Nothing Special   »   [go: up one dir, main page]

WO2019177116A1 - 大型フォトマスク - Google Patents

大型フォトマスク Download PDF

Info

Publication number
WO2019177116A1
WO2019177116A1 PCT/JP2019/010647 JP2019010647W WO2019177116A1 WO 2019177116 A1 WO2019177116 A1 WO 2019177116A1 JP 2019010647 W JP2019010647 W JP 2019010647W WO 2019177116 A1 WO2019177116 A1 WO 2019177116A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
film
pattern
low
shielding
Prior art date
Application number
PCT/JP2019/010647
Other languages
English (en)
French (fr)
Inventor
冬木 今野
建也 三好
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to CN201980032507.6A priority Critical patent/CN112119352B/zh
Priority to JP2020506656A priority patent/JP7420065B2/ja
Priority to KR1020207029308A priority patent/KR102653366B1/ko
Priority to KR1020247010297A priority patent/KR20240046289A/ko
Publication of WO2019177116A1 publication Critical patent/WO2019177116A1/ja
Priority to JP2023182390A priority patent/JP2024001250A/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/46Antireflective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • G03F1/58Absorbers, e.g. of opaque materials having two or more different absorber layers, e.g. stacked multilayer absorbers

Definitions

  • the present disclosure relates to a large-sized photomask used for manufacturing a display device functional element used in a display device.
  • a photolithography method using a photomask has been suitably used as a fine processing method at the time of manufacturing a functional element for a display device.
  • a photomask a photomask having a light-shielding pattern provided on the surface of a light-transmitting substrate and including a light-transmitting region and a light-shielding region is generally used.
  • Patent Document 1 describes a configuration of a photomask in which an antireflection film is provided on the surface side of a light shielding pattern.
  • FIG. 11 is a graph comparing the fluctuation of the transfer line width shift with respect to the exposure amount between an existing low-sensitivity resist and a high-sensitivity resist used in recent years. As shown in FIG. 11, the high-sensitivity resist has a smaller exposure amount necessary for curing than the low-sensitivity resist, and the transfer line width shift varies greatly at a stage where the exposure amount is small.
  • the exposure light including g-line, h-line, or i-line lacks the energy of exposure light applied to the resist layer. It is required to use exposure light including light of a plurality of wavelengths such as rays, h-rays, and i-rays, and in particular, it is required to use exposure light including j-rays having high energy among these lights. It has been. On the other hand, when these exposure lights are used, since the change of the resist layer during exposure increases, the influence of the above-described weak stray light on the resist layer is further increased.
  • the present disclosure has been made in view of the above-described problems, and has as its main purpose to provide a large-sized photomask that can suppress unevenness and dimensional variation in a pattern transferred to a transfer target. To do.
  • the present disclosure provides a large-sized photomask that includes a light-transmitting substrate and a light-shielding pattern provided on a surface of the light-transmitting substrate.
  • the film, the light-shielding film, and the second low-reflection film have a laminated structure in which the light-transmitting substrate side is laminated in this order, and the surface of the light-shielding pattern on the light-transmitting substrate side is 313 nm to 436 nm.
  • a large-sized photomask having a reflectance of 8% or less with respect to light in the wavelength region is provided.
  • the surface of the light shielding pattern opposite to the light transmitting substrate preferably has a reflectance of 10% or less with respect to light in the wavelength region of 313 nm to 436 nm.
  • the light-shielding film contains chromium
  • the first low-reflection film and the second low-reflection film contain chromium oxide.
  • the light shielding pattern preferably has an optical density (OD) of 4.5 or more for light in the wavelength region of 313 nm to 436 nm.
  • the inclination angle of the side surface of the light-shielding film with respect to the light-transmitting substrate is preferably 80 degrees or more and 90 degrees or less. It is because the influence of the reflected light of the exposure light irradiated on the side surface of the light shielding film can be suppressed.
  • the side surface of the first low-reflection film or the side surface of the second low-reflection film protrudes in a direction parallel to the surface of the light-transmitting substrate with respect to the side surface of the light-shielding film. Is preferred.
  • both the side surface of the first low-reflection film and the side surface of the second low-reflection film protrude in a direction parallel to the surface of the light-transmitting substrate with respect to the side surface of the light-shielding film. It is preferable that the side surface of the 1 low reflective film protrudes in a direction parallel to the surface of the translucent substrate from the side surface of the second low reflective film.
  • At least a side surface of the first low-reflection film protrudes in a direction parallel to the surface of the light-transmitting substrate with respect to a side surface of the light-shielding film, and further, the light-transmitting property on the side surface of the first low-reflection film
  • the angle with respect to the surface of the conductive substrate is preferably 56 ° or less. This is because the foreign matter can be easily removed by cleaning, and the amount of foreign matter present can be reduced.
  • the side surface of the light-shielding film is concave.
  • segmentation exposure it is preferable to have the division pattern used for division
  • FIG. 1 It is a schematic sectional drawing which shows an example of the large sized photomask of this indication. It is a schematic sectional drawing which shows the process of transferring a pattern to the resist layer which a to-be-transferred body has by exposure using the large sized photomask shown by FIG. It is the enlarged view which showed the area
  • FIG. 10 is a schematic process cross-sectional view showing a part of the manufacturing process of the pattern transfer body shown in FIG. 9. It is the graph which compared the fluctuation
  • the large-sized photomask of the present disclosure is a large-sized photomask including a light-transmitting substrate and a light-shielding pattern provided on the surface of the light-transmitting substrate.
  • the light-shielding pattern includes a first low-reflection film, a light-shielding property,
  • the film and the second low reflection film have a laminated structure in which the light transmissive substrate side is laminated in this order, and the surface of the light shielding pattern on the light transmissive substrate side has a wavelength region of 313 nm to 436 nm.
  • the reflectance with respect to light is 8% or less.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of a large photomask according to the present disclosure.
  • FIG. 2 is a schematic cross-sectional view showing a process of transferring a pattern to a resist layer of a transfer target by exposure using the large photomask shown in FIG.
  • the large photomask 100 includes a translucent substrate 110 and a light shielding pattern 120 provided on the surface 110 a of the translucent substrate 110.
  • the light shielding pattern 120 has a laminated structure in which a first low reflective film 122, a light shielding film 124, and a second low reflective film 126 are laminated in this order from the light transmitting substrate 110 side.
  • the reflectance of the surface 120a of the light shielding pattern 120 on the light transmitting substrate 110 side is 8% or less for any light in the wavelength region of 313 nm to 436 nm.
  • a resist layer 220 is formed on the substrate 210 by exposure using a large photomask 100 to emit exposure light including light in any of the above wavelength regions from a light source (UV lamp).
  • the exposure light includes the surface 120a of the light shielding pattern 120 on the light transmitting substrate 110 side, the surface 300a of the exposure shielding plate 300, and the light transmitting substrate 110.
  • the exposure shielding plate 300 originally blocks the exposure light irradiation.
  • the intensity of the stray light La applied to the resist layer 220 can be reduced, for example, to less than 0.3% of the exposure illuminance. Thereby, it is possible to suppress the occurrence of unevenness and variation in dimensions in the pattern transferred to the resist layer 220 in the shielding region.
  • the exposure light is reflected due to reflection of the surface of the light shielding pattern on the light transmitting substrate side.
  • the intensity of stray light it is possible to suppress the occurrence of unevenness and dimensional variations in the pattern transferred to the transfer target.
  • g-line wavelength 436 nm
  • h-line wavelength 405 nm
  • i-line wavelength 365 nm
  • j-line wavelength 313 nm
  • the change in the resist layer during exposure by exposure light including light of a plurality of wavelengths is larger than that of exposure light of a single wavelength, and in particular, the change in resist layer during exposure by exposure light including j-rays is large. Become. For this reason, when exposure light containing light of a plurality of wavelengths, particularly exposure light containing j-rays, is used, the influence of weak stray light on the resist is further increased. The problem of causing unevenness becomes significant. On the other hand, in the large-sized photomask 100 shown in FIG.
  • the reflectance of the surface 120a of the light shielding pattern 120 on the light transmitting substrate 110 side can be reduced to 8% or less.
  • the exposure light that includes light of a plurality of wavelengths such as g-line, h-line, and i-line is transferred to the transfer target. It is possible to remarkably suppress the occurrence of unevenness in the pattern.
  • the light-shielding pattern is a light-shielding pattern provided on the surface of the light-transmitting substrate, and the first low-reflection film, the light-shielding film, and the second low-reflection film are the light-transmitting substrate.
  • the light-transmitting substrate side surface of the light-shielding pattern has a reflectivity with respect to light in the wavelength region of 313 nm to 436 nm of 8% or less.
  • the surface of the light shielding pattern on the light transmitting substrate side has a reflectance with respect to light in the wavelength region of 313 nm to 436 nm of 8% or less. That is, for any light in the wavelength region, the reflectance of the surface of the light shielding pattern on the light transmitting substrate side is 8% or less.
  • the surface of the light-shielding pattern on the light-transmitting substrate side is not particularly limited as long as it has a reflectance with respect to light in the wavelength region of 8% or less, but in particular, the reflectance with respect to light in the wavelength region of 365 nm to 436 nm. Is preferably 5% or less.
  • the intensity of the stray light La shown in FIG. 2 can be reduced to, for example, less than 0.2% of the exposure illuminance. . This is because the intensity of the stray light can be reduced from the level at which the resist layer of the transfer object is exposed to a level that does not completely affect the level.
  • the reflectance with respect to light in the wavelength region of 313 nm to 365 nm is 5% or less. This is because the same effect can be obtained in exposure using exposure light including light in a wider wavelength range. More specifically, not only the current exposure apparatus and resist in which exposure light in the wavelength region of 365 nm to 436 nm is used, but also other exposure apparatus and resist in which exposure light in the wavelength region of 313 nm to 365 nm is used. This is because the same effect can be obtained.
  • a device (Otsuka Electronics MCPD) using a photodiode array as a detector can be used.
  • the surface of the light-shielding pattern opposite to the light-transmitting substrate preferably has a reflectance of 10% or less for light in the wavelength region of 313 nm to 436 nm. That is, for any light in the wavelength region, it is preferable that the reflectance of the surface of the light shielding pattern on the side opposite to the light transmitting substrate is 10% or less.
  • the method for measuring the reflectance of the surface of the light shielding pattern opposite to the light transmissive substrate is the same as the reflectance of the surface of the light shielding pattern on the light transmissive substrate side.
  • the reflectance of the surface 120b on the opposite side of the light-transmitting substrate 110 of the light shielding pattern 120 is 10% or less for any light in the wavelength region of 313 nm to 436 nm. It has become. Therefore, as shown in FIG. 2, a resist layer 220 is formed on a substrate 210 by exposure using exposure light including light in any of the above wavelength regions using a large photomask 100.
  • the exposure light includes the surface 120b of the light shielding pattern 120 on the side opposite to the translucent substrate 110, the interface 212 between the air (not shown) and the resist layer 220, and the resist layer.
  • the resist layer 220 that is originally blocked from exposure light exposure by the edge portion of the light shielding pattern 120 is formed.
  • the intensity of the stray light Lb irradiated can be reduced to, for example, less than 2.0% of the exposure illuminance. Thereby, it is possible to suppress the occurrence of dimensional variation or the like in the pattern transferred to the resist layer 220 at the edge portion.
  • the reflectance with respect to light in the above wavelength region is 10% or less. Reduces the intensity of stray light caused by exposure light reflecting off the surface of the light-shielding pattern opposite to the light-transmitting substrate during exposure using exposure light containing light in any of the wavelength regions By doing so, it is possible to effectively suppress the occurrence of dimensional variation or the like in the pattern transferred to the transfer target.
  • exposure using exposure light including light of a plurality of wavelengths such as g-line, h-line, and i-line, particularly exposure light including j-line, there is a variation in dimensions in the pattern transferred to the transfer target. This is because this can be suppressed more remarkably.
  • the surface of the light shielding pattern opposite to the light transmitting substrate preferably has a reflectance with respect to the light in the wavelength region of 10% or less, and in particular, the reflection with respect to the light in the wavelength region of 365 nm to 436 nm. A rate of 5% or less is preferred.
  • the intensity of the stray light Lb shown in FIG. 2 can be reduced to, for example, less than 1.0% of the exposure illuminance. .
  • the intensity of the stray light is changed from the level of the boundary where the resist layer is exposed to such an extent that the pattern transferred to the resist layer of the transferred object at the edge portion of the light shielding pattern has a dimensional variation.
  • variations can be reduced to a level at which no variation occurs.
  • the reflectance with respect to light in the wavelength region of 313 nm to 365 nm is 5% or less. This is because the same effect can be obtained in exposure using exposure light including light in a wider wavelength range.
  • the first low-reflection film is provided on the light-transmitting substrate side in the laminated structure of the light-shielding pattern, and has a thickness of 313 nm to 436 nm on the surface of the light-shielding pattern on the light-transmitting substrate side. It is a film that realizes the function of reducing the reflectance to light in the wavelength region to 8% or less.
  • the light shielding pattern has the first low reflection film
  • the light transmission of the first low reflection film when light in the wavelength region is irradiated onto the surface of the light shielding pattern on the light transmitting substrate side, the light transmission of the first low reflection film.
  • the light reflected from the surface on the optical substrate side, the light reflected from the internal interface of the first low reflection film, and the light reflected from the boundary between the first low reflection film and the light shielding film are caused by interference.
  • substrate of the said light shielding pattern can be reduced to 8% or less.
  • the film thickness of the first low reflective film it is possible to realize a function of reducing the reflectance of the light shielding pattern on the light transmitting substrate side to the light in the wavelength region to 8% or less. If it is, it will not specifically limit, but the film thickness which falls in the range of 10 nm-50 nm is preferable. This is because if the thickness is too thin, the function of reducing the reflectance decreases, and if the thickness is too thick, it is difficult to process the light shielding pattern with high accuracy.
  • the material of the first low reflection film is not particularly limited as long as it is a material that can reduce the reflectance of the light shielding pattern on the light transmitting substrate side to the light in the wavelength region to 8% or less.
  • chromium oxide (CrO X ) and chromium oxynitride (CrON) are preferable, and chromium oxide (CrO X ) is particularly preferable.
  • the formation method of the first low reflection film examples include a sputtering method, a vacuum deposition method, and an ion plating method. More specifically, for example, a method in which a Cr target is mounted in a vacuum chamber, O 2 , N 2 , CO 2 gas is introduced, and a film is formed by reactive sputtering in a vacuum environment. It is done. In this method, by increasing the O 2 gas ratio as compared with the case of forming a low reflection film in a light shielding pattern of a general binary mask, the surface of the light shielding pattern on the light transmitting substrate side is 313 nm. The reflectance for light in the wavelength region of ⁇ 436 nm is reduced to 8% or less.
  • the second low-reflection film is provided on the opposite side of the light-transmitting substrate in the stacked structure of the light-shielding pattern, and is provided on the opposite side of the light-shielding pattern to the light-transmitting substrate. It is a film that realizes a function of reducing the reflectance of light in the wavelength region of 313 nm to 436 nm on the surface.
  • the light-shielding pattern has the second low-reflection film
  • the second low-reflection film Reflected at the boundary between the second low-reflection film and the light-shielding film, reflected from the surface opposite to the translucent substrate, reflected from the internal interface of the second low-reflection film
  • the second low-reflection film is a film that realizes a function of reducing the reflectance with respect to light in the wavelength region of 313 nm to 436 nm on the surface of the light-shielding pattern opposite to the light-transmitting substrate. Although there is no particular limitation as long as it is present, a film that realizes a function of reducing the reflectance with respect to light in the wavelength region of 313 nm to 436 nm on the opposite surface to 10% or less is preferable.
  • the film thickness of the second low reflection film is not particularly limited as long as it can realize a function of reducing the reflectance of the light in the wavelength region on the surface opposite to the light transmitting substrate of the light shielding pattern.
  • a film thickness in the range of 10 nm to 50 nm is preferable. This is because if the thickness is too thin, the function of reducing the reflectance decreases, and if the thickness is too thick, it is difficult to process the light shielding pattern with high accuracy.
  • the material of the second low reflection film is the same as that of the first low reflection film, description thereof is omitted here.
  • the reflectance of the light shielding pattern on the side opposite to the light transmitting substrate with respect to light in the wavelength region of 313 nm to 436 nm is reduced to 10% or less. Since it is the same as the formation method of a 1st low reflection film, description here is abbreviate
  • the light-shielding film is a film having a light-shielding property provided between the first low-reflection film and the second low-reflection film in the laminated structure of the light-shielding pattern.
  • the film thickness of the light-shielding film is not particularly limited, but a film thickness in the range of 80 nm to 180 nm is preferable. This is because it is difficult to obtain a desired light shielding property if it is too thin, and it is difficult to process the light shielding pattern with high accuracy if it is too thick.
  • the material of the light-shielding film is not particularly limited as long as it has a light-shielding property.
  • chromium (Cr), chromium oxynitride (CrON), chromium nitride (CrN), molybdenum silicide oxide (MoSiO) examples thereof include molybdenum silicide oxynitride (MoSiON), tantalum oxide (TaO), and tantalum silicide oxide (TaSiO).
  • Cr chromium
  • CrON chromium oxynitride
  • CrN chromium nitride
  • MoSiO molybdenum silicide oxide
  • MoSiON molybdenum silicide oxynitride
  • TaO tantalum oxide
  • TaSiO tantalum silicide oxide
