. 5, a process in which the phase shift control unit 215A changes the amount of phase shift set in the phase shifter 215B will be described. FIG. 5 is a diagram illustrating an example of a process flow in which the phase shift control unit 215A changes the phase shift amount set in the phase shifter 215B. The phase shift control unit 215A performs the processing from step S210 to step S230 in the flowchart shown in FIG. 5 at a timing before the phase shifter 215B acquires the analog signal from the branching unit 212B, and sets the phase shifter 215B. The amount of phase shift is changed. In addition, the phase shift control unit 215A repeatedly performs the processing from step S210 to step S230 every time a predetermined period elapses.
 移相制御部215Aは、図示しない記憶部に予め記憶された予報値情報を当該記憶部から読み出す。また、移相制御部215Aは、誤差情報生成部216から誤差情報を取得する(ステップS210)。 The phase shift control unit 215A reads forecast value information stored in advance in a storage unit (not shown) from the storage unit. The phase shift control unit 215A acquires error information from the error information generation unit 216 (step S210).
 次に、移相制御部215Aは、読み出した予報値情報が示す予報値に基づいて、対象電波を送信している人工衛星Sの位置を特定し、特定した位置へのフェーズドアレイアンテナ10からの方向を到来方向として算出する(ステップS220)。 Next, the phase shift control unit 215A identifies the position of the artificial satellite S that is transmitting the target radio wave based on the forecast value indicated by the read forecast value information, and outputs the target position from the phased array antenna 10 to the identified position. The direction is calculated as the arrival direction (step S220).
 次に、移相制御部215Aは、算出した到来方向に基づいて、各移相器215Bに設定された移相量を変化させ(ステップS230)、処理を終了する。 Next, the phase shift control unit 215A changes the amount of phase shift set in each phase shifter 215B based on the calculated arrival direction (step S230), and ends the process.
 ここで、ステップS230の処理について説明する。移相制御部215Aは、ステップS230において算出した到来方向を、ステップS210において取得した誤差情報に基づいて補正する。例えば、移相制御部215Aは、誤差情報が示す第21誤差電波、第22誤差電波、第23誤差電波、第24誤差電波それぞれの強度と、第21ビーム、第22ビーム、第23ビーム、第24ビームそれぞれの方向とを特定する。移相制御部215Aは、特定した第21誤差電波、第22誤差電波、第23誤差電波、第24誤差電波それぞれの強度の平均値を平均強度として算出する。そして、移相制御部215Aは、算出した平均強度と、特定した第21ビーム、第22ビーム、第23ビーム、第24ビームそれぞれの方向とに基づいて、平均強度の電波が到来していると推定される方向を算出する。移相制御部215Aは、算出した方向と、算出した到来方向との間の差分が予め決められた許容値未満であると判定した場合、当該到来方向の補正を行わない。一方、移相制御部215Aは、当該差分が当該許容値以上であると判定した場合、当該到来方向を補正し、当該方向と当該到来方向との間の方向を新たな到来方向として算出する。移相制御部215Aは、前述の第1位相へと、2以上の第1移相器が取得したアナログ信号それぞれの位相が移相されるように当該2以上の第1移相器に設定された移相量を変化させる。また、移相制御部215Aは、補正した到来方向に基づいて、第21ビーム、第22ビーム、第23ビーム、第24ビームそれぞれの方向を算出する。移相制御部215Aは、第21位相へと、2以上の第21移相器が取得したアナログ信号それぞれの位相が移相されるように当該2以上の第21移相器に設定された移相量を変化させる。また、移相制御部215Aは、第22位相へと、2以上の第22移相器が取得したアナログ信号それぞれの位相が移相されるように当該2以上の第22移相器に設定された移相量を変化させる。
 また、移相制御部215Aは、第23位相へと、2以上の第23移相器が取得したアナログ信号それぞれの位相が移相されるように当該2以上の第23移相器に設定された移相量を変化させる。また、移相制御部215Aは、第24位相へと、2以上の第24移相器が取得したアナログ信号それぞれの位相が移相されるように当該2以上の第24移相器に設定された移相量を変化させる。
Here, the process of step S230 will be described. The phase shift control unit 215A corrects the arrival direction calculated in step S230 based on the error information acquired in step S210. For example, the phase shift control unit 215A determines the intensity of each of the 21st error radio wave, the 22nd error radio wave, the 23rd error radio wave, and the 24th error radio wave indicated by the error information, the 21st beam, the 22nd beam, the 23rd beam, the The direction of each of the 24 beams is specified. The phase shift control unit 215A calculates the average value of the intensities of the identified 21st error radio wave, 22nd error radio wave, 23rd error radio wave, and 24th error radio wave as the average intensity. Then, the phase shift control unit 215A determines that radio waves of average intensity have arrived based on the calculated average intensity and the identified directions of the 21st beam, 22nd beam, 23rd beam, and 24th beam. Calculate the estimated direction. When the phase shift control unit 215A determines that the difference between the calculated direction and the calculated arrival direction is less than a predetermined allowable value, the phase shift control unit 215A does not correct the arrival direction. On the other hand, when the phase shift control unit 215A determines that the difference is greater than or equal to the allowable value, the phase shift control unit 215A corrects the arrival direction and calculates a direction between the direction and the arrival direction as a new arrival direction. The phase shift control unit 215A is set to the two or more first phase shifters so that the phases of the analog signals acquired by the two or more first phase shifters are shifted to the first phase. Change the amount of phase shift. In addition, the phase shift control unit 215A calculates the directions of the 21st beam, the 22nd beam, the 23rd beam, and the 24th beam based on the corrected arrival directions. The phase shift control unit 215A shifts the phases set to the two or more 21st phase shifters so that the phases of the analog signals acquired by the two or more 21st phase shifters are shifted to the 21st phase. Change the phase amount. In addition, the phase shift control unit 215A is set to the two or more 22nd phase shifters so that the phases of the analog signals acquired by the two or more 22nd phase shifters are shifted to the 22nd phase. Change the amount of phase shift.
In addition, the phase shift control unit 215A is set to the two or more 23rd phase shifters so that the phases of the analog signals acquired by the two or more 23rd phase shifters are shifted to the 23rd phase. Change the amount of phase shift. In addition, the phase shift control unit 215A is set to the two or more 24th phase shifters so that the phases of the analog signals acquired by the two or more 24th phase shifters are shifted to the 24th phase. Change the amount of phase shift.
