Nothing Special   »   [go: up one dir, main page]

WO2019180835A1 - アクセスポイント、端末、情報収集システム、および情報収集方法 - Google Patents

アクセスポイント、端末、情報収集システム、および情報収集方法 Download PDF

Info

Publication number
WO2019180835A1
WO2019180835A1 PCT/JP2018/011126 JP2018011126W WO2019180835A1 WO 2019180835 A1 WO2019180835 A1 WO 2019180835A1 JP 2018011126 W JP2018011126 W JP 2018011126W WO 2019180835 A1 WO2019180835 A1 WO 2019180835A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal
sensor
access point
estimation result
Prior art date
Application number
PCT/JP2018/011126
Other languages
English (en)
French (fr)
Inventor
正夫 大賀
啓二郎 武
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/962,265 priority Critical patent/US20200357270A1/en
Priority to PCT/JP2018/011126 priority patent/WO2019180835A1/ja
Priority to EP18910950.7A priority patent/EP3755000A4/en
Priority to KR1020207025923A priority patent/KR20200118183A/ko
Priority to JP2018538674A priority patent/JP6452911B1/ja
Priority to TW107125702A priority patent/TW201941648A/zh
Publication of WO2019180835A1 publication Critical patent/WO2019180835A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C15/00Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
    • G08C15/06Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path successively, i.e. using time division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/002Telephonic communication systems specially adapted for combination with other electrical systems with telemetering systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0264Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by selectively disabling software applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/70Arrangements in the main station, i.e. central controller
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/82Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data
    • H04Q2209/823Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data where the data is sent when the measured values exceed a threshold, e.g. sending an alarm
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/82Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data
    • H04Q2209/826Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data where the data is sent periodically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/88Providing power supply at the sub-station
    • H04Q2209/883Providing power supply at the sub-station where the sensing device enters an active or inactive mode

