WO2019181798A1 - Polyisocyanate composition and coating composition using same - Google Patents
Polyisocyanate composition and coating composition using same Download PDFInfo
- Publication number
- WO2019181798A1 WO2019181798A1 PCT/JP2019/010900 JP2019010900W WO2019181798A1 WO 2019181798 A1 WO2019181798 A1 WO 2019181798A1 JP 2019010900 W JP2019010900 W JP 2019010900W WO 2019181798 A1 WO2019181798 A1 WO 2019181798A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyisocyanate
- polyisocyanate composition
- composition
- diol
- reaction
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/32—Polyhydroxy compounds; Polyamines; Hydroxyamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/73—Polyisocyanates or polyisothiocyanates acyclic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
Definitions
- the present invention relates to a polyisocyanate composition and a coating composition using this as a curing agent.
- non-yellowing polyisocyanates derived from aliphatic isocyanates such as 1,6-hexamethylene diisocyanate (hereinafter also referred to as HDI) are excellent in weather resistance, and thus are frequently used in the paint / coating and adhesive fields. It is used.
- the polyisocyanate type containing an isocyanurate bond has high chemical and thermal stability, and is particularly excellent in weather resistance, heat resistance, and durability. Therefore, it is widely used depending on its application. Application expansion is expected.
- plastic products such as mobile phone cases, personal computer cases, audio equipment, electronic material parts such as touch panels and liquid crystal screens, home appliances such as refrigerators, microwave ovens and washing machines, woodworking products such as furniture, golf clubs,
- sports equipment such as tennis rackets, architectural interiors such as floors, sinks and doorknobs, and interior and exterior of automobiles
- interior and exterior of automobiles there is a demand for further enhancement of the surfaces.
- Patent Document 1 proposes a coating composition containing a specific polyester polyol, a polyisocyanate, and a tin-based urethanization catalyst as essential components.
- Patent Document 2 toughness is further imparted by a resin composition containing, as essential components, a polyisocyanate compound having a specific isocyanate group equivalent and a polyester polyol having a specific range of average Tg, average number of functional groups, and number average molecular weight. It has been proposed to do.
- Patent Document 3 proposes a coating composition comprising a curing agent mainly composed of an allophanate-modified polyisocyanate containing no isocyanurate group, obtained by reacting a specific polyester polyol with a specific diol compound and an organic diisocyanate. ing.
- Patent Document 4 achieves high strength by using a specific polyisocyanate derived from isophorone diisocyanate (hereinafter referred to as IPDI), and the polyol is not limited, but has a performance contrary to high strength. Therefore, it is easy to impair the followability to the base material, and improvement has been demanded.
- IPDI isophorone diisocyanate
- the present invention has been made based on the circumstances as described above, and as a first problem, even when a general acrylic polyol is used, it is possible to express excellent coating strength such as scratch resistance, and weather resistance / It is providing the polyisocyanate composition which can obtain the coating film which is excellent in adhesiveness, and the coating composition which used this as a hardening
- a second problem even when a general acrylic polyol is used, a polyisocyanate composition capable of expressing an excellent coating film strength and capable of obtaining a coating film excellent in substrate followability, and this as a curing agent. It is in providing the coating composition prepared.
- the present inventors can solve the above problems by using a polyisocyanate composition containing a polyisocyanate obtained by urethanation of a specific diol and HDI and a nurate type polyisocyanate. And reached the present invention.
- the present invention includes the following embodiments.
- a urethane reaction product (A) of HDI and a diol having a cyclic group having a molecular weight of 300 or less, and a nurate type polyisocyanate (B) obtained by nurating HDI, (A) / (B) A polyisocyanate composition comprising 10/90 to 60/40 (mass ratio).
- [2] It further includes a reaction product (C) of HDI nurate polyisocyanate (B1), a diol having a cyclic group having a molecular weight of less than 300 and HDI, and the molar ratio of (A) to (B) is 8 /
- the diol having a cyclic group is a diol having at least one selected from the group consisting of a cycloalkyl ring, a benzene ring, and a heterocyclic ring, according to any one of the above [1] to [3] The polyisocyanate composition described.
- a polyurethane resin composition comprising the polyisocyanate composition according to any one of [1] to [5] and a polyol.
- a polyisocyanate composition capable of expressing excellent coating strength such as scratch resistance, and obtaining a coating having excellent weather resistance and adhesion, and A coating composition using this as a curing agent can be obtained.
- a polyisocyanate composition capable of exhibiting excellent coating film strength even when a general acrylic polyol is used and capable of obtaining a coating film excellent in substrate followability, and a coating composition using this as a curing agent can be obtained.
- an embodiment that solves the first problem is referred to as a first embodiment
- an embodiment that solves the second problem is referred to as a second embodiment.
- the polyisocyanate composition according to the first embodiment of the present invention includes a urethane reaction product (A) (hereinafter also referred to as component (A)) of HDI and a diol having a cyclic group having a molecular weight of less than 300, and It is a mixture containing a nurate type polyisocyanate (B) (hereinafter also referred to as component (B)).
- A urethane reaction product
- B nurate type polyisocyanate
- HDI used in the polyisocyanate composition of the present invention is a kind of aliphatic diisocyanate monomer (hereinafter also simply referred to as aliphatic diisocyanate), and is a diisocyanate compound that does not contain a benzene ring in its structure.
- Aliphatic diisocyanates include HDI, tetramethylene diisocyanate, pentamethylene diisocyanate, 2-methyl-pentane-1,5-diisocyanate, 3-methyl-pentane-1,5-diisocyanate, lysine diisocyanate, trioxyethylene diisocyanate, etc. Can be mentioned.
- HDI may be used alone or in combination with other aliphatic diisocyanates, or in combination with alicyclic diisocyanates represented by isophorone diisocyanate or norbornene diisocyanate.
- Component (A) which is one of the constituent components of the polyisocyanate composition of the present invention, is obtained by urethanization of the hydroxyl group of a diol and the isocyanate group of an aliphatic diisocyanate. It is. In some cases, the isocyanate group of the component (A) and the hydroxyl group of the diol further form a urethane bond to be polymerized.
- R 1 represents a hexamethylene group.
- R 2 represents a diol residue containing a cyclic group.
- the diol having a cyclic group used for the component (A) of the present invention has a molecular weight of less than 300.
- a compound having a cyclic group such as a cyclohexyl ring, a benzene ring, or a naphthalene ring in the molecular skeleton is preferable.
- Examples of such a compound having a cyclic group include cyclohexanediol, cyclohexanedimethanol, bis ( ⁇ -hydroxyethyl) benzene, naphthalenediethanol, etc.
- Examples of compounds containing a plurality of cyclic structures include 2,2 ′ -Bis (4-hydroxycyclohexyl) propane, isosorbide and the like.
- an alicyclic group is preferable from the surface of a weather resistance, and what contains multiple cyclic structures is more preferable.
- the component (B) which is a constituent component of the polyisocyanate composition of the present invention includes an isocyanurate group in which diisocyanate monomers are cyclopolymerized with each other, and is represented by the following formula. This may be a polyisocyanate having an isocyanurate group that is trimerized, pentamerized, or polymerized.
- R 1 represents a hexamethylene group.
- a reaction product (C) of a diol having a cyclic group having a molecular weight of less than 300 and HDI hereinafter also referred to as component (C)
- Component (C) is represented by the following formula.
- R 1 represents a hexamethylene group.
- R 2 represents a diol residue having a cyclic group.
- the component (C) when the component (C) is included in addition to the component (A) and the component (B) (second embodiment), the component (A) and the component ( The molar ratio of B) is preferably in the range of 8/92 to 92/8, and more preferably in the range of 25/75 to 55/45. If the reaction product (A) is less than the lower limit, the compatibility with the resin may be impaired, and if it exceeds the upper limit, sufficient coating strength may not be exhibited.
- components (C) are contained in a polyisocyanate composition.
- a polyisocyanate composition By containing 2% by mass or more, it is possible to obtain the effect of increasing the hardness and the viscosity, and the effect of further improving the compatibility with other resins.
- the inclusion of component (C) can be expected to increase the compatibility between component (A) and component (B), and the range of composition ratio selection between component (A) and component (B) can be expanded. .
- the content of component (C) can be determined by gel permeation chromatography (hereinafter referred to as GPC) measurement.
- GPC gel permeation chromatography
- the component (C) is indicated by a peak having a peak top near the retention time of 20.3 minutes.
- the area ratio of the peak in the whole is calculated, and this is used as the content of the component (C).
- the GPC measurement conditions are those described later.
- the PA% obtained by the GPC measurement of the present invention is treated equally as mass% because the difference in specific gravity of the composition contained in each peak is small.
- an organic diisocyanate and a diol containing a cyclic group are charged in an amount in which the isocyanate group is excessive with respect to the hydroxyl group, and urethanized in the presence or absence of an organic solvent to produce an isocyanate group-terminated prepolymer.
- Polymer I is produced.
- the presence or absence of completion is judged by the isocyanate group content and the refractive index increase value by the neutralization titration method.
- the reaction proceeds under nitrogen gas or a dry air stream.
- the molecular weight is less than the lower limit, the molecular weight of the urethane reaction product becomes high, and handling may be deteriorated by increasing the viscosity.
- the upper limit is exceeded, the product yield decreases, which may lead to a decrease in productivity.
- the reaction temperature of the urethanization reaction of the present invention is preferably 20 to 150 ° C., more preferably 60 to 130 ° C.
- a known urethanization catalyst can be used.
- organic metal compounds such as dibutyltin diacetate, dibutyltin dilaurate and dioctyltin dilaurate, organic amines such as triethylenediamine and triethylamine, and salts thereof Etc. These catalysts can be used alone or in combination of two or more.
- the reaction time of the urethanization reaction varies depending on the presence or absence of the catalyst, the type, and the temperature, but is generally within 10 hours, preferably 1 to 5 hours is sufficient.
- a method of performing the reaction without including an organic solvent or a method of performing the reaction in the presence of the organic solvent is appropriately selected.
- an organic solvent that does not affect the reaction can be used.
- the organic solvent include aliphatic hydrocarbons such as octane, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, ketones such as methyl isobutyl ketone and cyclohexanone, esters such as butyl acetate and isobutyl acetate, ethylene glycol Ethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methyl-3-methoxybutyl acetate, glycol ether esters such as ethyl-3-ethoxypropionate, ethers such as dioxane, halogens such as methylene iodide and monochlorobenzene
- polar aprotic solvents such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, and hexa
- the organic solvent used in the reaction is removed simultaneously with the removal of the free organic diisocyanate in the next second step.
- free unreacted organic diisocyanate present in the reaction mixture is removed by thin film distillation or extraction with an organic solvent at 120 to 150 ° C. under a high vacuum of 10 to 100 Pa, for example.
- the residual unreacted organic diisocyanate residual content is adjusted to 1% by mass or less.
- the residual content rate of organic diisocyanate exceeds an upper limit, there exists a possibility of causing the generation
- the urethane reaction product (A) obtained by purification can be converted to a blocked isocyanate by using a known blocking agent for the purpose of extending the pot life or making the coating composition one component.
- a known blocking agent for the purpose of extending the pot life or making the coating composition one component.
- the blocked polyisocyanate is inactive at room temperature, but when heated, the blocking agent dissociates, and the isocyanate group is activated again, thereby causing a potential function to react with the active hydrogen group. Can be added.
- the blocking agent that can be used in the present invention is a compound having one active hydrogen in the molecule, for example, an alcohol, alkylphenol, phenol, active methylene, mercaptan, acid amide, acid imide, There are imidazole, urea, oxime, amine, imide, and pyrazole compounds.
- the number average molecular weight of the urethane reaction product obtained as described above obtained from gel permeation chromatography measurement is preferably 400 to 2000, and more preferably 500 to 1000.
- the urethane reaction product (A) obtained by a series of reactions can be mixed with the nurate polyisocyanate (B) to obtain the polyisocyanate composition of the present invention.
- a nurate type polyisocyanate (B) the commercial item containing a nurate type polyisocyanate can be used.
- Examples of such commercially available products include Coronate HX, Coronate HXR, Coronate HXLV (trade names, all manufactured by Tosoh Corporation), and the like.
- an isocyanuration catalyst is charged into HDI and isocyanuration is carried out at 50 to 150 ° C. until the desired isocyanate group content and molecular weight are obtained in the presence or absence of an organic solvent. Isocyanate group-terminated prepolymer I is produced.
- the reaction is stopped by adding a reaction terminator to the isocyanate group-terminated prepolymer I.
- the isocyanate group-terminated prepolymer I is charged with an isocyanate group-terminated prepolymer I in an amount in which the isocyanate group is excessive with respect to the hydroxyl group, and urethanated at 20 to 150 ° C. Manufacturing.
- the presence or absence of completion is judged by the isocyanate group content and the refractive index increase value by the neutralization titration method.
- reaction proceeds under nitrogen gas or a dry air stream.
- the isocyanate group-terminated prepolymer II is removed by thin film distillation or solvent extraction until the free HDI content is less than 1% by mass.
- a quaternary ammonium salt a carboxylic acid metal salt, or the like can be used as the isocyanurate-forming catalyst in the first step.
- Examples of the quaternary ammonium salt include 2-hydroxypropyltrimethylammonium octylate (DABCO TMR, manufactured by Sankyo Air Products), tetramethylammonium acetate, tetrabutyltylammonium acetate, and the like.
- Examples of carboxylic acid metal salts include zinc salts, tin salts, zirconium salts, and the like of carboxylic acids such as acetic acid, propionic acid, undecyl acid, capric acid, octylic acid, and myristic acid. Two or more kinds can be used in combination.
- the reaction terminator in the second step has a function of deactivating the catalyst.
- inorganic acids such as phosphoric acid and hydrochloric acid, organic acids having a sulfonic acid group, a sulfamic acid group, and the like, and these Known compounds such as esters and acyl halides are used.
- These reaction terminators can be used alone or in combination of two or more.
- the addition time is preferably a rapid addition after completion of the reaction.
- the addition amount of the reaction terminator varies depending on the kind of the reaction terminator and the catalyst used, but is preferably 0.5 to 10 equivalents, particularly preferably 0.8 to 5.0 equivalents of the catalyst.
- the storage stability of the obtained polyisocyanate composition tends to be lowered, and when it is too much, the polyisocyanate composition may be colored.
- reaction temperature of the urethanization reaction of the present invention is preferably 20 to 150 ° C., more preferably 60 to 130 ° C.
- a known urethanization catalyst can be used.
- the reaction time of the urethanization reaction varies depending on the presence or absence of the catalyst, the type, and the temperature, but is generally within 10 hours, preferably 1 to 5 hours is sufficient.
- a method for carrying out the reaction without containing an organic solvent or a method for carrying out the reaction in the presence of the organic solvent is appropriately selected.
- an organic solvent that does not affect the reaction.
- the organic solvent include aliphatic hydrocarbons such as octane, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, ketones such as methyl isobutyl ketone and cyclohexanone, esters such as butyl acetate and isobutyl acetate, ethylene glycol Ethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methyl-3-methoxybutyl acetate, glycol ether esters such as ethyl-3-ethoxypropionate, ethers such as dioxane, halogens such as methylene iodide and monochlorobenzene
- polar aprotic solvents such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, and
- the organic solvent used in the reaction is removed simultaneously with the removal of free HDI in the fourth step.
- the isocyanate group-terminated prepolymer II is removed by thin film distillation or solvent extraction until the free HDI content is less than 1% by mass.
- the fourth step for example, residual unreacted HDI present in the reaction mixture by removal by thin film distillation or extraction with an organic solvent at 120 to 150 ° C. under a high vacuum of 10 to 100 Pa.
- the rate is 1% by mass or less.
- the residual content rate of HDI exceeds an upper limit, there exists a possibility of causing the generation
- the polyisocyanate composition obtained by refining can be made into a blocked isocyanate using a known blocking agent for the purpose of extending the pot life or making the coating composition one component.
- a known blocking agent for the purpose of extending the pot life or making the coating composition one component.
- the blocked polyisocyanate is inactive at room temperature, but when heated, the blocking agent dissociates, and the isocyanate group is activated again, thereby causing a potential function to react with the active hydrogen group. Can be added.
- the blocking agent that can be used in the present invention is a compound having one active hydrogen in the molecule, for example, an alcohol, alkylphenol, phenol, active methylene, mercaptan, acid amide, acid imide, There are imidazole, urea, oxime, amine, imide, and pyrazole compounds.
- the polyurethane resin composition of the present invention can be obtained by blending the polyol with the polyisocyanate composition obtained by the production method of the first embodiment and the second embodiment described above.
- the polyol used in the polyurethane resin composition of the present invention is not particularly limited, but is a compound containing active hydrogen as a reactive group with an isocyanate group, such as a polyester polyol, a polyether polyol, Polycarbonate polyols, polyolefin polyols, acrylic polyols, silicone polyols, castor oil-based polyols, fluorine-based polyols, transesterification products of two or more polyols, and hydroxyl-terminated prepolymers that have undergone a urethanization reaction with polyisocyanates are preferably used. These can also be used as one kind or a mixture of two or more kinds.
- polyester polyol examples include phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, succinic acid, tartaric acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, glutaconic acid, azelaic acid, sebacic acid 1,4-cyclohexyldicarboxylic acid, ⁇ -hydromuconic acid, ⁇ -hydromuconic acid, ⁇ -butyl- ⁇ -ethylglutaric acid, ⁇ , ⁇ -diethylsuccinic acid, maleic acid, fumaric acid, and other dicarboxylic acids or these
- One or more anhydrides such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-
- lactone polyester polyols obtained from ring-opening polymerization of cyclic ester (so-called lactone) monomers such as ⁇ -caprolactone, alkyl-substituted ⁇ -caprolactone, ⁇ -valerolactone, and alkyl-substituted ⁇ -valerolactone.
- lactone cyclic ester
- a polyester-amide polyol obtained by replacing a part of the low molecular polyol with a low molecular polyamine such as hexamethylene diamine, isophorone diamine or monoethanolamine or a low molecular amino alcohol can also be used.
- polyether polyol examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentane.
- Diol 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol, neopentyl Low in glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, bisphenol A, bis ( ⁇ -hydroxyethyl) benzene, xylylene glycol, glycerol, trimethylolpropane, pentaerythritol, etc.
- Molecular polio Or compounds having 2 or more, preferably 2 to 3, active hydrogen groups such as low molecular weight polyamines such as ethylenediamine, propylenediamine, toluenediamine, metaphenylenediamine, diphenylmethanediamine, xylylenediamine, etc.
- alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, or the like
- alkyl glycidyl ethers such as methyl glycidyl ether
- aryl glycidyl ethers such as phenyl glycidyl ether
- Polycarbonate polyol examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol.
- low molecular polyols such as rupropane and pentaerythritol
- dialkyl carbonates such as dimethyl carbonate and diethyl carbonate
- alkylene carbonates such as ethylene carbonate and propylene carbonate
- diphenyl carbonate dinaphthy
- a polyol obtained by a transesterification reaction between a polycarbonate polyol, a polyester polyol, and a low molecular weight polyol can be suitably used.
- polyolefin polyol examples include polybutadiene having two or more hydroxyl groups, hydrogenated polybutadiene, polyisoprene, and hydrogenated polyisoprene.
- acrylic polyol examples include acrylic acid ester and / or methacrylic acid ester (hereinafter referred to as (meth) acrylic acid ester), acrylic acid hydroxy compound and / or methacrylic acid having at least one hydroxyl group in the molecule that can be a reaction point.
- acrylic acid ester and / or methacrylic acid ester examples include acrylic acid hydroxy compound and / or methacrylic acid having at least one hydroxyl group in the molecule that can be a reaction point.
- acrylic acid ester examples include acrylic acid ester and / or methacrylic acid ester
- acrylic acid hydroxy compound examples of the acrylic acid hydroxy compound having at least one hydroxyl group in the molecule that can be a reaction point.
- examples thereof include those obtained by copolymerizing an acrylic monomer using a thermal compound, a light energy such as an ultraviolet ray or an electron beam, and the like with a hydroxy compound (hereinafter referred to as a (meth) acrylic acid hydroxy compound) and a poly
- Examples of (meth) acrylic acid esters include alkyl esters having 1 to 20 carbon atoms.
- Examples of such (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, (meth Alkyl (meth) acrylates such as hexyl acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate Esters; esters of (meth) acrylic acid such as cyclohexyl (meth) acrylate with alicyclic alcohols; (meth) acrylic acid aryl esters such as phenyl (meth) acrylate
- the (meth) acrylic acid hydroxy compound has, for example, at least one hydroxyl group in the molecule which can be a reaction point with polyisocyanate. Specifically, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate And hydroxy acrylate compounds such as 4-hydroxybutyl acrylate, 3-hydroxy-2,2-dimethylpropyl acrylate, and pentaerythritol triacrylate.
- hydroxy methacrylate compounds such as 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, 3-hydroxy-2,2-dimethylpropyl methacrylate, and pentaerythritol trimethacrylate are exemplified.
- These (meth) acrylic acid hydroxy compounds may be used alone or in combination of two or more.
- silicone polyol examples include a vinyl group-containing silicone compound obtained by polymerizing ⁇ -methacryloxypropyltrimethoxysilane and the like, and ⁇ , ⁇ -dihydroxypolydimethylsiloxane having at least one terminal hydroxyl group in the molecule, ⁇ , ⁇ - Mention may be made of polysiloxanes such as dihydroxypolydiphenylsiloxane.
- Castor oil-based polyol examples include linear or branched polyester polyols obtained by a reaction between a castor oil fatty acid and a polyol. Dehydrated castor oil, partially dehydrated castor oil partially dehydrated, and hydrogenated castor oil added with hydrogen can also be used.
- a fluorine-type polyol the linear or branched polyol obtained by the copolymerization reaction of a fluorine-containing monomer and the monomer which has a hydroxyl group as an essential component can be mentioned, for example.
- the fluorine-containing monomer is preferably a fluoroolefin, for example, tetrafluoroethylene, chlorotrifluoroethylene, trichlorofluoroethylene, hexafluoropropylene, vinylidene fluoride, vinyl fluoride, trifluoromethyl trifluoroethylene. Is mentioned.
- Examples of the monomer having a hydroxyl group include hydroxyalkyl vinyl ethers such as hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether and cyclohexanediol monovinyl ether, hydroxyalkyl allyl ethers such as 2-hydroxyethyl allyl ether, and vinyl hydroxyalkyl crotonates.