 以上のように、移相制御部215Aは、ステップS210において読み出した予報値情報と、ステップS210において取得した誤差情報とに基づいて、N個の移相器215Bそれぞれに設定された移相量を変化させる。これにより、受信装置1は、第1ビームを、受信制御装置20により復調される対象電波の強度が強くなる方向に形成することができる。すなわち、受信装置1は、到来する対象電波の時間的な位置変化に追随することができる。 As described above, the phase shift control unit 215A determines the phase shift amount set for each of the N phase shifters 215B based on the forecast value information read in step S210 and the error information acquired in step S210. Change. Thereby, the receiving apparatus 1 can form the first beam in a direction in which the intensity of the target radio wave demodulated by the reception control apparatus 20 is increased. That is, the receiving device 1 can follow the temporal position change of the incoming target radio wave.
 <移相器がアナログ信号の移相量を変化させる処理>
 以下、図6を参照し、移相器215Bがアナログ信号の移相量を変化させる処理について説明する。図6は、移相器215Bがアナログ信号の移相量を変化させる処理の流れの一例を示す図である。各移相器215Bは、各分岐部212Bからアナログ信号が出力される毎に、ステップS250~ステップS260の処理を繰り返し行う。また、N個の移相器215Bは、それぞれ同様の処理を行うため、以下では、1つの移相器215Bが行う処理を例に挙げて、アンテナ11-1に接続された移相器215Bである移相器215B-1がアナログ信号の移相量を変化させる処理について説明する。
<Processing in which the phase shifter changes the phase shift amount of the analog signal>
Hereinafter, a process in which the phase shifter 215B changes the phase shift amount of the analog signal will be described with reference to FIG. FIG. 6 is a diagram illustrating an example of a processing flow in which the phase shifter 215B changes the phase shift amount of the analog signal. Each phase shifter 215B repeats the processing from step S250 to step S260 every time an analog signal is output from each branch section 212B. In addition, since the N phase shifters 215B perform the same processing, in the following, the processing performed by one phase shifter 215B is taken as an example, and the phase shifter 215B connected to the antenna 11-1 is used as an example. A process in which a certain phase shifter 215B-1 changes the phase shift amount of the analog signal will be described.
 移相器215B-1は、移相器215B-1が接続された分岐部212Bからアナログ信号を取得する(ステップS250)。ここで、移相器215B-1が当該分岐部212Bから取得するアナログ信号は、図4に示したフローチャートのステップS140において当該分岐部212Bから移相器215B-1に出力されたアナログ信号のことである。 The phase shifter 215B-1 acquires an analog signal from the branching unit 212B to which the phase shifter 215B-1 is connected (step S250). Here, the analog signal acquired from the branching unit 212B by the phase shifter 215B-1 is the analog signal output from the branching unit 212B to the phase shifter 215B-1 in step S140 of the flowchart shown in FIG. It is.
 次に、移相器215B-1は、移相器215B-1に設定されている移相量に基づいて、ステップS250において取得したアナログ信号の位相を移相する(ステップS260)。ここで、当該移相量は、図5に示したフローチャートのステップS230において移相制御部215Aにより変化させられた(すなわち、設定された)移相量のことである。
 当該位相を移相した後、移相器215B-1が第1アンテナである場合、移相器215B-1は、移相したアナログ信号を第1復調部22に出力し、処理を終了する。一方、当該位相を移相した後、移相器215B-1が第2アンテナである場合、移相器215B-1は、移相したアナログ信号を誤差情報生成部216に出力し、処理を終了する。
Next, phase shifter 215B-1 shifts the phase of the analog signal acquired in step S250 based on the phase shift amount set in phase shifter 215B-1 (step S260). Here, the phase shift amount is a phase shift amount changed (that is, set) by the phase shift control unit 215A in step S230 of the flowchart shown in FIG.
After the phase is shifted, when the phase shifter 215B-1 is the first antenna, the phase shifter 215B-1 outputs the phase-shifted analog signal to the first demodulator 22 and ends the process. On the other hand, after the phase is shifted, when the phase shifter 215B-1 is the second antenna, the phase shifter 215B-1 outputs the phase-shifted analog signal to the error information generation unit 216 and ends the process. To do.
 <受信制御装置がアナログ信号の移相量を変化させる処理>
 以下、図7を参照し、受信制御装置20が対象電波を復調する処理について説明する。
 図7は、受信制御装置20が対象電波を復調する処理の流れの一例を示す図である。受信制御装置20は、2以上の第1移相器からアナログ信号が出力される毎に、ステップS310~ステップS340の処理を繰り返し行う。
<Processing in which reception control device changes phase shift amount of analog signal>
Hereinafter, the process in which the reception control device 20 demodulates the target radio wave will be described with reference to FIG.
FIG. 7 is a diagram illustrating an example of a process flow in which the reception control device 20 demodulates the target radio wave. The reception control device 20 repeats the processes of steps S310 to S340 every time an analog signal is output from two or more first phase shifters.
 第1復調部22は、2以上の第1移相器からアナログ信号を、当該2以上の第1アナログ信号として取得する。第1復調部22は、取得した2以上の第1アナログ信号それぞれの位相に基づく第1ビーム内から到来する電波を対象電波として復調する(ステップS310)。第1復調部22が行うステップS310の処理は、既知の方法に基づく処理であってもよく、これから開発される方法に基づく処理であってもよい。 The first demodulator 22 acquires an analog signal from two or more first phase shifters as the two or more first analog signals. The first demodulator 22 demodulates, as a target radio wave, a radio wave arriving from within the first beam based on the phase of each of the two or more acquired first analog signals (step S310). The process of step S310 performed by the first demodulator 22 may be a process based on a known method or a process based on a method to be developed in the future.
