WO2019187567A1 - Electro-optic device and method for manufacturing same - Google Patents
Electro-optic device and method for manufacturing same Download PDFInfo
- Publication number
- WO2019187567A1 WO2019187567A1 PCT/JP2019/002356 JP2019002356W WO2019187567A1 WO 2019187567 A1 WO2019187567 A1 WO 2019187567A1 JP 2019002356 W JP2019002356 W JP 2019002356W WO 2019187567 A1 WO2019187567 A1 WO 2019187567A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- layer
- electro
- optical device
- flexible
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
Definitions
- Embodiments described herein relate generally to an electro-optical device and a method for manufacturing the same.
- An electro-optical device such as a liquid crystal display device that is formed of a flexible substrate and can be bent is known (see, for example, Patent Document 1 and Patent Document 2).
- the liquid crystal display device includes a pair of substrates bonded with an annular sealing material and a liquid crystal layer sealed between the substrates. The area superimposed on the sealing material is a non-display area where no image is displayed.
- a non-display region can be folded back to form a liquid crystal display device with a narrow frame region.
- a narrow frame LCD device can be obtained as the radius of curvature of the bent portion is reduced.
- the wiring may break at the bent portion.
- the wiring breaks, first, a crack is generated in the inorganic film that is less flexible than the organic film, and the cracks in the inorganic film affect the surrounding wiring in a chained manner.
- the inorganic film include a barrier layer that is formed for the purpose of blocking the intrusion of oxygen and moisture and relaxing the stress of the flexible substrate.
- An electro-optical device includes a first substrate, a second substrate facing the first substrate, and a liquid crystal layer disposed between the first substrate and the second substrate.
- the second substrate includes a flexible second flexible substrate, an inorganic film formed on the second flexible substrate, and an overcoat layer. The overcoat layer is formed between the second flexible substrate and the inorganic film.
- FIG. 1 is a plan view showing a schematic configuration of the liquid crystal display device of the present embodiment.
- FIG. 2 is a cross-sectional view showing the structure of the display area shown in FIG.
- FIG. 3 is a cross-sectional view showing the structure of the non-display area shown in FIG.
- FIG. 4 is an enlarged cross-sectional view of the bent portion shown in FIG.
- FIG. 5 is a cross-sectional view showing a comparative example with the present embodiment.
- FIG. 6 is a flowchart showing an example of a manufacturing method of the liquid crystal display device of the present embodiment.
- a liquid crystal display device DSP is disclosed as an example of a display device.
- the main configuration disclosed in this embodiment is an application of a self-luminous display device such as an organic electroluminescence (EL) display device, an electronic paper display device having an electrophoretic element, or the like, Micro Electro Mechanical System (MEMS).
- MEMS Micro Electro Mechanical System
- the present invention can be applied to various electro-optical devices such as a display device or a display device using electrochromism.
- a display apparatus can be used for various apparatuses, such as a smart phone, a tablet terminal, a mobile telephone terminal, a personal computer, a television receiver, a vehicle-mounted apparatus, a game device, and a wearable terminal, for example.
- FIG. 1 is a plan view showing a schematic configuration of the liquid crystal display device DSP of the present embodiment.
- the liquid crystal display device DSP includes a display panel (liquid crystal cell) PNL that displays an image on a display surface, and a drive circuit board FPC mounted on the display panel PNL.
- a display panel liquid crystal cell
- FPC drive circuit board
- the display panel PNL may be a transmission type that displays an image by selectively transmitting light from the back surface, or a reflection type that displays an image by selectively reflecting light incident on the display surface. It may be.
- the liquid crystal display device DSP further includes an illumination device BL that irradiates light to the back surface of the display panel PNL.
- the drive circuit board FPC controls operations of the display panel PNL and the illumination device BL.
- the display panel PNL includes a first substrate (array substrate) SUB1, a second substrate (counter substrate) SUB2, a sealing material (adhesive) SE, and a liquid crystal layer LQ.
- the first substrate SUB1 is formed in a substantially rectangular shape having first to fourth sides E1, E2, E3, E4.
- first and third sides E1 and E3 are short sides
- the second and fourth sides E2 and E4 are long sides.
- the second substrate SUB2 faces the first substrate SUB1 in the thickness direction Z of the display panel PNL.
- the first substrate SUB1 is formed larger than the second substrate SUB2 in the long side direction of the display panel PNL, for example, and has a mounting region NDat exposed from the second substrate SUB2.
- a drive circuit board FPC is mounted in the mounting area NDat.
- the drive circuit board FPC sequentially receives image data for one frame for displaying on the display panel PNL from, for example, a main board of an electronic device on which the liquid crystal display device DSP is mounted.
- This image data includes information such as the display color of each pixel PX, for example.
- the drive circuit board FPC is provided with a control module CTR and the like.
- the control module CTR controls the operation of the display panel PNL and the illumination device BL. Note that the drive circuit board FPC and the control module CTR may be separately provided in the mounting area NDAt.
- the seal material SE is formed of an organic material such as acrylic resin or epoxy resin.
- the seal material SE corresponds to a portion indicated by a diagonal line rising to the right in FIG. 1, and bonds the first substrate SUB1 and the second substrate SUB2.
- the liquid crystal layer LQ is disposed between the first substrate SUB1 and the second substrate SUB2 inside the sealing material SE.
- the liquid crystal layer LQ is an example of an electro-optical layer that is driven by electricity and selectively transmits light.
- the electro-optical layer may be the above-described electrophoretic element, MEMS shutter, or the like.
- the display surface of the display panel PNL has a display area DA for displaying an image and a non-display area (peripheral area) NDA surrounding the display area DA.
- a plurality of subpixels SPX are arranged in a matrix.
- a pixel PX capable of color display can be configured by combining three subpixels SPX respectively corresponding to red (R), green (G), and blue (B).
- the pixel PX may include a subpixel SPX of another color such as white, or may include a plurality of subpixels SPX of the same color.
- the non-display area NDA includes first to fourth non-display areas NDA1, NDA2, NDA3, and NDA4.
- the first non-display area NDA1 is partitioned between the display area DA and the first side E1.
- the first non-display area NDA1 includes the mounting area NDAt described above.
- the second non-display area NDA2 is partitioned between the display area DA and the second side E2.
- the third non-display area NDA3 is partitioned between the display area DA and the third side E3.
- the fourth non-display area NDA4 is partitioned between the display area DA and the fourth side E4.
- the first substrate SUB1 includes a plurality of scanning signal lines GL and a plurality of video signal lines SL intersecting the scanning signal lines GL.
- the aforementioned subpixel SPX corresponds to a region defined by two adjacent scanning signal lines GL and two adjacent video signal lines SL.
- each scanning signal line GL extends is defined as a first direction X
- the direction in which each video signal line SL extends is defined as a second direction Y.
- the video signal line SL is indicated by a straight line parallel to the second direction Y, but the video signal line SL may extend in the second direction Y while being bent zigzag.
- the first direction X coincides with the short side direction of the display panel PNL
- the second direction Y coincides with the long side direction of the display panel PNL.
- the first and second directions X and Y are not limited to the example shown in FIG.
- the first direction X may coincide with the long side direction of the display panel PNL
- the second direction Y may coincide with the short side direction of the display panel PNL, or other directions.
- the first and second directions X and Y are orthogonal to the thickness direction Z of the display panel PNL.
- the first substrate SUB1 includes a scanning driver GD connected to each scanning signal line GL and a video driver SD connected to each video signal line SL.
- the scanning driver GD is provided in each of the second and fourth non-display areas NDA2 and NDA4.
- the video driver SD is provided between the mounting area NDAt and the display area DA in the first non-display area NDA1.
- the scanning driver GD and the video driver SD may be provided in the drive circuit board FPC or in the control module CTR.
- the scanning driver GD and the video driver SD are an example of a driving circuit for displaying an image, and can be formed in the same process as a switching element SW of a sub-pixel SPX described later, for example.
- the first substrate SUB1 includes a switching element SW and a pixel electrode PE in each subpixel SPX.
- the switching element SW is constituted by, for example, a thin film transistor (TFT), and is electrically connected to the scanning signal line GL, the video signal line SL, and the pixel electrode PE.
- a common electrode CE extends to face the plurality of subpixels SPX.
- the common electrode CE may be provided on the first substrate SUB1 or may be provided on the second substrate SUB2.
- the control module CTR controls the scanning driver GD and the video driver SD based on the received image data.
- the scanning driver GD supplies a scanning signal to each scanning signal line GL
- the video driver SD supplies a video signal to each video signal line SL.
- the scanning signal is supplied to the scanning signal line GL corresponding to the switching element SW
- the video signal line SL corresponding to the switching element SW and the pixel electrode PE are electrically connected, and the video signal of the video signal line SL is changed.
- Supplied to the pixel electrode PE Supplied to the pixel electrode PE.
- the pixel electrode PE forms an electric field with the common electrode CE to change the alignment of the liquid crystal molecules in the liquid crystal layer LQ.
- the storage capacitor CS is formed between the common electrode CE and the pixel electrode PE, for example.
- FIG. 2 is a cross-sectional view showing the structure of the display panel PNL in the display area DA shown in FIG.
- the display panel PNL further includes a first polarizing plate PL1 and a second polarizing plate PL2.
- the first polarizing plate PL1 is disposed between the illumination device BL and the display panel PNL on the back side of the display panel PNL.
- the illumination device BL faces the first substrate SUB1 and irradiates the first substrate SUB1 with light.
- the second polarizing plate PL2 is disposed on the display surface side of the display panel PNL.
- the display panel PNL has a configuration corresponding to a display mode that mainly uses a lateral electric field substantially parallel to the XY plane.
- the display panel PNL has a configuration corresponding to a vertical electric field perpendicular to the XY plane, an electric field oblique to the XY plane, or a display mode using a combination thereof. Also good.
- the first substrate SUB1 includes the scanning signal line GL, the video signal line SL, the switching element SW, the pixel electrode PE, and the common electrode CE.
- the first substrate SUB1 includes the first flexible substrate 10, the first insulating layer 11, the second insulating layer 12, the third insulating layer 13, the fourth insulating layer 14, and the fifth.