  • Method for Forming Light-shielding Film examples include a sputtering method, a vacuum deposition method, and an ion plating method.
  • the time for forming the light-shielding film is extended more than usual. And a method of increasing the number of film forming scans.
  • Light shielding pattern a Optical density (OD)
  • the light shielding pattern preferably has an optical density (OD) of 4.5 or more for light in the wavelength region of 313 nm to 436 nm. That is, for any light in the above wavelength region, an optical density (OD) of 4.5 or more is preferable.
  • an ultraviolet / visible spectrophotometer (Hitachi U-4000) can be used as a method of measuring the optical density (OD) with respect to light in the wavelength region.
  • the optical density (OD) of the light shielding pattern 120 with respect to light in the wavelength region of 313 nm to 436 nm is 4.5 or more. That is, the optical density (OD) of the light shielding pattern 120 is 4.5 or more for any light in the wavelength region. Therefore, as shown in FIG. 2, a resist layer 220 is formed on a substrate 210 by exposure using exposure light including light in any of the above wavelength regions using a large photomask 100.
  • the intensity of the transmitted light Lc through which the exposure light passes through the light shielding pattern 120 can be reduced to, for example, 0.001% or less of the exposure illuminance. Thereby, it is possible to suppress the occurrence of unevenness in the pattern transferred to the resist layer 220.
  • the optical density (OD) is 4.5 or more.
  • the exposure light is reduced in intensity of transmitted light that passes through the light shielding pattern, thereby causing unevenness in the pattern transferred to the transfer target. It is because it can suppress effectively that this occurs.
  • unevenness or the like occurs in the pattern transferred to the transfer object during exposure using exposure light including light of a plurality of wavelengths such as g-line, h-line, and i-line, particularly exposure light including j-line. It is because it can suppress effectively.
  • optical density (OD) of the light shielding pattern in the photomask it is not preferable to increase the optical density (OD) of the light shielding pattern in the photomask from the viewpoint that the light shielding pattern becomes thick and it is difficult to process with high accuracy. This tendency is particularly remarkable in photomasks used in the manufacture of semiconductor integrated circuits.
  • the width of the light shielding pattern is, for example, a width of 0.1 ⁇ m or more and less than 10.0 ⁇ m.
  • the width of the light shielding pattern is preferably a width whose dimensions are controlled on the order of submicrons.
  • the width of the light shielding pattern is defined by the dimension in the short direction of the planar view shape.
  • the width whose dimension is controlled in the submicron order means a width whose dimension is controlled in units of 0.1 ⁇ m, for example, a width of 0.1 ⁇ m or more and less than 1.0 ⁇ m.
  • the overall film thickness of the light shielding pattern is not particularly limited, but is preferably in the range of 100 nm to 250 nm. This is because it is difficult to obtain a desired light shielding property if it is too thin, and it is difficult to process the light shielding pattern with high accuracy if it is too thick.
  • the light-shielding pattern preferably has an optical density (OD) of 4.5 or more with respect to light in the wavelength region and a desired cross-sectional shape.
  • OD optical density
  • a preferable cross-sectional shape of the light shielding pattern will be described.
  • FIG. 3 is an enlarged view showing the region within the broken line frame shown in FIG. 1 with the drawing upside down.
  • the optical density (OD) with respect to light in the wavelength region of 313 nm to 436 nm of the light shielding pattern 120 is 4.5 or more.
  • the inclination angle ⁇ of the side surface 124a of the light shielding film 124 with respect to the light transmissive substrate 110 is not less than 80 degrees and not more than 90 degrees.
  • FIG. 4 is a schematic cross-sectional view showing a region corresponding to FIG. 3 in a conventional large-sized photomask.
  • the inclination angle ⁇ of the side surface 124 a of the light-shielding film 124 with respect to the translucent substrate 110 is less than 80 degrees.
  • the inclination angle ⁇ of the side surface 124a of the light-shielding film 124 with respect to the translucent substrate 110 is not less than 80 degrees and not more than 90 degrees
  • the inclination angle ⁇ is set as shown in FIG. Unlike the case of less than 80 degrees, reflected light of exposure light (stray light) irradiated to the side surface 124a of the light-shielding film 124 from an oblique direction on the light source side at the time of exposure for transferring the pattern to the resist layer of the transfer target.
  • the possibility of being guided to the opening 120c side of the light shielding pattern 120 increases.
  • the inclination angle of the side surface of the light shielding film with respect to the light transmissive substrate is What is 80 degree
  • the inclination angle of the side surface of the light-shielding film with respect to the light-transmitting substrate is the inclination angle of the tangent of the edge on the side of the light-transmitting film on the side surface of the light-shielding film as indicated by ⁇ in FIG. Means.
  • 5 to 7 are schematic cross-sectional views each showing a region corresponding to FIG. 3 in another example of the large photomask of the present disclosure.
  • the light shielding pattern 120 has an optical density (OD) of 4.5 or more for light in the wavelength region of 313 nm to 436 nm.
  • the side surface 124 a of the light shielding film 124 is a plane perpendicular to the translucent substrate 110, and the side surface 122 a of the first low reflection film 122 and the side surface 126 a of the second low reflection film 126. Projecting from the side surface 124 a of the light-shielding film 124 by a length L 1 in a direction parallel to the light-transmitting substrate 110.
  • the light shielding pattern 120 has an optical density (OD) of 4.5 or more for light in the wavelength region of 313 nm to 436 nm.
  • the side surface 124a of the light shielding film 124 is a concave surface composed of a plurality of planes, and the side surface 122a of the first low reflection film 122 and the side surface of the second low reflection film 126.
  • the side surface 124a of the light-shielding film 124 is narrowed by a width W1 in a direction parallel to the translucent substrate 110 from a position closest to the opening 120c to a position farthest from the position.
  • the light shielding pattern 120 has an optical density (OD) of 4.5 or more for light in the wavelength region of 313 nm to 436 nm.
  • the side surface 124a of the light shielding film 124 is a concave curved surface.
  • the side surface 124a of the light shielding film 124 is constricted by a width W2 in a direction parallel to the translucent substrate 110 from a position closest to the opening 120c to a position farthest from the position.
  • the side surface 122 a of the first low-reflection film 122 and the side surface 126 a of the second low-reflection film 126 are transparent to the side surface 124 a of the light-shielding film 124. 110 protrudes in a direction parallel to the surface 110a. For this reason, the exposure light (stray light) irradiated to the side surface 124a of the light-shielding film 124 from the oblique direction on the light source side at the time of exposure for transferring the pattern to the resist layer included in the transfer target is intensified by the first low reflection film 122.
  • the side surface 124a of the light-shielding film 124 is irradiated. Further, the reflected light of the exposure light applied to the side surface 124 a of the light shielding film 124 is applied to the resist layer after the intensity is reduced by the second low reflection film 126. Therefore, the first low-reflection film 122 and the second low-reflection film 126 can suppress the intensity when the resist layer is irradiated with the exposure light that is applied to the side surface 124 a of the light-shielding film 124 from an oblique direction on the light source side.
  • the side surface of the first low-reflection film or the second low-reflection film is used as the light-shielding pattern having an optical density (OD) of 4.5 or more with respect to light in the wavelength region. It is preferable that the side surface of the reflective film protrudes in a direction parallel to the surface of the translucent substrate with respect to the side surface of the light-shielding film.
  • the light shielding pattern thick so that the optical density (OD) is 4.5 or more, the amount of reflected light of the exposure light irradiated on the side surface of the light shielding film from the oblique direction on the light source side can be reduced. This is because, despite the increase, it is possible to suppress the occurrence of unevenness in the pattern transferred to the transfer target due to the influence of the reflected light.
  • the side surface of the first low reflection film or the side surface of the second low reflection film protrudes in a direction parallel to the surface of the translucent substrate with respect to the side surface of the light-shielding film.
  • Any one of the protrusions is not particularly limited, but those protruding both of these side faces are preferable.
  • the side surface of the first low-reflection film or the side surface of the second low-reflection film protrudes in a direction parallel to the surface of the light-transmitting substrate with respect to the side surface of the light-shielding film.
  • the protrusion length as indicated by L1 and L2 in FIG. 6 is 1/2 or more of the film thickness of the light-shielding film. This is because it is possible to effectively suppress the occurrence of unevenness in the pattern transferred to the transfer target due to the influence of the reflected light.
  • the protruding length means that the side surface of the first low reflection film or the side surface of the second low reflection film is the transparent surface from the position farthest from the opening of the light shielding pattern on the concave side surface of the light shielding film. It means the length protruding in the direction parallel to the surface of the optical substrate.
  • the side surface of the first low-reflection film or the side surface of the second low-reflection film is parallel to the surface of the light-transmitting substrate with respect to the side surface of the light-shielding film for the following reasons. It is preferable that it protrudes.
  • a metal film of chromium or the like has a higher polarity than a metal oxide film of chromium oxide or the like, so that foreign matters tend to adhere to it. Therefore, when the light-shielding film is chromium, the side surface of the light-shielding film is parallel to the surface of the translucent substrate with respect to the side surface of the first low-reflection film or the side surface of the second low-reflection film. If protruding in the direction, there is a high possibility that foreign matter will adhere to the light-shielding film, and it may be difficult to remove the foreign matter by subsequent cleaning.
  • the side surface of the first low-reflection film or the side surface of the second low-reflection film is parallel to the surface of the light-transmitting substrate with respect to the side surface of the light-shielding film. It is preferable that the side surface protrudes, and in particular, both side surfaces protrude.
  • the side surface of the first low-reflection film protrudes most, and then the side surface of the second low-reflection film and the side surface of the light-shielding film. It is preferable that the order is.
  • the side surface of the first low-reflection film protrudes most, so the area where the foreign matter comes into contact with the metal oxide film is large. This is because it becomes easy to peel off.
  • At least a side surface of the first low-reflection film protrudes in a direction parallel to the surface of the light-transmitting substrate with respect to a side surface of the light-shielding film, and further,
  • the angle of the side surface with respect to the surface of the translucent substrate is preferably 56 ° or less.
  • FIG. 12 shows a part of an example of such a large-sized photomask.
  • the side surface 122a of the first low-reflection film 122 and the side surface 126a of the second low-reflection film 126 are on the surface 110a of the light-transmitting substrate 110 with respect to the side surface 124a of the light-shielding film 124. It protrudes in the parallel direction.
  • the angle ⁇ formed between the side surface 122a of the first low reflection film 122 and the surface 110a of the translucent substrate 110 is an angle of 56 ° or less.
  • the angle of the side surface of the first low-reflection film with respect to the surface of the light-transmitting substrate is 56 ° or less, the cleaning fluid at the time of cleaning comes into contact even when foreign matter is attached. Since the area to be processed can be increased, cleaning can be performed efficiently, and problems due to the presence of foreign matter after the cleaning process can be prevented.
  • the angle of the side surface of the first low reflective film with respect to the surface of the light transmissive substrate is a position A where the side surface 122a of the first low reflective film 122 and the surface 110a of the light transmissive substrate 110 are in contact with each other. This is an angle obtained by drawing a straight line from the position B where the film thickness of the first low reflection film 122 starts to decrease and measuring the angle between the straight line and the surface 110a.
  • the fact that the side surface 122a of the first low-reflection film 122 protrudes from the side surface 124a of the light-shielding film 124 means that the position B where the film thickness of the first low-reflection film 122 starts to decrease is B. This means that the side surface 124 a of the light-shielding film 124 protrudes in a direction parallel to the surface 110 a of the translucent substrate 110.
  • the angle of the side surface of the first low-reflection film with respect to the translucent substrate surface is preferably 56 ° or less, and more preferably 40 ° or less. This is because cleaning can be performed more efficiently.
  • the one where the said angle is smaller is preferable, it is preferable that it is 20 degrees or more from a viewpoint of manufacture that actual manufacture is difficult.
  • the side surface of the second low-reflection film also protrudes in a direction parallel to the surface of the light-transmitting substrate rather than the side surface of the light-shielding film. This is because adhesion of foreign matter to the side surface of the light-shielding film, which may be difficult to remove the foreign matter by cleaning due to the influence of adhesiveness to the foreign matter, can be reduced.
  • the side surface 124a of the light-shielding film 124 is concave. For this reason, the reflected light of the exposure light (stray light) irradiated to the side surface 124a of the light-shielding film 124 from the oblique direction on the light source side at the time of exposure to transfer the pattern to the resist layer of the transfer target is reflected on the light source side or the light-shielding pattern.
  • the possibility of being guided to the opening 120c side of 120 increases. Therefore, it can suppress that this reflected light is irradiated to the resist layer from which irradiation of exposure light is blocked
  • FIG. Thereby, it is possible to suppress the occurrence of dimensional variation or the like in the pattern transferred to the resist layer at the edge portion.
  • the light shielding pattern having an optical density (OD) of 4.5 or more with respect to light in the wavelength region it is preferable that the side surface of the light shielding film is concave. .
  • the optical density (OD) is 4.5 or more, the amount of reflected light of the exposure light irradiated on the side surface of the light shielding film from the oblique direction on the light source side can be reduced. This is because, despite the increase, it is possible to suppress the occurrence of dimensional variation or the like in the pattern transferred to the transfer target due to the influence of the reflected light.
  • the constriction width of the side surface of the light shielding film as indicated by W1 and W2 in FIGS. 6 and 7 is the film thickness of the light shielding film. What is 1/2 or more is preferable. This is because it is possible to effectively suppress the occurrence of dimensional variation or the like in the pattern transferred to the transfer target due to the influence of the reflected light.
  • the constriction width means a width in a direction parallel to the surface of the translucent substrate from a position closest to the opening of the light shielding pattern on the side surface of the light shielding film to a position farthest from the opening.
  • the boundary between the light-shielding film and the first low-reflection film and the second low-reflection film may be a clear boundary or an unclear boundary.
  • the light-shielding pattern having the clear boundary is preferable in that the characteristics of each film can be easily controlled individually. Further, the light-shielding pattern having the unclear boundary is preferable in that the processed surface becomes smooth and can be easily manufactured.
  • the light-shielding pattern having a clear boundary is formed by individually forming the first low-reflection film, the light-shielding film, and the second low-reflection film using a sputtering apparatus in which gases are replaced. It can be produced.
  • the first low reflection film, the light shielding film, and the second low reflection film are continuously formed without changing the gas of the sputtering apparatus. Can be produced.
  • the formation method of the light shielding pattern for example, a light shielding layer having a laminated structure in which a first low reflection film, a light shielding film, and a second low reflection film are laminated in this order on the surface of synthetic quartz glass.
  • a method of forming a resist pattern having a desired shape on the surface of the light shielding layer and forming the light shielding layer by wet etching using the resist pattern as a mask may be used.
  • the size of the translucent substrate is not particularly limited as long as it can be a photomask having at least one side of 350 mm or more, and is appropriately selected according to the use of the large photomask of the present disclosure. Although it is not particularly limited, it is preferably 330 mm ⁇ 450 mm or more, particularly preferably within a range of 330 mm ⁇ 450 mm to 1700 mm ⁇ 1800 mm.
  • the film thickness of the translucent substrate can be appropriately selected according to the material and use of the large photomask.
  • the film thickness of the translucent substrate is, for example, about 8 mm to 17 mm.
  • the light-transmitting substrate is light-transmitting, and a light-transmitting substrate used for a general large photomask can be used.
  • the translucent substrate include optically polished low expansion glass (aluminoborosilicate glass, borosilicate glass) and synthetic quartz glass.
  • synthetic quartz glass is particularly preferably used. This is because the thermal expansion coefficient is small and it is easy to manufacture a large photomask.
  • the resin-made translucent substrate can also be used.
  • the light transmissive property of the light transmissive substrate is not particularly limited as long as it is the same as that of a light transmissive substrate used for a general large-sized photomask.
  • the light transmittance in a wavelength region of 313 nm to 436 nm is 80%.
  • the above are preferred, and among them, those of 85% or more, particularly 90% or more are preferred. This is because a light-transmitting substrate with higher purity has less scattering of light passing through the material and has a lower refractive index, so that generation of stray light can be suppressed.
  • the large-sized photomask of the present disclosure includes the light-transmitting substrate and the light-shielding pattern, and has a reflectance of 8% or less with respect to light in the wavelength region on the surface of the light-shielding pattern on the light-transmissive substrate side. Although it will not specifically limit if it is a thing, it has a division pattern used for division
  • Divided exposure means that a transfer area is divided into a plurality of exposure areas on a transfer object, each of the plurality of exposure areas is individually exposed using a large photomask, and each of the plurality of exposure areas is exposed to a photomask.
  • FIG. 8 is a schematic plan view illustrating another example of the large photomask of the present disclosure.
  • FIG. 9 is a schematic plan view showing a pattern transfer body manufactured from a transfer target body using the large photomask shown in FIG.
  • FIGS. 10A to 10B are schematic process cross-sectional views showing a part of the manufacturing process of the pattern transfer body shown in FIG.
  • the large photomask 100 is provided on the translucent substrate 110 and the surface 110a of the translucent substrate 110, and the first divided pattern 150a, the second divided pattern 150b, and the third divided different from each other.
  • the first divided pattern 150a, the second divided pattern 150b, and the third divided pattern 150c are the first low reflection film 122, the light shielding film 124, and the second low pattern, respectively, similarly to the light shielding pattern 120 shown in FIG.