 次に、第1復調部22は、ステップS310において対象電波の復調に失敗したか否かを判定する(ステップS320)。ここで、第1復調部22は、例えば、ステップS310において復調した対象電波の強度が前述の予め決められた閾値未満である場合、当該対象電波の復調に失敗したと判定する。一方、第1復調部22は、当該対象電波の強度が前述の予め決められた閾値以上である場合、当該対象電波の復調に成功したと判定する。当該対象電波の復調に成功したと判定した場合(ステップS320-NO)、第1復調部22は、当該対象電波を示す対象電波情報を生成し、生成した対象電波情報を第1情報処理装置23に出力する。第1情報処理装置23は、対象電波情報を取得し、取得した対象電波情報に基づく処理を行う。当該処理は、例えば、当該対象電波情報を他の装置に出力する処理、当該対象電波情報を記憶する処理等のことである。そして、第1復調部22は、処理を終了する。一方、当該対象電波の復調に失敗したと判定した場合(ステップS320-YES)、第1復調部22は、当該対象電波の復調の失敗を示す情報を第2情報処理装置24に出力する。第2情報処理装置24が当該情報を取得した場合、第2情報処理装置24が備える第2復調部241は、記憶部214に記憶されたデジタル情報のうち、例えば、復調失敗後の最新の時刻に対応付けられたデジタル情報を記憶部214から読み出す(ステップS330)。 Next, the first demodulator 22 determines whether or not demodulation of the target radio wave has failed in step S310 (step S320). Here, for example, when the intensity of the target radio wave demodulated in step S310 is less than the above-described predetermined threshold, the first demodulation unit 22 determines that the demodulation of the target radio wave has failed. On the other hand, when the intensity of the target radio wave is equal to or higher than the predetermined threshold, the first demodulator 22 determines that the target radio wave has been successfully demodulated. When it is determined that the target radio wave has been successfully demodulated (step S320—NO), the first demodulator 22 generates target radio wave information indicating the target radio wave, and uses the generated target radio wave information as the first information processing device 23. Output to. The first information processing device 23 acquires target radio wave information and performs processing based on the acquired target radio wave information. The process is, for example, a process of outputting the target radio wave information to another device, a process of storing the target radio wave information, or the like. Then, the first demodulator 22 ends the process. On the other hand, when it is determined that the demodulation of the target radio wave has failed (step S320—YES), the first demodulation unit 22 outputs information indicating the demodulation failure of the target radio wave to the second information processing device 24. When the second information processing device 24 acquires the information, the second demodulation unit 241 included in the second information processing device 24 includes, for example, the latest time after the demodulation failure in the digital information stored in the storage unit 214. The digital information associated with is read from the storage unit 214 (step S330).
 次に、第2復調部241は、読み出したデジタル情報のそれぞれが示すデジタル信号の位相に基づいて、形成した1以上のビーム内から到来する電波を復調する。第2復調部241は、復調した1以上の電波の中から対象電波を特定する(ステップS340)。そして、第2復調部241は、特定した対象電波を示す対象電波情報を生成し、生成した対象電波情報に基づく処理を行う。当該処理は、例えば、当該対象電波情報を他の装置に出力する処理、当該対象電波情報を記憶する処理等のことである。また、第2復調部241は、ステップS340において特定した対象電波の到来方向を含むビームの方向を示すビーム方向情報を移相制御部215Aに出力する。そして、第2復調部241は、処理を終了する。なお、移相制御部215Aは、ビーム方向情報を取得した場合、図5に示したフローチャートのステップS220の処理において、対象電波の復調に成功している時のビーム方向情報に基づいて、ステップS220において算出した到来方向を補正する。例えば、移相制御部215Aは、当該到来方向を、ビーム方向情報が示す方向に置き換える。これにより、受信制御装置20は、第1復調部22による対象電波の復調に失敗した場合であっても対象電波の第1復調部22による復調を再開することができる。なお、例えば、DBFによって人工衛星Sの追尾を続ける場合、第2情報処理装置24が、誤差情報生成部216が行う処理と同様の処理を行う構成であってもよい。 Next, the second demodulator 241 demodulates radio waves coming from one or more formed beams based on the phase of the digital signal indicated by each of the read digital information. The second demodulator 241 identifies a target radio wave from one or more demodulated radio waves (step S340). Then, the second demodulator 241 generates target radio wave information indicating the specified target radio wave, and performs processing based on the generated target radio wave information. The process is, for example, a process of outputting the target radio wave information to another device, a process of storing the target radio wave information, or the like. Further, the second demodulator 241 outputs beam direction information indicating the beam direction including the arrival direction of the target radio wave specified in step S340 to the phase shift controller 215A. Then, the second demodulator 241 ends the process. In addition, when acquiring the beam direction information, the phase shift control unit 215A performs step S220 based on the beam direction information when the target radio wave is successfully demodulated in the process of step S220 of the flowchart illustrated in FIG. The direction of arrival calculated in step 1 is corrected. For example, the phase shift control unit 215A replaces the arrival direction with the direction indicated by the beam direction information. As a result, the reception control device 20 can resume the demodulation of the target radio wave by the first demodulation unit 22 even when the demodulation of the target radio wave by the first demodulation unit 22 fails. For example, when tracking of the artificial satellite S is continued by DBF, the second information processing device 24 may be configured to perform the same processing as the processing performed by the error information generation unit 216.
 <誤差情報生成部が誤差情報を生成する処理>
 以下、図8を参照し、誤差情報生成部216が誤差情報を生成する処理について説明する。図8は、誤差情報生成部216が誤差情報を生成する処理の流れの一例を示す図である。誤差情報生成部216は、2以上の第21移相器、2以上の第22移相器、2以上の第23移相器、2以上の第24移相器のそれぞれからアナログ信号が出力される毎に、図8に示したフローチャートのステップS410~ステップS430の処理を繰り返し行う。
<Process in which error information generation unit generates error information>
Hereinafter, a process in which the error information generation unit 216 generates error information will be described with reference to FIG. FIG. 8 is a diagram illustrating an example of a flow of processing in which the error information generation unit 216 generates error information. The error information generator 216 outputs an analog signal from each of the two or more 21st phase shifters, the two or more twenty-second phase shifters, the two or more twenty-third phase shifters, and the two or more twenty-fourth phase shifters. Each time, the processing of step S410 to step S430 in the flowchart shown in FIG. 8 is repeated.
 誤差情報生成部216は、第2アンテナに接続された各移相器215Bからアナログ信号を取得する(ステップS410)。具体的には、誤差情報生成部216は、2以上の第21移相器から2以上の第21アナログ信号を取得する。また、誤差情報生成部216は、2以上の第22移相器から2以上の第22アナログ信号を取得する。また、誤差情報生成部216は、2以上の第23移相器から2以上の第23アナログ信号を取得する。また、誤差情報生成部216は、2以上の第24移相器から2以上の第24アナログ信号を取得する。 The error information generation unit 216 acquires an analog signal from each phase shifter 215B connected to the second antenna (step S410). Specifically, the error information generation unit 216 acquires two or more 21st analog signals from two or more 21st phase shifters. In addition, the error information generation unit 216 acquires two or more 22nd analog signals from two or more 22nd phase shifters. Further, the error information generation unit 216 acquires two or more 23rd analog signals from two or more 23rd phase shifters. Further, the error information generation unit 216 acquires two or more 24th analog signals from two or more 24th phase shifters.