Definitions

  • the present invention relates to an access point for performing wireless communication, a terminal equipped with a sensor, an information collection system, and an information collection method applied to the information collection system.
  • the information collection system includes an access point and a terminal on which a sensor is mounted, and uses environmental information to detect an abnormality or estimate a value that the environmental information can take.
  • the access point collects environmental information from the terminal using wireless communication.
  • the terminal acquires environmental information using a sensor.
  • the access point needs to increase the collection frequency of environmental information from the terminal.
  • the use of wireless communication improves the degree of freedom of terminal installation, but on the other hand, it is often difficult to supply power to the terminal. For this reason, the terminal includes a battery, and the sensor and each functional unit are operated using the battery. If the frequency of collecting environmental information from the terminal is increased, the power consumption of the terminal increases, so that the battery is consumed quickly, and the operating time of the terminal decreases.
  • a management server that manages sensors calculates the remaining drive time of the terminal using the remaining battery power of the terminal on which the sensor is mounted, and reports the measurement time of the sensor provided in the terminal so that the remaining drive time becomes equal.
  • an information collection system that controls the number of times and the output of wireless communication.
  • Patent Document 1 has a problem in that the power consumed by communication from the entire terminal to the management server cannot be reduced because the frequency of communication to the management server does not decrease in the entire terminal.
  • the present invention has been made in view of the above, and an object thereof is to obtain an access point that suppresses power consumption of a terminal that transmits a detection value of a sensor.
  • an access point receives first information measured by a sensor from a terminal, and transmits the first information as sensor information to a server device.
  • a measurement result estimator that estimates an estimation result that is an access point and is an information indicating an estimated value of the first information and is used to determine whether or not the terminal transmits the first information;
  • a first communication unit that transmits the estimation result to the terminal, and a second communication unit that transmits the estimation result as sensor information to the server device when the first information is not received from the terminal for a certain period of time after the estimation result is transmitted to the terminal.
  • a communication unit is a communication unit.
  • the access point according to the present invention has an effect that an access point that suppresses power consumption of a terminal that transmits a detection value of a sensor can be obtained.
  • the figure which shows the structural example of the information collection system concerning embodiment The figure which shows the example which the access point concerning embodiment distributes a program Functional block diagram of an access point according to the embodiment
  • the figure which shows the functional block of the sensor mounting terminal concerning embodiment The figure which shows the control circuit concerning embodiment
  • the sequence diagram which shows an example of the program delivery procedure to the sensor mounting terminal concerning embodiment The figure which shows the information which the measurement error estimation parameter concerning embodiment has Sequence diagram showing an example of estimation of the result of sensor measurement according to the embodiment
  • the figure which shows the example of a structure of the estimation result concerning embodiment Sequence diagram showing another example of estimation of the result of sensor measurement according to the embodiment
  • FIG. 1 is a diagram illustrating a configuration example of an information collection system according to an embodiment.
  • the information collection system 40 includes an access point 10a, an access point 10b, a sensor-equipped terminal 20a, a sensor-equipped terminal 20b, a server device 32a, a server device 32b, and a server device 32c.
  • the access point 10a communicates with the server devices 32a, 32b, and 32c via the wide area network 31.
  • the access point 10a communicates with the sensor-equipped terminal 20a and the access point 10b.
  • the access point 10b communicates with the sensor-equipped terminal 20b and the access point 10a.
  • the access point 10b is disposed in a place where it cannot be directly connected to the wide area network 31, and can communicate with the server device 32a, the server device 32b, and the server device 32c via the access point 10a.
  • the access point 10a and the access point 10b are shown without distinction, they are referred to as an access point 10.
  • a sensor-equipped terminal 20 When each of the sensor-equipped terminal 20a and the sensor-equipped terminal 20b is shown without being distinguished, it is referred to as a sensor-equipped terminal 20.
  • the sensor-equipped terminal 20 is also called a terminal.
  • each of the server devices 32a, 32b, and 32c is shown without distinction, it is referred to as a server device 32.
  • the information collection system 40 will be described on the assumption that communication is performed using a specific low power wireless network such as a Wi-SUN (Wireless Smart Utility Network) using the 920 MHz band. It is not limited to using a power wireless network.
  • Wi-SUN Wireless Smart Utility Network
  • the access point 10 communicates wirelessly with the sensor-equipped terminal 20.
  • the access point 10 is connected to the server device 32 via the wide area network 31.
  • a wide area communication network 30 constituted by the wide area network 31 and the server device 32
  • W-CDMA Wideband-Code Division Multiple Access
  • LTE Long Term Evolution
  • the sensor-equipped terminal 20a and the sensor-equipped terminal 20b acquire environmental information.
  • the environmental information is information such as the acceleration of the object, the temperature of the object, the moisture of the soil, and the like.
  • the sensor-equipped terminal 20a and the sensor-equipped terminal 20b that acquired the environmental information transmit the environmental information to the access point 10a and the access point 10b, respectively.
  • the access point 10 transmits the environment information acquired by the sensor-equipped terminal 20a and the sensor-equipped terminal 20b to the wide area network 31 using wide area communication means such as a mobile phone.
  • the environmental information is transmitted and stored in the server device 32a, the server device 32b, and the server device 32c that provide services via the wide area network 31.
  • the service provided by the server device 32 includes, for example, detecting an event according to a purpose such as danger prediction using environmental information and distributing it to a user.
  • the environmental information is also called first information.
  • the environmental information is also called sensor information.
  • the wide area network 31 is connected to the access point 10a. Processing such as line connection control between the access point 10 a and the wide area network 31 and security is provided by a communication method supported by the wide area network 31.
  • a wired line is mainly used, and an IP (Internet Protocol) network is configured using a plurality of routers and optical lines.
  • IP Internet Protocol
  • the communication protocol used for communication via the wide area network 31 is not limited to IP.
  • the server device 32 accumulates environmental information acquired by the sensor-equipped terminal 20.
  • the server device 32 provides a service. Further, the server device 32 distributes a program related to the operation of the access point 10 and the sensor-equipped terminal 20.
  • the server device 32 also provides settings for the access point 10 and the sensor-equipped terminal 20.
  • the server device 32 also has a function of monitoring the states of the access point 10 and the sensor-equipped terminal 20, and a function of displaying the acquired environment information on a console screen or the like.
  • the server device 32 is not limited to three, and four or more server devices 32 may be provided in the information collection system 40 according to the purpose.
  • the server apparatus 32 can select the sensor-equipped terminal 20 and the sensor from which environmental information is acquired.
  • the server devices 32 can share the acquired environment information among the server devices 32.
  • the server device 32 can individually operate the software installed on the sensor-equipped terminal 20 and the access point 10 in parallel. However, the server device 32 is not limited to having these functions.
  • FIG. 2 is a diagram illustrating an example in which the access point 10 according to the embodiment distributes a program.
  • the access point 10 distributes to the sensor-equipped terminal 20 a program for determining a period for acquiring environmental information from the sensor and a program for determining an opportunity for transmitting the environmental information to the access point 10.
  • the sensor-equipped terminal 20 is configured by a general-purpose device such as an electronic computer, for example.
  • the number of programs that can be operated on the sensor-equipped terminal 20 is not limited to one, and a plurality of programs may be operated depending on applications such as the type of sensor.
  • a program A is a program that acquires environmental information from, for example, a sensor that measures the acceleration of an object.
  • the program B is a program for acquiring environmental information from a sensor that measures, for example, soil moisture.
  • FIG. 3 is a functional block diagram of the access point 10 according to the embodiment.
  • the access point 10 includes a communication unit 100, an antenna 101, a wide area interface unit 102, an antenna 103, a software processing unit 104, a database unit 105, and a software distribution unit 106.
  • the communication unit 100 has a wireless IF (Interface) function for transmitting and receiving signals to communicate with the other access points 10 and the sensor-equipped terminals 20, and a modem that performs control for wireless connection with the other access points 10 and the sensor-equipped terminals 20. With function.
  • the communication unit 100 is also called a first communication unit.
  • the antenna 101 communicates with other access points 10 and sensor-equipped terminals 20.
  • the wide area interface unit 102 communicates with the wide area network 30 and relays environment information received from the sensor-equipped terminals 20 to the wide area network 30.
  • the wide area interface unit 102 is also called a second communication unit.
  • the antenna 103 communicates with the wide area communication network 30.
  • the software processing unit 104 collects environment information transmitted from another access point 10 or the sensor-equipped terminal 20.
  • the software processing unit 104 includes a measurement result estimation unit 1041 and a sensing cycle control unit 1042.
  • the measurement result estimation unit 1041 estimates an estimation result indicating an estimated value when it is assumed that the environment information transmitted from the sensor-equipped terminal 20 is within a certain error range. In addition, the measurement result estimation unit 1041 broadcasts the estimation result to the sensor-equipped terminal 20.
  • the sensing cycle control unit 1042 controls the acquisition cycle of the sensor 201 included in the sensor-equipped terminal 20. In addition, the sensing cycle control unit 1042 designates and manages a report determination cycle, which is a time during which the sensor-equipped terminal 20 transmits environment information to the access point 10. The report determination period is also called a first period.
  • the sensing cycle control unit 1042 uses the estimation result of the environmental information estimated by the measurement result estimation unit 1041 to be measured by the sensor-equipped terminal 20. As a result, a proxy report is sent to the server device 32.
  • the database unit 105 sets operation information of the sensor-equipped terminal 20, programs necessary for the software processing unit 104 to operate, wireless communication parameters necessary for the communication unit 100 and the wide area interface unit 102 to communicate, and the like. Information and a program for sensor-equipped terminals to be downloaded to the sensor-equipped terminal 20 are stored.
  • the software distribution unit 106 causes the sensor-equipped terminal program to be downloaded to the sensor-equipped terminal 20 stored in the database unit 105. Information that associates the sensor-equipped terminal 20 with the sensor-equipped terminal program is registered in the operation information of the sensor-equipped terminal 20 stored in the database unit 105.
  • the configuration example in which the wide area interface unit 102 is provided in the access point 10 is shown. However, the wide area interface unit 102 is provided outside the access point 10 and is connected to the wide area communication network 30. A connection function may be provided.
  • FIG. 4 is a diagram illustrating functional blocks of the sensor-equipped terminal 20 according to the embodiment.
  • the sensor-equipped terminal 20 includes a sensing unit 200, sensors 201-1 to 201-n, a communication unit 202, an antenna 203, a software processing unit 204, a storage unit 205, a software update unit 206, and a battery 207.
  • sensors 201-1 to 201-n are not distinguished, they are referred to as sensors 201.
  • the sensing unit 200 performs parameter setting of the sensor 201 and control of the sensor 201. In addition, the sensing unit 200 acquires environmental information from the sensor 201.
  • the sensor 201 is described as an example of an acceleration sensor and a thermometer used for an inclinometer or the like, but the sensor 201 is not limited to these sensors.
  • the communication unit 202 includes a wireless IF function for transmitting and receiving a signal for wireless communication with the access point 10 and a modem function for performing control for wireless connection with the access point 10.
  • the antenna 203 communicates with the access point 10.
  • the software processing unit 204 performs processing for collecting environmental information from the sensor 201, processing for transmitting environmental information acquired from the sensor 201 to the access point 10, and power saving processing.
  • the software processing unit 204 includes a measurement error determination unit 2041 and a report determination unit 2042.
  • the measurement error determination unit 2041 estimates the error of the estimation result of the measurement result estimation unit 1041 using the environment information acquired from the sensor 201.
  • the report determination unit 2042 determines whether it is necessary to transmit environmental information to the access point 10 based on the estimation error of the measurement error determination unit 2041.
  • the report determination unit 2042 does not transmit environment information to the access point 10. For this reason, power saving of the battery 207 and use of a band due to unnecessary wireless transmission are suppressed.
  • the report determination unit 2042 corrects the estimation result. Information is transmitted to the communication unit 100.
  • the storage unit 205 is a process program for collecting environmental information, a program for processing to transmit environmental information acquired from the sensor 201 to the access point 10, a program for power saving processing, and a communication unit 202 necessary for communication. Stores setting information such as wireless parameters.
  • the program stored in the storage unit 205 is read when the sensor-equipped terminal 20 is activated.