  • the reflective film 126 is a light shielding pattern 120 having a stacked structure in which the reflective film 126 is stacked in this order from the light transmitting substrate 110 side.
  • the surface of the first divided pattern 150a, the second divided pattern 150b, and the third divided pattern 150c on the translucent substrate 110 side has a wavelength region of 313 nm to 436 nm, similar to the light shielding pattern 120 shown in FIG.
  • the reflectance with respect to light is 8% or less.
  • a pattern transfer body 200 ′ shown in FIG. 9 uses a large photomask 100 shown in FIG. 8 to form a first divided pattern 150a, a second divided pattern 150b, and a resist layer 220 of the transfer target 200. And each pattern of the 3rd division
  • a light source UV lamp
  • the pattern transfer body 200 ′ When the pattern transfer body 200 ′ is manufactured, first, in the first exposure, the second divided pattern 150b and the third divided pattern 150c are shielded by the exposure shielding plate 300 (illustrated in FIG. 10), so that the resist The exposure light is irradiated to the layer 220 only through the first divided pattern 150a among the first to third divided patterns. Next, in the second to sixth exposures, the third divided pattern 150c and the first divided pattern 150a are shielded by the exposure shielding plate 300, so that the resist layer 220 is exposed to the first to third divided patterns. The exposure light is irradiated only through the second divided pattern 150b.
  • the first division pattern 150a and the second division pattern 150b are shielded by the exposure shielding plate 300, whereby the resist layer 220 is divided into the third division among the first to third division patterns.
  • the exposure light is irradiated only through the pattern 150c. Accordingly, one first resist pattern 220a to which the first divided pattern 150a is transferred, five second resist patterns 220b to which the second divided pattern 150b is transferred, and one to which the third divided pattern 150c is transferred.
  • the third resist pattern 220c is formed so as to be connected in a single direction. As a result, a continuous single resist pattern is formed.
  • the exposure light is transmitted through the second divided pattern 150b (light shielding pattern 120) as in the step shown in FIG.
  • the resist layer 220 in the shielding region (third exposure region) that is originally blocked by the exposure shielding plate 300 from exposure light exposure By reducing the intensity of the stray light La irradiated can be reduced.
  • the stray light intensity is reduced in the same manner as the second exposure to thereby reduce the resist in the region where the stray light La has been irradiated in the second exposure.
  • the intensity of the stray light Lb further irradiated to the layer 220 can be reduced, and the intensity of the stray light La further irradiated to the resist layer 220 in the region where the stray light Lb has been irradiated in the second exposure can be reduced.
  • the exposure light reflects each surface of the light-shielding pattern when each of the plurality of exposure regions of the transfer object is individually exposed using the large-sized photomask in the divided exposure.
  • the intensity of the stray light can be reduced even when multiple exposure due to the stray light occurs in the resist layer. For this reason, it is possible to remarkably suppress the occurrence of unevenness and dimensional variations in the pattern transferred to the transfer target.
  • the large photomask manufacturing method of the present disclosure is not particularly limited as long as the large photomask having the above-described configuration can be manufactured, and is similar to a general large photomask manufacturing method. be able to.
  • a synthetic quartz glass is prepared as a translucent substrate, and a light shielding layer having a laminated structure in which a first low reflection film, a light shielding film, and a second low reflection film are laminated in this order on the surface of the synthetic quartz glass.
  • a mask blank comprising: is prepared.
  • a resist pattern having a desired shape is formed on the surface of the light shielding layer, and the light shielding layer is processed by wet etching using the resist pattern as a mask to form a light shielding pattern from the light shielding layer. Thereby, a large photomask is manufactured.
  • the etchant used for the wet etching is not particularly limited as long as it can accurately process the light shielding layer and does not damage the light transmitting substrate.
  • a dicerium ammonium solution or the like can be used.
  • the large-sized photomask of this indication can be used suitably for the photolithographic method at the time of manufacture of pattern transfer bodies, such as a functional element for display apparatuses used for a display apparatus, for example.
  • Examples of the display device functional element manufactured using the large photomask of the present disclosure include a substrate with metal wiring used for a TFT substrate, a TFT substrate, etc., a color filter, a substrate with a light shielding part used for a color filter, etc. Can be mentioned.
  • a method for manufacturing a pattern transfer body such as a display device functional element using the large photomask of the present disclosure is not particularly limited, and may be the same as a general manufacturing method using a large photomask manufacturing method. it can.
  • a production process comprising preparing an object to be transferred having a resist layer, exposing the resist layer by irradiating exposure light through a large photomask, and developing the resist layer after exposure A method can be mentioned.
  • the resist used for the resist layer may be the same as a general resist, and may be a positive resist or a negative resist.
  • the positive resist include novolac resin, phenol epoxy resin, acrylic resin, polyimide, and cycloolefin. Specific examples include IP3500 (manufactured by TOK), PFI27 (manufactured by Sumitomo Chemical), ZEP7000 (manufactured by ZEON), and positive resist (manufactured by JSR). Of these, positive resists (manufactured by JSR) are preferred. This is because the sensitivity of the present disclosure becomes remarkable due to high sensitivity.
  • examples of the negative resist include acrylic resin.
  • PGMA polyglycidyl methacrylate
  • SAL601 chemically amplified SAL601
  • JSR negative resist
  • the film thickness of the resist layer is not particularly limited, but is, for example, in the range of 10 nm to 10 ⁇ m.
  • the method for forming the resist layer can be a known method, and thus description thereof is omitted here.
  • the transfer object usually has a substrate for forming a resist layer. Moreover, you may have a metal layer etc.
  • the to-be-transferred body it selects suitably according to the kind of functional element for display apparatuses manufactured.
  • the exposure light used in the exposure step is not particularly limited as long as it can react the resist in the resist layer and includes light in any wavelength region of 313 nm to 436 nm.
  • exposure light exposure light containing light of a plurality of wavelengths such as g-line, h-line and i-line is preferable, and exposure light containing j-line is particularly preferable.
  • the energy of the exposure light applied to the resist layer can be increased, and the exposure can be completed in a shorter exposure time. In addition, the occurrence of unevenness in the pattern transferred to the transfer object is significantly suppressed. Because it can.
  • an ultra high pressure mercury lamp ultra high pressure UV lamp
  • the developing method of the resist layer used in the developing step can be a general method and is not particularly limited.
  • As the developing method for example, a method using a developer can be suitably used.
  • Example A1 First, precision-polished synthetic quartz glass (translucent substrate) having a length ⁇ width ⁇ film thickness of 700 mm ⁇ 800 mm ⁇ 8 mm, and a chromium oxide film (CrO x ) (thickness 30 nm) on the surface of the synthetic quartz glass 1 low reflective film), a 85 nm thick chromium film (Cr) (light-shielding film), and a 30 nm thick chromium oxide film (CrO x ) (second low reflective film) in this order.
  • the light shielding layer is synthesized in the order of a chromium oxide film (first low reflection film), a chromium film (light shielding film), and a chromium oxide film (second low reflection film) using a sputtering method. It was formed by forming a film on the surface of quartz glass. At this time, the chromium oxide film (first low-reflection film), the chromium film (light-shielding film), and the chromium oxide film (second low-reflection film) are individually formed using a sputtering apparatus in which gases are replaced. Went to.
  • the chromium oxide film (first low reflection film) and the chromium oxide film (second low reflection film) are mounted with a Cr target in a vacuum chamber, introduced with O 2 , N 2 , and CO 2 gases, and thus in a vacuum environment. Films were formed by reactive sputtering below.
  • the film formation conditions of the chromium oxide film (first low reflection film) were such that the O 2 gas ratio was increased as compared with the film formation conditions of the low reflection film in the light shielding pattern of a general binary mask.
  • the film formation conditions for the chromium oxide film (second low reflection film) were the same as the film formation conditions for the low reflection film in the light shielding pattern of a general binary mask.
  • the film formation conditions of the chromium film (light-shielding film) were the same as the film formation conditions of the chromium film in the light shielding pattern of a general binary mask.
  • a resist pattern having a desired shape is formed on the surface of the light shielding layer, and the light shielding layer is processed by wet etching using the resist pattern as a mask, thereby including 0.1 ⁇ m or more including a light shielding pattern having a width of 3.0 ⁇ m from the light shielding layer.
  • a light shielding pattern having a width of less than 0.0 ⁇ m was formed. Thus, a large photomask was produced.
  • Example A2 First, precision-polished synthetic quartz glass (translucent substrate) having a length ⁇ width ⁇ film thickness of 700 mm ⁇ 800 mm ⁇ 8 mm, a chromium oxide film (first low reflection film), a chromium film (light-shielding film), and A mask blank having a 180 nm-thickness light-shielding layer having a laminated structure in which a chromium oxide film (second low reflection film) is laminated on the surface of the synthetic quartz glass in this order was produced.
  • the light shielding layer is formed by using a sputtering method in the order of a chromium oxide film (first low reflection film), a chromium film (light shielding film), and a chromium oxide film (second low reflection film). It was formed by forming a film on the surface of synthetic quartz glass. At this time, the chromium oxide film (first low reflection film), the chromium film, and the chromium oxide film (second low reflection film) were continuously formed without changing the gas of the sputtering apparatus.
  • the chromium oxide film (first low reflection film) and the chromium oxide film (second low reflection film) are mounted with a Cr target in a vacuum chamber, introduced with O 2 , N 2 , and CO 2 gases, and thus in a vacuum environment. Films were formed by reactive sputtering below.
  • the film formation conditions of the chromium oxide film (first low reflection film) and the chromium oxide film (second low reflection film) are a ratio of O 2 gas than the film formation conditions of the low reflection film in the light shielding pattern of a general binary mask. Was an increased condition.
  • the film formation conditions of the chromium film (light-shielding film) were the same as the film formation conditions of the chromium film in the light shielding pattern of a general binary mask.
  • a resist pattern having a desired shape is formed on the surface of the light shielding layer, and the light shielding layer is processed by wet etching using the resist pattern as a mask, thereby including 0.1 ⁇ m or more including a light shielding pattern having a width of 3.0 ⁇ m from the light shielding layer.
  • a light shielding pattern having a width of less than 0.0 ⁇ m was formed. Thus, a large photomask was produced.
  • Example A3 First, precision-polished synthetic quartz glass (translucent substrate) having a length ⁇ width ⁇ film thickness of 700 mm ⁇ 800 mm ⁇ 8 mm, and a chromium oxide film (first low-reflection film) having a thickness of 30 nm on the surface of the synthetic quartz glass And a light-shielding layer having a laminated structure in which a chromium film (light-shielding film) having a thickness of 110 nm and a chromium oxide film (second low-reflection film) having a thickness of 30 nm are laminated in this order. did.
  • the light shielding layer is synthesized in the order of a chromium oxide film (first low reflection film), a chromium film (light shielding film), and a chromium oxide film (second low reflection film) using a sputtering method. It was formed by forming a film on the surface of quartz glass. At this time, the chromium oxide film (first low-reflection film), the chromium film (light-shielding film), and the chromium oxide film (second low-reflection film) are individually formed using a sputtering apparatus in which gases are replaced. Went to.
  • the chromium oxide film (first low reflection film) and the chromium oxide film (second low reflection film) are mounted with a Cr target in a vacuum chamber, introduced with O 2 , N 2 , and CO 2 gases, and thus in a vacuum environment. Films were formed by reactive sputtering below.
  • the film formation conditions of the chromium oxide film (first low reflection film) and the chromium oxide film (second low reflection film) are a ratio of O 2 gas than the film formation conditions of the low reflection film in the light shielding pattern of a general binary mask.
  • the film formation conditions of the chromium film (light-shielding film) were set such that the film formation time was longer than the film formation conditions of the chromium film in the light shielding pattern of a general binary mask.
  • a resist pattern having a desired shape is formed on the surface of the light shielding layer, and the light shielding layer is processed by wet etching using the resist pattern as a mask, thereby including 0.1 ⁇ m or more including a light shielding pattern having a width of 3.0 ⁇ m from the light shielding layer.
  • a light shielding pattern having a width of less than 0.0 ⁇ m was formed. Thus, a large photomask was produced.
  • the light shielding layer was formed by forming a film on the surface of the synthetic quartz glass in the order of a chromium film (light shielding film) and a chromium oxide film (low reflection film) by using a sputtering method.
  • the chromium film (light-shielding film) and the chromium oxide film (low reflection film) were individually formed using a sputtering apparatus in which the gases were changed.
  • the chromium oxide film (low reflection film) was formed by reactive sputtering in a vacuum environment with a Cr target mounted in a vacuum chamber, O 2 , N 2 , and CO 2 gas introduced.
  • the film formation conditions of the chromium oxide film were the same as the film formation conditions of the low reflection film in the light shielding pattern of a general binary mask. Furthermore, the film forming conditions of the chromium film were the same as the film forming conditions of the chromium film in the light shielding pattern of a general binary mask.
  • a resist pattern having a desired shape is formed on the surface of the light shielding layer, and the light shielding layer is processed by wet etching using the resist pattern as a mask, thereby including 0.1 ⁇ m or more including a light shielding pattern having a width of 3.0 ⁇ m from the light shielding layer.
  • a light shielding pattern having a width of less than 0.0 ⁇ m was formed. Thus, a large photomask was produced.
  • the Cr content continuously changes, the boundary between the chromium oxide film (first low reflection film) and the chromium film (light shielding film), and the chromium film ( The boundary between the light-shielding film) and the chromium oxide film (second low reflection film) was unclear. Further, at the boundary of the light shielding pattern in the comparative example, the Cr content changed discontinuously, and the boundary between the chromium film (light shielding film) and the chromium oxide film (low reflection film) became clear.
  • the back surface reflectance and the front surface reflectance were measured every 1 nm in the above wavelength region using a spectroscopic analyzer (Otsuka Electronics MCPD3000).
  • the optical density (OD) was measured every 1 nm in the above wavelength region using an ultraviolet / visible spectrophotometer (Hitachi U-4000).
  • Table 3 shows the measurement results of g-line (wavelength 436 nm), h-line (wavelength 405 nm), i-line (wavelength 365 nm), and j-line (wavelength 313 nm).
  • Table 1 summarizes the measurement conditions of the spectroscopic analyzer (Otsuka Electronics MCPD3000), and Table 2 summarizes the measurement conditions of the ultraviolet / visible spectrophotometer (Hitachi U-4000).
  • Resist Pattern Properties A resist layer with a film thickness of 2.5 ⁇ m formed on a glass substrate for the purpose of forming a resist pattern of a desired shape using the large photomasks of Examples A1 to A3 and Comparative Example A An exposure stepper type (reduced projection type) proxy exposure was performed on (manufactured by JSR) under the following exposure conditions.
  • Exposure gap 150 ⁇ m
  • Exposure light Exposure light exposure including g-line, h-line, i-line, and j-line: 200 mJ / cm 2
  • the film thickness variation with respect to the normal portion of the uneven portion of the resist pattern (hereinafter referred to as “uneven portion film thickness variation”). Yes.) Specifically, the ratio [%] of uneven portion film thickness variation of Examples A1 to A3 when the uneven portion film thickness variation of Comparative Example A was set to 100% was measured. The results are shown in Table 3 below.
  • the back surface reflectance is 8% or less for any of g-line, h-line, i-line, and j-line, and is not shown in Table 3 above. However, similar results were obtained for light of other wavelengths in the above wavelength region.
  • the surface reflectance is 10% or less for any of g-line, h-line, i-line, and j-line. Although not shown, similar results were obtained for light of other wavelengths in the above wavelength region.
  • the optical density (OD) is 4.5 or more for any of g-line, h-line, i-line, and j-line.
  • Example A3 As shown in Table 3 above, in Examples A1 to A3, variation in the uneven portion film thickness could be suppressed as compared with the comparative example. Moreover, in Example A2 and A3, the uneven
  • Example B1 A large photomask was prepared in the same manner as in Example A3. The created large photomask was cut within 20 mm (h) ⁇ 30 mm (w) ⁇ 8 mm (d) using a glass cutter. The cut surface was sputtered with platinum (20 mA ⁇ 12 seconds) and observed with an electron microscope.
  • the electron microscope was a scanning electron microscope (JEOL Co., Ltd., JSM-6700F) with an acceleration voltage of 5.0 kV, an inclination of 0 °, a mode of SEI (downward detection of secondary electrons), and a working distance of 3 .2 mm to 3.3 mm (fine adjustment according to the height of the sample), the number of integration was one (Fine View mode), and the observation magnification was ⁇ 100K.
  • the measurement location was a light shielding pattern portion having a width of 3.0 ⁇ m. As a result of the measurement, it was found that the angle of the side surface of the first low reflection film with respect to the surface of the translucent substrate was 80 °.
  • this angle is determined by the position where the side surface of the first low-reflection film and the surface of the light-transmitting substrate are in contact with each other, and the position where the film thickness of the first low-reflection film starts to decrease. Is an angle obtained by drawing a straight line and measuring the angle between the straight line and the surface.
  • Example B1 With respect to such a large photomask of Example B1, pure water cleaning is performed for 300 seconds and then dried, and the number of foreign matters after cleaning is determined by the sensitivity with which a foreign matter having a size of 1 ⁇ m or more can be detected by reflection inspection of an appearance inspection machine. It was measured.
  • This measured value is a value obtained by measuring an area of 690 mm ⁇ 790 mm excluding the end 5 mm of the four sides of the glass substrate.
  • the measured values are shown in Table 4 as a ratio when the value according to Comparative Example B described later is 100.
  • Examples B2 to B5 The etching conditions of Example B1 were changed in the direction of extending the etching time, and the angle of the side surface of the first low-reflection film with respect to the surface of the translucent substrate was changed. A photomask was prepared. The angle was measured in the same manner as in Example B1.
  • Comparative Example B A large photomask was prepared in the same manner as in Comparative Example A above.
  • the angle of the side surface of the first low-reflection film with respect to the surface of the light-transmitting substrate was measured in the same manner as in Example B1.
  • the obtained large sized photomask was wash