 次に、誤差情報生成部216は、取得した2以上の第21アナログ信号、2以上の第22アナログ信号、2以上の第23アナログ信号、2以上の第24アナログ信号のそれぞれに基づいて、前述した第21誤差電波~第24誤差電波のそれぞれを復調する(ステップS420)。 Next, the error information generation unit 216, based on the acquired two or more 21st analog signals, two or more twenty-second analog signals, two or more twenty-third analog signals, and two or more twenty-fourth analog signals, respectively. Each of the 21st error radio wave to the 24th error radio wave is demodulated (step S420).
 次に、誤差情報生成部216は、復調した第21誤差電波、第22誤差電波、第23誤差電波、第24誤差電波それぞれの強度と、前述した第21ビーム、第22ビーム、第23ビーム、第24ビームそれぞれの方向とを示す情報を誤差情報として生成し、生成した誤差情報を移相制御部215Aに出力する(ステップS430)。そして、誤差情報生成部216は、処理を終了する。 Next, the error information generation unit 216 calculates the intensities of the demodulated 21st error radio wave, 22nd error radio wave, 23rd error radio wave, and 24th error radio wave, and the 21st beam, 22nd beam, 23rd beam, Information indicating the direction of each of the 24th beams is generated as error information, and the generated error information is output to the phase shift control unit 215A (step S430). Then, the error information generation unit 216 ends the process.
 以上のように、誤差情報生成部216は、誤差情報を生成する。これにより、受信制御装置20は、第1ビームを、受信制御装置20により復調される対象電波の強度が強くなる方向に形成することができる。 As described above, the error information generation unit 216 generates error information. Thereby, the reception control device 20 can form the first beam in a direction in which the intensity of the target radio wave demodulated by the reception control device 20 is increased.
 なお、上記において説明した移相制御部215Aは、移相器215Bにより移相されたアナログ信号それぞれの位相に基づくビームの形状と対象電波の復調の成否と当該ビームの方向の変化とが対応付けられた情報を含む情報が学習された機械学習のアルゴリズムに基づいて、複数のアンテナ11のそれぞれ毎に受信された受信電波それぞれに応じたアナログ信号の位相を移相する構成であってもよい。ここで、当該アルゴリズムは、例えば、深層学習のアルゴリズムであってもよく、機械学習における他のアルゴリズムであってもよい。これにより、受信装置1は、第1復調部による対象電波の復調を、より確実に精度よく行うことができる。 The phase shift control unit 215A described above associates the shape of the beam based on the phase of each analog signal phase-shifted by the phase shifter 215B, the success or failure of demodulation of the target radio wave, and the change in the direction of the beam. The phase of the analog signal corresponding to each received radio wave received for each of the plurality of antennas 11 may be shifted based on a machine learning algorithm in which information including the received information is learned. Here, the algorithm may be, for example, a deep learning algorithm or another algorithm in machine learning. Thereby, the receiving device 1 can perform demodulation of the target radio wave by the first demodulator more reliably and accurately.
 また、上記において説明した第2復調部241は、第2復調部241により形成されたビームの形状と対象電波の復調の成否と当該ビームの方向の変化とが対応付けられた情報を含む情報が学習された機械学習のアルゴリズムと、記憶部214に記憶されているデジタル情報とに基づいて1以上のビームを形成する。ここで、当該アルゴリズムは、例えば、深層学習のアルゴリズムであってもよく、機械学習における他のアルゴリズムであってもよい。これにより、受信装置1は、第2復調部241による対象電波の復調を、より確実に精度よく行うことができる。 Further, the second demodulator 241 described above has information including information in which the shape of the beam formed by the second demodulator 241, the success or failure of demodulation of the target radio wave, and the change in the direction of the beam are associated with each other. One or more beams are formed based on the learned machine learning algorithm and the digital information stored in the storage unit 214. Here, the algorithm may be, for example, a deep learning algorithm or another algorithm in machine learning. Thereby, the receiving device 1 can perform demodulation of the target radio wave by the second demodulator 241 more reliably and accurately.
 また、上記において説明した第2情報処理装置24は、ユーザーから受け付けた操作に基づいて、当該操作に応じた時刻に受信された受信電波に応じたデジタル信号を示すデジタル情報を記憶部214から第2復調部241に読み出させる構成であってもよい。この場合、第2復調部241は、読み出したデジタル情報に基づいて、ステップS330及びステップS340の処理を行う。これにより、ユーザーは、受信制御装置20を操作することによって、所望の時刻にフェーズドアレイアンテナ10によって受信された対象電波を、ユーザーが所望するタイミングにおいて受信制御装置20に復調させることができる。また、これにより、受信制御装置20は、フェーズドアレイアンテナ10によって複数の人工衛星Sのそれぞれから同時刻に受信された対象電波のそれぞれを復調することができる。これは、例えば、受信制御装置20が予め予報値情報を取得不可能な場合であっても、受信制御装置20によって対象電波の復調を行うことが可能であることを示している。また、受信制御装置20は、所望の時刻にフェーズドアレイアンテナ10によって受信された対象電波を、ユーザーが所望するタイミングにおいて受信制御装置20に復調させることができるため、複数の人工衛星Sの運用を1つのフェーズドアレイアンテナ10を用いて行うことができる。すなわち、受信制御装置20は、同一時間帯において複数の人工衛星Sが編隊を組むことによって観測が行われるコンステレーションにも好適に適用することも可能である。また、受信制御装置20は、高緯度の地球局における人工衛星Sから送信された対象電波の高頻度な受信にも好適に適用することができる。また、受信制御装置20は、ある時刻において受信装置1に対象電波を送信する人工衛星Sが1つのみの場合、第1復調部22により対象電波を復調することにより、デジタル情報を使う場合と比較して、対象電波の受信から復調までの間の時間を短縮することができる。また、受信装置1は、所望の時刻にフェーズドアレイアンテナ10によって受信された対象電波を、ユーザーが所望するタイミングにおいて受信制御装置20に復調させることができるため、例えば、パラボラアンテナのようなアンテナにおいて発生する機械的駆動に伴う追尾の特異点が存在せず、対象電波の初期捕捉方向、すなわち、人工衛星Sの初期捕捉方向へ当該アンテナを向ける時間を確保する必要がない。以上のことから、受信装置1は、人工衛星運用における運用コストの低減、限られたリソースでの運用能力の向上等を図ることができるとともに、仰角に応じてのビームの形状を最適化して、人工衛星Sの確実な捕捉、受信利得の安定化等を図ることができる。 Further, the second information processing device 24 described above receives, from the storage unit 214, digital information indicating a digital signal corresponding to the received radio wave received at the time corresponding to the operation based on the operation received from the user. The configuration may be such that the second demodulator 241 reads the data. In this case, the second demodulator 241 performs the processes of step S330 and step S340 based on the read digital information. Accordingly, the user can demodulate the target radio wave received by the phased array antenna 10 at a desired time by the reception control device 20 by operating the reception control device 20 at a timing desired by the user. Thereby, the reception control device 20 can demodulate each of the target radio waves received from the plurality of artificial satellites S at the same time by the phased array antenna 10. This indicates that, for example, even if the reception control device 20 cannot acquire forecast value information in advance, the reception control device 20 can demodulate the target radio