WO2019175947A1 - Wireless communication system, different-frequency handover method, base station, and terminal apparatus - Google Patents
Wireless communication system, different-frequency handover method, base station, and terminal apparatus Download PDFInfo
- Publication number
- WO2019175947A1 WO2019175947A1 PCT/JP2018/009607 JP2018009607W WO2019175947A1 WO 2019175947 A1 WO2019175947 A1 WO 2019175947A1 JP 2018009607 W JP2018009607 W JP 2018009607W WO 2019175947 A1 WO2019175947 A1 WO 2019175947A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base station
- period
- terminal device
- packet
- measurement period
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/10—Flow control between communication endpoints
- H04W28/14—Flow control between communication endpoints using intermediate storage
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
Definitions
- the present disclosure relates to a wireless communication system, a different frequency handover method, a base station, and a terminal device.
- a base station In wireless communication, a base station forms a wireless communication area called a cell and performs wireless communication with a terminal device in the wireless communication area. When the terminal device moves to another cell formed by another base station, the connection destination of the terminal device is transferred from the base station to another base station. This process is called handover. When a base station and other base stations use radio signals having different frequencies, a handover between these base stations is particularly called a different frequency handover.
- the terminal apparatus measures the reception quality of a radio signal transmitted from another base station, for example, Signal Interference Ratio (hereinafter referred to as “SIR”).
- SIR Signal Interference Ratio
- the measured SIR is notified from the terminal device to the base station.
- the base station changes the connection with the terminal device from the base station to another base station as necessary.
- the terminal device simultaneously receives radio signals from other base stations while maintaining communication with the base station, and performs SIR. It is possible to measure.
- GAP period a period called measurement gap
- LTE Long Term Evolution
- the delay in the radio section is required to be 0.5 ms or less.
- a packet in which a rule regarding delay is set for example, a URLLC packet is transmitted between a base station and a terminal device, and a GAP period in a different frequency handover is set.
- the requirement regarding the delay required for the URLLC packet is not satisfied.
- the base station receives a URLLC packet from the host device immediately before the start time of the GAP period.
- transmission of the URLLC packet is executed after the end of the GAP period, transmission of the URLLC packet is suspended in the base station at least during the GAP period.
- An object of the present invention is to suppress a packet transmission delay when a process such as reception quality measurement in a GAP period and a packet transmission for which a rule regarding delay is competing in a different frequency handover.
- a wireless communication system including a base station and a terminal device that performs wireless communication with the base station, wherein the base station performs a first period from another base station to the terminal device.
- a packet that is set as a measurement period for measuring the first quality of the first radio signal to the terminal, and that is transmitted from the base station to the terminal device and that defines a rule regarding delay in the radio communication
- the base station executes a change process for changing the setting of the measurement period, and after the change process, the change
- the base station transmits the packet to the terminal device within the first period set as the measurement period before the process is executed, and a time point before the start time of the first period At the base station If you do not hold the packet, the terminal device, a radio communication system, characterized by measuring said first quality of the first radio signal in the first period is disclosed.
- the present invention it is possible to suppress packet transmission delay when processing such as reception quality measurement in the GAP period competes with transmission of a packet for which a rule relating to delay is defined in different frequency handover. .
- FIG. 1 is a diagram illustrating a wireless communication system including a base station and a terminal device.
- the base station 3a is connected to a host device, for example, the server 2 via the network 1.
- the server 2 is, for example, an application server.
- the base station 3a is connected to the terminal device 4 by wireless communication, and transmits and receives data such as packets.
- a base station 3b is another base station arranged in the vicinity of the base station 3a, and forms an adjacent cell with respect to a cell formed by the base station 3a. It is assumed that there are a plurality of base stations 3b.
- the frequency of the radio signal of at least one base station 3b among the plurality of base stations 3b is different from the frequency of the radio signal of the base station 3a.
- base station 3 when not distinguishing the base station 3a and the base station 3b, it shall be described as “base station 3”.
- the terminal device 4 moves from the cell formed by the base station 3a to the cell formed by the base station 3b, the connection destination of the terminal device 4 is handed over from the base station 3a to the base station 3b.
- the terminal device 4 performs measurement of signal reception quality, for example, SIR, from another base station 3b that is a candidate for the destination of the handover.
- SIR signal reception quality
- FIG. 2 is a hardware configuration diagram of the terminal device 4.
- the terminal device 4 includes a wireless processing circuit 410, a processor 420, a nonvolatile memory 440, and a volatile memory 450.
- the wireless processing circuit 410 performs frequency down-conversion, Analog to Digital (AD) conversion, and the like on the wireless signal received by the antenna. Further, the radio processing circuit 410 performs digital to analog (DA) conversion, frequency up-conversion, and the like on the radio signal transmitted from the antenna.
- DA digital to analog
- the radio processing circuit 410 performs frequency tuning based on the frequency of the received radio signal.
- the processor 420 executes processing related to communication with the base station 3a, processing related to handover to another base station 3b, and the like.
- the processor 420 is a hardware processor, and includes a central processing unit (CPU), a micro control unit (MCU), a micro processing unit (MPU), a digital signal processor (DSP), and a field programmable processor (DSP). Circuit (ASIC) is also applicable.
- CPU central processing unit
- MCU micro control unit
- MPU micro processing unit
- DSP digital signal processor
- DSP field programmable processor
- ASIC circuit
- the nonvolatile memory 440 is a computer-readable recording medium.
- the nonvolatile memory 440 stores a computer program executed by the processor 420 and the like.
- the non-volatile memory 440 is, for example, Read Only Memory (ROM), Mask Read Only Memory (mask ROM), Programmable Read Only Memory (PROM), Flash Memory, Magnetoresistive Memory Random Memory Random Access Memory.
- ROM Read Only Memory
- mask ROM Mask Read Only Memory
- PROM Programmable Read Only Memory
- Flash Memory Flash Memory
- Magnetoresistive Memory Random Memory Random Access Memory Magnetoresistive Memory Random Access Memory
- FeRAM Ferroelectric Random Access Memory
- the computer program can be recorded on a storage medium other than the nonvolatile memory 440 and a computer-readable recording medium (excluding a carrier wave).
- portable recording media such as Digital Versatile Disc (DVD) and Compact Disc Read Only Memory (CD-ROM) in which a computer program is recorded can be distributed.
- the computer program can be transmitted via a network.
- the volatile memory 450 is a computer-readable recording medium.
- the computer program stored in the nonvolatile memory 440 is loaded into the volatile memory 450.
- the volatile memory 450 holds data used for arithmetic processing by the processor 420, data that is the result of the arithmetic processing, and the like.
- the volatile memory 450 is, for example, a Static Random Access Memory (SRAM), a Dynamic Random Access Memory (DRAM), or the like.
- FIG. 3 is a ladder chart relating to measurement of reception quality in handover. It is assumed that the reception quality of the radio signal received by the terminal device 4 from the base station 3a, for example, the SIR is lowered in a state where a communication session is established between the base station 3a and the terminal device 4. In this case, in step S10, the terminal device 4 transmits a notification signal indicating that the quality of the received signal has decreased to the base station 3a. In step S11, the base station 3a that has received the notification signal uses information for identifying other base stations 3b arranged around the base station 3a, for example, cell identification (ID) and the other base station 3b. Cell information including frequency information specifying the frequency of the radio signal is notified to the terminal device 4.
- ID cell identification
- the base station 3 a notifies the terminal device 4 of GAP pattern information that specifies a pattern of the reception quality measurement period (hereinafter referred to as “GAP pattern”).
- GAP pattern is specified by, for example, the number of GAP periods, the time of each GAP period, the interval between adjacent GAP periods, and the like. In FIG. 3, it is assumed that the set number of GAP periods is 3, the time of each GAP period is 2 ms, and the interval between adjacent GAP periods is 4 ms.
- the total time of the plurality of GAP periods included in the GAP pattern is based on the time required for the terminal device 4 to measure the SIR for each of the plurality of other base stations 3b and notify the measurement result to the base station 3a. Specified.
- the GAP period is distributed and executed a plurality of times. Note that a series of processing from the start of the first GAP period to the end of the last GAP among the GAP periods executed a plurality of times is called a GAP sequence.
- step S12 the base station 3a determines whether or not to execute handover based on the SIR for the other base station 3b notified from the terminal device 4, and to which base station 3b to perform handover. To decide.
- FIG. 4 is a ladder chart about processing executed mainly in the wireless communication system within the GAP period.
- the base station 3a receives the packet from the network 1 (not shown in FIG. 4) from the server 2, which is a higher-level device.
- the “packet” will be described as a packet in which provisions relating to delay are defined, for example, a URLLC packet.
- the base station 3a holds the received packet in the buffer unit.
- the base station 3a schedules the transmission timing of the packets held in the buffer unit.
- it is determined that transmission of the packet held in the buffer unit to the terminal device 4 is not completed by the start of the scheduled GAP period thereafter, and the base station 3a suspends transmission of the packet.
- the base station 3a suspends transmission of the packet.
- step S16 the terminal device 4 tunes the frequency of the radio signal that can be received by the radio processing circuit 410 to the frequency of the radio signal from the base station 3b that is a new connection destination candidate.
- the terminal device 4 receives the radio signal from the base station 3b.
- the terminal apparatus 4 measures SIR as the reception quality of the received radio signal.
- the terminal device 4 transmits the SIR measurement result as a Measurement Report to the base station 3a.
- the terminal device 4 tunes the radio processing circuit 410 to the frequency of the radio signal from the base station 3a in order to resume radio communication with the base station 3a.
- step S21 the base station 3a transmits the packet held in the buffer unit to the terminal device 4.
- at least processes S16 to S20 are executed within the GAP period.
- the packet held in the buffer unit of the base station 3a is held in the base station 3a and transmission is suspended until the subsequent GAP period ends. Therefore, packet transmission is delayed for at least the time corresponding to the GAP period.
- the specification specifies that the delay in the wireless communication section is 0.5 ms or less. If the length of the GAP period is 2 ms, for example, if the packet reaches the base station 3a before the GAP period and transmission to the terminal device 4 is suspended until the GAP period ends, at least A delay of 2 ms occurs, and the requirement regarding the delay required in the specification is not satisfied.
- packet transmission is performed by changing the setting of the GAP period. Can be preferentially executed.
- FIG. 5 is a ladder chart for explaining the process of changing the GAP period when the transmission of a packet for which the regulation relating to delay is defined competes with the process of measuring the reception quality in the GAP period.
- the base station 3a receives the packet from the server 2 which is a host device.
- the base station 3a holds the received packet in the buffer unit.
- the base station 3a performs scheduling regarding the transmission timing of the packet held in the buffer unit. For example, when the GAP period is set, the base station 3a determines whether or not the regulations regarding the packet delay are satisfied even if transmission of the packet is executed after the end of the GAP period. For example, when the delay allowable value is 0.5 ms and the GAP period is 2 ms, it is determined that the rule regarding the packet delay is not satisfied.
- step S26 the base station 3a cancels the set GAP period, and reschedules packet transmission so that the packet is transmitted in the canceled period.
- step S25 the base station 3a transmits to the terminal device 4 a change notification indicating that the GAP period has been canceled, that is, the GAP pattern has been changed.
- the terminal device 4 recognizes that the setting of the GAP period has been canceled by the change notification, and the processes S16 to S20 disclosed in FIG. 4 are not executed in the canceled GAP period.
- step S27 the base station 3a transmits the packet to the terminal device 4 at the rescheduled timing.
- FIG. 6 is a diagram illustrating an example of a method for notifying the terminal device 4 of the change of the GAP pattern.
- the GAP period defined by the GAP pattern notified in the process S11 of FIG. 3 is assumed to be from time T1 to time T2 in the figure. If the packet is held in the buffer unit before the start of the GAP period and the packet transmission is performed while avoiding the GAP period, the base station 3a Cancel the GAP period setting. Then, as shown in the process S25 of FIG. 5, the base station 3a notifies the terminal device 4 of the change of the GAP pattern. This notification is executed using, for example, a Physical Downlink Control Channel signal (hereinafter referred to as “PDCCH signal”).
- PDCH signal Physical Downlink Control Channel signal
- the PDCCH signal includes cancellation information indicating that the setting for setting the period from time T1 to time T2 as the GAP period is cancelled.
- wireless communication between the terminal device 4 and the base station 3a is contained in a PDCCH signal.
- the terminal device 4 recognizes that the setting of the GAP period scheduled thereafter is canceled.
- transmission / reception of the packet between the base station 3a and the terminal device 4 is performed.
- FIG. 7 is a diagram illustrating another example of a method for notifying the terminal device 4 of a change in the GAP pattern.
- FIG. 6 discloses an example in which cancellation information indicating that the setting of the next GAP period is canceled in the PDCCH signal and allocation resource information for specifying a radio resource are included.
- the allocation resource information is included in the PDCCH signal, while the information corresponding to the cancellation information is not included in the PDCCH signal.
- the terminal device 4 may recognize that the setting of the GAP period is canceled based on the allocation resource information included in the PDCCH signal.
- FIG. 7B shows a case where the setting of the GAP period is not canceled.
- the terminal device 4 Since the setting of the GAP period is not canceled, the terminal device 4 measures the reception quality of the radio signal from the other base station 3b in the GAP period as scheduled. Therefore, radio resources are not allocated to radio communication between the base station 3a and the terminal device 4, and allocation resource information is not included in the PDCCH signal. In other words, when the allocation resource information is included in the PDCCH signal, it indicates that the setting of the GAP period is implicitly canceled.
- FIG. 8 is a hardware configuration diagram of the base station 3.
- the base station 3 includes a wireless processing circuit 310, a processor 320, a nonvolatile memory 340, a volatile memory 350, and a network interface circuit 360.
- the wireless processing circuit 310 performs down conversion, AD conversion, and the like on the wireless signal received by the antenna.
- the wireless processing circuit 310 performs DA conversion, up-conversion, and the like on the wireless signal transmitted from the antenna.
- the processor 320 executes processing related to packet transmission / reception with the server 2, processing related to packet transmission / reception with the terminal device 4, setting of a GAP pattern, handover, and the like.
- the processor 320 is a hardware processor, and an FPGA or an ASIC can be applied in addition to a CPU, MCU, MPU, and DSP.
- the nonvolatile memory 340 is a computer-readable recording medium.
- the nonvolatile memory 340 stores a computer program executed by the processor 320 and the like.
- the nonvolatile memory 340 is, for example, a ROM, mask ROM, PROM, flash memory, MRAM, ReRAM, FeRAM, or the like.
- the computer program can be recorded on a storage medium other than the non-volatile memory 340 and a computer-readable recording medium (except for a carrier wave).
- portable recording media such as DVDs and CD-ROMs on which computer programs are recorded can be distributed.
- the computer program can be transmitted via a network.
- the volatile memory 350 is a computer-readable recording medium.
- the computer program stored in the non-volatile memory 340 is loaded into the volatile memory 350.
- the volatile memory 350 holds data used for arithmetic processing by the processor 320, data that is the result of the arithmetic processing, and the like.
- the volatile memory 350 is, for example, SRAM or DRAM.
- the network interface circuit 360 is an interface device with the network 1.
- FIG. 9 is a functional block diagram of the processor 320 of the base station 3.
- the processor 320 includes a reception unit 321, a transmission unit 322, a radio resource allocation unit 323, a handover processing unit 324, a measurement result processing unit 325, a higher device side reception unit 326, a higher device side transmission unit 327, a buffer unit 328, and a scheduling unit 329. , GAP pattern setting unit 330 and GAP control unit 331.
- the receiving unit 321 demodulates and decodes the signal received from the terminal device 4.
- the transmission unit 322 modulates and encodes a signal transmitted to the terminal device 4.
- the radio resource allocation unit 323 allocates radio resources used in radio communication performed with the terminal device 4.
- the handover processing unit 324 performs processing related to handover to another base station 3b. For example, when a notification regarding the reception quality is transmitted from the terminal device 4, the handover processing unit 324 is transmitted from the cell ID that identifies the other base station 3b arranged in the vicinity or the other base station 3b. The terminal device 4 is notified of frequency information indicating the frequency of the radio signal. In addition, the handover processing unit 324 notifies the terminal device 4 of information indicating the GAP pattern set by the GAP pattern setting unit 330.
- the terminal device 4 performs reception quality measurement, and the measurement result processing unit 325 receives the reception quality measurement result transmitted from the terminal device 4. Then, based on the received reception quality measurement result, the handover processing unit 324 determines whether or not to execute handover and performs processing related to handover execution.
- the upper apparatus side receiving unit 326 receives a packet from the upper apparatus, for example, the server 2 via the network interface circuit 360.
- the higher-level device side transmission unit 327 transmits the packet to the higher-level device via the network interface circuit 360.
- the buffer unit 328 is a buffer that holds packets received from the host device. For example, when the host device side receiving unit 326 receives a packet from the host device, the packet is temporarily held in the buffer unit 328.
- the scheduling unit 329 schedules the transmission timing of the packet held in the buffer unit 328 to the terminal device 4.
- the scheduling unit 329 performs scheduling in consideration of the data amount of the packet held in the buffer unit 328, whether or not a rule regarding delay is defined for the packet.
- the scheduling unit 329 performs scheduling in consideration of the GAP period.
- the GAP pattern setting unit 330 sets a GAP pattern when the handover processing unit 324 receives a notification regarding reception quality from the terminal device 4, and notifies the handover processing unit 324 of the set GAP pattern.
- the GAP pattern setting unit 330 also executes a process for changing the GAP pattern once set. In this case, the GAP pattern setting unit 330 notifies the handover processing unit 324 of the change contents.
- the GAP control unit 331 performs processing related to execution of the GAP sequence.
- FIG. 10 is a functional block diagram of the processor 420 of the terminal device 4.