  • the processing program for collecting environmental information is also called a first program.
  • the storage unit 205 temporarily stores environment information acquired by the sensing unit 200 from the sensor 201.
  • the software update unit 206 updates the program stored in the storage unit 205 to a program uploaded by the software distribution unit 106 of the access point 10 shown in FIG.
  • the software update unit 206 diagnoses the program stored in the storage unit 205 and, when determining that the distribution source is normal, expands the program in the software processing unit 204 and activates the software.
  • the battery 207 supplies power to each functional unit of the sensor-equipped terminal 20.
  • the battery 207 may be supplied with power from a solar power generation device installed outside the sensor-equipped terminal 20 at the time of a power failure.
  • the software processing unit 104, the software distribution unit 106, the software processing unit 204, and the software update unit 206 are realized by a processing circuit that is an electronic circuit that performs each processing.
  • the processing circuit may be dedicated hardware or a control circuit including a memory and a CPU (Central Processing Unit) that executes a program stored in the memory.
  • the memory corresponds to, for example, a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), or a flash memory, a magnetic disk, or an optical disk.
  • the control circuit is, for example, a control circuit 300 having a configuration shown in FIG.
  • the control circuit 300 includes a processor 300a, which is a CPU, and a memory 300b.
  • the processor 300a is realized by reading and executing a program corresponding to each process stored in the memory 300b.
  • the memory 300b is also used as a temporary memory in each process performed by the processor 300a.
  • FIG. 6 is a sequence diagram illustrating an example of a program distribution procedure to the sensor-equipped terminal according to the embodiment.
  • the first program is created via the console screen of the server device 32 or the like.
  • the first program is distributed to the access point 10 by performing an operation (step S100) for distributing the program on the server device 32 (step S101).
  • the access point 10 that has received the first program from the server device 32 stores the first program in the database unit 105 (step S102).
  • the software distribution unit 106 sends a storage completion response to the server device 32 (step S103).
  • the software distribution unit 106 starts a process of updating software for the sensor-equipped terminals 20 included in the device ID list (step S104), and distributes the program to the sensor-equipped terminals 20 by broadcast (step S105).
  • the sensor-equipped terminal 20 After receiving the first program distributed from the access point 10, the sensor-equipped terminal 20 stores the first program in the storage unit 205 (step S106).
  • the software update unit 206 diagnoses the program stored in the storage unit 205 and, when determining that the distribution source is normal, expands the program in the software processing unit 204 (step S107) and starts the software ( In step S108), the software distribution unit 106 is notified that the software has started (step S109).
  • the software distribution unit 106 Upon receiving the notification of completion of software activation, the software distribution unit 106 develops a program for operating the software processing unit 104 stored in the database unit 105 in the software processing unit 104 and starts a service (step S110).
  • the access point 10 When the software activation is completed in step S110, the access point 10 periodically broadcasts the measurement error estimation parameter 400 used by the measurement result estimation unit 1041 to the sensor-equipped terminal 20.
  • FIG. 7 is a diagram illustrating information included in the measurement error estimation parameter 400 according to the embodiment.
  • the measurement error estimation parameter 400 includes an information distribution number, a device ID, a sensor registration number, a sensor ID, a reference value, an allowable error, a change detection threshold value, and a transmission request.
  • the number of information distributions is the number of sensor-equipped terminals 20.
  • the device ID is an ID for identifying the sensor-equipped terminal 20.
  • the sensor registration number is the number of sensors connected to the sensor-equipped terminal 20.
  • the sensor ID is an ID for identifying each sensor (inclinometer, thermometer, etc.) connected to the sensor-equipped terminal 20.
  • the reference value is a value used for error estimation of environmental information acquired from each sensor connected to the sensor-equipped terminal 20.
  • the reference value is a value obtained by averaging past environmental information acquired from the sensor-equipped terminal 20, and when the sensor-equipped terminal 20 newly acquires the environmental information, the reference value is updated using the new environmental information.
  • the access point 10 receives environment information from the sensor-equipped terminal 20, the reference value is automatically updated using the environment information received by the access point 10.
  • the allowable error is a value used for evaluating whether the result of error estimation performed by the sensor-equipped terminal 20 is within an allowable range.
  • the change detection threshold is a value for determining whether the environmental information acquired from the sensor 201 has detected an abnormality.
  • the access point 10 requests the sensor-equipped terminal 20 to transmit environmental information.
  • the sensor-equipped terminal 20 determines the access point regardless of the estimation result of the measurement error determination unit 2041. 10 transmits environmental information. For example, as shown in FIG. 7, when the sensor ID 0x00010001 connected to the sensor-equipped terminal with the device ID of the measurement error estimation parameter 400 is 0x00010000, when the inclinometer measurement result is 0.1 degrees or more, the report determination unit 2042 Transmits the environment information to the access point 10 regardless of the estimation result.
  • Each initial value of the measurement error estimation parameter 400 is set when a program is created via the console screen of the server device 32 or the like.
  • Each value of the measurement error estimation parameter 400 can be set and updated via the console screen of the server device 32 or the like.
  • the value used for error estimation is described as the measurement error estimation parameter 400.
  • the present invention is not limited to the measurement error estimation parameter 400, and the value used for error estimation is the estimation result. Any parameter may be used as long as it is necessary for error estimation with environmental information.
  • a numerical value is designated as a parameter necessary for error estimation, but it may be expressed by a calculation formula or the like.
  • the parameter necessary for error estimation may be time information or information associated with year / month information. Further, the time or year / month information of the sensor-equipped terminal 20 may be used for error estimation. Further, a sunshine condition depending on the weather or a parameter related to the season may be used as a parameter necessary for error estimation.
  • FIG. 8 is a sequence diagram illustrating an example of estimation of a result of sensor measurement according to the embodiment. A series of processes shown in FIG. 8 is called a measurement result estimation process.
  • the access point 10 periodically broadcasts the measurement error estimation parameter 400 to the sensor-equipped terminal 20 (step S200).
  • the measurement error determination unit 2041 that has received the measurement error estimation parameter 400 stores the measurement error estimation parameter 400 in the storage unit 205.
  • the sensing unit 200 reaches the acquisition cycle, the sensing unit 200 acquires environmental information from the sensor 201 (step S201).
  • the measurement error determination unit 2041 receives environment information from the sensing unit 200.
  • the measurement error determination unit 2041 determines whether the environmental information acquired by the sensing unit 200 is within the error range using the reference value of the measurement error estimation parameter 400 and the allowable error ( ⁇ ⁇ ), and the determination result Is notified to the report determination unit 2042 (step S202). If the determination result is within the allowable error range, the report determination unit 2042 determines that there is no problem in estimating the measurement result by the measurement result estimation unit 1041, and does not transmit environment information to the access point 10 (step S203). . When the determination result is outside the allowable error range, the report determination unit 2042 determines that there is a problem with the measurement result estimation by the measurement result estimation unit 1041, and transmits the environment information to the access point 10.
  • the sensing cycle control unit 1042 manages the environment information acquisition cycle and report determination cycle of the sensor-equipped terminal 20, and generates an environment information acquisition opportunity regardless of whether or not the environment information is received from the sensor-equipped terminal 20. .
  • An acquisition opportunity is a signal that causes the measurement result estimation unit 1041 to acquire environment information.
  • the measurement result estimation unit 1041 confirms whether or not environmental information is newly received from the sensor-equipped terminal 20 (step S204).
  • the measurement result estimation unit 1041 uses the reference value included in the measurement error estimation parameter 400 as the estimation result (step S205), and broadcasts the estimation result to the sensor-equipped terminal 20 (step S206).
  • the measurement result estimation unit 1041 transmits the environment information received from the sensor-equipped terminal 20 to the server device 32 as a measurement result without performing the measurement result estimation process.
  • the measurement result estimation unit 1041 will be described as a case where environment information is not received. Details of the environmental information and measurement results transmitted by the sensor-equipped terminal 20 will be described later.
  • FIG. 9 is a diagram illustrating a configuration example of an estimation result according to the embodiment.
  • the estimation result 500 includes an information distribution number, a device ID, a sensor registration number, a sensor ID, and an estimation result.
  • the functions of the information distribution number, device ID, sensor registration number, and sensor ID are the same as the function of the measurement error estimation parameter 400, respectively.
  • the estimation result is a value obtained by estimating the measurement result corresponding to the sensor ID estimated by the measurement result estimation unit 1041.
  • the configuration example of the estimation result 500 will be described.
  • the estimation result distributed by the measurement result estimation unit 1041 is not limited to the configuration example of the estimation result 500 illustrated in FIG.
  • the measurement error determination unit 2041 uses the estimation result received from the access point 10 to verify the estimation error whether the estimation result is within the error range of the environmental information acquired by the sensing unit 200 (step S207). As a result of the verification, when it is confirmed that the estimation result of the access point 10 is within the allowable error range, the measurement error determination unit 2041 completes the process.
  • the measurement result estimation unit 1041 waits for the terminal evaluation time to elapse in order to determine whether or not there is a response from the sensor-equipped terminal 20 after distribution of the estimation result (step S208).
  • the terminal evaluation time is a time managed by the measurement result estimation unit 1041 and a time for waiting for a response from the center-equipped terminal 20 with respect to the estimation result distributed in step S206.
  • the terminal evaluation time is set in consideration of the transmission delay of the center-equipped terminal 20.
  • FIG. 10 is a sequence diagram illustrating another example of estimation of the result of sensor measurement according to the embodiment.
  • Each procedure from step S300 to step S306 is the same as the operation described in step S200 to step S206 in FIG.
  • the measurement error determination unit 2041 verifies the estimation error between the estimation result received from the access point 10 and the environment information acquired from the sensing unit 200 (step S307). As a result of the verification of the estimation error, when the measurement error determination unit 2041 determines that the estimation result of the access point 10 exceeds the allowable error range, the report determination unit 2042 corrects the estimation result of the access point 10, The environment information acquired from the sensor 201 stored in the storage unit 205 is transmitted to the access point 10 (step S308).
  • FIG. 11 is a diagram illustrating an example of environment information transmitted to the access point 10 by the sensor-equipped terminal 20 according to the embodiment.
  • the environment information 600 includes a device ID, a sensor report number, a sensor ID, and a measurement result.
  • the functions of the device ID and sensor ID are the same as the functions of the device ID and sensor ID of the measurement error estimation parameter 400.
  • the number of sensor reports is the number of environmental information that the sensor-equipped terminal 20 reports to the access point 10.
  • the measurement result is a value of environmental information acquired from the sensor 201.
  • the measurement result estimation unit 1041 that has received the environment information stops the process of waiting for the terminal evaluation time (step S309).
  • the measurement result estimation unit 1041 corrects the estimation result to the environment information received from the sensor-equipped terminal 20, and updates the reference value of the measurement error estimation parameter 400 stored in the database unit 105 (Step S310). Thereafter, the measurement result estimation unit 1041 reports the corrected estimation result to the server device 32 as a measurement result of the environment information (step S311).
  • the sensor-equipped terminal 20 can transmit the environmental information only when the error between the estimation result of the access point 10 and the environmental information measured by the sensor-equipped terminal 20 is outside the allowable range. For this reason, it is possible to reduce the wireless transmission processing that requires power consumption while maintaining the accuracy of the environment information reported to the server device 32 by the access point 10 and suppressing the bandwidth used for wireless communication.
  • step S310 when correction of the estimation result of the access point 10 is frequently performed by the environment information of the plurality of sensors 201, the sensor-equipped terminal 20 gives priority to the environment information acquired from the plurality of sensors 201, respectively.
  • the access point 10 has a function of estimating environmental information and a function of proxy reporting to the server device 32.
  • the sensor-equipped terminal 20 has a function of verifying the estimation result of the access point 10 and a function of correcting the estimation result of the access point 10. For this reason, the use band of the wireless communication of the sensor-equipped terminal 20 can be suppressed, the power consumption of the sensor-equipped terminal 20 can be reduced, and the accuracy of the environmental information transmitted to the server device 32 can be improved.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Telephonic Communication Services (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Selective Calling Equipment (AREA)