wave. Further, the reception control device 20 can cause the reception control device 20 to demodulate the target radio wave received by the phased array antenna 10 at a desired time, so that the operation of the plurality of artificial satellites S can be performed. This can be done using one phased array antenna 10. That is, the reception control device 20 can also be suitably applied to a constellation in which observation is performed when a plurality of artificial satellites S form a formation in the same time zone. In addition, the reception control device 20 can be suitably applied to high-frequency reception of the target radio wave transmitted from the artificial satellite S in the high latitude earth station. Further, the reception control device 20 uses the digital information by demodulating the target radio wave by the first demodulator 22 when only one artificial satellite S transmits the target radio wave to the reception device 1 at a certain time. In comparison, the time from reception of the target radio wave to demodulation can be shortened. In addition, since the reception device 1 can cause the reception control device 20 to demodulate the target radio wave received by the phased array antenna 10 at a desired time, for example, in an antenna such as a parabolic antenna. There is no tracking singularity associated with the mechanical drive that occurs, and there is no need to secure time for directing the antenna in the initial capture direction of the target radio wave, ie, the initial capture direction of the artificial satellite S. From the above, the receiving device 1 can reduce the operation cost in the satellite operation, improve the operation capability with limited resources, and optimize the beam shape according to the elevation angle, The artificial satellite S can be reliably captured, the reception gain can be stabilized, and the like.
 また、上記において説明した第1ビーム、第21ビーム、第22ビーム、第23ビーム、第24ビームのうちの一部又は全部の形状は、複数の人工衛星Sのそれぞれ毎に変化させてもよい。この場合、受信制御装置20は、ユーザーから受け付けた形状を移相制御部215Aに設定する。 In addition, a part or all of the first beam, the 21st beam, the 22nd beam, the 23rd beam, and the 24th beam described above may be changed for each of the plurality of artificial satellites S. . In this case, the reception control device 20 sets the shape received from the user in the phase shift control unit 215A.
 また、上記において説明したAD変換部213と記憶部214との少なくとも一方は、第2情報処理装置24に備えられる構成であってもよい。 Further, at least one of the AD conversion unit 213 and the storage unit 214 described above may be configured to be included in the second information processing device 24.
 なお、上記において説明したAD変換部213は、変換部の一例である。 Note that the AD conversion unit 213 described above is an example of a conversion unit.
 以上のように、受信装置1は、複数のアンテナ(この一例において、アンテナ11)が互いに間隔を開けて配置されたフェーズドアレイアンテナ(この一例において、フェーズドアレイアンテナ10)と、複数のアンテナのそれぞれ毎に受信された受信電波それぞれに応じたアナログ信号の位相を移相する移相部(この一例において、移相部215)と、移相部により移相されたアナログ信号それぞれの位相に基づくビーム内から到来する電波を対象電波として復調する第1復調部(この一例において、第1復調部22)と、複数のアンテナのそれぞれにより受信された受信電波それぞれについて、受信電波に応じたアナログ信号をデジタル信号に変換する変換部(この一例において、AD変換部213)と、変換部により変換された複数のデジタル信号を示すデジタル情報を受信時刻同期が可能な態様で記憶される記憶部(この一例において、記憶部214)と、第1復調部が対象電波の復調に失敗した場合、記憶部に記憶されているデジタル情報に基づいて対象電波を復調する第2復調部(この一例において、第2復調部241)と、を備える。これにより、受信装置1は、ビーム内から到来する電波を受信してから復調するまでの間の時間を短くすることができるとともに、当該電波の復調に失敗した場合であっても、当該電波の情報を欠損することなく、当該電波の復調を再開することができる。 As described above, the receiving apparatus 1 includes a phased array antenna (in this example, the phased array antenna 10) in which a plurality of antennas (in this example, the antenna 11) are arranged at intervals, and each of the plurality of antennas. A phase shift unit (in this example, phase shift unit 215) that shifts the phase of the analog signal corresponding to each received radio wave received every time, and a beam based on the phase of each analog signal phase shifted by the phase shift unit For each of the received radio waves received by each of the first demodulator (in this example, the first demodulator 22) that demodulates radio waves coming from within the target radio wave, an analog signal corresponding to the received radio wave is obtained. A conversion unit (AD conversion unit 213 in this example) for converting into a digital signal, and a plurality of units converted by the conversion unit When the storage unit (in this example, the storage unit 214) that stores digital information indicating a digital signal in a manner that can synchronize the reception time and the first demodulator fails to demodulate the target radio wave, it is stored in the storage unit And a second demodulator (in this example, a second demodulator 241) that demodulates the target radio wave based on the digital information. As a result, the receiving apparatus 1 can shorten the time from reception of radio waves arriving from within the beam to demodulation, and even if demodulation of the radio waves fails, The demodulation of the radio wave can be resumed without losing information.
 また、受信装置1は、複数のアナログ信号のそれぞれを変換部に出力するとともに移相部に出力する分岐部(この一例において、分岐部212B)を備える。また、受信装置1では、変換部は、分岐部から取得した複数のアナログ信号のそれぞれをデジタル信号に変換し、移相部は、分岐部から取得した複数のアナログ信号それぞれの位相を移相する。これにより、受信装置1は、ABFによる対象電波の復調と、DBFによる対象電波の復調とを効率よく行うことができる。 Further, the receiving device 1 includes a branching unit (in this example, a branching unit 212B) that outputs each of the plurality of analog signals to the conversion unit and also outputs to the phase shift unit. In the receiving device 1, the conversion unit converts each of the plurality of analog signals acquired from the branch unit into a digital signal, and the phase shift unit shifts the phase of each of the plurality of analog signals acquired from the branch unit. . Thereby, the receiving device 1 can efficiently perform demodulation of the target radio wave by ABF and demodulation of the target radio wave by DBF.