- the processor 420 functions as a reception unit 421, a transmission unit 422, a reception quality notification unit 423, a reception quality measurement unit 424, a tuning unit 425, and a GAP control unit 426.
- the receiving unit 421 performs demodulation and decoding of the signal received from the base station 3a.
- the transmission unit 422 modulates and encodes a signal transmitted to the base station 3a.
- the reception quality notification unit 423 transmits a notification signal to the base station 3a when the reception quality of the radio signal from the base station 3a is lowered, for example, when the SIR becomes a predetermined value or less.
- the notification signal may include the measured SIR value, or may include information indicating that the SIR has become equal to or less than a predetermined value.
- the reception quality measurement unit 424 measures the reception quality of radio signals from the base station 3a, and measures the reception quality of radio signals from other base stations 3b during the GAP period.
- the reception quality measuring unit 424 notifies the measured reception quality to the base station 3a.
- the tuning unit 425 tunes the reception frequency of the wireless processing circuit 410. For example, in the GAP period, in order to receive a radio signal having a frequency different from the frequency of the radio signal from the base station 3a, the reception frequency of the radio processing circuit 410 is tuned.
- the GAP control unit 426 controls the reception quality measurement unit 424, the tuning unit 425, and the like so that the GAP sequence is executed based on the GAP pattern notified from the base station 3a.
- FIG. 11 is a flowchart of processing executed by the processor 320 of the base station 3a.
- the process flow is started in process S30, and in process S31, the handover processing unit 324 determines whether a reception quality notification signal is received from the terminal device 4. If it is determined that the notification signal has been received (Yes in process S31), the process flow proceeds to process S32. If it is not determined that the notification signal has been received (No in process S31), the process flow repeats process S31. .
- the handover processing unit 324 determines whether the reception quality of the radio signal in the terminal device 4 is equal to or less than the specified value based on the received notification signal. If it is determined that the reception quality is not more than the specified value (Yes in process S32), the process flow proceeds to process S33, and if it is not determined that the reception quality is not more than the specified value (No in process S32), the process is performed. The flow returns to process S31.
- the GAP pattern setting unit 330 sets a GAP pattern.
- the handover processing unit 324 notifies the terminal device 4 of cell information related to the other base station 3 b and GAP pattern information indicating the GAP pattern set by the GAP pattern setting unit 330.
- the GAP control unit 331 executes the GAP sequence based on the GAP pattern set in process S33. Thereafter, the process flow ends in process S36.
- FIG. 12 is a flowchart of processing executed by the processor 320 of the base station 3a, and mainly shows processing related to execution of the GAP sequence.
- the flowchart shown in FIG. 12 corresponds to the details of the process S35 in the process flow disclosed in FIG.
- the process flow is started in process S40, and in process S41, the buffer unit 328 determines whether the packet addressed to the terminal device 4 is held in the buffer unit 328. When it is determined that the packet is held in the buffer unit 328 (Yes in process S41), the process flow proceeds to process S42, and when it is not determined that the packet is held in the buffer unit 328 (No in process S41). ) Repeats the process S41 in the process flow.
- the scheduling unit 329 schedules the packet transmission timing in consideration of the GAP pattern, that is, in consideration that the specific period is set as the GAP period.
- the scheduling unit 329 determines whether the delay requirement required for the packet is satisfied based on the scheduled transmission timing of the URLLC. If it is determined that the delay rule is satisfied (Yes in process S43), the process flow proceeds to process S46. If it is not determined that the delay rule is satisfied (No in process S43), the process flow proceeds to process S44. .
- step S44 the GAP control unit 331 notifies the terminal device 4 that the setting of the next GAP period is canceled by transmitting a change notification of the GAP pattern.
- step S45 the GAP control unit 331 sets the packet transmission schedule again based on the cancellation of the setting of the next GAP period.
- process S46 the transmission unit 322 transmits the packet to the terminal device 4 based on the transmission schedule set in process S42 or the transmission schedule reset in process S45. Thereafter, the process flow ends in process S47.
- FIG. 13 is a flowchart of processing executed by the processor 420 of the terminal device 4.
- the process flow is started in process S50, and in process S51, the reception quality notifying unit 423 determines whether the reception quality of the radio signal from the base station 3a has deteriorated. If it is determined that the reception quality of the radio signal has decreased (Yes in process S51), the process flow proceeds to process S52. If it is not determined that the reception quality of the radio signal has decreased (No in process S51), the process proceeds to step S52. The flow repeats the process S51.
- the reception quality notification unit 423 transmits a notification signal about the reception quality to the base station 3a.
- the GAP control unit 426 determines whether the cell information related to the other base station 3b and the GAP pattern information indicating the GAP pattern have been received from the base station 3a.
- the cell information includes a cell ID that specifies the other base station 3b and frequency information that specifies the frequency of the radio signal of the other base station 3b.
- the GAP pattern information includes information indicating the start time of the GAP sequence, the number of GAP periods included in the GAP sequence, the length of each GAP period, the interval between GAP periods, and the like.
- step S53 If it is determined in step S53 that cell information and GAP pattern information have been received (Yes in step S53), the process flow proceeds to step S54, and if it is not determined that cell information and GAP pattern information have been received (step S53). No), the process flow returns to the process S51. In process S54, the GAP control unit 426 executes the GAP sequence based on the GAP pattern information. Thereafter, the process flow ends in process S55.
- FIG. 14 is a flowchart of processing executed by the processor 420 of the terminal device 4, and is mainly a flowchart of processing related to execution of the GAP sequence.
- the flowchart shown in FIG. 14 corresponds to the details of the process S54 in the process flow disclosed in FIG.
- the process flow starts in process S60, and in process S61, the GAP control unit 426 determines whether a GAP pattern change notification signal is received from the base station 3a. If it is determined that a change notification signal has been received (Yes in process S61), the process flow proceeds to process S62. If it is not determined that a change notification signal has been received (No in process S61), the process flow is process S64. Proceed to
- the GAP control unit 426 cancels the setting of the next GAP period based on the change notification signal in process S62.
- the reception unit 421 receives a packet from the base station 3a using the assigned radio resource.
- the tuning unit 425 tunes the radio processing circuit 410 to the frequency of the radio signal of the other base station 3b in the GAP period in process S64.
- the reception quality measuring unit 424 measures the reception quality of the radio signal of the other base station 3b.
- the reception quality notification unit 423 notifies the measured reception quality to the base station 3a.
- step S67 the GAP control unit 426 determines whether the GAP sequence has ended. If it is determined that the GAP sequence has been completed (Yes in process S67), the process flow ends in process S68. If it is not determined that the GAP sequence has been completed (No in process S67), the process flow is performed in process S61. Return to.
- the first embodiment has been disclosed.
- the packet transmission and the processing such as reception quality measurement in the GAP period compete, the setting of the GAP period is canceled and the packet transmission is preferentially executed.
- FIG. 15 is a diagram illustrating how the GAP period is shifted. Since the processing S10, the processing S11, and the processing S12 are the contents disclosed in FIG. 3, the description thereof is omitted here.
- the base station 3a receives a packet from the server 2 before the GAP period # 2 is started.
- the base station 3a decides to change the GAP pattern, that is, shift the GAP period # 2 scheduled thereafter to the rear in order to satisfy the provisions regarding the packet delay.
- the base station 3a notifies the terminal device 4 of the change of the GAP pattern.
- the base station 3a transmits the packet to the terminal device 4. After the packet is transmitted, the shifted GAP period # 2 begins.
- the GAP pattern is changed so that the packet transmission is executed with priority, and the provisions regarding the packet delay can be satisfied.
- FIG. 16 is a diagram illustrating an example of a method for notifying the terminal device 4 of a change in the GAP pattern.
- the packet is held in the buffer unit 328, and when the packet transmission is scheduled so as to avoid the GAP period, it is determined that the requirement regarding the delay required for the packet is not satisfied. If so, the GAP period is shifted backwards.
- the base station 3 a transmits a GAP pattern change notification to the terminal device 4.
- This change notification can be executed using, for example, a PDCCH signal, as in the first embodiment.
- the PDCCH signal includes shift information indicating that the setting of the GAP period whose start time is time T1 is changed and the start of the GAP period is set at time T3 after time T1.
- the shift amount is a time corresponding to, for example, 2 slots.
- wireless communication between the terminal device 4 and the base station 3a is contained in a PDCCH signal.
- the terminal apparatus 4 recognizes that the start timing of the GAP period scheduled thereafter is shifted. And based on the allocation resource information contained in a PDCCH signal, transmission / reception of the packet between the base station 3a and the terminal device 4 is performed.
- FIG. 17 is a flowchart of processing executed by the processor 320 of the base station 3a, and mainly shows processing related to execution of the GAP sequence. Processes other than process S73 are the same as those already disclosed in FIG. In FIG. 12, the terminal device 4 is notified in step S44 that the setting of the next GAP period is cancelled. In FIG. 17, in step S73, the next GAP period is shifted backward by a predetermined time. Is notified to the terminal device 4. The information indicating the shift amount is included in, for example, a PDCCH signal as described in FIG.
- FIG. 18 is a flowchart of processing executed by the processor 420 of the terminal device 4, and is mainly a flowchart of processing related to execution of the GAP sequence. Processes other than the process S74 are the same as those already disclosed in FIG. In FIG. 14, the setting of the next GAP period is canceled in the process S62, but in FIG. 18, the next GAP period is shifted backward by a predetermined time in the process S74.
- packet transmission can be preferentially executed when the packet transmission competes with processing such as reception quality measurement in the GAP period.
- ⁇ Third embodiment> when the packet addressed to the terminal device 4 is held in the base station 3a, the timing for transmitting the packet is secured by shortening the GAP period.
- FIG. 19 shows how the GAP period is shortened.
- Processes other than the process S75 are the same as the process contents already disclosed in FIG.
- the base station 3a receives a packet from the server 2 before the start of the GAP period # 2.
- the base station 3a changes the GAP pattern so as to shorten the GAP period # 2 scheduled thereafter in order to satisfy the provisions regarding the packet delay, and changes the GAP pattern to the terminal device 4 in step S75. Notice.
- the start time of the GAP period # 2 is delayed by a predetermined time.
- step S ⁇ b> 72 the base station 3 a transmits the packet to the terminal device 4. After the packet is transmitted, the GAP period # 2, which is shortened and changed so that the start time is delayed, starts.
- the GAP pattern is changed so that the packet transmission is executed with priority, and the provisions regarding the packet delay can be satisfied.
- FIG. 20 is a diagram illustrating an example of a method for notifying the terminal device 4 of a change in the GAP pattern. It is assumed that the packet is held in the buffer unit 328 at a time before the start of the GAP period. In this case, when scheduling of packet transmission is performed while avoiding the GAP period, if it is determined that the request regarding the delay required for the packet is not satisfied, it is determined to change the GAP pattern so as to shorten the GAP period. Then, the base station 3a notifies the terminal device 4 of the change of the GAP pattern. This notification can be executed using, for example, a PDCCH signal in the same manner as in the first and second embodiments. In FIG.
- the setting of the GAP period starting at time T1 is changed, the length of the GAP period is shortened by a length corresponding to, for example, 2 slots, and the start of the GAP period is set at time T3.
- wireless communication between the terminal device 4 and the base station 3a is contained in a PDCCH signal. By transmitting this PDCCH signal to the terminal device 4, the terminal device 4 recognizes that the setting of the GAP period scheduled thereafter has been changed. And based on the allocation resource information contained in a PDCCH signal, transmission / reception of the packet between the base station 3a and the terminal device 4 is performed.
- the length of the GAP period # 2 is shortened, the length of the GAP period # 3 is increased so as to compensate for the total length of the GAP periods included in the GAP sequence.
- the GAP pattern may be changed so that the
- FIG. 21 is a flowchart of processing executed by the processor 320 of the base station 3a, and mainly shows processing related to execution of the GAP sequence. Processes other than the process S76 are the same as those already disclosed in FIG. In FIG. 12, the terminal device is notified in step S44 that the setting of the next GAP period is cancelled. In FIG. 21, in step S76, the next GAP period is shortened and the start time of the GAP period is set backward. Is notified to the terminal device 4 that it is delayed by a predetermined time. The information indicating the shortening amount is included in, for example, a PDCCH signal as described in FIG.
- FIG. 22 is a flowchart of processing executed by the processor 420 of the terminal device 4, and is mainly a flowchart of processing related to execution of the GAP sequence. Processes other than the process S77 are the same as the process contents already disclosed in FIG. In FIG. 14, the setting of the next GAP period is canceled in the process S62, but in FIG. 22, the next GAP period is shortened by a predetermined time in the process S77.
- the third embodiment has been disclosed. Also in the third embodiment, when packet transmission and reception quality measurement in the GAP period compete, it is possible to suppress delay in packet transmission.
- ⁇ Fourth embodiment> packet transmission from the base station 3a to the terminal device 4, that is, so-called downlink communication has been described.
- packets from the terminal device 4 to the base station 3a are described. Transmission, so-called uplink communication will be described. Even when the terminal device 4 transmits a packet to the base station 3a, contention between the packet transmission and processing such as reception quality measurement in the GAP period may occur. In this case, the terminal device 4 can preferentially execute packet transmission by canceling the setting of the GAP period.
- FIG. 23 is a ladder chart when the terminal device 4 transmits a packet to the base station 3a and the GAP period is canceled.
- the packet to be transmitted is held in the buffer unit of the terminal device 4.
- the terminal device 4 performs scheduling on the transmission timing of the packet held in the buffer unit. Then, when packet transmission is scheduled after the next scheduled GAP period, it is determined whether or not a rule regarding packet delay is satisfied. If it is determined that the delay rule is not satisfied, in step S82, the terminal device 4 transmits a GAP pattern change request to the base station 3a.
- the change request can be executed using, for example, a Physical Uplink Control Channel signal (hereinafter referred to as “PUCCH signal”).
- PUCCH signal Physical Uplink Control Channel signal
- step S83 the base station 3a notifies the terminal device 4 that the GAP pattern is to be changed. As a result, the setting of the GAP period is cancelled, and in step S84, scheduling is performed again regarding packet transmission. In step S85, a packet is transmitted from the terminal device 4 to the base station 3a based on the rescheduling result.
- FIG. 24 is a functional block diagram of the processor 420 of the terminal device 4.
- the buffer unit 427 is a buffer that holds a packet transmitted to the base station 3.
- the packet is held in the buffer unit 427 before being transmitted to the base station 3.
- the scheduling unit 428 performs scheduling related to transmission of packets held in the buffer unit 427.
- the transmission unit 422 transmits the packet held in the buffer unit 427 at the transmission timing determined by the scheduling unit 428.
- the change request unit 429 determines whether or not a rule related to a delay required for the packet is satisfied when the packet is transmitted at the transmission timing determined by the scheduling unit 428. If it is not determined that the delay rule is satisfied, the change request unit 429 transmits a change request signal for requesting the change of the GAP pattern, for example, canceling the next scheduled GAP period, to the base station 3a.
- the scheduling unit 428 executes scheduling again. Then, the change request unit 429 transmits the packet at the transmission timing newly determined by the scheduling unit 428.
- FIG. 25 is a flowchart of processing executed by the processor 420 of the terminal device 4.
- the processing flow is started in step S90, and in step S91, the buffer unit 427 determines whether a packet is held in the buffer unit 427. If it is determined that the packet is held (Yes in process S91), the process flow proceeds to process S92. If it is not determined that the packet is held (No in process S91), the process flow is process S98. Proceed to
- step S92 the scheduling unit 428 sets a transmission schedule of packets held in the buffer unit 427 in consideration of the GAP pattern in process S92.
- step S93 when the change request unit 429 transmits a packet according to the transmission schedule determined in step S92, the change request unit 429 determines whether the delay requirement required for the packet is satisfied. If it is determined that the delay rule is satisfied (Yes in process S93), the process flow proceeds to process S97. If it is not determined that the delay rule is satisfied (No in process S93), the process flow proceeds to process S94. .
- the change request unit 429 transmits a change request signal requesting to cancel the setting of the next GAP period to the base station 3a in process S94.
- the change request unit 429 receives a notification indicating that the setting of the next GAP period is canceled from the base station 3a.
- the scheduling unit 428 sets the transmission schedule of the packets held in the buffer unit 427 again.
- the transmission unit 422 transmits the packet to the base station 3a based on the transmission schedule set in step S96, that is, the reset transmission schedule. If it is determined in step S93 that the delay rule is satisfied (Yes in step S93), the transmission unit 422 transmits a packet to the base station 3a based on the transmission schedule set in step S92 in step S97. To do.
- the tuning unit 425 tunes the radio processing circuit 410 to the frequency of the radio signal of the other base station 3b in the GAP period in process S98.
- the reception quality measuring unit 424 measures the reception quality of the radio signal of the other base station 3b.
- the reception quality notification unit 423 notifies the measured reception quality to the base station 3a. The process flow ends in process S101 after process S97 or after process S100.
- FIG. 26 is a flowchart of processing executed by the processor 320 of the base station 3, and is a flowchart of processing executed mainly when a GAP pattern change request signal is received from the terminal device 4.
- step S110 the GAP control unit 331 determines whether a GAP pattern change request signal is received from the terminal device 4. If it is determined that a change request signal has been received (Yes in process S111), the process flow proceeds to process S112. If it is not determined that a change request signal has been received (No in process S111), the process flow is process S115. Proceed to
- the GAP pattern setting unit 330 determines to cancel the setting of the next GAP period based on the change request signal.
- the GAP control unit 331 notifies the terminal device 4 that the setting of the next GAP period is cancelled.
- the reception unit 321 receives a packet from the terminal device 4.