Abstract

本発明にかかるアクセスポイント(10)は、センサにより計測される第1の情報を端末から受信し、第1の情報をセンサ情報としてサーバ装置へ送信するアクセスポイントであって、第1の情報の推定値を示す情報であって端末において第1の情報を送信するか否かの判定に用いられる情報である推定結果、を推定する計測結果推定部(1041)と、推定結果を端末へ送信する通信部(100)と、推定結果の端末への送信から一定時間以上端末から第1の情報を受信しない場合、サーバ装置に推定結果をセンサ情報として送信する広域インタフェース部(102)とを備えることを特徴とする。

Description

アクセスポイント、端末、情報収集システム、および情報収集方法
 本発明は、無線通信を行うアクセスポイント、センサを搭載する端末、情報収集システム、および該情報収集システムに適用される情報収集方法に関する。
 近年、道路、橋、トンネル、上下水道など社会インフラの老朽化または自然災害による被害、または、工場などの生産設備の稼働状態などを測定する様々なセンサから環境情報を収集する情報収集システムが注目されている。情報収集システムは、アクセスポイントとセンサを搭載する端末とを有し、環境情報を用いて異常の検出または環境情報が取り得る値の推定を行う。アクセスポイントは、無線通信を用いて端末から環境情報を収集する。端末はセンサを用いて環境情報を取得する。情報収集システムが高精度な検出または推定を行う場合、アクセスポイントは、端末からの環境情報の収集頻度を高くする必要がある。無線通信を用いることで端末の設置の自由度が向上するが、一方で端末の電源の供給が難しくなる場合が多い。このため、端末はバッテリーを備え、バッテリーを用いてセンサおよび各機能部を動作させる。端末からの環境情報の収集頻度を多くすると、端末の消費電力が多くなるためバッテリーの消耗は早くなり、端末の稼働時間は下がる。
 特許文献1は、センサを統括する管理サーバがセンサを搭載する端末のバッテリー残量を用いて端末の残り駆動時間を算出し、残り駆動時間が等しくなるように端末に備わるセンサの計測時間、報告回数、および無線通信の出力などを制御する情報収集システムを開示する。
特開2003-115092号公報
 しかしながら、特許文献1に記載の情報収集システムは、端末全体では管理サーバへの通信の頻度は減少しないため、端末全体から管理サーバへの通信によって消費される電力は削減できないという問題があった。
 本発明は、上記に鑑みてなされたものであって、センサの検出値を送信する端末の消費電力を抑制するアクセスポイントを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかるアクセスポイントは、センサにより計測される第1の情報を端末から受信し、第1の情報をセンサ情報としてサーバ装置へ送信するアクセスポイントであって、第1の情報の推定値を示す情報であって端末において第1の情報を送信するか否かの判定に用いられる情報である推定結果、を推定する計測結果推定部と、推定結果を端末へ送信する第1の通信部と、推定結果の端末への送信から一定時間以上端末から第1の情報を受信しない場合、サーバ装置に推定結果をセンサ情報として送信する第2の通信部とを備えることを特徴とする。
 本発明にかかるアクセスポイントは、センサの検出値を送信する端末の消費電力を抑制するアクセスポイントを得ることができるという効果を奏する。
実施の形態にかかる情報収集システムの構成例を示す図 実施の形態にかかるアクセスポイントがプログラムを配信する例を示す図 実施の形態にかかるアクセスポイントの機能ブロック図 実施の形態にかかるセンサ搭載端末の機能ブロックを示す図 実施の形態にかかる制御回路を示す図 実施の形態にかかるセンサ搭載端末へのプログラム配信手順の一例を示すシーケンス図 実施の形態にかかる計測誤差推定パラメータが有する情報を示す図 実施の形態にかかるセンサ計測の結果の推定の一例を示すシーケンス図 実施の形態にかかる推定結果の構成例を示す図 実施の形態にかかるセンサ計測の結果の推定の別の一例を示すシーケンス図 実施の形態にかかるセンサ搭載端末がアクセスポイントに送信する環境情報の例を示す図
 以下に、本発明の実施の形態にかかるアクセスポイント、端末、情報収集システム、および情報収集方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
 図1は、実施の形態にかかる情報収集システムの構成例を示す図である。情報収集システム40は、アクセスポイント10aと、アクセスポイント10bと、センサ搭載端末20aと、センサ搭載端末20bと、サーバ装置32aと、サーバ装置32bと、サーバ装置32cとを備える。アクセスポイント10aは、広域ネットワーク31を介してサーバ装置32a,32b,32cと通信する。また、アクセスポイント10aは、センサ搭載端末20aおよびアクセスポイント10bと通信する。アクセスポイント10bは、センサ搭載端末20bおよびアクセスポイント10aと通信する。アクセスポイント10bは、広域ネットワーク31に直接接続できない場所に配置されており、アクセスポイント10aを介して、サーバ装置32a、サーバ装置32b、およびサーバ装置32cと通信することができる。アクセスポイント10aおよびアクセスポイント10bのそれぞれを区別せずに示すときはアクセスポイント10と称する。センサ搭載端末20a、およびセンサ搭載端末20bのそれぞれを区別せずに示すときは、センサ搭載端末20と称する。センサ搭載端末20は端末とも呼ばれる。サーバ装置32a、32b、32cのそれぞれを区別せずに示すときはサーバ装置32と称する。なお、情報収集システム40は、920MHz帯を用いたWi-SUN(Wireless Smart Utility Network)などの特定小電力無線ネットワークを用いて通信することを前提として説明するが、情報収集システム40は、特定小電力無線ネットワークを用いることに限定されない。
 アクセスポイント10は、センサ搭載端末20と無線通信する。また、アクセスポイント10は、広域ネットワーク31を経由してサーバ装置32と接続する。アクセスポイント10が、広域ネットワーク31とサーバ装置32とで構成される広域通信網30と通信する方法としては、有線接続である広域WAN(Wide Area Network)または携帯電話で利用されるW-CDMA(Wideband-Code Division Multiple Access)、またはLTE(Long Term Evolution)などが挙げられる。
 センサ搭載端末20aおよびセンサ搭載端末20bは環境情報を取得する。環境情報とは、例えば、物体の加速度、物体の温度、土壌の水分などの情報である。環境情報を取得したセンサ搭載端末20aおよびセンサ搭載端末20bは、環境情報をアクセスポイント10aおよびアクセスポイント10bにそれぞれ送信する。アクセスポイント10は、携帯電話などの広域通信手段を用いてセンサ搭載端末20aおよびセンサ搭載端末20bが取得した環境情報を広域ネットワーク31に送信する。環境情報は、広域ネットワーク31を介してサービスを提供するサーバ装置32a、サーバ装置32b、およびサーバ装置32cに送信され蓄積される。サーバ装置32が提供するサービスとは、例えば、環境情報を用いて危険予知などの目的に応じた事象の検出をして、利用者に配信することが挙げられる。環境情報は第1の情報とも呼ばれる。また、環境情報はセンサ情報とも呼ばれる。
 広域ネットワーク31は、アクセスポイント10aと接続する。アクセスポイント10aと広域ネットワーク31との間の回線接続制御、およびセキュリティなどの処理は、広域ネットワーク31がサポートする通信方法により提供される。広域ネットワーク31とサーバ装置32との通信は、主に有線回線が使用され、複数のルータおよび光回線などを用いてIP(Internet Protocol)ネットワークを構成する。なお、広域ネットワーク31を介した通信では、通信プロトコルとしてIPを用いる例を説明するが、広域ネットワーク31を介して通信で用いる通信プロトコルは、IPには限定されない。
 サーバ装置32は、センサ搭載端末20が取得した環境情報を蓄積する。また、サーバ装置32は、サービスの提供を行う。また、サーバ装置32は、アクセスポイント10およびセンサ搭載端末20の動作に関わるプログラムの配信を行う。また、サーバ装置32は、アクセスポイント10およびセンサ搭載端末20の設定の提供を行う。また、サーバ装置32は、アクセスポイント10およびセンサ搭載端末20の状態を監視する機能を備え、また取得した環境情報をコンソール画面等に表示する機能を備える。なお、サーバ装置32は、3台に限らず目的に応じて情報収集システム40に4台以上配備してもよい。また、サーバ装置32は、それぞれ環境情報を取得するセンサ搭載端末20、およびセンサを選択することができる。また、サーバ装置32は、それぞれ取得した環境情報をサーバ装置32間で共用することができる。また、サーバ装置32は、センサ搭載端末20およびアクセスポイント10で動作するソフトウェアを、それぞれ個別に並列動作させることができる。しかし、サーバ装置32は、これらの機能を備えることに限定されない。
 図2は、実施の形態にかかるアクセスポイント10がプログラムを配信する例を示す図である。アクセスポイント10は、センサ搭載端末20に、センサから環境情報を取得する周期を決定するプログラム、および環境情報をアクセスポイント10へ送信する契機を決定するプログラムを配信する。これらのプログラムが動作することで、アクセスポイント10とセンサ搭載端末20とは環境情報の送受信などができるようになる。センサ搭載端末20は、例えば、電子計算機のような汎用的な機器で構成されている。また、センサ搭載端末20で動作可能なプログラムは1つに限定されず、センサの種類など用途に応じて複数のプログラムが動作することとしてもよい。図2では、プログラムAは、例えば、物体の加速度を計測するセンサから環境情報を取得するプログラムである。プログラムBは、例えば、土壌の水分などを計測するセンサから環境情報を取得するプログラムである。
 図3は、実施の形態にかかるアクセスポイント10の機能ブロック図である。アクセスポイント10は、通信部100と、アンテナ101と、広域インタフェース部102と、アンテナ103と、ソフトウェア処理部104と、データベース部105と、ソフトウェア配信部106とを備える。