- An insulating layer 15 and a first alignment film AL1 are further provided.
- the switching element SW includes a semiconductor layer SC and a relay electrode SLr.
- the first insulating layer 11 covers the first flexible substrate 10.
- the semiconductor layer SC is formed on the first insulating layer 11.
- the second insulating layer 12 covers the semiconductor layer SC and the first insulating layer 11.
- the scanning signal line GL is formed on the second insulating layer 12.
- the third insulating layer 13 covers the scanning signal lines GL and the second insulating layer 12.
- the video signal line SL and the relay electrode (source electrode or drain electrode) SLr are formed on the third insulating layer 13 and are in contact with the semiconductor layer SC through the contact holes CH1 and CH2, respectively.
- the video signal line SL and the relay electrode SLr can be formed in the same process.
- the fourth insulating layer 14 covers the video signal line SL, the relay electrode SLr, and the third insulating layer 13.
- the common electrode CE is formed on the fourth insulating layer 14.
- the fifth insulating layer 15 covers the common electrode CE and the fourth insulating layer 14.
- the pixel electrode PE is formed on the fifth insulating layer 15 and is in contact with the relay electrode SLr through the contact hole CH3. Note that the pixel electrode PE may be formed under the fifth insulating layer 15, and the common electrode CE may be formed over the fifth insulating layer 15.
- the first alignment film AL1 covers the pixel electrode PE and the fifth insulating layer 15, and is in contact with the liquid crystal layer LQ. The first alignment film AL1 aligns the liquid crystal molecules of the liquid crystal layer LQ in a state where no voltage is applied to the pixel electrode PE.
- the first flexible substrate 10 is made of, for example, a polyimide resin.
- the common electrode CE and the pixel electrode PE are made of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO).
- ITO indium tin oxide
- IZO indium zinc oxide
- the scanning signal line GL, the video signal line SL, and the relay electrode SLr are, for example, metal lines having a single layer structure or a stacked structure.
- the first to third and fifth insulating layers 11, 12, 13, and 15 are inorganic films such as silicon oxide, silicon nitride, or alumina.
- the fourth insulating layer 14 is an organic film formed from a photosensitive resin such as an acrylic resin, and extends to the end of the first substrate SUB1.
- the fourth insulating layer 14 has a function of flattening the unevenness of the switching element SW, and is formed thicker than the first to third and fifth insulating layers 11, 12, 13, 15 and the first alignment film AL1. Yes.
- the first alignment film AL1 can be formed, for example, by applying polyimide resin or the like by inkjet printing or flexographic printing.
- the second substrate SUB2 includes a second flexible substrate 20, a light shielding layer (black matrix) 21, a color filter layer 22, an overcoat layer 23, a barrier layer 24, and a second alignment film AL2. I have.
- the second flexible substrate 20 can be formed from the same material as the first flexible substrate 10.
- the second alignment film AL2 can be formed of the same material as the first alignment film AL1.
- the light shielding layer 21 is formed on the lower surface of the second flexible substrate 20.
- the color filter layer 22 covers the light shielding layer 21 and the second flexible substrate 20.
- the light shielding layer 21 is formed in the non-display area NDA in plan view. Further, the light shielding layer 21 is formed immediately above the metal lines such as the scanning signal line GL, the video signal line SL, and the relay electrode SLr in the display area DA, and partitions the subpixel SPX.
- the color filter layer 22 faces the pixel electrode PE, and a part thereof overlaps the light shielding layer 21.
- the color filter layer 22 may be formed on the first substrate SUB1 instead of the second substrate SUB2.
- the color filter layer 22 includes a red color filter layer, a green color filter layer, a blue color filter layer, and the like arranged corresponding to the sub-pixel SPX.
- the overcoat layer 23 covers the color filter layer 22.
- the barrier layer 24 covers the overcoat layer 23.
- the second alignment film AL2 covers the barrier layer 24 and is in contact with the liquid crystal layer LQ.
- the light shielding layer 21, the color filter layer 22, and the overcoat layer 23 can all be formed of an organic material. That is, the light shielding layer 21, the color filter layer 22, and the overcoat layer 23 are examples of organic layers.
- the barrier layer 24 is an inorganic film such as silicon oxide, silicon nitride, or alumina, and has a function of blocking oxygen and moisture that have entered the second flexible substrate 20.
- a single layer film made of silicon nitride is used for the barrier layer 24 in consideration of optical characteristics.
- the barrier layer 24 is formed for the purpose of relaxing the stress of the second flexible substrate 20.
- the second flexible substrate 20 may be warped by stress.
- the barrier layer 24 imparts stress in a direction that cancels the stress and suppresses the warp of the second flexible substrate 20.
- FIG. 3 is a cross-sectional view showing the structure of the fourth non-display area NDA4.
- the structures of the first to third non-display areas NDA1, NDA2, and NDA3 have substantially the same shape and function as the structure of the fourth non-display area NDA4. For this reason, the fourth non-display area NDA4 will be described in detail as a representative, and overlapping description of the first to third non-display areas NDA3 will be omitted.
- the fourth non-display portion NDA4 is folded back to the back side of the display panel PNL, and the respective end portions of the first and second substrates SUB1 and SUB2 are located on the back side of the illumination device BL. Yes.
- the fourth non-display area NDA4 cannot be seen from the display surface side of the display panel PNL, and thus a liquid crystal display device DSP having a narrow frame width W can be configured.
- compressive stress is generated on the first substrate SUB1 side of the display panel PNL.
- a tensile stress is generated on the second substrate SUB2 side.
- the neutral plane N located at the approximate center of the display panel PNL the tensile stress and the compressive stress are balanced.
- FIG. 4 is an enlarged cross-sectional view showing a part of the display panel PNL bent in FIG.
- One feature of the liquid crystal display device DSP of the present embodiment is that the light shielding layer 21 and the overcoat layer 23 are formed between the second flexible substrate 20 and the barrier layer 24.
- FIG. 5 is a cross-sectional view showing a comparative example with the present embodiment. If there is a barrier layer 24 between the second flexible substrate 20 and the light shielding layer 21 as in the comparative example shown in FIG. 5, the distance from the neutral plane N to the barrier layer 24 is large. Become.
- barrier layer 24 is provided above the light shielding layer 21 and the overcoat layer 23 (on the liquid crystal layer LQ side), as shown in FIG. A barrier layer 24 can be disposed.
- board thickness T1, T2 of the 1st and 2nd flexible base materials 10 and 20 may mutually differ. By adjusting the plate thicknesses T1 and T2, the distance between the neutral plane N and the barrier layer 24 can be further reduced.
- the barrier layer 24 is generally formed by CVD (Chemical Vapor Deposition). If the CVD is performed in the presence of the light shielding layer 21 in order to dispose the barrier layer 24 on the light shielding layer 21, the light shielding layer 21 volatilizes and the vacuum chamber of the CVD apparatus is contaminated.
- CVD Chemical Vapor Deposition
- FIG. 6 is a flowchart showing an example of a manufacturing method of the liquid crystal display device DSP according to the present embodiment.
- the manufacturing method according to the present embodiment is characterized in that the barrier layer 24 is formed without using CVD.
- the manufacturing method includes assembling the liquid crystal display device DSP by preparing the first substrate SUB1, preparing the second substrate SUB2, and bonding the first substrate SUB1 and the second substrate SUB2. And a process.
- the material of the 1st flexible base material 10 is apply
- the first flexible substrate 10 of polyimide film can be formed by applying a composition containing polyamic acid on a first glass substrate and imidizing it by heat treatment at 300 to 500 ° C.
- the scanning signal line GL, the video signal line SL, the semiconductor layer SC, the common electrode CE, the pixel electrode PE, the first to fifth insulating layers 11, 12, 13, 14, A circuit layer in which 15 and the like are stacked is formed (circuit layer formation ST2).
- the material of the first alignment film AL1 is applied on the circuit layer, and the applied material is cured to form the first alignment film AL1 (first alignment film formation ST3).
- steps ST1 to ST3 a mother substrate including a plurality of first substrates SUB1 is obtained.
- the second flexible substrate 20 is formed on the second glass substrate (second flexible substrate formation ST4).
- the light shielding layer 21, the color filter layer 22 (colored layer), the overcoat layer 23, and the like are formed on the second flexible substrate 20 (colored layer formation ST5).
- the barrier layer 24 is formed on the overcoat layer 23 by sputtering an inorganic material such as silicon oxide, silicon nitride, or alumina.
- the barrier layer 24 is formed so as to cover the second flexible substrate 20 through the light shielding layer 21, the color filter layer 22, and the overcoat layer 23.
- a second alignment film AL2 is further formed on the barrier layer 24 (second alignment film formation ST7), and a mother substrate including a plurality of second substrates SUB2 is obtained.
- steps ST8 to ST15 for assembling the liquid crystal display device DSP by bonding the first and second substrates SUB1 and SUB2 will be described.
- the material of the sealing material SE is applied to one of the mother substrates, and the liquid crystal material of the liquid crystal layer LQ is dropped on the inner side surrounded by the sealing material SE (liquid crystal dropping ST8).
- Two mother substrates are bonded together, and the sealing material SE is cured (substrate adhesion ST9).
- the method of injecting the liquid crystal layer LQ is not limited to the steps ST8 and ST9 (one drop fill method).
- a vacuum injection method may be used in which the first and second substrates SUB1 and SUB2 are bonded first and the liquid crystal layer LQ is sealed later.
- the second glass substrate is peeled from the second flexible substrate 20.
- the second flexible substrate 20 is irradiated with laser light through a translucent second glass substrate.
- the 2nd flexible base material 20 absorbs a laser beam, and decomposes
- a space is generated at the interface between the second flexible substrate 20 and the second glass substrate, and the second glass substrate is peeled from the second flexible substrate 20 (second glass substrate peeling ST10).
- the barrier layer 24 suppresses the warp of the second flexible base material 20 that is not fixed to the second glass substrate.
- the mother substrate including the first and second substrates SUB1 and SUB2 together with the first glass substrate is cut and separated into a plurality of panels (cell cut ST11).