- Examples thereof include monomers having a hydroxyl group, such as hydroxyl group-containing vinyl carboxylate or allyl ester.
- the polyol preferably has an active hydrogen group number (average functional group number) in one molecule of 1.9 to 6.0.
- the number of active hydrogen groups is less than the lower limit, the physical properties of the coating film may be reduced.
- an upper limit there exists a possibility that adhesiveness may fall.
- the number average molecular weight of the polyol is preferably in the range of 750 to 50,000. If it is less than the lower limit, the adhesion may be reduced, and if it exceeds the upper limit, the solubility in a low-polar organic solvent may be lowered or the adhesion may be lowered.
- the polyurethane resin composition of the present invention can be suitably used as a coating composition.
- organic solvent used as a diluent solvent examples include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, esters such as ethyl acetate, butyl acetate, and cellosolve, alcohols such as butanol and isopropyl alcohol, toluene, xylene, and the like. From the group consisting of hydrocarbons such as cyclohexane, mineral spirits, naphtha and the like, it can be appropriately selected according to the purpose and application. These solvents may be used alone or in combination of two or more.
- the coating composition can use a known urethanization catalyst as appropriate in consideration of pot life, curing conditions, working conditions, and the like.
- a known urethanization catalyst as appropriate in consideration of pot life, curing conditions, working conditions, and the like.
- organic metal compounds such as dibutyltin diacetate, dibutyltin dilaurate and dioctyltin dilaurate, organic amines such as triethylenediamine and triethylamine, and salts thereof are selected and used.
- These catalysts can be used alone or in combination of two or more.
- the curing conditions of the coating composition are not particularly limited, but the curing temperature is -5 to 120 ° C., the humidity is 10 to 95% RH, and the curing time is 0.5 to 168 hours. preferable.
- the coating composition obtained according to the present invention may contain, for example, an antioxidant such as 2,6-di-tert-butyl-4-methylphenol, an ultraviolet absorber, a pigment, a dye, a solvent, Additives such as a flame retardant, a hydrolysis inhibitor, a lubricant, a plasticizer, a filler, an antistatic agent, a dispersant, a catalyst, a storage stabilizer, a surfactant, and a leveling agent can be appropriately blended.
- an antioxidant such as 2,6-di-tert-butyl-4-methylphenol
- an ultraviolet absorber such as 2,6-di-tert-butyl-4-methylphenol
- a pigment such as 2,6-di-tert-butyl-4-methylphenol
- Additives such as a flame retardant, a hydrolysis inhibitor, a lubricant, a plasticizer, a filler, an antistatic agent, a dispersant, a catalyst, a storage stabilizer, a sur
- the coating composition obtained by the present invention is applied onto the surface of the adherend by a known method such as spraying, brushing, dipping, or coater to form a coating film.
- the adherend is not particularly limited, and is stainless steel, phosphated steel, zinc steel, iron, copper, aluminum, brass, glass, slate, acrylic resin, polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate resin. , Polybutylene phthalate resin, polystyrene resin, AS resin, ABS resin, polycarbonate-ABS resin, 6-nylon resin, 6,6-nylon resin, MXD6 nylon resin, polyvinyl chloride resin, polyvinyl alcohol resin, polyurethane resin, phenol resin , Melamine resin, polyacetal resin, chlorinated polyolefin resin, polyolefin resin, polyamide resin, polyether ether ketone resin, polyphenylene sulfide resin, NBR resin, chloroprene resin, SBR resin, SE An adherend formed of a material such as S resin, an olefin resin such as polyethylene or polypropylene subjected to corona discharge treatment or other surface treatment, or a coating layer that can
- the film thickness of the coating film formed on the adherend surface layer is excellent in recoatability and durability, the film thickness of at least 10 ⁇ m may be formed on the adherend.
- the film thickness is less than 10 ⁇ m, the durability is lowered, and there is a possibility that the coating film is torn by impact.
- the polyisocyanate composition and the coating composition of the present invention are excellent in coating film strength and substrate followability, they can be suitably used for automotive coating applications.
- the prepared two-component paint composition is defatted with methyl ethyl ketone (JIS G3141, trade name: SPCC-SB, treatment method: PF-1077, manufactured by Partec Co., Ltd.) using an applicator so as to have an arbitrary film thickness. Applied. Thereafter, heat treatment was performed in a dryer at a temperature of 60 ° C. for 1 hour, followed by curing for 7 days in an environment at a temperature of 23 ° C. and a relative humidity of 50% to obtain coating films S-1 to S-12.
- JIS G3141 trade name: SPCC-SB, treatment method: PF-1077, manufactured by Partec Co., Ltd.
- ⁇ Scratch resistance evaluation> The indentation hardness of a coating film (film thickness after drying of about 20 ⁇ m) prepared from the paint obtained by the formulation shown in Tables 4 and 5 was measured by a scratch resistance test under the following conditions. The results are shown in Tables 8 and 9. An evaluation A is good. Test equipment: Fischer scope HM2000 (Fischer Instruments) ⁇ Indenter: Vickers diamond ⁇ Test temperature: 25 °C ⁇ Scratch resistance evaluation criteria> The indentation hardness values were classified according to the following criteria.
- ⁇ Weather resistance evaluation> An accelerated weather resistance test was performed on the coating film (film thickness after drying of about 20 ⁇ m) prepared from the paints obtained with the formulations shown in Tables 6 and 7 under the following conditions.
- Test time: 576 hours ⁇ Weather resistance evaluation criteria> According to JIS Z8741, glossiness at 60 ° was measured with a gloss meter (product name: Micro-Gloss, manufactured by BYK), and gloss retention was calculated.
- Aqueous acrylic polyol product name: Bernock WE-303, manufactured by DIC
- rheology control agent product name: BYK-425, manufactured by BYK
- antifoaming agent product name: BYK-012
- BYK antifoaming agent
- DISPERBYK-192 a wetting and dispersing agent
- aluminum paste product name: Alpaste WXM5660, manufactured by Toyo Aluminum Co., Ltd.
- the prepared metallic base paint is applied to a steel plate (JIS G3141, trade name: SPCC-SB, treatment method: PF-1077, manufactured by Partec Co.) degreased with methyl ethyl ketone by spraying so that the film thickness after drying is about 30 ⁇ m. did. Thereafter, it was cured for 30 minutes in an environment of a temperature of 23 ° C. and a relative humidity of 50%, and heat-treated for 30 minutes at 60 ° C. Further, the two-component coating composition prepared in Table 4 was applied on the steel plate coated with the metallic base using an applicator, pre-dried at room temperature for 10 minutes, and then heat-treated in a dryer at 90 ° C. for 30 minutes.
- ⁇ Synthesis 2 of Polyisocyanate Composition (Second Embodiment)> ⁇ Example 13> 961 g of HDI (manufactured by Tosoh Corporation, NCO content: 49.9% by mass) was charged into a four-necked flask having a capacity of 1 liter equipped with a stirrer, a thermometer, a cooling pipe, and a nitrogen gas introduction pipe, and this was brought to 60 ° C. After heating, 1 g of trimethyloctylammonium methyl carbonate (diethyl 2-ethylhexanol 10% diluted) as an isocyanurate conversion catalyst was added and reacted at 60 ° C.
- HDI manufactured by Tosoh Corporation, NCO content: 49.9% by mass
- Example 14 to 15 Polyisocyanate compositions P-14 and P-15 were obtained in the same manner as in Example 13 with the preparation shown in Table 10.
- the reaction product (C) contained in each of them was about 10 PA% for P-14 and about 4 PA% for P-15.
- HDI polyisocyanurate (trade name: Coronate HK, manufactured by Tosoh Corporation, hereinafter C-HK) was used.
- IPDI polyisocyanurate (trade name: VESTANAT T1890 / 100, manufactured by EVONIK) was used.
- the coating compositions (S-13 to S-21) were prepared so as to be% (unit of blending amount is g).
- Acrylic polyol (trade name: ACRYDIC 49-394-IM, hydroxyl value: 25 mg KOH / g, solid content: 50%, manufactured by DIC) is used as the polyol, and butyl acetate is used as the organic solvent. did.
- the prepared coating composition was applied to a steel plate (JIS G3141, trade name: SPCC-SB, treatment method: PF-1077, manufactured by Partec Co., Ltd.) using an applicator so that the film thickness after drying was about 20 ⁇ m. Then, after drying for 1 hour in an environment at a temperature of 23 ° C. and a relative humidity of 50%, heat treatment is performed in a dryer at 80 ° C. for 12 hours, followed by an environment of 23 ° C. and a relative humidity of 50% for one day or more. Curing was performed to obtain coating films S-13 to S-21.
- a steel plate JIS G3141, trade name: SPCC-SB, treatment method: PF-1077, manufactured by Partec Co., Ltd.
- ⁇ Coating strength evaluation> A scratch-resistant test was conducted on the coating film (film thickness after drying of about 20 ⁇ m) prepared from the paint obtained in the formulation shown in Table 12 under the following conditions in accordance with ISO 14577. The results are shown in Table 13. Evaluations A and B are good. Test equipment: Fischer scope HM2000 (Fischer Instruments) ⁇ Indenter: Vickers diamond ⁇ Test load: 5 mN Test temperature: 25 ° C ⁇ Coating strength evaluation criteria> ⁇ 80 N / mm 2 or more: (Evaluation) A ⁇ 60 N / mm 2 or more to less than 80 N / mm 2 : (Evaluation) B -Less than 60 N / mm ⁇ 2 >: (Evaluation) C.
- ⁇ Substrate followability evaluation> A coating film (about 20 ⁇ m film thickness after drying) prepared from the paint obtained by the formulation shown in Table 12 was subjected to a substrate follow-up test by weight drop resistance according to JIS K5600-5-3. The results are shown in Table 13. Evaluations A and B are good.
- ⁇ Base material follow-up evaluation criteria> ⁇ 100cm: (Evaluation) A ⁇ 90 cm to less than 100 cm: (Evaluation) B -Less than 90 cm: (Evaluation) C.
- Aqueous acrylic polyol product name: Bernock WE-303, manufactured by DIC
- rheology control agent product name: BYK-425, manufactured by BYK
- antifoaming agent product name: BYK-012
- BYK antifoaming agent
- DISPERBYK-192 a wetting and dispersing agent
- aluminum paste product name: Alpaste WXM5660, manufactured by Toyo Aluminum Co., Ltd.
- the prepared metallic base paint was applied to a steel plate (JIS G3141, trade name: SPCC-SB, treatment method: PF-1077, manufactured by Partec Co., Ltd.) by spraying so that the film thickness after drying was about 20 ⁇ m. Thereafter, it was cured for 30 minutes in an environment of a temperature of 23 ° C. and a relative humidity of 50%, and heat-treated for 30 minutes at 60 ° C. Further, the coating composition prepared in Table 4 was applied on the steel plate coated with the metallic base coating using an applicator, pre-dried at room temperature for 10 minutes, and then heat-treated in a dryer at 90 ° C. for 30 minutes.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
The present invention addresses the problem of providing: a polyisocyanate composition that enables the achievement of a coating film which is capable of exhibiting excellent coating film strength such as scratch resistance even in cases where a commonly used acrylic polyol is used, and which has excellent weather resistance and excellent adhesion; and a coating composition which uses this polyisocyanate composition as a curing agent. The problem is solved by a polyisocyanate composition which is characterized by containing (A) an urethane reaction product of hexamethylene diisocyanate and a diol that has a cyclic group and a molecular weight of 300 or less and (B) a nurated polyisocyanate which is obtained by nurating hexamethylene diisocyanate at an (A)/(B) ratio within the range of from 10/90 to 60/40 (mass ratio).
Description
本発明は、ポリイソシアネート組成物、およびこれを硬化剤とした塗料組成物に関する。
The present invention relates to a polyisocyanate composition and a coating composition using this as a curing agent.
従来、1,6-ヘキサメチレンジイソアネート(以下HDIとも言う。)などの脂肪族イソシアネートから誘導される無黄変ポリイソシアネートは耐候性に優れることから、塗料・塗装及び接着剤分野等においてしばしば用いられている。その中でもイソシアヌレート結合を含有するポリイソシアネートタイプが化学的、熱的安定性が高く、特に耐候性、耐熱性、耐久性に優れているため、その用途に応じて幅広く使用されており、一層の用途展開が期待されている。
Conventionally, non-yellowing polyisocyanates derived from aliphatic isocyanates such as 1,6-hexamethylene diisocyanate (hereinafter also referred to as HDI) are excellent in weather resistance, and thus are frequently used in the paint / coating and adhesive fields. It is used. Among them, the polyisocyanate type containing an isocyanurate bond has high chemical and thermal stability, and is particularly excellent in weather resistance, heat resistance, and durability. Therefore, it is widely used depending on its application. Application expansion is expected.
近年では、携帯電話筐体、パソコン筐体、オーディオ機器等のプラスチック製品、タッチパネル、液晶画面等の電子材料部品、冷蔵庫、電子レンジ、洗濯機等の家電製品、家具等の木工製品、ゴルフクラブ、テニスラケット等のスポーツ用品、床、シンク、ドアノブ等の建築内装、自動車の内外装など、様々な分野で、それら表面の更なる高強度化が求められている。
In recent years, plastic products such as mobile phone cases, personal computer cases, audio equipment, electronic material parts such as touch panels and liquid crystal screens, home appliances such as refrigerators, microwave ovens and washing machines, woodworking products such as furniture, golf clubs, In various fields, such as sports equipment such as tennis rackets, architectural interiors such as floors, sinks and doorknobs, and interior and exterior of automobiles, there is a demand for further enhancement of the surfaces.
上記要求に対し、二液硬化型ポリウレタン系塗料を用いて自己修復性能を有する塗膜とし耐傷性を付与する方法(特許文献1~3)や、架橋密度を高くすることによって表面硬度を大きくした塗膜を形成する方法(特許文献4)が知られている。特許文献1では、特定のポリエステルポリオールと、ポリイソシアネート及び錫系ウレタン化触媒を必須成分とする塗料組成物が提案されている。特許文献2では、特定のイソシアネート基当量をもつポリイソシアネート化合物と、特定範囲の平均Tg、平均官能基数、数平均分子量をもつポリエステルポリオールとを必須成分として含有する樹脂組成物により、さらに靭性を付与することが提案されている。特許文献3では、特定のポリエステルポリオールと、特定のジオール化合物及び有機ジイソシアネートを反応させて得られる、イソシアヌレート基を含有しないアロファネート変性ポリイソシアネートを主成分とする硬化剤からなる塗料組成物が提案されている。しかしながら、これら特許文献1~3の方法は、特定のポリオールを使用する必要があるため、耐候性の求められる分野で一般的に使用されるアクリルポリオール等を使用した場合には、上記提案を適用しても耐傷性に対し不十分な場合が多く、改良が求められていた。一方、特許文献4では、イソホロンジイソシアネート(以下、IPDIという)から誘導される特定のポリイソシアネートを用いることで高強度化を達成しており、ポリオールは限定されていないが、高強度と相反する性能である基材への追従性を損ないやすく、改良が求められていた。
In response to the above requirements, the surface hardness was increased by using a two-component curable polyurethane coating to provide a coating film having self-healing performance and imparting scratch resistance (Patent Documents 1 to 3) or by increasing the crosslinking density. A method for forming a coating film (Patent Document 4) is known. Patent Document 1 proposes a coating composition containing a specific polyester polyol, a polyisocyanate, and a tin-based urethanization catalyst as essential components. In Patent Document 2, toughness is further imparted by a resin composition containing, as essential components, a polyisocyanate compound having a specific isocyanate group equivalent and a polyester polyol having a specific range of average Tg, average number of functional groups, and number average molecular weight. It has been proposed to do. Patent Document 3 proposes a coating composition comprising a curing agent mainly composed of an allophanate-modified polyisocyanate containing no isocyanurate group, obtained by reacting a specific polyester polyol with a specific diol compound and an organic diisocyanate. ing. However, since the methods of Patent Documents 1 to 3 require the use of specific polyols, the above proposal is applied when acrylic polyols or the like generally used in the field where weather resistance is required. Even so, the scratch resistance is often insufficient, and improvements have been demanded. On the other hand, Patent Document 4 achieves high strength by using a specific polyisocyanate derived from isophorone diisocyanate (hereinafter referred to as IPDI), and the polyol is not limited, but has a performance contrary to high strength. Therefore, it is easy to impair the followability to the base material, and improvement has been demanded.
本発明は以上のような事情に基づいてなされたものであり、第一の課題として、一般的なアクリルポリオールを用いた場合でも耐傷性等、優れた塗膜強度を発現でき、また耐候性・密着性に優れる塗膜を得ることができるポリイソシアネート組成物、及びこれを硬化剤とした塗料組成物を提供することにある。第二の課題として、一般的なアクリルポリオールを用いた場合でも優れた塗膜強度を発現でき、基材追従性にも優れる塗膜を得ることができるポリイソシアネート組成物、及びこれを硬化剤とした塗料組成物を提供することにある。
The present invention has been made based on the circumstances as described above, and as a first problem, even when a general acrylic polyol is used, it is possible to express excellent coating strength such as scratch resistance, and weather resistance / It is providing the polyisocyanate composition which can obtain the coating film which is excellent in adhesiveness, and the coating composition which used this as a hardening | curing agent. As a second problem, even when a general acrylic polyol is used, a polyisocyanate composition capable of expressing an excellent coating film strength and capable of obtaining a coating film excellent in substrate followability, and this as a curing agent. It is in providing the coating composition prepared.
本発明者らは、検討を重ねた結果、特定のジオールとHDIとをウレタン化反応させて得られるポリイソシアネート、及びヌレート型ポリイソシアネートを含むポリイソシアネート組成物を用いることにより、前記課題が解決できることを見出し、本発明に到達した。
As a result of repeated studies, the present inventors can solve the above problems by using a polyisocyanate composition containing a polyisocyanate obtained by urethanation of a specific diol and HDI and a nurate type polyisocyanate. And reached the present invention.
すなわち本発明は、以下の実施形態を含むものである。
That is, the present invention includes the following embodiments.
[1]HDIと、分子量が300以下の環状基を有するジオールとのウレタン反応生成物(A)と、HDIをヌレート化したヌレート型ポリイソシアネート(B)とを、(A)/(B)=10/90~60/40(質量比)の範囲で含むことを特徴とする、ポリイソシアネート組成物。
[1] A urethane reaction product (A) of HDI and a diol having a cyclic group having a molecular weight of 300 or less, and a nurate type polyisocyanate (B) obtained by nurating HDI, (A) / (B) = A polyisocyanate composition comprising 10/90 to 60/40 (mass ratio).
[2]HDIのヌレート型ポリイソシアネート(B1)と分子量が300未満の環状基を有するジオールとHDIとの反応生成物(C)をさらに含み、(A)と(B)のmol比が8/92~92/8の範囲であることを特徴とする、上記[1]に記載のポリイソシアネート組成物。
[2] It further includes a reaction product (C) of HDI nurate polyisocyanate (B1), a diol having a cyclic group having a molecular weight of less than 300 and HDI, and the molar ratio of (A) to (B) is 8 / The polyisocyanate composition according to the above [1], which is in the range of 92 to 92/8.
[3]前記反応生成物(C)が、ポリイソシアネート組成物中に2質量パーセント以上含まれることを特徴とする、上記[2]に記載のポリイソシアネート組成物。
[3] The polyisocyanate composition as described in [2] above, wherein the reaction product (C) is contained in the polyisocyanate composition in an amount of 2% by mass or more.
[4]環状基を有するジオールが、シクロアルキル環、ベンゼン環、および複素環からなる群より選ばれる少なくとも一種を有するジオールであることを特徴とする上記[1]乃至[3]のいずれかに記載のポリイソシアネート組成物。
[4] The diol having a cyclic group is a diol having at least one selected from the group consisting of a cycloalkyl ring, a benzene ring, and a heterocyclic ring, according to any one of the above [1] to [3] The polyisocyanate composition described.
[5]環状基を有するジオールが、環状基を2つ以上有するジオールであることを特徴とする、上記[1]乃至[4]のいずれかに記載のポリイソシアネート組成物。
[5] The polyisocyanate composition according to any one of [1] to [4], wherein the diol having a cyclic group is a diol having two or more cyclic groups.
[6]上記[1]乃至[5]のいずれかに記載のポリイソシアネート組成物とポリオールとを含むポリウレタン樹脂組成物。
[6] A polyurethane resin composition comprising the polyisocyanate composition according to any one of [1] to [5] and a polyol.
[7]上記[6]に記載のポリウレタン樹脂組成物を含む塗料組成物。
[7] A coating composition containing the polyurethane resin composition according to [6] above.
[8]上記[7]に記載の塗料組成物から形成された塗膜。
[8] A coating film formed from the coating composition according to [7] above.
本発明によれば、一般的なアクリルポリオールを用いた場合でも耐傷性等、優れた塗膜強度を発現し、また耐候性・密着性に優れる塗膜を得ることができるポリイソシアネート組成物、及びこれを硬化剤とした塗料組成物を得ることができる。また、一般的なアクリルポリオールを用いた場合でも優れた塗膜強度を発現でき、基材追従性にも優れる塗膜を得ることができるポリイソシアネート組成物、及びこれを硬化剤とした塗料組成物を得ることができる。
According to the present invention, even when a general acrylic polyol is used, a polyisocyanate composition capable of expressing excellent coating strength such as scratch resistance, and obtaining a coating having excellent weather resistance and adhesion, and A coating composition using this as a curing agent can be obtained. In addition, a polyisocyanate composition capable of exhibiting excellent coating film strength even when a general acrylic polyol is used and capable of obtaining a coating film excellent in substrate followability, and a coating composition using this as a curing agent Can be obtained.
以下に、本発明について詳しく説明する。
Hereinafter, the present invention will be described in detail.
本発明においては、第一の課題を解決する実施形態を第一の実施形態といい、第二の課題を解決する実施形態を第二の実施形態という。
In the present invention, an embodiment that solves the first problem is referred to as a first embodiment, and an embodiment that solves the second problem is referred to as a second embodiment.
本発明の第一の実施形態にかかるポリイソシアネート組成物は、HDIと分子量が300未満の環状基を有するジオールとのウレタン反応生成物(A)(以下、成分(A)とも言う。)、及びヌレート型ポリイソシアネート(B)(以下、成分(B)とも言う。)を含む混合物である。
The polyisocyanate composition according to the first embodiment of the present invention includes a urethane reaction product (A) (hereinafter also referred to as component (A)) of HDI and a diol having a cyclic group having a molecular weight of less than 300, and It is a mixture containing a nurate type polyisocyanate (B) (hereinafter also referred to as component (B)).