 通信部100は、他のアクセスポイント10およびセンサ搭載端末20と通信する信号を送受信する無線IF(Interface)機能と、他のアクセスポイント10およびセンサ搭載端末20と無線接続するための制御を行うモデム機能と有する。通信部100は、第1の通信部とも呼ばれる。アンテナ101は、他のアクセスポイント10およびセンサ搭載端末20と通信する。広域インタフェース部102は、広域通信網30と通信し、センサ搭載端末20から受信する環境情報を広域通信網30に中継する。広域インタフェース部102は、第2の通信部とも呼ばれる。なお、アクセスポイント10間の通信方法がセンサ搭載端末20とアクセスポイント10との間の通信方法と異なる場合には、新たに通信方法の異なる通信部100を追加しても良い。アンテナ103は、広域通信網30と通信する。ソフトウェア処理部104は、他のアクセスポイント10、またはセンサ搭載端末20から送信される環境情報の収集を行う。また、ソフトウェア処理部104は、計測結果推定部1041とセンシング周期制御部1042とを備える。
 計測結果推定部1041は、センサ搭載端末20から送信される環境情報が一定の誤差範囲内に収まると仮定した場合の推定値を示す推定結果を推定する。また、計測結果推定部1041は、推定結果をセンサ搭載端末20にブロードキャスト配信を行う。センシング周期制御部1042は、センサ搭載端末20が備えるセンサ201の取得周期を制御する。また、センシング周期制御部1042は、センサ搭載端末20が環境情報をアクセスポイント10に送信する時間である、報告判定周期を指定し管理する。報告判定周期は、第1の周期とも呼ばれる。センシング周期制御部1042が指定した送信時間にセンサ搭載端末20から環境情報を受信しない場合、センシング周期制御部1042は、計測結果推定部1041が推定した環境情報の推定結果をセンサ搭載端末20の計測結果として、サーバ装置32に代理報告する。
 データベース部105は、センサ搭載端末20の運用情報と、ソフトウェア処理部104が動作するために必要なプログラムと、通信部100および広域インタフェース部102が通信するために必要な無線通信のパラメータなどの設定情報と、センサ搭載端末20にダウンロードさせるセンサ搭載端末用プログラムとを格納する。ソフトウェア配信部106は、データベース部105に格納されるセンサ搭載端末用プログラムをセンサ搭載端末20にダウンロードさせる。センサ搭載端末20とセンサ搭載端末用プログラムとを関連付ける情報は、データベース部105に格納されるセンサ搭載端末20の運用情報に登録される。なお、本実施の形態では、広域インタフェース部102は、アクセスポイント10内に備えられる構成例を示しているが、広域インタフェース部102がアクセスポイント10の外部に備えられて、広域通信網30との接続機能を提供することとしても良い。
 図4は、実施の形態にかかるセンサ搭載端末20の機能ブロックを示す図である。センサ搭載端末20は、センシング部200と、センサ201-1~センサ201-nと、通信部202と、アンテナ203と、ソフトウェア処理部204と、記憶部205と、ソフトウェア更新部206と、バッテリー207とを備える。なお、センサ201-1~センサ201-nを区別しないときは、センサ201と称する。
 センシング部200は、センサ201のパラメータ設定およびセンサ201の制御を行う。また、センシング部200は、センサ201から環境情報を取得する。なお、本実施の形態ではセンサ201は、傾斜計などに使用する加速度センサ、および温度計を例として説明するが、センサ201は、これらのセンサには限定されない。通信部202は、アクセスポイント10と無線通信する信号を送受信する無線IF機能と、アクセスポイント10と無線接続するための制御を行うモデム機能とを備える。アンテナ203は、アクセスポイント10と通信を行う。ソフトウェア処理部204は、センサ201から環境情報を収集する処理、センサ201から取得した環境情報をアクセスポイント10へ送信する処理、および省電力処理を行う。また、ソフトウェア処理部204は、計測誤差判定部2041と、報告判定部2042とを備える。
 計測誤差判定部2041は、センサ201から取得した環境情報を用いて、計測結果推定部1041の推定結果の誤差を推定する。報告判定部2042は、計測誤差判定部2041の推定誤差に基づき、アクセスポイント10へ環境情報の送信要否を判定する。計測誤差判定部2041の推定結果の誤差が一定の誤差範囲に収まる場合、報告判定部2042は、アクセスポイント10へ環境情報の送信を行わない。このため、バッテリー207の省電力化、および不要な無線送信による帯域の使用を抑制する。一方で、計測誤差判定部2041の推定誤差が一定以内の誤差範囲に収まらない、またはアクセスポイント10より推定結果が配信されていない場合、報告判定部2042は、推定結果の補正を行うため、環境情報を通信部100に送信する。
 記憶部205は、環境情報を収集する処理のプログラム、センサ201から取得した環境情報をアクセスポイント10へ送信する処理のプログラム、および省電力処理に関わるプログラム、通信部202が通信するために必要な無線パラメータなどの設定情報などを格納する。記憶部205に格納されるプログラムは、センサ搭載端末20の起動時に読み出される。環境情報を収集する処理のプログラムは第1のプログラムとも呼ばれる。また、記憶部205は、センシング部200がセンサ201から取得した環境情報を一時的に保存する。ソフトウェア更新部206は、記憶部205に格納されるプログラムを、図3に示すアクセスポイント10のソフトウェア配信部106がアップロードするプログラムに更新する。ソフトウェア更新部206は、記憶部205に格納されたプログラムの診断を行い、配信元などが正常であると判断した場合、ソフトウェア処理部204にプログラムを展開し、ソフトウェアを起動する。バッテリー207は、センサ搭載端末20の各機能部に電源を供給する。なお、バッテリー207は、停電時にセンサ搭載端末20の外部に設置される太陽光発電装置から電源を供給されることとしてもよい。
 ソフトウェア処理部104、ソフトウェア配信部106、ソフトウェア処理部204、およびソフトウェア更新部206は、各処理を行う電子回路である処理回路により実現される。
 本処理回路は、専用のハードウェアであっても、メモリ及びメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央演算装置)を備える制御回路であってもよい。ここでメモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリなどの、不揮発性または揮発性の半導体メモリ、磁気ディスク、光ディスクなどが該当する。本処理回路がCPUを備える制御回路である場合、この制御回路は例えば、図5に示す構成の制御回路300となる。
 図5に示すように、制御回路300は、CPUであるプロセッサ300aと、メモリ300bとを備える。図5に示す制御回路300により実現される場合、プロセッサ300aがメモリ300bに記憶された、各処理に対応するプログラムを読みだして実行することにより実現される。また、メモリ300bは、プロセッサ300aが実施する各処理における一時メモリとしても使用される。
 図6は、実施の形態にかかるセンサ搭載端末へのプログラム配信手順の一例を示すシーケンス図である。第1のプログラムは、サーバ装置32のコンソール画面等を介して作成される。第1のプログラムは、サーバ装置32でプログラムを配信する操作(ステップS100)が行われることで、アクセスポイント10に配信される(ステップS101)。サーバ装置32から第1のプログラムを受信したアクセスポイント10は、データベース部105に第1のプログラムを格納する(ステップS102)。ソフトウェア配信部106は、第1のプログラムがデータベース部105に格納された後、サーバ装置32に対して、格納完了の応答をする(ステップS103)。第1のプログラムには、プログラムを配信する対象となるセンサ搭載端末20のデバイスIDのリストなど、第1のプログラムを受信すべきセンサ搭載端末20を識別可能な情報が付与されている。ソフトウェア配信部106は、デバイスIDのリストに含まれるセンサ搭載端末20に対してソフトウェアを更新させる処理を開始し(ステップS104)、センサ搭載端末20にブロードキャストによるプログラム配信を行う(ステップS105)。
 センサ搭載端末20は、アクセスポイント10から配信された第1のプログラムを受信後、記憶部205に第1のプログラムを格納する(ステップS106)。ソフトウェア更新部206は、記憶部205に格納されたプログラムの診断を行い、配信元などが正常であると判断した場合、ソフトウェア処理部204にプログラムを展開し(ステップS107)、ソフトウェアを起動し(ステップS108)、ソフトウェアが起動したことをソフトウェア配信部106に通知する(ステップS109)。ソフトウェア配信部106は、ソフトウェア起動完了の通知を受け取ると、データベース部105に格納されたソフトウェア処理部104が動作するためのプログラムをソフトウェア処理部104に展開し、サービスを開始する(ステップS110)。
 ステップS110によりソフトウェア起動が完了すると、アクセスポイント10は、センサ搭載端末20に、計測結果推定部1041が用いる計測誤差推定パラメータ400を、周期的にブロードキャスト配信する。
 図7は、実施の形態にかかる計測誤差推定パラメータ400が有する情報を示す図である。計測誤差推定パラメータ400は、情報配信数と、デバイスIDと、センサ登録数と、センサIDと、基準値と、許容誤差と、変化検出閾値と、送信要求とを有する。
 情報配信数は、センサ搭載端末20の数である。デバイスIDは、センサ搭載端末20を識別するIDである。センサ登録数は、センサ搭載端末20に接続されるセンサの数である。センサIDは、センサ搭載端末20に接続される各センサ(傾斜計、温度計など)を識別するIDである。基準値は、センサ搭載端末20に接続される各センサから取得した環境情報の誤差推定に用いる値である。また、基準値は、センサ搭載端末20から取得した過去の環境情報を平均化した値であり、新たにセンサ搭載端末20が環境情報を取得すると、基準値は新たな環境情報を用いて更新される。また、アクセスポイント10がセンサ搭載端末20から環境情報を受信すると、基準値はアクセスポイント10によって受信した環境情報を用いて自動的に更新される。許容誤差は、センサ搭載端末20が行う誤差推定の結果が許容範囲内であるかを評価するために用いる値である。変化検出閾値は、センサ201より取得した環境情報が異常を検出しているか判断するための値である。送信要求は、アクセスポイント10が環境情報の送信を、センサ搭載端末20に要求する。