- a part of the second substrate SUB2 is cut out by the laser beam to expose the terminal of the first substrate SUB1 (mounting region formation ST12). Thereby, the mounting area NDat is formed.
- the steps ST10 and ST11 may be combined into one step.
- the drive circuit board FPC is mounted on the exposed terminals (drive circuit board mounting ST13). Specifically, an anisotropic conductive film is disposed on the terminal. An anisotropic conductive film is a film-like adhesive containing uniformly dispersed conductive particles. Next, the drive circuit board FPC and the first substrate SUB1 are pressurized from the top and bottom and heated at the same time. Thereby, a part of the anisotropic conductive film is melted, and the drive circuit board FPC and the first board SUB1 are electrically and mechanically connected.
- the first glass substrate is peeled from the first flexible base material 10 (first glass substrate peeling ST14).
- the first and second polarizing plates PL1 and PL2 are attached to the obtained display panel PNL, and the lighting device BL is assembled.
- the liquid crystal display device DSP is completed (turning ST15).
- the non-display area NDA is bent to the back side, tensile stress is generated in the second substrate SUB2. Since the inorganic film is weaker in tensile stress than compressive stress, the inorganic film tends to break in the second substrate SUB2 more easily than in the first substrate SUB1.
- the distance between the barrier layer 24 that suppresses the warp of the second flexible base material 20 and the neutral surface N is the comparison shown in FIG. It becomes smaller than the liquid crystal display device DSP of the example.
- the manufacturing method according to this embodiment uses sputtering instead of CVD. Since sputtering can be formed even under conditions where an organic film is present, it is not limited to the position immediately above the second flexible substrate 20 and is more neutral than the light shielding layer 21, the color filter layer 22, and the overcoat layer 23.
- the barrier layer 24 can be formed near the surface N.
- various suitable effects can be obtained from this embodiment and its modifications.
- DESCRIPTION OF SYMBOLS 10 ... 1st flexible base material, 20 ... 2nd flexible base material, 21 ... Light-shielding layer, 23 ... Overcoat layer, 24 ... Barrier layer (an example of inorganic film), DSP ... Liquid crystal display device (display device) LQ ... liquid crystal layer, SUB1 ... first substrate, SUB2 ... second substrate, T1 ... plate thickness of the first flexible substrate, T2 ... plate thickness of the second flexible substrate.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Liquid Crystal (AREA)
Abstract
This electro-optic device is provided with: a first substrate; a second substrate facing the first substrate; and a liquid crystal layer disposed between the first substrate and the second substrate. The second substrate is provided with: a second flexible base having flexibility; an inorganic film formed on the second flexible base; and an overcoat layer. The overcoat layer is formed between the second flexible base and the inorganic film.
Description
本発明の実施形態は、電気光学装置及びその製造方法に関する。
Embodiments described herein relate generally to an electro-optical device and a method for manufacturing the same.
可撓性を有した基板で構成され、折り曲げることができる液晶表示装置等の電気光学装置が知られている(例えば、特許文献1及び特許文献2参照)。液晶表示装置は、環状のシール材で接着された一対の基板と、これら基板の間に封入された液晶層とを備えている。シール材に重畳する領域は、画像を表示しない非表示領域になる。折り曲げ可能な液晶表示装置であれば、例えば、非表示領域を背面側に折り返して額縁領域が狭い液晶表示装置を構成できる。
2. Description of the Related Art An electro-optical device such as a liquid crystal display device that is formed of a flexible substrate and can be bent is known (see, for example, Patent Document 1 and Patent Document 2). The liquid crystal display device includes a pair of substrates bonded with an annular sealing material and a liquid crystal layer sealed between the substrates. The area superimposed on the sealing material is a non-display area where no image is displayed. In the case of a foldable liquid crystal display device, for example, a non-display region can be folded back to form a liquid crystal display device with a narrow frame region.
曲げ部の曲率半径を小さくするほど狭額縁の液晶表示装置を得られる。一方で、曲率半径を小さくしすぎると曲げ部において配線が断線するおそれがある。配線が断線するとき、まず始めに有機膜よりも可撓性が小さい無機膜にクラックが発生し、無機膜のクラックが連鎖的に影響して周囲の配線を損傷させる。無機膜として、例えば、酸素や水分の侵入を遮断するとともに、可撓性基材の応力を緩和させる目的で成膜されるバリア層が挙げられる。本開示の目的は、配線の損傷を防ぐことにより接続信頼性に優れた可撓性の電気光学装置を提供することにある。
A narrow frame LCD device can be obtained as the radius of curvature of the bent portion is reduced. On the other hand, if the radius of curvature is too small, the wiring may break at the bent portion. When the wiring breaks, first, a crack is generated in the inorganic film that is less flexible than the organic film, and the cracks in the inorganic film affect the surrounding wiring in a chained manner. Examples of the inorganic film include a barrier layer that is formed for the purpose of blocking the intrusion of oxygen and moisture and relaxing the stress of the flexible substrate. An object of the present disclosure is to provide a flexible electro-optical device having excellent connection reliability by preventing damage to wiring.
一実施形態に係る電気光学装置は、第1基板と、前記第1基板に対向する第2基板と、前記第1基板及び前記第2基板の間に配置された液晶層と、を備える。前記第2基板は、可撓性を有した第2可撓性基材と、前記第2可撓性基材に形成された無機膜と、オーバーコート層と、を備える。前記オーバーコート層は、前記第2可撓性基材と前記無機膜との間に形成されている。
An electro-optical device according to an embodiment includes a first substrate, a second substrate facing the first substrate, and a liquid crystal layer disposed between the first substrate and the second substrate. The second substrate includes a flexible second flexible substrate, an inorganic film formed on the second flexible substrate, and an overcoat layer. The overcoat layer is formed between the second flexible substrate and the inorganic film.
いくつかの実施形態について、図面を参照しながら説明する。なお、開示はあくまで一例に過ぎず、当業者が発明の主旨を保って適宜変更について容易に想到し得るものは、当然に本発明の範囲に含まれる。また、図面は、説明をより明確にするため、実際の態様に比べて模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。各図において、連続して配置される同一又は類似の要素について符号を省略することがある。また、本明細書及び各図において、既に説明した図と同一又は類似した機能を発揮する構成要素には同一の参照符号を付し、重複する詳細な説明を省略することがある。
Several embodiments will be described with reference to the drawings. It should be noted that the disclosure is merely an example, and those that can be easily conceived by a person skilled in the art while keeping the gist of the invention, as appropriate, are included in the scope of the present invention. In addition, the drawings may be schematically represented in comparison with actual modes in order to clarify the description, but are merely examples, and do not limit the interpretation of the present invention. In each figure, reference numerals may be omitted for the same or similar elements arranged in succession. In addition, in the present specification and each drawing, components that perform the same or similar functions as those already described are denoted by the same reference numerals, and redundant detailed description may be omitted.
以下の説明においては、表示装置の一例として液晶表示装置DSPを開示する。ただし、本実施形態は、他種の表示装置に対する、本実施形態に開示される個々の技術的思想の適用を妨げるものではない。本実施形態で開示する主要な構成は、有機エレクトロルミネッセンス(EL)表示装置等の自発光型の表示装置、電気泳動素子等を有する電子ペーパ型の表示装置、Micro Electro Mechanical System(MEMS)を応用した表示装置、或いはエレクトロクロミズムを応用した表示装置等の種々の電気光学装置に適用可能である。表示装置は、例えば、スマートフォン、タブレット端末、携帯電話端末、パーソナルコンピュータ、テレビ受像装置、車載装置、ゲーム機器、ウェアラブル端末等の種々の装置に用いることができる。
In the following description, a liquid crystal display device DSP is disclosed as an example of a display device. However, this embodiment does not prevent the application of the individual technical ideas disclosed in this embodiment to other types of display devices. The main configuration disclosed in this embodiment is an application of a self-luminous display device such as an organic electroluminescence (EL) display device, an electronic paper display device having an electrophoretic element, or the like, Micro Electro Mechanical System (MEMS). The present invention can be applied to various electro-optical devices such as a display device or a display device using electrochromism. A display apparatus can be used for various apparatuses, such as a smart phone, a tablet terminal, a mobile telephone terminal, a personal computer, a television receiver, a vehicle-mounted apparatus, a game device, and a wearable terminal, for example.
図1は、本実施形態の液晶表示装置DSPの概略的な構成を示す平面図である。液晶表示装置DSPは、表示面に画像を表示する表示パネル(液晶セル)PNLと、表示パネルPNLに実装された駆動回路基板FPCと、を備えている。以下の説明において、表示パネルPNLの表示面から背面に向かって見ることを平面視と定義する。
FIG. 1 is a plan view showing a schematic configuration of the liquid crystal display device DSP of the present embodiment. The liquid crystal display device DSP includes a display panel (liquid crystal cell) PNL that displays an image on a display surface, and a drive circuit board FPC mounted on the display panel PNL. In the following description, viewing from the display surface of the display panel PNL toward the back surface is defined as planar view.
表示パネルPNLは、背面からの光を選択的に透過させることで画像を表示する透過型であってもよいし、表示面に入射した光を選択的に反射させることで画像を表示する反射型であってもよい。透過型の場合、液晶表示装置DSPは、表示パネルPNLの背面に光を照射する照明装置BLをさらに備えている。駆動回路基板FPCは、表示パネルPNLや照明装置BLの動作を制御する。
The display panel PNL may be a transmission type that displays an image by selectively transmitting light from the back surface, or a reflection type that displays an image by selectively reflecting light incident on the display surface. It may be. In the case of the transmission type, the liquid crystal display device DSP further includes an illumination device BL that irradiates light to the back surface of the display panel PNL. The drive circuit board FPC controls operations of the display panel PNL and the illumination device BL.
表示パネルPNLは、第1基板(アレイ基板)SUB1と、第2基板(対向基板)SUB2と、シール材(接着剤)SEと、液晶層LQと、を備えている。第1基板SUB1は、第1乃至第4辺E1,E2,E3,E4を有する略矩形に形成されている。例えば、第1及び第3辺E1,E3が短辺であり、第2及び第4辺E2,E4が長辺である。
The display panel PNL includes a first substrate (array substrate) SUB1, a second substrate (counter substrate) SUB2, a sealing material (adhesive) SE, and a liquid crystal layer LQ. The first substrate SUB1 is formed in a substantially rectangular shape having first to fourth sides E1, E2, E3, E4. For example, the first and third sides E1 and E3 are short sides, and the second and fourth sides E2 and E4 are long sides.