本発明のポリイソシアネート組成物に用いるHDIは、脂肪族ジイソシアネートモノマー(以下、単に脂肪族ジイソシアネートとも言う。)の一種であり、その構造中にベンゼン環を含まないジイソシアネート化合物である。脂肪族ジイソシアネートとしては、HDIの他、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、2-メチル-ペンタン-1,5-ジイソシアネート、3-メチル-ペンタン-1,5-ジイソシアネート、リジンジイソシアネート、トリオキシエチレンジイソシアネート等を挙げることができる。HDIは単独で使用または他の脂肪族ジイソシアネートと併用してもよく、イソホロンジイソシアネートやノルボルネンジイソシアネートに代表される脂環族ジイソシアネートと併用してもよい。
HDI used in the polyisocyanate composition of the present invention is a kind of aliphatic diisocyanate monomer (hereinafter also simply referred to as aliphatic diisocyanate), and is a diisocyanate compound that does not contain a benzene ring in its structure. Aliphatic diisocyanates include HDI, tetramethylene diisocyanate, pentamethylene diisocyanate, 2-methyl-pentane-1,5-diisocyanate, 3-methyl-pentane-1,5-diisocyanate, lysine diisocyanate, trioxyethylene diisocyanate, etc. Can be mentioned. HDI may be used alone or in combination with other aliphatic diisocyanates, or in combination with alicyclic diisocyanates represented by isophorone diisocyanate or norbornene diisocyanate.
本発明のポリイソシアネート組成物の構成成分の1つである、成分(A)とは、ジオールのヒドロキシル基と脂肪族ジイソシアネートのイソシアネート基とがウレタン化反応して得られるもので、次式に示される。これは、成分(A)のイソシアネート基とジオールのヒドロキシル基がさらにウレタン結合を形成し高分子化する場合がある。
Component (A), which is one of the constituent components of the polyisocyanate composition of the present invention, is obtained by urethanization of the hydroxyl group of a diol and the isocyanate group of an aliphatic diisocyanate. It is. In some cases, the isocyanate group of the component (A) and the hydroxyl group of the diol further form a urethane bond to be polymerized.
[式中R1はヘキサメチレン基を表す。R2は環状基を含むジオール残基を表す。]。
[Wherein R 1 represents a hexamethylene group. R 2 represents a diol residue containing a cyclic group. ].
本発明の成分(A)に用いる環状基を有するジオールは、分子量が300未満である。また、分子骨格にシクロヘキシル環、ベンゼン環、ナフタレン環等の環状基を有する化合物が好ましい。
The diol having a cyclic group used for the component (A) of the present invention has a molecular weight of less than 300. A compound having a cyclic group such as a cyclohexyl ring, a benzene ring, or a naphthalene ring in the molecular skeleton is preferable.
このような環状基を有する化合物としては、例えばシクロヘキサンジオール、シクロヘキサンジメタノール、ビス(β-ヒドロキシエチル)ベンゼン、ナフタレンジメタノール等が挙げられ、環状構造を複数含むものとしては、例えば2,2’-ビス(4-ヒドロキシシクロヘキシル)プロパンやイソソルビド等が挙げられる。なかでも、耐候性の面から脂環族が好ましく、環状構造を複数含むものがより好ましい。
Examples of such a compound having a cyclic group include cyclohexanediol, cyclohexanedimethanol, bis (β-hydroxyethyl) benzene, naphthalenediethanol, etc. Examples of compounds containing a plurality of cyclic structures include 2,2 ′ -Bis (4-hydroxycyclohexyl) propane, isosorbide and the like. Especially, an alicyclic group is preferable from the surface of a weather resistance, and what contains multiple cyclic structures is more preferable.
本発明のポリイソシアネート組成物の構成成分である成分(B)とは、ジイソシアネートモノマー同士が環化重合したイソシアヌレート基を含むものであり、次式で示される。これは3量化または5量化、多量化したイソシアヌレート基を有するポリイソシアネートとなる場合がある。
The component (B) which is a constituent component of the polyisocyanate composition of the present invention includes an isocyanurate group in which diisocyanate monomers are cyclopolymerized with each other, and is represented by the following formula. This may be a polyisocyanate having an isocyanurate group that is trimerized, pentamerized, or polymerized.
[式中R1はヘキサメチレン基を表す。]。
[Wherein R 1 represents a hexamethylene group. ].
また、本発明のポリイソシアネート組成物中に含有する成分(A)と成分(B)の質量比は、(A)/(B)=10/90~60/40の範囲である。成分(A)が下限値未満の場合には、十分な耐傷性を発現できない恐れがあり、上限値以上の場合には、耐候性が損なわれる恐れがある。
The mass ratio of the component (A) and the component (B) contained in the polyisocyanate composition of the present invention is in the range of (A) / (B) = 10/90 to 60/40. If the component (A) is less than the lower limit, sufficient scratch resistance may not be exhibited, and if it is greater than or equal to the upper limit, the weather resistance may be impaired.
本発明の第二の実施形態においては、第一の実施形態にかかるポリイソシアネート組成物である成分(A)、および成分(B)以外に、成分(B)に含まれる三量体成分(B1)と分子量が300未満の環状基を有するジオールとHDIとの反応生成物(C)(以下成分(C)とも言う。)をさらに含むことが好ましい。成分(C)は次式で示される。
In 2nd embodiment of this invention, the trimer component (B1) contained in a component (B) other than the component (A) which is a polyisocyanate composition concerning 1st embodiment, and a component (B). ) And a reaction product (C) of a diol having a cyclic group having a molecular weight of less than 300 and HDI (hereinafter also referred to as component (C)). Component (C) is represented by the following formula.
[式中R1はヘキサメチレン基を表す。R2は環状基を有するジオール残基を表す。]。
[Wherein R 1 represents a hexamethylene group. R 2 represents a diol residue having a cyclic group. ].
本発明のポリイソシアネート組成物において、成分(A)と成分(B)以外に成分(C)を含む場合(第二の実施形態)、ポリイソシアネート組成物中に含有する成分(A)と成分(B)のmol比は、8/92~92/8の範囲であることが好ましく、25/75~55/45の範囲であることがより好ましい。反応生成物(A)が下限値未満の場合には、樹脂との相溶性が損なわれる恐れがあり、上限値を超える場合には、十分な塗膜強度を発現できない恐れがある。
In the polyisocyanate composition of the present invention, when the component (C) is included in addition to the component (A) and the component (B) (second embodiment), the component (A) and the component ( The molar ratio of B) is preferably in the range of 8/92 to 92/8, and more preferably in the range of 25/75 to 55/45. If the reaction product (A) is less than the lower limit, the compatibility with the resin may be impaired, and if it exceeds the upper limit, sufficient coating strength may not be exhibited.
また、成分(C)は、ポリイソシアネート組成物中に2質量%以上含まれることが好ましい。2質量%以上含まれることで高硬度且つ低粘度化の効果や、他樹脂との相溶性をより高める効果を得ることができる。特に成分(C)を含むことで成分(A)と成分(B)との相溶性を高める効果が期待でき、成分(A)と成分(B)との組成比選択の幅を広げることができる。
Moreover, it is preferable that 2 mass% or more of components (C) are contained in a polyisocyanate composition. By containing 2% by mass or more, it is possible to obtain the effect of increasing the hardness and the viscosity, and the effect of further improving the compatibility with other resins. In particular, the inclusion of component (C) can be expected to increase the compatibility between component (A) and component (B), and the range of composition ratio selection between component (A) and component (B) can be expanded. .
成分(C)の含有量は、ゲル浸透クロマトグラフィー(以下GPCと言う。)測定により求めることができる。図1に示す本発明のポリイソシアネート組成物の代表的なGPCクロマトグラムにおいて、成分(C)は、ピークトップがリテンションタイム20.3分付近にあるピークで示されるものであり、ポリイソシアネート組成物全体に占めるそのピークの面積割合(ピークエリア%、以下PA%と言う。)を算出し、これを成分(C)の含有量とする。GPC測定条件は後述の条件である。
The content of component (C) can be determined by gel permeation chromatography (hereinafter referred to as GPC) measurement. In the typical GPC chromatogram of the polyisocyanate composition of the present invention shown in FIG. 1, the component (C) is indicated by a peak having a peak top near the retention time of 20.3 minutes. The area ratio of the peak in the whole (peak area%, hereinafter referred to as PA%) is calculated, and this is used as the content of the component (C). The GPC measurement conditions are those described later.
なお、本発明のGPC測定にて得られるPA%は、各ピークに含まれる組成物の比重の差が小さいことから、質量%として同等に扱う。
The PA% obtained by the GPC measurement of the present invention is treated equally as mass% because the difference in specific gravity of the composition contained in each peak is small.
次に、本発明のポリイソシアネート組成物の具体的な製造方法について説明する。
Next, a specific method for producing the polyisocyanate composition of the present invention will be described.
<成分(A)、および成分(B)を含む組成物の製造方法(第一の実施形態)>
第1工程では、有機ジイソシアネートと環状基を含むジオールとを、水酸基に対してイソシアネート基が過剰になる量を仕込んで、有機溶剤の存在下または非存在下、ウレタン化反応させてイソシアネート基末端プレポリマーIを製造する。ここでウレタン化反応の目安としては、中和滴定法によるイソシアネート基含有量と屈折率上昇値により完結の有無を判断する。 <The manufacturing method (1st embodiment) of the composition containing a component (A) and a component (B)>
In the first step, an organic diisocyanate and a diol containing a cyclic group are charged in an amount in which the isocyanate group is excessive with respect to the hydroxyl group, and urethanized in the presence or absence of an organic solvent to produce an isocyanate group-terminated prepolymer. Polymer I is produced. Here, as a standard of the urethanization reaction, the presence or absence of completion is judged by the isocyanate group content and the refractive index increase value by the neutralization titration method.
第1工程では、有機ジイソシアネートと環状基を含むジオールとを、水酸基に対してイソシアネート基が過剰になる量を仕込んで、有機溶剤の存在下または非存在下、ウレタン化反応させてイソシアネート基末端プレポリマーIを製造する。ここでウレタン化反応の目安としては、中和滴定法によるイソシアネート基含有量と屈折率上昇値により完結の有無を判断する。 <The manufacturing method (1st embodiment) of the composition containing a component (A) and a component (B)>
In the first step, an organic diisocyanate and a diol containing a cyclic group are charged in an amount in which the isocyanate group is excessive with respect to the hydroxyl group, and urethanized in the presence or absence of an organic solvent to produce an isocyanate group-terminated prepolymer. Polymer I is produced. Here, as a standard of the urethanization reaction, the presence or absence of completion is judged by the isocyanate group content and the refractive index increase value by the neutralization titration method.
第1工程は、窒素ガス、若しくは、乾燥空気気流下で反応を進行させる。
In the first step, the reaction proceeds under nitrogen gas or a dry air stream.
ここで、第1工程における「イソシアネート基が過剰になる量」とは、原料仕込みの際、有機ジイソシアネートのイソシアネート基とモノオールの水酸基とのモル比が、R=イソシアネート基/水酸基で3~70になるように仕込むことが好ましく、R=5~35になるように仕込むことがさらに好ましい。下限未満の場合には、ウレタン反応生成物の分子量が高くなり、高粘度化することによりハンドリングが悪化する恐れがある。上限を超える場合には、製品収率が下がり、生産性の低下を招く恐れがある。
Here, the “amount of excess isocyanate group” in the first step means that the molar ratio of the isocyanate group of the organic diisocyanate to the hydroxyl group of the monool is 3 to 70 in terms of R = isocyanate group / hydroxyl group. It is preferable to prepare such that R = 5 to 35, and it is more preferable to prepare such that R = 5 to 35. When the molecular weight is less than the lower limit, the molecular weight of the urethane reaction product becomes high, and handling may be deteriorated by increasing the viscosity. When the upper limit is exceeded, the product yield decreases, which may lead to a decrease in productivity.
また、本発明のウレタン化反応の反応温度は、20~150℃が好ましく、60~130℃がさらに好ましい。尚、ウレタン化反応の際、公知のウレタン化触媒を用いることができ、例えばジブチル錫ジアセテート、ジブチル錫ジラウレート、ジオクチル錫ジラウレート等の有機金属化合物や、トリエチレンジアミンやトリエチルアミン等の有機アミンやその塩等を挙げることができる。これらの触媒は、単独または2種以上併用することができる。
In addition, the reaction temperature of the urethanization reaction of the present invention is preferably 20 to 150 ° C., more preferably 60 to 130 ° C. In the urethanization reaction, a known urethanization catalyst can be used. For example, organic metal compounds such as dibutyltin diacetate, dibutyltin dilaurate and dioctyltin dilaurate, organic amines such as triethylenediamine and triethylamine, and salts thereof Etc. These catalysts can be used alone or in combination of two or more.
ウレタン化反応の反応時間は、触媒の有無、種類、および温度により異なるが、一般には10時間以内、好ましくは1~5時間で十分である。
The reaction time of the urethanization reaction varies depending on the presence or absence of the catalyst, the type, and the temperature, but is generally within 10 hours, preferably 1 to 5 hours is sufficient.
また、ウレタン反応生成物の製造においては、有機溶媒等を含まずに反応を行う方法や有機溶媒の存在下で反応を行う方法が適宜選ばれる。
Moreover, in the production of the urethane reaction product, a method of performing the reaction without including an organic solvent or a method of performing the reaction in the presence of the organic solvent is appropriately selected.
有機溶媒の存在下で反応を行う場合には、反応に影響を与えない有機溶媒を用いることができる。有機溶媒としては、例えばオクタン等の脂肪族炭化水素類、シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素類、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸ブチル、酢酸イソブチル等のエステル類、エチレングリコールエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテート、エチル-3-エトキシプロピオネート等のグリコールエーテルエステル類、ジオキサン等のエーテル類、ヨウ化メチレン、モノクロロベンゼン等のハロゲン化炭化水素類、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホニルアミド等の極性非プロトン溶媒等が挙げられる。これらの溶媒は単独で、または2種以上を組み合わせて用いることができる。
When performing the reaction in the presence of an organic solvent, an organic solvent that does not affect the reaction can be used. Examples of the organic solvent include aliphatic hydrocarbons such as octane, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, ketones such as methyl isobutyl ketone and cyclohexanone, esters such as butyl acetate and isobutyl acetate, ethylene glycol Ethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methyl-3-methoxybutyl acetate, glycol ether esters such as ethyl-3-ethoxypropionate, ethers such as dioxane, halogens such as methylene iodide and monochlorobenzene And polar aprotic solvents such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, and hexamethylphosphonylamide. These solvents can be used alone or in combination of two or more.
反応で使用した有機溶媒は、次の第2工程における遊離の有機ジイソシアネートの除去時に同時に除去される。
The organic solvent used in the reaction is removed simultaneously with the removal of the free organic diisocyanate in the next second step.
第2工程の精製工程では、反応混合物中に存在している遊離の未反応の有機ジイソシアネートを、例えば、10~100Paの高真空下、120~150℃で薄膜蒸留による除去法や有機溶剤による抽出法により、遊離の未反応の有機ジイソシアネート残留含有率を1質量%以下にする。尚、有機ジイソシアネートの残留含有率が上限値を超える場合は、臭気の発生や貯蔵安定性の低下を招く恐れがある。
In the purification step of the second step, free unreacted organic diisocyanate present in the reaction mixture is removed by thin film distillation or extraction with an organic solvent at 120 to 150 ° C. under a high vacuum of 10 to 100 Pa, for example. By the method, the residual unreacted organic diisocyanate residual content is adjusted to 1% by mass or less. In addition, when the residual content rate of organic diisocyanate exceeds an upper limit, there exists a possibility of causing the generation | occurrence | production of an odor and the fall of storage stability.
精製して得られたウレタン反応生成物(A)は、ポットライフの延長や塗料組成物の一液化を目的として、公知のブロック剤を用いてブロックイソシアネートとすることも可能である。これにより、ブロック化されたポリイソシアネートは、常温時は不活性であるが、加熱することでブロック剤が解離し、再びイソシアネート基が活性化することで、活性水素基と反応する潜在的な機能を付加することができる。
The urethane reaction product (A) obtained by purification can be converted to a blocked isocyanate by using a known blocking agent for the purpose of extending the pot life or making the coating composition one component. As a result, the blocked polyisocyanate is inactive at room temperature, but when heated, the blocking agent dissociates, and the isocyanate group is activated again, thereby causing a potential function to react with the active hydrogen group. Can be added.
本発明に用いることができるブロック剤としては、活性水素を分子内に1個有する化合物であり、例えば、アルコール系、アルキルフェノール系、フェノール系、活性メチレン、メルカプタン系、酸アミド系、酸イミド系、イミダゾール系、尿素系、オキシム系、アミン系、イミド系、ピラゾール系化合物等がある。
The blocking agent that can be used in the present invention is a compound having one active hydrogen in the molecule, for example, an alcohol, alkylphenol, phenol, active methylene, mercaptan, acid amide, acid imide, There are imidazole, urea, oxime, amine, imide, and pyrazole compounds.
このようにして得られるウレタン反応生成物の、ゲルパーミエーションクロマトグラフィー測定(以下GPC測定もしくは単にGPCという)から得られる数平均分子量は、400~2000が好ましく、500~1000がさらに好ましい。
The number average molecular weight of the urethane reaction product obtained as described above obtained from gel permeation chromatography measurement (hereinafter referred to as GPC measurement or simply referred to as GPC) is preferably 400 to 2000, and more preferably 500 to 1000.
一連の反応で得られたウレタン反応生成物(A)は、ヌレート型ポリイソシアネート(B)と混合することで、本発明のポリイソシアネート組成物とすることができる。ウレタン反応生成物(A)とヌレート型ポリイソシアネート(B)の質量比は、(A)/(B)=10/90~60/40であり、30/70~50/50が好ましい。
The urethane reaction product (A) obtained by a series of reactions can be mixed with the nurate polyisocyanate (B) to obtain the polyisocyanate composition of the present invention. The mass ratio of the urethane reaction product (A) and the nurate type polyisocyanate (B) is (A) / (B) = 10/90 to 60/40, preferably 30/70 to 50/50.
なお、ヌレート型ポリイソシアネート(B)としては、ヌレート型ポリイソシアネートを含む市販品を使用することができる。このような市販品としては、例えばコロネートHX、コロネートHXR、コロネートHXLV(商品名、いずれも東ソー社製)等を挙げることができる。
In addition, as a nurate type polyisocyanate (B), the commercial item containing a nurate type polyisocyanate can be used. Examples of such commercially available products include Coronate HX, Coronate HXR, Coronate HXLV (trade names, all manufactured by Tosoh Corporation), and the like.
<成分(A)、成分(B)、および成分(C)を含む組成物の製造方法(第二の実施形態)>
本発明において成分(C)を導入する場合、以下の製造方法を用いることが好ましい。 <Method for Producing Composition Containing Component (A), Component (B), and Component (C) (Second Embodiment)>
When the component (C) is introduced in the present invention, it is preferable to use the following production method.
本発明において成分(C)を導入する場合、以下の製造方法を用いることが好ましい。 <Method for Producing Composition Containing Component (A), Component (B), and Component (C) (Second Embodiment)>
When the component (C) is introduced in the present invention, it is preferable to use the following production method.
第1工程では、HDIにイソシアヌレート化触媒を仕込み、有機溶剤の存在下または非存在下、目的とするイソシアネート基含有量、及び分子量になるまで、50~150℃にてイソシアヌレート化を行ってイソシアネート基末端プレポリマーIを製造する。
In the first step, an isocyanuration catalyst is charged into HDI and isocyanuration is carried out at 50 to 150 ° C. until the desired isocyanate group content and molecular weight are obtained in the presence or absence of an organic solvent. Isocyanate group-terminated prepolymer I is produced.
第2工程では、イソシアネート基末端プレポリマーIに反応停止剤を添加することによって、反応の停止を行う。
In the second step, the reaction is stopped by adding a reaction terminator to the isocyanate group-terminated prepolymer I.
第3工程では、イソシアネート基末端プレポリマーIに環状基を有するジオールを、水酸基に対してイソシアネート基が過剰になる量を仕込んで、20~150℃でウレタン化反応させてイソシアネート基末端プレポリマーIIを製造する。ここでウレタン化反応の目安としては、中和滴定法によるイソシアネート基含有量と屈折率上昇値により完結の有無を判断する。
In the third step, the isocyanate group-terminated prepolymer I is charged with an isocyanate group-terminated prepolymer I in an amount in which the isocyanate group is excessive with respect to the hydroxyl group, and urethanated at 20 to 150 ° C. Manufacturing. Here, as a standard of the urethanization reaction, the presence or absence of completion is judged by the isocyanate group content and the refractive index increase value by the neutralization titration method.
これら第1工程~第3工程は、窒素ガス、若しくは、乾燥空気気流下で反応を進行させる。
In these first to third steps, the reaction proceeds under nitrogen gas or a dry air stream.
第4工程では、イソシアネート基末端プレポリマーIIを薄膜蒸留又は溶剤抽出によって、遊離のHDIの含有量が1質量%未満になるまで除去する。
In the fourth step, the isocyanate group-terminated prepolymer II is removed by thin film distillation or solvent extraction until the free HDI content is less than 1% by mass.
ここで、第1工程におけるイソシアヌレート化触媒としては、4級アンモニウム塩やカルボン酸金属塩などを用いることができる。
Here, as the isocyanurate-forming catalyst in the first step, a quaternary ammonium salt, a carboxylic acid metal salt, or the like can be used.
4級アンモニウム塩としては、2-ヒドロキシプロピルトリメチルアンモニウム・オクチル酸塩(DABCO TMR、三共エアープロダクツ社製)や、テトラメチルアンモニウム・酢酸塩、テトラブチルチルアンモニウム・酢酸塩などが挙げられる。また、カルボン酸金属塩としては、例えば酢酸、プロピオン酸、ウンデシル酸、カプリン酸、オクチル酸、ミリスチル酸等のカルボン酸の亜鉛塩、スズ塩、ジルコニウム塩等が挙げられ、これらは単独で、または2種以上を組み合わせて用いることができる。
Examples of the quaternary ammonium salt include 2-hydroxypropyltrimethylammonium octylate (DABCO TMR, manufactured by Sankyo Air Products), tetramethylammonium acetate, tetrabutyltylammonium acetate, and the like. Examples of carboxylic acid metal salts include zinc salts, tin salts, zirconium salts, and the like of carboxylic acids such as acetic acid, propionic acid, undecyl acid, capric acid, octylic acid, and myristic acid. Two or more kinds can be used in combination.