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

透光性基板と、上記透光性基板の表面に設けられた遮光パターンとからなる大型フォトマスクであって、上記遮光パターンは、第1低反射膜、遮光性膜、および第2低反射膜が、上記透光性基板側からこの順番で積層された積層構造を有し、上記遮光パターンの上記透光性基板側の面は、313nm~436nmの波長領域の光に対する反射率が8%以下であることを特徴とする大型フォトマスクを提供する。

Description

大型フォトマスク
 本開示は、表示装置に用いられる表示装置用機能素子等の製造に使用される大型フォトマスクに関する。
 液晶表示装置、有機EL表示装置等のフラットパネルディスプレイの分野においては、近年、より高精細な表示が望まれており、高画素化が進んでいる。また、これに伴い、例えばTFT基板、カラーフィルタ等の表示装置用機能素子については、微細加工を施すことが要求されている。
 表示装置用機能素子の製造時における微細加工の方法として、従来から、フォトマスクを用いたフォトリソグラフィ法が好適に用いられている。また、フォトマスクとしては、透光性基板の表面に設けられた遮光パターンを有し、光透過領域および遮光領域を備えるフォトマスクが一般的に用いられている。
 このようなフォトマスクを露光装置に用いて被転写体に対してパターンを転写する際に、露光光に対するフォトマスクの反射率が高い場合には、フォトマスクを露光光が反射することを原因として生じる迷光の影響により被転写体へのパターンの転写精度が低下してしまう。このような問題を抑制できるように、露光光に対するフォトマスクの反射率を低減する技術が採用されている。このような技術として、例えば、特許文献1等には、遮光パターンの表面側に反射防止膜を設けたフォトマスクの構成が記載されている。
 一方、フラットパネルディスプレイの製造技術は、解像度の高精細化に従って年々進化している。これに伴って、パネルメーカーも、より微細なパターンを高精度で形成する技術を開発しているが、近年、被転写体にパターンを転写する露光技術の分野においては、より微細なパターンを高精度で形成するために、高感度のレジストを用いる傾向がある。図11は、露光量に対する転写線幅シフトの変動を既存の低感度のレジストと近年において用いられている高感度のレジストとで比較したグラフである。図11に示されるように、高感度のレジストは、低感度のレジストと比較して、硬化に必要な露光量が少なく、露光量が少ない段階における転写線幅シフトの変動が大きい。
 このため、高感度のレジストを用いる傾向にともない、従来であれば影響を無視できたような微弱な迷光が露光時にレジスト層に影響を及ぼすことにより、被転写体に転写されるパターンにムラや寸法のバラツキが生じる問題が起こっている。
 さらに、近年においては、大面積のパターンを高精度で形成する場合に、g線、h線、またはi線を含む露光光では、レジスト層に照射される露光光のエネルギーが不足するため、g線、h線、i線等の複数の波長の光を含む露光光を使用することが求められており、特に、これらの光の中でもエネルギーが大きいj線を含む露光光を使用することが求められている。一方、これらの露光光を用いる場合には、感光時のレジスト層の変化が大きくなるために、上述した微弱な迷光のレジスト層への影響がさらに大きくなるので、上述した問題が顕著となる。
 これに対して、上記特許文献1等に記載されたような構成では、露光時において、フォトマスクを露光光が反射することを原因として生じる迷光の強度を十分に低減することができなかったために、被転写体に転写されるパターンにムラや寸法のバラツキが生じることを抑制することができなかった。
特許第4451391号公報
 本開示は、上記問題点に鑑みてなされたものであり、被転写体に転写されるパターンにムラや寸法のバラツキが生じることを抑制することができる大型フォトマスクを提供することを主目的とする。
 上記課題を解決するために、本開示は、透光性基板と、上記透光性基板の表面に設けられた遮光パターンとからなる大型フォトマスクであって、上記遮光パターンは、第1低反射膜、遮光性膜、および第2低反射膜が、上記透光性基板側からこの順番で積層された積層構造を有し、上記遮光パターンの上記透光性基板側の面は、313nm~436nmの波長領域の光に対する反射率が8%以下であることを特徴とする大型フォトマスクを提供する。
 本開示によれば、被転写体に転写されるパターンにムラや寸法のバラツキが生じることを抑制することができる。
 上記発明においては、上記遮光パターンの上記透光性基板とは反対側の面は、313nm~436nmの波長領域の光に対する反射率が10%以下であることが好ましい。
 また、上記発明においては、上記遮光性膜がクロムを含み、上記第1低反射膜および上記第2低反射膜が酸化クロムを含むことが好ましい。
 また、上記発明においては、上記遮光パターンは、313nm~436nmの波長領域の光に対する光学濃度(OD)が4.5以上であることが好ましい。
 また、上記発明においては、上記透光性基板に対する上記遮光性膜の側面の傾斜角度が80度以上90度以下であることが好ましい。上記遮光性膜の側面に照射される露光光の反射光の影響を抑制することができるからである。
 また、上記発明においては、上記第1低反射膜の側面または上記第2低反射膜の側面が、上記遮光性膜の側面に対して上記透光性基板の表面に平行な方向に突出することが好ましい。
 特に、上記第1低反射膜の側面および上記第2低反射膜の側面の両方が、上記遮光性膜の側面に対して上記透光性基板の表面に平行な方向に突出し、さらに、上記第1低反射膜の側面の方が、上記第2低反射膜の側面より上記透光性基板の表面に平行な方向に突出していることが好ましい。
 また、少なくとも上記第1低反射膜の側面が、上記遮光性膜の側面に対して上記透光性基板の表面に平行な方向に突出し、さらに、上記第1低反射膜の側面の上記透光性基板表面に対する角度が、56°以下であることが好ましい。洗浄による異物の除去が容易であり、存在する異物の量を減少させることができるからである。
 また、上記発明においては、上記遮光性膜の側面が凹状であることが好ましい。
 さらに、上記発明においては、分割露光に用いられる分割パターンを有し、上記分割パターンが上記遮光パターンであることが好ましい。
 本開示においては、被転写体に転写されるパターンにムラや寸法のバラツキが生じることを抑制することができるという効果を奏する。
本開示の大型フォトマスクの一例を示す概略断面図である。 図1に示される大型フォトマスクを用いた露光により被転写体が有するレジスト層にパターンを転写する工程を示す概略断面図である。 図1に示される破線枠内の領域を図面の上下を逆にして示した拡大図である。 従来技術の大型フォトマスクにおける図3に対応する領域を示す概略断面図である。 本開示の大型フォトマスクの他の例における図3に対応する領域を示す概略断面図である。 本開示の大型フォトマスクの他の例における図3に対応する領域を示す概略断面図である。 本開示の大型フォトマスクの他の例における図3に対応する領域を示す概略断面図である。 本開示の大型フォトマスクの他の例を示す概略平面図である。 図8に示される大型フォトマスクを用いて被転写体から製造されるパターン転写体を示す概略平面図である。 図9に示されるパターン転写体の製造工程の一部を示す概略工程断面図である。 露光量に対する転写線幅シフトの変動を既存の低感度のレジストと近年において用いられている高感度のレジストとで比較したグラフである。 本開示の大型フォトマスクの他の例における図3に対応する領域を示す概略断面図である。
 以下、本開示の大型フォトマスクについて詳細に説明する。
 本開示の大型フォトマスクは、透光性基板と、上記透光性基板の表面に設けられた遮光パターンとからなる大型フォトマスクであって、上記遮光パターンは、第1低反射膜、遮光性膜、および第2低反射膜が、上記透光性基板側からこの順番で積層された積層構造を有し、上記遮光パターンの上記透光性基板側の面は、313nm~436nmの波長領域の光に対する反射率が8%以下であることを特徴とする。
 本開示の大型フォトマスクの一例について図面を参照しながら説明する。図1は、本開示の大型フォトマスクの一例を示す概略断面図である。また、図2は、図1に示される大型フォトマスクを用いた露光により被転写体が有するレジスト層にパターンを転写する工程を示す概略断面図である。
 図1に示されるように、大型フォトマスク100は、透光性基板110と、透光性基板110の表面110aに設けられた遮光パターン120と、を備えている。遮光パターン120は、第1低反射膜122、遮光性膜124、および第2低反射膜126が、透光性基板110側からこの順番で積層された積層構造を有している。遮光パターン120の透光性基板110側の面120aの反射率は、313nm~436nmの波長領域のいずれの光についても、8%以下となっている。
 このため、図2に示されるように、大型フォトマスク100を用いて、上記波長領域のいずれかの光を含む露光光を光源(UVランプ)から放射する露光により、基体210上にレジスト層220が形成された被転写体200にパターンを転写する場合には、上記露光光が、遮光パターン120の透光性基板110側の面120aと、露光遮蔽板300の表面300aや透光性基板110および空気(図示せず)の界面112等との間で交互に反射する多重反射等により生じる迷光の強度を低減することにより、本来は露光遮蔽板300により露光光の照射が遮られる遮蔽領域のレジスト層220に照射される迷光Laの強度を、例えば、露光照度の0.3%未満にまで低減することができる。これにより、遮蔽領域のレジスト層220に転写されるパターンにムラや寸法のバラツキが生じることを抑制することができる。
 したがって、本開示によれば、上記波長領域のいずれかの光を含む露光光を使用する露光時において、上記遮光パターンの上記透光性基板側の面を露光光が反射することを原因として生じる迷光の強度を低減することにより、被転写体に転写されるパターンにムラや寸法のバラツキが生じることを抑制することができる。
 また、近年においては、フラットパネルディスプレイの製造において、大面積のパターンを高精度で形成する場合には、g線(波長436nm)、h線(波長405nm)、またはi線(波長365nm)を含む露光光では、レジスト層に照射される露光光のエネルギーが不足することがある。このため、g線、h線、i線等の複数の波長の光を含む露光光を使用することが求められており、特に、これらの光の中でもエネルギーが大きいj線(波長313nm)を含む露光光を使用することが求められている。
 一方、複数の波長の光を含む露光光による感光時のレジスト層の変化は単一の波長の露光光よりも大きくなり、特に、j線を含む露光光による感光時のレジスト層の変化は大きくなる。このため、複数の波長の光を含む露光光、特にj線を含む露光光を使用する場合には、微弱な迷光のレジストへの影響がさらに大きくなるので、被転写体に転写されるパターンにムラ等が生じる問題が顕著となる。これに対して、図1に示される大型フォトマスク100においては、上記波長領域のいずれの光についても、上述した反射率が8%以下であるために、g線、h線、i線、およびj線のいずれについても、遮光パターン120の透光性基板110側の面120aの反射率を8%以下にまで低減することができる。
 よって、本開示によれば、中でもg線、h線、i線等の複数の波長の光を含む露光光、特にj線を含む露光光を使用する露光時において、被転写体に転写されるパターンにムラ等が生じることを顕著に抑制することができる。
1.遮光パターン
 上記遮光パターンは、上記透光性基板の表面に設けられた遮光パターンであって、上記第1低反射膜、上記遮光性膜、および上記第2低反射膜が、上記透光性基板側からこの順番で積層された積層構造を有し、上記遮光パターンの上記透光性基板側の面が、313nm~436nmの波長領域の光に対する反射率が8%以下である。
(1)313nm~436nmの波長領域の光に対する反射率
 上記遮光パターンの上記透光性基板側の面は、313nm~436nmの波長領域の光に対する反射率が8%以下である。すなわち、上記波長領域のいずれの光についても、上記遮光パターンの上記透光性基板側の面の反射率が8%以下である。
 上記遮光パターンの上記透光性基板側の面としては、上記波長領域の光に対する反射率が8%以下であるものであれば特に限定されないが、中でも365nm~436nmの波長領域の光に対する反射率が5%以下であるものが好ましい。365nm~436nmの波長領域のいずれかの光を含む露光光を使用する露光時において、図2に示される迷光Laの強度を、例えば、露光照度の0.2%未満にまで低減することができる。これにより、上記迷光の強度を、被転写体のレジスト層が感光する境目の水準から完全に影響を及ぼさない水準に低減することができるからである。さらに、特に313nm~365nmの波長領域の光に対する反射率が5%以下であるものが好ましい。より広範囲の波長領域の光を含む露光光を使用する露光時において、同様の効果が得られるからである。より具体的には、365nm~436nmの波長領域の露光光が使用される現行の露光装置およびレジストだけではなく、313nm~365nmの波長領域の露光光が使用される他の露光装置およびレジストでも、同様の効果が得られるからである。
 ここで、本開示において、上記遮光パターンの上記透光性基板側の面の上記反射率の測定方法としては、フォトダイオードアレイを検出器としている装置(大塚電子MCPD)を用いることができる。
 上記遮光パターンの上記透光性基板とは反対側の面は、313nm~436nmの波長領域の光に対する反射率が10%以下であるものが好ましい。すなわち、上記波長領域のいずれの光についても、上記遮光パターンの上記透光性基板とは反対側の面の反射率が10%以下であるものが好ましい。
 なお、上記遮光パターンの上記透光性基板とは反対側の面の上記反射率の測定方法は、上記遮光パターンの上記透光性基板側の面の上記反射率と同様である。
 図1に示される大型フォトマスク100においては、遮光パターン120の透光性基板110とは反対側の面120bの反射率が、313nm~436nmの波長領域のいずれの光についても、10%以下となっている。このため、図2に示されるように、大型フォトマスク100を用いて、上記波長領域のいずれかの光を含む露光光を使用する露光により、基体210上にレジスト層220が形成された被転写体200にパターンを転写する場合には、上記露光光が、遮光パターン120の透光性基板110とは反対側の面120bと、空気(図示せず)およびレジスト層220の界面212やレジスト層220および基体210の界面214等との間で交互に反射する多重反射等により生じる迷光の強度を低減することにより、本来は遮光パターン120のエッジ部分により露光光の照射が遮られるレジスト層220に照射される迷光Lbの強度を、例えば、露光照度の2.0%未満にまで低減することができる。これにより、エッジ部分におけるレジスト層220に転写されるパターンに寸法のバラツキ等が生じることを抑制することができる。
 したがって、上記波長領域の光に対する反射率が10%以下であるものが好ましい。上記波長領域のいずれかの光を含む露光光を使用する露光時において、上記遮光パターンの上記透光性基板とは反対側の面を露光光が反射することを原因として生じる迷光の強度を低減することにより、被転写体に転写されるパターンに寸法のバラツキ等が生じることを効果的に抑制することができるからである。中でもg線、h線、i線等の複数の波長の光を含む露光光、特にj線を含む露光光を使用する露光時において、被転写体に転写されるパターンに寸法のバラツキ等が生じることをより顕著に抑制することができるからである。
 また、上記遮光パターンの上記透光性基板とは反対側の面としては、上記波長領域の光に対する反射率が10%以下であるものが好ましいが、中でも365nm~436nmの波長領域の光に対する反射率が5%以下であるものが好ましい。365nm~436nmの波長領域のいずれかの光を含む露光光を使用する露光時において、図2に示される迷光Lbの強度を、例えば、露光照度の1.0%未満にまで低減することができる。これにより、上記迷光の強度を、上記遮光パターンのエッジ部分における被転写体のレジスト層に転写されるパターンに寸法のバラツキ等が生じる程度に該レジスト層が感光する境目の水準から、上記寸法のバラツキ等が完全に生じない水準に低減することができるからである。さらに、特に313nm~365nmの波長領域の光に対する反射率が5%以下であるものが好ましい。より広範囲の波長領域の光を含む露光光を使用する露光時において、同様の効果が得られるからである。より具体的には、365nm~436nmの波長領域の露光光が使用される現行の露光装置およびレジストだけではなく、313nm~365nmの波長領域の露光光が使用される他の露光装置およびレジストでも、同様の効果が得られるからである。