第2基板SUB2は、表示パネルPNLの厚さ方向Zにおいて、第1基板SUB1に対向している。第1基板SUB1は、表示パネルPNLの例えば長辺方向において、第2基板SUB2よりも大きく形成されており、第2基板SUB2から露出した実装領域NDAtを有している。実装領域NDAtには、駆動回路基板FPCが実装されている。
The second substrate SUB2 faces the first substrate SUB1 in the thickness direction Z of the display panel PNL. The first substrate SUB1 is formed larger than the second substrate SUB2 in the long side direction of the display panel PNL, for example, and has a mounting region NDat exposed from the second substrate SUB2. A drive circuit board FPC is mounted in the mounting area NDat.
駆動回路基板FPCは、例えば、液晶表示装置DSPが搭載される電子機器のメインボード等から表示パネルPNLに表示するための1フレーム分の画像データを順次受信する。この画像データは、例えば各画素PXの表示色等の情報を含む。駆動回路基板FPCには、制御モジュールCTR等が設けられている。制御モジュールCTRは、表示パネルPNLや照明装置BLの動作を制御する。なお、駆動回路基板FPC及び制御モジュールCTRを実装領域NDAtに各別に設けてもよい。
The drive circuit board FPC sequentially receives image data for one frame for displaying on the display panel PNL from, for example, a main board of an electronic device on which the liquid crystal display device DSP is mounted. This image data includes information such as the display color of each pixel PX, for example. The drive circuit board FPC is provided with a control module CTR and the like. The control module CTR controls the operation of the display panel PNL and the illumination device BL. Note that the drive circuit board FPC and the control module CTR may be separately provided in the mounting area NDAt.
シール材SEは、アクリル樹脂やエポキシ樹脂等の有機材料で形成されている。シール材SEは、図1中に右上がり斜線で示す部分に相当し、第1基板SUB1と第2基板SUB2とを接着している。液晶層LQは、シール材SEよりも内側において、第1基板SUB1と第2基板SUB2との間に配置されている。液晶層LQは、電気によって駆動され、光を選択的に透過する電気光学層の一例である。なお、電気光学層は、前述の電気泳動素子やMEMSシャッター等であってもよい。
The seal material SE is formed of an organic material such as acrylic resin or epoxy resin. The seal material SE corresponds to a portion indicated by a diagonal line rising to the right in FIG. 1, and bonds the first substrate SUB1 and the second substrate SUB2. The liquid crystal layer LQ is disposed between the first substrate SUB1 and the second substrate SUB2 inside the sealing material SE. The liquid crystal layer LQ is an example of an electro-optical layer that is driven by electricity and selectively transmits light. The electro-optical layer may be the above-described electrophoretic element, MEMS shutter, or the like.
表示パネルPNLの表示面は、画像を表示する表示領域DAと、表示領域DAを囲む非表示領域(周辺領域)NDAと、を有している。表示領域DAには、複数の副画素SPXがマトリクス状に配列されている。例えば、赤色(R)、緑色(G)、青色(B)にそれぞれ対応する三つの副画素SPXを組み合わせてカラー表示が可能な画素PXを構成できる。なお、画素PXは、白色等の他の色の副画素SPXを含んでもよいし、同じ色の副画素SPXを複数含んでもよい。
The display surface of the display panel PNL has a display area DA for displaying an image and a non-display area (peripheral area) NDA surrounding the display area DA. In the display area DA, a plurality of subpixels SPX are arranged in a matrix. For example, a pixel PX capable of color display can be configured by combining three subpixels SPX respectively corresponding to red (R), green (G), and blue (B). Note that the pixel PX may include a subpixel SPX of another color such as white, or may include a plurality of subpixels SPX of the same color.
非表示領域NDAには、後述する遮光層21が形成されている。非表示領域NDAは、第1乃至第4非表示領域NDA1,NDA2,NDA3,NDA4を含んでいる。第1非表示領域NDA1は、表示領域DAと第1辺E1との間に区画されている。第1非表示領域NDA1は、前述の実装領域NDAtを含んでいる。
In the non-display area NDA, a light shielding layer 21 to be described later is formed. The non-display area NDA includes first to fourth non-display areas NDA1, NDA2, NDA3, and NDA4. The first non-display area NDA1 is partitioned between the display area DA and the first side E1. The first non-display area NDA1 includes the mounting area NDAt described above.
同様に、第2非表示領域NDA2は、表示領域DAと第2辺E2との間に区画されている。第3非表示領域NDA3は、表示領域DAと第3辺E3との間に区画されている。第4非表示領域NDA4は、表示領域DAと第4辺E4との間に区画されている。
Similarly, the second non-display area NDA2 is partitioned between the display area DA and the second side E2. The third non-display area NDA3 is partitioned between the display area DA and the third side E3. The fourth non-display area NDA4 is partitioned between the display area DA and the fourth side E4.
非表示領域NDAに囲まれた表示領域DAにおいて、第1基板SUB1は、複数の走査信号線GLと、走査信号線GLに交差する複数の映像信号線SLと、を備えている。前述の副画素SPXは、隣り合う二本の走査信号線GLと隣り合う二本の映像信号線SLとによって区画された領域に相当する。
In the display area DA surrounded by the non-display area NDA, the first substrate SUB1 includes a plurality of scanning signal lines GL and a plurality of video signal lines SL intersecting the scanning signal lines GL. The aforementioned subpixel SPX corresponds to a region defined by two adjacent scanning signal lines GL and two adjacent video signal lines SL.
各々の走査信号線GLが延在する方向を第1方向Xと定義し、各々の映像信号線SLが延在する方向を第2方向Yと定義する。なお、図1に示す例では、映像信号線SLを第2方向Yに平行な直線で示しているが、映像信号線SLがジグザグに屈曲しつつ第2方向Yに延在してもよい。
The direction in which each scanning signal line GL extends is defined as a first direction X, and the direction in which each video signal line SL extends is defined as a second direction Y. In the example shown in FIG. 1, the video signal line SL is indicated by a straight line parallel to the second direction Y, but the video signal line SL may extend in the second direction Y while being bent zigzag.
図1に示す例では、第1方向Xが表示パネルPNLの短辺方向と一致し、第2方向Yが表示パネルPNLの長辺方向と一致する。なお、第1及び第2方向X,Yは、図1に示す例に限られない。第1方向Xが表示パネルPNLの長辺方向と一致し、第2方向Yが表示パネルPNLの短辺方向と一致してもよいし、それ以外の方向であってもよい。第1及び第2方向X,Yは、表示パネルPNLの厚さ方向Zに直交している。
In the example shown in FIG. 1, the first direction X coincides with the short side direction of the display panel PNL, and the second direction Y coincides with the long side direction of the display panel PNL. The first and second directions X and Y are not limited to the example shown in FIG. The first direction X may coincide with the long side direction of the display panel PNL, and the second direction Y may coincide with the short side direction of the display panel PNL, or other directions. The first and second directions X and Y are orthogonal to the thickness direction Z of the display panel PNL.
第1基板SUB1は、各々の走査信号線GLに接続された走査ドライバGDと、各々の映像信号線SLに接続された映像ドライバSDと、を備えている。走査ドライバGDは、前述の第2及び第4非表示領域NDA2,NDA4にそれぞれ設けられている。映像ドライバSDは、前述の第1非表示領域NDA1において実装領域NDAtと表示領域DAとの間に設けられている。
The first substrate SUB1 includes a scanning driver GD connected to each scanning signal line GL and a video driver SD connected to each video signal line SL. The scanning driver GD is provided in each of the second and fourth non-display areas NDA2 and NDA4. The video driver SD is provided between the mounting area NDAt and the display area DA in the first non-display area NDA1.
なお、走査ドライバGD及び映像ドライバSDを駆動回路基板FPCに設けてもよいし、制御モジュールCTRに設けてもよい。走査ドライバGD及び映像ドライバSDは、画像を表示するための駆動回路の一例であり、例えば後述する副画素SPXのスイッチング素子SWと同一工程で形成できる。
Note that the scanning driver GD and the video driver SD may be provided in the drive circuit board FPC or in the control module CTR. The scanning driver GD and the video driver SD are an example of a driving circuit for displaying an image, and can be formed in the same process as a switching element SW of a sub-pixel SPX described later, for example.
第1基板SUB1は、各々の副画素SPXにおいて、スイッチング素子SWと、画素電極PEと、を備えている。スイッチング素子SWは、例えば薄膜トランジスタ(TFT)によって構成され、走査信号線GL、映像信号線SL及び画素電極PEに電気的に接続されている。複数の副画素SPXに対向して共通電極CEが延在している。共通電極CEは、第1基板SUB1に設けられてもよいし、第2基板SUB2に設けられてもよい。
The first substrate SUB1 includes a switching element SW and a pixel electrode PE in each subpixel SPX. The switching element SW is constituted by, for example, a thin film transistor (TFT), and is electrically connected to the scanning signal line GL, the video signal line SL, and the pixel electrode PE. A common electrode CE extends to face the plurality of subpixels SPX. The common electrode CE may be provided on the first substrate SUB1 or may be provided on the second substrate SUB2.