第2工程における反応停止剤としては、触媒を失活させる作用があるものであり、具体的には、リン酸、塩酸等の無機酸、スルホン酸基、スルファミン酸基等を有する有機酸およびこれらのエステル類、アシルハライド等公知の化合物が使用される。これらの反応停止剤は、単独または2種以上を併用することができる。尚、添加時期は、反応終了後、速やかな添加が好ましい。
The reaction terminator in the second step has a function of deactivating the catalyst. Specifically, inorganic acids such as phosphoric acid and hydrochloric acid, organic acids having a sulfonic acid group, a sulfamic acid group, and the like, and these Known compounds such as esters and acyl halides are used. These reaction terminators can be used alone or in combination of two or more. In addition, the addition time is preferably a rapid addition after completion of the reaction.
また、反応停止剤の添加量は、反応停止剤や使用した触媒の種類によって異なるが、触媒の0.5~10当量となるのが好ましく、0.8~5.0当量が特に好ましい。反応停止剤が少ない場合には、得られるポリイソシアネート組成物の貯蔵安定性が低下しやすく、多すぎる場合はポリイソシアネート組成物が着色する場合がある。
The addition amount of the reaction terminator varies depending on the kind of the reaction terminator and the catalyst used, but is preferably 0.5 to 10 equivalents, particularly preferably 0.8 to 5.0 equivalents of the catalyst. When there are few reaction terminators, the storage stability of the obtained polyisocyanate composition tends to be lowered, and when it is too much, the polyisocyanate composition may be colored.
第3工程における「イソシアネート基が過剰になる量」とは、原料仕込みの際、有機ジイソシアネートのイソシアネート基とジオールの水酸基とのモル比が、R=イソシアネート基/水酸基で3~100になるように仕込むことが好ましく、R=5~100になるように仕込むことがさらに好ましい。下限未満の場合には、反応生成物の分子量が高くなり、高粘度化及びゲル化が生じる恐れがある。上限を超える場合には、製品収率が下がり、生産性の低下を招く恐れや、十分な塗膜強度が得られない恐れがある。
In the third step, “the amount of the isocyanate group becomes excessive” means that the molar ratio of the isocyanate group of the organic diisocyanate to the hydroxyl group of the diol is 3 to 100 in terms of R = isocyanate group / hydroxyl group when the raw materials are charged. It is preferable to charge, and it is more preferable that R = 5 to 100. If it is less than the lower limit, the molecular weight of the reaction product becomes high, and there is a possibility that high viscosity and gelation may occur. When the upper limit is exceeded, the product yield may decrease, resulting in a decrease in productivity, and a sufficient coating strength may not be obtained.
また、本発明のウレタン化反応の反応温度は、20~150℃が好ましく、60~130℃がさらに好ましい。尚、ウレタン化反応の際、公知のウレタン化触媒を用いることができる。
In addition, the reaction temperature of the urethanization reaction of the present invention is preferably 20 to 150 ° C., more preferably 60 to 130 ° C. In the urethanization reaction, a known urethanization catalyst can be used.
ウレタン化反応の反応時間は、触媒の有無、種類、および温度により異なるが、一般には10時間以内、好ましくは1~5時間で十分である。
The reaction time of the urethanization reaction varies depending on the presence or absence of the catalyst, the type, and the temperature, but is generally within 10 hours, preferably 1 to 5 hours is sufficient.
第1~第3工程においては、有機溶媒等を含まずに反応を行う方法や有機溶媒の存在下で反応を行う方法が適宜選ばれる。
In the first to third steps, a method for carrying out the reaction without containing an organic solvent or a method for carrying out the reaction in the presence of the organic solvent is appropriately selected.
有機溶媒の存在下で反応を行う場合には、反応に影響を与えない有機溶媒を用いることが好ましい。有機溶媒としては、例えばオクタン等の脂肪族炭化水素類、シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素類、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸ブチル、酢酸イソブチル等のエステル類、エチレングリコールエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテート、エチル-3-エトキシプロピオネート等のグリコールエーテルエステル類、ジオキサン等のエーテル類、ヨウ化メチレン、モノクロロベンゼン等のハロゲン化炭化水素類、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホニルアミド等の極性非プロトン溶媒等が挙げられる。これらの溶媒は単独で、または2種以上を組み合わせて用いることができる。
When conducting the reaction in the presence of an organic solvent, it is preferable to use an organic solvent that does not affect the reaction. Examples of the organic solvent include aliphatic hydrocarbons such as octane, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, ketones such as methyl isobutyl ketone and cyclohexanone, esters such as butyl acetate and isobutyl acetate, ethylene glycol Ethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methyl-3-methoxybutyl acetate, glycol ether esters such as ethyl-3-ethoxypropionate, ethers such as dioxane, halogens such as methylene iodide and monochlorobenzene And polar aprotic solvents such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, and hexamethylphosphonylamide. These solvents can be used alone or in combination of two or more.
反応で使用した有機溶媒は、第4工程における遊離のHDIの除去時に同時に除去される。
The organic solvent used in the reaction is removed simultaneously with the removal of free HDI in the fourth step.
第4工程の精製工程では、イソシアネート基末端プレポリマーIIを薄膜蒸留又は溶剤抽出によって、遊離のHDIの含有量を1質量%未満になるまで除去する。
In the purification step of the fourth step, the isocyanate group-terminated prepolymer II is removed by thin film distillation or solvent extraction until the free HDI content is less than 1% by mass.
第4工程では、例えば、10~100Paの高真空下、120~150℃で薄膜蒸留による除去法や有機溶剤による抽出法により、反応混合物中に存在している遊離の未反応のHDIの残留含有率を1質量%以下にする。尚、HDIの残留含有率が上限値を超える場合は、臭気の発生や貯蔵安定性の低下を招く恐れがある。
In the fourth step, for example, residual unreacted HDI present in the reaction mixture by removal by thin film distillation or extraction with an organic solvent at 120 to 150 ° C. under a high vacuum of 10 to 100 Pa. The rate is 1% by mass or less. In addition, when the residual content rate of HDI exceeds an upper limit, there exists a possibility of causing the generation | occurrence | production of an odor and the fall of storage stability.
精製して得られたポリイソシアネート組成物は、ポットライフの延長や塗料組成物の一液化を目的として、公知のブロック剤を用いてブロックイソシアネートとすることも可能である。これにより、ブロック化されたポリイソシアネートは、常温時は不活性であるが、加熱することでブロック剤が解離し、再びイソシアネート基が活性化することで、活性水素基と反応する潜在的な機能を付加することができる。
The polyisocyanate composition obtained by refining can be made into a blocked isocyanate using a known blocking agent for the purpose of extending the pot life or making the coating composition one component. As a result, the blocked polyisocyanate is inactive at room temperature, but when heated, the blocking agent dissociates, and the isocyanate group is activated again, thereby causing a potential function to react with the active hydrogen group. Can be added.
本発明に用いることができるブロック剤としては、活性水素を分子内に1個有する化合物であり、例えば、アルコール系、アルキルフェノール系、フェノール系、活性メチレン、メルカプタン系、酸アミド系、酸イミド系、イミダゾール系、尿素系、オキシム系、アミン系、イミド系、ピラゾール系化合物等がある。
The blocking agent that can be used in the present invention is a compound having one active hydrogen in the molecule, for example, an alcohol, alkylphenol, phenol, active methylene, mercaptan, acid amide, acid imide, There are imidazole, urea, oxime, amine, imide, and pyrazole compounds.
以上の第一の実施形態、および第二の実施形態の製造方法で得られたポリイソシアネート組成物は、ポリオールを配合することによって、本発明のポリウレタン樹脂組成物を得ることができる。
The polyurethane resin composition of the present invention can be obtained by blending the polyol with the polyisocyanate composition obtained by the production method of the first embodiment and the second embodiment described above.
ここで、本発明のポリウレタン樹脂組成物に使用されるポリオールとしては、特に限定されるものではないが、イソシアネート基との反応基として活性水素を含有する化合物であり、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ポリオレフィンポリオール、アクリルポリオール、シリコーンポリオール、ヒマシ油系ポリオール、フッ素系ポリオール、2種類以上のポリオールのエステル交換物、及びポリイソシアネートとウレタン化反応した水酸基末端プレポリマー等が好適に用いられ、これらは1種類又は2種類以上の混合物として使用することもできる。
Here, the polyol used in the polyurethane resin composition of the present invention is not particularly limited, but is a compound containing active hydrogen as a reactive group with an isocyanate group, such as a polyester polyol, a polyether polyol, Polycarbonate polyols, polyolefin polyols, acrylic polyols, silicone polyols, castor oil-based polyols, fluorine-based polyols, transesterification products of two or more polyols, and hydroxyl-terminated prepolymers that have undergone a urethanization reaction with polyisocyanates are preferably used. These can also be used as one kind or a mixture of two or more kinds.
<ポリエステルポリオール>
ポリエステルポリオールとしては、例えばフタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、コハク酸、酒石酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、グルタコン酸、アゼライン酸、セバシン酸、1,4-シクロヘキシルジカルボン酸、α-ハイドロムコン酸、β-ハイドロムコン酸、α-ブチル-α-エチルグルタル酸、α,β-ジエチルサクシン酸、マレイン酸、フマル酸等のジカルボン酸またはこれらの無水物等の1種類以上と、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマー酸ジオール、ビスフェノールAのエチレンオキサイドやプロピレンオキサイド付加物、ビス(β-ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の分子量500以下の低分子ポリオール類の1種類以上との縮重合反応から得られるものを挙げることができる。また、ε-カプロラクトン、アルキル置換ε-カプロラクトン、δ-バレロラクトン、アルキル置換δ-バレロラクトン等の環状エステル(いわゆるラクトン)モノマーの開環重合から得られるラクトン系ポリエステルポリオール等を挙げることができる。更に、低分子ポリオールの一部をヘキサメチレンジアミン、イソホロンジアミン、モノエタノールアミン等の低分子ポリアミンや低分子アミノアルコールに代えて得られるポリエステル-アミドポリオールを使用することもできる。 <Polyester polyol>
Examples of the polyester polyol include phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, succinic acid, tartaric acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, glutaconic acid, azelaic acid, sebacic acid 1,4-cyclohexyldicarboxylic acid, α-hydromuconic acid, β-hydromuconic acid, α-butyl-α-ethylglutaric acid, α, β-diethylsuccinic acid, maleic acid, fumaric acid, and other dicarboxylic acids or these One or more anhydrides such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1, 5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9 Nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol, neopentyl glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer One or more low molecular polyols having a molecular weight of 500 or less, such as acid diol, ethylene oxide or propylene oxide adduct of bisphenol A, bis (β-hydroxyethyl) benzene, xylylene glycol, glycerin, trimethylolpropane, pentaerythritol, And those obtained from the polycondensation reaction. Also, lactone polyester polyols obtained from ring-opening polymerization of cyclic ester (so-called lactone) monomers such as ε-caprolactone, alkyl-substituted ε-caprolactone, δ-valerolactone, and alkyl-substituted δ-valerolactone. Furthermore, a polyester-amide polyol obtained by replacing a part of the low molecular polyol with a low molecular polyamine such as hexamethylene diamine, isophorone diamine or monoethanolamine or a low molecular amino alcohol can also be used.
ポリエステルポリオールとしては、例えばフタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、コハク酸、酒石酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、グルタコン酸、アゼライン酸、セバシン酸、1,4-シクロヘキシルジカルボン酸、α-ハイドロムコン酸、β-ハイドロムコン酸、α-ブチル-α-エチルグルタル酸、α,β-ジエチルサクシン酸、マレイン酸、フマル酸等のジカルボン酸またはこれらの無水物等の1種類以上と、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマー酸ジオール、ビスフェノールAのエチレンオキサイドやプロピレンオキサイド付加物、ビス(β-ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の分子量500以下の低分子ポリオール類の1種類以上との縮重合反応から得られるものを挙げることができる。また、ε-カプロラクトン、アルキル置換ε-カプロラクトン、δ-バレロラクトン、アルキル置換δ-バレロラクトン等の環状エステル(いわゆるラクトン)モノマーの開環重合から得られるラクトン系ポリエステルポリオール等を挙げることができる。更に、低分子ポリオールの一部をヘキサメチレンジアミン、イソホロンジアミン、モノエタノールアミン等の低分子ポリアミンや低分子アミノアルコールに代えて得られるポリエステル-アミドポリオールを使用することもできる。 <Polyester polyol>
Examples of the polyester polyol include phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, succinic acid, tartaric acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, glutaconic acid, azelaic acid, sebacic acid 1,4-cyclohexyldicarboxylic acid, α-hydromuconic acid, β-hydromuconic acid, α-butyl-α-ethylglutaric acid, α, β-diethylsuccinic acid, maleic acid, fumaric acid, and other dicarboxylic acids or these One or more anhydrides such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1, 5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9 Nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol, neopentyl glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer One or more low molecular polyols having a molecular weight of 500 or less, such as acid diol, ethylene oxide or propylene oxide adduct of bisphenol A, bis (β-hydroxyethyl) benzene, xylylene glycol, glycerin, trimethylolpropane, pentaerythritol, And those obtained from the polycondensation reaction. Also, lactone polyester polyols obtained from ring-opening polymerization of cyclic ester (so-called lactone) monomers such as ε-caprolactone, alkyl-substituted ε-caprolactone, δ-valerolactone, and alkyl-substituted δ-valerolactone. Furthermore, a polyester-amide polyol obtained by replacing a part of the low molecular polyol with a low molecular polyamine such as hexamethylene diamine, isophorone diamine or monoethanolamine or a low molecular amino alcohol can also be used.
<ポリエーテルポリオール>
ポリエーテルポリオールとしては、例えばエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマー酸ジオール、ビスフェノールA、ビス(β-ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の低分子ポリオール類、またはエチレンジアミン、プロピレンジアミン、トルエンジアミン、メタフェニレンジアミン、ジフェニルメタンジアミン、キシリレンジアミン等の低分子ポリアミン類等のような活性水素基を2個以上、好ましくは2~3個有する化合物を開始剤として、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等のようなアルキレンオキサイド類を付加重合させることによって得られるポリエーテルポリオール、或いはメチルグリシジルエーテル等のアルキルグリシジルエーテル類、フェニルグリシジルエーテル等のアリールグリシジルエーテル類、テトラヒドロフラン等の環状エーテルモノマーを開環重合することで得られるポリエーテルポリオールを挙げることができる。 <Polyether polyol>
Examples of the polyether polyol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentane. Diol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol, neopentyl Low in glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, bisphenol A, bis (β-hydroxyethyl) benzene, xylylene glycol, glycerol, trimethylolpropane, pentaerythritol, etc. Molecular polio Or compounds having 2 or more, preferably 2 to 3, active hydrogen groups such as low molecular weight polyamines such as ethylenediamine, propylenediamine, toluenediamine, metaphenylenediamine, diphenylmethanediamine, xylylenediamine, etc. As polyether polyols obtained by addition polymerization of alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, or the like, or alkyl glycidyl ethers such as methyl glycidyl ether, aryl glycidyl ethers such as phenyl glycidyl ether, Mention may be made of polyether polyols obtained by ring-opening polymerization of cyclic ether monomers such as tetrahydrofuran.
ポリエーテルポリオールとしては、例えばエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマー酸ジオール、ビスフェノールA、ビス(β-ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の低分子ポリオール類、またはエチレンジアミン、プロピレンジアミン、トルエンジアミン、メタフェニレンジアミン、ジフェニルメタンジアミン、キシリレンジアミン等の低分子ポリアミン類等のような活性水素基を2個以上、好ましくは2~3個有する化合物を開始剤として、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等のようなアルキレンオキサイド類を付加重合させることによって得られるポリエーテルポリオール、或いはメチルグリシジルエーテル等のアルキルグリシジルエーテル類、フェニルグリシジルエーテル等のアリールグリシジルエーテル類、テトラヒドロフラン等の環状エーテルモノマーを開環重合することで得られるポリエーテルポリオールを挙げることができる。 <Polyether polyol>
Examples of the polyether polyol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentane. Diol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol, neopentyl Low in glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, bisphenol A, bis (β-hydroxyethyl) benzene, xylylene glycol, glycerol, trimethylolpropane, pentaerythritol, etc. Molecular polio Or compounds having 2 or more, preferably 2 to 3, active hydrogen groups such as low molecular weight polyamines such as ethylenediamine, propylenediamine, toluenediamine, metaphenylenediamine, diphenylmethanediamine, xylylenediamine, etc. As polyether polyols obtained by addition polymerization of alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, or the like, or alkyl glycidyl ethers such as methyl glycidyl ether, aryl glycidyl ethers such as phenyl glycidyl ether, Mention may be made of polyether polyols obtained by ring-opening polymerization of cyclic ether monomers such as tetrahydrofuran.
<ポリカーボネートポリオール>
ポリカーボネートポリオールとしては、例えばエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマー酸ジオール、ビスフェノールAのエチレンオキサイドやプロピレンオキサイド付加物、ビス(β-ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の低分子ポリオールの1種類以上と、ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類、エチレンカーボネート、プロピレンカーボネート等のアルキレンカーボネート類、ジフェニルカーボネート、ジナフチルカーボネート、ジアントリルカーボネート、ジフェナントリルカーボネート、ジインダニルカーボネート、テトラヒドロナフチルカーボネート等のジアリールカーボネート類との脱アルコール反応や脱フェノール反応から得られるものを挙げることができる。 <Polycarbonate polyol>
Examples of the polycarbonate polyol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol. 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol, neopentyl glycol , Cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, ethylene oxide or propylene oxide adduct of bisphenol A, bis (β-hydroxyethyl) benzene, xylylene glycol, glycerin, trimethylo One or more of low molecular polyols such as rupropane and pentaerythritol, dialkyl carbonates such as dimethyl carbonate and diethyl carbonate, alkylene carbonates such as ethylene carbonate and propylene carbonate, diphenyl carbonate, dinaphthyl carbonate, dianthryl carbonate, diphen Mention may be made of those obtained from dealcoholization reactions and dephenol reactions with diaryl carbonates such as nantril carbonate, diindanyl carbonate and tetrahydronaphthyl carbonate.
ポリカーボネートポリオールとしては、例えばエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマー酸ジオール、ビスフェノールAのエチレンオキサイドやプロピレンオキサイド付加物、ビス(β-ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の低分子ポリオールの1種類以上と、ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類、エチレンカーボネート、プロピレンカーボネート等のアルキレンカーボネート類、ジフェニルカーボネート、ジナフチルカーボネート、ジアントリルカーボネート、ジフェナントリルカーボネート、ジインダニルカーボネート、テトラヒドロナフチルカーボネート等のジアリールカーボネート類との脱アルコール反応や脱フェノール反応から得られるものを挙げることができる。 <Polycarbonate polyol>
Examples of the polycarbonate polyol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol. 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol, neopentyl glycol , Cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, ethylene oxide or propylene oxide adduct of bisphenol A, bis (β-hydroxyethyl) benzene, xylylene glycol, glycerin, trimethylo One or more of low molecular polyols such as rupropane and pentaerythritol, dialkyl carbonates such as dimethyl carbonate and diethyl carbonate, alkylene carbonates such as ethylene carbonate and propylene carbonate, diphenyl carbonate, dinaphthyl carbonate, dianthryl carbonate, diphen Mention may be made of those obtained from dealcoholization reactions and dephenol reactions with diaryl carbonates such as nantril carbonate, diindanyl carbonate and tetrahydronaphthyl carbonate.
また、ポリカーボネートポリオールとポリエステルポリオールと低分子ポリオールのエステル交換反応により得られたポリオールも好適に用いることができる。
Also, a polyol obtained by a transesterification reaction between a polycarbonate polyol, a polyester polyol, and a low molecular weight polyol can be suitably used.
<ポリオレフィンポリオール>
ポリオレフィンポリオールとしては、例えば水酸基を2個以上有するポリブタジエン、水素添加ポリブタジエン、ポリイソプレン、水素添加ポリイソプレン等を挙げることができる。 <Polyolefin polyol>
Examples of the polyolefin polyol include polybutadiene having two or more hydroxyl groups, hydrogenated polybutadiene, polyisoprene, and hydrogenated polyisoprene.
ポリオレフィンポリオールとしては、例えば水酸基を2個以上有するポリブタジエン、水素添加ポリブタジエン、ポリイソプレン、水素添加ポリイソプレン等を挙げることができる。 <Polyolefin polyol>
Examples of the polyolefin polyol include polybutadiene having two or more hydroxyl groups, hydrogenated polybutadiene, polyisoprene, and hydrogenated polyisoprene.
<アクリルポリオール>
アクリルポリオールとしては、アクリル酸エステル及び/又はメタクリル酸エステル〔以下(メタ)アクリル酸エステルという〕と、反応点となりうる少なくとも分子内に1個以上の水酸基を有するアクリル酸ヒドロキシ化合物及び/又はメタクリル酸ヒドロキシ化合物〔以下(メタ)アクリル酸ヒドロキシ化合物という〕と、重合開始剤とを熱エネルギーや紫外線または電子線などの光エネルギー等を使用し、アクリルモノマーを共重合したものを挙げることができる。 <Acrylic polyol>
Examples of the acrylic polyol include acrylic acid ester and / or methacrylic acid ester (hereinafter referred to as (meth) acrylic acid ester), acrylic acid hydroxy compound and / or methacrylic acid having at least one hydroxyl group in the molecule that can be a reaction point. Examples thereof include those obtained by copolymerizing an acrylic monomer using a thermal compound, a light energy such as an ultraviolet ray or an electron beam, and the like with a hydroxy compound (hereinafter referred to as a (meth) acrylic acid hydroxy compound) and a polymerization initiator.