 センサ201から取得した環境情報が変化検出閾値以上となる場合、または、アクセスポイント10から送信要求が行われた場合、センサ搭載端末20は、計測誤差判定部2041の推定結果に関係なく、アクセスポイント10に環境情報の送信を行う。例えば、図7に示すように、計測誤差推定パラメータ400のデバイスIDが0x00010000のセンサ搭載端末に接続されるセンサID0x00010001では、傾斜計の計測結果が0.1度以上となる場合、報告判定部2042は、推定結果に関係なく、環境情報をアクセスポイント10に送信する。なお、センサ201から取得した環境情報が、変化検出閾値以上となる場合にアクセスポイント10に環境情報の送信を行う例を説明しているが、変化検出閾値以下となった場合、アクセスポイント10に環境情報の送信を行うこととしてもよい。なお、計測誤差推定パラメータ400の各初期値は、サーバ装置32のコンソール画面等を介してプログラムが作成される際に設定される。また、計測誤差推定パラメータ400の各値は、サーバ装置32のコンソール画面等を介して設定、更新することができる。
 また、本実施の形態においては、誤差推定に用いる値を計測誤差推定パラメータ400であるとして説明するが、本発明は計測誤差推定パラメータ400に限定されず、誤差推定に用いる値は、推定結果と環境情報との誤差推定に必要となるパラメータであれば良い。また、計測誤差推定パラメータ400では、誤差推定に必要となるパラメータとして数値を指定しているが、計算式などにより表現されても良い。さらに、誤差推定に必要となるパラメータは、時刻情報、または年月情報に関連付けられた情報であっても良い。また、センサ搭載端末20の時刻、または年月の情報を、誤差推定に使用してもよい。また、天気などに依存する日照条件、または季節などに関連するパラメータを、誤差推定に必要となるパラメータとして使用してもよい。
 図8は、実施の形態にかかるセンサ計測の結果の推定の一例を示すシーケンス図である。図8に示す一連の処理は、計測結果推定処理と呼ばれる。図6の手順によりソフトウェア起動が完了すると、アクセスポイント10は、計測誤差推定パラメータ400を、センサ搭載端末20に周期的にブロードキャスト配信する(ステップS200)。計測誤差推定パラメータ400を受信した計測誤差判定部2041は、記憶部205に計測誤差推定パラメータ400を格納する。センシング部200は、取得周期に到達するとセンサ201から環境情報を取得する(ステップS201)。計測誤差判定部2041は、センシング部200から環境情報を受信する。また、計測誤差判定部2041は、計測誤差推定パラメータ400の基準値と許容誤差(±Δ)とを用いて、センシング部200が取得した環境情報が誤差範囲内であるかを判定し、判定結果を報告判定部2042に通知する(ステップS202)。報告判定部2042は、判定結果が誤差許容範囲内であった場合、計測結果推定部1041による計測結果の推定は問題ないと判断し、アクセスポイント10への環境情報の送信をしない(ステップS203)。なお、判定結果が誤差許容範囲外であった場合、報告判定部2042は、計測結果推定部1041による計測結果の推定は、問題ありと判断し、アクセスポイント10への環境情報の送信を行う。
 センシング周期制御部1042は、センサ搭載端末20の環境情報の取得周期および報告判定周期を管理しており、センサ搭載端末20からの環境情報の受信の有無に関係なく環境情報の取得契機を生成する。取得契機とは、計測結果推定部1041に環境情報を取得させる信号である。計測結果推定部1041は、センシング周期制御部1042から環境情報の取得契機を通知されると、センサ搭載端末20から新たに環境情報を受信していないか確認を行う(ステップS204)。環境情報を受信していない場合、計測結果推定部1041は、計測誤差推定パラメータ400に含まれる基準値を推定結果とし(ステップS205)、推定結果をセンサ搭載端末20にブロードキャスト配信を行う(ステップS206)。環境情報を受信した場合、計測結果推定部1041は、計測結果推定処理を行わずにセンサ搭載端末20から受信した環境情報を測定結果としてサーバ装置32に送信する。なお、実施の形態では、計測結果推定部1041は環境情報を受信していない場合として説明する。センサ搭載端末20が送信する環境情報および測定結果の詳細については後述する。
 図9は、実施の形態にかかる推定結果の構成例を示す図である。推定結果500は、情報配信数と、デバイスIDと、センサ登録数と、センサIDと、推定結果とを有する。情報配信数、デバイスID、センサ登録数、およびセンサIDの機能は、それぞれ計測誤差推定パラメータ400の機能と同様である。推定結果は、計測結果推定部1041が推定したセンサIDに対応する計測結果を推定した値である。
 本実施の形態においては、推定結果500の構成例を用いて説明するが、計測結果推定部1041が配信する推定結果は、図9に例示する推定結果500の構成例に限定されない。計測誤差判定部2041は、アクセスポイント10から受信した推定結果を用いて、推定結果が、センシング部200が取得した環境情報の誤差範囲内であるか推定誤差の検証を行う(ステップS207)。検証の結果、アクセスポイント10の推定結果が許容誤差の範囲内であることを確認した場合、計測誤差判定部2041は、処理を完了する。計測結果推定部1041は、推定結果の配信後、センサ搭載端末20の応答の有無を判断するため、端末評価時間経過するのを待つ(ステップS208)。端末評価時間とは、計測結果推定部1041が管理する時間であり、ステップS206で配信した推定結果に対するセンタ搭載端末20からの応答を待つ時間である。端末評価時間は、センタ搭載端末20の送信遅延などを考慮して設定される。端末評価時間の経過後、センサ搭載端末20の応答を受信しない場合、計測結果推定部1041は、推定結果が正常値と判断し、推定結果を環境情報の計測結果として、サーバ装置32に代理報告を行う(ステップS209)。
 図10は、実施の形態にかかるセンサ計測の結果の推定の別の一例を示すシーケンス図である。ステップS300からステップS306までの各手順は図8のステップS200からステップS206で説明した動作と同様である。
 計測誤差判定部2041は、アクセスポイント10から受信した推定結果とセンシング部200から取得した環境情報との推定誤差の検証を行う(ステップS307)。推定誤差の検証の結果、計測誤差判定部2041が、アクセスポイント10の推定結果が許容誤差の範囲を超過したと判定した場合、報告判定部2042は、アクセスポイント10の推定結果を補正するため、記憶部205に格納されたセンサ201から取得した環境情報をアクセスポイント10に送信する(ステップS308)。
 図11は、実施の形態にかかるセンサ搭載端末20がアクセスポイント10に送信する環境情報の例を示す図である。環境情報600は、デバイスIDと、センサ報告数と、センサIDと、測定結果とを有する。デバイスIDおよびセンサIDの機能は、計測誤差推定パラメータ400のデバイスIDおよびセンサIDの機能と同様である。センサ報告数は、センサ搭載端末20がアクセスポイント10に報告する環境情報の数である。測定結果は、センサ201から取得した環境情報の値である。環境情報を受信した計測結果推定部1041は、端末評価時間待つ処理を停止する(ステップS309)。また、計測結果推定部1041は、推定結果をセンサ搭載端末20から受信した環境情報に補正し、データベース部105に格納された計測誤差推定パラメータ400の基準値を更新する(ステップS310)。この後、計測結果推定部1041は、補正した推定結果を、環境情報の計測結果としてサーバ装置32に報告する(ステップS311)。
 アクセスポイント10の推定結果とセンサ搭載端末20の計測した環境情報との誤差が許容範囲外の場合のみ、センサ搭載端末20は、環境情報の送信を行うことが可能となる。このため、アクセスポイント10がサーバ装置32に報告する環境情報の精度の維持と、無線通信の使用帯域の抑制とを行いつつ、消費電力を要する無線送信処理を低減することができる。なお、ステップS310において、複数のセンサ201の環境情報によってアクセスポイント10の推定結果の補正が頻繁に行われる場合、センサ搭載端末20は、複数のセンサ201から取得される環境情報にそれぞれ優先度を付け、センサ搭載端末20における高優先度の環境情報のみ用いて、推定結果が許容誤差の範囲内であるかを判定してもよい。このようにすることで、低優先度の環境情報による推定結果の補正を抑制し、無線通信の使用帯域を高優先度の環境情報を送信することに対して使用することができる。
 以上説明したように、本実施の形態によれば、アクセスポイント10は、環境情報の推定を行う機能、およびサーバ装置32への代理報告機能を備える。センサ搭載端末20は、アクセスポイント10が推定した結果を検証する機能、およびアクセスポイント10の推定結果を補正する機能を備える。このため、センサ搭載端末20の無線通信の使用帯域の抑制、センサ搭載端末20の省電力化、サーバ装置32に送信する環境情報の精度を向上することができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 10,10a,10b アクセスポイント、20,20a,20b センサ搭載端末、30 広域通信網、31 広域ネットワーク、32,32a,32b,32c サーバ装置、40 情報収集システム、100,202 通信部、101,103,203 アンテナ、102 広域インタフェース部、104,204 ソフトウェア処理部、105 データベース部、106 ソフトウェア配信部、200 センシング部、201,201-1~201-n センサ、205 記憶部、206 ソフトウェア更新部、207 バッテリー、300 制御回路、300a プロセッサ、300b メモリ、400 計測誤差推定パラメータ、500 推定結果、600 環境情報、1041 計測結果推定部、1042 センシング周期制御部、2041 計測誤差判定部、2042 報告判定部。