制御モジュールCTRは、受信した画像データに基づいて、走査ドライバGD及び映像ドライバSDを制御する。走査ドライバGDは、各々の走査信号線GLに走査信号を供給し、映像ドライバSDは、各々の映像信号線SLに映像信号を供給する。スイッチング素子SWに対応する走査信号線GLに走査信号が供給されると、当該スイッチング素子SWに対応する映像信号線SLと画素電極PEとが電気的に接続され、映像信号線SLの映像信号が画素電極PEに供給される。画素電極PEは、共通電極CEとの間で電界を形成して液晶層LQの液晶分子の配向を変化させる。保持容量CSは、例えば共通電極CEと画素電極PEとの間に形成される。
The control module CTR controls the scanning driver GD and the video driver SD based on the received image data. The scanning driver GD supplies a scanning signal to each scanning signal line GL, and the video driver SD supplies a video signal to each video signal line SL. When the scanning signal is supplied to the scanning signal line GL corresponding to the switching element SW, the video signal line SL corresponding to the switching element SW and the pixel electrode PE are electrically connected, and the video signal of the video signal line SL is changed. Supplied to the pixel electrode PE. The pixel electrode PE forms an electric field with the common electrode CE to change the alignment of the liquid crystal molecules in the liquid crystal layer LQ. The storage capacitor CS is formed between the common electrode CE and the pixel electrode PE, for example.
図2は、図1に示された表示領域DAにおける表示パネルPNLの構造を示す断面図である。図2に示すように、表示パネルPNLは、第1偏光板PL1と、第2偏光板PL2と、をさらに備えている。第1偏光板PL1は、表示パネルPNLの背面側において、照明装置BLと表示パネルPNLとの間に配置されている。照明装置BLは、第1基板SUB1に対向しており、第1基板SUB1に光を照射する。第2偏光板PL2は、表示パネルPNLの表示面側に配置されている。
FIG. 2 is a cross-sectional view showing the structure of the display panel PNL in the display area DA shown in FIG. As shown in FIG. 2, the display panel PNL further includes a first polarizing plate PL1 and a second polarizing plate PL2. The first polarizing plate PL1 is disposed between the illumination device BL and the display panel PNL on the back side of the display panel PNL. The illumination device BL faces the first substrate SUB1 and irradiates the first substrate SUB1 with light. The second polarizing plate PL2 is disposed on the display surface side of the display panel PNL.
なお、偏光した光を照射する照明装置BLを用いる場合、第1偏光板PL1を省略してもよい。液晶層LQに代えてMEMSシャッターを用いる場合、第1及び第2偏光板PL1,PL2を省略してもよい。図2に示す例では、表示パネルPNLは、主としてX-Y平面にほぼ平行な横電界を利用する表示モード対応した構成を有している。なお、表示パネルPNLは、X-Y平面に対して垂直な縦電界や、X-Y平面に対して斜め方向の電界、或いはそれらを組み合わせて利用する表示モードに対応した構成を有していてもよい。
In addition, when using the illuminating device BL which irradiates polarized light, you may abbreviate | omit 1st polarizing plate PL1. When a MEMS shutter is used instead of the liquid crystal layer LQ, the first and second polarizing plates PL1 and PL2 may be omitted. In the example shown in FIG. 2, the display panel PNL has a configuration corresponding to a display mode that mainly uses a lateral electric field substantially parallel to the XY plane. The display panel PNL has a configuration corresponding to a vertical electric field perpendicular to the XY plane, an electric field oblique to the XY plane, or a display mode using a combination thereof. Also good.
前述のように、第1基板SUB1は、走査信号線GLと、映像信号線SLと、スイッチング素子SWと、画素電極PEと、共通電極CEと、を備えている。これらに加え、第1基板SUB1は、第1可撓性基材10と、第1絶縁層11と、第2絶縁層12と、第3絶縁層13と、第4絶縁層14と、第5絶縁層15と、第1配向膜AL1と、をさらに備えている。スイッチング素子SWは、半導体層SCと、中継電極SLrと、を含んでいる。
As described above, the first substrate SUB1 includes the scanning signal line GL, the video signal line SL, the switching element SW, the pixel electrode PE, and the common electrode CE. In addition to these, the first substrate SUB1 includes the first flexible substrate 10, the first insulating layer 11, the second insulating layer 12, the third insulating layer 13, the fourth insulating layer 14, and the fifth. An insulating layer 15 and a first alignment film AL1 are further provided. The switching element SW includes a semiconductor layer SC and a relay electrode SLr.
図2に示すように、第1絶縁層11は、第1可撓性基材10を覆っている。半導体層SCは、第1絶縁層11の上に形成されている。第2絶縁層12は、半導体層SC及び第1絶縁層11を覆っている。走査信号線GLは、第2絶縁層12の上に形成されている。第3絶縁層13は、走査信号線GL及び第2絶縁層12を覆っている。
As shown in FIG. 2, the first insulating layer 11 covers the first flexible substrate 10. The semiconductor layer SC is formed on the first insulating layer 11. The second insulating layer 12 covers the semiconductor layer SC and the first insulating layer 11. The scanning signal line GL is formed on the second insulating layer 12. The third insulating layer 13 covers the scanning signal lines GL and the second insulating layer 12.
映像信号線SL及び中継電極(ソース電極又はドレイン電極)SLrは、第3絶縁層13の上に形成され、それぞれコンタクトホールCH1,CH2を通じて半導体層SCに接している。映像信号線SL及び中継電極SLrは、同一工程で形成できる。第4絶縁層14は、映像信号線SL、中継電極SLr及び第3絶縁層13を覆っている。共通電極CEは、第4絶縁層14の上に形成されている。第5絶縁層15は、共通電極CE及び第4絶縁層14を覆っている。
The video signal line SL and the relay electrode (source electrode or drain electrode) SLr are formed on the third insulating layer 13 and are in contact with the semiconductor layer SC through the contact holes CH1 and CH2, respectively. The video signal line SL and the relay electrode SLr can be formed in the same process. The fourth insulating layer 14 covers the video signal line SL, the relay electrode SLr, and the third insulating layer 13. The common electrode CE is formed on the fourth insulating layer 14. The fifth insulating layer 15 covers the common electrode CE and the fourth insulating layer 14.
画素電極PEは、第5絶縁層15の上に形成され、コンタクトホールCH3を通じて中継電極SLrに接している。なお、第5絶縁層15の下に画素電極PEを形成し、第5絶縁層15の上に共通電極CEを形成してもよい。第1配向膜AL1は、画素電極PE及び第5絶縁層15を覆い、液晶層LQに接している。第1配向膜AL1は、画素電極PEに電圧が印加されていない状態において、液晶層LQの液晶分子を配向させる。
The pixel electrode PE is formed on the fifth insulating layer 15 and is in contact with the relay electrode SLr through the contact hole CH3. Note that the pixel electrode PE may be formed under the fifth insulating layer 15, and the common electrode CE may be formed over the fifth insulating layer 15. The first alignment film AL1 covers the pixel electrode PE and the fifth insulating layer 15, and is in contact with the liquid crystal layer LQ. The first alignment film AL1 aligns the liquid crystal molecules of the liquid crystal layer LQ in a state where no voltage is applied to the pixel electrode PE.
第1可撓性基材10は、例えばポリイミド樹脂から形成されている。共通電極CE及び画素電極PEは、インジウム錫酸化物(ITO:Indium Tin Oxide)やインジウム亜鉛酸化物(IZO:Indium Zinc Oxide)等の透明導電材料から形成されている。走査信号線GL、映像信号線SL及び中継電極SLrは、例えば単層構造や積層構造の金属線である。
The first flexible substrate 10 is made of, for example, a polyimide resin. The common electrode CE and the pixel electrode PE are made of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO). The scanning signal line GL, the video signal line SL, and the relay electrode SLr are, for example, metal lines having a single layer structure or a stacked structure.
第1乃至第3及び第5絶縁層11,12,13,15は、シリコン酸化物、シリコン窒化物又はアルミナ等の無機膜である。第4絶縁層14は、例えばアクリル樹脂等の感光性樹脂から形成された有機膜であり、第1基板SUB1の端部まで延在している。第4絶縁層14は、スイッチング素子SWの凹凸を平坦化する機能を有し、第1乃至第3及び第5絶縁層11,12,13,15や第1配向膜AL1よりも厚く形成されている。第1配向膜AL1は、例えばポリイミド樹脂等をインクジェット印刷やフレキソ印刷等によって塗布することで形成できる。
The first to third and fifth insulating layers 11, 12, 13, and 15 are inorganic films such as silicon oxide, silicon nitride, or alumina. The fourth insulating layer 14 is an organic film formed from a photosensitive resin such as an acrylic resin, and extends to the end of the first substrate SUB1. The fourth insulating layer 14 has a function of flattening the unevenness of the switching element SW, and is formed thicker than the first to third and fifth insulating layers 11, 12, 13, 15 and the first alignment film AL1. Yes. The first alignment film AL1 can be formed, for example, by applying polyimide resin or the like by inkjet printing or flexographic printing.
第2基板SUB2は、第2可撓性基材20と、遮光層(ブラックマトリクス)21と、カラーフィルタ層22と、オーバーコート層23と、バリア層24と、第2配向膜AL2と、を備えている。第2可撓性基材20は、第1可撓性基材10と同様の材料から形成できる。第2配向膜AL2は、第1配向膜AL1と同様の材料から形成できる。
The second substrate SUB2 includes a second flexible substrate 20, a light shielding layer (black matrix) 21, a color filter layer 22, an overcoat layer 23, a barrier layer 24, and a second alignment film AL2. I have. The second flexible substrate 20 can be formed from the same material as the first flexible substrate 10. The second alignment film AL2 can be formed of the same material as the first alignment film AL1.
図2に示すように、遮光層21は、第2可撓性基材20の下面に形成されている。カラーフィルタ層22は、遮光層21及び第2可撓性基材20を覆っている。遮光層21は、平面視において、非表示領域NDAに形成されている。さらに、遮光層21は、表示領域DAにおいて、走査信号線GL、映像信号線SL、中継電極SLr等の金属線の直上に形成され、副画素SPXを区画している。
As shown in FIG. 2, the light shielding layer 21 is formed on the lower surface of the second flexible substrate 20. The color filter layer 22 covers the light shielding layer 21 and the second flexible substrate 20. The light shielding layer 21 is formed in the non-display area NDA in plan view. Further, the light shielding layer 21 is formed immediately above the metal lines such as the scanning signal line GL, the video signal line SL, and the relay electrode SLr in the display area DA, and partitions the subpixel SPX.