 また、受信装置1において、フェーズドアレイアンテナが備える複数のアンテナはそれぞれ、第1グループと第2グループとのいずれか一方又は両方に属しており、第1復調部は、移相部により移相された複数の受信電波のうち第1グループに属するアンテナ(この一例において、第1アンテナ)により受信された受信電波それぞれに応じたアナログ信号の位相に基づくビームである第1ビーム内から到来する電波を対象電波として復調し、移相部により移相された複数の受信電波のうち第2グループに属するアンテナ(この一例において、第21アンテナ~第24アンテナ)により受信された受信電波それぞれに応じたアナログ信号の位相に基づくビームである第2ビーム(この一例において、第21ビーム~第24ビーム)内から到来した電波を誤差電波(この一例において、第21誤差電波~第24誤差電波のそれぞれ)として復調し、復調した誤差電波の強度と第2ビームの方向とのそれぞれを示す誤差情報を生成し、生成した誤差情報を移相部に出力する誤差情報生成部(この一例において、誤差情報生成部216)を備え、移相部は、誤差情報生成部から取得した誤差情報に基づいて、第1グループに属するアンテナのそれぞれ毎に受信された受信電波それぞれに応じたアナログ信号の位相を移相する。これにより、受信装置1は、復調される対象電波の強度が強くなる方向に第1ビームを形成することができる。 In the receiving apparatus 1, the plurality of antennas included in the phased array antenna belong to one or both of the first group and the second group, and the first demodulator is phase-shifted by the phase shifter. Radio waves coming from within the first beam, which is a beam based on the phase of the analog signal corresponding to each of the received radio waves received by the antenna belonging to the first group (in this example, the first antenna) among the plurality of received radio waves. Analogs corresponding to the received radio waves received by the antennas belonging to the second group (in this example, the 21st to 24th antennas) among the plurality of received radio waves demodulated as the target radio waves and phase-shifted by the phase shift unit Arrival from within the second beam (in this example, the 21st beam to the 24th beam), which is a beam based on the phase of the signal The error radio wave is demodulated as an error radio wave (in this example, each of the 21st error radio wave to the 24th error radio wave), and error information indicating the intensity of the demodulated error radio wave and the direction of the second beam is generated and generated. The error information generation unit (in this example, the error information generation unit 216) that outputs the error information that has been processed to the phase shift unit is provided, and the phase shift unit is assigned to the first group based on the error information acquired from the error information generation unit. The phase of the analog signal corresponding to each received radio wave is shifted for each of the antennas to which it belongs. Thereby, the receiving device 1 can form the first beam in a direction in which the intensity of the target radio wave to be demodulated is increased.
 また、受信装置1では、第2復調部は、誤差情報生成部を更に備える。これにより、受信装置1は、DBFによって復調される対象電波の強度を保持することができる。 Moreover, in the receiving device 1, the second demodulator further includes an error information generator. Thereby, the receiving apparatus 1 can hold | maintain the intensity | strength of the object radio wave demodulated by DBF.
 また、受信装置1では、第1復調部が対象電波の復調に失敗した場合において、第2復調部は、形成したビームの方向を示すビーム方向情報を移相部に出力し、移相部は、第2復調部から取得したビーム方向情報が示す方向のビームを形成する位相へと受信電波の位相を移相する。これにより、受信装置1は、第1復調部22が対象電波の復調に失敗した場合においても、第1復調部による対象電波の復調を容易に再開することができる。 In the receiving device 1, when the first demodulator fails to demodulate the target radio wave, the second demodulator outputs beam direction information indicating the direction of the formed beam to the phase shifter, and the phase shifter The phase of the received radio wave is shifted to the phase forming the beam in the direction indicated by the beam direction information acquired from the second demodulator. Thereby, the receiving device 1 can easily resume the demodulation of the target radio wave by the first demodulation unit even when the first demodulation unit 22 fails to demodulate the target radio wave.
 また、受信装置1では、移相部は、移相部により移相されたアナログ信号それぞれの位相に基づくビームの形状と対象電波の復調の成否と当該ビームの方向の変化とが対応付けられた情報を含む情報が学習された機械学習のアルゴリズムに基づいて、複数のアンテナのそれぞれ毎に受信された受信電波それぞれに応じたアナログ信号の位相を移相する。これにより、受信装置1は、第1復調部による対象電波の復調を、より確実に精度よく行うことができる。 Further, in the receiving apparatus 1, the phase shift unit associates the shape of the beam based on the phase of each analog signal phase-shifted by the phase shift unit, the success or failure of demodulation of the target radio wave, and the change in the direction of the beam. Based on a machine learning algorithm in which information including information is learned, the phase of the analog signal corresponding to each of the received radio waves received for each of the plurality of antennas is shifted. Thereby, the receiving device 1 can perform demodulation of the target radio wave by the first demodulator more reliably and accurately.
 また、受信装置1では、第2復調部は、第2復調部により形成されたビームの形状と対象電波の復調の成否と当該ビームの方向の変化とが対応付けられた情報を含む情報が学習された機械学習のアルゴリズムと、記憶部に記憶されているデジタル情報とに基づいて1以上のビームを形成する。これにより、受信装置1は、第2復調部による対象電波の復調を、より確実に精度よく行うことができる。 In the receiving apparatus 1, the second demodulator learns information including information in which the shape of the beam formed by the second demodulator, the success or failure of demodulation of the target radio wave, and the change in the direction of the beam are associated with each other. One or more beams are formed based on the machine learning algorithm and the digital information stored in the storage unit. Thereby, the receiving device 1 can perform demodulation of the target radio wave by the second demodulator more reliably and accurately.
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない限り、変更、置換、削除等されてもよい。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and changes, substitutions, deletions, and the like are possible without departing from the gist of the present invention. May be.
 また、以上に説明した装置(例えば、受信制御装置20)における任意の構成部の機能を実現するためのプログラムを、コンピューター読み取り可能な記録媒体に記録し、そのプログラムをコンピューターシステムに読み込ませて実行するようにしてもよい。なお、ここでいう「コンピューターシステム」とは、OS(Operating System)や周辺機器等のハードウェアを含むものとする。また、「コンピューター読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD(Compact Disk)-ROM等の可搬媒体、コンピューターシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピューター読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバーやクライアントとなるコンピューターシステム内部の揮発性メモリー(RAM)のように、一定時間プログラムを保持しているものも含むものとする。 Further, a program for realizing the function of an arbitrary component in the above-described device (for example, reception control device 20) is recorded on a computer-readable recording medium, and the program is read into a computer system and executed. You may make it do. Here, the “computer system” includes hardware such as an OS (Operating System) and peripheral devices. The “computer-readable recording medium” means a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD (Compact Disk) -ROM, or a storage device such as a hard disk built in the computer system. . Furthermore, “computer-readable recording medium” means a volatile memory (RAM) inside a computer system that becomes a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In addition, those holding programs for a certain period of time are also included.