アクリルポリオールとしては、アクリル酸エステル及び/又はメタクリル酸エステル〔以下(メタ)アクリル酸エステルという〕と、反応点となりうる少なくとも分子内に1個以上の水酸基を有するアクリル酸ヒドロキシ化合物及び/又はメタクリル酸ヒドロキシ化合物〔以下(メタ)アクリル酸ヒドロキシ化合物という〕と、重合開始剤とを熱エネルギーや紫外線または電子線などの光エネルギー等を使用し、アクリルモノマーを共重合したものを挙げることができる。 <Acrylic polyol>
Examples of the acrylic polyol include acrylic acid ester and / or methacrylic acid ester (hereinafter referred to as (meth) acrylic acid ester), acrylic acid hydroxy compound and / or methacrylic acid having at least one hydroxyl group in the molecule that can be a reaction point. Examples thereof include those obtained by copolymerizing an acrylic monomer using a thermal compound, a light energy such as an ultraviolet ray or an electron beam, and the like with a hydroxy compound (hereinafter referred to as a (meth) acrylic acid hydroxy compound) and a polymerization initiator.
<(メタ)アクリル酸エステル>
(メタ)アクリル酸エステルとしては、例えば炭素数1~20のアルキルエステルを挙げることができる。このような(メタ)アクリル酸エステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル等の(メタ)アクリル酸アルキルエステル;シクロヘキシル(メタ)アクリレート等の(メタ)アクリル酸の脂環属アルコールとのエステル;(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸アリールエステル等を挙げることができる。このような(メタ)アクリル酸エステルは単独または2種類以上組み合わせて使用しても良い。 <(Meth) acrylic acid ester>
Examples of (meth) acrylic acid esters include alkyl esters having 1 to 20 carbon atoms. Examples of such (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, (meth Alkyl (meth) acrylates such as hexyl acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate Esters; esters of (meth) acrylic acid such as cyclohexyl (meth) acrylate with alicyclic alcohols; (meth) acrylic acid aryl esters such as phenyl (meth) acrylate and benzyl (meth) acrylate it can. Such (meth) acrylic acid esters may be used alone or in combination of two or more.
(メタ)アクリル酸エステルとしては、例えば炭素数1~20のアルキルエステルを挙げることができる。このような(メタ)アクリル酸エステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル等の(メタ)アクリル酸アルキルエステル;シクロヘキシル(メタ)アクリレート等の(メタ)アクリル酸の脂環属アルコールとのエステル;(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸アリールエステル等を挙げることができる。このような(メタ)アクリル酸エステルは単独または2種類以上組み合わせて使用しても良い。 <(Meth) acrylic acid ester>
Examples of (meth) acrylic acid esters include alkyl esters having 1 to 20 carbon atoms. Examples of such (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, (meth Alkyl (meth) acrylates such as hexyl acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate Esters; esters of (meth) acrylic acid such as cyclohexyl (meth) acrylate with alicyclic alcohols; (meth) acrylic acid aryl esters such as phenyl (meth) acrylate and benzyl (meth) acrylate it can. Such (meth) acrylic acid esters may be used alone or in combination of two or more.
<(メタ)アクリル酸ヒドロキシ化合物>
(メタ)アクリル酸ヒドロキシ化合物としては、例えばポリイソシアネートとの反応点となりうる少なくとも分子内に1個以上の水酸基を有しており、具体的には、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、3-ヒドロキシ-2,2-ジメチルプロピルアクリレート、ペンタエリスリトールトリアクリレート等のアクリル酸ヒドロキシ化合物等が挙げられる。また、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルメタクリレート、3-ヒドロキシ-2,2-ジメチルプロピルメタクリレート、ペンタエリスリトールトリメタクリレート等のメタクリル酸ヒドロキシ化合物が挙げられる。これら(メタ)アクリル酸ヒドロキシ化合物は、単独または2種以上を組み合わせて使用しても良い。 <(Meth) acrylic acid hydroxy compound>
The (meth) acrylic acid hydroxy compound has, for example, at least one hydroxyl group in the molecule which can be a reaction point with polyisocyanate. Specifically, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate And hydroxy acrylate compounds such as 4-hydroxybutyl acrylate, 3-hydroxy-2,2-dimethylpropyl acrylate, and pentaerythritol triacrylate. Also, hydroxy methacrylate compounds such as 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, 3-hydroxy-2,2-dimethylpropyl methacrylate, and pentaerythritol trimethacrylate are exemplified. These (meth) acrylic acid hydroxy compounds may be used alone or in combination of two or more.
(メタ)アクリル酸ヒドロキシ化合物としては、例えばポリイソシアネートとの反応点となりうる少なくとも分子内に1個以上の水酸基を有しており、具体的には、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、3-ヒドロキシ-2,2-ジメチルプロピルアクリレート、ペンタエリスリトールトリアクリレート等のアクリル酸ヒドロキシ化合物等が挙げられる。また、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルメタクリレート、3-ヒドロキシ-2,2-ジメチルプロピルメタクリレート、ペンタエリスリトールトリメタクリレート等のメタクリル酸ヒドロキシ化合物が挙げられる。これら(メタ)アクリル酸ヒドロキシ化合物は、単独または2種以上を組み合わせて使用しても良い。 <(Meth) acrylic acid hydroxy compound>
The (meth) acrylic acid hydroxy compound has, for example, at least one hydroxyl group in the molecule which can be a reaction point with polyisocyanate. Specifically, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate And hydroxy acrylate compounds such as 4-hydroxybutyl acrylate, 3-hydroxy-2,2-dimethylpropyl acrylate, and pentaerythritol triacrylate. Also, hydroxy methacrylate compounds such as 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, 3-hydroxy-2,2-dimethylpropyl methacrylate, and pentaerythritol trimethacrylate are exemplified. These (meth) acrylic acid hydroxy compounds may be used alone or in combination of two or more.
<シリコーンポリオール>
シリコーンポリオールとしては、例えばγ-メタクリロキシプロピルトリメトキシシラン等を重合したビニル基含有シリコーン化合物、及び分子中に少なくとも1個の末端水酸基を有する、α,ω-ジヒドロキシポリジメチルシロキサン、α,ω-ジヒドロキシポリジフェニルシロキサン等のポリシロキサンを挙げることができる。 <Silicone polyol>
Examples of the silicone polyol include a vinyl group-containing silicone compound obtained by polymerizing γ-methacryloxypropyltrimethoxysilane and the like, and α, ω-dihydroxypolydimethylsiloxane having at least one terminal hydroxyl group in the molecule, α, ω- Mention may be made of polysiloxanes such as dihydroxypolydiphenylsiloxane.
シリコーンポリオールとしては、例えばγ-メタクリロキシプロピルトリメトキシシラン等を重合したビニル基含有シリコーン化合物、及び分子中に少なくとも1個の末端水酸基を有する、α,ω-ジヒドロキシポリジメチルシロキサン、α,ω-ジヒドロキシポリジフェニルシロキサン等のポリシロキサンを挙げることができる。 <Silicone polyol>
Examples of the silicone polyol include a vinyl group-containing silicone compound obtained by polymerizing γ-methacryloxypropyltrimethoxysilane and the like, and α, ω-dihydroxypolydimethylsiloxane having at least one terminal hydroxyl group in the molecule, α, ω- Mention may be made of polysiloxanes such as dihydroxypolydiphenylsiloxane.
<ヒマシ油系ポリオール>
ヒマシ油系ポリオールとしては、例えばヒマシ油脂肪酸とポリオールとの反応により得られる線状または分岐状ポリエステルポリオールが挙げられる。また、脱水ヒマシ油、一部分を脱水した部分脱水ヒマシ油、水素を付加させた水添ヒマシ油も使用することができる。 <Castor oil-based polyol>
Examples of the castor oil-based polyol include linear or branched polyester polyols obtained by a reaction between a castor oil fatty acid and a polyol. Dehydrated castor oil, partially dehydrated castor oil partially dehydrated, and hydrogenated castor oil added with hydrogen can also be used.
ヒマシ油系ポリオールとしては、例えばヒマシ油脂肪酸とポリオールとの反応により得られる線状または分岐状ポリエステルポリオールが挙げられる。また、脱水ヒマシ油、一部分を脱水した部分脱水ヒマシ油、水素を付加させた水添ヒマシ油も使用することができる。 <Castor oil-based polyol>
Examples of the castor oil-based polyol include linear or branched polyester polyols obtained by a reaction between a castor oil fatty acid and a polyol. Dehydrated castor oil, partially dehydrated castor oil partially dehydrated, and hydrogenated castor oil added with hydrogen can also be used.
<フッ素系ポリオール>
フッ素系ポリオールとしては、例えば必須成分として含フッ素モノマーとヒドロキシ基を有するモノマーとの共重合反応により得られる線状または分岐状のポリオールを挙げることができる。ここで、含フッ素モノマーとしては、フルオロオレフィンであることが好ましく、例えば、テトラフルオロエチレン、クロロトリフルオロエチレン、トリクロロフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、フッ化ビニル、トリフルオロメチルトリフルオロエチレンが挙げられる。また、ヒドロキシル基を有するモノマーとしては、例えば、ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、シクロヘキサンジオールモノビニルエーテル等のヒドロキシアルキルビニルエーテル、2-ヒドロキシエチルアリルエーテル等のヒドロキシアルキルアリルエーテル、ヒドロキシアルキルクロトン酸ビニル等のヒドロキシル基含有カルボン酸ビニル又はアリルエステル等のヒドロキシル基を有するモノマーが挙げられる。 <Fluorine-based polyol>
As a fluorine-type polyol, the linear or branched polyol obtained by the copolymerization reaction of a fluorine-containing monomer and the monomer which has a hydroxyl group as an essential component can be mentioned, for example. Here, the fluorine-containing monomer is preferably a fluoroolefin, for example, tetrafluoroethylene, chlorotrifluoroethylene, trichlorofluoroethylene, hexafluoropropylene, vinylidene fluoride, vinyl fluoride, trifluoromethyl trifluoroethylene. Is mentioned. Examples of the monomer having a hydroxyl group include hydroxyalkyl vinyl ethers such as hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether and cyclohexanediol monovinyl ether, hydroxyalkyl allyl ethers such as 2-hydroxyethyl allyl ether, and vinyl hydroxyalkyl crotonates. Examples thereof include monomers having a hydroxyl group, such as hydroxyl group-containing vinyl carboxylate or allyl ester.
フッ素系ポリオールとしては、例えば必須成分として含フッ素モノマーとヒドロキシ基を有するモノマーとの共重合反応により得られる線状または分岐状のポリオールを挙げることができる。ここで、含フッ素モノマーとしては、フルオロオレフィンであることが好ましく、例えば、テトラフルオロエチレン、クロロトリフルオロエチレン、トリクロロフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、フッ化ビニル、トリフルオロメチルトリフルオロエチレンが挙げられる。また、ヒドロキシル基を有するモノマーとしては、例えば、ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、シクロヘキサンジオールモノビニルエーテル等のヒドロキシアルキルビニルエーテル、2-ヒドロキシエチルアリルエーテル等のヒドロキシアルキルアリルエーテル、ヒドロキシアルキルクロトン酸ビニル等のヒドロキシル基含有カルボン酸ビニル又はアリルエステル等のヒドロキシル基を有するモノマーが挙げられる。 <Fluorine-based polyol>
As a fluorine-type polyol, the linear or branched polyol obtained by the copolymerization reaction of a fluorine-containing monomer and the monomer which has a hydroxyl group as an essential component can be mentioned, for example. Here, the fluorine-containing monomer is preferably a fluoroolefin, for example, tetrafluoroethylene, chlorotrifluoroethylene, trichlorofluoroethylene, hexafluoropropylene, vinylidene fluoride, vinyl fluoride, trifluoromethyl trifluoroethylene. Is mentioned. Examples of the monomer having a hydroxyl group include hydroxyalkyl vinyl ethers such as hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether and cyclohexanediol monovinyl ether, hydroxyalkyl allyl ethers such as 2-hydroxyethyl allyl ether, and vinyl hydroxyalkyl crotonates. Examples thereof include monomers having a hydroxyl group, such as hydroxyl group-containing vinyl carboxylate or allyl ester.
また、ポリオールは、1分子中の活性水素基数(平均官能基数)が1.9~6.0であることが好ましい。活性水素基数が下限値未満の場合には、塗膜物性が低下する恐れがある。また、上限値を超える場合には、密着性が低下する恐れがある。
Also, the polyol preferably has an active hydrogen group number (average functional group number) in one molecule of 1.9 to 6.0. When the number of active hydrogen groups is less than the lower limit, the physical properties of the coating film may be reduced. Moreover, when exceeding an upper limit, there exists a possibility that adhesiveness may fall.
また、ポリオールの数平均分子量は、750~50000の範囲にあることが好ましい。下限値未満の場合には、密着性低下の恐れがあり、上限値を超えると低極性有機溶剤に対する溶解性の低下や密着性低下を招く恐れがある。
The number average molecular weight of the polyol is preferably in the range of 750 to 50,000. If it is less than the lower limit, the adhesion may be reduced, and if it exceeds the upper limit, the solubility in a low-polar organic solvent may be lowered or the adhesion may be lowered.
また、本発明のポリウレタン樹脂組成物は、塗料組成物として好適に用いることができる。塗料組成物中のポリイソシアネート組成物と、ポリオールとの配合の割合は、特に限定するものではないが、イソシアネート組成物中のイソシアネート基とポリオール中の水酸基のモル比が、R=イソシアネート基/水酸基で0.5~2.5となるように配合することが好ましい。下限値未満の場合には水酸基が過剰になり、密着性の低下を招く恐れがある。また、架橋密度が低下し耐久性の低下や塗膜の機械的強度が低下する恐れがある。上限値を超える場合にはイソシアネート基が過剰になり、空気中の水分と反応し、塗膜の膨れやこれに伴う密着性の低下を生じる恐れがある。
Moreover, the polyurethane resin composition of the present invention can be suitably used as a coating composition. The blending ratio of the polyisocyanate composition and the polyol in the coating composition is not particularly limited, but the molar ratio of the isocyanate group in the isocyanate composition to the hydroxyl group in the polyol is R = isocyanate group / hydroxyl group. It is preferable to blend so as to be 0.5 to 2.5. If it is less than the lower limit, the hydroxyl group becomes excessive, which may cause a decrease in adhesion. Moreover, there exists a possibility that a crosslinking density may fall and durability and the mechanical strength of a coating film may fall. When the upper limit is exceeded, the isocyanate group becomes excessive and reacts with moisture in the air, which may cause swelling of the coating film and a decrease in adhesion.
また、希釈溶剤として使用する有機溶剤としては、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチル、酢酸ブチル、酢酸セロソルブ等のエステル類、ブタノール、イソプロピルアルコール等のアルコール類、トルエン、キシレン、シクロヘキサン、ミネラルスピリット、ナフサ等の炭化水素類等からなる群から、目的及び用途に応じて適宜選択して使用することができる。これらの溶剤は単独で用いてもよく、2種以上を併用してもよい。
Examples of the organic solvent used as a diluent solvent include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, esters such as ethyl acetate, butyl acetate, and cellosolve, alcohols such as butanol and isopropyl alcohol, toluene, xylene, and the like. From the group consisting of hydrocarbons such as cyclohexane, mineral spirits, naphtha and the like, it can be appropriately selected according to the purpose and application. These solvents may be used alone or in combination of two or more.
また、塗料組成物は、ポットライフ、硬化条件、及び作業条件等を考慮し、適宜公知のウレタン化触媒を用いることができる。具体的には、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジオクチル錫ジラウレート等の有機金属化合物や、トリエチレンジアミンやトリエチルアミン等の有機アミンやその塩を選択して用いる。これらの触媒は、単独または2種以上併用することができる。
In addition, the coating composition can use a known urethanization catalyst as appropriate in consideration of pot life, curing conditions, working conditions, and the like. Specifically, organic metal compounds such as dibutyltin diacetate, dibutyltin dilaurate and dioctyltin dilaurate, organic amines such as triethylenediamine and triethylamine, and salts thereof are selected and used. These catalysts can be used alone or in combination of two or more.
また、塗料組成物の硬化条件としては、特に限定されるものではないが、硬化温度が-5~120℃、湿度が10~95%RH、養生時間が0.5~168時間であることが好ましい。
The curing conditions of the coating composition are not particularly limited, but the curing temperature is -5 to 120 ° C., the humidity is 10 to 95% RH, and the curing time is 0.5 to 168 hours. preferable.
本発明によって得られた塗料組成物には、必要に応じて、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール等の酸化防止剤、紫外線吸収剤、顔料、染料、溶剤、難燃剤、加水分解抑制剤、潤滑剤、可塑剤、充填材、帯電防止剤、分散剤、触媒、貯蔵安定剤、界面活性剤、レベリング剤等の添加剤を適宜配合することができる。
The coating composition obtained according to the present invention may contain, for example, an antioxidant such as 2,6-di-tert-butyl-4-methylphenol, an ultraviolet absorber, a pigment, a dye, a solvent, Additives such as a flame retardant, a hydrolysis inhibitor, a lubricant, a plasticizer, a filler, an antistatic agent, a dispersant, a catalyst, a storage stabilizer, a surfactant, and a leveling agent can be appropriately blended.
また、本発明によって得られた塗料組成物は、スプレー、刷毛、浸漬、コーター等の公知の方法により被着体の表面上に塗布され、塗膜を形成する。
Further, the coating composition obtained by the present invention is applied onto the surface of the adherend by a known method such as spraying, brushing, dipping, or coater to form a coating film.
ここで被着体は特に限定されるものではなく、ステンレス、リン酸処理鋼、亜鉛鋼、鉄、銅、アルミニウム、真鍮、ガラス、スレート、アクリル樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンフタレート樹脂、ポリスチレン樹脂、AS樹脂、ABS樹脂、ポリカーボネート-ABS樹脂、6-ナイロン樹脂、6,6-ナイロン樹脂、MXD6ナイロン樹脂、ポリ塩化ビニル樹脂、ポリビニルアルコール樹脂、ポリウレタン樹脂、フェノール樹脂、メラミン樹脂、ポリアセタール樹脂、塩素化ポリオレフィン樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンスルフィド樹脂、NBR樹脂、クロロプレン樹脂、SBR樹脂、SEBS樹脂などの素材で成形された被着体、コロナ放電処理やその他表面処理を施されたポリエチレン、ポリプロピレン等のオレフィン樹脂、または前記被着体表面に中間形成となりうる塗膜層が形成された被着体を用いることができる。
The adherend is not particularly limited, and is stainless steel, phosphated steel, zinc steel, iron, copper, aluminum, brass, glass, slate, acrylic resin, polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate resin. , Polybutylene phthalate resin, polystyrene resin, AS resin, ABS resin, polycarbonate-ABS resin, 6-nylon resin, 6,6-nylon resin, MXD6 nylon resin, polyvinyl chloride resin, polyvinyl alcohol resin, polyurethane resin, phenol resin , Melamine resin, polyacetal resin, chlorinated polyolefin resin, polyolefin resin, polyamide resin, polyether ether ketone resin, polyphenylene sulfide resin, NBR resin, chloroprene resin, SBR resin, SE An adherend formed of a material such as S resin, an olefin resin such as polyethylene or polypropylene subjected to corona discharge treatment or other surface treatment, or a coating layer that can be intermediately formed on the surface of the adherend was formed. An adherend can be used.
被着体表層に形成される塗膜の膜厚は、リコート性や耐久性に優れるため、被着体に少なくとも10μmの膜厚を形成すれば良い。膜厚が10μm未満である場合には耐久性が低下し、衝撃により塗膜の破れ等を生じる恐れがある。
Since the film thickness of the coating film formed on the adherend surface layer is excellent in recoatability and durability, the film thickness of at least 10 μm may be formed on the adherend. When the film thickness is less than 10 μm, the durability is lowered, and there is a possibility that the coating film is torn by impact.
本発明のポリイソシアネート組成物、及び塗料組成物は、塗膜強度及び基材追従性に優れるため自動車塗料用途へ好適に用いることができる。
Since the polyisocyanate composition and the coating composition of the present invention are excellent in coating film strength and substrate followability, they can be suitably used for automotive coating applications.
以下、実施例に基づいて本発明を更に詳細に説明するが、本発明は、これら実施例に限定されるものではない。なお、実施例における%表記は特に断りのない限り質量基準である。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In addition, the% description in an Example is a mass reference | standard unless there is particular notice.
なお、第一の実施形態および第二の実施形態について、それぞれポリイソシアネート組成物の合成1、およびポリイソシアネート組成物の合成2とし、得られた組成物それぞれについて、評価を行った。
In addition, about the 1st embodiment and 2nd embodiment, it was set as the synthesis | combination 1 of the polyisocyanate composition, and the synthesis | combination 2 of the polyisocyanate composition, respectively, and each obtained composition was evaluated.
<ポリイソシアネート組成物の合成1(第一の実施形態)>
<実施例1>
攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、HDI(東ソー社製、NCO含量:49.9質量%)875g、および水素化ビスフェノールA(丸善石油化学社製、以下HBPAという)125gを仕込み、これらを撹拌しながら100℃に加熱し、所定の反応転化率に達するまでウレタン化反応させた。ここで反応生成物から、薄膜蒸留(条件:140℃,0.04kPa)により過剰のHDIを除去し、ポリイソシアネートC-1を290g得た。
上記操作にて得られたポリイソシアネートC-1を100gと、コロネートHXLV(ポリイソシアヌレート、東ソー社製、NCO含量:23.1質量%、以下C-HXLVという)を900gの割合で混合し、ポリイソシアネート組成物P-1を1000g得た。 <Synthesis 1 of polyisocyanate composition (first embodiment)>
<Example 1>
In a 4-liter flask having a capacity of 1 liter equipped with a stirrer, a thermometer, a condenser tube, and a nitrogen gas introduction tube, 875 g of HDI (manufactured by Tosoh Corporation, NCO content: 49.9% by mass) and hydrogenated bisphenol A (Maruzen) 125 g (manufactured by Petrochemical Co., Ltd., hereinafter referred to as “HBPA”) were charged, and these were heated to 100 ° C. with stirring, and urethanated until reaching a predetermined reaction conversion rate. Here, excess HDI was removed from the reaction product by thin film distillation (conditions: 140 ° C., 0.04 kPa) to obtain 290 g of polyisocyanate C-1.
100 g of polyisocyanate C-1 obtained by the above operation and coronate HXLV (polyisocyanurate, manufactured by Tosoh Corporation, NCO content: 23.1% by mass, hereinafter referred to as C-HXLV) were mixed at a ratio of 900 g, 1000 g of polyisocyanate composition P-1 was obtained.