カラーフィルタ層22は、画素電極PEに対向し、その一部が遮光層21に重なっている。なお、カラーフィルタ層22を第2基板SUB2ではなく第1基板SUB1に形成してもよい。カラーフィルタ層22は、副画素SPXに対応して配置された赤色カラーフィルタ層、緑色カラーフィルタ層、青色カラーフィルタ層等を含んでいる。オーバーコート層23は、カラーフィルタ層22を覆っている。バリア層24は、オーバーコート層23を覆っている。第2配向膜AL2は、バリア層24を覆い、液晶層LQに接している。遮光層21、カラーフィルタ層22及びオーバーコート層23は、いずれも有機材料で形成できる。すなわち、遮光層21、カラーフィルタ層22及びオーバーコート層23は、有機層の一例である。
The color filter layer 22 faces the pixel electrode PE, and a part thereof overlaps the light shielding layer 21. The color filter layer 22 may be formed on the first substrate SUB1 instead of the second substrate SUB2. The color filter layer 22 includes a red color filter layer, a green color filter layer, a blue color filter layer, and the like arranged corresponding to the sub-pixel SPX. The overcoat layer 23 covers the color filter layer 22. The barrier layer 24 covers the overcoat layer 23. The second alignment film AL2 covers the barrier layer 24 and is in contact with the liquid crystal layer LQ. The light shielding layer 21, the color filter layer 22, and the overcoat layer 23 can all be formed of an organic material. That is, the light shielding layer 21, the color filter layer 22, and the overcoat layer 23 are examples of organic layers.
バリア層24は、シリコン酸化物、シリコン窒化物又はアルミナ等の無機膜であり、第2可撓性基材20に侵入した酸素や水分を遮断する機能を有している。本実施形態においては、例えば、光学特性を考慮してシリコン窒化物からなる単層膜をバリア層24に用いる。また、バリア層24は、第2可撓性基材20の応力を緩和させる目的で成膜されている。液晶表示装置DSPの製造において、第2可撓性基材20から後述の第2ガラス基板を剥離するとき、第2可撓性基材20が応力で反るおそれがある。バリア層24は、この応力を相殺する方向に応力を付与して第2可撓性基材20の反りを抑制する。
The barrier layer 24 is an inorganic film such as silicon oxide, silicon nitride, or alumina, and has a function of blocking oxygen and moisture that have entered the second flexible substrate 20. In the present embodiment, for example, a single layer film made of silicon nitride is used for the barrier layer 24 in consideration of optical characteristics. The barrier layer 24 is formed for the purpose of relaxing the stress of the second flexible substrate 20. In the manufacture of the liquid crystal display device DSP, when the second glass substrate described later is peeled from the second flexible substrate 20, the second flexible substrate 20 may be warped by stress. The barrier layer 24 imparts stress in a direction that cancels the stress and suppresses the warp of the second flexible substrate 20.
図3は、第4非表示領域NDA4の構造を示す断面図である。なお、第1乃至第3非表示領域NDA1,NDA2,NDA3の構造は、第4非表示領域NDA4の構造と略同一の形状及び機能を有している。そのため、代表して第4非表示領域NDA4を詳しく説明し、第1乃至第3非表示領域NDA3については重複する説明を省略する。
FIG. 3 is a cross-sectional view showing the structure of the fourth non-display area NDA4. The structures of the first to third non-display areas NDA1, NDA2, and NDA3 have substantially the same shape and function as the structure of the fourth non-display area NDA4. For this reason, the fourth non-display area NDA4 will be described in detail as a representative, and overlapping description of the first to third non-display areas NDA3 will be omitted.
図3に示す例では、第4非表示部NDA4が表示パネルPNLの背面側に折り返されて、第1及び第2基板SUB1,SUB2のそれぞれの端部が照明装置BLの背面側に位置している。このような構成であれば、第4非表示領域NDA4が表示パネルPNLの表示面側から見えなくなるため、額縁幅Wが狭い液晶表示装置DSPを構成できる。非表示領域NDAを背面側に折り返すと、表示パネルPNLの第1基板SUB1側では、圧縮応力が生じる。第2基板SUB2側では、引張応力が生じる。表示パネルPNLの略中心に位置する中立面Nでは、引張応力と圧縮応力が釣り合う。
In the example shown in FIG. 3, the fourth non-display portion NDA4 is folded back to the back side of the display panel PNL, and the respective end portions of the first and second substrates SUB1 and SUB2 are located on the back side of the illumination device BL. Yes. With such a configuration, the fourth non-display area NDA4 cannot be seen from the display surface side of the display panel PNL, and thus a liquid crystal display device DSP having a narrow frame width W can be configured. When the non-display area NDA is folded back to the back side, compressive stress is generated on the first substrate SUB1 side of the display panel PNL. A tensile stress is generated on the second substrate SUB2 side. On the neutral plane N located at the approximate center of the display panel PNL, the tensile stress and the compressive stress are balanced.
図4は、図3において曲げられた表示パネルPNLの一部を拡大して示す断面図である。本実施形態の液晶表示装置DSPは、遮光層21及びオーバーコート層23が、第2可撓性基材20とバリア層24との間に形成されていることが特徴の一つである。図5は、本実施形態との比較例を示す断面図である。仮に、図5に示された比較例のように、第2可撓性基材20と遮光層21との間にバリア層24があると、中立面Nからバリア層24までの距離が大きくなる。
FIG. 4 is an enlarged cross-sectional view showing a part of the display panel PNL bent in FIG. One feature of the liquid crystal display device DSP of the present embodiment is that the light shielding layer 21 and the overcoat layer 23 are formed between the second flexible substrate 20 and the barrier layer 24. FIG. 5 is a cross-sectional view showing a comparative example with the present embodiment. If there is a barrier layer 24 between the second flexible substrate 20 and the light shielding layer 21 as in the comparative example shown in FIG. 5, the distance from the neutral plane N to the barrier layer 24 is large. Become.
これに対し、本実施形態によれば、遮光層21及びオーバーコート層23よりも上層(液晶層LQ側)にバリア層24があるため、図4に示すように、中立面Nの近傍にバリア層24を配置できる。なお、第1及び第2可撓性基材10,20の板厚T1,T2は、互いに異なっていてもよい。板厚T1,T2を調整することで中立面Nとバリア層24との距離をさらに近づけることができる。
On the other hand, according to the present embodiment, since the barrier layer 24 is provided above the light shielding layer 21 and the overcoat layer 23 (on the liquid crystal layer LQ side), as shown in FIG. A barrier layer 24 can be disposed. In addition, plate | board thickness T1, T2 of the 1st and 2nd flexible base materials 10 and 20 may mutually differ. By adjusting the plate thicknesses T1 and T2, the distance between the neutral plane N and the barrier layer 24 can be further reduced.
液晶表示装置DSPの製造工程において、バリア層24は、一般にCVD(Chemical Vapor Deposition)によって形成される。遮光層21の上にバリア層24を配置するために、遮光層21が存在している状態でCVDを行うと、遮光層21が揮発してCVD装置の真空チャンバーが汚染されてしまう。
In the manufacturing process of the liquid crystal display device DSP, the barrier layer 24 is generally formed by CVD (Chemical Vapor Deposition). If the CVD is performed in the presence of the light shielding layer 21 in order to dispose the barrier layer 24 on the light shielding layer 21, the light shielding layer 21 volatilizes and the vacuum chamber of the CVD apparatus is contaminated.
図6は、本実施形態に係る液晶表示装置DSPの製造方法の一例を示すフロー図である。本実施形態に係る製造方法は、CVDを用いずにバリア層24を成膜することが特徴の一つである。図6に示す例では、製造方法は、第1基板SUB1を用意する工程と、第2基板SUB2を用意する工程と、第1基板SUB1及び第2基板SUB2を接着して液晶表示装置DSPを組み立てる工程と、を含んでいる。
FIG. 6 is a flowchart showing an example of a manufacturing method of the liquid crystal display device DSP according to the present embodiment. The manufacturing method according to the present embodiment is characterized in that the barrier layer 24 is formed without using CVD. In the example shown in FIG. 6, the manufacturing method includes assembling the liquid crystal display device DSP by preparing the first substrate SUB1, preparing the second substrate SUB2, and bonding the first substrate SUB1 and the second substrate SUB2. And a process.
第1基板SUB1を用意するST1乃至ST3の工程について説明する。まず、第1ガラス基板の上面に第1可撓性基材10の材料を塗布し、塗布した材料を硬化させて第1可撓性基材10を形成する(第1可撓性基材形成ST1)。一例として、第1ガラス基板上にポリアミド酸を含んだ組成物を塗布し、300~500℃で熱処理してイミド化すれば、ポリイミドフィルムの第1可撓性基材10を形成できる。
The steps ST1 to ST3 for preparing the first substrate SUB1 will be described. First, the material of the 1st flexible base material 10 is apply | coated to the upper surface of a 1st glass substrate, the applied material is hardened, and the 1st flexible base material 10 is formed (1st flexible base material formation) ST1). As an example, the first flexible substrate 10 of polyimide film can be formed by applying a composition containing polyamic acid on a first glass substrate and imidizing it by heat treatment at 300 to 500 ° C.
第1可撓性基材10の上に前述の走査信号線GL、映像信号線SL、半導体層SC、共通電極CE、画素電極PE、第1乃至第5絶縁層11,12,13,14,15等を積層した回路層を形成する(回路層形成ST2)。回路層の上に第1配向膜AL1の材料を塗布し、塗布した材料を硬化させて第1配向膜AL1を形成する(第1配向膜形成ST3)。ST1乃至ST3の工程を経て、複数の第1基板SUB1を含んだマザー基板を得る。
On the first flexible substrate 10, the scanning signal line GL, the video signal line SL, the semiconductor layer SC, the common electrode CE, the pixel electrode PE, the first to fifth insulating layers 11, 12, 13, 14, A circuit layer in which 15 and the like are stacked is formed (circuit layer formation ST2). The material of the first alignment film AL1 is applied on the circuit layer, and the applied material is cured to form the first alignment film AL1 (first alignment film formation ST3). Through steps ST1 to ST3, a mother substrate including a plurality of first substrates SUB1 is obtained.