 また、上記のプログラムは、このプログラムを記憶装置等に格納したコンピューターシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピューターシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
 また、上記のプログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、上記のプログラムは、前述した機能をコンピューターシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
In addition, the above program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
Further, the above program may be for realizing a part of the functions described above. Further, the program may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer system.
 上記した受信装置によれば、ビーム内から到来する電波を受信してから復調するまでの間の時間を短くすることができるとともに、当該電波の復調に失敗した場合であっても当該電波の情報を欠損することなく復調を再開することができる。 According to the above-described receiving device, it is possible to shorten the time from reception of radio waves arriving from within the beam to demodulation, and even when demodulation of the radio waves fails, information on the radio waves Demodulation can be resumed without loss of.
 1     受信装置
 10   フェーズドアレイアンテナ
 11、11-1~11-N  アンテナ
 20   受信制御装置
 21   受信制御部
 22   第1復調部
 23   第1情報処理装置
 24   第2情報処理装置
 211  低雑音増幅器
 212  ダウンコンバーター
 212A  周波数変換部
 212B  分岐部
 213  変換部
 214  記憶部
 215  移相部
 215A  移相制御部
 215B、215B-1  移相器
 216  誤差情報生成部
 241  第2復調部
 S、S1、S2、S3  人工衛星
DESCRIPTION OF SYMBOLS 1 Reception apparatus 10 Phased array antenna 11, 11-1-11-N antenna 20 Reception control apparatus 21 Reception control part 22 1st demodulation part 23 1st information processing apparatus 24 2nd information processing apparatus 211 Low noise amplifier 212 Down converter 212A Frequency conversion unit 212B Branch unit 213 Conversion unit 214 Storage unit 215 Phase shift unit 215A Phase shift control unit 215B, 215B-1 Phase shifter 216 Error information generation unit 241 Second demodulation unit S, S1, S2, S3 Artificial satellite

Claims (7)

  1.  複数のアンテナが互いに間隔を開けて配置されたフェーズドアレイアンテナと、
     前記複数の前記アンテナのそれぞれ毎に受信された受信電波それぞれに応じたアナログ信号の位相を移相する移相部と、
     前記移相部により移相された前記アナログ信号それぞれの位相に基づくビーム内から到来する電波を対象電波として復調する第1復調部と、
     前記複数の前記アンテナのそれぞれにより受信された前記受信電波それぞれについて、前記受信電波に応じた前記アナログ信号をデジタル信号に変換する変換部と、
     前記変換部により変換された前記複数の前記デジタル信号を示すデジタル情報を受信時刻同期が可能な態様で記憶される記憶部と、
     前記第1復調部が前記対象電波の復調に失敗した場合、前記記憶部に記憶されている前記デジタル情報に基づいて前記対象電波を復調する第2復調部と、
     を備える受信装置。
    A phased array antenna in which a plurality of antennas are spaced apart from each other;
    A phase shift unit that shifts the phase of an analog signal corresponding to each received radio wave received for each of the plurality of antennas;
    A first demodulator that demodulates a radio wave coming from within a beam based on the phase of each analog signal phase-shifted by the phase shift unit as a target radio wave;
    For each of the received radio waves received by each of the plurality of antennas, a conversion unit that converts the analog signal corresponding to the received radio waves into a digital signal;
    A storage unit that stores digital information indicating the plurality of digital signals converted by the conversion unit in a manner in which reception time synchronization is possible;
    A second demodulator that demodulates the target radio wave based on the digital information stored in the storage unit when the first demodulator fails to demodulate the target radio wave;
    A receiving device.
  2.  前記複数の前記アナログ信号のそれぞれを前記変換部に出力するとともに前記移相部に出力する分岐部を備え、
     前記変換部は、前記分岐部から取得した前記複数の前記アナログ信号のそれぞれを前記デジタル信号に変換し、
     前記移相部は、前記分岐部から取得した前記複数の前記アナログ信号それぞれの位相を移相する、
     請求項1に記載の受信装置。
    A branching unit that outputs each of the plurality of analog signals to the conversion unit and outputs to the phase shift unit,
    The conversion unit converts each of the plurality of analog signals acquired from the branch unit into the digital signal,
    The phase shift unit shifts the phase of each of the plurality of analog signals acquired from the branch unit.
    The receiving device according to claim 1.
  3.  前記フェーズドアレイアンテナが備える前記複数の前記アンテナはそれぞれ、第1グループと第2グループとのいずれか一方又は両方に属しており、
     前記第1復調部は、前記移相部により移相された前記複数の前記受信電波のうち前記第1グループに属する前記アンテナにより受信された前記受信電波それぞれに応じた前記アナログ信号の位相に基づくビームである第1ビーム内から到来する電波を前記対象電波として復調し、
     前記移相部により移相された前記複数の前記受信電波のうち前記第2グループに属する前記アンテナにより受信された前記受信電波それぞれに応じた前記アナログ信号の位相に基づくビームである第2ビーム内から到来した電波を誤差電波として復調し、復調した前記誤差電波の強度と前記第2ビームの方向とのそれぞれを示す誤差情報を生成し、生成した前記誤差情報を前記移相部に出力する誤差情報生成部を備え、
     前記移相部は、前記誤差情報生成部から取得した前記誤差情報に基づいて、前記第1グループに属する前記アンテナのそれぞれ毎に受信された前記受信電波それぞれに応じた前記アナログ信号の位相を移相する、
     請求項1又は2に記載の受信装置。
    Each of the plurality of antennas included in the phased array antenna belongs to one or both of the first group and the second group,
    The first demodulator is based on a phase of the analog signal corresponding to each of the received radio waves received by the antenna belonging to the first group among the plurality of received radio waves phase-shifted by the phase shift unit. A radio wave coming from within the first beam, which is a beam, is demodulated as the target radio wave,
    In a second beam that is a beam based on the phase of the analog signal corresponding to each of the received radio waves received by the antenna belonging to the second group among the plurality of received radio waves phase-shifted by the phase shift unit An error that demodulates the radio wave that has arrived from as an error radio wave, generates error information indicating the intensity of the demodulated error radio wave and the direction of the second beam, and outputs the generated error information to the phase shift unit With an information generator,
    The phase shift unit shifts the phase of the analog signal corresponding to each of the received radio waves received for each of the antennas belonging to the first group based on the error information acquired from the error information generation unit. Match
    The receiving device according to claim 1 or 2.