Claims (8)

  1.  センサにより計測される第1の情報を端末から受信し、前記第1の情報をセンサ情報としてサーバ装置へ送信するアクセスポイントであって、
     前記第1の情報の推定値を示す情報であって前記端末において前記第1の情報を送信するか否かの判定に用いられる情報である推定結果、を推定する計測結果推定部と、
     前記推定結果を前記端末へ送信する第1の通信部と、
     前記推定結果の前記端末への送信から一定時間以上前記端末から前記第1の情報を受信しない場合、前記サーバ装置に前記推定結果を前記センサ情報として送信する第2の通信部と、
     を備えることを特徴とするアクセスポイント。
  2.  前記端末の前記第1の情報の受信の有無を判断する周期である第1の周期を管理するセンシング周期制御部、
     を備え、
     前記計測結果推定部は、
     前記推定結果を送信後、前記第1の周期の間に前記第1の情報を受信しない場合、前記サーバ装置に前記推定結果を送信し、前記第1の周期の間に前記第1の情報を受信した場合、前記サーバ装置に前記第1の情報を前記推定結果として送信することを特徴とする請求項1に記載のアクセスポイント。
  3.  前記端末において前記第1の情報を送信するか否かが判定されるためのプログラム、を前記端末に配信するソフトウェア配信部、
     を備え、
     前記プログラムは、前記推定結果と前記第1の情報との誤差が許容範囲内である場合、前記端末に前記第1の情報を送信させないプログラムであることを特徴とする請求項1または2に記載のアクセスポイント。
  4.  アクセスポイントと通信可能な端末であって、
     前記端末は、
     物体を計測するセンサと、
     前記センサが計測した情報である第1の情報と前記アクセスポイントから送信される前記第1の情報を推定した情報との誤差が許容範囲内であるかを判定する計測誤差判定部と、
     を備えることを特徴とする端末。
  5.  前記誤差が前記許容範囲内でない場合、前記アクセスポイントへ前記第1の情報を送信し、前記誤差が前記許容範囲内である場合、前記アクセスポイントへ前記第1の情報を送信しない報告判定部を備えることを特徴とする請求項4に記載の端末。
  6.  センサが計測した情報である第1の情報を推定する請求項1から3のいずれか1つに記載のアクセスポイントと、
     前記センサを用いて前記第1の情報を取得する請求項4または5に記載の端末と、
     前記第1の情報を収集するサーバ装置と、
     を備えることを特徴とする情報収集システム。
  7.  センサにより計測される第1の情報を端末から受信し、前記第1の情報をセンサ情報としてサーバ装置へ送信するアクセスポイントと、前記第1の情報を取得する端末と、前記第1の情報を収集するサーバ装置とで構成される情報収集システムにおける情報収集方法であって、
     前記アクセスポイントが前記第1の情報の推定値を示す情報であって前記端末において前記第1の情報を送信するか否かの判定に用いられる情報である推定結果、を推定する第1のステップと、
     前記アクセスポイントが前記推定結果を前記端末へ送信する第2のステップと、
     前記アクセスポイントが前記推定結果の前記端末への送信から一定時間以上前記端末から前記第1の情報を受信しない場合、前記サーバ装置に前記推定結果を前記センサ情報として送信する第3のステップと、
     前記端末が前記第1の情報と前記推定結果との誤差が許容範囲内であるかを判定する第4のステップとを含むことを特徴とする情報収集方法。
  8.  前記アクセスポイントが前記端末の前記第1の情報の受信の有無を判断する周期である第1の周期を管理する第5のステップと、
     前記端末が前記誤差が前記許容範囲内でない場合、前記アクセスポイントへ前記第1の情報を送信し、前記誤差が前記許容範囲内である場合、前記アクセスポイントへ前記第1の情報を送信しない第6のステップと、
     を含み、
     前記第1のステップは、
     前記推定結果を送信後、前記第1の周期の間に前記第1の情報を受信しない場合、前記サーバ装置に前記推定結果を送信し、前記第1の周期の間に前記第1の情報を受信した場合、前記サーバ装置に前記第1の情報を前記推定結果として前記アクセスポイントが送信することを特徴とする請求項7に記載の情報収集方法。
PCT/JP2018/011126 2018-03-20 2018-03-20 アクセスポイント、端末、情報収集システム、および情報収集方法 WO2019180835A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/962,265 US20200357270A1 (en) 2018-03-20 2018-03-20 Access point, information collection system, information collection method, control circuitry, and computer program product
PCT/JP2018/011126 WO2019180835A1 (ja) 2018-03-20 2018-03-20 アクセスポイント、端末、情報収集システム、および情報収集方法
EP18910950.7A EP3755000A4 (en) 2018-03-20 2018-03-20 ACCESS POINT, TERMINAL DEVICE, INFORMATION COLLECTION SYSTEM AND INFORMATION COLLECTION METHOD
KR1020207025923A KR20200118183A (ko) 2018-03-20 2018-03-20 액세스 포인트, 정보 수집 시스템, 정보 수집 방법, 제어 회로, 및 기억 매체
JP2018538674A JP6452911B1 (ja) 2018-03-20 2018-03-20 アクセスポイント、情報収集システム、および情報収集方法
TW107125702A TW201941648A (zh) 2018-03-20 2018-07-25 存取點、終端、資訊收集系統及資訊收集方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/011126 WO2019180835A1 (ja) 2018-03-20 2018-03-20 アクセスポイント、端末、情報収集システム、および情報収集方法