- process S115 the GAP control unit 331 determines whether the GAP sequence has ended. If it is determined that the GAP sequence has ended (Yes in process S115), the process flow ends in process S116. If it is not determined that the GAP sequence has ended (No in process S115), the process flow proceeds to process S111. Return.
- the uplink packet transmission from the terminal device 4 has been disclosed as the fourth embodiment.
- the packet transmission is preferentially executed by canceling the setting of the GAP period. Is possible.
- an example of canceling the set GAP period is disclosed, but this is an example of changing the GAP pattern.
- a method of shifting the GAP period backward and a method of shortening the GAP period are also applicable in the fourth embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
[Problem] When a URLLC packet is transmitted between a base station and a terminal apparatus and a GAP period in a different-frequency handover has been set, there may be a case where a delay-related specification provided for the URLLC packet is not met. [Solution] In a different-frequency handover, when a conflict occurs between a processing such as a reception quality measurement in a GAP period and the transmission of a URLLC packet for which a delay-related specification is provided, the delay in transmission of the URLLC packet can be suppressed by performing a cancelation or the like of the GAP period and thereby executing the transmission of the URLLC packet on a priority basis.
Description
本開示は、無線通信システム、異周波ハンドオーバ方法、基地局及び端末装置に関する。
The present disclosure relates to a wireless communication system, a different frequency handover method, a base station, and a terminal device.
無線通信において、基地局はセルと呼ばれる無線通信エリアを形成し、当該無線通信エリア内にある端末装置との間で無線通信を行う。端末装置が他の基地局が形成する他のセルに移動した場合には、端末装置の接続先が基地局から他の基地局へ移行される。この処理はハンドオーバと呼ばれる。基地局と他の基地局が互いに異なる周波数の無線信号を使用する場合、これらの基地局間でのハンドオーバは、特に異周波ハンドオーバと呼ばれる。
In wireless communication, a base station forms a wireless communication area called a cell and performs wireless communication with a terminal device in the wireless communication area. When the terminal device moves to another cell formed by another base station, the connection destination of the terminal device is transferred from the base station to another base station. This process is called handover. When a base station and other base stations use radio signals having different frequencies, a handover between these base stations is particularly called a different frequency handover.
ハンドオーバにおいて端末装置は、他の基地局から送信される無線信号の受信品質、例えばSignal Interference Ratio(以下、「SIR」とする)を測定する。測定されたSIRは、端末装置から基地局へ通知される。基地局は、端末装置から通知されたSIRの測定結果に基づき、必要に応じて端末装置との間の接続を、当該基地局から他の基地局へ変更する。上述の異周波ハンドオーバにおいて、端末装置に複数の無線処理回路が設けられている場合は、端末装置は基地局との通信を維持しながら、同時に他の基地局の無線信号を受信してSIRを測定することが可能である。しかし、端末装置が単一の無線処理回路を有する場合、一時的に基地局との無線通信を保留し、その間に他の基地局についてSIRを測定するという手法が用いられる。他の基地局の無線信号を受信して受信品質を測定するために、測定ギャップ(Measurement GAP、以下、「GAP期間」とする)と呼ばれる期間が設けられる。GAP期間中においては、端末装置と基地局との間の無線通信は一時的に保留されることになる。Long Term Evolution(LTE)ではGAP期間として例えば数msの時間幅が設定される。
In handover, the terminal apparatus measures the reception quality of a radio signal transmitted from another base station, for example, Signal Interference Ratio (hereinafter referred to as “SIR”). The measured SIR is notified from the terminal device to the base station. Based on the SIR measurement result notified from the terminal device, the base station changes the connection with the terminal device from the base station to another base station as necessary. In the above-described different frequency handover, when a plurality of radio processing circuits are provided in the terminal device, the terminal device simultaneously receives radio signals from other base stations while maintaining communication with the base station, and performs SIR. It is possible to measure. However, when the terminal device has a single wireless processing circuit, a technique is used in which wireless communication with the base station is temporarily suspended and SIR is measured for other base stations during that time. In order to receive radio signals from other base stations and measure the reception quality, a period called measurement gap (Measurement GAP, hereinafter referred to as “GAP period”) is provided. During the GAP period, wireless communication between the terminal device and the base station is temporarily suspended. In the Long Term Evolution (LTE), for example, a time width of several ms is set as the GAP period.
一方、例えば第5世代移動通信システム(5G)の通信においては、従来よりも無線区間における遅延に対して厳しい要求(規定、許容値)が設定される通信がある。例えばUltra Reliable and Low Latency Communications(以下、「URLLC」とする)においては、無線区間における遅延が0.5ms以下であることが要求される。
On the other hand, for example, in the communication of the fifth generation mobile communication system (5G), there is communication in which stricter requirements (regulations and allowable values) are set for delays in the radio section than before. For example, in Ultra Reliable and Low Latency Communications (hereinafter referred to as “URLLC”), the delay in the radio section is required to be 0.5 ms or less.
遅延に関する規定が設定されるパケット、例えばURLLCパケットが基地局と端末装置間で送信される場合であって、異周波ハンドオーバにおけるGAP期間が設定している場合を想定する。この場合、GAP期間中は基地局と端末装置の間の通信が保留されるため、URLLCパケットに要求される遅延に関する規定が満たされない場合がある。例えば、GAP期間の開始時刻直前に、基地局がURLLCパケットを上位装置から受信したとする。この場合、当該URLLCパケットの送信が、GAP期間の終了後に実行されるとすると、URLLCパケットは少なくともGAP期間中は、基地局内にて送信が保留される。その結果、遅延に関する規定を超える遅延が発生する場合がある。
Assume that a packet in which a rule regarding delay is set, for example, a URLLC packet is transmitted between a base station and a terminal device, and a GAP period in a different frequency handover is set. In this case, since the communication between the base station and the terminal device is suspended during the GAP period, there may be a case where the requirement regarding the delay required for the URLLC packet is not satisfied. For example, it is assumed that the base station receives a URLLC packet from the host device immediately before the start time of the GAP period. In this case, if transmission of the URLLC packet is executed after the end of the GAP period, transmission of the URLLC packet is suspended in the base station at least during the GAP period. As a result, there may be a delay that exceeds a regulation relating to the delay.
本発明は、異周波ハンドオーバにおいてGAP期間における受信品質測定等の処理と、遅延に関する規定が定められているパケットの送信とが競合する場合に、パケットの送信遅延を抑制することを目的とする。
An object of the present invention is to suppress a packet transmission delay when a process such as reception quality measurement in a GAP period and a packet transmission for which a rule regarding delay is competing in a different frequency handover.
基地局と、前記基地局と無線通信を行う端末装置と、を有し、異周波ハンドオーバを行う無線通信システムであって、前記基地局が、第1期間を、他の基地局から前記端末装置への第1無線信号の第1品質を測定するための測定期間として設定し、前記基地局から前記端末装置へ送信されるパケットであって前記無線通信における遅延に関する規定が定められているパケットを、前記第1期間の開始時刻よりも前の時点で前記基地局が保持する場合は、前記基地局が、前記測定期間の設定を変更する変更処理を実行し、前記変更処理の後、前記変更処理が実行される前には前記測定期間として設定されていた前記第1期間内に、前記基地局が前記パケットを前記端末装置に送信し、前記第1期間の前記開始時刻よりも前の時点で前記基地局が前記パケットを保持しない場合は、前記端末装置が、前記第1無線信号の前記第1品質を前記第1期間に測定することを特徴とする無線通信システムが開示される。
A wireless communication system including a base station and a terminal device that performs wireless communication with the base station, wherein the base station performs a first period from another base station to the terminal device. A packet that is set as a measurement period for measuring the first quality of the first radio signal to the terminal, and that is transmitted from the base station to the terminal device and that defines a rule regarding delay in the radio communication When the base station holds at a time before the start time of the first period, the base station executes a change process for changing the setting of the measurement period, and after the change process, the change The base station transmits the packet to the terminal device within the first period set as the measurement period before the process is executed, and a time point before the start time of the first period At the base station If you do not hold the packet, the terminal device, a radio communication system, characterized by measuring said first quality of the first radio signal in the first period is disclosed.
本発明によれば、異周波ハンドオーバにおいて、GAP期間における受信品質測定等の処理と、遅延に関する規定が定められているパケットの送信とが競合する場合に、パケットの送信遅延を抑制することができる。
According to the present invention, it is possible to suppress packet transmission delay when processing such as reception quality measurement in the GAP period competes with transmission of a packet for which a rule relating to delay is defined in different frequency handover. .
<第1実施例>
図1は、基地局及び端末装置を含む無線通信システムを示す図である。基地局3aは、ネットワーク1を介して上位装置、例えばサーバ2に接続される。サーバ2は例えばアプリケーションサーバである。また基地局3aは端末装置4と無線通信によって接続され、パケット等のデータの送受信を行う。図中、基地局3bは基地局3aの近隣に配置された他の基地局であり、基地局3aが形成するセルに対して隣接セルを形成する。基地局3bは、複数存在するものとする。複数の基地局3bのうち少なくとも一つの基地局3bの無線信号の周波数は、基地局3aの無線信号の周波数と異なるものとする。尚、基地局3aと基地局3bを区別しない場合は、「基地局3」と表記するものとする。 <First embodiment>
FIG. 1 is a diagram illustrating a wireless communication system including a base station and a terminal device. Thebase station 3a is connected to a host device, for example, the server 2 via the network 1. The server 2 is, for example, an application server. The base station 3a is connected to the terminal device 4 by wireless communication, and transmits and receives data such as packets. In the figure, a base station 3b is another base station arranged in the vicinity of the base station 3a, and forms an adjacent cell with respect to a cell formed by the base station 3a. It is assumed that there are a plurality of base stations 3b. The frequency of the radio signal of at least one base station 3b among the plurality of base stations 3b is different from the frequency of the radio signal of the base station 3a. In addition, when not distinguishing the base station 3a and the base station 3b, it shall be described as “base station 3”.
図1は、基地局及び端末装置を含む無線通信システムを示す図である。基地局3aは、ネットワーク1を介して上位装置、例えばサーバ2に接続される。サーバ2は例えばアプリケーションサーバである。また基地局3aは端末装置4と無線通信によって接続され、パケット等のデータの送受信を行う。図中、基地局3bは基地局3aの近隣に配置された他の基地局であり、基地局3aが形成するセルに対して隣接セルを形成する。基地局3bは、複数存在するものとする。複数の基地局3bのうち少なくとも一つの基地局3bの無線信号の周波数は、基地局3aの無線信号の周波数と異なるものとする。尚、基地局3aと基地局3bを区別しない場合は、「基地局3」と表記するものとする。 <First embodiment>
FIG. 1 is a diagram illustrating a wireless communication system including a base station and a terminal device. The
端末装置4が、基地局3aが形成するセルから基地局3bが形成するセルへ移動すると、端末装置4の接続先が基地局3aから基地局3bへハンドオーバされる。ハンドオーバが実行される場合、ハンドオーバに先立って端末装置4は、ハンドオーバによる移行先の候補となる他の基地局3bからの信号の受信品質、例えばSIRの測定を実行する。本実施例は、受信品質の一例としてSIRを用いて説明されるが、受信品質はSIRに限定されるものではない。
When the terminal device 4 moves from the cell formed by the base station 3a to the cell formed by the base station 3b, the connection destination of the terminal device 4 is handed over from the base station 3a to the base station 3b. When a handover is executed, prior to the handover, the terminal device 4 performs measurement of signal reception quality, for example, SIR, from another base station 3b that is a candidate for the destination of the handover. Although this embodiment is described using SIR as an example of reception quality, reception quality is not limited to SIR.
図2は、端末装置4のハードウェア構成図である。端末装置4は、無線処理回路410、プロセッサ420、不揮発性メモリ440及び揮発性メモリ450を有する。無線処理回路410は、アンテナによって受信された無線信号について、周波数のダウンコンバージョンやAnalog to Digital(AD)変換等を実行する。また無線処理回路410は、アンテナから送信される無線信号について、Digital to Analog(DA)変換や周波数のアップコンバージョン等を実行する。尚、異周波ハンドオーバが実行される場合、無線処理回路410は、受信される無線信号の周波数に基づいて周波数チューニングを行う。プロセッサ420は、基地局3aとの通信に関する処理や、他の基地局3bへのハンドオーバに関する処理等を実行する。プロセッサ420はハードウェアプロセッサであり、Central Processing Unit(CPU)、Micro Control Unit(MCU)、Micro Processing Unit(MPU)、Digital Signal Processor(DSP)の他、Field Programmable Gate Array(FPGA)やApplication Specific Integrated Circuit(ASIC)も適用可能である。
FIG. 2 is a hardware configuration diagram of the terminal device 4. The terminal device 4 includes a wireless processing circuit 410, a processor 420, a nonvolatile memory 440, and a volatile memory 450. The wireless processing circuit 410 performs frequency down-conversion, Analog to Digital (AD) conversion, and the like on the wireless signal received by the antenna. Further, the radio processing circuit 410 performs digital to analog (DA) conversion, frequency up-conversion, and the like on the radio signal transmitted from the antenna. When the different frequency handover is executed, the radio processing circuit 410 performs frequency tuning based on the frequency of the received radio signal. The processor 420 executes processing related to communication with the base station 3a, processing related to handover to another base station 3b, and the like. The processor 420 is a hardware processor, and includes a central processing unit (CPU), a micro control unit (MCU), a micro processing unit (MPU), a digital signal processor (DSP), and a field programmable processor (DSP). Circuit (ASIC) is also applicable.
不揮発性メモリ440は、コンピュータで読み取り可能な記録媒体である。不揮発性メモリ440には、プロセッサ420によって実行されるコンピュータプログラム等が格納される。不揮発性メモリ440は、例えばRead Only Memory(ROM)、Mask Read Only Memory(マスクROM)、Programmable Read Only Memory(PROM)、フラッシュメモリ、Magnetoresistive Random Access Memory(MRAM)、Resistive Random Access Memory(ReRAM)、Ferroelectric Random Access Memory(FeRAM)等である。コンピュータプログラムは、不揮発性メモリ440以外の記憶媒体であって、コンピュータで読み取り可能な記録媒体(ただし、搬送波は除く)に記録させることもできる。また、コンピュータプログラムが記録されたDigital Versatile Disc(DVD)、Compact Disc Read Only Memory(CD-ROM)などの可搬型記録媒体を流通させることもできる。また、コンピュータプログラムは、ネットワークを介して送信され得る。
The nonvolatile memory 440 is a computer-readable recording medium. The nonvolatile memory 440 stores a computer program executed by the processor 420 and the like. The non-volatile memory 440 is, for example, Read Only Memory (ROM), Mask Read Only Memory (mask ROM), Programmable Read Only Memory (PROM), Flash Memory, Magnetoresistive Memory Random Memory Random Access Memory. For example, Ferroelectric Random Access Memory (FeRAM). The computer program can be recorded on a storage medium other than the nonvolatile memory 440 and a computer-readable recording medium (excluding a carrier wave). Also, portable recording media such as Digital Versatile Disc (DVD) and Compact Disc Read Only Memory (CD-ROM) in which a computer program is recorded can be distributed. The computer program can be transmitted via a network.
揮発性メモリ450は、コンピュータで読み取り可能な記録媒体である。揮発性メモリ450には、不揮発性メモリ440に格納されているコンピュータプログラムがロードされる。また揮発性メモリ450には、プロセッサ420による演算処理に使用されるデータや演算処理の結果であるデータ等が保持される。揮発性メモリ450は、例えばStatic Random Access Memory(SRAM)やDynamic Random Access Memory(DRAM)等である。
The volatile memory 450 is a computer-readable recording medium. The computer program stored in the nonvolatile memory 440 is loaded into the volatile memory 450. The volatile memory 450 holds data used for arithmetic processing by the processor 420, data that is the result of the arithmetic processing, and the like. The volatile memory 450 is, for example, a Static Random Access Memory (SRAM), a Dynamic Random Access Memory (DRAM), or the like.
図3は、ハンドオーバにおける受信品質の測定に関するラダーチャートである。基地局3aと端末装置4との間で通信セッションが確立されている状態において、端末装置4が基地局3aから受信する無線信号の受信品質、たとえばSIRが低下したとする。この場合、処理S10において端末装置4は、受信信号の品質が低下したことを示す通知信号を基地局3aに送信する。通知信号を受信した基地局3aは、処理S11において、基地局3aの周辺に配置された他の基地局3bを特定する情報、例えばセルIdentification(ID)と、当該他の基地局3bが使用する無線信号の周波数を特定する周波数情報とを含むセル情報を、端末装置4に通知する。また基地局3aは、受信品質の測定期間のパターン(以下、「GAPパターン」とする)を特定するGAPパターン情報を端末装置4に通知する。GAPパターンは、例えばGAP期間の回数、各GAP期間の時間、隣接するGAP期間同士の間隔等によって特定される。図3においては、設定されたGAP期間の回数は3回であり、各GAP期間の時間は2msであり、隣接するGAP期間の間隔は4msであるものとする。GAPパターンに含まれる複数のGAP期間の合計時間は、端末装置4が、複数の他の基地局3bの各々についてSIRを測定し、測定結果を基地局3aに通知するのに必要な時間に基づいて特定される。また、GAP期間は複数回に分散されて実行されることが好ましい。尚、複数回実行されるGAP期間のうち最初のGAP期間が開始されてから最後のGAPが終了するまでの一連の処理を、GAPシーケンスと呼ぶ。
FIG. 3 is a ladder chart relating to measurement of reception quality in handover. It is assumed that the reception quality of the radio signal received by the terminal device 4 from the base station 3a, for example, the SIR is lowered in a state where a communication session is established between the base station 3a and the terminal device 4. In this case, in step S10, the terminal device 4 transmits a notification signal indicating that the quality of the received signal has decreased to the base station 3a. In step S11, the base station 3a that has received the notification signal uses information for identifying other base stations 3b arranged around the base station 3a, for example, cell identification (ID) and the other base station 3b. Cell information including frequency information specifying the frequency of the radio signal is notified to the terminal device 4. In addition, the base station 3 a notifies the terminal device 4 of GAP pattern information that specifies a pattern of the reception quality measurement period (hereinafter referred to as “GAP pattern”). The GAP pattern is specified by, for example, the number of GAP periods, the time of each GAP period, the interval between adjacent GAP periods, and the like. In FIG. 3, it is assumed that the set number of GAP periods is 3, the time of each GAP period is 2 ms, and the interval between adjacent GAP periods is 4 ms. The total time of the plurality of GAP periods included in the GAP pattern is based on the time required for the terminal device 4 to measure the SIR for each of the plurality of other base stations 3b and notify the measurement result to the base station 3a. Specified. Moreover, it is preferable that the GAP period is distributed and executed a plurality of times. Note that a series of processing from the start of the first GAP period to the end of the last GAP among the GAP periods executed a plurality of times is called a GAP sequence.