  4.  前記第2復調部は、前記誤差情報生成部を更に備える、
     請求項3に記載の受信装置。
    The second demodulator further includes the error information generator.
    The receiving device according to claim 3.
  5.  前記第1復調部が前記対象電波の復調に失敗した場合において、
     前記第2復調部は、形成したビームの方向を示すビーム方向情報を前記移相部に出力し、
     前記移相部は、前記第2復調部から取得した前記ビーム方向情報が示す方向のビームを形成する位相へと前記受信電波の位相を移相する、
     請求項1から4のうちいずれか一項に記載の受信装置。
    When the first demodulator fails to demodulate the target radio wave,
    The second demodulator outputs beam direction information indicating the direction of the formed beam to the phase shift unit,
    The phase shift unit shifts the phase of the received radio wave to a phase that forms a beam in the direction indicated by the beam direction information acquired from the second demodulation unit.
    The receiving device according to any one of claims 1 to 4.
  6.  前記移相部は、前記移相部により移相された前記アナログ信号それぞれの位相に基づくビームの形状と前記対象電波の復調の成否と当該ビームの方向の変化とが対応付けられた情報を含む情報が学習された機械学習のアルゴリズムに基づいて、前記複数の前記アンテナのそれぞれ毎に受信された前記受信電波それぞれに応じた前記アナログ信号の位相を移相する、
     請求項1から5のうちいずれか一項に記載の受信装置。
    The phase shift unit includes information in which the shape of the beam based on the phase of each analog signal phase-shifted by the phase shift unit, the success or failure of demodulation of the target radio wave, and the change in the direction of the beam are associated with each other. Based on a machine learning algorithm in which information is learned, the phase of the analog signal corresponding to each of the received radio waves received for each of the plurality of the antennas is shifted.
    The receiving device according to any one of claims 1 to 5.
  7.  前記第2復調部は、前記第2復調部により形成されたビームの形状と前記対象電波の復調の成否と当該ビームの方向の変化とが対応付けられた情報を含む情報が学習された機械学習のアルゴリズムと、前記記憶部に記憶されている前記デジタル情報とに基づいて1以上のビームを形成する、
     請求項1から6のうちいずれか一項に記載の受信装置。
    The second demodulator is machine learning in which information including information in which the shape of the beam formed by the second demodulator, the success or failure of demodulation of the target radio wave, and the change in the direction of the beam are associated is learned Forming one or more beams based on the algorithm and the digital information stored in the storage unit,
    The receiving device according to any one of claims 1 to 6.
PCT/JP2019/002507 2018-03-29 2019-01-25 Reception device WO2019187576A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-065226 2018-03-29
JP2018065226A JP7056912B2 (en) 2018-03-29 2018-03-29 Receiver

Publications (1)

Publication Number Publication Date
WO2019187576A1 true WO2019187576A1 (en) 2019-10-03

Family

ID=68061296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002507 WO2019187576A1 (en) 2018-03-29 2019-01-25 Reception device

Country Status (2)

Country Link
JP (1) JP7056912B2 (en)
WO (1) WO2019187576A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092545A (en) * 1998-09-16 2000-03-31 Mitsubishi Electric Corp Radio communication system and method therefor
JP2005233723A (en) * 2004-02-18 2005-09-02 Mitsubishi Electric Corp Distributed aperture radar device
JP2014131164A (en) * 2012-12-28 2014-07-10 Mitsubishi Electric Corp Antenna device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145342A (en) * 1996-11-08 1998-05-29 Sony Corp Transmitter, receiver and transmitter-receiver
JPH11326478A (en) * 1998-05-15 1999-11-26 Japan Radio Co Ltd Azimuth search method
JP4137655B2 (en) 2003-01-29 2008-08-20 三菱電機株式会社 Helicopter mounted receiver
US20100177000A1 (en) 2009-01-15 2010-07-15 At&T Mobility Ii Llc Automatic antenna optimization system
JP5682930B2 (en) 2012-02-02 2015-03-11 日本電信電話株式会社 Tracking antenna device and tracking antenna control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092545A (en) * 1998-09-16 2000-03-31 Mitsubishi Electric Corp Radio communication system and method therefor
JP2005233723A (en) * 2004-02-18 2005-09-02 Mitsubishi Electric Corp Distributed aperture radar device
JP2014131164A (en) * 2012-12-28 2014-07-10 Mitsubishi Electric Corp Antenna device

Also Published As

Publication number Publication date
JP7056912B2 (en) 2022-04-19
JP2019176414A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
RU2450472C1 (en) Synchronisation of ofdm symbols using preamble with frequency-shifted prefix and suffix for dvr-t2 receiver
US20130088395A1 (en) Method and apparatus for estimating direction of arrival
JP6988885B2 (en) Signal processing device and signal processing method
WO2011052575A1 (en) Wireless communication apparatus
JP2007027987A (en) Radio receiver
CN112702096A (en) Signal processing method and related device
JP2001136115A (en) Method for eliminating sneak-path wave for antenna system for relay station
WO2019187576A1 (en) Reception device
JP2013162220A (en) Demodulation device, demodulation method, and program
JP6411831B2 (en) Direction of arrival estimation device, position estimation device, position estimation system
JP4183592B2 (en) Receiving method and apparatus
JP3017400B2 (en) Array antenna control method and control device
CN116367115A (en) AIS time slot conflict resisting method based on dual-antenna phase shift synthesis
JP2013106270A (en) Communication system, control method of communication system, and adaptive array wireless device
JP4424378B2 (en) Frame synchronization apparatus and control method thereof
US7129890B1 (en) Dynamic beamforming for ad hoc networks
JP4507102B2 (en) GPS interference canceller
WO2022079736A1 (en) A method and an apparatus for wireless information and energy transfer using distributed beamforming
JP2019208165A (en) Wireless communication device, wireless communication system and wireless communication method
KR20070095138A (en) Up link signal receiving apparatus and method of multiuser detection using successive interference cancellation in wireless ofdma system
JP2017028362A (en) Transmission reception device
JP2020141390A (en) Radiation pattern control device and repeater
US20230403073A1 (en) Transmission of atmospheric ducted communication signals
JP2024129343A (en) Diversity receiving device and diversity receiving method
JP7312768B2 (en) Improvements in or relating to beam alignment for electronically steered antenna systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777609

Country of ref document: EP

Kind code of ref document: A1