次に、第2基板SUB2を用意するST4乃至ST7の工程について説明する。ST1の工程と同様にして、第2ガラス基板の上に第2可撓性基材20を形成する(第2可撓性基材形成ST4)。第2可撓性基材20の上に前述の遮光層21、カラーフィルタ層22(着色層)、オーバーコート層23等を形成する(着色層形成ST5)。
Next, steps ST4 to ST7 for preparing the second substrate SUB2 will be described. In the same manner as in ST1, the second flexible substrate 20 is formed on the second glass substrate (second flexible substrate formation ST4). The light shielding layer 21, the color filter layer 22 (colored layer), the overcoat layer 23, and the like are formed on the second flexible substrate 20 (colored layer formation ST5).
ST5の工程よりも後に、オーバーコート層23の上にシリコン酸化物、シリコン窒化物又はアルミナ等の無機材料をスパッタリングすることによりバリア層24を形成する。バリア層24は、遮光層21、カラーフィルタ層22、オーバーコート層23を介して第2可撓性基材20を覆うように形成される。ST3の工程と同様にして、バリア層24の上に第2配向膜AL2をさらに形成し(第2配向膜形成ST7)、複数の第2基板SUB2を含んだマザー基板を得る。
After the step ST5, the barrier layer 24 is formed on the overcoat layer 23 by sputtering an inorganic material such as silicon oxide, silicon nitride, or alumina. The barrier layer 24 is formed so as to cover the second flexible substrate 20 through the light shielding layer 21, the color filter layer 22, and the overcoat layer 23. In the same manner as in ST3, a second alignment film AL2 is further formed on the barrier layer 24 (second alignment film formation ST7), and a mother substrate including a plurality of second substrates SUB2 is obtained.
次に、第1及び第2基板SUB1,SUB2を接着して液晶表示装置DSPを組み立てるST8乃至ST15の工程について説明する。いずれか一方のマザー基板にシール材SEの材料を塗布し、シール材SEに囲まれた内側に液晶層LQの液晶材料を滴下する(液晶滴下ST8)。二枚のマザー基板を貼り合わせ、シール材SEを硬化させる(基板接着ST9)。なお、液晶層LQを注入する方法は、ST8及びST9の工程(ワン・ドロップ・フィル法)に限らない。先に第1及び第2基板SUB1,SUB2を接着し、後から液晶層LQを封入する真空注入法を用いてもよい。
Next, steps ST8 to ST15 for assembling the liquid crystal display device DSP by bonding the first and second substrates SUB1 and SUB2 will be described. The material of the sealing material SE is applied to one of the mother substrates, and the liquid crystal material of the liquid crystal layer LQ is dropped on the inner side surrounded by the sealing material SE (liquid crystal dropping ST8). Two mother substrates are bonded together, and the sealing material SE is cured (substrate adhesion ST9). The method of injecting the liquid crystal layer LQ is not limited to the steps ST8 and ST9 (one drop fill method). A vacuum injection method may be used in which the first and second substrates SUB1 and SUB2 are bonded first and the liquid crystal layer LQ is sealed later.
第2可撓性基材20から第2ガラス基板を剥離する。具体的には、透光性の第2ガラス基板を通じて第2可撓性基材20にレーザー光を照射する。これにより、第2可撓性基材20がレーザー光を吸収して僅かに分解する。第2可撓性基材20と第2ガラス基板との界面に空隙が発生し、第2可撓性基材20から第2ガラス基板が剥離される(第2ガラス基板剥離ST10)。このとき、バリア層24は、第2ガラス基板に固定されていない第2可撓性基材20の反りを抑制する。
The second glass substrate is peeled from the second flexible substrate 20. Specifically, the second flexible substrate 20 is irradiated with laser light through a translucent second glass substrate. Thereby, the 2nd flexible base material 20 absorbs a laser beam, and decomposes | disassembles slightly. A space is generated at the interface between the second flexible substrate 20 and the second glass substrate, and the second glass substrate is peeled from the second flexible substrate 20 (second glass substrate peeling ST10). At this time, the barrier layer 24 suppresses the warp of the second flexible base material 20 that is not fixed to the second glass substrate.
第1ガラス基板とともに第1及び第2基板SUB1,SUB2を含んだマザー基板を切断し、複数のパネルに個片化する(セルカットST11)。レーザー光によって第2基板SUB2の一部を切除し、第1基板SUB1の端子を露出させる(実装領域形成ST12)。これにより、実装領域NDAtが形成される。なお、ST10及びST11の工程を一つの工程にまとめてもよい。
The mother substrate including the first and second substrates SUB1 and SUB2 together with the first glass substrate is cut and separated into a plurality of panels (cell cut ST11). A part of the second substrate SUB2 is cut out by the laser beam to expose the terminal of the first substrate SUB1 (mounting region formation ST12). Thereby, the mounting area NDat is formed. Note that the steps ST10 and ST11 may be combined into one step.
露出した端子に駆動回路基板FPCを実装する(駆動回路基板実装ST13)。具体的には、端子の上に異方性導電フィルムを配置する。異方性導電フィルムは、均一に分散された導電粒子を含んだフィルム状の接着剤である。次に、駆動回路基板FPC及び第1基板SUB1を上下から加圧すると同時に加熱する。これにより、異方性導電フィルムの一部が溶融し、駆動回路基板FPCと第1基板SUB1とが電気的及び機械的に接続される。
The drive circuit board FPC is mounted on the exposed terminals (drive circuit board mounting ST13). Specifically, an anisotropic conductive film is disposed on the terminal. An anisotropic conductive film is a film-like adhesive containing uniformly dispersed conductive particles. Next, the drive circuit board FPC and the first substrate SUB1 are pressurized from the top and bottom and heated at the same time. Thereby, a part of the anisotropic conductive film is melted, and the drive circuit board FPC and the first board SUB1 are electrically and mechanically connected.
第2ガラス基板を剥離するST10の工程と同様にして、第1可撓性基材10から第1ガラス基板を剥離する(第1ガラス基板剥離ST14)。得られた表示パネルPNLに第1及び第2偏光板PL1,PL2を貼着し、照明装置BLを組み付ける。
In the same manner as ST10 for peeling the second glass substrate, the first glass substrate is peeled from the first flexible base material 10 (first glass substrate peeling ST14). The first and second polarizing plates PL1 and PL2 are attached to the obtained display panel PNL, and the lighting device BL is assembled.
表示パネルPNLの非表示領域NDA及び駆動回路基板FPCを表示パネルPNLの背面側に曲げると、液晶表示装置DSPが完成する(折り返しST15)。非表示領域NDAを背面側に曲げると、第2基板SUB2には、引張応力が生じる。無機膜は、圧縮応力よりも引張応力に弱いため、第2基板SUB2においては、第1基板SUB1よりも無機膜が破断しやすい傾向がある。
When the non-display area NDA and the drive circuit board FPC of the display panel PNL are bent toward the back side of the display panel PNL, the liquid crystal display device DSP is completed (turning ST15). When the non-display area NDA is bent to the back side, tensile stress is generated in the second substrate SUB2. Since the inorganic film is weaker in tensile stress than compressive stress, the inorganic film tends to break in the second substrate SUB2 more easily than in the first substrate SUB1.
以上のように構成された本実施形態の液晶表示装置DSPは、第2可撓性基材20の反りを抑制するバリア層24と中立面Nとの距離が、図5に示された比較例の液晶表示装置DSPに比べて小さくなる。これにより、第2可撓性基材20を曲げた際にバリア層24に働く応力を最小限にできるため、バリア層24の破断を防止できる。
In the liquid crystal display device DSP of the present embodiment configured as described above, the distance between the barrier layer 24 that suppresses the warp of the second flexible base material 20 and the neutral surface N is the comparison shown in FIG. It becomes smaller than the liquid crystal display device DSP of the example. Thereby, since the stress which acts on the barrier layer 24 when the 2nd flexible base material 20 is bent can be minimized, the fracture | rupture of the barrier layer 24 can be prevented.
本実施形態に係る製造方法は、CVDではなくスパッタリングを用いる。スパッタリングであれば、有機膜が存在する条件下でも成膜できるため、第2可撓性基材20の直上に限定されず、遮光層21、カラーフィルタ層22及びオーバーコート層23よりも中立面N寄りにバリア層24を形成できる。その他、本実施形態及びその変形例からは、種々の好適な効果を得ることができる。
The manufacturing method according to this embodiment uses sputtering instead of CVD. Since sputtering can be formed even under conditions where an organic film is present, it is not limited to the position immediately above the second flexible substrate 20 and is more neutral than the light shielding layer 21, the color filter layer 22, and the overcoat layer 23. The barrier layer 24 can be formed near the surface N. In addition, various suitable effects can be obtained from this embodiment and its modifications.
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。各実施形態にて開示した構成は、適宜に組み合わせることができる。
Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and equivalents thereof. The configurations disclosed in the embodiments can be combined as appropriate.
10…第1可撓性基材、20…第2可撓性基材、21…遮光層、23…オーバーコート層、24…バリア層(無機膜の一例)、DSP…液晶表示装置(表示装置の一例)、LQ…液晶層、SUB1…第1基板、SUB2…第2基板、T1…第1可撓性基材の板厚、T2…第2可撓性基材の板厚。
DESCRIPTION OF SYMBOLS 10 ... 1st flexible base material, 20 ... 2nd flexible base material, 21 ... Light-shielding layer, 23 ... Overcoat layer, 24 ... Barrier layer (an example of inorganic film), DSP ... Liquid crystal display device (display device) LQ ... liquid crystal layer, SUB1 ... first substrate, SUB2 ... second substrate, T1 ... plate thickness of the first flexible substrate, T2 ... plate thickness of the second flexible substrate.