<実施例1>
攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、HDI(東ソー社製、NCO含量:49.9質量%)875g、および水素化ビスフェノールA(丸善石油化学社製、以下HBPAという)125gを仕込み、これらを撹拌しながら100℃に加熱し、所定の反応転化率に達するまでウレタン化反応させた。ここで反応生成物から、薄膜蒸留(条件:140℃,0.04kPa)により過剰のHDIを除去し、ポリイソシアネートC-1を290g得た。
上記操作にて得られたポリイソシアネートC-1を100gと、コロネートHXLV(ポリイソシアヌレート、東ソー社製、NCO含量:23.1質量%、以下C-HXLVという)を900gの割合で混合し、ポリイソシアネート組成物P-1を1000g得た。 <
<Example 1>
In a 4-liter flask having a capacity of 1 liter equipped with a stirrer, a thermometer, a condenser tube, and a nitrogen gas introduction tube, 875 g of HDI (manufactured by Tosoh Corporation, NCO content: 49.9% by mass) and hydrogenated bisphenol A (Maruzen) 125 g (manufactured by Petrochemical Co., Ltd., hereinafter referred to as “HBPA”) were charged, and these were heated to 100 ° C. with stirring, and urethanated until reaching a predetermined reaction conversion rate. Here, excess HDI was removed from the reaction product by thin film distillation (conditions: 140 ° C., 0.04 kPa) to obtain 290 g of polyisocyanate C-1.
100 g of polyisocyanate C-1 obtained by the above operation and coronate HXLV (polyisocyanurate, manufactured by Tosoh Corporation, NCO content: 23.1% by mass, hereinafter referred to as C-HXLV) were mixed at a ratio of 900 g, 1000 g of polyisocyanate composition P-1 was obtained.
<実施例2~3>
表2に示す条件で、C-1とC-HXLVとを混合し、ポリイソシアネート組成物P-2、P-3を得た。 <Examples 2 to 3>
Under the conditions shown in Table 2, C-1 and C-HXLV were mixed to obtain polyisocyanate compositions P-2 and P-3.
表2に示す条件で、C-1とC-HXLVとを混合し、ポリイソシアネート組成物P-2、P-3を得た。 <Examples 2 to 3>
Under the conditions shown in Table 2, C-1 and C-HXLV were mixed to obtain polyisocyanate compositions P-2 and P-3.
<比較例1~2>
表3に示す条件で、C-1とC-HXLVとを混合し、ポリイソシアネート組成物P-4、P-5を得た。 <Comparative Examples 1 and 2>
Under the conditions shown in Table 3, C-1 and C-HXLV were mixed to obtain polyisocyanate compositions P-4 and P-5.
表3に示す条件で、C-1とC-HXLVとを混合し、ポリイソシアネート組成物P-4、P-5を得た。 <Comparative Examples 1 and 2>
Under the conditions shown in Table 3, C-1 and C-HXLV were mixed to obtain polyisocyanate compositions P-4 and P-5.
<比較例3>
攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、HDI950g、および1,3-ブチレングリコール(KHネオケム社製、以下1,3-BGという)50gを仕込み、これらを撹拌しながら100℃に加熱し、所定の反応転化率に達するまでウレタン化反応させた。ここで反応生成物から、薄膜蒸留(条件:140℃,0.04kPa)により過剰のHDIを除去し、ポリイソシアネートC-2を230g得た。
上記操作にて得られたポリイソシアネートC-2を100gと、C-HXLVを900gの割合で混合し、ポリイソシアネート組成物P-6を1000g得た。 <Comparative Example 3>
In a 4-liter flask having a capacity of 1 liter equipped with a stirrer, thermometer, condenser, and nitrogen gas inlet tube, 950 g of HDI and 50 g of 1,3-butylene glycol (manufactured by KH Neochem, hereinafter referred to as 1,3-BG) Were heated to 100 ° C. with stirring, and urethanated until a predetermined reaction conversion rate was reached. Here, excess HDI was removed from the reaction product by thin film distillation (conditions: 140 ° C., 0.04 kPa) to obtain 230 g of polyisocyanate C-2.
100 g of polyisocyanate C-2 obtained by the above operation and 900 g of C-HXLV were mixed to obtain 1000 g of polyisocyanate composition P-6.
攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、HDI950g、および1,3-ブチレングリコール(KHネオケム社製、以下1,3-BGという)50gを仕込み、これらを撹拌しながら100℃に加熱し、所定の反応転化率に達するまでウレタン化反応させた。ここで反応生成物から、薄膜蒸留(条件:140℃,0.04kPa)により過剰のHDIを除去し、ポリイソシアネートC-2を230g得た。
上記操作にて得られたポリイソシアネートC-2を100gと、C-HXLVを900gの割合で混合し、ポリイソシアネート組成物P-6を1000g得た。 <Comparative Example 3>
In a 4-liter flask having a capacity of 1 liter equipped with a stirrer, thermometer, condenser, and nitrogen gas inlet tube, 950 g of HDI and 50 g of 1,3-butylene glycol (manufactured by KH Neochem, hereinafter referred to as 1,3-BG) Were heated to 100 ° C. with stirring, and urethanated until a predetermined reaction conversion rate was reached. Here, excess HDI was removed from the reaction product by thin film distillation (conditions: 140 ° C., 0.04 kPa) to obtain 230 g of polyisocyanate C-2.
100 g of polyisocyanate C-2 obtained by the above operation and 900 g of C-HXLV were mixed to obtain 1000 g of polyisocyanate composition P-6.
<比較例4~5>
表3に示す条件で、C-2とC-HXLVとを混合し、ポリイソシアネート組成物P-7、P-8を得た。 <Comparative Examples 4 to 5>
Under the conditions shown in Table 3, C-2 and C-HXLV were mixed to obtain polyisocyanate compositions P-7 and P-8.
表3に示す条件で、C-2とC-HXLVとを混合し、ポリイソシアネート組成物P-7、P-8を得た。 <Comparative Examples 4 to 5>
Under the conditions shown in Table 3, C-2 and C-HXLV were mixed to obtain polyisocyanate compositions P-7 and P-8.
<比較例6>
攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、HDI940g、および1,4-シクロヘキサンジメタノール(長瀬産業社製、以下CHDMという)60gを仕込み、これらを撹拌しながら40℃に加熱し、1時間ウレタン化反応を行った。その後60℃に昇温し、この反応液中にアロファネート化触媒であるオクチル酸ジルコニール(第一稀元素化学工業社製)0.1gを添加し、110℃にて所定の反応転化率に達するまで反応させた後、反応停止剤である酸性リン酸エステル(JP-508、城北化学工業社製)0.11gを添加し、60℃で1時間停止反応を行った。ここで、薄膜蒸留(条件:140℃,0.04kPa)により反応生成物から過剰のHDIを除去し、ポリイソシアネートC-3を320g得た。
上記操作にて得られたポリイソシアネートC-3を100gと、C-HXLVを900gの割合で混合し、ポリイソシアネート組成物P-9を1000g得た。 <Comparative Example 6>
Into a 1 liter four-necked flask equipped with a stirrer, thermometer, cooling pipe, and nitrogen gas introduction pipe, 940 g of HDI and 60 g of 1,4-cyclohexanedimethanol (manufactured by Nagase Sangyo Co., Ltd., hereinafter referred to as CHDM) were charged. These were heated to 40 ° C. with stirring, and urethanization reaction was performed for 1 hour. Thereafter, the temperature is raised to 60 ° C., and 0.1 g of zirconyl octylate (Daiichi Rare Element Chemical Co., Ltd.), which is an allophanate catalyst, is added to the reaction solution until a predetermined reaction conversion rate is reached at 110 ° C. After the reaction, 0.11 g of acidic phosphate ester (JP-508, manufactured by Johoku Chemical Industry Co., Ltd.) as a reaction terminator was added, and a termination reaction was performed at 60 ° C. for 1 hour. Here, excess HDI was removed from the reaction product by thin film distillation (conditions: 140 ° C., 0.04 kPa) to obtain 320 g of polyisocyanate C-3.
100 g of polyisocyanate C-3 obtained by the above operation was mixed with 900 g of C-HXLV to obtain 1000 g of polyisocyanate composition P-9.
攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、HDI940g、および1,4-シクロヘキサンジメタノール(長瀬産業社製、以下CHDMという)60gを仕込み、これらを撹拌しながら40℃に加熱し、1時間ウレタン化反応を行った。その後60℃に昇温し、この反応液中にアロファネート化触媒であるオクチル酸ジルコニール(第一稀元素化学工業社製)0.1gを添加し、110℃にて所定の反応転化率に達するまで反応させた後、反応停止剤である酸性リン酸エステル(JP-508、城北化学工業社製)0.11gを添加し、60℃で1時間停止反応を行った。ここで、薄膜蒸留(条件:140℃,0.04kPa)により反応生成物から過剰のHDIを除去し、ポリイソシアネートC-3を320g得た。
上記操作にて得られたポリイソシアネートC-3を100gと、C-HXLVを900gの割合で混合し、ポリイソシアネート組成物P-9を1000g得た。 <Comparative Example 6>
Into a 1 liter four-necked flask equipped with a stirrer, thermometer, cooling pipe, and nitrogen gas introduction pipe, 940 g of HDI and 60 g of 1,4-cyclohexanedimethanol (manufactured by Nagase Sangyo Co., Ltd., hereinafter referred to as CHDM) were charged. These were heated to 40 ° C. with stirring, and urethanization reaction was performed for 1 hour. Thereafter, the temperature is raised to 60 ° C., and 0.1 g of zirconyl octylate (Daiichi Rare Element Chemical Co., Ltd.), which is an allophanate catalyst, is added to the reaction solution until a predetermined reaction conversion rate is reached at 110 ° C. After the reaction, 0.11 g of acidic phosphate ester (JP-508, manufactured by Johoku Chemical Industry Co., Ltd.) as a reaction terminator was added, and a termination reaction was performed at 60 ° C. for 1 hour. Here, excess HDI was removed from the reaction product by thin film distillation (conditions: 140 ° C., 0.04 kPa) to obtain 320 g of polyisocyanate C-3.
100 g of polyisocyanate C-3 obtained by the above operation was mixed with 900 g of C-HXLV to obtain 1000 g of polyisocyanate composition P-9.
<比較例7~8>
表3に示す条件で、C-3とC-HXLVとの混合を行い、ポリイソシアネート組成物P-10、P-11を得た。 <Comparative Examples 7 to 8>
Under the conditions shown in Table 3, C-3 and C-HXLV were mixed to obtain polyisocyanate compositions P-10 and P-11.
表3に示す条件で、C-3とC-HXLVとの混合を行い、ポリイソシアネート組成物P-10、P-11を得た。 <Comparative Examples 7 to 8>
Under the conditions shown in Table 3, C-3 and C-HXLV were mixed to obtain polyisocyanate compositions P-10 and P-11.
<比較例9>
C-HXLVを用いた。 <Comparative Example 9>
C-HXLV was used.
C-HXLVを用いた。 <Comparative Example 9>
C-HXLV was used.
<二液塗料組成物の調製(耐傷性)>
耐傷性評価用塗料配合液は表4、表5に示すように、ポリオールとポリイソシアネート組成物とをR(イソシアネート基/水酸基のモル比)=1.0になるように配合し、更に有機溶剤で固形分が50質量%になるように、二液塗料組成物(S-1~S-12)を調製した(配合量の単位はg)。ここでは、ポリオールには、アクリルポリオール(商品名:アクリディック49-394-IM、水酸基価:25mgKOH/g、固形分:50質量%、DIC社製)を使用し、有機溶剤には、酢酸ブチルを使用し、顔料には酸化チタンCR-90(石原産業製)を使用し、調製した。 <Preparation of two-component coating composition (scratch resistance)>
As shown in Tables 4 and 5, the paint blending liquid for scratch resistance evaluation is blended with a polyol and a polyisocyanate composition so that R (molar ratio of isocyanate group / hydroxyl group) = 1.0, and further an organic solvent. Thus, a two-component coating composition (S-1 to S-12) was prepared so that the solid content was 50% by mass (unit: g). Here, acrylic polyol (trade name: Acrydic 49-394-IM, hydroxyl value: 25 mg KOH / g, solid content: 50% by mass, manufactured by DIC) is used as the polyol, and butyl acetate is used as the organic solvent. And titanium oxide CR-90 (manufactured by Ishihara Sangyo) was used as the pigment.
耐傷性評価用塗料配合液は表4、表5に示すように、ポリオールとポリイソシアネート組成物とをR(イソシアネート基/水酸基のモル比)=1.0になるように配合し、更に有機溶剤で固形分が50質量%になるように、二液塗料組成物(S-1~S-12)を調製した(配合量の単位はg)。ここでは、ポリオールには、アクリルポリオール(商品名:アクリディック49-394-IM、水酸基価:25mgKOH/g、固形分:50質量%、DIC社製)を使用し、有機溶剤には、酢酸ブチルを使用し、顔料には酸化チタンCR-90(石原産業製)を使用し、調製した。 <Preparation of two-component coating composition (scratch resistance)>
As shown in Tables 4 and 5, the paint blending liquid for scratch resistance evaluation is blended with a polyol and a polyisocyanate composition so that R (molar ratio of isocyanate group / hydroxyl group) = 1.0, and further an organic solvent. Thus, a two-component coating composition (S-1 to S-12) was prepared so that the solid content was 50% by mass (unit: g). Here, acrylic polyol (trade name: Acrydic 49-394-IM, hydroxyl value: 25 mg KOH / g, solid content: 50% by mass, manufactured by DIC) is used as the polyol, and butyl acetate is used as the organic solvent. And titanium oxide CR-90 (manufactured by Ishihara Sangyo) was used as the pigment.
<二液塗料組成物の調製(耐候性、密着性)>
耐候性、密着性評価用塗料配合液は表6、表7に示すように、ポリオールとポリイソシアネート組成物とをR(イソシアネート基/水酸基のモル比)=1.0になるように配合し、更に有機溶剤で固形分が50質量%になるように、二液塗料組成物(S-1~S-12)を調製した(配合量の単位はg)。ここでは、ポリオールには、アクリルポリオール(商品名:アクリディックA-801、水酸基価:50mgKOH/g、固形分:50質量%、DIC社製)を使用し、有機溶剤には、酢酸ブチルを使用し、顔料には酸化チタンCR-50(石原産業製)を使用し、調製した。 <Preparation of two-component coating composition (weather resistance, adhesion)>
As shown in Tables 6 and 7, the paint blending solution for weather resistance and adhesion evaluation was blended with polyol and polyisocyanate composition so that R (isocyanate group / hydroxyl molar ratio) = 1.0, Further, a two-component coating composition (S-1 to S-12) was prepared so that the solid content was 50% by mass with an organic solvent (the unit of blending amount was g). Here, acrylic polyol (trade name: Acrydic A-801, hydroxyl value: 50 mgKOH / g, solid content: 50% by mass, manufactured by DIC) is used as the polyol, and butyl acetate is used as the organic solvent. The pigment was prepared using titanium oxide CR-50 (Ishihara Sangyo).
耐候性、密着性評価用塗料配合液は表6、表7に示すように、ポリオールとポリイソシアネート組成物とをR(イソシアネート基/水酸基のモル比)=1.0になるように配合し、更に有機溶剤で固形分が50質量%になるように、二液塗料組成物(S-1~S-12)を調製した(配合量の単位はg)。ここでは、ポリオールには、アクリルポリオール(商品名:アクリディックA-801、水酸基価:50mgKOH/g、固形分:50質量%、DIC社製)を使用し、有機溶剤には、酢酸ブチルを使用し、顔料には酸化チタンCR-50(石原産業製)を使用し、調製した。 <Preparation of two-component coating composition (weather resistance, adhesion)>
As shown in Tables 6 and 7, the paint blending solution for weather resistance and adhesion evaluation was blended with polyol and polyisocyanate composition so that R (isocyanate group / hydroxyl molar ratio) = 1.0, Further, a two-component coating composition (S-1 to S-12) was prepared so that the solid content was 50% by mass with an organic solvent (the unit of blending amount was g). Here, acrylic polyol (trade name: Acrydic A-801, hydroxyl value: 50 mgKOH / g, solid content: 50% by mass, manufactured by DIC) is used as the polyol, and butyl acetate is used as the organic solvent. The pigment was prepared using titanium oxide CR-50 (Ishihara Sangyo).
<塗装方法及び試験片の調製>
調製した二液塗料組成物を、それぞれメチルエチルケトンで脱脂した鋼板(JIS G3141、商品名:SPCC-SB、処理方法:PF-1077、パルテック社製)にアプリケーターを用い、任意の膜厚になるように塗布した。その後、温度60℃の乾燥機中で1時間加熱処理を行い、続いて温度23℃、相対湿度50%の環境下で7日間養生し、コーティング塗膜S-1~S-12を得た。 <Coating method and test piece preparation>
The prepared two-component paint composition is defatted with methyl ethyl ketone (JIS G3141, trade name: SPCC-SB, treatment method: PF-1077, manufactured by Partec Co., Ltd.) using an applicator so as to have an arbitrary film thickness. Applied. Thereafter, heat treatment was performed in a dryer at a temperature of 60 ° C. for 1 hour, followed by curing for 7 days in an environment at a temperature of 23 ° C. and a relative humidity of 50% to obtain coating films S-1 to S-12.
調製した二液塗料組成物を、それぞれメチルエチルケトンで脱脂した鋼板(JIS G3141、商品名:SPCC-SB、処理方法:PF-1077、パルテック社製)にアプリケーターを用い、任意の膜厚になるように塗布した。その後、温度60℃の乾燥機中で1時間加熱処理を行い、続いて温度23℃、相対湿度50%の環境下で7日間養生し、コーティング塗膜S-1~S-12を得た。 <Coating method and test piece preparation>
The prepared two-component paint composition is defatted with methyl ethyl ketone (JIS G3141, trade name: SPCC-SB, treatment method: PF-1077, manufactured by Partec Co., Ltd.) using an applicator so as to have an arbitrary film thickness. Applied. Thereafter, heat treatment was performed in a dryer at a temperature of 60 ° C. for 1 hour, followed by curing for 7 days in an environment at a temperature of 23 ° C. and a relative humidity of 50% to obtain coating films S-1 to S-12.
<耐傷性評価>
表4、表5に示す配合で得られた塗料から作製したコーティング塗膜(乾燥後膜厚約20μm)を、下記条件の耐傷性試験により押込み硬度を測定した。結果を表8、表9に示す。評価Aであれば良好と言える。
・試験装置:フィッシャースコープHM2000(フィッシャー・インストルメンツ社製)
・圧子:ビッカースダイヤモンド
・試験温度:25℃
<耐傷性評価基準>
押込み硬度の値を、下記基準にて分類した。
・125N/mm2以上:(評価)A
・110N/mm2以上~125N/mm2未満:(評価)B
・110N/mm2未満:(評価)C。 <Scratch resistance evaluation>
The indentation hardness of a coating film (film thickness after drying of about 20 μm) prepared from the paint obtained by the formulation shown in Tables 4 and 5 was measured by a scratch resistance test under the following conditions. The results are shown in Tables 8 and 9. An evaluation A is good.
Test equipment: Fischer scope HM2000 (Fischer Instruments)
・ Indenter: Vickers diamond ・ Test temperature: 25 ℃
<Scratch resistance evaluation criteria>
The indentation hardness values were classified according to the following criteria.
・ 125 N / mm 2 or more: (Evaluation) A
110 N / mm 2 or more to less than 125 N / mm 2 : (Evaluation) B
-Less than 110 N / mm < 2 >: (Evaluation) C.
表4、表5に示す配合で得られた塗料から作製したコーティング塗膜(乾燥後膜厚約20μm)を、下記条件の耐傷性試験により押込み硬度を測定した。結果を表8、表9に示す。評価Aであれば良好と言える。
・試験装置:フィッシャースコープHM2000(フィッシャー・インストルメンツ社製)
・圧子:ビッカースダイヤモンド
・試験温度:25℃
<耐傷性評価基準>
押込み硬度の値を、下記基準にて分類した。
・125N/mm2以上:(評価)A
・110N/mm2以上~125N/mm2未満:(評価)B
・110N/mm2未満:(評価)C。 <Scratch resistance evaluation>
The indentation hardness of a coating film (film thickness after drying of about 20 μm) prepared from the paint obtained by the formulation shown in Tables 4 and 5 was measured by a scratch resistance test under the following conditions. The results are shown in Tables 8 and 9. An evaluation A is good.
Test equipment: Fischer scope HM2000 (Fischer Instruments)
・ Indenter: Vickers diamond ・ Test temperature: 25 ℃
<Scratch resistance evaluation criteria>
The indentation hardness values were classified according to the following criteria.
・ 125 N / mm 2 or more: (Evaluation) A
110 N / mm 2 or more to less than 125 N / mm 2 : (Evaluation) B
-Less than 110 N / mm < 2 >: (Evaluation) C.
<耐候性評価>
表6、表7に示す配合で得られた塗料から作製したコーティング塗膜(乾燥後膜厚約20μm)を、下記の条件で耐候性の加速試験を行った。
・試験装置:QUV(Q-LAB社製)
・ランプ:EL-313
・照度:0.59w/m2
・λmax:313nm
・1サイクル:12時間〔UV照射:8時間(温度70℃)、結露:4時間(温度50℃)〕
・試験時間:576時間
<耐候性評価基準>
JIS Z8741に準じて、光沢度計(製品名:マイクロ-グロス、BYK社製)にて、60°における光沢度を測定し、光沢保持率を算出した。光沢保持率は次式により求めた。結果を表8、表9に示す。評価Aであれば良好と言える。
光沢保持率(%)=100×耐候試験後光沢度÷初期光沢度 (式)
・80%以上:(評価)A
・70%以上~80%未満:(評価)B
・70%未満:(評価)C。 <Weather resistance evaluation>
An accelerated weather resistance test was performed on the coating film (film thickness after drying of about 20 μm) prepared from the paints obtained with the formulations shown in Tables 6 and 7 under the following conditions.
・ Test equipment: QUV (manufactured by Q-LAB)
・ Lamp: EL-313
・ Illuminance: 0.59 w / m2
・ Λmax: 313 nm
1 cycle: 12 hours [UV irradiation: 8 hours (temperature 70 ° C.), condensation: 4 hours (temperature 50 ° C.)]
Test time: 576 hours <Weather resistance evaluation criteria>
According to JIS Z8741, glossiness at 60 ° was measured with a gloss meter (product name: Micro-Gloss, manufactured by BYK), and gloss retention was calculated. The gloss retention was determined by the following formula. The results are shown in Tables 8 and 9. An evaluation A is good.