GAPシーケンスが終了後、処理S12において基地局3aは、端末装置4から通知された他の基地局3bについてのSIRに基づいて、ハンドオーバを実行するか否か、またどの基地局3bにハンドオーバするかを決定する。
After the GAP sequence is completed, in step S12, the base station 3a determines whether or not to execute handover based on the SIR for the other base station 3b notified from the terminal device 4, and to which base station 3b to perform handover. To decide.
図4は、主にGAP期間内の無線通信システムにおいて実行される処理についてのラダーチャートである。処理S13において基地局3aがパケットを、上位装置であるサーバ2からネットワーク1(図4においては図示されない)から受信する。尚、本明細書の以降の部分において、「パケット」とは、遅延に関する規定が定められているパケット、例えばURLLCパケットであるものとして説明する。処理S14において基地局3aは、受信されたパケットをバッファ部に保持する。次に処理S15において基地局3aは、バッファ部に保持されているパケットの送信タイミングのスケジューリングを行う。ここでは、その後に予定されているGAP期間の開始までには、バッファ部に保持されているパケットの端末装置4への送信が完了しないと判断され、基地局3aはパケットの送信を保留するものとする。
FIG. 4 is a ladder chart about processing executed mainly in the wireless communication system within the GAP period. In the process S13, the base station 3a receives the packet from the network 1 (not shown in FIG. 4) from the server 2, which is a higher-level device. In the following description of the present specification, the “packet” will be described as a packet in which provisions relating to delay are defined, for example, a URLLC packet. In the process S14, the base station 3a holds the received packet in the buffer unit. Next, in process S15, the base station 3a schedules the transmission timing of the packets held in the buffer unit. Here, it is determined that transmission of the packet held in the buffer unit to the terminal device 4 is not completed by the start of the scheduled GAP period thereafter, and the base station 3a suspends transmission of the packet. And
その後GAP期間が開始され、処理S16において端末装置4は、無線処理回路410が受信し得る無線信号の周波数を、新たな接続先の候補である基地局3bからの無線信号の周波数にチューニングする。処理S17において端末装置4は、基地局3bからの無線信号を受信する。そして処理S18において端末装置4は、受信された無線信号の受信品質としてSIRの測定を行う。処理S19において端末装置4は、SIRの測定結果をMeasurement Reportとして基地局3aに送信する。また処理S20において端末装置4は、基地局3aとの無線通信を再開するために、無線処理回路410を、基地局3aからの無線信号の周波数にチューニングする。GAP期間が終了した後、処理S21において基地局3aは、バッファ部に保留されていたパケットを、端末装置4に対して送信する。図4に開示されている各処理のうち、少なくとも処理S16乃至処理S20は、GAP期間内において実行される。
Thereafter, the GAP period is started, and in step S16, the terminal device 4 tunes the frequency of the radio signal that can be received by the radio processing circuit 410 to the frequency of the radio signal from the base station 3b that is a new connection destination candidate. In process S17, the terminal device 4 receives the radio signal from the base station 3b. In step S18, the terminal apparatus 4 measures SIR as the reception quality of the received radio signal. In the process S19, the terminal device 4 transmits the SIR measurement result as a Measurement Report to the base station 3a. In step S20, the terminal device 4 tunes the radio processing circuit 410 to the frequency of the radio signal from the base station 3a in order to resume radio communication with the base station 3a. After the GAP period ends, in step S21, the base station 3a transmits the packet held in the buffer unit to the terminal device 4. Among the processes disclosed in FIG. 4, at least processes S16 to S20 are executed within the GAP period.
図4に示されるように、基地局3aのバッファ部に保持されたパケットは、その後のGAP期間が終了するまで、基地局3a内にて保持されて送信が保留される。そのため、少なくともGAP期間に相当する時間、パケットの送信が遅延することとなる。
As shown in FIG. 4, the packet held in the buffer unit of the base station 3a is held in the base station 3a and transmission is suspended until the subsequent GAP period ends. Therefore, packet transmission is delayed for at least the time corresponding to the GAP period.
例えば5Gにおいてパケットは、無線通信区間における遅延を0.5ms以下にすることが仕様で定められている。GAP期間の長さが例えば2msであるとすると、パケットがGAP期間の前に基地局3aに到達し、GAP期間が終了するまでの間、端末装置4への送信を保留された場合は、少なくとも2msの遅延が発生し、仕様で要求されている遅延に関する規定が満たされない。
For example, in 5G packets, the specification specifies that the delay in the wireless communication section is 0.5 ms or less. If the length of the GAP period is 2 ms, for example, if the packet reaches the base station 3a before the GAP period and transmission to the terminal device 4 is suspended until the GAP period ends, at least A delay of 2 ms occurs, and the requirement regarding the delay required in the specification is not satisfied.
本実施例においては、このように遅延に関する規定が定められているパケットの送信と、GAP期間における受信品質測定等の処理とが競合した場合に、GAP期間の設定を変更することによってパケットの送信を優先的に実行させることができる。
In the present embodiment, when transmission of a packet in which a regulation regarding delay is defined in this way and processing such as reception quality measurement in the GAP period compete, packet transmission is performed by changing the setting of the GAP period. Can be preferentially executed.
図5は、遅延に関する規定が定められているパケットの送信とGAP期間における受信品質測定等の処理とが競合した場合に、GAP期間を変更する処理を説明するためのラダーチャートである。
FIG. 5 is a ladder chart for explaining the process of changing the GAP period when the transmission of a packet for which the regulation relating to delay is defined competes with the process of measuring the reception quality in the GAP period.
処理S22において基地局3aがパケットを、上位装置であるサーバ2から受信する。処理S23において基地局3aは、受信されたパケットをバッファ部に保持する。処理S24において基地局3aは、バッファ部に保持されているパケットの送信タイミングに関してスケジューリングを行う。例えば、GAP期間が設定されている場合、基地局3aは、当該GAP期間の終了後にパケットの送信が実行されてもパケットの遅延に関する規定が満たされるかを判定する。例えば遅延の許容値が0.5msであってGAP期間が2msである場合は、パケットの遅延に関する規定が満たされないと判定される。この場合、処理S26において基地局3aは、設定されていたGAP期間をキャンセルし、キャンセルされた期間にパケットを送信するよう、パケット送信の再スケジューリングを行う。また基地局3aは処理S25において、GAP期間がキャンセルされたこと、つまりGAPパターンが変更されたことを示す変更通知を端末装置4に送信する。端末装置4は、変更通知によってGAP期間の設定がキャンセルされたことを認識し、キャンセルされたGAP期間には、図4において開示された処理S16乃至処理S20は実行されない。
In the process S22, the base station 3a receives the packet from the server 2 which is a host device. In the process S23, the base station 3a holds the received packet in the buffer unit. In the process S24, the base station 3a performs scheduling regarding the transmission timing of the packet held in the buffer unit. For example, when the GAP period is set, the base station 3a determines whether or not the regulations regarding the packet delay are satisfied even if transmission of the packet is executed after the end of the GAP period. For example, when the delay allowable value is 0.5 ms and the GAP period is 2 ms, it is determined that the rule regarding the packet delay is not satisfied. In this case, in step S26, the base station 3a cancels the set GAP period, and reschedules packet transmission so that the packet is transmitted in the canceled period. In step S25, the base station 3a transmits to the terminal device 4 a change notification indicating that the GAP period has been canceled, that is, the GAP pattern has been changed. The terminal device 4 recognizes that the setting of the GAP period has been canceled by the change notification, and the processes S16 to S20 disclosed in FIG. 4 are not executed in the canceled GAP period.
そして処理S27において基地局3aが、再スケジューリングされたタイミングにおいてパケットを端末装置4に送信する。
In step S27, the base station 3a transmits the packet to the terminal device 4 at the rescheduled timing.
図6は、GAPパターンの変更を端末装置4に通知する方法の一例を示す図である。図3の処理S11において通知されたGAPパターンにて規定されるGAP期間は、図中、時刻T1から時刻T2であるものとする。GAP期間が開始される前の時点において、パケットがバッファ部に保持され、GAP期間を避けてパケットの送信が行われるとパケットの遅延に関する規定が満たされないと判断される場合は、基地局3aはGAP期間の設定をキャンセルする。そして、図5の処理S25に示されるように、基地局3aはGAPパターンの変更を端末装置4に通知する。この通知は、例えばPhysical Downlink Control Channel信号(以下、「PDCCH信号」とする)を用いて実行される。図6においてPDCCH信号には、時刻T1から時刻T2の期間をGAP期間とする設定をキャンセルすることを示すキャンセル情報が含まれる。また端末装置4と基地局3aとの間の無線通信に使用される無線リソースを特定する割当リソース情報がPDCCH信号に含まれる。このPDCCH信号が端末装置4に送信されることにより、端末装置4はその後に予定されていたGAP期間の設定がキャンセルされたことを認識する。そして、PDCCH信号に含まれる割当リソース情報に基づいて、基地局3aと端末装置4との間でのパケットの送受信が実行される。
FIG. 6 is a diagram illustrating an example of a method for notifying the terminal device 4 of the change of the GAP pattern. The GAP period defined by the GAP pattern notified in the process S11 of FIG. 3 is assumed to be from time T1 to time T2 in the figure. If the packet is held in the buffer unit before the start of the GAP period and the packet transmission is performed while avoiding the GAP period, the base station 3a Cancel the GAP period setting. Then, as shown in the process S25 of FIG. 5, the base station 3a notifies the terminal device 4 of the change of the GAP pattern. This notification is executed using, for example, a Physical Downlink Control Channel signal (hereinafter referred to as “PDCCH signal”). In FIG. 6, the PDCCH signal includes cancellation information indicating that the setting for setting the period from time T1 to time T2 as the GAP period is cancelled. Moreover, the allocation resource information which specifies the radio | wireless resource used for the radio | wireless communication between the terminal device 4 and the base station 3a is contained in a PDCCH signal. By transmitting this PDCCH signal to the terminal device 4, the terminal device 4 recognizes that the setting of the GAP period scheduled thereafter is canceled. And based on the allocation resource information contained in a PDCCH signal, transmission / reception of the packet between the base station 3a and the terminal device 4 is performed.
図7は、GAPパターンの変更を端末装置4に通知する方法の他の例を示す図である。図6においては、PDCCH信号に次のGAP期間の設定をキャンセルすることを示すキャンセル情報と、無線リソースを特定するための割当リソース情報が含まれる例が開示された。図7の(A)に示される例においては、割当リソース情報はPDCCH信号に含まれる一方、キャンセル情報に相当する情報はPDCCH信号には含まれない。この場合、端末装置4は、PDCCH信号に割当リソース情報が含まれることに基づいて、GAP期間の設定がキャンセルされたことを認識してもよい。比較例として、図7の(B)は、GAP期間の設定がキャンセルされない場合を示す。GAP期間の設定がキャンセルされないため、端末装置4が予定通りにGAP期間に、他の基地局3bから無線信号の受信品質の測定を行う。そのため、無線リソースは基地局3aと端末装置4との間の無線通信には割り当てられず、PDCCH信号には割当リソース情報が含まれない。言い換えれば、PDCCH信号に割当リソース情報が含まれる場合には、黙示的にGAP期間の設定がキャンセルされたことを示すことになる。
FIG. 7 is a diagram illustrating another example of a method for notifying the terminal device 4 of a change in the GAP pattern. FIG. 6 discloses an example in which cancellation information indicating that the setting of the next GAP period is canceled in the PDCCH signal and allocation resource information for specifying a radio resource are included. In the example shown in FIG. 7A, the allocation resource information is included in the PDCCH signal, while the information corresponding to the cancellation information is not included in the PDCCH signal. In this case, the terminal device 4 may recognize that the setting of the GAP period is canceled based on the allocation resource information included in the PDCCH signal. As a comparative example, FIG. 7B shows a case where the setting of the GAP period is not canceled. Since the setting of the GAP period is not canceled, the terminal device 4 measures the reception quality of the radio signal from the other base station 3b in the GAP period as scheduled. Therefore, radio resources are not allocated to radio communication between the base station 3a and the terminal device 4, and allocation resource information is not included in the PDCCH signal. In other words, when the allocation resource information is included in the PDCCH signal, it indicates that the setting of the GAP period is implicitly canceled.
図8は、基地局3のハードウェア構成図である。基地局3は、無線処理回路310、プロセッサ320、不揮発性メモリ340、揮発性メモリ350及びネットワークインターフェース回路360を有する。無線処理回路310は、アンテナによって受信された無線信号について、ダウンコンバージョンやAD変換等を実行する。また無線処理回路310は、アンテナから送信される無線信号について、DA変換やアップコンバージョン等を実行する。プロセッサ320は、サーバ2との間でのパケット送受信に関する処理、端末装置4との間でのパケット送受信に関する処理、GAPパターンの設定、ハンドオーバ等の処理を実行する。プロセッサ320はハードウェアプロセッサであり、CPU、MCU、MPU、DSPの他、FPGAやASICも適用可能である。
FIG. 8 is a hardware configuration diagram of the base station 3. The base station 3 includes a wireless processing circuit 310, a processor 320, a nonvolatile memory 340, a volatile memory 350, and a network interface circuit 360. The wireless processing circuit 310 performs down conversion, AD conversion, and the like on the wireless signal received by the antenna. The wireless processing circuit 310 performs DA conversion, up-conversion, and the like on the wireless signal transmitted from the antenna. The processor 320 executes processing related to packet transmission / reception with the server 2, processing related to packet transmission / reception with the terminal device 4, setting of a GAP pattern, handover, and the like. The processor 320 is a hardware processor, and an FPGA or an ASIC can be applied in addition to a CPU, MCU, MPU, and DSP.
不揮発性メモリ340は、コンピュータで読み取り可能な記録媒体である。不揮発性メモリ340には、プロセッサ320によって実行されるコンピュータプログラム等が格納される。不揮発性メモリ340は、例えばROM、マスクROM、PROM、フラッシュメモリ、MRAM、ReRAM、FeRAM等である。コンピュータプログラムは、不揮発性メモリ340以外の記憶媒体であって、コンピュータで読み取り可能な記録媒体(ただし、搬送波は除く)に記録させることもできる。また、コンピュータプログラムが記録されたDVD、CD-ROMなどの可搬型記録媒体を流通させることもできる。また、コンピュータプログラムは、ネットワークを介して送信され得る。
The nonvolatile memory 340 is a computer-readable recording medium. The nonvolatile memory 340 stores a computer program executed by the processor 320 and the like. The nonvolatile memory 340 is, for example, a ROM, mask ROM, PROM, flash memory, MRAM, ReRAM, FeRAM, or the like. The computer program can be recorded on a storage medium other than the non-volatile memory 340 and a computer-readable recording medium (except for a carrier wave). In addition, portable recording media such as DVDs and CD-ROMs on which computer programs are recorded can be distributed. The computer program can be transmitted via a network.
揮発性メモリ350は、コンピュータで読み取り可能な記録媒体である。揮発性メモリ350には、不揮発性メモリ340に格納されているコンピュータプログラムがロードされる。また揮発性メモリ350には、プロセッサ320による演算処理に使用されるデータや演算処理の結果であるデータ等が保持される。揮発性メモリ350は、例えばSRAMやDRAM等である。
The volatile memory 350 is a computer-readable recording medium. The computer program stored in the non-volatile memory 340 is loaded into the volatile memory 350. The volatile memory 350 holds data used for arithmetic processing by the processor 320, data that is the result of the arithmetic processing, and the like. The volatile memory 350 is, for example, SRAM or DRAM.
ネットワークインターフェース回路360は、ネットワーク1とのインターフェース装置である。
The network interface circuit 360 is an interface device with the network 1.
図9は、基地局3のプロセッサ320の機能ブロック図である。プロセッサ320は、受信部321、送信部322、無線リソース割当部323、ハンドオーバ処理部324、測定結果処理部325、上位装置側受信部326、上位装置側送信部327、バッファ部328、スケジューリング部329、GAPパターン設定部330、GAP制御部331として機能する。
FIG. 9 is a functional block diagram of the processor 320 of the base station 3. The processor 320 includes a reception unit 321, a transmission unit 322, a radio resource allocation unit 323, a handover processing unit 324, a measurement result processing unit 325, a higher device side reception unit 326, a higher device side transmission unit 327, a buffer unit 328, and a scheduling unit 329. , GAP pattern setting unit 330 and GAP control unit 331.