Publications (1)

Publication Number Publication Date
WO2019180835A1 true WO2019180835A1 (ja) 2019-09-26

Family

ID=65020499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011126 WO2019180835A1 (ja) 2018-03-20 2018-03-20 アクセスポイント、端末、情報収集システム、および情報収集方法

Country Status (6)

Country Link
US (1) US20200357270A1 (ja)
EP (1) EP3755000A4 (ja)
JP (1) JP6452911B1 (ja)
KR (1) KR20200118183A (ja)
TW (1) TW201941648A (ja)
WO (1) WO2019180835A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7484524B2 (ja) 2020-07-17 2024-05-16 オムロン株式会社 点検診断システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115092A (ja) 2001-10-04 2003-04-18 Omron Corp センサネットワークシステム管理方法、センサネットワークシステム管理プログラム、センサネットワークシステム管理プログラムを記録した記録媒体、センサネットワークシステム管理装置、中継ネットワークの管理方法、中継ネットワーク管理プログラム、中継ネットワーク管理プログラムを記録した記録媒体、および中継ネットワーク管理装置
WO2006090480A1 (ja) * 2005-02-23 2006-08-31 Hitachi, Ltd. センサネット管理方式
JP2010206596A (ja) * 2009-03-04 2010-09-16 Nec System Technologies Ltd 無線センサシステム、基地局、センサノード、通信制御方法およびプログラム
JP2011135281A (ja) * 2009-12-24 2011-07-07 Nippon Telegr & Teleph Corp <Ntt> 無線端末のソフトウェア更新方法および無線ネットワーク

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6613562B2 (ja) * 2014-12-17 2019-12-04 富士通株式会社 センサ制御装置、センサ制御プログラム及びセンサ制御方法
JP6465012B2 (ja) * 2015-12-14 2019-02-06 オムロン株式会社 データフロー制御装置およびデータフロー制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115092A (ja) 2001-10-04 2003-04-18 Omron Corp センサネットワークシステム管理方法、センサネットワークシステム管理プログラム、センサネットワークシステム管理プログラムを記録した記録媒体、センサネットワークシステム管理装置、中継ネットワークの管理方法、中継ネットワーク管理プログラム、中継ネットワーク管理プログラムを記録した記録媒体、および中継ネットワーク管理装置
WO2006090480A1 (ja) * 2005-02-23 2006-08-31 Hitachi, Ltd. センサネット管理方式
JP2010206596A (ja) * 2009-03-04 2010-09-16 Nec System Technologies Ltd 無線センサシステム、基地局、センサノード、通信制御方法およびプログラム
JP2011135281A (ja) * 2009-12-24 2011-07-07 Nippon Telegr & Teleph Corp <Ntt> 無線端末のソフトウェア更新方法および無線ネットワーク

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3755000A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7484524B2 (ja) 2020-07-17 2024-05-16 オムロン株式会社 点検診断システム

Also Published As

Publication number Publication date
JPWO2019180835A1 (ja) 2020-04-23
JP6452911B1 (ja) 2019-01-16
KR20200118183A (ko) 2020-10-14
EP3755000A1 (en) 2020-12-23
US20200357270A1 (en) 2020-11-12
TW201941648A (zh) 2019-10-16
EP3755000A4 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
JP6641893B2 (ja) センサネットワークを管理する方法
US9794942B1 (en) System and method for saving energy in a locator apparatus
JP7073952B2 (ja) データ収集システム及びデータ収集方法
KR20160045875A (ko) 공조기 제어 시스템, 센서 기기 제어 방법 및 프로그램
KR101178669B1 (ko) 모션 센싱을 이용한 usn 기반의 자산 추적 장치 및 방법
JP7541711B2 (ja) 電池寿命予測システム、装置及び電池寿命予測方法
JP5252079B2 (ja) 無線通信システム、無線基地局装置、パラメーター決定装置
JP6452911B1 (ja) アクセスポイント、情報収集システム、および情報収集方法
US11624675B2 (en) Water leakage detection method, water leakage detection apparatus, and vibration sensor terminal
CN110954149A (zh) 用于校准传感器系统的方法
JP2016005172A (ja) メッシュ無線通信システム、無線通信方法、および、無線機
US11418932B2 (en) Environmental sensor-based radio transmitter of a utility meter system
JP2010067000A (ja) 劣化及び故障電池交換サービスシステム
WO2016133439A1 (en) Method device and computer program for calibration of a sensor
CN115136020B (zh) 远程电池估计
EP4109931A1 (en) Improving battery life during bluetooth device localization
US20180139809A1 (en) Energy measurement for a lighting system
JP2018160758A (ja) 斜面監視装置、斜面監視方法、および、斜面監視プログラム
WO2019176674A1 (ja) センサ装置、計測システム、および計測方法
JP2016220499A (ja) 電力需要推定方法、サーバ装置及び電力需要推定システム
CN115046570B (zh) 天线姿态仪倾角自动温度补偿方法
JP7375537B2 (ja) 観測ユニット、観測方法、および観測プログラム
JP2013036812A (ja) センサネットワークシステムおよびセンサ出力補正方法
CN111256815B (zh) 光线强度的确定方法及装置
JP2021051635A (ja) 情報収集システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018538674

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207025923

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018910950

Country of ref document: EP

Effective date: 20200918