Claims (13)
- 第1基板と、
前記第1基板に対向する第2基板と、
前記第1基板及び前記第2基板の間に配置された液晶層と、を備え、
前記第2基板は、可撓性を有した第2可撓性基材と、前記第2可撓性基材に形成された無機膜と、オーバーコート層と、を備え、
前記オーバーコート層は、前記第2可撓性基材と前記無機膜との間に形成されている、電気光学装置。 A first substrate;
A second substrate facing the first substrate;
A liquid crystal layer disposed between the first substrate and the second substrate,
The second substrate includes a flexible second flexible substrate, an inorganic film formed on the second flexible substrate, and an overcoat layer,
The overcoat layer is an electro-optical device formed between the second flexible substrate and the inorganic film. - 前記第1基板と前記第2基板は、平面視において、表示領域と周辺領域を有し、
前記無機膜は、前記表示領域と前記周辺領域において、前記第2可撓性基材を覆うように形成されている、請求項1に記載の電気光学装置。 The first substrate and the second substrate have a display region and a peripheral region in plan view,
The electro-optical device according to claim 1, wherein the inorganic film is formed so as to cover the second flexible base material in the display region and the peripheral region. - 前記第1基板は、可撓性を有した第1可撓性基材を備え、
前記第2可撓性基材の厚さは、前記第1可撓性基材の厚さと異なる、請求項1に記載の電気光学装置。 The first substrate includes a first flexible base material having flexibility,
The electro-optical device according to claim 1, wherein a thickness of the second flexible substrate is different from a thickness of the first flexible substrate. - 前記無機膜は、前記オーバーコート層と前記液晶層との間に形成されている、請求項1に記載の電気光学装置。 2. The electro-optical device according to claim 1, wherein the inorganic film is formed between the overcoat layer and the liquid crystal layer.
- 前記第2基板は、前記第2可撓性基材と前記無機膜との間に形成されたカラーフィルタ層をさらに備える、請求項1に記載の電気光学装置。 2. The electro-optical device according to claim 1, wherein the second substrate further includes a color filter layer formed between the second flexible base material and the inorganic film.
- 前記第2基板は、前記第2可撓性基材と前記オーバーコート層との間に形成された遮光層をさらに備える、請求項1に記載の電気光学装置。 The electro-optical device according to claim 1, wherein the second substrate further includes a light shielding layer formed between the second flexible base material and the overcoat layer.
- 画像を表示する表示領域と、前記表示領域の周囲の周辺領域と、を備え、
前記周辺領域は、曲げられている、請求項1に記載の電気光学装置。 A display area for displaying an image, and a peripheral area around the display area,
The electro-optical device according to claim 1, wherein the peripheral region is bent. - 曲げられた前記周辺領域は、引張応力と圧縮応力とが釣り合う中立面を有し、
前記無機膜は、前記オーバーコート層よりも前記中立面に近い、請求項7に記載の電気光学装置。 The bent peripheral region has a neutral surface where tensile stress and compressive stress are balanced,
The electro-optical device according to claim 7, wherein the inorganic film is closer to the neutral surface than the overcoat layer. - 前記第1基板に対向し、前記第1基板に光を照射する照明装置をさらに備え、
前記周辺領域は、前記第1基板の端部が前記照明装置の背面側に位置するように曲げられている、請求項7に記載の電気光学装置。 An illuminating device facing the first substrate and irradiating the first substrate with light;
The electro-optical device according to claim 7, wherein the peripheral region is bent so that an end portion of the first substrate is located on a back side of the illumination device. - 有機材料からなる有機層が形成された状態の可撓性を有する第2可撓性基材を用意し、
前記有機層の前記第2可撓性基材とは反対側の面に、スパッタリングにより無機膜からなるバリア層を成膜する、電気光学装置の製造方法。 Preparing a second flexible substrate having flexibility in a state in which an organic layer made of an organic material is formed;
A method of manufacturing an electro-optical device, wherein a barrier layer made of an inorganic film is formed by sputtering on a surface of the organic layer opposite to the second flexible substrate. - 半導体及び金属配線を有する回路層が形成された可撓性を有する第1可撓性基材を用意し、
前記第1可撓性基材と前記第2可撓性基材とを液晶層を介して貼り合わせる、請求項10に記載の電気光学装置の製造方法。 Preparing a flexible first flexible substrate on which a circuit layer having a semiconductor and metal wiring is formed;
The method of manufacturing an electro-optical device according to claim 10, wherein the first flexible substrate and the second flexible substrate are bonded together via a liquid crystal layer. - 前記有機層は、着色層と、前記着色層と前記バリア層との間に形成されるオーバーコート層とを有する、請求項11に記載の電気光学装置の製造方法。 The method of manufacturing an electro-optical device according to claim 11, wherein the organic layer includes a colored layer and an overcoat layer formed between the colored layer and the barrier layer.
- さらに、貼り合わされた前記第1可撓性基材及び前記第2可撓性基材を曲げる、請求項11に記載の電気光学装置の製造方法。 The method of manufacturing an electro-optical device according to claim 11, further comprising bending the bonded first flexible substrate and second flexible substrate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-067372 | 2018-03-30 | ||
JP2018067372A JP2019179102A (en) | 2018-03-30 | 2018-03-30 | Electro-optical device and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019187567A1 true WO2019187567A1 (en) | 2019-10-03 |
Family
ID=68058734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/002356 WO2019187567A1 (en) | 2018-03-30 | 2019-01-24 | Electro-optic device and method for manufacturing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019179102A (en) |
WO (1) | WO2019187567A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113066820A (en) * | 2019-12-31 | 2021-07-02 | 乐金显示有限公司 | Display device |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001305513A (en) * | 2000-04-20 | 2001-10-31 | Seiko Epson Corp | Manufacturing method of liquid crystal device, liquid crystal device, and electronic equipment |
JP2013015835A (en) * | 2011-06-30 | 2013-01-24 | Samsung Display Co Ltd | Flexible display panel and display apparatus including the flexible display panel |
JP2016126041A (en) * | 2014-12-26 | 2016-07-11 | 株式会社ジャパンディスプレイ | Display device |
JP2017016005A (en) * | 2015-07-03 | 2017-01-19 | 株式会社ジャパンディスプレイ | Display |
JP2017187580A (en) * | 2016-04-04 | 2017-10-12 | 株式会社ジャパンディスプレイ | Display device |
US20170293194A1 (en) * | 2016-04-06 | 2017-10-12 | Amazon Technologies, Inc. | Borderless display with curved edges |
JP2017191317A (en) * | 2016-04-07 | 2017-10-19 | 株式会社半導体エネルギー研究所 | Display device |
JP2017194520A (en) * | 2016-04-19 | 2017-10-26 | 株式会社半導体エネルギー研究所 | Display device |
US20180033980A1 (en) * | 2016-07-29 | 2018-02-01 | Samsung Display Co., Ltd. | Display device |
JP2018036299A (en) * | 2016-08-29 | 2018-03-08 | 株式会社ジャパンディスプレイ | Display device |
-
2018
- 2018-03-30 JP JP2018067372A patent/JP2019179102A/en active Pending
-
2019
- 2019-01-24 WO PCT/JP2019/002356 patent/WO2019187567A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001305513A (en) * | 2000-04-20 | 2001-10-31 | Seiko Epson Corp | Manufacturing method of liquid crystal device, liquid crystal device, and electronic equipment |
JP2013015835A (en) * | 2011-06-30 | 2013-01-24 | Samsung Display Co Ltd | Flexible display panel and display apparatus including the flexible display panel |
JP2016126041A (en) * | 2014-12-26 | 2016-07-11 | 株式会社ジャパンディスプレイ | Display device |
JP2017016005A (en) * | 2015-07-03 | 2017-01-19 | 株式会社ジャパンディスプレイ | Display |
JP2017187580A (en) * | 2016-04-04 | 2017-10-12 | 株式会社ジャパンディスプレイ | Display device |
US20170293194A1 (en) * | 2016-04-06 | 2017-10-12 | Amazon Technologies, Inc. | Borderless display with curved edges |
JP2017191317A (en) * | 2016-04-07 | 2017-10-19 | 株式会社半導体エネルギー研究所 | Display device |
JP2017194520A (en) * | 2016-04-19 | 2017-10-26 | 株式会社半導体エネルギー研究所 | Display device |
US20180033980A1 (en) * | 2016-07-29 | 2018-02-01 | Samsung Display Co., Ltd. | Display device |
JP2018036299A (en) * | 2016-08-29 | 2018-03-08 | 株式会社ジャパンディスプレイ | Display device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113066820A (en) * | 2019-12-31 | 2021-07-02 | 乐金显示有限公司 | Display device |
TWI782380B (en) * | 2019-12-31 | 2022-11-01 | 南韓商樂金顯示科技股份有限公司 | Display apparatus |
US11532797B2 (en) | 2019-12-31 | 2022-12-20 | Lg Display Co., Ltd. | Display apparatus including glass substrates |
CN113066820B (en) * | 2019-12-31 | 2024-05-14 | 乐金显示有限公司 | Display device |
Also Published As
Publication number | Publication date |
---|---|
JP2019179102A (en) | 2019-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12092935B2 (en) | Display panel and method of manufacturing the same | |
USRE47701E1 (en) | Display panel and method of manufacturing the same | |
KR102490624B1 (en) | Flexible Display and Method for Manufacturing the Same | |
US9239495B2 (en) | Display device, electronic device including display device, and method for manufacturing display device | |
US20140085585A1 (en) | Display panel having larger display area and method of manufacturing the same | |
US10495803B2 (en) | Display device | |
KR20140049372A (en) | Display panel and method of fabricating the same | |
JP2019020448A (en) | Display device | |
US20130258263A1 (en) | Electro-optical device and electronic apparatus | |
US20180284523A1 (en) | Display device | |
US20180004053A1 (en) | Display device | |
US10816857B2 (en) | Display device | |
JP2016126041A (en) | Display device | |
US9104081B2 (en) | Liquid crystal display device and method of manufacturing the same | |
US9459491B2 (en) | Mirror display device and manufacturing method thereof | |
US20180196291A1 (en) | Display device | |
JP7030444B2 (en) | Display device | |
WO2019187567A1 (en) | Electro-optic device and method for manufacturing same | |
US20210240029A1 (en) | Electronic apparatus and method for manufacturing the same | |
JP2018200350A (en) | Display panel and manufacturing method of display panel | |
JP2021179548A (en) | Display | |
JP2020154171A (en) | Display device | |
JP2020056929A (en) | Display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19776053 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19776053 Country of ref document: EP Kind code of ref document: A1 |