(2)第1低反射膜
 上記第1低反射膜は、上記遮光パターンの積層構造において上記透光性基板側に設けられ、上記遮光パターンの上記透光性基板側の面の313nm~436nmの波長領域の光に対する反射率を8%以下にまで低減する機能を実現する膜である。
 上記遮光パターンが上記第1低反射膜を有することにより、上記波長領域の光が上記遮光パターンの上記透光性基板側の面に照射される場合には、上記第1低反射膜の上記透光性基板側の面を反射する光と、上記第1低反射膜の内部の界面を反射する光と、上記第1低反射膜および上記遮光性膜の境界で反射する光とが、干渉により弱めあうことになる。これにより、上記遮光パターンの上記透光性基板側の面の上記波長領域の光に対する反射率を8%以下にまで低減することができる。
 上述したように、中でもg線、h線、i線等の複数の波長の光を含む露光光、特にj線を含む露光光を使用する場合には、微弱な迷光のレジストへの影響がさらに大きくなるので、被転写体に転写されるパターンにムラ等が生じる問題が顕著となる。一方、このような問題を解決するために、上記遮光パターンの上記透光性基板側の面の上記波長領域の光に対する反射率を8%以下にまで低減する機能を実現する膜は形成が困難である。本開示においては、このような事情があったにもかかわらず、上記透光性基板側の面の上記波長領域の光に対する反射率を8%以下にまで低減する機能を実現する膜の形成を可能とした。
a.第1低反射膜
 上記第1低反射膜の膜厚としては、上記遮光パターンの上記透光性基板側の面の上記波長領域の光に対する反射率を8%以下にまで低減する機能を実現可能であれば特に限定されないが、10nm~50nmの範囲内となる膜厚が好ましい。薄過ぎると上記反射率を低減する機能が低下するからであり、厚過ぎると上記遮光パターンを精度良く加工することが困難となるからである。
 上記第1低反射膜の材料としては、上記遮光パターンの上記透光性基板側の面の上記波長領域の光に対する反射率を8%以下にまで低減できる材料であれば特に限定されないが、例えば、酸化クロム(CrO)、酸化窒化クロム(CrON)、窒化クロム(CrN)、酸化チタン(TiO)、チタン酸化窒化物(TiON)、酸化タンタル(TaO)、タンタルシリサイド酸化物(TaSiO)、酸化ニッケルアルミニウム(NiAlO)、モリブデンシリサイド酸化物(MoSiO)、モリブデンシリサイド酸化窒化物(MoSiON)等が挙げられる。中でも酸化クロム(CrO)、酸化窒化クロム(CrON)が好ましく、特に酸化クロム(CrO)が好ましい。
b.形成方法
 上記第1低反射膜の形成方法としては、例えば、スパッタリング法、真空蒸着法、およびイオンプレーティング法等が挙げられる。より具体的には、例えば、真空チャンバ内にCrターゲットを装着し、O、N、COガスを導入し、真空環境下での反応性スパッタリングにより膜を成膜するといった方法等が挙げられる。
 なお、この方法では、一般的なバイナリマスクの遮光パターンにおける低反射膜を成膜するときよりもOガスの比率を増加させることによって、上記遮光パターンの上記透光性基板側の面の313nm~436nmの波長領域の光に対する反射率を8%以下にまで低減する。
(3)第2低反射膜
 上記第2低反射膜は、上記遮光パターンの積層構造において上記透光性基板とは反対側に設けられ、上記遮光パターンの上記透光性基板とは反対側の面の313nm~436nmの波長領域の光に対する反射率を低減する機能を実現する膜である。
 上記遮光パターンが上記第2低反射膜を有することにより、上記波長領域の光が上記遮光パターンの上記透光性基板とは反対側の面に入射する場合には、上記第2低反射膜の上記透光性基板とは反対側の面で反射される光と、上記第2低反射膜の内部の界面で反射される光と、上記第2低反射膜および上記遮光性膜の境界で反射される光とが、干渉により弱めあうことになる。これにより、上記遮光パターンの上記透光性基板とは反対側の面の上記波長領域の光に対する反射率を低減することができる。
a.第2低反射膜
 上記第2低反射膜としては、上記遮光パターンの上記透光性基板とは反対側の面の313nm~436nmの波長領域の光に対する反射率を低減する機能を実現する膜であれば特に限定されないが、上記反対側の面の313nm~436nmの波長領域の光に対する反射率を10%以下にまで低減する機能を実現する膜が好ましい。
 上述したように、中でもg線、h線、i線等の複数の波長の光を含む露光光、特にj線を含む露光光を使用する場合には、微弱な迷光のレジストへの影響がさらに大きくなるので、被転写体に転写されるパターンに寸法のバラツキ等が生じる問題が顕著となる。一方、このような問題を効果的に解決するために、上記遮光パターンの上記透光性基板とは反対側の面の上記波長領域の光に対する反射率を10%以下にまで低減する機能を実現する反射防止膜は形成が困難である。本開示においては、このような事情があったにもかかわらず、上記反対側の面の上記波長領域の光に対する反射率を10%以下にまで低減する機能を実現する膜の形成を可能とした。
 上記第2低反射膜の膜厚としては、上記遮光パターンの上記透光性基板とは反対側の面の上記波長領域の光に対する反射率を低減する機能を実現可能であれば特に限定されないが、10nm~50nmの範囲内となる膜厚が好ましい。薄過ぎると上記反射率を低減する機能が低下するからであり、厚過ぎると上記遮光パターンを精度良く加工することが困難となるからである。
 上記第2低反射膜の材料については、上記第1低反射膜と同様であるため、ここでの説明を省略する。
b.形成方法
 上記遮光パターンの上記透光性基板とは反対側の面の313nm~436nmの波長領域の光に対する反射率を10%以下にまで低減する上記第2低反射膜の形成方法としては、上記第1低反射膜の形成方法と同様であるためここでの説明を省略する。
(4)遮光性膜
 上記遮光性膜は、上記遮光パターンの積層構造において上記第1低反射膜および上記第2低反射膜の間に設けられた遮光性を有する膜である。
a.遮光性膜
 上記遮光性膜の膜厚としては、特に限定されないが、80nm~180nmの範囲内となる膜厚が好ましい。薄過ぎると所望の遮光性を得ることが困難となるからであり、厚過ぎると上記遮光パターンを精度良く加工することが困難となるからである。
 上記遮光性膜の材料としては、遮光性を有する材料であれば特に限定されないが、例えば、クロム(Cr)、酸化窒化クロム(CrON)、窒化クロム(CrN)、モリブデンシリサイド酸化物(MoSiO)、モリブデンシリサイド酸化窒化物(MoSiON)、酸化タンタル(TaO)、タンタルシリサイド酸化物(TaSiO)等が挙げられる。中でもクロム(Cr)が好ましい。
b.遮光性膜の形成方法
 上記遮光性膜の形成方法としては、例えば、スパッタリング法、真空蒸着法、およびイオンプレーティング法等が挙げられる。
 また、上記波長領域の光に対する上記遮光パターンの光学濃度(OD)を4.5以上とする上記遮光性膜の形成方法としては、例えば、通常よりも遮光性膜を成膜する時間を延ばすといった方法や成膜スキャン回数を増やすといった方法等が挙げられる。
(5)遮光パターン
a.光学濃度(OD)
 上記遮光パターンとしては、313nm~436nmの波長領域の光に対する光学濃度(OD)が4.5以上であるものが好ましい。すなわち、上記波長領域のいずれの光についても、光学濃度(OD)が4.5以上であるものが好ましい。
 ここで、本開示において、上記波長領域の光に対する光学濃度(OD)の測定方法には、紫外・可視分光光度計(日立U-4000)を用いることができる。
 図1に示される大型フォトマスク100においては、313nm~436nmの波長領域の光に対する遮光パターン120の光学濃度(OD)が4.5以上となっている。すなわち、該波長領域のいずれの光についても、遮光パターン120の光学濃度(OD)が4.5以上となっている。このため、図2に示されるように、大型フォトマスク100を用いて、上記波長領域のいずれかの光を含む露光光を使用する露光により、基体210上にレジスト層220が形成された被転写体200にパターンを転写する場合には、上記露光光が遮光パターン120を透過する透過光Lcの強度を、例えば、露光照度の0.001%以下にまで低減することができる。これにより、レジスト層220に転写されるパターンにムラ等が生じることを抑制することができる。
 したがって、上記光学濃度(OD)が4.5以上であるものが好ましい。上記波長領域のいずれかの光を含む露光光を使用する露光時において、上記露光光が上記遮光パターンを透過する透過光の強度を低減することにより、被転写体に転写されるパターンにムラ等が生じることを効果的に抑制することができるからである。中でもg線、h線、i線等の複数の波長の光を含む露光光、特にj線を含む露光光を使用する露光時において、被転写体に転写されるパターンにムラ等が生じることを効果的に抑制することができるからである。
 なお、一般的に、遮光パターンが厚くなり、精度良く加工することが困難となる点からすると、フォトマスクにおける遮光パターンの光学濃度(OD)を高くすることは好ましくない。この傾向は、特に半導体集積回路の製造において使用されるフォトマスクにおいて顕著である。
b.サイズ
(a)幅
 上記遮光パターンの幅としては、例えば、0.1μm以上10.0μm未満の幅が挙げられる。上記遮光パターンの幅としては、サブミクロンオーダーで寸法が制御された幅が好ましい。
 ここで、上記遮光パターンの幅とは、平面視形状の短手方向の寸法で規定されるものである。また、上記サブミクロンオーダーで寸法が制御された幅とは、0.1μm単位で寸法が制御された幅を意味し、例えば、0.1μm以上1.0μm未満の幅である。
(b)膜厚
 上記遮光パターンの全体の膜厚としては、特に限定されないが、100nm~250nmの範囲内であることが好ましい。薄過ぎると所望の遮光性を得ることが困難となるからであり、厚過ぎると上記遮光パターンを精度良く加工することが困難となるからである。
c.断面形状
 上記遮光パターンとしては、上記波長領域の光に対する光学濃度(OD)が4.5以上であり、かつ所望の断面形状を有するものが好ましい。以下、遮光パターンの好ましい断面形状について説明する。
 図3は、図1に示される破線枠内の領域を図面の上下を逆にして示した拡大図である。図3に示されるように、図1に示される大型フォトマスク100において、遮光パターン120の313nm~436nmの波長領域の光に対する光学濃度(OD)が4.5以上になっている。遮光パターン120の開口部120cにおいて、透光性基板110に対する遮光性膜124の側面124aの傾斜角度αが80度以上90度以下になっている。一方、図4は、従来技術の大型フォトマスクにおける図3に対応する領域を示す概略断面図である。図4に示されるように、従来技術の大型フォトマスク100においては、透光性基板110に対する遮光性膜124の側面124aの傾斜角度αが80度未満になっている。
 図3に示されるように、透光性基板110に対する遮光性膜124の側面124aの傾斜角度αが80度以上90度以下である場合には、図4に示されるように上記傾斜角度αが80度未満である場合とは異なり、被転写体が有するレジスト層にパターンを転写する露光時に、光源側の斜め方向から遮光性膜124の側面124aに照射される露光光(迷光)の反射光が、遮光パターン120の開口部120c側に誘導される可能性が高くなる。よって、該反射光が、遮光パターン120のエッジ部分により露光光の照射が遮られるレジスト層に照射されることを抑制できる。これにより、エッジ部分におけるレジスト層に転写されるパターンに寸法のバラツキ等が生じることを抑制することができる。
 したがって、上記波長領域の光に対する光学濃度(OD)が4.5以上である上記遮光パターンとしては、図3に示されるように、上記透光性基板に対する上記遮光性膜の側面の傾斜角度が80度以上90度以下であるものが好ましい。上記光学濃度(OD)を4.5以上にするために上記遮光パターンが厚膜になることで、光源側の斜め方向から上記遮光性膜の側面に照射される露光光の反射光の光量が多くなるにもかかわらず、該反射光の影響により、被転写体に転写されるパターンに寸法のバラツキ等が生じることを抑制することができるからである。
 なお、上記透光性基板に対する上記遮光性膜の側面の傾斜角度とは、図3においてαで示されるような、上記遮光性膜の側面における上記透光性基板側の縁の接線の傾斜角度を意味する。
 図5~図7は、それぞれ本開示の大型フォトマスクの他の例における図3に対応する領域を示す概略断面図である。
 図5に示される大型フォトマスク100において、遮光パターン120は、313nm~436nmの波長領域の光に対する光学濃度(OD)が4.5以上になっている。遮光パターン120の開口部120cにおいて、遮光性膜124の側面124aは透光性基板110に垂直な平面となっており、第1低反射膜122の側面122aおよび第2低反射膜126の側面126aは、遮光性膜124の側面124aに対して透光性基板110に平行な方向に長さL1だけ突出している。
 また、図6に示される大型フォトマスク100において、遮光パターン120は、313nm~436nmの波長領域の光に対する光学濃度(OD)が4.5以上になっている。遮光パターン120の開口部120cにおいて、遮光性膜124の側面124aは複数の平面から構成される凹状の面となっており、第1低反射膜122の側面122aおよび第2低反射膜126の側面126aは、遮光性膜124の側面124aに対して透光性基板110に平行な方向に突出しており、開口部120cから最も離れた遮光性膜124の側面124aの位置から長さL2だけ突出している。遮光性膜124の側面124aは、開口部120cに最も近い位置から最も離れた位置まで透光性基板110に平行な方向に幅W1だけくびれている。
 さらに、図7に示される大型フォトマスク100において、遮光パターン120は、313nm~436nmの波長領域の光に対する光学濃度(OD)が4.5以上になっている。遮光パターン120の開口部120cにおいて、遮光性膜124の側面124aは凹状の曲面となっている。遮光性膜124の側面124aは、開口部120cに最も近い位置から最も離れた位置まで透光性基板110に平行な方向に幅W2だけくびれている。
 図5および図6に示される大型フォトマスク100においては、第1低反射膜122の側面122aおよび第2低反射膜126の側面126aが、遮光性膜124の側面124aに対して透光性基板110の表面110aに平行な方向に突出している。このため、被転写体が有するレジスト層にパターンを転写する露光時に、光源側の斜め方向から遮光性膜124の側面124aに照射される露光光(迷光)は、第1低反射膜122により強度が緩和されてから遮光性膜124の側面124aに照射される。また、遮光性膜124の側面124aに照射される露光光の反射光は、第2低反射膜126により強度が緩和されてからレジスト層に照射される。よって、光源側の斜め方向から遮光性膜124の側面124aに照射される露光光がレジスト層に照射される時の強度を、第1低反射膜122および第2低反射膜126により抑制できる。
 したがって、上記波長領域の光に対する光学濃度(OD)が4.5以上である上記遮光パターンとしては、図5および図6に示されるように、上記第1低反射膜の側面または上記第2低反射膜の側面が、上記遮光性膜の側面に対して上記透光性基板の表面に平行な方向に突出するものが好ましい。上記光学濃度(OD)を4.5以上にするために上記遮光パターンが厚膜になることで、光源側の斜め方向から上記遮光性膜の側面に照射される露光光の反射光の光量が多くなるにもかかわらず、該反射光の影響により、被転写体に転写されるパターンにムラ等が生じることを抑制することができるからである。
 また、上記第1低反射膜の側面または上記第2低反射膜の側面が、上記遮光性膜の側面に対して上記透光性基板の表面に平行な方向に突出するものとしては、これら側面のどちらか一方が突出するものであれば特に限定されないが、これら側面の両方が突出するものが好ましい。
 さらに、上記第1低反射膜の側面または上記第2低反射膜の側面が、上記遮光性膜の側面に対して上記透光性基板の表面に平行な方向に突出するものとしては、図5および図6においてL1およびL2で示されるような突出長さが、上記遮光性膜の膜厚の1/2以上であるものが好ましい。上記反射光の影響により、被転写体に転写されるパターンにムラ等が生じることを効果的に抑制することができるからである。