Gloss retention (%) = 100 × Glossiness after weathering test ÷ Initial glossiness (Formula)
・ 80% or more: (Evaluation) A
・ 70% to less than 80%: (Evaluation) B
-Less than 70%: (Evaluation) C.
表6、表7に示す配合で得られた塗料から作製したコーティング塗膜(乾燥後膜厚約20μm)を、下記の条件で耐候性の加速試験を行った。
・試験装置:QUV(Q-LAB社製)
・ランプ:EL-313
・照度:0.59w/m2
・λmax:313nm
・1サイクル:12時間〔UV照射:8時間(温度70℃)、結露:4時間(温度50℃)〕
・試験時間:576時間
<耐候性評価基準>
JIS Z8741に準じて、光沢度計(製品名:マイクロ-グロス、BYK社製)にて、60°における光沢度を測定し、光沢保持率を算出した。光沢保持率は次式により求めた。結果を表8、表9に示す。評価Aであれば良好と言える。
光沢保持率(%)=100×耐候試験後光沢度÷初期光沢度 (式)
・80%以上:(評価)A
・70%以上~80%未満:(評価)B
・70%未満:(評価)C。 <Weather resistance evaluation>
An accelerated weather resistance test was performed on the coating film (film thickness after drying of about 20 μm) prepared from the paints obtained with the formulations shown in Tables 6 and 7 under the following conditions.
・ Test equipment: QUV (manufactured by Q-LAB)
・ Lamp: EL-313
・ Illuminance: 0.59 w / m2
・ Λmax: 313 nm
1 cycle: 12 hours [UV irradiation: 8 hours (temperature 70 ° C.), condensation: 4 hours (temperature 50 ° C.)]
Test time: 576 hours <Weather resistance evaluation criteria>
According to JIS Z8741, glossiness at 60 ° was measured with a gloss meter (product name: Micro-Gloss, manufactured by BYK), and gloss retention was calculated. The gloss retention was determined by the following formula. The results are shown in Tables 8 and 9. An evaluation A is good.
Gloss retention (%) = 100 × Glossiness after weathering test ÷ Initial glossiness (Formula)
・ 80% or more: (Evaluation) A
・ 70% to less than 80%: (Evaluation) B
-Less than 70%: (Evaluation) C.
<密着性評価用メタリックベース塗料の調製>
水性アクリルポリオール(製品名:バーノックWE-303、DIC社製)25.0gに、レオロジーコントロール剤(製品名:BYK-425、BYK社製)0.5g、消泡剤(製品名:BYK-012、BYK社製)0.5g、湿潤分散剤(製品名:DISPERBYK-192、BYK社製)1.0gを添加し、アルミニウムペースト(製品名:アルペーストWXM5660、東洋アルミニウム社製)2.0gを配合し、更にメタノールを15.0g加えることで粘度を調整した。 <Preparation of metallic base paint for adhesion evaluation>
Aqueous acrylic polyol (product name: Bernock WE-303, manufactured by DIC) 25.0 g, rheology control agent (product name: BYK-425, manufactured by BYK) 0.5 g, antifoaming agent (product name: BYK-012) 0.5 g of BYK), 1.0 g of a wetting and dispersing agent (product name: DISPERBYK-192, manufactured by BYK) and 2.0 g of aluminum paste (product name: Alpaste WXM5660, manufactured by Toyo Aluminum Co., Ltd.) The viscosity was adjusted by adding 15.0 g of methanol.
水性アクリルポリオール(製品名:バーノックWE-303、DIC社製)25.0gに、レオロジーコントロール剤(製品名:BYK-425、BYK社製)0.5g、消泡剤(製品名:BYK-012、BYK社製)0.5g、湿潤分散剤(製品名:DISPERBYK-192、BYK社製)1.0gを添加し、アルミニウムペースト(製品名:アルペーストWXM5660、東洋アルミニウム社製)2.0gを配合し、更にメタノールを15.0g加えることで粘度を調整した。 <Preparation of metallic base paint for adhesion evaluation>
Aqueous acrylic polyol (product name: Bernock WE-303, manufactured by DIC) 25.0 g, rheology control agent (product name: BYK-425, manufactured by BYK) 0.5 g, antifoaming agent (product name: BYK-012) 0.5 g of BYK), 1.0 g of a wetting and dispersing agent (product name: DISPERBYK-192, manufactured by BYK) and 2.0 g of aluminum paste (product name: Alpaste WXM5660, manufactured by Toyo Aluminum Co., Ltd.) The viscosity was adjusted by adding 15.0 g of methanol.
<密着性評価>
調製したメタリックベース塗料を、メチルエチルケトンで脱脂した鋼板(JIS G3141、商品名:SPCC-SB、処理方法:PF-1077、パルテック社製)に、乾燥後の膜厚約30μmになるようにスプレーで塗布した。その後、温度23℃、相対湿度50%の環境下で30分養生し、60℃の条件で30分加熱処理を行った。さらに、表4で調製した二液塗料組成物を、メタリックベースを塗布した鋼板の上からアプリケーターを用いて塗布し、常温にて10分予備乾燥後、90℃の乾燥機中で30分加熱処理を行った後、80℃の条件で10時間加熱処理を行い、コーティング塗膜を得た。
<密着性評価基準>
得られた塗膜をJIS K5600-5-6に準じて、クロスカット法による付着性試験を実施した。結果を表8、表9に示す。評価Aであれば良好と言える。
・分類0~1:A
・分類2~5:B <Adhesion evaluation>
The prepared metallic base paint is applied to a steel plate (JIS G3141, trade name: SPCC-SB, treatment method: PF-1077, manufactured by Partec Co.) degreased with methyl ethyl ketone by spraying so that the film thickness after drying is about 30 μm. did. Thereafter, it was cured for 30 minutes in an environment of a temperature of 23 ° C. and a relative humidity of 50%, and heat-treated for 30 minutes at 60 ° C. Further, the two-component coating composition prepared in Table 4 was applied on the steel plate coated with the metallic base using an applicator, pre-dried at room temperature for 10 minutes, and then heat-treated in a dryer at 90 ° C. for 30 minutes. Then, heat treatment was performed for 10 hours at 80 ° C. to obtain a coating film.
<Adhesion evaluation criteria>
The obtained coating film was subjected to an adhesion test by a cross-cut method according to JIS K5600-5-6. The results are shown in Tables 8 and 9. An evaluation A is good.
・ Classification 0 to 1: A
・Class 2 to 5: B
調製したメタリックベース塗料を、メチルエチルケトンで脱脂した鋼板(JIS G3141、商品名:SPCC-SB、処理方法:PF-1077、パルテック社製)に、乾燥後の膜厚約30μmになるようにスプレーで塗布した。その後、温度23℃、相対湿度50%の環境下で30分養生し、60℃の条件で30分加熱処理を行った。さらに、表4で調製した二液塗料組成物を、メタリックベースを塗布した鋼板の上からアプリケーターを用いて塗布し、常温にて10分予備乾燥後、90℃の乾燥機中で30分加熱処理を行った後、80℃の条件で10時間加熱処理を行い、コーティング塗膜を得た。
<密着性評価基準>
得られた塗膜をJIS K5600-5-6に準じて、クロスカット法による付着性試験を実施した。結果を表8、表9に示す。評価Aであれば良好と言える。
・分類0~1:A
・分類2~5:B <Adhesion evaluation>
The prepared metallic base paint is applied to a steel plate (JIS G3141, trade name: SPCC-SB, treatment method: PF-1077, manufactured by Partec Co.) degreased with methyl ethyl ketone by spraying so that the film thickness after drying is about 30 μm. did. Thereafter, it was cured for 30 minutes in an environment of a temperature of 23 ° C. and a relative humidity of 50%, and heat-treated for 30 minutes at 60 ° C. Further, the two-component coating composition prepared in Table 4 was applied on the steel plate coated with the metallic base using an applicator, pre-dried at room temperature for 10 minutes, and then heat-treated in a dryer at 90 ° C. for 30 minutes. Then, heat treatment was performed for 10 hours at 80 ° C. to obtain a coating film.
<Adhesion evaluation criteria>
The obtained coating film was subjected to an adhesion test by a cross-cut method according to JIS K5600-5-6. The results are shown in Tables 8 and 9. An evaluation A is good.
・ Classification 0 to 1: A
・
<ポリイソシアネート組成物の合成2(第二の実施形態)>
<実施例13>
攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、HDI(東ソー社製、NCO含量:49.9質量%)962gを仕込み、これを60℃に加熱し、イソシアヌレート化触媒であるトリメチルオクチルアンモニウムメチル炭酸塩(2-エチルヘキサノール10%希釈)1gを添加し、60℃にて表1に示す所定の反応転化率に達するまで反応させた後、反応停止剤である酸性リン酸エステル(JP-508、城北化学工業社製)0.17gを添加し、60℃で1時間停止反応を行った。停止反応後の反応液に、水素化ビスフェノールA(丸善石油化学社製、以下HBPAという)37gを仕込み、これらを撹拌しながら100℃に加熱し、所定の反応転化率に達するまでウレタン化反応させ反応生成物C-4を得た。ここで反応生成物C-4から、薄膜蒸留(条件:140℃,0.04kPa)により過剰のHDIを除去し、ポリイソシアネート組成物P-13を290g得た。
P-13を下記条件にて、ゲル浸透クロマトグラフィー(GPC)で分析したところ、ヌレート型ポリイソシアネート、環状基を有するジオール、及びHDIから得られる反応生成物(C)が、リテンションタイム約20.3分付近(数平均分子量約1100)に検出され、20.13分から20.55分の面積を計算したところ約8PA%であった。 <Synthesis 2 of Polyisocyanate Composition (Second Embodiment)>
<Example 13>
961 g of HDI (manufactured by Tosoh Corporation, NCO content: 49.9% by mass) was charged into a four-necked flask having a capacity of 1 liter equipped with a stirrer, a thermometer, a cooling pipe, and a nitrogen gas introduction pipe, and this was brought to 60 ° C. After heating, 1 g of trimethyloctylammonium methyl carbonate (diethyl 2-ethylhexanol 10% diluted) as an isocyanurate conversion catalyst was added and reacted at 60 ° C. until the predetermined reaction conversion rate shown in Table 1 was reached. 0.17 g of acidic phosphate ester (JP-508, manufactured by Johoku Chemical Industry Co., Ltd.) as a reaction terminator was added, and the termination reaction was carried out at 60 ° C. for 1 hour. Into the reaction solution after the termination reaction, 37 g of hydrogenated bisphenol A (manufactured by Maruzen Petrochemical Co., Ltd., hereinafter referred to as HBPA) is charged and heated to 100 ° C. with stirring, and urethanated until a predetermined reaction conversion rate is reached. The reaction product C-4 was obtained. Here, excess HDI was removed from the reaction product C-4 by thin film distillation (conditions: 140 ° C., 0.04 kPa) to obtain 290 g of a polyisocyanate composition P-13.
When P-13 was analyzed by gel permeation chromatography (GPC) under the following conditions, the reaction product (C) obtained from nurate polyisocyanate, diol having a cyclic group, and HDI had a retention time of about 20. It was detected at around 3 minutes (number average molecular weight of about 1100), and the area calculated from 20.13 minutes to 20.55 minutes was about 8 PA%.
<実施例13>
攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、HDI(東ソー社製、NCO含量:49.9質量%)962gを仕込み、これを60℃に加熱し、イソシアヌレート化触媒であるトリメチルオクチルアンモニウムメチル炭酸塩(2-エチルヘキサノール10%希釈)1gを添加し、60℃にて表1に示す所定の反応転化率に達するまで反応させた後、反応停止剤である酸性リン酸エステル(JP-508、城北化学工業社製)0.17gを添加し、60℃で1時間停止反応を行った。停止反応後の反応液に、水素化ビスフェノールA(丸善石油化学社製、以下HBPAという)37gを仕込み、これらを撹拌しながら100℃に加熱し、所定の反応転化率に達するまでウレタン化反応させ反応生成物C-4を得た。ここで反応生成物C-4から、薄膜蒸留(条件:140℃,0.04kPa)により過剰のHDIを除去し、ポリイソシアネート組成物P-13を290g得た。
P-13を下記条件にて、ゲル浸透クロマトグラフィー(GPC)で分析したところ、ヌレート型ポリイソシアネート、環状基を有するジオール、及びHDIから得られる反応生成物(C)が、リテンションタイム約20.3分付近(数平均分子量約1100)に検出され、20.13分から20.55分の面積を計算したところ約8PA%であった。 <
<Example 13>
961 g of HDI (manufactured by Tosoh Corporation, NCO content: 49.9% by mass) was charged into a four-necked flask having a capacity of 1 liter equipped with a stirrer, a thermometer, a cooling pipe, and a nitrogen gas introduction pipe, and this was brought to 60 ° C. After heating, 1 g of trimethyloctylammonium methyl carbonate (diethyl 2-ethylhexanol 10% diluted) as an isocyanurate conversion catalyst was added and reacted at 60 ° C. until the predetermined reaction conversion rate shown in Table 1 was reached. 0.17 g of acidic phosphate ester (JP-508, manufactured by Johoku Chemical Industry Co., Ltd.) as a reaction terminator was added, and the termination reaction was carried out at 60 ° C. for 1 hour. Into the reaction solution after the termination reaction, 37 g of hydrogenated bisphenol A (manufactured by Maruzen Petrochemical Co., Ltd., hereinafter referred to as HBPA) is charged and heated to 100 ° C. with stirring, and urethanated until a predetermined reaction conversion rate is reached. The reaction product C-4 was obtained. Here, excess HDI was removed from the reaction product C-4 by thin film distillation (conditions: 140 ° C., 0.04 kPa) to obtain 290 g of a polyisocyanate composition P-13.
When P-13 was analyzed by gel permeation chromatography (GPC) under the following conditions, the reaction product (C) obtained from nurate polyisocyanate, diol having a cyclic group, and HDI had a retention time of about 20. It was detected at around 3 minutes (number average molecular weight of about 1100), and the area calculated from 20.13 minutes to 20.55 minutes was about 8 PA%.
<GPC:分子量の測定>
(1)測定器:HLC-8220(東ソー社製)
(2)カラム:TSKgel(東ソー社製)
・G3000H-XL
・G2500H-XL
・G2000H-XL、G1000H-XL
(3)キャリア:THF(テトラヒドロフラン)
(4)検出器:RI(屈折率)検出器
(5)温度:40℃
(6)流速:1.000ml/min
(7)検量線:標準ポリスチレン(東ソー社製)
・F-80(分子量:7.06×105、分子量分布:1.05)
・F-20(分子量:1.90×105、分子量分布:1.05)
・F-10(分子量:9.64×104、分子量分布:1.01)
・F-2(分子量:1.81×104、分子量分布:1.01)
・F-1(分子量:1.02×104、分子量分布:1.02)
・A-5000(分子量:5.97×103、分子量分布:1.02)
・A-2500(分子量:2.63×103、分子量分布:1.05)
・A-500(分子量:5.0×102、分子量分布:1.14)
(8)サンプル溶液濃度:0.5%THF溶液。 <GPC: Measurement of molecular weight>
(1) Measuring instrument: HLC-8220 (manufactured by Tosoh Corporation)
(2) Column: TSKgel (manufactured by Tosoh Corporation)
・ G3000H-XL
・ G2500H-XL
・ G2000H-XL, G1000H-XL
(3) Carrier: THF (tetrahydrofuran)
(4) Detector: RI (refractive index) detector (5) Temperature: 40 ° C
(6) Flow rate: 1.000 ml / min
(7) Calibration curve: Standard polystyrene (manufactured by Tosoh Corporation)
F-80 (molecular weight: 7.06 × 105, molecular weight distribution: 1.05)
F-20 (molecular weight: 1.90 × 105, molecular weight distribution: 1.05)
F-10 (molecular weight: 9.64 × 104, molecular weight distribution: 1.01)
F-2 (molecular weight: 1.81 × 104, molecular weight distribution: 1.01)
F-1 (molecular weight: 1.02 × 104, molecular weight distribution: 1.02)
A-5000 (molecular weight: 5.97 × 103, molecular weight distribution: 1.02)
A-2500 (molecular weight: 2.63 × 103, molecular weight distribution: 1.05)
A-500 (molecular weight: 5.0 × 102, molecular weight distribution: 1.14)
(8) Sample solution concentration: 0.5% THF solution.
(1)測定器:HLC-8220(東ソー社製)
(2)カラム:TSKgel(東ソー社製)
・G3000H-XL
・G2500H-XL
・G2000H-XL、G1000H-XL
(3)キャリア:THF(テトラヒドロフラン)
(4)検出器:RI(屈折率)検出器
(5)温度:40℃
(6)流速:1.000ml/min
(7)検量線:標準ポリスチレン(東ソー社製)
・F-80(分子量:7.06×105、分子量分布:1.05)
・F-20(分子量:1.90×105、分子量分布:1.05)
・F-10(分子量:9.64×104、分子量分布:1.01)
・F-2(分子量:1.81×104、分子量分布:1.01)
・F-1(分子量:1.02×104、分子量分布:1.02)
・A-5000(分子量:5.97×103、分子量分布:1.02)
・A-2500(分子量:2.63×103、分子量分布:1.05)
・A-500(分子量:5.0×102、分子量分布:1.14)
(8)サンプル溶液濃度:0.5%THF溶液。 <GPC: Measurement of molecular weight>
(1) Measuring instrument: HLC-8220 (manufactured by Tosoh Corporation)
(2) Column: TSKgel (manufactured by Tosoh Corporation)
・ G3000H-XL
・ G2500H-XL
・ G2000H-XL, G1000H-XL
(3) Carrier: THF (tetrahydrofuran)
(4) Detector: RI (refractive index) detector (5) Temperature: 40 ° C
(6) Flow rate: 1.000 ml / min
(7) Calibration curve: Standard polystyrene (manufactured by Tosoh Corporation)
F-80 (molecular weight: 7.06 × 105, molecular weight distribution: 1.05)
F-20 (molecular weight: 1.90 × 105, molecular weight distribution: 1.05)
F-10 (molecular weight: 9.64 × 104, molecular weight distribution: 1.01)
F-2 (molecular weight: 1.81 × 104, molecular weight distribution: 1.01)
F-1 (molecular weight: 1.02 × 104, molecular weight distribution: 1.02)
A-5000 (molecular weight: 5.97 × 103, molecular weight distribution: 1.02)
A-2500 (molecular weight: 2.63 × 103, molecular weight distribution: 1.05)
A-500 (molecular weight: 5.0 × 102, molecular weight distribution: 1.14)
(8) Sample solution concentration: 0.5% THF solution.
<実施例14~15>
表10に示す仕込みにて、実施例13と同様の方法で、ポリイソシアネート組成物P-14、P-15を得た。それぞれに含まれる反応生成物(C)は、P-14は約10PA%、P-15は約4PA%であった。 <Examples 14 to 15>
Polyisocyanate compositions P-14 and P-15 were obtained in the same manner as in Example 13 with the preparation shown in Table 10. The reaction product (C) contained in each of them was about 10 PA% for P-14 and about 4 PA% for P-15.
表10に示す仕込みにて、実施例13と同様の方法で、ポリイソシアネート組成物P-14、P-15を得た。それぞれに含まれる反応生成物(C)は、P-14は約10PA%、P-15は約4PA%であった。 <Examples 14 to 15>
Polyisocyanate compositions P-14 and P-15 were obtained in the same manner as in Example 13 with the preparation shown in Table 10. The reaction product (C) contained in each of them was about 10 PA% for P-14 and about 4 PA% for P-15.
<比較例37>
ポリイソシアネートとして、HDIポリイソシアヌレート(商品名:コロネートHK、東ソー社製、以下C-HK)を用いた。 <Comparative Example 37>
As the polyisocyanate, HDI polyisocyanurate (trade name: Coronate HK, manufactured by Tosoh Corporation, hereinafter C-HK) was used.
ポリイソシアネートとして、HDIポリイソシアヌレート(商品名:コロネートHK、東ソー社製、以下C-HK)を用いた。 <Comparative Example 37>
As the polyisocyanate, HDI polyisocyanurate (trade name: Coronate HK, manufactured by Tosoh Corporation, hereinafter C-HK) was used.
<比較例38>
ポリイソシアネートとして、IPDIポリイソシアヌレート(商品名:VESTANAT T1890/100、EVONIK社製)を用いた。 <Comparative Example 38>
As the polyisocyanate, IPDI polyisocyanurate (trade name: VESTANAT T1890 / 100, manufactured by EVONIK) was used.
ポリイソシアネートとして、IPDIポリイソシアヌレート(商品名:VESTANAT T1890/100、EVONIK社製)を用いた。 <Comparative Example 38>
As the polyisocyanate, IPDI polyisocyanurate (trade name: VESTANAT T1890 / 100, manufactured by EVONIK) was used.
<比較例39~42>
表11に示す条件で、C-HKとT1890とを混合し(質量比)、ポリイソシアネート組成物P-18~P-21を得た。 <Comparative Examples 39 to 42>
C-HK and T1890 were mixed (mass ratio) under the conditions shown in Table 11 to obtain polyisocyanate compositions P-18 to P-21.
表11に示す条件で、C-HKとT1890とを混合し(質量比)、ポリイソシアネート組成物P-18~P-21を得た。 <Comparative Examples 39 to 42>
C-HK and T1890 were mixed (mass ratio) under the conditions shown in Table 11 to obtain polyisocyanate compositions P-18 to P-21.
<二液塗料組成物の調製>
評価用塗料配合液は表12に示すように、ポリオールとポリイソシアネート組成物とをR(イソシアネート基/水酸基のモル比)=1.0になるように配合し、更に有機溶剤で固形分が50%になるように、塗料組成物(S-13~S-21)を調製した(配合量の単位はg)。ポリオールには、アクリルポリオール(商品名:アクリディック49-394-IM、水酸基価:25mgKOH/g、固形分:50%、DIC社製)を使用し、有機溶剤には酢酸ブチルを使用し、調製した。 <Preparation of two-component coating composition>
As shown in Table 12, the coating composition liquid for evaluation was prepared by blending a polyol and a polyisocyanate composition so that R (molar ratio of isocyanate group / hydroxyl group) = 1.0, and an organic solvent having a solid content of 50. The coating compositions (S-13 to S-21) were prepared so as to be% (unit of blending amount is g). Acrylic polyol (trade name: ACRYDIC 49-394-IM, hydroxyl value: 25 mg KOH / g, solid content: 50%, manufactured by DIC) is used as the polyol, and butyl acetate is used as the organic solvent. did.