受信部321は、端末装置4から受信した信号の復調及び復号化を行う。送信部322は、端末装置4へ送信される信号の変調及び符号化を行う。無線リソース割当部323は、端末装置4との間で行われる無線通信で使用される無線リソースの割り当てを行う。ハンドオーバ処理部324は、他の基地局3bへのハンドオーバに関する処理を行う。例えば、端末装置4から受信品質に関する通知が送信された場合には、ハンドオーバ処理部324は、近隣に配置された他の基地局3bを特定するセルIDや、当該他の基地局3bから送信される無線信号の周波数を示す周波数情報を、端末装置4に通知する。またハンドオーバ処理部324は、GAPパターン設定部330が設定したGAPパターンを示す情報を端末装置4に通知する。その後、端末装置4が受信品質の測定を実行し、端末装置4から送信された受信品質測定結果を測定結果処理部325が受信する。そして受信された受信品質測定結果に基づき、ハンドオーバ処理部324はハンドオーバを実行するか否かの判断や、ハンドオーバの実行に関する処理を行う。上位装置側受信部326は、ネットワークインターフェース回路360を介して、上位装置、例えばサーバ2からパケットを受信する。また上位装置側送信部327は、ネットワークインターフェース回路360を介して、上位装置へパケットを送信する。バッファ部328は、上位装置から受信したパケットを保持するバッファである。例えば上位装置からのパケットを上位装置側受信部326が受信すると、パケットは一旦バッファ部328に保持される。スケジューリング部329は、バッファ部328に保持されたパケットの、端末装置4への送信タイミングをスケジューリングする。スケジューリング部329は、パケットの送信のスケジューリングを行う際には、バッファ部328に保持されたパケットのデータ量や、当該パケットについて遅延に関する規定が定められているか、等を考慮してスケジューリングを行う。またスケジューリング部329は、既にGAPパターンが定められている場合には、GAP期間を考慮してスケジューリングを行う。GAPパターン設定部330は、ハンドオーバ処理部324が端末装置4から受信品質に関する通知を受信した場合にGAPパターンを設定し、設定されたGAPパターンをハンドオーバ処理部324に通知する。またGAPパターン設定部330は、一旦設定されたGAPパターンの変更処理も実行する。この場合、GAPパターン設定部330は、変更内容をハンドオーバ処理部324に通知する。GAP制御部331は、GAPシーケンスの実行に関する処理を行う。
The receiving unit 321 demodulates and decodes the signal received from the terminal device 4. The transmission unit 322 modulates and encodes a signal transmitted to the terminal device 4. The radio resource allocation unit 323 allocates radio resources used in radio communication performed with the terminal device 4. The handover processing unit 324 performs processing related to handover to another base station 3b. For example, when a notification regarding the reception quality is transmitted from the terminal device 4, the handover processing unit 324 is transmitted from the cell ID that identifies the other base station 3b arranged in the vicinity or the other base station 3b. The terminal device 4 is notified of frequency information indicating the frequency of the radio signal. In addition, the handover processing unit 324 notifies the terminal device 4 of information indicating the GAP pattern set by the GAP pattern setting unit 330. Thereafter, the terminal device 4 performs reception quality measurement, and the measurement result processing unit 325 receives the reception quality measurement result transmitted from the terminal device 4. Then, based on the received reception quality measurement result, the handover processing unit 324 determines whether or not to execute handover and performs processing related to handover execution. The upper apparatus side receiving unit 326 receives a packet from the upper apparatus, for example, the server 2 via the network interface circuit 360. The higher-level device side transmission unit 327 transmits the packet to the higher-level device via the network interface circuit 360. The buffer unit 328 is a buffer that holds packets received from the host device. For example, when the host device side receiving unit 326 receives a packet from the host device, the packet is temporarily held in the buffer unit 328. The scheduling unit 329 schedules the transmission timing of the packet held in the buffer unit 328 to the terminal device 4. When scheduling a packet transmission, the scheduling unit 329 performs scheduling in consideration of the data amount of the packet held in the buffer unit 328, whether or not a rule regarding delay is defined for the packet. In addition, when a GAP pattern has already been determined, the scheduling unit 329 performs scheduling in consideration of the GAP period. The GAP pattern setting unit 330 sets a GAP pattern when the handover processing unit 324 receives a notification regarding reception quality from the terminal device 4, and notifies the handover processing unit 324 of the set GAP pattern. The GAP pattern setting unit 330 also executes a process for changing the GAP pattern once set. In this case, the GAP pattern setting unit 330 notifies the handover processing unit 324 of the change contents. The GAP control unit 331 performs processing related to execution of the GAP sequence.
図10は、端末装置4のプロセッサ420の機能ブロック図である。プロセッサ420は、受信部421、送信部422、受信品質通知部423、受信品質測定部424、チューニング部425、GAP制御部426として機能する。
FIG. 10 is a functional block diagram of the processor 420 of the terminal device 4. The processor 420 functions as a reception unit 421, a transmission unit 422, a reception quality notification unit 423, a reception quality measurement unit 424, a tuning unit 425, and a GAP control unit 426.
受信部421は、基地局3aから受信した信号の復調及び復号化を行う。送信部422は、基地局3aへ送信される信号の変調及び符号化を行う。受信品質通知部423は、基地局3aからの無線信号の受信品質が低下した場合、例えばSIRが所定値以下となった場合に、通知信号を基地局3aに送信する。通知信号には、測定されたSIRの値が含まれてもよく、又はSIRが所定値以下となったことを示す情報が含まれてもよい。受信品質測定部424は、基地局3aからの無線信号の受信品質を測定し、またGAP期間に他の基地局3bからの無線信号の受信品質を測定する。また受信品質測定部424は、測定された受信品質を基地局3aに通知する。チューニング部425は、無線処理回路410の受信周波数のチューニングを行う。例えばGAP期間において、基地局3aからの無線信号の周波数とは異なる周波数の無線信号を受信するために、無線処理回路410の受信周波数のチューニングが行われる。GAP制御部426は、基地局3aから通知されたGAPパターンに基づいて、GAPシーケンスが実行されるように、受信品質測定部424、チューニング部425等を制御する。
The receiving unit 421 performs demodulation and decoding of the signal received from the base station 3a. The transmission unit 422 modulates and encodes a signal transmitted to the base station 3a. The reception quality notification unit 423 transmits a notification signal to the base station 3a when the reception quality of the radio signal from the base station 3a is lowered, for example, when the SIR becomes a predetermined value or less. The notification signal may include the measured SIR value, or may include information indicating that the SIR has become equal to or less than a predetermined value. The reception quality measurement unit 424 measures the reception quality of radio signals from the base station 3a, and measures the reception quality of radio signals from other base stations 3b during the GAP period. The reception quality measuring unit 424 notifies the measured reception quality to the base station 3a. The tuning unit 425 tunes the reception frequency of the wireless processing circuit 410. For example, in the GAP period, in order to receive a radio signal having a frequency different from the frequency of the radio signal from the base station 3a, the reception frequency of the radio processing circuit 410 is tuned. The GAP control unit 426 controls the reception quality measurement unit 424, the tuning unit 425, and the like so that the GAP sequence is executed based on the GAP pattern notified from the base station 3a.
図11は、基地局3aのプロセッサ320によって実行される処理のフローチャートである。処理フローは処理S30によって開始され、処理S31においてハンドオーバ処理部324が、端末装置4から受信品質の通知信号が受信されたかを判定する。通知信号が受信されたと判定された場合(処理S31のYes)は、処理フローは処理S32へ進み、通知信号が受信されたと判定されない場合(処理S31のNo)は、処理フローは処理S31を繰り返す。
FIG. 11 is a flowchart of processing executed by the processor 320 of the base station 3a. The process flow is started in process S30, and in process S31, the handover processing unit 324 determines whether a reception quality notification signal is received from the terminal device 4. If it is determined that the notification signal has been received (Yes in process S31), the process flow proceeds to process S32. If it is not determined that the notification signal has been received (No in process S31), the process flow repeats process S31. .
処理S32においてハンドオーバ処理部324が、受信された通知信号に基づいて、端末装置4における無線信号の受信品質が規定値以下であるかを判定する。受信品質が規定値以下であると判定された場合(処理S32のYes)は、処理フローは処理S33に進み、受信品質が規定値以下であると判定されない場合(処理S32のNo)は、処理フローは処理S31へ戻る。処理S33においてGAPパターン設定部330が、GAPパターンを設定する。処理S34においてハンドオーバ処理部324が、他の基地局3bに関するセル情報と、GAPパターン設定部330によって設定されたGAPパターンを示すGAPパターン情報を、端末装置4に通知する。処理S35においてGAP制御部331が、処理S33において設定されたGAPパターンに基づいてGAPシーケンスを実行する。その後、処理フローは処理S36において終了する。
In process S32, the handover processing unit 324 determines whether the reception quality of the radio signal in the terminal device 4 is equal to or less than the specified value based on the received notification signal. If it is determined that the reception quality is not more than the specified value (Yes in process S32), the process flow proceeds to process S33, and if it is not determined that the reception quality is not more than the specified value (No in process S32), the process is performed. The flow returns to process S31. In step S33, the GAP pattern setting unit 330 sets a GAP pattern. In step S <b> 34, the handover processing unit 324 notifies the terminal device 4 of cell information related to the other base station 3 b and GAP pattern information indicating the GAP pattern set by the GAP pattern setting unit 330. In process S35, the GAP control unit 331 executes the GAP sequence based on the GAP pattern set in process S33. Thereafter, the process flow ends in process S36.
図12は、基地局3aのプロセッサ320によって実行される処理のフローチャートであって、主にGAPシーケンスの実行に関する処理のフローチャートである。図12に示されるフローチャートは図11に開示された処理フローにおける処理S35の詳細に相当する。処理フローは処理S40において開始され、処理S41においてバッファ部328が、端末装置4宛てのパケットがバッファ部328に保持されているかを判定する。パケットがバッファ部328に保持されていると判定された場合(処理S41のYes)は、処理フローは処理S42へ進み、パケットがバッファ部328に保持されていると判定されない場合(処理S41のNo)は、処理フローは処理S41を繰り返し実行する。処理S42においてスケジューリング部329は、GAPパターンを考慮して、つまり特定の期間がGAP期間として設定されていることを考慮して、パケットの送信タイミングをスケジューリングする。処理S43においてスケジューリング部329が、スケジューリングされたURLLCの送信タイミングにより、パケットに要求される遅延規定が満たされるかを判定する。遅延規定が満たされると判定された場合(処理S43のYes)は、処理フローは処理S46へ進み、遅延規定が満たされると判定されない場合(処理S43のNo)は、処理フローは処理S44へ進む。
FIG. 12 is a flowchart of processing executed by the processor 320 of the base station 3a, and mainly shows processing related to execution of the GAP sequence. The flowchart shown in FIG. 12 corresponds to the details of the process S35 in the process flow disclosed in FIG. The process flow is started in process S40, and in process S41, the buffer unit 328 determines whether the packet addressed to the terminal device 4 is held in the buffer unit 328. When it is determined that the packet is held in the buffer unit 328 (Yes in process S41), the process flow proceeds to process S42, and when it is not determined that the packet is held in the buffer unit 328 (No in process S41). ) Repeats the process S41 in the process flow. In process S42, the scheduling unit 329 schedules the packet transmission timing in consideration of the GAP pattern, that is, in consideration that the specific period is set as the GAP period. In process S43, the scheduling unit 329 determines whether the delay requirement required for the packet is satisfied based on the scheduled transmission timing of the URLLC. If it is determined that the delay rule is satisfied (Yes in process S43), the process flow proceeds to process S46. If it is not determined that the delay rule is satisfied (No in process S43), the process flow proceeds to process S44. .
処理S44においてGAP制御部331が、GAPパターンの変更通知を送信することにより、次のGAP期間の設定をキャンセルすることを、端末装置4に通知する。処理S45においてGAP制御部331が、次のGAP期間の設定がキャンセルされたことに基づき、パケットの送信スケジュールを再度設定する。
In step S44, the GAP control unit 331 notifies the terminal device 4 that the setting of the next GAP period is canceled by transmitting a change notification of the GAP pattern. In step S45, the GAP control unit 331 sets the packet transmission schedule again based on the cancellation of the setting of the next GAP period.
処理S46において送信部322が、処理S42にて設定された送信スケジュール、又は処理S45にて再設定された送信スケジュールに基づいて、パケットを端末装置4に送信する。その後、処理フローは処理S47において終了する。
In process S46, the transmission unit 322 transmits the packet to the terminal device 4 based on the transmission schedule set in process S42 or the transmission schedule reset in process S45. Thereafter, the process flow ends in process S47.
図13は、端末装置4のプロセッサ420によって実行される処理のフローチャートである。処理フローは処理S50によって開始され、処理S51において受信品質通知部423が、基地局3aからの無線信号の受信品質が低下したかを判定する。無線信号の受信品質が低下したと判定された場合(処理S51のYes)は、処理フローは処理S52へ進み、無線信号の受信品質が低下したと判定されない場合(処理S51のNo)は、処理フローは処理S51を繰り返す。
FIG. 13 is a flowchart of processing executed by the processor 420 of the terminal device 4. The process flow is started in process S50, and in process S51, the reception quality notifying unit 423 determines whether the reception quality of the radio signal from the base station 3a has deteriorated. If it is determined that the reception quality of the radio signal has decreased (Yes in process S51), the process flow proceeds to process S52. If it is not determined that the reception quality of the radio signal has decreased (No in process S51), the process proceeds to step S52. The flow repeats the process S51.
処理S52において受信品質通知部423は、受信品質についての通知信号を基地局3aに送信する。処理S53においてGAP制御部426が、他の基地局3bに関するセル情報及びGAPパターンを示すGAPパターン情報を、基地局3aから受信したかを判定する。セル情報には、他の基地局3bを特定するセルID及び他の基地局3bの無線信号の周波数を特定する周波数情報が含まれる。またGAPパターン情報としては、GAPシーケンスの開始時刻、GAPシーケンスに含まれるGAP期間の回数、各GAP期間の長さ、GAP期間同士の間隔等を示す情報が含まれる。処理S53において、セル情報及びGAPパターン情報が受信されたと判定された場合(処理S53のYes)は、処理フローは処理S54へ進み、セル情報及びGAPパターン情報が受信されたと判定されない場合(処理S53のNo)は、処理フローは処理S51へ戻る。処理S54においてGAP制御部426は、GAPパターン情報に基づいてGAPシーケンスを実行する。その後、処理S55において処理フローが終了する。
In process S52, the reception quality notification unit 423 transmits a notification signal about the reception quality to the base station 3a. In step S53, the GAP control unit 426 determines whether the cell information related to the other base station 3b and the GAP pattern information indicating the GAP pattern have been received from the base station 3a. The cell information includes a cell ID that specifies the other base station 3b and frequency information that specifies the frequency of the radio signal of the other base station 3b. The GAP pattern information includes information indicating the start time of the GAP sequence, the number of GAP periods included in the GAP sequence, the length of each GAP period, the interval between GAP periods, and the like. If it is determined in step S53 that cell information and GAP pattern information have been received (Yes in step S53), the process flow proceeds to step S54, and if it is not determined that cell information and GAP pattern information have been received (step S53). No), the process flow returns to the process S51. In process S54, the GAP control unit 426 executes the GAP sequence based on the GAP pattern information. Thereafter, the process flow ends in process S55.
図14は、端末装置4のプロセッサ420によって実行される処理のフローチャートであって、主にGAPシーケンスの実行に関する処理のフローチャートである。図14に示されるフローチャートは図13に開示された処理フローにおける処理S54の詳細に相当する。処理フローは処理S60において開始され、処理S61においてGAP制御部426が、基地局3aからGAPパターンの変更通知信号が受信されたかを判定する。変更通知信号が受信されたと判定された場合(処理S61のYes)は、処理フローは処理S62に進み、変更通知信号が受信されたと判定されない場合(処理S61のNo)は、処理フローは処理S64に進む。
FIG. 14 is a flowchart of processing executed by the processor 420 of the terminal device 4, and is mainly a flowchart of processing related to execution of the GAP sequence. The flowchart shown in FIG. 14 corresponds to the details of the process S54 in the process flow disclosed in FIG. The process flow starts in process S60, and in process S61, the GAP control unit 426 determines whether a GAP pattern change notification signal is received from the base station 3a. If it is determined that a change notification signal has been received (Yes in process S61), the process flow proceeds to process S62. If it is not determined that a change notification signal has been received (No in process S61), the process flow is process S64. Proceed to
処理フローが処理S62に進んだ場合、処理S62においてGAP制御部426は、変更通知信号に基づいて次のGAP期間の設定をキャンセルする。処理S63において受信部421が、割り当てられた無線リソースを用いて基地局3aからパケットを受信する。
When the process flow proceeds to process S62, the GAP control unit 426 cancels the setting of the next GAP period based on the change notification signal in process S62. In step S63, the reception unit 421 receives a packet from the base station 3a using the assigned radio resource.
一方、処理フローが処理S64に進んだ場合、処理S64においてチューニング部425が、GAP期間において、無線処理回路410を、他の基地局3bの無線信号の周波数にチューニングする。処理S65において受信品質測定部424が、他の基地局3bの無線信号の受信品質を測定する。そして処理S66において受信品質通知部423が、測定された受信品質を基地局3aに通知する。
On the other hand, when the process flow proceeds to process S64, the tuning unit 425 tunes the radio processing circuit 410 to the frequency of the radio signal of the other base station 3b in the GAP period in process S64. In process S65, the reception quality measuring unit 424 measures the reception quality of the radio signal of the other base station 3b. In step S66, the reception quality notification unit 423 notifies the measured reception quality to the base station 3a.
処理S63又は処理S66の後、処理S67においてGAP制御部426が、GAPシーケンスが終了したかを判定する。GAPシーケンスが終了したと判定された場合(処理S67のYes)は、処理フローは処理S68にて終了し、GAPシーケンスが終了したと判定されない場合(処理S67のNo)は、処理フローは処理S61へ戻る。
After step S63 or step S66, in step S67, the GAP control unit 426 determines whether the GAP sequence has ended. If it is determined that the GAP sequence has been completed (Yes in process S67), the process flow ends in process S68. If it is not determined that the GAP sequence has been completed (No in process S67), the process flow is performed in process S61. Return to.