 なお、上記突出長さとは、上記第1低反射膜の側面または上記第2低反射膜の側面が、上記遮光性膜の凹状の側面における上記遮光パターンの開口部から最も離れた位置から上記透光性基板の表面に平行な方向に突出する長さを意味する。
 また、本開示においては、以下の理由から上記第1低反射膜の側面または上記第2低反射膜の側面が、上記遮光性膜の側面に対して上記透光性基板の表面に平行な方向に突出することが好ましい。
 すなわち、一般にクロム等の金属膜は例えばクロム酸化物等の酸化金属膜より極性が高いため、異物が付着し易い傾向にある。したがって、上記遮光性膜がクロムである場合、上記遮光性膜の側面が、上記第1低反射膜の側面または上記第2低反射膜の側面に対して上記透光性基板の表面に平行な方向で突出していると、上記遮光性膜に対して異物が付着する可能性が高くなり、その後の洗浄によって異物の除去が難しくなる可能性があるからである。
 このような異物の付着の観点からも、上記第1低反射膜の側面または上記第2低反射膜の側面が、上記遮光性膜の側面に対して上記透光性基板の表面に平行な方向に突出するものであることが好ましく、特にこれら側面の両方が突出しているものが好ましい。
 本開示において、上記透光性基板の表面に平行な方向に突出する側面の順番としては、上記第1低反射膜の側面が最も突出し、次いで第2低反射膜の側面、遮光性膜の側面の順位であることが好ましい。異物がこれら積層体の側面近傍に存在する場合、上記第1低反射膜の側面が最も突出していることにより、異物が酸化金属膜と接触する面積が大きいため、接触しやすく、その結果、異物の剥離も容易となるからである。
 一方、本開示においては、少なくとも上記第1低反射膜の側面が、上記遮光性膜の側面に対して上記透光性基板の表面に平行な方向に突出し、さらに、上記第1低反射膜の側面の上記透光性基板表面に対する角度が、56°以下であることが好ましい。
 図12は、このような態様の大型フォトマスクの一例の一部を示すものである。図12に示す大型フォトマスク100において、第1低反射膜122の側面122aおよび第2低反射膜126の側面126aは、遮光性膜124の側面124aに対し、透光性基板110の表面110aに平行な方向に突出している。そして、上記第1低反射膜122の側面122aと上記透光性基板110の表面110aとのなす角度αが、56°以下の角度となっている。
 上述したように、上記第1低反射膜の側面の上記透光性基板表面に対する角度が、56°以下であることにより、異物が付着した場合であっても、洗浄に際しての洗浄用流体が接触する面積を大きくすることができることから、洗浄を効率的に行うことができ、洗浄工程後の異物の存在による不具合を防止することが可能となる。
 ここで、上記第1低反射膜の側面の上記透光性基板表面に対する角度とは、上記第1低反射膜122の側面122aと上記透光性基板110の表面110aとが接する位置Aと、上記第1低反射膜122の膜厚の減少が開始される位置Bとを直線で引き、この直線と上記表面110aとの角度を測定することにより得られる角度である。
 また、上記第1低反射膜122の側面122aが、上記遮光性膜124の側面124aに対して突出しているとは、上記第1低反射膜122の膜厚の減少が開始される位置Bが、上記遮光性膜124の側面124aに対し、透光性基板110の表面110aに平行な方向に突出していることを意味するものである。
 本開示においては、上記第1低反射膜の側面の上記透光性基板表面に対する角度が、56°以下であることがこの好ましく、中でも40°以下であることが好ましい。洗浄をより効率的に行うことができるからである。なお、上記角度は小さい方が好ましいものであるが、実際の製造が難しいといった製造上の観点から、20°以上であることが好ましい。
 本開示においては、上記第2低反射膜の側面も、上記遮光性膜の側面よりも上記透光性基板の表面に平行な方向に突出していることが好ましい。異物との接着性の影響で洗浄による異物の除去が難しい可能性のある遮光性膜の側面への異物の付着を減少させることができるからである。
 図6および図7に示される大型フォトマスク100においては、遮光性膜124の側面124aが凹状となっている。このため、被転写体が有するレジスト層にパターンを転写する露光時に、光源側の斜め方向から遮光性膜124の側面124aに照射される露光光(迷光)の反射光は、光源側または遮光パターン120の開口部120c側に誘導される可能性が高くなる。よって、該反射光が、遮光パターン120のエッジ部分により露光光の照射が遮られるレジスト層に照射されることを抑制できる。これにより、エッジ部分におけるレジスト層に転写されるパターンに寸法のバラツキ等が生じることを抑制することができる。
 したがって、上記波長領域の光に対する光学濃度(OD)が4.5以上である上記遮光パターンとしては、図6および図7に示されるように、上記遮光性膜の側面が凹状であるものが好ましい。上記光学濃度(OD)を4.5以上にするために上記遮光パターンが厚膜になることで、光源側の斜め方向から上記遮光性膜の側面に照射される露光光の反射光の光量が多くなるにもかかわらず、該反射光の影響により、被転写体に転写されるパターンに寸法のバラツキ等が生じることを抑制することができるからである。
 さらに、上記遮光性膜の側面が凹状である上記遮光パターンとしては、図6および図7においてW1およびW2で示されるような上記遮光性膜の側面のくびれ幅が上記遮光性膜の膜厚の1/2以上であるものが好ましい。上記反射光の影響により、被転写体に転写されるパターンに寸法のバラツキ等が生じることを効果的に抑制することができるからである。
 なお、上記くびれ幅とは、上記遮光性膜の側面における上記遮光パターンの開口部に最も近い位置から最も離れた位置までの上記透光性基板の表面に平行な方向の幅を意味する。
d.低反射膜および遮光性膜の境界構造
 上記遮光性膜と上記第1低反射膜および上記第2低反射膜との境界は、明瞭な境界でもよく、不明瞭な境界でもよい。各膜の特性を個別に制御し易い点で、上記明瞭な境界を有する遮光パターンが好ましい。また、加工面が滑らかになる点や容易に作製可能な点で、上記不明瞭な境界を有する遮光パターンが好ましい。
 上記明瞭な境界を有する遮光パターンは、上記第1低反射膜、上記遮光性膜、および上記第2低反射膜の成膜を、それぞれ、ガスを入れ替えたスパッタリング装置を用いて個別に行うことにより作製可能である。また、上記不明瞭な境界を有する遮光パターンは、上記第1低反射膜、上記遮光性膜、および上記第2低反射膜の成膜を、スパッタリング装置のガスを入れ替えることなく連続的に行うことにより作製可能である。
e.形成方法
 上記遮光パターンの形成方法としては、例えば、合成石英ガラスの表面に、第1低反射膜、遮光性膜、および第2低反射膜がこの順番で積層された積層構造を有する遮光層を形成した上で、遮光層の表面に所望形状のレジストパターンを形成し、レジストパターンをマスクとして遮光層をウェットエッチングで加工する方法等が挙げられる。
2.透光性基板
 上記透光性基板の大きさとしては、例えば、少なくとも一辺が350mm以上の大きさを有するフォトマスクとすることができればよく、本開示の大型フォトマスクの用途等に応じて適宜選択することができ、特に限定されないが、330mm×450mm以上であることが好ましく、なかでも330mm×450mm~1700mm×1800mmの範囲内であることが好ましい。
 上記透光性基板の膜厚としては、大型フォトマスクの材料や用途等に応じて適宜選択することができる。上記透光性基板の膜厚としては、例えば、8mm~17mm程度である。
 上記透光性基板としては、光透過性を有するものであり、一般的な大型フォトマスクに用いられる透光性基板を使用することができる。上記透光性基板としては、例えば、光学研磨された低膨張ガラス(アルミノホウ珪酸ガラス、ホウ珪酸ガラス)、合成石英ガラスを挙げることができる。本開示においては、なかでも合成石英ガラスが好適に用いられる。熱膨張率が小さく、大型フォトマスクを製造しやすいからである。また、本開示においては樹脂製上記透光性基板を用いることもできる。
 上記透光性基板の光透過性としては、一般的な大型フォトマスクに用いられる透光性基板と同程度であれば特に限定されないが、313nm~436nmの波長領域の光に対する透過率が80%以上であるものが好ましく、中でも85%以上、特に90%以上であるものが好ましい。純度が高い透光性基板の方が、通過する光の材料内での散乱が少なく、さらに屈折率も低いため、迷光の発生を抑制できるからである。
3.その他
 本開示の大型フォトマスクとしては、上記透光性基板と上記遮光パターンとを備え、上記遮光パターンの上記透光性基板側の面の上記波長領域の光に対する反射率が8%以下であるものであれば特に限定されるものではないが、分割露光に用いられる分割パターンを有し、上記分割パターンが上記遮光パターンであるものが好ましい。
 分割露光とは、被転写体において被転写領域を複数の露光領域に分割し、複数の露光領域のそれぞれを大型フォトマスクを用いて個別に露光して、複数の露光領域のそれぞれにフォトマスクの分割パターンを転写することによって、被転写体にフォトマスクの分割パターンよりも大きな連続したパターンを形成する方法をいう。
 このような好ましい大型フォトマスクについて図面を参照しながら説明する。図8は、本開示の大型フォトマスクの他の例を示す概略平面図である。図9は、図8に示される大型フォトマスクを用いて被転写体から製造されるパターン転写体を示す概略平面図である。また、図10(a)~図10(b)は、図9に示されるパターン転写体の製造工程の一部を示す概略工程断面図である。
 図8に示されるように、大型フォトマスク100は、透光性基板110と、透光性基板110の表面110aに設けられ、互いに異なる第1分割パターン150a、第2分割パターン150b、および第3分割パターン150cと、を備える。第1分割パターン150a、第2分割パターン150b、および第3分割パターン150cは、それぞれ、図1に示される遮光パターン120と同様に、第1低反射膜122、遮光性膜124、および第2低反射膜126が、透光性基板110側からこの順番で積層された積層構造を有する遮光パターン120である。このため、第1分割パターン150a、第2分割パターン150b、および第3分割パターン150cの透光性基板110側の面は、図1に示される遮光パターン120と同様に、313nm~436nmの波長領域の光に対する反射率が8%以下である。
 図9に示されるパターン転写体200´は、図8に示される大型フォトマスク100を用いて、被転写体200が有するレジスト層220に対して、第1分割パターン150a、第2分割パターン150b、および第3分割パターン150cの各パターンごとに、上記波長領域のいずれかの光を含む露光光を光源(UVランプ)から放射する露光により製造されるものである。
 パターン転写体200´が製造される場合には、まず、1回目の露光において、第2分割パターン150bおよび第3分割パターン150cを露光遮蔽板300(図10に図示)で遮蔽することで、レジスト層220に対して、第1~第3分割パターンのうち第1分割パターン150aのみを介して上記露光光を照射する。次に、2回目~6回目の露光において、第3分割パターン150cおよび第1分割パターン150aを露光遮蔽板300で遮蔽することで、レジスト層220に対して、第1~第3分割パターンのうち第2分割パターン150bのみを介して上記露光光を照射する。次に、7回目の露光において、第1分割パターン150aおよび第2分割パターン150bを露光遮蔽板300で遮蔽することにより、レジスト層220に対して、第1~第3分割パターンのうち第3分割パターン150cのみを介して上記露光光を照射する。これにより、第1分割パターン150aが転写された1つの第1レジストパターン220a、第2分割パターン150bがそれぞれ転写された5つの第2レジストパターン220b、および第3分割パターン150cが転写された1つの第3レジストパターン220cが、単一方向に繋がるように形成される。この結果、連続した単一のレジストパターンが形成される。
 上述した2回目の露光においては、図10(a)に示されるように、図2に示される工程と同様に、上記露光光が、第2分割パターン150b(遮光パターン120)の透光性基板110側の面120aを反射することを原因として生じる迷光の強度を低減することにより、本来は露光遮蔽板300により露光光の照射が遮られる遮蔽領域(3回目の露光領域)のレジスト層220に照射される迷光Laの強度を低減することができる。また、上記露光光が、第2分割パターン150bの透光性基板110とは反対側の面120bを反射することを原因として生じる迷光の強度を低減することにより、本来は第2分割パターン150bのエッジ部分により露光光の照射が遮られる2回目の露光領域のレジスト層220に照射される迷光Lbの強度を低減することができる。
 上述した3回目の露光においては、図10(b)に示されるように、2回目の露光と同様に迷光の強度を低減することにより、2回目の露光において迷光Laが照射済みの領域のレジスト層220にさらに照射される迷光Lbの強度を低減することができ、2回目の露光において迷光Lbが照射済みの領域のレジスト層220にさらに照射される迷光Laの強度を低減することができる。
 したがって、上述した好ましい大型フォトマスクによれば、分割露光において、被転写体の複数の露光領域のそれぞれを大型フォトマスク用いて個別に露光する時に、上記遮光パターンの各面を露光光が反射することを原因として生じる迷光が他の露光領域に照射されることにより、レジスト層に上記迷光による多重露光が生じる場合においても、上記迷光の強度を低減することができる。このため、被転写体に転写されるパターンにムラや寸法のバラツキが生じることを顕著に抑制することができる。
 なお、分割露光において、隣接する露光領域が繋がる部分においては、露光装置のアライメント精度の影響により多重露光が生じることがある。このため、上記迷光による多重露光がさらに生じる場合には、被転写体に転写されるパターンにムラや寸法のバラツキが生じる問題が大きくなり易い。このため、上述した効果がさらに顕著に得られる。
4.大型フォトマスクの製造方法
 本開示の大型フォトマスクの製造方法としては、上述した構成を有する大型フォトマスクを製造することができれば特に限定されず、一般的な大型フォトマスクの製造方法と同様とすることができる。
 例えば、透光性基板として合成石英ガラスを準備し、合成石英ガラスの表面に、第1低反射膜、遮光性膜、および第2低反射膜がこの順番で積層された積層構造を有する遮光層を備えるマスクブランクスを作製する。次に、遮光層の表面に所望形状のレジストパターンを形成し、レジストパターンをマスクとして遮光層をウェットエッチングで加工することにより、遮光層から遮光パターンを形成する。これにより、大型フォトマスクを作製する。
 また、上記ウェットエッチングに用いられるエッチング液としては、上記遮光層を精度良く加工可能であり、上記透光性基板にダメージを与えないものあれば特に限定されるものではないが、例えば、硝酸第二セリウムアンモニウム溶液等を用いることができる。
5.用途
 本開示の大型フォトマスクは、例えば、表示装置に用いられる表示装置用機能素子等のパターン転写体の製造時におけるフォトリソグラフィ法に好適に用いることができる。
 本開示の大型フォトマスクを用いて製造される表示装置用機能素子としては、例えば、TFT基板、TFT基板等に用いられる金属配線付基板等、カラーフィルタ、カラーフィルタに用いられる遮光部付基板等を挙げることができる。
 本開示の大型フォトマスクを用いた表示装置用機能素子等のパターン転写体の製造方法としては、特に限定されず、大型フォトマスクの製造方法を用いた一般的な製造方法と同様とすることができる。例えば、レジスト層を有する被転写体を用意し、大型フォトマスクを介して露光光を照射して上記レジスト層を露光する露光工程と、露光後の上記レジスト層を現像する現像工程とを有する製造方法を挙げることができる。
 上記レジスト層に用いられるレジストとしては、一般的なレジストと同様とすることができ、ポジ型レジストであっても良く、ネガ型レジストであっても良い。ポジ型レジストとしては、例えば、ノボラック樹脂、フェノールエポキシ樹脂、アクリル樹脂、ポリイミド、シクロオレフィン等を挙げることができる。具体的には、IP3500(TOK社製)、PFI27(住友化学社製)、ZEP7000(ゼオン社製)、ポジ型レジスト(JSR社製)等を挙げることができる。中でもポジ型レジスト(JSR社製)等が好ましい。感度が高いために、本開示の効果が顕著になるからである。一方、ネガ型レジストとしては、例えば、アクリル樹脂等を挙げることができる。具体的には、ポリグリシジルメタクリレート(PGMA)、化学増幅型のSAL601(シプレ社製)、ネガ型レジスト(JSR社製)等を挙げることができる。中でもネガ型レジスト(JSR社製)等が好ましい。感度が高いために、本開示の効果が顕著になるからである。また、本開示の大型フォトマスクを用いて製造される表示装置用機能素子が、現像後のレジスト層を構成部材として用いる場合は、レジスト層に顔料および染料等の着色剤、無機酸化物微粒子等の機能性材料を含有させてもよい。