評価用塗料配合液は表12に示すように、ポリオールとポリイソシアネート組成物とをR(イソシアネート基/水酸基のモル比)=1.0になるように配合し、更に有機溶剤で固形分が50%になるように、塗料組成物(S-13~S-21)を調製した(配合量の単位はg)。ポリオールには、アクリルポリオール(商品名:アクリディック49-394-IM、水酸基価:25mgKOH/g、固形分:50%、DIC社製)を使用し、有機溶剤には酢酸ブチルを使用し、調製した。 <Preparation of two-component coating composition>
As shown in Table 12, the coating composition liquid for evaluation was prepared by blending a polyol and a polyisocyanate composition so that R (molar ratio of isocyanate group / hydroxyl group) = 1.0, and an organic solvent having a solid content of 50. The coating compositions (S-13 to S-21) were prepared so as to be% (unit of blending amount is g). Acrylic polyol (trade name: ACRYDIC 49-394-IM, hydroxyl value: 25 mg KOH / g, solid content: 50%, manufactured by DIC) is used as the polyol, and butyl acetate is used as the organic solvent. did.
<塗装方法及び試験片の調製>
調製した塗料組成物を、鋼板(JIS G3141、商品名:SPCC-SB、処理方法:PF-1077、パルテック社製)にアプリケーターを用い、乾燥後の膜厚約20μmになるように塗布した。その後、温度23℃、相対湿度50%の環境下で1時間乾燥後、80℃の乾燥機中で12時間加熱処理を行い、続いて温度23℃、相対湿度50%の環境下で1日間以上養生し、コーティング塗膜S-13~S-21を得た。 <Coating method and test piece preparation>
The prepared coating composition was applied to a steel plate (JIS G3141, trade name: SPCC-SB, treatment method: PF-1077, manufactured by Partec Co., Ltd.) using an applicator so that the film thickness after drying was about 20 μm. Then, after drying for 1 hour in an environment at a temperature of 23 ° C. and a relative humidity of 50%, heat treatment is performed in a dryer at 80 ° C. for 12 hours, followed by an environment of 23 ° C. and a relative humidity of 50% for one day or more. Curing was performed to obtain coating films S-13 to S-21.
調製した塗料組成物を、鋼板(JIS G3141、商品名:SPCC-SB、処理方法:PF-1077、パルテック社製)にアプリケーターを用い、乾燥後の膜厚約20μmになるように塗布した。その後、温度23℃、相対湿度50%の環境下で1時間乾燥後、80℃の乾燥機中で12時間加熱処理を行い、続いて温度23℃、相対湿度50%の環境下で1日間以上養生し、コーティング塗膜S-13~S-21を得た。 <Coating method and test piece preparation>
The prepared coating composition was applied to a steel plate (JIS G3141, trade name: SPCC-SB, treatment method: PF-1077, manufactured by Partec Co., Ltd.) using an applicator so that the film thickness after drying was about 20 μm. Then, after drying for 1 hour in an environment at a temperature of 23 ° C. and a relative humidity of 50%, heat treatment is performed in a dryer at 80 ° C. for 12 hours, followed by an environment of 23 ° C. and a relative humidity of 50% for one day or more. Curing was performed to obtain coating films S-13 to S-21.
<塗膜強度評価>
表12に示す配合で得られた塗料から作製したコーティング塗膜(乾燥後膜厚約20μm)を、ISO 14577に準じて、下記の条件で耐傷性試験を行った。結果を表13に示す。評価A、Bであれば良好と言える。
・試験装置:フィッシャースコープHM2000(フィッシャー・インストルメンツ社製)
・圧子:ビッカースダイヤモンド
・試験荷重:5mN
・試験温度:25℃
<塗膜強度評価基準>
・80N/mm2以上:(評価)A
・60N/mm2以上~80N/mm2未満:(評価)B
・60N/mm2未満:(評価)C。 <Coating strength evaluation>
A scratch-resistant test was conducted on the coating film (film thickness after drying of about 20 μm) prepared from the paint obtained in the formulation shown in Table 12 under the following conditions in accordance with ISO 14577. The results are shown in Table 13. Evaluations A and B are good.
Test equipment: Fischer scope HM2000 (Fischer Instruments)
・ Indenter: Vickers diamond ・ Test load: 5 mN
Test temperature: 25 ° C
<Coating strength evaluation criteria>
・ 80 N / mm 2 or more: (Evaluation) A
· 60 N / mm 2 or more to less than 80 N / mm 2 : (Evaluation) B
-Less than 60 N / mm < 2 >: (Evaluation) C.
表12に示す配合で得られた塗料から作製したコーティング塗膜(乾燥後膜厚約20μm)を、ISO 14577に準じて、下記の条件で耐傷性試験を行った。結果を表13に示す。評価A、Bであれば良好と言える。
・試験装置:フィッシャースコープHM2000(フィッシャー・インストルメンツ社製)
・圧子:ビッカースダイヤモンド
・試験荷重:5mN
・試験温度:25℃
<塗膜強度評価基準>
・80N/mm2以上:(評価)A
・60N/mm2以上~80N/mm2未満:(評価)B
・60N/mm2未満:(評価)C。 <Coating strength evaluation>
A scratch-resistant test was conducted on the coating film (film thickness after drying of about 20 μm) prepared from the paint obtained in the formulation shown in Table 12 under the following conditions in accordance with ISO 14577. The results are shown in Table 13. Evaluations A and B are good.
Test equipment: Fischer scope HM2000 (Fischer Instruments)
・ Indenter: Vickers diamond ・ Test load: 5 mN
Test temperature: 25 ° C
<Coating strength evaluation criteria>
・ 80 N / mm 2 or more: (Evaluation) A
· 60 N / mm 2 or more to less than 80 N / mm 2 : (Evaluation) B
-Less than 60 N / mm < 2 >: (Evaluation) C.
<基材追従性評価>
表12に示す配合で得られた塗料から作製したコーティング塗膜(乾燥後膜厚約20μm)を、JIS K5600-5-3に準じて、耐おもり落下性による基材追従性試験を実施した。結果を表13に示す。評価A、Bであれば良好と言える。
<基材追従性評価基準>
・100cm:(評価)A
・90cm以上~100cm未満:(評価)B
・90cm未満:(評価)C。 <Substrate followability evaluation>
A coating film (about 20 μm film thickness after drying) prepared from the paint obtained by the formulation shown in Table 12 was subjected to a substrate follow-up test by weight drop resistance according to JIS K5600-5-3. The results are shown in Table 13. Evaluations A and B are good.
<Base material follow-up evaluation criteria>
・ 100cm: (Evaluation) A
・ 90 cm to less than 100 cm: (Evaluation) B
-Less than 90 cm: (Evaluation) C.
表12に示す配合で得られた塗料から作製したコーティング塗膜(乾燥後膜厚約20μm)を、JIS K5600-5-3に準じて、耐おもり落下性による基材追従性試験を実施した。結果を表13に示す。評価A、Bであれば良好と言える。
<基材追従性評価基準>
・100cm:(評価)A
・90cm以上~100cm未満:(評価)B
・90cm未満:(評価)C。 <Substrate followability evaluation>
A coating film (about 20 μm film thickness after drying) prepared from the paint obtained by the formulation shown in Table 12 was subjected to a substrate follow-up test by weight drop resistance according to JIS K5600-5-3. The results are shown in Table 13. Evaluations A and B are good.
<Base material follow-up evaluation criteria>
・ 100cm: (Evaluation) A
・ 90 cm to less than 100 cm: (Evaluation) B
-Less than 90 cm: (Evaluation) C.
<密着性評価用メタリックベース塗料の調製>
水性アクリルポリオール(製品名:バーノックWE-303、DIC社製)25.0gに、レオロジーコントロール剤(製品名:BYK-425、BYK社製)0.5g、消泡剤(製品名:BYK-012、BYK社製)0.5g、湿潤分散剤(製品名:DISPERBYK-192、BYK社製)1.0gを添加し、アルミニウムペースト(製品名:アルペーストWXM5660、東洋アルミニウム社製)2.0gを配合し、更にメタノールを15.0g加えることで粘度を調整し、メタリックベース塗料を得た。 <Preparation of metallic base paint for adhesion evaluation>
Aqueous acrylic polyol (product name: Bernock WE-303, manufactured by DIC) 25.0 g, rheology control agent (product name: BYK-425, manufactured by BYK) 0.5 g, antifoaming agent (product name: BYK-012) 0.5 g of BYK), 1.0 g of a wetting and dispersing agent (product name: DISPERBYK-192, manufactured by BYK) and 2.0 g of aluminum paste (product name: Alpaste WXM5660, manufactured by Toyo Aluminum Co., Ltd.) The viscosity was adjusted by adding 15.0 g of methanol, and a metallic base paint was obtained.
水性アクリルポリオール(製品名:バーノックWE-303、DIC社製)25.0gに、レオロジーコントロール剤(製品名:BYK-425、BYK社製)0.5g、消泡剤(製品名:BYK-012、BYK社製)0.5g、湿潤分散剤(製品名:DISPERBYK-192、BYK社製)1.0gを添加し、アルミニウムペースト(製品名:アルペーストWXM5660、東洋アルミニウム社製)2.0gを配合し、更にメタノールを15.0g加えることで粘度を調整し、メタリックベース塗料を得た。 <Preparation of metallic base paint for adhesion evaluation>
Aqueous acrylic polyol (product name: Bernock WE-303, manufactured by DIC) 25.0 g, rheology control agent (product name: BYK-425, manufactured by BYK) 0.5 g, antifoaming agent (product name: BYK-012) 0.5 g of BYK), 1.0 g of a wetting and dispersing agent (product name: DISPERBYK-192, manufactured by BYK) and 2.0 g of aluminum paste (product name: Alpaste WXM5660, manufactured by Toyo Aluminum Co., Ltd.) The viscosity was adjusted by adding 15.0 g of methanol, and a metallic base paint was obtained.
<密着性評価>
調製したメタリックベース塗料を、鋼板(JIS G3141、商品名:SPCC-SB、処理方法:PF-1077、パルテック社製)に、乾燥後の膜厚約20μmになるようにスプレーで塗布した。その後、温度23℃、相対湿度50%の環境下で30分養生し、60℃の条件で30分加熱処理を行った。さらに、表4で調製した塗料組成物を、メタリックベース塗料を塗布した鋼板の上からアプリケーターを用いて塗布し、常温にて10分予備乾燥後、90℃の乾燥機中で30分加熱処理を行った後、80℃の条件で12時間加熱処理を行い、コーティング塗膜を得た。得られた塗膜をJIS K5600-5-6に準じて、クロスカット法による付着性試験を実施した。結果を表13に示す。評価A、Bであれば良好と言える。
<密着性評価基準>
・分類0:A
・分類1:B
・分類2~5:C <Adhesion evaluation>
The prepared metallic base paint was applied to a steel plate (JIS G3141, trade name: SPCC-SB, treatment method: PF-1077, manufactured by Partec Co., Ltd.) by spraying so that the film thickness after drying was about 20 μm. Thereafter, it was cured for 30 minutes in an environment of a temperature of 23 ° C. and a relative humidity of 50%, and heat-treated for 30 minutes at 60 ° C. Further, the coating composition prepared in Table 4 was applied on the steel plate coated with the metallic base coating using an applicator, pre-dried at room temperature for 10 minutes, and then heat-treated in a dryer at 90 ° C. for 30 minutes. After performing, it heat-processed on 80 degreeC conditions for 12 hours, and obtained the coating film. The obtained coating film was subjected to an adhesion test by a cross-cut method according to JIS K5600-5-6. The results are shown in Table 13. Evaluations A and B are good.
<Adhesion evaluation criteria>
・ Class 0: A
・ Category 1: B
・ Category 2-5: C
調製したメタリックベース塗料を、鋼板(JIS G3141、商品名:SPCC-SB、処理方法:PF-1077、パルテック社製)に、乾燥後の膜厚約20μmになるようにスプレーで塗布した。その後、温度23℃、相対湿度50%の環境下で30分養生し、60℃の条件で30分加熱処理を行った。さらに、表4で調製した塗料組成物を、メタリックベース塗料を塗布した鋼板の上からアプリケーターを用いて塗布し、常温にて10分予備乾燥後、90℃の乾燥機中で30分加熱処理を行った後、80℃の条件で12時間加熱処理を行い、コーティング塗膜を得た。得られた塗膜をJIS K5600-5-6に準じて、クロスカット法による付着性試験を実施した。結果を表13に示す。評価A、Bであれば良好と言える。
<密着性評価基準>
・分類0:A
・分類1:B
・分類2~5:C <Adhesion evaluation>
The prepared metallic base paint was applied to a steel plate (JIS G3141, trade name: SPCC-SB, treatment method: PF-1077, manufactured by Partec Co., Ltd.) by spraying so that the film thickness after drying was about 20 μm. Thereafter, it was cured for 30 minutes in an environment of a temperature of 23 ° C. and a relative humidity of 50%, and heat-treated for 30 minutes at 60 ° C. Further, the coating composition prepared in Table 4 was applied on the steel plate coated with the metallic base coating using an applicator, pre-dried at room temperature for 10 minutes, and then heat-treated in a dryer at 90 ° C. for 30 minutes. After performing, it heat-processed on 80 degreeC conditions for 12 hours, and obtained the coating film. The obtained coating film was subjected to an adhesion test by a cross-cut method according to JIS K5600-5-6. The results are shown in Table 13. Evaluations A and B are good.
<Adhesion evaluation criteria>
・ Class 0: A
・ Category 1: B
・ Category 2-5: C
本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
なお、2018年3月20日に出願された日本特許出願2018-053288号、2018年6月18日に出願された日本特許出願2018-115220号の明細書、特許請求の範囲、要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The specification, claims, and abstract of Japanese Patent Application No. 2018-053288 filed on March 20, 2018 and Japanese Patent Application No. 2018-115220 filed on June 18, 2018 are all included. The contents of which are hereby incorporated herein by reference.
1.第二の実施形態におけるポリイソシアネート組成物のクロマトグラム
2.反応生成物(C)のピーク(斜線部)
3.反応生成物(C)のピークトップ 1. 1. Chromatogram of polyisocyanate composition in the second embodiment Peak of reaction product (C) (shaded area)
3. Peak top of reaction product (C)
2.反応生成物(C)のピーク(斜線部)
3.反応生成物(C)のピークトップ 1. 1. Chromatogram of polyisocyanate composition in the second embodiment Peak of reaction product (C) (shaded area)
3. Peak top of reaction product (C)
Claims (8)
- ヘキサメチレンジイソシアネートと、分子量が300以下の環状基を有するジオールとのウレタン反応生成物(A)と、ヘキサメチレンジイソシアネートをヌレート化したヌレート型ポリイソシアネート(B)とを、質量比で、(A)/(B)=10/90~60/40の範囲で含むことを特徴とする、ポリイソシアネート組成物。 A urethane reaction product (A) of hexamethylene diisocyanate and a diol having a cyclic group having a molecular weight of 300 or less, and a nurate type polyisocyanate (B) obtained by nurating hexamethylene diisocyanate in a mass ratio of (A) / (B) = polyisocyanate composition characterized by containing in a range of 10/90 to 60/40.
- ヘキサメチレンジイソシアネートのヌレート型ポリイソシアネート(B1)と分子量が300未満の環状基を有するジオールとヘキサメチレンジイソシアネートとの反応生成物(C)をさらに含み、(A)と(B)のmol比が8/92~92/8の範囲であることを特徴とする、請求項1に記載のポリイソシアネート組成物。 It further includes a reaction product (C) of hexamethylene diisocyanate nurate polyisocyanate (B1), a diol having a cyclic group having a molecular weight of less than 300 and hexamethylene diisocyanate, and the molar ratio of (A) to (B) is 8 The polyisocyanate composition according to claim 1, wherein the polyisocyanate composition is in the range of / 92 to 92/8.
- 前記反応生成物(C)が、ポリイソシアネート組成物中に2質量パーセント以上含まれることを特徴とする、請求項2に記載のポリイソシアネート組成物。 The polyisocyanate composition according to claim 2, wherein the reaction product (C) is contained in the polyisocyanate composition in an amount of 2% by mass or more.
- 前記環状基を有するジオールが、シクロアルキル環、ベンゼン環、および複素環からなる群より選ばれる少なくとも一種を有するジオールであることを特徴とする請求項1乃至3のいずれかに記載のポリイソシアネート組成物。 The polyisocyanate composition according to any one of claims 1 to 3, wherein the diol having a cyclic group is a diol having at least one selected from the group consisting of a cycloalkyl ring, a benzene ring, and a heterocyclic ring. object.
- 前記環状基を有するジオールが、環状基を2つ以上有するジオールであることを特徴とする、請求項1乃至4のいずれかに記載のポリイソシアネート組成物。 The polyisocyanate composition according to any one of claims 1 to 4, wherein the diol having a cyclic group is a diol having two or more cyclic groups.
- 請求項1乃至5のいずれかに記載のポリイソシアネート組成物とポリオールとを含むポリウレタン樹脂組成物。 A polyurethane resin composition comprising the polyisocyanate composition according to any one of claims 1 to 5 and a polyol.
- 請求項6に記載のポリウレタン樹脂組成物を含む塗料組成物。 A coating composition comprising the polyurethane resin composition according to claim 6.
- 請求項7に記載の塗料組成物から形成された塗膜。 A coating film formed from the coating composition according to claim 7.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018053288A JP7259204B2 (en) | 2018-03-20 | 2018-03-20 | Polyisocyanate composition and coating composition using the same |
JP2018-053288 | 2018-03-20 | ||
JP2018115220A JP7243051B2 (en) | 2018-06-18 | 2018-06-18 | Polyisocyanate composition and coating composition using the same |
JP2018-115220 | 2018-06-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019181798A1 true WO2019181798A1 (en) | 2019-09-26 |
Family
ID=67986241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/010900 WO2019181798A1 (en) | 2018-03-20 | 2019-03-15 | Polyisocyanate composition and coating composition using same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019181798A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021102742A (en) * | 2019-12-25 | 2021-07-15 | 東ソー株式会社 | Modified polyisocyanate composition |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6291569A (en) * | 1985-10-18 | 1987-04-27 | Dainippon Ink & Chem Inc | Coating method for surface finish |
JPH01297420A (en) * | 1988-05-24 | 1989-11-30 | Takeda Chem Ind Ltd | Polyisocyanate composition and resin composition containing the same |
JPH0797423A (en) * | 1993-09-29 | 1995-04-11 | Nippon Polyurethane Ind Co Ltd | Polyisocyanate curing agent, and coating composition and adhesive composition containing same |
JPH08151424A (en) * | 1994-11-29 | 1996-06-11 | Nippon Polyurethane Ind Co Ltd | Polyurethane resin composition and adhesive, sealing agent and binder containing same |
JP2002193315A (en) * | 2000-10-18 | 2002-07-10 | Toyo Seikan Kaisha Ltd | Sealing material for lid, and manufacturing method of lid using the same |
-
2019
- 2019-03-15 WO PCT/JP2019/010900 patent/WO2019181798A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6291569A (en) * | 1985-10-18 | 1987-04-27 | Dainippon Ink & Chem Inc | Coating method for surface finish |
JPH01297420A (en) * | 1988-05-24 | 1989-11-30 | Takeda Chem Ind Ltd | Polyisocyanate composition and resin composition containing the same |
JPH0797423A (en) * | 1993-09-29 | 1995-04-11 | Nippon Polyurethane Ind Co Ltd | Polyisocyanate curing agent, and coating composition and adhesive composition containing same |
JPH08151424A (en) * | 1994-11-29 | 1996-06-11 | Nippon Polyurethane Ind Co Ltd | Polyurethane resin composition and adhesive, sealing agent and binder containing same |
JP2002193315A (en) * | 2000-10-18 | 2002-07-10 | Toyo Seikan Kaisha Ltd | Sealing material for lid, and manufacturing method of lid using the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021102742A (en) * | 2019-12-25 | 2021-07-15 | 東ソー株式会社 | Modified polyisocyanate composition |
JP7435117B2 (en) | 2019-12-25 | 2024-02-21 | 東ソー株式会社 | Modified polyisocyanate composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7169475B2 (en) | Coating composition containing polytrimethylene ether diol useful as a clear coat composition and as a primer composition | |
CN103204983B (en) | aliphatic polyisocyanate prepolymer and polyurethane resin coating composition using the same | |
JP6281280B2 (en) | Allophanate / isocyanurate-forming catalyst, polyisocyanate composition using the catalyst, method for producing the composition, and two-component coating composition using the composition | |
JP6851326B2 (en) | Multi-layer coating film forming method | |
JP2006335954A (en) | Blocked polyisocyanate composition and one-component coating composition | |
WO2018070531A1 (en) | Polyisocyanate mixture, coating composition, and coating film | |
WO2019181798A1 (en) | Polyisocyanate composition and coating composition using same | |
JP7293762B2 (en) | Polyisocyanate composition and coating composition using the same | |
JP2018002972A (en) | Polyisocyanate composition and coating composition using the same | |
JP6840939B2 (en) | Polyisocyanate composition and coating composition using it | |
JP7243051B2 (en) | Polyisocyanate composition and coating composition using the same | |
JP7259204B2 (en) | Polyisocyanate composition and coating composition using the same | |
JP4296178B2 (en) | Coating composition and coated product formed by coating the same | |
WO2023190307A1 (en) | Butane diisocyanate derivative, method for producing butane diisocyanate derivative, polyisocyanate composition, polyurethane resin forming composition, coating composition and coating film | |
KR102080936B1 (en) | Clear paint composition | |
JP7159613B2 (en) | Polyisocyanate composition and coating composition using the same | |
US20060222875A1 (en) | Coating composition containing polytrimethylene ether diol useful as a clear coat composition and as a primer composition | |
MX2011003626A (en) | Polytrimethylene ether diol based coating composition and use thereof. | |
JP7435117B2 (en) | Modified polyisocyanate composition | |
JP2018126711A (en) | Multilayer coating film forming method | |
JP6840991B2 (en) | Polyisocyanate composition and coating composition using it | |
WO2021256254A1 (en) | Modified polyisocyanate composition and coating composition using same | |
WO2017094883A1 (en) | Polyisocyanate composition and coating composition using same | |
JP7069653B2 (en) | Polyisocyanate composition and two-component paint composition using it | |
JP3403478B2 (en) | New urethane coating composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19772513 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19772513 Country of ref document: EP Kind code of ref document: A1 |