以上、第1実施例が開示された。第1実施例においては、パケットの送信とGAP期間における受信品質測定等の処理とが競合する場合に、GAP期間の設定がキャンセルされ、パケットの送信が優先的に実行される。
Thus, the first embodiment has been disclosed. In the first embodiment, when the packet transmission and the processing such as reception quality measurement in the GAP period compete, the setting of the GAP period is canceled and the packet transmission is preferentially executed.
<第2実施例>
第1実施例においては、パケットの送信を優先させるために、GAP期間の設定がキャンセルされる例が開示されたが、第2実施例においては、GAP期間がシフトされる例が開示される。 図15は、GAP期間がシフトされる様子を示す図である。処理S10、処理S11及び処理S12は、図3において開示された内容のため、ここでは説明を省略する。 <Second embodiment>
In the first embodiment, an example in which the setting of the GAP period is canceled in order to give priority to packet transmission is disclosed, but in the second embodiment, an example in which the GAP period is shifted is disclosed. FIG. 15 is a diagram illustrating how the GAP period is shifted. Since the processing S10, the processing S11, and the processing S12 are the contents disclosed in FIG. 3, the description thereof is omitted here.
第1実施例においては、パケットの送信を優先させるために、GAP期間の設定がキャンセルされる例が開示されたが、第2実施例においては、GAP期間がシフトされる例が開示される。 図15は、GAP期間がシフトされる様子を示す図である。処理S10、処理S11及び処理S12は、図3において開示された内容のため、ここでは説明を省略する。 <Second embodiment>
In the first embodiment, an example in which the setting of the GAP period is canceled in order to give priority to packet transmission is disclosed, but in the second embodiment, an example in which the GAP period is shifted is disclosed. FIG. 15 is a diagram illustrating how the GAP period is shifted. Since the processing S10, the processing S11, and the processing S12 are the contents disclosed in FIG. 3, the description thereof is omitted here.
処理S70において、GAP期間♯2が開始される前に、基地局3aがサーバ2からパケットを受信する。基地局3aは、パケットの遅延に関する規定を満たすために、GAPパターンを変更すること、つまり、その後に予定されているGAP期間#2を後方にシフトさせることを決定する。そして処理S71において基地局3aは、GAPパターンの変更を端末装置4に通知する。その後、処理S72において基地局3aは、パケットを端末装置4に送信する。パケットが送信された後に、シフトされたGAP期間#2が開始する。
In process S70, the base station 3a receives a packet from the server 2 before the GAP period # 2 is started. The base station 3a decides to change the GAP pattern, that is, shift the GAP period # 2 scheduled thereafter to the rear in order to satisfy the provisions regarding the packet delay. In step S71, the base station 3a notifies the terminal device 4 of the change of the GAP pattern. Thereafter, in step S72, the base station 3a transmits the packet to the terminal device 4. After the packet is transmitted, the shifted GAP period # 2 begins.
このように第2実施例においても、パケット送信が優先して実行されるようにするためにGAPパターンが変更され、パケットの遅延に関する規定を満たすことができる。
As described above, also in the second embodiment, the GAP pattern is changed so that the packet transmission is executed with priority, and the provisions regarding the packet delay can be satisfied.
図16は、GAPパターンの変更を端末装置4に通知する方法の一例を示す図である。GAP期間が開始される前の時点において、パケットがバッファ部328に保持され、GAP期間を避けてパケット送信のスケジューリングを行った場合には、パケットに求められる遅延に関する規定が満たされないと判断された場合は、GAP期間が後方にシフトされる。この場合、基地局3aはGAPパターンの変更通知を端末装置4に送信する。この変更通知は、第1実施例と同様に例えばPDCCH信号を用いて実行され得る。図16においてPDCCH信号には、時刻T1を開始時刻とするGAP期間の設定を変更し、時刻T1よりも後の時刻T3にGAP期間の開始が設定されることを示すシフト情報が含まれる。シフト量は、例えば2スロットに相当する時間である。また端末装置4と基地局3aとの間の無線通信に使用される無線リソースを特定する割当リソース情報がPDCCH信号に含まれる。このPDCCH信号が端末装置4に送信されることにより、端末装置4はその後に予定されていたGAP期間の開始タイミングがシフトされたことを認識する。そして、PDCCH信号に含まれる割当リソース情報に基づいて、基地局3aと端末装置4との間でのパケットの送受信が実行される。
FIG. 16 is a diagram illustrating an example of a method for notifying the terminal device 4 of a change in the GAP pattern. At the time before the start of the GAP period, the packet is held in the buffer unit 328, and when the packet transmission is scheduled so as to avoid the GAP period, it is determined that the requirement regarding the delay required for the packet is not satisfied. If so, the GAP period is shifted backwards. In this case, the base station 3 a transmits a GAP pattern change notification to the terminal device 4. This change notification can be executed using, for example, a PDCCH signal, as in the first embodiment. In FIG. 16, the PDCCH signal includes shift information indicating that the setting of the GAP period whose start time is time T1 is changed and the start of the GAP period is set at time T3 after time T1. The shift amount is a time corresponding to, for example, 2 slots. Moreover, the allocation resource information which specifies the radio | wireless resource used for the radio | wireless communication between the terminal device 4 and the base station 3a is contained in a PDCCH signal. By transmitting this PDCCH signal to the terminal apparatus 4, the terminal apparatus 4 recognizes that the start timing of the GAP period scheduled thereafter is shifted. And based on the allocation resource information contained in a PDCCH signal, transmission / reception of the packet between the base station 3a and the terminal device 4 is performed.
図17は、基地局3aのプロセッサ320によって実行される処理のフローチャートであって、主にGAPシーケンスの実行に関する処理のフローチャートである。処理S73以外の処理は、図12において既に開示された処理内容と同一であるため、説明は省略する。図12では、処理S44において、次のGAP期間の設定がキャンセルされることが端末装置4に通知されたが、図17では処理S73において、次のGAP期間が後方に所定時間だけシフトされることが端末装置4に通知される。シフト量を示す情報は、図16において説明されたように、例えばPDCCH信号に含まれる。
FIG. 17 is a flowchart of processing executed by the processor 320 of the base station 3a, and mainly shows processing related to execution of the GAP sequence. Processes other than process S73 are the same as those already disclosed in FIG. In FIG. 12, the terminal device 4 is notified in step S44 that the setting of the next GAP period is cancelled. In FIG. 17, in step S73, the next GAP period is shifted backward by a predetermined time. Is notified to the terminal device 4. The information indicating the shift amount is included in, for example, a PDCCH signal as described in FIG.
図18は、端末装置4のプロセッサ420によって実行される処理のフローチャートであって、主にGAPシーケンスの実行に関する処理のフローチャートである。処理S74以外の処理は、図14において既に開示された処理内容と同一であるため、説明は省略する。図14では、処理S62において、次のGAP期間の設定がキャンセルされたが、図18では処理S74において、次のGAP期間が後方に所定時間だけシフトされる。
FIG. 18 is a flowchart of processing executed by the processor 420 of the terminal device 4, and is mainly a flowchart of processing related to execution of the GAP sequence. Processes other than the process S74 are the same as those already disclosed in FIG. In FIG. 14, the setting of the next GAP period is canceled in the process S62, but in FIG. 18, the next GAP period is shifted backward by a predetermined time in the process S74.
以上、第2実施例が開示された。第2実施例においても、パケットの送信とGAP期間における受信品質測定等の処理とが競合した場合に、パケットの送信を優先的に実行させることができる。
As described above, the second embodiment has been disclosed. Also in the second embodiment, packet transmission can be preferentially executed when the packet transmission competes with processing such as reception quality measurement in the GAP period.
<第3実施例>
第3実施例では、端末装置4宛てのパケットが基地局3aに保持される場合、GAP期間を短縮することによって、パケットを送信するタイミングが確保される。 <Third embodiment>
In the third embodiment, when the packet addressed to theterminal device 4 is held in the base station 3a, the timing for transmitting the packet is secured by shortening the GAP period.
第3実施例では、端末装置4宛てのパケットが基地局3aに保持される場合、GAP期間を短縮することによって、パケットを送信するタイミングが確保される。 <Third embodiment>
In the third embodiment, when the packet addressed to the
図19は、GAP期間が短縮される様子を示す図である。処理S75以外の処理は、図15において既に開示された処理内容と同一であるため、説明は省略する。図19においては、GAP期間♯2の開始前に、基地局3aがサーバ2からパケットを受信する。この場合、基地局3aは、パケットの遅延に関する規定を満たすために、その後に予定されているGAP期間♯2を短縮するようGAPパターンを変更し、処理S75においてGAPパターンの変更を端末装置4に通知する。この変更により、GAP期間#2の開始時間が所定時間、遅くなる。そして、処理S72において基地局3aは、パケットを端末装置4に送信する。パケットが送信された後に、短縮されて開始時間が遅れるように変更されたGAP期間#2が開始する。
FIG. 19 shows how the GAP period is shortened. Processes other than the process S75 are the same as the process contents already disclosed in FIG. In FIG. 19, the base station 3a receives a packet from the server 2 before the start of the GAP period # 2. In this case, the base station 3a changes the GAP pattern so as to shorten the GAP period # 2 scheduled thereafter in order to satisfy the provisions regarding the packet delay, and changes the GAP pattern to the terminal device 4 in step S75. Notice. With this change, the start time of the GAP period # 2 is delayed by a predetermined time. In step S <b> 72, the base station 3 a transmits the packet to the terminal device 4. After the packet is transmitted, the GAP period # 2, which is shortened and changed so that the start time is delayed, starts.
このように第3実施例においても、パケット送信が優先して実行されるようにするためにGAPパターンが変更され、パケットの遅延に関する規定を満たすことができる。
As described above, also in the third embodiment, the GAP pattern is changed so that the packet transmission is executed with priority, and the provisions regarding the packet delay can be satisfied.
図20は、GAPパターンの変更を端末装置4に通知する方法の一例を示す図である。GAP期間が開始される前の時点において、パケットがバッファ部328に保持されるものとする。この場合、GAP期間を避けてパケット送信のスケジューリングを行うと、パケットに求められる遅延に関する要求が満たされないと判断された場合は、GAP期間を短縮させるようGAPパターンを変更することが決定される。そして基地局3aは、GAPパターンの変更を端末装置4に通知する。この通知は、第1及び第2実施例と同様に例えばPDCCH信号を用いて実行され得る。図20においてPDCCH信号には、時刻T1を開始時刻とするGAP期間の設定を変更し、GAP期間の長さが例えば2スロットに相当する長さだけ短縮され、時刻T3にGAP期間の開始が設定されることを示す短縮情報が含まれる。また端末装置4と基地局3aとの間の無線通信に使用される無線リソースを特定する割当リソース情報がPDCCH信号に含まれる。このPDCCH信号が端末装置4に送信されることにより、端末装置4はその後に予定されていたGAP期間の設定が変更されたことを認識する。そして、PDCCH信号に含まれる割当リソース情報に基づいて、基地局3aと端末装置4との間でのパケットの送受信が実行される。
FIG. 20 is a diagram illustrating an example of a method for notifying the terminal device 4 of a change in the GAP pattern. It is assumed that the packet is held in the buffer unit 328 at a time before the start of the GAP period. In this case, when scheduling of packet transmission is performed while avoiding the GAP period, if it is determined that the request regarding the delay required for the packet is not satisfied, it is determined to change the GAP pattern so as to shorten the GAP period. Then, the base station 3a notifies the terminal device 4 of the change of the GAP pattern. This notification can be executed using, for example, a PDCCH signal in the same manner as in the first and second embodiments. In FIG. 20, in the PDCCH signal, the setting of the GAP period starting at time T1 is changed, the length of the GAP period is shortened by a length corresponding to, for example, 2 slots, and the start of the GAP period is set at time T3. Abbreviated information indicating that it is to be performed. Moreover, the allocation resource information which specifies the radio | wireless resource used for the radio | wireless communication between the terminal device 4 and the base station 3a is contained in a PDCCH signal. By transmitting this PDCCH signal to the terminal device 4, the terminal device 4 recognizes that the setting of the GAP period scheduled thereafter has been changed. And based on the allocation resource information contained in a PDCCH signal, transmission / reception of the packet between the base station 3a and the terminal device 4 is performed.
尚、図19に示されるように、GAP期間#2の長さが短縮された場合に、GAPシーケンスに含まれるGAP期間の合計の長さを補償するよう、GAP期間#3の長さを増加させるようGAPパターンが変更されてもよい。
As shown in FIG. 19, when the length of the GAP period # 2 is shortened, the length of the GAP period # 3 is increased so as to compensate for the total length of the GAP periods included in the GAP sequence. The GAP pattern may be changed so that the
図21は、基地局3aのプロセッサ320によって実行される処理のフローチャートであって、主にGAPシーケンスの実行に関する処理のフローチャートである。処理S76以外の処理は、図12において既に開示された処理内容と同一であるため、説明は省略する。図12では、処理S44において、次のGAP期間の設定がキャンセルされることが端末装置に通知されたが、図21では処理S76において、次のGAP期間が短縮され、GAP期間の開始時刻が後方に所定時間だけ遅れることが端末装置4に通知される。短縮量を示す情報は、図20において説明されたように、例えばPDCCH信号に含まれる。
FIG. 21 is a flowchart of processing executed by the processor 320 of the base station 3a, and mainly shows processing related to execution of the GAP sequence. Processes other than the process S76 are the same as those already disclosed in FIG. In FIG. 12, the terminal device is notified in step S44 that the setting of the next GAP period is cancelled. In FIG. 21, in step S76, the next GAP period is shortened and the start time of the GAP period is set backward. Is notified to the terminal device 4 that it is delayed by a predetermined time. The information indicating the shortening amount is included in, for example, a PDCCH signal as described in FIG.
図22は、端末装置4のプロセッサ420によって実行される処理のフローチャートであって、主にGAPシーケンスの実行に関する処理のフローチャートである。処理S77以外の処理は、図14において既に開示された処理内容と同一であるため、説明は省略する。図14では、処理S62において、次のGAP期間の設定がキャンセルされたが、図22では処理S77において、次のGAP期間が所定時間だけ短縮される。
FIG. 22 is a flowchart of processing executed by the processor 420 of the terminal device 4, and is mainly a flowchart of processing related to execution of the GAP sequence. Processes other than the process S77 are the same as the process contents already disclosed in FIG. In FIG. 14, the setting of the next GAP period is canceled in the process S62, but in FIG. 22, the next GAP period is shortened by a predetermined time in the process S77.
以上、第3実施例が開示された。第3実施例においても、パケットの送信とGAP期間における受信品質測定が競合した場合に、パケットの送信が遅延することを抑制することができる。
As described above, the third embodiment has been disclosed. Also in the third embodiment, when packet transmission and reception quality measurement in the GAP period compete, it is possible to suppress delay in packet transmission.
<第4実施例>
第1実施例乃至第3実施例では、基地局3aから端末装置4へのパケット送信、所謂下り方向の通信について説明されたが、第4実施例では、端末装置4から基地局3aへのパケット送信、所謂上り方向の通信について説明する。端末装置4がパケットを基地局3aに送信する場合においても、パケットの送信とGAP期間における受信品質測定等の処理との競合が発生し得る。この場合、端末装置4は、GAP期間の設定をキャンセルさせることによって、パケットの送信を優先して実行させることができる。 <Fourth embodiment>
In the first to third embodiments, packet transmission from thebase station 3a to the terminal device 4, that is, so-called downlink communication has been described. In the fourth embodiment, packets from the terminal device 4 to the base station 3a are described. Transmission, so-called uplink communication will be described. Even when the terminal device 4 transmits a packet to the base station 3a, contention between the packet transmission and processing such as reception quality measurement in the GAP period may occur. In this case, the terminal device 4 can preferentially execute packet transmission by canceling the setting of the GAP period.
第1実施例乃至第3実施例では、基地局3aから端末装置4へのパケット送信、所謂下り方向の通信について説明されたが、第4実施例では、端末装置4から基地局3aへのパケット送信、所謂上り方向の通信について説明する。端末装置4がパケットを基地局3aに送信する場合においても、パケットの送信とGAP期間における受信品質測定等の処理との競合が発生し得る。この場合、端末装置4は、GAP期間の設定をキャンセルさせることによって、パケットの送信を優先して実行させることができる。 <Fourth embodiment>
In the first to third embodiments, packet transmission from the
図23は、端末装置4が基地局3aへパケットを送信する場合であって、GAP期間がキャンセルされる場合のラダーチャートである。処理S80において、端末装置4のバッファ部に、送信されるパケットが保持される。更に端末装置4は、処理S81において、バッファ部に保持されたパケットの送信タイミングについてスケジューリングを行う。そして、次に予定されているGAP期間の後にパケットの送信がスケジューリングされた場合、パケットの遅延に関する規定が満たされるかが判定される。遅延に関する規定が満たされないと判定された場合は、処理S82において端末装置4は、GAPパターンの変更依頼を基地局3aに送信する。変更依頼は、例えばPhysical Uplink Control Channel信号(以下、「PUCCH信号」とする)を用いて実行され得る。処理S83において基地局3aはGAPパターンを変更する旨を端末装置4に通知する。これにより、GAP期間の設定がキャンセルされ、処理S84において、パケットの送信に関する再度のスケジューリングが実行される。そして処理S85において、再スケジューリングの結果に基づいて、パケットが端末装置4から基地局3aに送信される。
FIG. 23 is a ladder chart when the terminal device 4 transmits a packet to the base station 3a and the GAP period is canceled. In the process S80, the packet to be transmitted is held in the buffer unit of the terminal device 4. Further, in step S81, the terminal device 4 performs scheduling on the transmission timing of the packet held in the buffer unit. Then, when packet transmission is scheduled after the next scheduled GAP period, it is determined whether or not a rule regarding packet delay is satisfied. If it is determined that the delay rule is not satisfied, in step S82, the terminal device 4 transmits a GAP pattern change request to the base station 3a. The change request can be executed using, for example, a Physical Uplink Control Channel signal (hereinafter referred to as “PUCCH signal”). In step S83, the base station 3a notifies the terminal device 4 that the GAP pattern is to be changed. As a result, the setting of the GAP period is cancelled, and in step S84, scheduling is performed again regarding packet transmission. In step S85, a packet is transmitted from the terminal device 4 to the base station 3a based on the rescheduling result.