 レジスト層の膜厚としては、特に限定されるものではないが、例えば10nm~10μmの範囲内である。レジスト層の形成方法については、公知の方法とすることができるため、ここでの説明は省略する。
 被転写体は、通常、レジスト層を形成するための基体を有する。また、金属層等を有していてもよい。被転写体については、製造される表示装置用機能素子の種類に応じて、適宜選択される。
 上記露光工程に用いられる露光光としては、レジスト層中のレジストを反応させることができ、313nm~436nmの波長領域のいずれかの光を含むものであれば特に限定されない。露光光としては、g線、h線、i線等の複数の波長の光を含む露光光が好ましく、特にj線を含有する露光光が好ましい。レジスト層に照射される露光光のエネルギーを大きくすることができ、より短い露光時間で露光を完了することができる上、被転写体に転写されるパターンにムラ等が生じることを顕著に抑制することができるからである。上記露光光の光源としては、例えば、超高圧水銀灯(超高圧UVランプ)等を用いることができる。
 上記現像工程に用いられるレジスト層の現像方法としては、一般的な方法を用いることができ特に限定されない。現像方法としては、例えば現像液を用いる方法等を好適に用いることができる。
 なお、本開示は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本開示の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示の技術的範囲に包含される。
A.反射率および光学濃度
 まず、反射率および光学濃度について、実施例および比較例を用いて説明する。
[実施例A1]
 まず、縦×横×膜厚が700mm×800mm×8mmの精密研磨された合成石英ガラス(透光性基板)と、合成石英ガラスの表面に、膜厚30nmの酸化クロム膜(CrO)(第1低反射膜)、膜厚85nmのクロム膜(Cr)(遮光性膜)、および膜厚30nmの酸化クロム膜(CrO)(第2低反射膜)がこの順番で積層された積層構造を有する遮光層と、を備えるマスクブランクスを作製した。
 マスクブランクスの作製において、遮光層は、スパッタリング法を用いて、酸化クロム膜(第1低反射膜)、クロム膜(遮光性膜)、および酸化クロム膜(第2低反射膜)の順番で合成石英ガラスの表面に成膜することにより形成した。この際、酸化クロム膜(第1低反射膜)、クロム膜(遮光性膜)、および酸化クロム膜(第2低反射膜)の成膜は、それぞれ、ガスを入れ替えたスパッタリング装置を用いて個別に行った。また、酸化クロム膜(第1低反射膜)および酸化クロム膜(第2低反射膜)は、真空チャンバ内にCrターゲットを装着し、O、N、COガスを導入し、真空環境下での反応性スパッタリングにより成膜した。酸化クロム膜(第1低反射膜)の成膜条件は、一般的なバイナリマスクの遮光パターンにおける低反射膜の成膜条件よりもOガスの比率を増加した条件とした。また、酸化クロム膜(第2低反射膜)の成膜条件は、一般的なバイナリマスクの遮光パターンにおける低反射膜の成膜条件と同等条件とした。さらに、クロム膜(遮光性膜)の成膜条件は、一般的なバイナリマスクの遮光パターンにおけるクロム膜の成膜条件と同等条件とした。
 次に、遮光層の表面に所望形状のレジストパターンを形成し、レジストパターンをマスクとして遮光層をウェットエッチングで加工することにより、遮光層から3.0μm幅の遮光パターンを含む0.1μm以上10.0μm未満の幅を有する遮光パターンを形成した。これにより、大型フォトマスクを作製した。
[実施例A2]
 まず、縦×横×膜厚が700mm×800mm×8mmの精密研磨された合成石英ガラス(透光性基板)と、酸化クロム膜(第1低反射膜)、クロム膜(遮光性膜)、および酸化クロム膜(第2低反射膜)がこの順番で合成石英ガラスの表面に積層された積層構造を有する膜厚180nmの遮光層と、を備えるマスクブランクスを作製した。
 マスクブランクスの作製において、遮光層は、スパッタリング法を用いて、酸化クロム膜(第1低反射膜)、クロム膜(遮光性膜)を、および酸化クロム膜(第2低反射膜)の順番で合成石英ガラスの表面に成膜することにより形成した。この際、酸化クロム膜(第1低反射膜)、クロム膜、および酸化クロム膜(第2低反射膜)の成膜は、スパッタリング装置のガスを入れ替えることなく連続的に行った。また、酸化クロム膜(第1低反射膜)および酸化クロム膜(第2低反射膜)は、真空チャンバ内にCrターゲットを装着し、O、N、COガスを導入し、真空環境下での反応性スパッタリングにより成膜した。酸化クロム膜(第1低反射膜)および酸化クロム膜(第2低反射膜)の成膜条件は、一般的なバイナリマスクの遮光パターンにおける低反射膜の成膜条件よりもOガスの比率を増加した条件とした。さらに、クロム膜(遮光性膜)の成膜条件は、一般的なバイナリマスクの遮光パターンにおけるクロム膜の成膜条件と同等条件とした。
 次に、遮光層の表面に所望形状のレジストパターンを形成し、レジストパターンをマスクとして遮光層をウェットエッチングで加工することにより、遮光層から3.0μm幅の遮光パターンを含む0.1μm以上10.0μm未満の幅を有する遮光パターンを形成した。これにより、大型フォトマスクを作製した。
[実施例A3]
 まず、縦×横×膜厚が700mm×800mm×8mmの精密研磨された合成石英ガラス(透光性基板)と、合成石英ガラスの表面に、膜厚30nmの酸化クロム膜(第1低反射膜)、膜厚110nmのクロム膜(遮光性膜)、および膜厚30nmの酸化クロム膜(第2低反射膜)がこの順番で積層された積層構造を有する遮光層と、を備えるマスクブランクスを作製した。
 マスクブランクスの作製において、遮光層は、スパッタリング法を用いて、酸化クロム膜(第1低反射膜)、クロム膜(遮光性膜)、および酸化クロム膜(第2低反射膜)の順番で合成石英ガラスの表面に成膜することにより形成した。この際、酸化クロム膜(第1低反射膜)、クロム膜(遮光性膜)、および酸化クロム膜(第2低反射膜)の成膜は、それぞれ、ガスを入れ替えたスパッタリング装置を用いて個別に行った。また、酸化クロム膜(第1低反射膜)および酸化クロム膜(第2低反射膜)は、真空チャンバ内にCrターゲットを装着し、O、N、COガスを導入し、真空環境下での反応性スパッタリングにより成膜した。酸化クロム膜(第1低反射膜)および酸化クロム膜(第2低反射膜)の成膜条件は、一般的なバイナリマスクの遮光パターンにおける低反射膜の成膜条件よりもOガスの比率を増加した条件とした。さらに、クロム膜(遮光性膜)の成膜条件は、一般的なバイナリマスクの遮光パターンにおけるクロム膜の成膜条件よりも成膜時間を延ばした条件とした。
 次に、遮光層の表面に所望形状のレジストパターンを形成し、レジストパターンをマスクとして遮光層をウェットエッチングで加工することにより、遮光層から3.0μm幅の遮光パターンを含む0.1μm以上10.0μm未満の幅を有する遮光パターンを形成した。これにより、大型フォトマスクを作製した。
[比較例A]
 まず、縦×横×膜厚が700mm×800mm×8mmの精密研磨された合成石英ガラス(透光性基板)と、合成石英ガラスの表面に、膜厚85nmのクロム膜(遮光性膜)および膜厚30nmの酸化クロム膜(低反射膜)がこの順番で積層された積層構造を有する遮光層と、を備えるマスクブランクスを作製した。
 マスクブランクスの作製において、遮光層は、スパッタリング法を用いて、クロム膜(遮光性膜)および酸化クロム膜(低反射膜)の順番で合成石英ガラスの表面に成膜することにより形成した。この際、クロム膜(遮光性膜)および酸化クロム膜(低反射膜)の成膜は、それぞれ、ガスを入れ替えたスパッタリング装置を用いて個別に行った。また、酸化クロム膜(低反射膜)は、真空チャンバ内にCrターゲットを装着し、O、N、COガスを導入し、真空環境下での反応性スパッタリングにより成膜した。酸化クロム膜(低反射膜)の成膜条件は、一般的なバイナリマスクの遮光パターンにおける低反射膜の成膜条件と同等条件とした。さらに、クロム膜の成膜条件は、一般的なバイナリマスクの遮光パターンにおけるクロム膜の成膜条件と同等条件とした。
 次に、遮光層の表面に所望形状のレジストパターンを形成し、レジストパターンをマスクとして遮光層をウェットエッチングで加工することにより、遮光層から3.0μm幅の遮光パターンを含む0.1μm以上10.0μm未満の幅を有する遮光パターンを形成した。これにより、大型フォトマスクを作製した。
[評価結果]
ア.低反射膜および遮光性膜の境界構造の観察
 実施例A1~A3および比較例Aにおける遮光パターンの低反射膜および遮光性膜の境界構造を、SEM(走査型電子顕微鏡)により観察した。その結果、実施例1および3における遮光パターンの境界においては、Crの含有率が不連続に変化し、酸化クロム膜(第1低反射膜)とクロム膜(遮光性膜)との境界、およびクロム膜(遮光性膜)と酸化クロム膜(第2低反射膜)との境界が明瞭となっていた。また、実施例2における遮光パターンの境界においては、Crの含有率が連続的に変化し、酸化クロム膜(第1低反射膜)とクロム膜(遮光性膜)との境界、およびクロム膜(遮光性膜)と酸化クロム膜(第2低反射膜)との境界が不明瞭となっていた。また、比較例における遮光パターンの境界においては、Crの含有率が不連続に変化し、クロム膜(遮光性膜)と酸化クロム膜(低反射膜)との境界が明瞭になっていた。
イ.遮光パターンの裏面反射率および表面反射率ならびに光学濃度(OD)
 実施例A1~A3および比較例Aの大型フォトマスクについて、313nm~436nmの波長領域の光に対する遮光パターンの裏面反射率(合成石英ガラス側の面の反射率)、および上記波長領域の光に対する遮光パターンの表面反射率(合成石英ガラスとは反対側の面の反射率)、ならびに上記波長領域の光に対する遮光パターンの光学濃度(OD)を測定した。
 上記裏面反射率および上記表面反射率は、分光分析機(大塚電子MCPD3000)を用いて、上記波長領域の範囲で1nmごとに測定した。また、上記光学濃度(OD)は、紫外・可視分光光度計(日立U-4000)を用いて、上記波長領域の範囲で1nmごとに測定した。それらの測定結果のうち、g線(波長436nm)、h線(波長405nm)、i線(波長365nm)、およびj線(波長313nm)での測定結果を以下の表3に示す。
 上記分光分析機(大塚電子MCPD3000)の測定条件等を表1に、上記紫外・可視分光光度計(日立U-4000)の測定条件を表2にまとめる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
ウ.レジストパターンの性状
 実施例A1~A3および比較例Aの大型フォトマスクを用いて、所望形状のレジストパターンを形成することを目的として、ガラス基板上に形成された膜厚が2.5μmのレジスト層(JSR社製)に対して、以下の露光条件により、露光ステッパー式(縮小投影式)のプロキシ露光を行った。
(露光条件)
露光ギャップ:150μm
光源:超高圧水銀灯
露光光:g線、h線、i線、およびj線を含む露光光
露光量:200mJ/cm
 実施例A1~A3および比較例Aの大型フォトマスクを用いて形成したレジストパターンの性状として、レジストパターンのムラ部の正常部に対する膜厚変動(以下、「ムラ部膜厚変動」とすることがある。)を評価した。具体的には、比較例Aのムラ部膜厚変動を100%とした際の実施例A1~A3のムラ部膜厚変動の割合[%]を測定した。その結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例A1~A3においては、上記表3に示されるように、g線、h線、i線、およびj線のいずれについても、裏面反射率は8%以下となり、上記表3には示さないが、上記波長領域の他の波長の光についても同様の結果となった。実施例A2およびA3においては、さらに、上記表3に示されるように、g線、h線、i線、およびj線のいずれについても、表面反射率は10%以下となり、上記表3には示さないが、上記波長領域の他の波長の光についても同様の結果となった。実施例A3においては、さらに、上記表3に示されるように、g線、h線、i線、およびj線のいずれについても、光学濃度(OD)は4.5以上となり、上記表3には示さないが、上記波長領域の他の波長の光についても同様の結果となった。これに対して、比較例Aにおいては、上記表3に示されるように、g線、h線、i線、およびj線のうち、h線、i線、およびj線については、裏面反射率は8%より大きくなり、g線、h線、i線、およびj線のいずれについても、表面反射率は10%より大きくなり、光学濃度(OD)は4.5未満となった。
 上記表3に示されるように、実施例A1~A3においては、比較例よりも、ムラ部膜厚変動を抑制することができた。また、実施例A2およびA3においては、実施例A1よりも、ムラ部膜厚変動を効果的に抑制することができた。さらに、実施例A3においては、実施例A2よりも、ムラ部膜厚変動を顕著に抑制することができた。
B.洗浄による異物の低減
 次に、洗浄による異物の低減効果について、実施例および比較例を用いて説明する。
[実施例B1]
 上記実施例A3と同様にして大型フォトマスクを作製した。
 作成された大型フォトマスクを、20mm(h)×30mm(w)×8mm(d)以内にガラスカッターを用いて切断した。切断面に、白金でスパッタ処理(20mA×12秒)を施し、電子顕微鏡にて観察した。電子顕微鏡は、走査型電子顕微鏡(日本電子株式会社製、JSM-6700F)を用い、加速電圧を5.0kV、傾斜を0°、モードをSEI(二次電子下方検出)とし、ワーキングディスタンスを3.2mm~3.3mm(サンプルの高さに応じて微調整)とし、さらに積算回数は1回(Fine Viewモード)、観察倍率は×100Kとした。測定箇所は、3.0μm幅の遮光パターンの部分とした。
 測定の結果、上記第1低反射膜の側面の上記透光性基板表面に対する角度が80°であることを得た。なお、この角度は、上述したように、上記第1低反射膜の側面と上記透光性基板の表面とが接する位置と、上記第1低反射膜の膜厚の減少が開始される位置とを直線で引き、この直線と上記表面との角度を測定することにより得られる角度である。
 このような実施例B1の大型フォトマスクに対し、純水洗浄を300秒間、実施後に乾燥し、洗浄した後の異物数を外観検査機の反射検査にて1μm以上の異物を検出可能な感度により測定した。この測定値は、ガラス基板4辺の端部5mmを除いた690mm×790mmの領域を測定した値である。
 上記測定値を、後述する比較例Bによる値を100とした際の割合として表4に示す。
[実施例B2~B5]
 上記実施例B1のエッチング条件を、エッチング時間を延長する方向に変更し、上記第1低反射膜の側面の上記透光性基板表面に対する角度を変更させて、下記の表4に示す角度の大型フォトマスクを作製した。角度の測定は、上記実施例B1と同様の方法で行った。
 これらの大型フォトマスクを実施例B1と同様の方法により洗浄し、同様にして異物数を測定した。上記測定値を、後述する比較例Bによる値を100とした際の割合として表4に示す。
[比較例B]
 上記比較例Aと同様にして大型フォトマスクを作製した。
 得られた大型フォトマスクを、上記実施例B1と同様の方法により、上記第1低反射膜の側面の上記透光性基板表面に対する角度を測定した。
 また、得られた大型フォトマスクを、実施例B1と同様の方法により洗浄し、同様にして異物数を測定した。結果は、100%として表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、明らかなように、比較例に対し、実施例は異物数が少なかった。これは比較例におけるクロム膜と実施例における酸化クロム膜との異物との親和性の差異によるものであると推定される。
 また、角度を変更させた場合は、角度が低い程、異物数が減少する結果となり、特に実施例B2と実施例B3の間で、大幅に値が変化することが分かった。
 100…大型フォトマスク
 110…透光性基板
 120…遮光パターン
 122…第1低反射膜
 124…遮光性膜
 126…第2低反射膜