このように、端末装置4から基地局3a方向へのパケット送信においても、パケットの送信とGAP期間における受信品質測定等の処理とが競合した場合に、GAP期間の設定をキャンセルすることによってパケットの送信を優先して実行することが可能となる。
As described above, even in packet transmission from the terminal device 4 toward the base station 3a, when packet transmission and processing such as reception quality measurement in the GAP period compete, the setting of the GAP period is canceled to cancel the packet. Transmission can be executed with priority.
図24は、端末装置4のプロセッサ420の機能ブロック図である。プロセッサ420は、図10において開示された受信部421、送信部422、受信品質通知部423、受信品質測定部424、チューニング部425、GAP制御部426に加え、バッファ部427、スケジューリング部428、変更依頼部429として機能する。
FIG. 24 is a functional block diagram of the processor 420 of the terminal device 4. In addition to the reception unit 421, the transmission unit 422, the reception quality notification unit 423, the reception quality measurement unit 424, the tuning unit 425, and the GAP control unit 426 disclosed in FIG. It functions as the request unit 429.
バッファ部427は、基地局3へ送信されるパケットを保持するバッファである。パケットは、基地局3に送信される前に、バッファ部427に保持される。スケジューリング部428は、バッファ部427に保持されたパケットの送信に関するスケジューリングを行う。送信部422は、スケジューリング部428によって定められた送信タイミングに、バッファ部427に保持されたパケットの送信を実行する。変更依頼部429は、スケジューリング部428によって定められた送信タイミングにパケットを送信した場合に、パケットに要求される遅延に関する規定が満たされるかを判定する。遅延に関する規定が満たされると判定されない場合は、変更依頼部429はGAPパターンの変更、例えば次に予定されているGAP期間をキャンセルすることを要求する変更依頼信号を、基地局3aに送信する。
The buffer unit 427 is a buffer that holds a packet transmitted to the base station 3. The packet is held in the buffer unit 427 before being transmitted to the base station 3. The scheduling unit 428 performs scheduling related to transmission of packets held in the buffer unit 427. The transmission unit 422 transmits the packet held in the buffer unit 427 at the transmission timing determined by the scheduling unit 428. The change request unit 429 determines whether or not a rule related to a delay required for the packet is satisfied when the packet is transmitted at the transmission timing determined by the scheduling unit 428. If it is not determined that the delay rule is satisfied, the change request unit 429 transmits a change request signal for requesting the change of the GAP pattern, for example, canceling the next scheduled GAP period, to the base station 3a.
変更依頼信号に基づいて基地局3aがGAPパターンを変更すること、例えば次のGAP期間をキャンセルすることを決定した場合は、スケジューリング部428は再度のスケジューリングを実行する。そして変更依頼部429は、スケジューリング部428によって新たに定められた送信タイミングにパケットを送信する。
When the base station 3a determines to change the GAP pattern based on the change request signal, for example, to cancel the next GAP period, the scheduling unit 428 executes scheduling again. Then, the change request unit 429 transmits the packet at the transmission timing newly determined by the scheduling unit 428.
図25は、端末装置4のプロセッサ420によって実行される処理のフローチャートである。処理フローは処理S90によって開始され、処理S91においてバッファ部427が、バッファ部427にパケットが保持されているかを判定する。パケットが保持されていると判定された場合(処理S91のYes)は、処理フローは処理S92へ進み、パケットが保持されていると判定されない場合(処理S91のNo)は、処理フローは処理S98へ進む。
FIG. 25 is a flowchart of processing executed by the processor 420 of the terminal device 4. The processing flow is started in step S90, and in step S91, the buffer unit 427 determines whether a packet is held in the buffer unit 427. If it is determined that the packet is held (Yes in process S91), the process flow proceeds to process S92. If it is not determined that the packet is held (No in process S91), the process flow is process S98. Proceed to
処理フローが処理S92に進んだ場合は、処理S92においてスケジューリング部428が、GAPパターンを考慮して、バッファ部427に保持されているパケットの送信スケジュールを設定する。処理S93において変更依頼部429が、処理S92において定められた送信スケジュールに沿ってパケットを送信した場合に、パケットに要求される遅延規定が満たされるかを判定する。遅延規定が満たされると判定された場合(処理S93のYes)は、処理フローは処理S97へ進み、遅延規定が満たされると判定されない場合(処理S93のNo)は、処理フローは処理S94へ進む。
When the process flow proceeds to process S92, the scheduling unit 428 sets a transmission schedule of packets held in the buffer unit 427 in consideration of the GAP pattern in process S92. In step S93, when the change request unit 429 transmits a packet according to the transmission schedule determined in step S92, the change request unit 429 determines whether the delay requirement required for the packet is satisfied. If it is determined that the delay rule is satisfied (Yes in process S93), the process flow proceeds to process S97. If it is not determined that the delay rule is satisfied (No in process S93), the process flow proceeds to process S94. .
処理フローが処理S94へ進んだ場合、処理S94において変更依頼部429が、次のGAP期間の設定をキャンセルすることを依頼する変更依頼信号を、基地局3aに送信する。処理S95において変更依頼部429が、次のGAP期間の設定をキャンセルすることを示す通知を、基地局3aから受信する。処理S96においてスケジューリング部428が、バッファ部427に保持されているパケットの送信スケジュールを再度設定する。そして処理S97において送信部422が、処理S96において設定された送信スケジュール、つまり再設定された送信スケジュールに基づいて、パケットを基地局3aに送信する。尚、処理S93において遅延規定が満たされると判定された場合(処理S93のYes)は、処理S97において送信部422が、処理S92において設定された送信スケジュールに基づいて、パケットを基地局3aに送信する。
When the process flow proceeds to process S94, the change request unit 429 transmits a change request signal requesting to cancel the setting of the next GAP period to the base station 3a in process S94. In process S95, the change request unit 429 receives a notification indicating that the setting of the next GAP period is canceled from the base station 3a. In step S <b> 96, the scheduling unit 428 sets the transmission schedule of the packets held in the buffer unit 427 again. In step S97, the transmission unit 422 transmits the packet to the base station 3a based on the transmission schedule set in step S96, that is, the reset transmission schedule. If it is determined in step S93 that the delay rule is satisfied (Yes in step S93), the transmission unit 422 transmits a packet to the base station 3a based on the transmission schedule set in step S92 in step S97. To do.
一方、処理フローが処理S91から処理S98に進んだ場合は、処理S98においてチューニング部425が、GAP期間において、無線処理回路410を、他の基地局3bの無線信号の周波数にチューニングする。処理S99において受信品質測定部424が、他の基地局3bの無線信号の受信品質を測定する。そして処理S100において受信品質通知部423が、測定された受信品質を基地局3aに通知する。処理フローは、処理S97の後、又は処理S100の後、処理S101において終了する。
On the other hand, when the process flow proceeds from process S91 to process S98, the tuning unit 425 tunes the radio processing circuit 410 to the frequency of the radio signal of the other base station 3b in the GAP period in process S98. In process S99, the reception quality measuring unit 424 measures the reception quality of the radio signal of the other base station 3b. In step S100, the reception quality notification unit 423 notifies the measured reception quality to the base station 3a. The process flow ends in process S101 after process S97 or after process S100.
図26は、基地局3のプロセッサ320によって実行される処理のフローチャートであり、主に端末装置4からGAPパターンの変更依頼信号が受信された際に実行される処理のフローチャートである。
FIG. 26 is a flowchart of processing executed by the processor 320 of the base station 3, and is a flowchart of processing executed mainly when a GAP pattern change request signal is received from the terminal device 4.
処理フローは処理S110において開始され、処理S111においてGAP制御部331は、端末装置4からGAPパターンの変更依頼信号が受信されたかを判定する。変更依頼信号が受信されたと判定された場合(処理S111のYes)は、処理フローは処理S112に進み、変更依頼信号が受信されたと判定されない場合(処理S111のNo)は、処理フローは処理S115に進む。
The processing flow is started in step S110, and in step S111, the GAP control unit 331 determines whether a GAP pattern change request signal is received from the terminal device 4. If it is determined that a change request signal has been received (Yes in process S111), the process flow proceeds to process S112. If it is not determined that a change request signal has been received (No in process S111), the process flow is process S115. Proceed to
処理S112においてGAPパターン設定部330は、変更依頼信号に基づき、次のGAP期間の設定をキャンセルすることを決定する。そして処理S113においてGAP制御部331が、次のGAP期間の設定がキャンセルされることを端末装置4に通知する。その後、処理S114において受信部321が、端末装置4からパケットを受信する。
In process S112, the GAP pattern setting unit 330 determines to cancel the setting of the next GAP period based on the change request signal. In step S113, the GAP control unit 331 notifies the terminal device 4 that the setting of the next GAP period is cancelled. Thereafter, in process S <b> 114, the reception unit 321 receives a packet from the terminal device 4.
処理S115においてGAP制御部331が、GAPシーケンスが終了したかを判定する。GAPシーケンスが終了したと判定された場合(処理S115のYes)は、処理フローは処理S116において終了し、GAPシーケンスが終了したと判定されない場合(処理S115のNo)は、処理フローは処理S111へ戻る。
In process S115, the GAP control unit 331 determines whether the GAP sequence has ended. If it is determined that the GAP sequence has ended (Yes in process S115), the process flow ends in process S116. If it is not determined that the GAP sequence has ended (No in process S115), the process flow proceeds to process S111. Return.
以上、第4実施例として、端末装置4からの上り方向のパケット送信が開示された。第4実施例においても、端末装置4がパケットの送信とGAP期間における受信品質測定等の処理とが競合する場合に、GAP期間の設定をキャンセルすることによってパケットの送信を優先して実行することが可能となる。尚、第4実施例においては、設定されたGAP期間をキャンセルする例が開示されたが、これはGAPパターンを変更することの一例である。第2実施例や第3実施例に開示されたように、GAP期間を後方にシフトさせる方法やGAP期間を短縮させる方法も、第4実施例において適用可能である。
As described above, the uplink packet transmission from the terminal device 4 has been disclosed as the fourth embodiment. Also in the fourth embodiment, when the terminal device 4 competes with packet transmission and processing such as reception quality measurement in the GAP period, the packet transmission is preferentially executed by canceling the setting of the GAP period. Is possible. In the fourth embodiment, an example of canceling the set GAP period is disclosed, but this is an example of changing the GAP pattern. As disclosed in the second and third embodiments, a method of shifting the GAP period backward and a method of shortening the GAP period are also applicable in the fourth embodiment.
1 ネットワーク
2 サーバ
3、3a、3b 基地局
4 端末装置
310 無線処理回路
320 プロセッサ
340 不揮発性メモリ
350 揮発性メモリ
360 ネットワークインターフェース回路
410 無線処理回路
420 プロセッサ
440 不揮発性メモリ
450 揮発性メモリ
321 受信部
322 送信部
323 無線リソース割当部
324 ハンドオーバ処理部
325 測定結果処理部
326 上位装置側受信部
327 上位装置側送信部
328 バッファ部
329 スケジューリング部
330 GAPパターン設定部
331 GAP制御部
421 受信部
422 送信部
423 受信品質通知部
424 受信品質測定部
425 チューニング部
426 GAP制御部
427 バッファ部
428 スケジューリング部
429 変更依頼部
DESCRIPTION OFSYMBOLS 1 Network 2 Server 3, 3a, 3b Base station 4 Terminal device 310 Wireless processing circuit 320 Processor 340 Non-volatile memory 350 Volatile memory 360 Network interface circuit 410 Wireless processing circuit 420 Processor 440 Non-volatile memory 450 Volatile memory 321 Receiving part 322 Transmission unit 323 Radio resource allocation unit 324 Handover processing unit 325 Measurement result processing unit 326 Upper device side reception unit 327 Upper device side transmission unit 328 Buffer unit 329 Scheduling unit 330 GAP pattern setting unit 331 GAP control unit 421 Reception unit 422 Transmission unit 423 Reception quality notification unit 424 Reception quality measurement unit 425 Tuning unit 426 GAP control unit 427 Buffer unit 428 Scheduling unit 429 Change request unit
2 サーバ
3、3a、3b 基地局
4 端末装置
310 無線処理回路
320 プロセッサ
340 不揮発性メモリ
350 揮発性メモリ
360 ネットワークインターフェース回路
410 無線処理回路
420 プロセッサ
440 不揮発性メモリ
450 揮発性メモリ
321 受信部
322 送信部
323 無線リソース割当部
324 ハンドオーバ処理部
325 測定結果処理部
326 上位装置側受信部
327 上位装置側送信部
328 バッファ部
329 スケジューリング部
330 GAPパターン設定部
331 GAP制御部
421 受信部
422 送信部
423 受信品質通知部
424 受信品質測定部
425 チューニング部
426 GAP制御部
427 バッファ部
428 スケジューリング部
429 変更依頼部
DESCRIPTION OF
Claims (20)
- 基地局と、前記基地局と無線通信を行う端末装置と、を有し、異周波ハンドオーバを行う無線通信システムであって、
前記基地局が、第1期間を、他の基地局から前記端末装置への第1無線信号の第1品質を測定するための測定期間として設定し、
前記基地局から前記端末装置へ送信されるパケットであって前記無線通信における遅延に関する規定が定められているパケットを、前記第1期間の開始時刻よりも前の時点で前記基地局が保持する場合は、前記基地局が、前記測定期間の設定を変更する変更処理を実行し、
前記変更処理の後、前記変更処理が実行される前には前記測定期間として設定されていた前記第1期間内に、前記基地局が前記パケットを前記端末装置に送信し、
前記第1期間の前記開始時刻よりも前の時点で前記基地局が前記パケットを保持しない場合は、前記端末装置が、前記第1無線信号の前記第1品質を前記第1期間に測定する
ことを特徴とする無線通信システム。 A wireless communication system having a base station and a terminal device that performs wireless communication with the base station, and performs a different frequency handover,
The base station sets the first period as a measurement period for measuring the first quality of the first radio signal from another base station to the terminal device,
A case where the base station holds a packet transmitted from the base station to the terminal device and for which a rule regarding delay in the wireless communication is defined at a time before the start time of the first period The base station performs a change process for changing the setting of the measurement period,
After the change process, before the change process is executed, the base station transmits the packet to the terminal device within the first period set as the measurement period,
When the base station does not hold the packet at a time before the start time of the first period, the terminal device measures the first quality of the first radio signal in the first period. A wireless communication system. - 前記基地局から前記端末装置への第2無線信号の第2品質が所定値を下回った場合に、前記端末装置が前記第1無線信号の前記第1品質を測定し、
前記端末装置が、測定された前記第1無線信号の前記第1品質を前記基地局に通知し、
前記基地局は、前記端末装置から通知された前記第1品質に基づいて、前記基地局から前記他の基地局へのハンドオーバを行うかを判定する
ことを特徴とする請求項1に記載の無線通信システム。 When the second quality of the second radio signal from the base station to the terminal device falls below a predetermined value, the terminal device measures the first quality of the first radio signal;
The terminal device notifies the base station of the measured first quality of the first radio signal;
The radio according to claim 1, wherein the base station determines whether to perform a handover from the base station to the other base station based on the first quality notified from the terminal device. Communications system. - 前記第1期間の前記開始時刻よりも前の時点で前記基地局が前記パケットを保持する場合に、前記基地局が、前記第1期間外の第1タイミングで前記パケットを前記端末装置へ送信するよう前記パケットの送信に関するスケジューリングを実行し、
前記第1タイミングで前記パケットを前記端末装置へ送信すると前記規定が満たされない場合には、前記測定期間について前記変更処理を実行し、
前記変更処理後に、前記変更処理が実行される前には前記測定期間として設定されていた前記第1期間内の第2タイミングで、前記基地局が前記パケットを前記端末装置に送信する
ことを特徴とする請求項1又は2に記載の無線通信システム。 When the base station holds the packet at a time before the start time of the first period, the base station transmits the packet to the terminal device at a first timing outside the first period. Performing scheduling for the transmission of the packets, such as
If the regulation is not satisfied when the packet is transmitted to the terminal device at the first timing, the change process is executed for the measurement period,
After the change process, before the change process is executed, the base station transmits the packet to the terminal apparatus at a second timing within the first period set as the measurement period. The wireless communication system according to claim 1 or 2. - 前記第1タイミングで前記パケットを前記端末装置へ送信しても前記規定が満たされる場合には、前記基地局は、前記測定期間について前記変更処理は実行せずに前記パケットを前記第1タイミングで前記端末装置に送信する
ことを特徴とする請求項3に記載の無線通信システム。 If the rule is satisfied even if the packet is transmitted to the terminal device at the first timing, the base station does not execute the change process for the measurement period and transmits the packet at the first timing. The wireless communication system according to claim 3, wherein the wireless communication system transmits to the terminal device. - 前記変更処理は、前記第1期間を前記測定期間とする設定をキャンセルするキャンセル処理、及び、前記測定期間を前記第1期間よりも後の第2期間にシフトさせるシフト処理、及び、前記測定期間を短縮させる短縮処理、の少なくとも何れか一つである
ことを特徴とする請求項1乃至4何れか一項に記載の無線通信システム。 The change process includes a cancel process for canceling the setting with the first period as the measurement period, a shift process for shifting the measurement period to a second period after the first period, and the measurement period. The wireless communication system according to any one of claims 1 to 4, wherein the wireless communication system is at least one of a shortening process for shortening the time. - 前記基地局は、
前記キャンセル処理を実行する場合、前記第1期間の開始前に、前記端末装置に対して、前記第1期間を前記測定期間とする前記設定をキャンセルすることを通知し、
前記シフト処理を実行する場合、前記第1期間の開始前に、前記端末装置に対して、前記測定期間をシフトさせるシフト時間を示すシフト時間情報を通知し、
前記短縮処理を実行する場合、前記第1期間の開始前に、前記端末装置に対して、前記測定期間を短縮させる短縮時間を示す短縮時間情報を通知する
ことを特徴とする請求項5に記載の無線通信システム。 The base station
When executing the cancellation process, prior to the start of the first period, the terminal device is notified that the setting with the first period as the measurement period is canceled,
When performing the shift process, before the start of the first period, to notify the terminal device shift time information indicating a shift time to shift the measurement period,
The shortening time information indicating a shortening time for shortening the measurement period is notified to the terminal device before the start of the first period when the shortening process is executed. Wireless communication system. - 前記基地局は、
前記変更処理を実行する場合、前記第1期間の開始前に、前記端末装置に対して、前記パケットの送信に用いられる無線リソースを特定する無線リソース情報を通知する
ことを特徴とする請求項6に記載の無線通信システム。 The base station