Claims (10)

  1.  透光性基板と、前記透光性基板の表面に設けられた遮光パターンとからなる大型フォトマスクであって、
     前記遮光パターンは、第1低反射膜、遮光性膜、および第2低反射膜が、前記透光性基板側からこの順番で積層された積層構造を有し、
     前記遮光パターンの前記透光性基板側の面は、313nm~436nmの波長領域の光に対する反射率が8%以下であることを特徴とする大型フォトマスク。
  2.  前記遮光パターンの前記透光性基板とは反対側の面は、313nm~436nmの波長領域の光に対する反射率が10%以下であることを特徴とする請求項1に記載の大型フォトマスク。
  3.  前記遮光性膜がクロムを含み、前記第1低反射膜および前記第2低反射膜が酸化クロムを含むことを特徴とする請求項1または請求項2に記載の大型フォトマスク。
  4.  前記遮光パターンは、313nm~436nmの波長領域の光に対する光学濃度(OD)が4.5以上であることを特徴とする請求項1から請求項3までのいずれかに記載の大型フォトマスク。
  5.  前記透光性基板に対する前記遮光性膜の側面の傾斜角度が80度以上90度以下であることを特徴とする請求項4に記載の大型フォトマスク。
  6.  前記第1低反射膜の側面または前記第2低反射膜の側面が、前記遮光性膜の側面に対して前記透光性基板の表面に平行な方向に突出することを特徴とする請求項4または請求項5に記載の大型フォトマスク。
  7.  前記第1低反射膜の側面および前記第2低反射膜の側面の両方が、前記遮光性膜の側面に対して前記透光性基板の表面に平行な方向に突出し、
     さらに、前記第1低反射膜の側面の方が、前記第2低反射膜の側面より前記透光性基板の表面に平行な方向に突出していることを特徴とする請求項6に記載の大型フォトマスク。
  8.  少なくとも前記第1低反射膜の側面が、前記遮光性膜の側面に対して前記透光性基板の表面に平行な方向に突出し、
     さらに、前記第1低反射膜の側面の前記透光性基板表面に対する角度が、56°以下であることを特徴とする請求項6または請求項7に記載の大型フォトマスク。
  9.  前記遮光性膜の側面が凹状であることを特徴とする請求項4から請求項8までのいずれかに記載の大型フォトマスク。
  10.  請求項1から請求項9までのいずれかに記載の大型フォトマスクであって、分割露光に用いられる分割パターンを有し、前記分割パターンが前記遮光パターンであることを特徴とする大型フォトマスク。
PCT/JP2019/010647 2018-03-15 2019-03-14 大型フォトマスク WO2019177116A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980032507.6A CN112119352B (zh) 2018-03-15 2019-03-14 大型光掩模
JP2020506656A JP7420065B2 (ja) 2018-03-15 2019-03-14 大型フォトマスク
KR1020207029308A KR102653366B1 (ko) 2018-03-15 2019-03-14 대형 포토마스크
KR1020247010297A KR20240046289A (ko) 2018-03-15 2019-03-14 대형 포토마스크
JP2023182390A JP2024001250A (ja) 2018-03-15 2023-10-24 大型フォトマスク

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-048085 2018-03-15
JP2018048085 2018-03-15
JP2018238508 2018-12-20
JP2018-238508 2018-12-20

Publications (1)

Publication Number Publication Date
WO2019177116A1 true WO2019177116A1 (ja) 2019-09-19

Family

ID=67906680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010647 WO2019177116A1 (ja) 2018-03-15 2019-03-14 大型フォトマスク

Country Status (5)

Country Link
JP (2) JP7420065B2 (ja)
KR (2) KR20240046289A (ja)
CN (1) CN112119352B (ja)
TW (1) TWI711878B (ja)
WO (1) WO2019177116A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220214610A1 (en) * 2019-05-02 2022-07-07 Asml Netherlands B.V. A patterning device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008090254A (ja) * 2006-09-04 2008-04-17 Geomatec Co Ltd フォトマスク用基板及びフォトマスク並びにその製造方法
JP2016188997A (ja) * 2015-03-27 2016-11-04 Hoya株式会社 フォトマスクブランク及びこれを用いたフォトマスクの製造方法、並びに表示装置の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178403A (en) * 1977-08-04 1979-12-11 Konishiroku Photo Industry Co., Ltd. Mask blank and mask
JPH11125896A (ja) * 1997-08-19 1999-05-11 Toppan Printing Co Ltd フォトマスクブランクス及びフォトマスク
JP4088742B2 (ja) * 2000-12-26 2008-05-21 信越化学工業株式会社 フォトマスクブランクス、フォトマスク及びフォトマスクブランクスの製造方法
KR100778909B1 (ko) * 2001-05-31 2007-11-22 니치아 카가쿠 고교 가부시키가이샤 반도체 레이저 소자
JP4389440B2 (ja) * 2002-10-29 2009-12-24 凸版印刷株式会社 転写マスク及びその作製方法
WO2004070472A1 (ja) * 2003-02-03 2004-08-19 Hoya Corporation フォトマスクブランク及びフォトマスク、並びにフォトマスクを用いたパターン転写方法
TW200745630A (en) * 2006-04-24 2007-12-16 Asahi Glass Co Ltd Blank, black matrix, and color filter
US8198118B2 (en) * 2006-10-31 2012-06-12 Taiwan Semiconductor Manufacturing Co. Method for forming a robust mask with reduced light scattering
KR20100009558A (ko) * 2007-04-27 2010-01-27 호야 가부시키가이샤 포토마스크 블랭크 및 포토마스크
JP2009229868A (ja) * 2008-03-24 2009-10-08 Hoya Corp グレートーンマスクの製造方法及びグレートーンマスク、並びにパターン転写方法
KR20090110240A (ko) * 2008-04-16 2009-10-21 지오마텍 가부시키가이샤 포토마스크용 기판, 포토마스크 및 그의 제조방법
KR20110115058A (ko) * 2010-04-14 2011-10-20 주식회사 에스앤에스텍 포토마스크 블랭크, 포토마스크 및 패턴 형성 방법
CN103890657A (zh) * 2011-10-21 2014-06-25 大日本印刷株式会社 大型相移掩模及大型相移掩模的制造方法
KR101473163B1 (ko) 2013-07-26 2014-12-16 주식회사 에스앤에스텍 플랫 패널 디스플레이용 블랭크 마스크 및 포토 마스크
JP6106579B2 (ja) * 2013-11-25 2017-04-05 Hoya株式会社 フォトマスクの製造方法、フォトマスク及びパターン転写方法
JP6080915B2 (ja) 2014-08-25 2017-02-15 エスアンドエス テック カンパニー リミテッド 位相反転ブランクマスク及びフォトマスク
JP6594742B2 (ja) * 2014-11-20 2019-10-23 Hoya株式会社 フォトマスクブランク及びそれを用いたフォトマスクの製造方法、並びに表示装置の製造方法
KR101846065B1 (ko) * 2015-03-27 2018-04-05 호야 가부시키가이샤 포토마스크 블랭크 및 이것을 사용한 포토마스크의 제조 방법, 및 표시 장치의 제조 방법
KR20160129789A (ko) * 2015-04-30 2016-11-09 주식회사 에스앤에스텍 플랫 패널 디스플레이용 위상반전 블랭크 마스크 및 포토마스크
JP6352224B2 (ja) 2015-07-17 2018-07-04 Hoya株式会社 位相シフトマスクブランク及びこれを用いた位相シフトマスクの製造方法、並びに表示装置の製造方法
JP6451561B2 (ja) * 2015-09-03 2019-01-16 信越化学工業株式会社 フォトマスクブランク
JP6891099B2 (ja) 2017-01-16 2021-06-18 Hoya株式会社 位相シフトマスクブランクおよびこれを用いた位相シフトマスクの製造方法、並びに表示装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008090254A (ja) * 2006-09-04 2008-04-17 Geomatec Co Ltd フォトマスク用基板及びフォトマスク並びにその製造方法
JP2016188997A (ja) * 2015-03-27 2016-11-04 Hoya株式会社 フォトマスクブランク及びこれを用いたフォトマスクの製造方法、並びに表示装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220214610A1 (en) * 2019-05-02 2022-07-07 Asml Netherlands B.V. A patterning device

Also Published As

Publication number Publication date
JP7420065B2 (ja) 2024-01-23
KR20200128141A (ko) 2020-11-11
JPWO2019177116A1 (ja) 2021-02-25
CN112119352B (zh) 2024-07-26
TWI711878B (zh) 2020-12-01
KR20240046289A (ko) 2024-04-08
JP2024001250A (ja) 2024-01-09
KR102653366B1 (ko) 2024-04-02
CN112119352A (zh) 2020-12-22
TW201945832A (zh) 2019-12-01

Similar Documents

Publication Publication Date Title
KR102251087B1 (ko) 마스크 블랭크, 네거티브형 레지스트막 부착 마스크 블랭크, 위상 시프트 마스크, 및 그것을 사용하는 패턴 형성체의 제조 방법
TWI584058B (zh) 大型相位移遮罩及大型相位移遮罩之製造方法
TWI468852B (zh) 反射型光罩基底與其製造方法
CN105573046B (zh) 光掩模、光掩模的制造方法以及图案的转印方法
TWI604264B (zh) 光罩及顯示裝置之製造方法
JP6301383B2 (ja) フォトマスクブランク及びこれを用いたフォトマスクの製造方法、並びに表示装置の製造方法
JP4934237B2 (ja) グレートーンマスクの製造方法及びグレートーンマスク、並びにパターン転写方法
US6797439B1 (en) Photomask with back-side anti-reflective layer and method of manufacture
TW201740185A (zh) 光罩基板、光罩基底、光罩、光罩基板之製造方法、光罩之製造方法、及顯示裝置之製造方法
KR101846065B1 (ko) 포토마스크 블랭크 및 이것을 사용한 포토마스크의 제조 방법, 및 표시 장치의 제조 방법
JP2024001250A (ja) 大型フォトマスク
JP2012212125A (ja) フォトマスクの製造方法、パターン転写方法及び表示装置の製造方法
JP5724509B2 (ja) フォトマスクおよびフォトマスクブランクス
JP6500076B2 (ja) フォトマスクの製造方法及びフォトマスク基板
JP2012212124A (ja) フォトマスクの製造方法、パターン転写方法及び表示装置の製造方法
JP2015200719A (ja) 位相シフトマスクおよびその製造方法
US6235435B1 (en) Dichroic photo mask and methods for making and inspecting same
JP2018189997A (ja) フォトマスク基板、フォトマスクブランク、フォトマスク、フォトマスク基板の製造方法、表示装置の製造方法、フォトマスクのハンドリング方法、及びフォトマスク基板のハンドリング方法
KR101333372B1 (ko) 하프톤형 위상 시프트 마스크
JP6379630B2 (ja) 大型フォトマスク
JP5005370B2 (ja) ハーフトーンマスク及びそれを用いたパターニング方法
CN114839834A (zh) 一种用于投影式光刻的掩模基版、光掩模及其制备方法
KR20100076696A (ko) 극자외선 리소그래피를 위한 포토마스크

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506656

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207029308

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19766640

Country of ref document: EP

Kind code of ref document: A1