The radio resource information for specifying radio resources used for transmitting the packet is notified to the terminal device before the start of the first period when the change process is executed. The wireless communication system according to 1. - 前記第1無線信号は第1周波数を有し、
前記第2無線信号は第2周波数を有し、
前記基地局と前記他の基地局間で前記異周波ハンドオーバが実行される
ことを特徴とする請求項2乃至7何れか一項に記載の無線通信システム。 The first radio signal has a first frequency;
The second radio signal has a second frequency;
The radio communication system according to any one of claims 2 to 7, wherein the different frequency handover is executed between the base station and the other base station. - 前記端末装置は無線モジュールを有し、
前記無線モジュールは、前記端末装置が前記基地局と前記無線通信を行う場合は、前記第2周波数にチューニングされ、前記端末装置が前記他の基地局の前記第1無線信号の前記第1品質を測定する場合は、前記第1周波数にチューニングされる
ことを特徴とする請求項8に記載の無線通信システム。 The terminal device includes a wireless module;
The radio module is tuned to the second frequency when the terminal apparatus performs the radio communication with the base station, and the terminal apparatus adjusts the first quality of the first radio signal of the other base station. The wireless communication system according to claim 8, wherein when the measurement is performed, the wireless communication system is tuned to the first frequency. - 基地局と、前記基地局と無線通信を行う端末装置と、を有する無線通信システムを用いた異周波ハンドオーバ方法であって、
前記基地局が、第1期間を、他の基地局から前記端末装置への第1無線信号の第1品質を測定するための測定期間として設定し、
前記基地局から前記端末装置へ送信されるパケットであって前記無線通信における遅延に関する規定が定められているパケットを、前記第1期間の開始時刻よりも前の時点で前記基地局が保持する場合は、前記基地局が、前記測定期間の設定を変更する変更処理を実行し、
前記変更処理の後、前記変更処理が実行される前には前記測定期間として設定されていた前記第1期間内に、前記基地局が前記パケットを前記端末装置に送信し、
前記第1期間の前記開始時刻よりも前の時点で前記基地局が前記パケットを保持しない場合は、前記端末装置が、前記第1無線信号の前記第1品質を前記第1期間に測定する
ことを特徴とする異周波ハンドオーバ方法。 A different frequency handover method using a radio communication system having a base station and a terminal device that performs radio communication with the base station,
The base station sets the first period as a measurement period for measuring the first quality of the first radio signal from another base station to the terminal device,
A case where the base station holds a packet transmitted from the base station to the terminal device and for which a rule regarding delay in the wireless communication is defined at a time before the start time of the first period The base station performs a change process for changing the setting of the measurement period,
After the change process, before the change process is executed, the base station transmits the packet to the terminal device within the first period set as the measurement period,
When the base station does not hold the packet at a time before the start time of the first period, the terminal device measures the first quality of the first radio signal in the first period. A different frequency handover method characterized by the above. - 前記基地局から前記端末装置への第2無線信号の第2品質が所定値を下回った場合に、前記端末装置が前記第1無線信号の前記第1品質を測定し、
前記端末装置が、測定された前記第1無線信号の前記第1品質を前記基地局に通知し、
前記基地局は、前記端末装置から通知された前記第1品質に基づいて、前記基地局から前記他の基地局へのハンドオーバを行うかを判定する
ことを特徴とする請求項10に記載の異周波ハンドオーバ方法。 When the second quality of the second radio signal from the base station to the terminal device falls below a predetermined value, the terminal device measures the first quality of the first radio signal;
The terminal device notifies the base station of the measured first quality of the first radio signal;
The base station determines whether to perform a handover from the base station to the other base station based on the first quality notified from the terminal device. Frequency handover method. - 前記第1期間の前記開始時刻よりも前の時点で前記基地局が前記パケットを保持する場合に、前記基地局が、前記第1期間外の第1タイミングで前記パケットを前記端末装置へ送信するよう前記パケットの送信に関するスケジューリングを実行し、
前記第1タイミングで前記パケットを前記端末装置へ送信すると前記規定が満たされない場合には、前記測定期間について前記変更処理を実行し、
前記変更処理後に、前記変更処理が実行される前には前記測定期間として設定されていた前記第1期間内の第2タイミングで、前記基地局が前記パケットを前記端末装置に送信する
ことを特徴とする請求項10又は11に記載の異周波ハンドオーバ方法。 When the base station holds the packet at a time before the start time of the first period, the base station transmits the packet to the terminal device at a first timing outside the first period. Performing scheduling for the transmission of the packets, such as
If the regulation is not satisfied when the packet is transmitted to the terminal device at the first timing, the change process is executed for the measurement period,
After the change process, before the change process is executed, the base station transmits the packet to the terminal apparatus at a second timing within the first period set as the measurement period. The different frequency handover method according to claim 10 or 11. - 前記第1タイミングで前記パケットを前記端末装置へ送信しても前記規定が満たされる場合には、前記基地局は、前記測定期間について前記変更処理は実行せずに前記パケットを前記第1タイミングで前記端末装置に送信する
ことを特徴とする請求項12に記載の異周波ハンドオーバ方法。 If the rule is satisfied even if the packet is transmitted to the terminal device at the first timing, the base station does not execute the change process for the measurement period and transmits the packet at the first timing. It transmits to the said terminal device. The different frequency handover method of Claim 12 characterized by the above-mentioned. - 前記変更処理は、前記第1期間を前記測定期間とする設定をキャンセルするキャンセル処理、及び、前記測定期間を前記第1期間よりも後の第2期間にシフトさせるシフト処理、及び、前記測定期間を短縮させる短縮処理、の少なくとも何れか一つである
ことを特徴とする請求項10乃至13何れか一項に記載の異周波ハンドオーバ方法。 The change process includes a cancel process for canceling the setting with the first period as the measurement period, a shift process for shifting the measurement period to a second period after the first period, and the measurement period. 14. The different frequency handover method according to claim 10, wherein at least one of the shortening processes for shortening the time is performed. - 前記基地局は、
前記キャンセル処理を実行する場合、前記第1期間の開始前に、前記端末装置に対して、前記第1期間を前記測定期間とする前記設定をキャンセルすることを通知し、
前記シフト処理を実行する場合、前記第1期間の開始前に、前記端末装置に対して、前記測定期間をシフトさせるシフト時間を示すシフト時間情報を通知し、
前記短縮処理を実行する場合、前記第1期間の開始前に、前記端末装置に対して、前記測定期間を短縮させる短縮時間を示す短縮時間情報を通知する
ことを特徴とする請求項14に記載の異周波ハンドオーバ方法。 The base station
When executing the cancellation process, prior to the start of the first period, the terminal device is notified that the setting with the first period as the measurement period is canceled,
When performing the shift process, before the start of the first period, to notify the terminal device shift time information indicating a shift time to shift the measurement period,
The shortening time information indicating a shortening time for shortening the measurement period is notified to the terminal device before the start of the first period when the shortening process is executed. Different frequency handover method. - 端末装置と無線通信を行う基地局であって、
前記基地局が、第1期間を、他の基地局から前記端末装置への第1無線信号の第1品質を測定するための測定期間として設定し、前記基地局から前記端末装置へ送信されるパケットであって前記無線通信における遅延に関する規定が定められているパケットを、前記第1期間の開始時刻よりも前の時点で前記基地局が保持する場合は、前記測定期間の設定を変更する変更処理を実行する設定部と、
前記変更処理の後、前記変更処理が実行される前には前記測定期間として設定されていた前記第1期間内に、前記基地局が前記パケットを前記端末装置に送信する送信部と
を有し、
前記第1期間の前記開始時刻よりも前の時点で前記基地局が前記パケットを保持しない場合は、前記端末装置が、前記第1無線信号の前記第1品質を前記第1期間に測定する
ことを特徴とする基地局。 A base station that performs wireless communication with a terminal device,
The base station sets the first period as a measurement period for measuring the first quality of the first radio signal from another base station to the terminal apparatus, and is transmitted from the base station to the terminal apparatus A change to change the setting of the measurement period when the base station holds a packet that has a rule regarding delay in the wireless communication at a time before the start time of the first period A setting unit for executing processing;
After the changing process, before the changing process is executed, the base station transmits the packet to the terminal device within the first period set as the measurement period. ,
When the base station does not hold the packet at a time before the start time of the first period, the terminal device measures the first quality of the first radio signal in the first period. Base station characterized by - 前記端末装置が、測定された前記第1無線信号の前記第1品質を前記基地局に通知した場合、前記端末装置から通知された前記第1品質に基づいて、前記基地局から前記他の基地局へのハンドオーバを行うかを判定するハンドオーバ処理部
を更に有することを特徴とする請求項16に記載の基地局。 When the terminal device notifies the base station of the first quality of the measured first radio signal, the base station sends another base station based on the first quality notified from the terminal device. The base station according to claim 16, further comprising a handover processing unit that determines whether to perform handover to the station. - 前記第1期間の前記開始時刻よりも前の時点で前記基地局が前記パケットを保持する場合に、前記基地局が、前記第1期間外の第1タイミングで前記パケットを前記端末装置へ送信するよう前記パケットの送信に関するスケジューリングを実行するスケジューリング部
を更に有し、
前記第1タイミングで前記パケットを前記端末装置へ送信すると前記規定が満たされない場合には、前記測定期間について前記変更処理を実行し、
前記変更処理後に、前記変更処理が実行される前には前記測定期間として設定されていた前記第1期間内の第2タイミングで、前記基地局が前記パケットを前記端末装置に送信する
ことを特徴とする請求項16又は17に記載の基地局。 When the base station holds the packet at a time before the start time of the first period, the base station transmits the packet to the terminal device at a first timing outside the first period. A scheduling unit for performing scheduling related to transmission of the packet,
If the regulation is not satisfied when the packet is transmitted to the terminal device at the first timing, the change process is executed for the measurement period,
After the change process, before the change process is executed, the base station transmits the packet to the terminal apparatus at a second timing within the first period set as the measurement period. The base station according to claim 16 or 17. - 前記第1タイミングで前記パケットを前記端末装置へ送信しても前記規定が満たされる場合には、前記測定期間について前記変更処理は実行せずに前記パケットを前記第1タイミングで前記端末装置に送信する
ことを特徴とする請求項18に記載の基地局。 If the rule is satisfied even if the packet is transmitted to the terminal device at the first timing, the packet is transmitted to the terminal device at the first timing without executing the changing process for the measurement period. The base station according to claim 18, wherein: - 基地局と無線通信を行う端末装置であって、
前記基地局から、第1期間が、他の基地局から前記端末装置への第1無線信号の第1品質を測定するための測定期間として設定されたことの通知を受信し、前記基地局から前記端末装置へ送信されるパケットであって前記無線通信における遅延に関する規定が定められているパケットが、前記第1期間の開始時刻よりも前の時点で前記基地局が保持される場合に、前記基地局から、前記測定期間の設定を変更する変更通知を受信する制御部と、
前記第1期間内に、前記基地局から送信される前記パケットを受信する受信部と、
前記第1期間の前記開始時刻よりも前の時点で前記基地局が前記パケットを保持しない場合は、前記第1無線信号の前記第1品質を前記第1期間に測定する測定部と
を有することを特徴とする端末装置。 A terminal device that performs wireless communication with a base station,
A notification is received from the base station that the first period is set as a measurement period for measuring the first quality of the first radio signal from another base station to the terminal device. When the base station holds a packet transmitted to the terminal device and for which a rule relating to delay in the wireless communication is defined, at a time before the start time of the first period, A control unit that receives a change notification for changing the setting of the measurement period from the base station;
A receiving unit for receiving the packet transmitted from the base station within the first period;
A measurement unit that measures the first quality of the first radio signal during the first period when the base station does not hold the packet at a time before the start time of the first period. A terminal device characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/009607 WO2019175947A1 (en) | 2018-03-13 | 2018-03-13 | Wireless communication system, different-frequency handover method, base station, and terminal apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/009607 WO2019175947A1 (en) | 2018-03-13 | 2018-03-13 | Wireless communication system, different-frequency handover method, base station, and terminal apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019175947A1 true WO2019175947A1 (en) | 2019-09-19 |
Family
ID=67907019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/009607 WO2019175947A1 (en) | 2018-03-13 | 2018-03-13 | Wireless communication system, different-frequency handover method, base station, and terminal apparatus |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019175947A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022262843A1 (en) * | 2021-06-17 | 2022-12-22 | 维沃移动通信有限公司 | Method for sending/receiving a request message and device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007104010A (en) * | 2005-09-30 | 2007-04-19 | Matsushita Electric Ind Co Ltd | Data communication apparatus, mobile station, base station, and data communication method |
WO2009113150A1 (en) * | 2008-03-10 | 2009-09-17 | 富士通株式会社 | Wireless base station, wireless terminal device, wireless communication system, and method for wireless communication |
WO2017078035A1 (en) * | 2015-11-05 | 2017-05-11 | 株式会社Nttドコモ | User terminal, wireless base station, and wireless communications method |
-
2018
- 2018-03-13 WO PCT/JP2018/009607 patent/WO2019175947A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007104010A (en) * | 2005-09-30 | 2007-04-19 | Matsushita Electric Ind Co Ltd | Data communication apparatus, mobile station, base station, and data communication method |
WO2009113150A1 (en) * | 2008-03-10 | 2009-09-17 | 富士通株式会社 | Wireless base station, wireless terminal device, wireless communication system, and method for wireless communication |
WO2017078035A1 (en) * | 2015-11-05 | 2017-05-11 | 株式会社Nttドコモ | User terminal, wireless base station, and wireless communications method |
Non-Patent Citations (1)
Title |
---|
NOKIA ET AL.: "On Measurement Gap Scheduling", 3GPP TSG-RAN WG2#59 R2-073102, 20 August 2007 (2007-08-20), XP050135832, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_59/Docs/R2-073102.zip> * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022262843A1 (en) * | 2021-06-17 | 2022-12-22 | 维沃移动通信有限公司 | Method for sending/receiving a request message and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102624306B1 (en) | Resource selection method and terminal device | |
JP6746624B2 (en) | Allocation of resources for wireless sidelink direct communication | |
JP4838850B2 (en) | Communication device, terminal, and radio channel quality management method | |
KR101258375B1 (en) | Inter-cell interference mitigation signalling methods and apparatus | |
CN114337974B (en) | Systems and methods for determining information indicative of cancellation | |
US20190387441A1 (en) | Method, computer program and apparatus for selecting a beam for handover | |
RU2566742C1 (en) | Determination of ue location in cell | |
JP4255357B2 (en) | Handoff control method and wireless device using the same | |
US20070184842A1 (en) | Apparatus, method, and computer program product providing persistent uplink and downlink resource allocation | |
CN101785347A (en) | Mobile communication system and mobile station | |
CN112087733A (en) | A user equipment and a resource sensing and selection method used therefor | |
US11115994B2 (en) | Triggering/initiating backoff procedure(s) based on congestion indication(s) to defer scheduling request transmission | |
CN112261730B (en) | Communication method and communication device | |
JP2021503849A (en) | Methods and devices for random access | |
US20230036943A1 (en) | Method and system for resolving transmission conflicts in wireless network | |
CN113873545A (en) | Resource indication method, device and communication equipment | |
WO2019175947A1 (en) | Wireless communication system, different-frequency handover method, base station, and terminal apparatus | |
KR20240154024A (en) | Communication methods, devices and systems and storage media | |
CN102300233B (en) | The processing method of transmission gap pattern sequence, Apparatus and system | |
US20230092090A1 (en) | Resource processing method, resource processing apparatus, and terminal | |
KR20240169615A (en) | Resource coexistence method and device | |
US10554286B2 (en) | Method and control node for supporting transmissions of reference signals in beams from a first network node | |
JP4890616B2 (en) | Uplink output power control method in wireless communication system | |
JP5805786B2 (en) | Wireless communication system, wireless communication system control method, and base station | |
JP4340126B2 (en) | Base station apparatus selection method and terminal apparatus using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18909381 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18909381 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |