Nothing Special   »   [go: up one dir, main page]

WO2019164130A1 - 분리막, 이의 제조방법 및 이를 포함하는 리튬전지 - Google Patents

분리막, 이의 제조방법 및 이를 포함하는 리튬전지 Download PDF

Info

Publication number
WO2019164130A1
WO2019164130A1 PCT/KR2019/000650 KR2019000650W WO2019164130A1 WO 2019164130 A1 WO2019164130 A1 WO 2019164130A1 KR 2019000650 W KR2019000650 W KR 2019000650W WO 2019164130 A1 WO2019164130 A1 WO 2019164130A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic particles
separator
coating layer
particles
organic
Prior art date
Application number
PCT/KR2019/000650
Other languages
English (en)
French (fr)
Inventor
김용경
김가인
이정윤
Original Assignee
삼성에스디아이주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이주식회사 filed Critical 삼성에스디아이주식회사
Priority to EP19757163.1A priority Critical patent/EP3761399A4/en
Priority to CN201980025133.5A priority patent/CN111954943B/zh
Priority to US16/975,670 priority patent/US20210005858A1/en
Publication of WO2019164130A1 publication Critical patent/WO2019164130A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator, a method for manufacturing the same, and a lithium battery including the same.
  • lithium batteries In order to meet miniaturization and high performance of various devices, miniaturization and weight reduction of lithium batteries are becoming important. In addition, discharge capacity, energy density, and cycle characteristics of lithium batteries have become important in order to be applied to fields such as electric vehicles. In order to meet the above uses, a lithium battery having a high discharge capacity per unit volume, high energy density and excellent life characteristics is required.
  • a separator is disposed between the positive electrode and the negative electrode to prevent a short circuit.
  • An electrode assembly including a cathode, an anode, and a separator disposed between the anode and the cathode is wound to have a jelly roll shape, and the jelly roll is rolled in the electrode assembly to improve adhesion between the anode / cathode and the separator.
  • Olefin polymers are frequently used as separators for lithium batteries.
  • the olefin polymer has excellent flexibility, but due to its hydrophobic nature, the electrolyte impregnation property is insufficient, and a short circuit of the battery may occur due to rapid thermal contraction at a high temperature of 100 ° C. or higher.
  • a separator having improved strength and heat resistance by coating a ceramic on one surface of a porous olefin-based polymer substrate has been proposed.
  • the ceramic-coated separator has low adhesion to the negative electrode / anode, so that the battery volume changes rapidly during charging and discharging, and thus, the battery is easily deformed.
  • the separator in which the binder is added to the ceramic also has a problem in that the porosity is lowered, the internal resistance increases, the thickness of the separator becomes thick, and the lithium battery is easily deteriorated by swelling in the electrolyte of the binder.
  • One aspect is to provide a separator having improved adhesion to the electrode, heat resistance, insulation and air permeability.
  • Another aspect is to provide a method for producing the separator.
  • Another aspect is to provide a lithium battery comprising the separator.
  • the coating layer includes first organic particles, second organic particles and inorganic particles,
  • the average particle diameter of the first organic particles is larger than the average particle diameter of the second organic particles and the inorganic particles
  • the first organic particles protrude from the surface of the coating layer to a height of 0.1 to 0.5 ⁇ m, and are distributed on the surface of the coating layer with an area ratio corresponding to 5% or more and 15% or less of the surface area of the coating layer,
  • the weight ratio of the organic particles and the inorganic particles in the coating layer is provided a separator, which is 20:80 to 40:60.
  • a lithium battery including the separator interposed between the positive electrode and the negative electrode is provided.
  • a separator comprising a coating layer of a novel configuration has improved adhesion to the electrode, heat resistance, insulation and breathability, life characteristics of the lithium battery can be improved.
  • FIG. 1 is a schematic diagram of a lithium polymer battery according to an exemplary embodiment.
  • FIG. 2 is a schematic diagram of a separator coating layer according to an exemplary embodiment.
  • FIG 3 is a SEM photograph of the surface of the separator according to an exemplary embodiment.
  • FIG. 4 is a SEM photograph of a cross section of a separator according to an exemplary embodiment.
  • FIG. 6 is a shutdown and melt down measurement result of the separator and the polyethylene porous substrate according to Preparation Example 1 and Preparation Example 5.
  • FIG. 6 is a shutdown and melt down measurement result of the separator and the polyethylene porous substrate according to Preparation Example 1 and Preparation Example 5.
  • Example 7 is a charge and discharge cycle results for the lithium battery according to Example 1 and Comparative Example 4.
  • lithium battery 116 positive electrode plate
  • membrane coating layer 20 first organic particles
  • the separator includes a substrate and a coating layer disposed on at least one side of the substrate, wherein the coating layer includes first organic particles, second organic particles, and inorganic particles, and an average particle diameter of the first organic particles.
  • Silver is larger than the average particle diameter of the second organic particles and the inorganic particles, the first organic particles are distributed on the surface of the coating layer at an area ratio corresponding to 5% or more and 15% or less of the surface area of the coating layer, and the organic and inorganic particles in the coating layer The weight ratio is 20:80 to 40:60.
  • the separator according to the present invention includes the first organic particles having the adhesive function in the coating layer, the second organic particles having the filler function and the inorganic particles, thereby increasing the adhesive force between the separator and the electrode without having a separate adhesive layer, and excellent heat resistance, It is characterized by showing insulation and breathability.
  • the substrate may be a porous substrate.
  • the porous substrate may be a porous membrane including polyolefin.
  • the polyolefin has an excellent short circuit prevention effect and can improve battery stability by the shutdown effect.
  • the porous substrate may be a film made of a resin such as polyolefin such as polyethylene, polypropylene, polybutene, polyvinyl chloride, and mixtures or copolymers thereof, but is not necessarily limited thereto and may be used in the art. Any porous membrane can be used.
  • Porous membrane which consists of polyolefin resin; Porous membrane woven polyolefin fibers; Nonwoven fabrics including polyolefins; Aggregates of particles of insulating material and the like can be used.
  • the porous membrane including the polyolefin is excellent in the coating property of the binder solution for producing a coating layer formed on the substrate, the membrane thickness of the separator can be thinned to increase the active material in the battery to increase the capacity per unit volume. .
  • the polyolefin used as the material of the porous substrate may be a homopolymer, a copolymer, or a mixture thereof, such as polyethylene and polypropylene.
  • the polyethylene may be low density, medium density, high density polyethylene, and from the viewpoint of mechanical strength, high density polyethylene may be used.
  • polyethylene can mix 2 or more types for the purpose of providing flexibility.
  • the polymerization catalyst used for preparing polyethylene is not particularly limited, and a Ziegler-Natta catalyst, a Philips catalyst, a metallocene catalyst, or the like can be used. In view of achieving both mechanical strength and high permeability, the weight average molecular weight of polyethylene may be 100,000 to 12 million, for example, 200,000 to 3 million.
  • the polypropylene may be a homopolymer, a random copolymer, or a block copolymer, and may be used alone or in admixture of two or more.
  • the polymerization catalyst is not particularly limited, and a Ziegler-Natta catalyst, a metallocene catalyst, or the like can be used.
  • stereoregularity is also not particularly limited, and isotactic, syndiotactic or atactic polypropylene may be used.
  • additives such as polyolefins other than polyethylene or polypropylene, antioxidant, etc. can be added to a polyolefin in the range which does not impair the effect of this invention.
  • the porous substrate includes polyolefin such as polyethylene and polypropylene, and two or more multilayer membranes may be used, polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene / Mixed multilayer membranes such as polypropylene three-layer separators may be used, but are not limited thereto, and any materials and constructions that can be used as porous substrates in the art are possible.
  • polyolefin such as polyethylene and polypropylene
  • two or more multilayer membranes may be used, polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene / Mixed multilayer membranes such as polypropylene three-layer separators may be used, but are not limited thereto, and any materials and constructions that can be used as porous substrates in the art are possible.
  • the porous substrate may include a diene polymer prepared by polymerizing a monomer composition including a diene monomer.
  • the diene monomer may be a conjugated diene monomer or a nonconjugated diene monomer.
  • the diene monomer is 1,3-butadiene, isoprene, 2-chloro-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1 And at least one selected from the group consisting of, 3-pentadiene, chloroprene, vinylpyridine, vinylnorbornene, dicyclopentadiene and 1,4-hexadiene, but are not necessarily limited thereto. Anything that can be used is possible.
  • the thickness of the porous substrate in the separator may be 1 to 100 ⁇ m.
  • the thickness of the porous substrate may be 1 to 30 ⁇ m.
  • the porous substrate may have a thickness of 5 to 20 ⁇ m.
  • the porous substrate may have a thickness of 5 to 15 ⁇ m.
  • the thickness of the porous substrate may be 5 to 10 ⁇ m. If the thickness of the porous substrate is less than 1 ⁇ m it may be difficult to maintain the mechanical properties of the separator, if the thickness of the porous substrate is more than 100 ⁇ m may increase the internal resistance of the lithium battery.
  • the porosity of the porous substrate in the separator may be 5 to 95%. If the porosity is less than 5% may increase the internal resistance of the lithium battery, if the porosity is greater than 95% it may be difficult to maintain the mechanical properties of the porous substrate.
  • the pore size of the porous substrate in the separator may be 0.01 to 10 ⁇ m.
  • the pore size of the porous substrate in the separator may be 0.01 to 5 ⁇ m.
  • the pore size of the porous substrate in the separator may be 0.01 to 1 ⁇ m. If the pore size of the porous substrate is less than 0.01 ⁇ m may increase the internal resistance of the lithium battery, if the pore size of the porous substrate is more than 10 ⁇ m it may be difficult to maintain the mechanical properties of the porous substrate.
  • the coating layer may include first organic particles, second organic particles, and inorganic particles.
  • FIG. 2 shows a schematic diagram of a separator coating layer according to an exemplary embodiment
  • FIGS. 3 and 4 are SEM photographs of the surface and cross section of the separator according to an exemplary embodiment, respectively.
  • the first organic particles 20, the second organic particles 30, and the inorganic particles 40 may be mixed in the coating layer 10. That is, the coating layer included in the separator of the present invention may be formed of layers in which the first organic particles, the second organic particles, and the inorganic particles are not formed as separate layers but mixed with each other.
  • the first organic particles act as an electrode adhesive to improve the adhesion between the separator and the electrode and may form an embossed shape from the surface of the porous coating layer to protrude beyond a predetermined height.
  • the first organic particles protrude in an embossed form from the surface of the porous coating layer to act as an electrode adhesive.
  • the average particle diameter of the first organic particles is larger than the average particle diameters of the second organic particles and the inorganic particles, and may protrude in an embossing shape having a height of 0.1 to 0.5 ⁇ m from the surface of the coating layer.
  • the first organic particles may protrude from the surface of the coating layer to a height of 0.1 to 0.4 ⁇ m.
  • the first organic particles may protrude from the surface of the coating layer to a height of 0.2 to 0.3 ⁇ m.
  • the first organic particles may have an average particle size of 1.1 to 5 times the second organic particles and inorganic particles, respectively.
  • the average particle diameter of the first organic particles may be 0.3 to 0.7 ⁇ m.
  • the average particle diameter of the first organic particles may be 0.3 to 0.5 ⁇ m.
  • the average particle diameter of the first organic particles may be 0.4 to 0.5 ⁇ m. If the average particle diameter of the first organic particles is less than 0.3 ⁇ m, protruding from the periphery of the first organic particles may be difficult to exhibit a function as an electrode adhesive, and it may be difficult to secure air permeability, thereby increasing resistance.
  • the average particle diameter of the first organic particles is larger than 0.7 ⁇ m, the adhesion area between the electrode and the separator becomes wider, and the thickness of the separator after coating is so thick that the resistance of the battery increases.
  • the first organic particles used in the coating layer should be tacky as the organic particles usable in the art.
  • the first organic particles preferably have a glass transition temperature (T g ) lower than a temperature at which lamination of the electrode assembly is performed.
  • T g glass transition temperature
  • the glass transition temperature (T g ) of the first organic particles may be 50 to 70 °C. Outside the above range, when the glass transition temperature (T g ) of the first organic particles is too high, there is a problem in that the electrolyte side reaction occurs when the press temperature is increased for adhesion with the electrode, on the other hand, after the coating There is a problem in that the drying process or the film during the product transfer to affect the assembly process by the adhesion between the separators.
  • the first organic particles should be preferably used in a lithium battery in terms of swelling degree by the electrolyte. Specifically, the first organic particles have a swelling degree of about 800% when left in the electrolyte at about 50 to 70 ° C. for 70 to 80 hours. It may be a spherical particle represented. Swelling by the electrolytic nucleus can lower the lithium ion transfer resistance and improve the adhesion area with the electrode. In addition, it is not dissolved in a solvent or a dispersion in the slurry manufacturing step to maintain the particle shape after coating to minimize the decrease in air permeability.
  • first organic particles include polystyrene, polyvinylidene fluoride, polymethyl methacrylate, polyacrylonitrile, polyvinylidene, polyvinylacetate, polyethylene oxide, cellulose acetate, acrylate, azodicarbonamide, and the like. May be used, but is not limited thereto.
  • the first organic particles may be a single particle or may be in the form of secondary occupancy formed by gathering single particles.
  • the first organic particles may be distributed on the surface of the coating layer at an area ratio corresponding to 5% or more and 15% or less of the surface area of the coating layer.
  • the first organic particles may be distributed on the surface of the coating layer at an area ratio corresponding to 6-14% of the surface area of the coating layer.
  • the first organic particles may be distributed on the surface of the coating layer at an area ratio corresponding to 7 to 12% of the surface area of the coating layer.
  • 20 to 100 of the first organic particles may be present in the coating layer surface area 13 ⁇ m ⁇ 9 ⁇ m.
  • the first organic particles may be present in 30 to 90 in the coating layer surface area 13 ⁇ m ⁇ 9 ⁇ m.
  • the first organic particles may be present in 40 to 80 within the coating layer surface area 13 ⁇ m ⁇ 9 ⁇ m.
  • the second organic particles act as fillers, and are capable of uniform thin film coating and are advantageous in terms of breathability and insulation compared to inorganic fillers.
  • the second organic particles may serve as a support in the separator.
  • the second organic particles may be present between the inorganic fillers to suppress shrinkage of the separator.
  • the coating layer disposed on the separator includes the second organic particles, sufficient porosity may be secured and heat resistance may be improved. Therefore, by reducing the content of the binder, a lithium battery including a separator containing a relatively more filler can ensure improved stability.
  • the average particle diameter of the second organic particles may be 0.15 to 0.35 ⁇ m.
  • the average particle diameter of the second organic particles may be 0.2 to 0.3 ⁇ m.
  • a thin film coating layer having a uniform thickness may be formed to reduce the thickness of the separator, and may have an appropriate porosity.
  • aspects ratios of the second organic particles may be 1: 0.5 to 1: 2, respectively.
  • the aspect ratio of the second organic particles may be 1: 0.7 to 1: 1.5, respectively.
  • the aspect ratio of the second organic particles may be 1: 0.8 to 1: 1.2, respectively.
  • the miscibility with the non-uniform inorganic particles may be increased to form a thin film coating layer having a uniform thickness, thereby reducing the thickness of the separator, and providing appropriate porosity and heat resistance characteristics.
  • the second organic particle may be a cross-linked polymer.
  • the second organic particles may be a highly crosslinked polymer that does not exhibit a glass transition temperature (T g ), and when the highly crosslinked polymer is used, heat resistance may be improved to effectively suppress shrinkage of the porous substrate at a high temperature.
  • T g glass transition temperature
  • the thermal decomposition temperature of the second organic particles may be 300 ° C. or more.
  • the thermal decomposition temperature of the second organic particles may be 300 °C to 500 °C.
  • the second organic particles may have a total endothermic amount of at least 250 J / g during thermal decomposition.
  • the second organic particles may be, for example, an acrylate compound and a derivative thereof, a diallyl phthalate compound and a derivative thereof, a polyimide compound and a derivative thereof, a polyurethane compound and a derivative thereof, a copolymer thereof, or a Combinations may be included but are not limited to any of these and may be used as fillers in the art.
  • the second organic particles may be crosslinked polystyrene particles or crosslinked polymethylmethacrylate particles.
  • the first organic particle or the second organic particle may have a core-shell structure.
  • the first organic particles may have a core-shell structure.
  • the second organic particles may have a core-shell structure.
  • both the first organic particles and the second organic particles may have a core-shell structure.
  • the core-shell structure includes a core part and a shell part, and the weight of the shell part may be 50 wt% or less based on the total weight of the core part.
  • Each of the above-mentioned first organic particles or second organic particle compounds may be included as a core, and may include a material having a shutdown function and an electrode bonding function by melting at a predetermined temperature as a shell.
  • the material that may be included in the shell may be a thermoplastic resin having a melting point (T m ) of 130 ° C. or less.
  • T m melting point
  • PE polyethylene
  • PVC polyvinyl chloride
  • PP polypropylene
  • PS polystyrene
  • PS polyacrylonitrile
  • SAN styrene-acrylonitrile
  • ABS acrylonitrile-butadiene -Styrene
  • PMMA polymethylmethacrylate
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • the shell portion of the second organic particles having a melting point of 130 ° C. or less is melted at a high temperature of 130 ° C. or higher, and the molten shell part coats the separator to provide a shutdown effect and an electrode bonding effect.
  • Can function When the second organic particles have a core-shell structure, the shell portion of the second organic particles having a melting point of 130 ° C. or less is melted at a high temperature of 130 ° C. or higher, and the molten shell part coats the separator to provide a shutdown effect and an electrode bonding effect. Can function.
  • the weight ratio of the first organic particles and the second organic particles in the coating layer may be 30:70 to 60:40.
  • the weight ratio of the first organic particles and the second organic particles may be 30:70 to 50:50.
  • the weight ratio of the first organic particles and the second organic particles may be 40:60 to 50:50.
  • the average particle diameter of the inorganic particles may be 0.2 to 0.4 ⁇ m.
  • the average particle diameter of the inorganic particles may be 0.25 to 0.4 ⁇ m.
  • the average particle diameter of the inorganic particles may be 0.25 to 0.35 ⁇ m.
  • the inorganic particles may act as fillers and may be mixed with the second organic particles to enable uniform thin film coating, to improve heat resistance of the separator, and to further reduce cell resistance.
  • the inorganic particles may be a metal oxide, a metalloid oxide, or a combination thereof.
  • the inorganic particles may be at least one selected from boehmite, alumina (Al 2 O 3 ), BaSO 4 , MgO, Mg (OH) 2 , clay, silica (SiO 2 ), and TiO 2 . have.
  • the boehmite, alumina, silica and the like have a small particle size and are easy to make a dispersion.
  • the inorganic particles may be AlO (OH), Al 2 O 3 , SiO 2 , TiO 2 , SnO 2 , CeO 2 , NiO, CaO, ZnO, MgO, ZrO 2 , Y 2 O 3 , SrTiO 3 , BaTiO 3 , MgF 2 , Mg (OH) 2 or a combination thereof.
  • the inorganic particles may be sphere, plate, fiber, and the like, but are not limited thereto, and may be any forms usable in the art.
  • the plate-shaped inorganic particles are, for example, boehmite, alumina, magnesium hydroxide and the like. In this case, reduction of the separator area at high temperature can be further suppressed, relatively large porosity can be ensured, and characteristics can be improved during penetration evaluation of the lithium battery.
  • an aspect ratio of the inorganic particles may be about 1: 5 to 1: 100.
  • the aspect ratio may be about 1:10 to 1: 100.
  • the aspect ratio may be about 1: 5 to 1:50.
  • the aspect ratio may be about 1:10 to 1:50.
  • the ratio of the length of the major axis to the minor axis in the flat surface of the plate-shaped inorganic particles may be 1 to 3.
  • the length ratio of the long axis to the short axis in the flat surface may be 1 to 2.
  • the length ratio of the long axis to the short axis in the flat surface may be about 1.
  • the aspect ratio and the length ratio of the long axis to the short axis may be measured by scanning electron microscopy (SEM). Separation of the membrane can be suppressed in the length range of the short axis with respect to the aspect ratio and the long axis, a relatively improved porosity is secured, and the penetration characteristics of the lithium battery can be improved.
  • the average angle of the flat surface of the inorganic particles with respect to one surface of the porous substrate may be 0 degrees to 30 degrees.
  • the angle of the plate surface of the inorganic particle with respect to one surface of the porous substrate may converge to 0 degrees. That is, one surface of the porous substrate and the flat surface of the inorganic particles may be parallel.
  • the average angle of the flat surface of the inorganic particles relative to one surface of the porous substrate is within the above range, it is possible to effectively prevent thermal contraction of the porous substrate, thereby providing a separator having a reduced shrinkage rate.
  • the weight ratio of organic particles and inorganic particles in the coating layer may be 20:80 to 80:20.
  • the weight ratio of organic particles and inorganic particles in the coating layer may be 20:80 to 40:60.
  • the weight ratio of organic particles and inorganic particles may be 30:70 to 40:60.
  • the weight ratio of the organic particles and the inorganic particles may be 30:70 to 50:50.
  • the thickness of the coating layer may be 0.3 to 5.0 ⁇ m. That is, the coating layer included in the separator of the present invention is limited to the average particle diameter and the weight ratio thereof of the first organic particles, the second organic particles and the inorganic particles in a predetermined range, thereby increasing not only the electrode adhesion of the coating layer but also the binding force to the substrate. In this way, uniform coating is possible and thinning of the coating layer can be enabled.
  • the thickness of the coating layer may be 0.3 to 4.0 ⁇ m.
  • the thickness of the coating layer may be 0.3 to 3.0 ⁇ m.
  • the thickness of the coating layer may be 0.3 to 2.0 ⁇ m.
  • the separator including the same may provide improved electrode adhesion, heat resistance, and insulation.
  • the coating layer may further include third organic particles having a shutdown function. That is, the third organic particles may be melted at a predetermined temperature to seal pores in the separator to block the flow of current.
  • the shutdown means that the pores in the separator are blocked as the temperature of the lithium battery increases, thereby preventing lithium ions from moving, thereby preventing thermal runaway, and the shutdown temperature means a temperature at which such shutdown occurs.
  • the third organic particles are first melted to form a polymer thin film on at least one surface of the separator substrate or to penetrate the pores of the separator substrate. It is possible to improve the stability of the lithium battery by preventing the movement of the electrolyte and blocking the current flow.
  • Melting point (Tm) of the third organic particles may be 80 to 130 °C.
  • the melting point of the third organic particles may be 90 to 120 °C.
  • Lower than the shutdown temperature of the porous substrate can further improve the safety of the lithium battery by preventing the pores of the porous substrate before the thermal runaway occurs in the lithium battery.
  • the average particle diameter of the third organic particles may be freely selected in principle as long as it is ensured that pores in the membrane are not blocked during the manufacturing process of the membrane.
  • the average particle diameter of the third organic particles is preferably larger than the pore size of the porous substrate in the separator, for example, the average particle diameter of the third organic particles may be 0.1 to 0.5 ⁇ m.
  • the average particle diameter of the third organic particles may be 0.1 to 0.4 ⁇ m.
  • the average particle diameter of the third organic particles may be 0.2 to 0.3 ⁇ m.
  • the third organic particles may be, for example, natural or artificial waxes, (low melting point) polymers, for example, polyolefins or mixtures thereof, or acrylates such as polystyrene and polymethmethylacrylate.
  • the third organic particles are selected such that the particles melt at the desired shutdown temperature and seal the pores in the separator to further prevent ion outflow.
  • the third organic particles are preferably polyethylene wax and acrylate type.
  • the coating layer may further include an organic binder polymer for strengthening the binding between the second organic particles and inorganic particles having a filler function.
  • organic binder polymers include polyvinylidene fluoride-cohexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, and polymethylmethacrylate.
  • Polybutylacrylate polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyvinyl alchol, ethylene vinyl acetate copolymer (polyethylene- co-vinyl acetate, polyethylene oxide, polyarylate, celluloseacetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethyl Pullulan (cyanoethylpullu lan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, polyacrylamide ) And mixtures thereof, but is not limited thereto.
  • the solubility index is similar to that of the binder polymer to be used, and the boiling point is preferably low. This is to facilitate uniform mixing and subsequent solvent removal.
  • solvents that can be used include acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone, cyclohexane, water or mixtures thereof.
  • the binder included in the coating layer may be a water-based binder present in the form of a viscous adhesive in the form of particles after coating and drying the glass transition temperature (T g ) value of -50 °C or more.
  • the binder may include acrylate or styrene.
  • the coating layer may be disposed on one side or both sides of the substrate.
  • the coating layer may be disposed only on one surface of the substrate, and the coating layer may not be disposed on the other surface.
  • the coating layer may be disposed on both sides of the substrate. Since the coating layer is disposed on both sides of the substrate, the adhesion between the binder and the electrode active material layer may be further improved, and thus the volume change of the lithium battery may be suppressed.
  • the coating layer may be a single layer or a multilayer structure.
  • the multi-layered structure may be a two-layered structure, a three-layered structure, a four-layered structure, but is not necessarily limited to such a structure and may be selected according to the required separator properties.
  • Coating layers disposed on both surfaces of the separator may have the same composition. By disposing a coating layer having the same composition on both sides of the separator, the same adhesive force on one side and the other side of the separator acts on the electrode active material layer so that the volume change of the lithium battery can be uniformly suppressed.
  • a method of manufacturing a separator includes: (a) preparing a slurry including first organic particles, second organic particles, and inorganic particles; And (b) applying the slurry to at least one side of the substrate and then drying.
  • the slurry may be applied to both surfaces of the substrate, and at this time, the slurry may be simultaneously applied to both surfaces of the substrate.
  • the slurry may further include third organic particles having a melting point (Tm) of 80 to 130 ° C.
  • the separator may be formed by applying a slurry on a substrate.
  • the method of applying the slurry is not particularly limited and may be any method that can be used in the art. For example, it may be formed by a method such as printing, compression, indentation, roller application, blade application, bristles application, dipping application, spray application or leucine application.
  • an aqueous dispersion of the aqueous binder compound may be applied to the porous coating layer to form an adhesive layer.
  • water may be used as a dispersion medium of the dispersion for forming the adhesive layer.
  • Drying can use methods known in the art and can be carried out batchwise or continuously using an oven or heated chamber in a temperature range that takes into account the vapor pressure of the solvent used.
  • the drying is to almost eliminate the solvent present in the slurry, which is preferably as fast as possible in view of productivity and the like, for example, may be carried out for a time of 1 minute or less, preferably 30 seconds or less.
  • the adhesive strength between the separator and the electrode may be 0.01 to 3.0 N / m.
  • the peel strength of the separator and the electrode may be 0.1 to 2.0 N / m.
  • the peel strength of the separator and the electrode may be 0.2 to 1.5 N / m.
  • the peel strength of the separator and the electrode may be 0.4 to 1.5 N / m.
  • the volume change of the lithium battery in the adhesive strength range can be effectively suppressed.
  • the air permeability of the separator may be 50 to 300 seconds (sec) / 100cc.
  • the air permeability of the separator may be 100 to 200 seconds (sec) / 100 cc.
  • the air permeability of the separator may be 130 to 180 seconds (sec) / 100 cc.
  • the air permeability of the separator may be 130 to 150 seconds (sec) / 100cc. In the air permeability range, an increase in internal resistance of the lithium battery may be effectively suppressed.
  • the film resistance may be 0.1 to 3 ⁇ .
  • the membrane resistance after the pressing process between the separator and the electrode may be 0.3 to 1 ⁇ .
  • the membrane resistance after the pressing process between the separator and the electrode may be 0.5 to 0.8 ⁇ .
  • the breakdown voltage (BDV) of the separator may be 0.5 to 3.0 kV.
  • the dielectric breakdown voltage of the separator may be 0.7 to 2.5 kV.
  • the dielectric breakdown voltage of the separator may be 1.0 to 2.0 kV.
  • Heat shrinkage change (%) of the separator may be 10% or less in the temperature range of 50 °C to 150 °C.
  • the change in heat shrinkage (%) of the separator may be 10% or less in both MD (Machine Direction) and TD (Transverse Direction) directions in the temperature range of 50 ° C to 150 ° C.
  • the change in heat shrinkage (%) of the separator may be 1% to 8% in both the MD (Machine Direction) and TD (Transverse Direction) directions in the temperature range of 50 ° C to 150 ° C.
  • the change in heat shrinkage (%) of the separator may be 1% to 5% in both the MD (Machine Direction) and TD (Transverse Direction) directions in the temperature range of 50 ° C to 150 ° C.
  • the heat shrinkage change (%) of the separator is within the above range in the temperature range of 50 ° C. to 150 ° C., the heat shrinkage property of the separator may be suppressed, and thus the rate characteristic and the lifespan characteristics may be effectively improved.
  • the separator of the present invention prepared by the above manufacturing method can be used as a separator of a lithium battery.
  • Lithium battery according to another embodiment of the positive electrode; cathode; And the separator described above interposed between the positive electrode and the negative electrode.
  • the lithium battery includes the above-described separator to impart adhesion between the electrodes (anode and cathode) and the separator, thereby preventing volume change during charging and discharging of the lithium battery, and uniformly spaced between the positive and negative electrodes due to adhesion.
  • potential uniformity may be imparted to improve battery reliability. Therefore, deterioration of the lithium battery accompanying the volume change of the lithium battery can be suppressed, thereby improving stability and lifespan characteristics of the lithium battery.
  • the lithium battery may be manufactured by, for example, the following method.
  • a negative electrode active material composition in which a negative electrode active material, a conductive material, a binder, and a solvent are mixed is prepared.
  • the negative electrode active material composition is directly coated on a metal current collector to prepare a negative electrode plate.
  • the negative electrode active material composition may be cast on a separate support, and then a film peeled from the support may be laminated on a metal current collector to prepare a negative electrode plate.
  • the negative electrode is not limited to the above enumerated forms, and may be other forms than the foregoing forms.
  • the negative electrode active material may be a non-carbon based material.
  • the negative electrode active material includes at least one selected from the group consisting of a metal capable of forming an alloy with lithium, an alloy of a metal capable of forming an alloy with lithium, and an oxide of a metal capable of forming an alloy with lithium. can do.
  • the metal alloyable with lithium is Si, Sn, Al, Ge, Pb, Bi, Sb Si-Y alloy (The Y is an alkali metal, alkaline earth metal, group 13-16 element, transition metal, rare earth element or Combinations thereof, not Si, and Sn-Y alloys (wherein Y is an alkali metal, an alkaline earth metal, a Group 13-16 element, a transition metal, a rare earth element, or a combination thereof, and not Sn). .
  • the transition metal oxide may be lithium titanium oxide, vanadium oxide, lithium vanadium oxide, or the like.
  • the non-transition metal oxide may be SnO 2 , SiO x (0 ⁇ x ⁇ 2), or the like.
  • the negative electrode active material is Si, Sn, Pb, Ge, Al, SiOx (0 ⁇ x ⁇ 2), SnOy (0 ⁇ y ⁇ 2), Li 4 Ti 5 O 12 , TiO 2 , LiTiO 3 , Li 2 It may be one or more selected from the group consisting of Ti 3 O 7 , but is not necessarily limited to these, any non-carbon-based negative active material may be used as long as used in the art.
  • a composite of the non-carbon-based negative electrode active material and the carbon-based material may also be used, and may further include a carbon-based negative electrode active material in addition to the non-carbon-based material.
  • the carbonaceous material may be crystalline carbon, amorphous carbon or a mixture thereof.
  • the crystalline carbon may be graphite such as non-shaped, plate, flake, spherical or fibrous natural graphite or artificial graphite, and the amorphous carbon may be soft carbon (low temperature calcined carbon). Or hard carbon, mesophase pitch carbide, calcined coke, or the like.
  • acetylene black, ketjen black, natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, copper, nickel, metal powder such as aluminum, silver, metal fiber, etc. may be used.
  • a conductive material such as polyphenylene derivatives may be used alone or in combination of one or more thereof, but is not limited thereto, and any material that can be used as a conductive material in the art may be used.
  • the above-described crystalline carbon-based material may be added as a conductive material.
  • the binder may include vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polytetrafluoroethylene, carboxymethyl cellulose, polyacrylamide, Polyacrylic acid, polyvinyl alcohol, polyacetate, polyvinylpyrrolidone and mixtures thereof, or styrene butadiene rubber-based polymers may be used, but are not limited thereto, and all may be used as binders in the art.
  • N-methylpyrrolidone N-methylpyrrolidone
  • acetone acetone
  • ethanol water
  • any solvent may be used as long as it can be used in the art.
  • the content of the negative electrode active material, the conductive material, the binder, and the solvent is at a level commonly used in lithium batteries. At least one of the conductive material, the binder, and the solvent may be omitted according to the use and configuration of the lithium battery.
  • the binder used to manufacture the negative electrode may be the same as the binder composition included in the coating layer of the separator.
  • a cathode active material composition in which a cathode active material, a conductive material, a binder, and a solvent are mixed is prepared.
  • the cathode active material composition is directly coated and dried on a metal current collector to prepare a cathode plate.
  • the cathode active material composition may be cast on a separate support, and then a film peeled from the support may be laminated on a metal current collector to prepare a cathode plate.
  • the positive electrode active material may include one or more selected from the group consisting of lithium cobalt oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, lithium iron phosphate, and lithium manganese oxide, but is not necessarily limited thereto. All cathode active materials available in the can be used.
  • Li a A 1 - b B b D 2 ( in the above formula, 0.90 ⁇ a ⁇ 1.8, and 0 ⁇ b ⁇ 0.5); Li a E 1 - b B b O 2 - ( in the above formula, 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05) c D c; LiE 2 - b B b O 4 - ( in the above formula, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05) c D c; Li a Ni 1 -bc Co b B c D ⁇ (wherein 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, and 0 ⁇ ⁇ 2); Li a Ni 1 -b- c Co b B c O 2 - ⁇ F ⁇ ( wherein, 0.90 ⁇ a -
  • A is Ni, Co, Mn, or a combination thereof
  • B is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements or combinations thereof
  • D is O, F, S, P, or a combination thereof
  • E is Co, Mn, or a combination thereof
  • F is F, S, P, or a combination thereof
  • G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, or a combination thereof
  • Q is Ti, Mo, Mn, or a combination thereof
  • I is Cr, V, Fe, Sc, Y, or a combination thereof
  • J is V, Cr, Mn, Co, Ni, Cu, or a combination thereof.
  • This coating layer may comprise a coating element compound of an oxide of a coating element, a hydroxide, an oxy hydroxide of a coating element, an oxycarbonate of a coating element, or a hydroxycarbonate of a coating element.
  • the compounds constituting these coating layers may be amorphous or crystalline.
  • the coating element included in the coating layer Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr or a mixture thereof may be used.
  • the coating layer forming process may use any coating method as long as it can be coated with the above compounds by a method that does not adversely affect the physical properties of the positive electrode active material (for example, spray coating or dipping method). Detailed descriptions thereof will be omitted since they can be understood by those skilled in the art.
  • the same conductive material, binder, and solvent may be used as the case of the negative electrode active material composition.
  • a plasticizer to the positive electrode active material composition and / or negative electrode active material composition it is also possible to form pores in the electrode plate.
  • the amount of the cathode active material, the conductive material, the general binder, and the solvent is at a level commonly used in lithium batteries. At least one of the conductive material, the general binder, and the solvent may be omitted according to the use and configuration of the lithium battery.
  • the binder used in the cathode production may be the same as the binder composition included in the coating layer of the separator.
  • the separator described above is disposed between the anode and the cathode.
  • the separator disposed between the anode and the cathode includes a substrate and a coating layer disposed on at least one side of the substrate, as described above, wherein the coating layer includes first organic particles and second substrate.
  • the average particle diameter of the first organic particles is larger than the average particle diameter of the second organic particles and inorganic particles, the first organic particles protrude from the surface of the coating layer to a height of 0.1 ⁇ m to 0.5 ⁇ m It is distributed on the surface of the coating layer at an area ratio corresponding to 5% or more and 15% or less of the surface area of the coating layer, and the weight ratio of organic particles and inorganic particles in the coating layer is 20:80 to 40:60.
  • the separator may be separately prepared and disposed between the anode and the cathode.
  • the separator is wound in an electrode assembly including a cathode / separator / cathode in the form of jelly roll, and then the jelly roll is accommodated in the battery case or pouch, and the jelly roll is thermally softened under pressure in the battery case or pouch accommodated state.
  • It can be prepared by a preliminary step (charging step), and a chemical conversion step of charging and discharging the charged jelly roll under pressure.
  • a more specific method of manufacturing the separator refer to the above-mentioned method for manufacturing the separator.
  • the electrolyte may be in a liquid or gel state.
  • the electrolyte may be an organic electrolyte.
  • the electrolyte may be a solid.
  • it may be boron oxide, lithium oxynitride, and the like, but is not limited thereto, and any one that can be used as a solid electrolyte in the art may be used.
  • the solid electrolyte may be formed on the negative electrode by sputtering or the like.
  • an organic electrolyte solution may be prepared.
  • the organic electrolyte may be prepared by dissolving lithium salt in an organic solvent.
  • the organic solvent may be used as long as it can be used as an organic solvent in the art.
  • Any lithium salt may be used as long as it can be used as a lithium salt in the art.
  • the lithium battery includes a positive electrode, a negative electrode and a separator.
  • the above-described positive electrode, negative electrode and separator are wound or folded in a jelly roll form to be accommodated in a battery case or pouch.
  • an organic electrolyte is injected into the battery case or pouch and sealed with a cap assembly 6 to complete a lithium battery.
  • the battery case may be cylindrical, rectangular, thin film, or the like.
  • the lithium battery may be a thin film type battery.
  • the lithium battery may be a lithium ion battery.
  • the lithium battery may be a lithium polymer battery.
  • a separator may be disposed between the anode and the cathode to form an electrode assembly.
  • the electrode assembly is laminated in a bi-cell structure or wound in a jelly roll form, it is impregnated with an organic electrolyte, and the resultant is accommodated in a pouch and sealed, a lithium polymer battery is completed.
  • the pouch-type lithium secondary polymer battery 100 includes an electrode assembly 110 and a case 120 that seals and houses the electrode assembly 110.
  • the electrode assembly 110 includes a battery part 111 and a positive electrode tab 112 and a negative electrode tab 113 connected to two electrodes of the battery part 111, respectively.
  • the battery unit 111 includes a positive electrode plate 116, a negative electrode plate 117, and a separator 118 interposed between the electrode plates 116 and 117.
  • the battery unit 111 is assembled by interposing a separator 118 between the positive electrode plate 116 and the negative electrode plate 117 and then winding them together.
  • the positive electrode plate 116 of the battery unit 111 is connected to the positive electrode tab 112
  • the negative electrode plate 117 is connected to the negative electrode tab 113
  • the positive electrode tab 112 and the negative electrode tab 113 are connected to external terminals, respectively. do.
  • Protective tapes 114 and 115 are wound around the positive electrode tab 112 and the negative electrode tab 113 to insulate the case 120 from each other.
  • the pouch case 120 includes a lower case 122 in which the battery unit 111 is accommodated and an upper case 121 sealing the upper surface of the lower case 122.
  • the upper and lower cases 121 and 122 are formed with a sealing portion 123 which is joined to three sides as edges.
  • the lithium polymer battery 100 having a polymer electrolyte is formed by injecting a composition for forming a polymer electrolyte and light or heat treatment thereof. ) Is produced.
  • a plurality of electrode assemblies may be stacked to form a battery pack, and the battery pack may be used in any device requiring high capacity and high power. For example, it can be used in notebooks, smartphones, electric vehicles and the like.
  • the lithium battery is suitable for an electric vehicle (EV) because of its high rate characteristics and longevity characteristics.
  • EV electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • the composition for forming the coating layer was gravure coated on both sides of the polyethylene porous substrate having a thickness of 7.5 ⁇ m and aeration time of 115 sec, and the blend coating layers of the first organic particles, the second organic particles, and the inorganic particles having a thickness of 3.0 ⁇ m were disposed on both surfaces of the porous substrate, respectively.
  • a separator was prepared.
  • the thickness of the coating layer was 1.5 ⁇ m on one side.
  • the thickness of the separator was 10.5 ⁇ m.
  • the time taken for the 100cc of air to pass through the polyethylene porous substrate was 145 seconds (sec), and the dielectric breakdown voltage (BDV) was 1.253 KV.
  • Production Example 2 surface of coating layer of first organic particles Area ratio 5%
  • a separator was manufactured in the same manner as in Preparation Example 1, except that 8 parts by weight of the second organic particles, 80 parts by weight of the inorganic particles, and 12 parts by weight of the first organic particles were mixed.
  • a separator was manufactured in the same manner as in Preparation Example 1, except that 10 parts by weight of the second organic particles, 67 parts by weight of the inorganic particles, and 23 parts by weight of the first organic particles were mixed.
  • a separator was prepared in the same manner as in Preparation Example 1, except that boehmite having an average particle diameter (D50) of 0.4 ⁇ m was used as the inorganic particle.
  • a separator was manufactured in the same manner as in Preparation Example 1, except that the shell used second organic particles having a core-shell structure melted at 135 ° C.
  • a separator was manufactured in the same manner as in Preparation Example 1, except that 80 parts by weight of the second organic particles and 20 parts by weight of the first organic particles were mixed.
  • a separator was manufactured in the same manner as in Preparation Example 1, except that 80 parts by weight of the inorganic particles and 20 parts by weight of the first organic particles were mixed.
  • a separator was manufactured in the same manner as in Preparation Example 1, except that 20 parts by weight of the second organic particles and 80 parts by weight of the inorganic particles were mixed.
  • a separator was manufactured in the same manner as in Preparation Example 1, except that 20 parts by weight of the second organic particles, 50 parts by weight of the inorganic particles, and 30 parts by weight of the first organic particles were mixed.
  • C1SR graphite particles
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • the separator prepared in Preparation Example 1 was interposed and wound to prepare an electrode assembly jelly roll.
  • the jelly roll was inserted into the pouch, the electrolyte was injected, and the pouch was vacuum sealed.
  • the jellyroll inserted into the pouch was pre-cahrging up to 70% of SOC with thermal softening at a temperature of 70 ° C. for 1 hour while applying a pressure of 250 kgf / cm 2 .
  • the pouch was then degassed and charged with a constant pressure of 200 kgf / cm 2 to the jellyroll for 1 hour at a temperature of 45 ° C. at a current of 0.2 C rate until the voltage reached 4.3 V.
  • the battery was charged at constant voltage until the current became 0.05C while maintaining 4.3V. Subsequently, five cycles of discharging at a constant current of 0.2 C until the voltage reached 3.0 V at the time of discharge were repeated five times to carry out the chemical conversion step.
  • a lithium battery was manufactured in the same manner as in Example 1, except that each separator prepared in Preparation Examples 2 to 5 was used.
  • Lithium batteries were manufactured in the same manner as in Example 1, except that the separators prepared in Comparative Preparation Examples 1 to 4 were used, respectively.
  • the area ratio of the first organic particles was 9%, 5%, and 15%.
  • the number of first organic particles 13 ⁇ m ⁇ 9 ⁇ m
  • the area ratio of the first organic particles was both 9% of the surface area of the coating layer.
  • the area ratio of the first organic particles was found to be 20% of the surface area of the coating layer, and the number per first area of the organic particles (13 ⁇ m ⁇ 9 ⁇ m) was 116.
  • Evaluation example 2 evaluation of heat resistance of membrane
  • the separation membrane of Preparation Example 1 including all of the first organic particles, the second organic particles, and the inorganic particles was found to suppress heat shrinkage change in comparison with the polyethylene porous substrate in both the MD and TD directions.
  • the separator of Preparation Example 5 including the second organic particles having a core-shell structure in which the shell was melted at 135 ° C. the shutdown was observed from 135 ° C.
  • the separators of Preparation Example 1 and Preparation Example 5 which include all of the first organic particles, the second organic particles, and the inorganic particles have superior heat resistance characteristics as compared to the polyethylene porous substrate, and thus no meltdown occurs.
  • the breakdown voltage (BDV) of the separators of Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 4 were evaluated, and the results thereof are shown in Table 2 below.
  • the breakdown voltage (BDV) is placed between the SUS plate, and the current is fixed to 0.3 mA in AC mode using KIKISUI's TOS5301, and the voltage is increased by increasing the boosting speed of 8 seconds to 0.3 kV. The voltage at the point of stopping (short) was measured.
  • Evaluation example 5 evaluating the air permeability of the membrane
  • Separation membrane was separated from the pouches of Examples 1 to 5 and Comparative Examples 1 to 4 through the chemical conversion step to evaluate air permeability, and the results thereof are shown in Table 2 below.
  • the air permeability was measured by measuring the time (unit: seconds) for 100 cc of air to pass through the separator through a measuring device (EG01-55-1MR, Asahi Seiko).
  • Evaluation example 6 electrode and separator Membrane resistance And adhesion evaluation
  • the membrane resistance and adhesion of the electrode and the separator were evaluated for the separators of Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 4, and the results are shown in Table 2 below.
  • the electrode assembly laminated with a release film (film) / separator / electrode was inserted into the pouch and the electrolyte solution was injected. After degassing and sealing in the pouch, a pressure of 400 kgf / cm 2 was applied at 85 ° C. for 3 minutes. Adhesion was measured using UTM.
  • the separators of Examples 1 to 5 which include all of the first organic particles, the second organic particles, and the inorganic particles, are more resistant to heat, insulation, breathability, membrane resistance, and adhesion than the separators of Comparative Examples 1 to 4. All showed improved results.
  • Evaluation example 7 Charging and discharging Cycle characteristic evaluation
  • Example 1 and Comparative Example 4 The 4.4V lithium batteries of Example 1 and Comparative Example 4 were used at 0.02C cutoff and 0.2C discharge at 0.2C charge at 1,50,100,150,200,250,300,350,400 cycles at 25 ° C and 1 atm, and 2.75V cutoff conditions at 0.2C charge and 1C charge at the remaining cycle conditions. Cycle charge / discharge was performed using 3V cutoff conditions for 0.1C cutoff and 1C discharge. The results are shown in FIG.
  • the lithium battery of Example 1 having a surface area ratio of 9% of the first organic particles showed superior charge / discharge cycle characteristics than the lithium battery of Comparative Example 4 having a surface area ratio of 20% of the first organic particles. Indicated.
  • a separator comprising a coating layer of a novel configuration has improved adhesion to the electrode, heat resistance, insulation and breathability, life characteristics of the lithium battery can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)

Abstract

기재 및 상기 기재의 적어도 일 면에 배치된 코팅층을 포함하고, 상기 코팅층은 제1 유기입자, 제2 유기입자 및 무기입자를 포함하고, 상기 제1 유기입자의 평균 입경은 제2 유기입자 및 무기입자의 평균 입경보다 크고, 상기 제1 유기입자는 코팅층 표면으로부터 0.1 내지 0.5㎛의 높이로 돌출되어 있으며, 코팅층 표면적의 5% 이상 15% 이하에 해당하는 면적비로 코팅층 표면에 분포되어 있고, 상기 코팅층 내 유기입자 및 무기입자의 중량비는 20:80 내지 40:60인 분리막이 제시된다. 상기 분리막을 사용할 경우, 향상된 전극과의 접착력, 내열성, 절연성 및 통기도를 가지며 리튬전지의 수명 특성이 향상될 수 있다.

Description

분리막, 이의 제조방법 및 이를 포함하는 리튬전지
본 발명은 분리막, 이의 제조방법 및 이를 포함하는 리튬전지에 관한 것이다.
각종 기기의 소형화, 고성능화에 부합하기 위하여 리튬전지의 소형화, 경량화 가 중요해지고 있다. 또한, 전기차량(Electric Vehicle) 등의 분야에 적용되기 위하여 리튬전지의 방전용량, 에너지밀도 및 사이클특성이 중요해지고 있다. 상기 용도에 부합하기 위하여 단위부피당 방전 용량이 크고 에너지밀도가 높으며 수명특성이 우수한 리튬전지가 요구된다.
리튬전지에서 양극과 음극 사이에 단락을 방지하기 위하여 분리막이 배치된다. 양극, 음극 및 상기 양극 및 음극 사이에 배치된 분리막을 포함하는 전극조립체가 권취되어 젤리롤 형태를 가지게 되며, 상기 전극조립체에서 양극/음극과 분리막의 접착력을 향상시키기 위하여 젤리롤이 압연된다.
리튬전지의 분리막으로서 올레핀계 중합체가 많이 사용되고 있다. 올레핀계 중합체는 유연성이 우수하나, 소수성 특성으로 인해 전해액 함침성이 불충분하며 100℃ 이상의 고온에서 급격한 열수축에 의하여 전지의 단락이 발생할 수 있다.
이를 해결하기 위해, 다공성 올레핀계 중합체 기재 상의 일면 상에 세라믹을 코팅하여 강도 및 내열성을 향상시킨 분리막이 제시되었다. 그러나, 세라믹이 코팅된 분리막은 음극/양극과의 접착력이 낮아 충방전시에 전지의 부피가 급격히 변화하여 전지의 변형이 발생하기 쉽다.
따라서, 세라믹이 코팅된 분리막과 양극/음극과의 접착력 향상을 위하여 세라믹 상에 바인더가 추가된 분리막이 제시되었다. 그러나 세라믹 상에 바인더가 추가된 분리막 또한, 기공율이 저하되어 내부저항이 증가하고 분리막의 두께가 두꺼워지며 바인더의 전해액 내에서 스웰링에 의하여 리튬전지가 열화되기 쉽다는 문제점이 있었다.
따라서, 이러한 종래기술의 한계를 극복하고, 분리막의 막 두께를 얇게 하면서도 전극 간의 우수한 접착력을 가지며, 내열성, 절연성 및 통기도가 우수한 분리막이 요구된다.
일 측면은 향상된 전극과의 접착력, 내열성, 절연성 및 통기도를 갖는 분리막을 제공하는 것이다.
다른 측면은 상기 분리막의 제조 방법을 제공하는 것이다.
또 다른 측면은 상기 분리막을 포함하는 리튬전지를 제공하는 것이다.
일 측면에 따라,
기재 및 상기 기재의 적어도 일 면에 배치된 코팅층을 포함하고,
상기 코팅층은 제1 유기입자, 제2 유기입자 및 무기입자를 포함하고,
상기 제1 유기입자의 평균 입경은 제2 유기입자 및 무기입자의 평균 입경보다 크고,
상기 제1 유기입자는 코팅층 표면으로부터 0.1 내지 0.5㎛의 높이로 돌출되어 있으며, 코팅층 표면적의 5% 이상 15% 이하에 해당하는 면적비로 코팅층 표면에 분포되어 있고,
상기 코팅층 내 유기입자 및 무기입자의 중량비는 20:80 내지 40:60인, 분리막이 제공된다.
다른 측면에 따라
상기 분리막을 제조하는 방법으로서,
(a) 제1 유기 입자, 제2 유기 입자 및 무기입자를 포함하는 슬러리를 준비하는 단계; 및
(b) 기재의 적어도 일 면에 상기 슬러리를 도포한 후, 건조하는 단계를 포함하는, 분리막의 제조방법이 제공된다.
또 다른 측면에 따라,
양극;
음극; 및
상기 양극과 음극 사이에 개재되는 상기 분리막을 포함하는 리튬전지가 제공된다.
일 측면에 따르면 신규한 구성의 코팅층을 포함하는 분리막을 채용함에 의하여 향상된 전극과의 접착력, 내열성, 절연성 및 통기도를 갖고, 리튬전지의 수명 특성이 향상될 수 있다.
도 1은 예시적인 구현예에 따른 리튬 폴리머 전지의 모식도이다.
도 2는 예시적인 구현예에 따른 분리막 코팅층의 모식도이다.
도 3은 예시적인 구현예에 따른 분리막의 표면에 대한 SEM 사진이다.
도 4는 예시적인 구현예에 따른 분리막의 단면에 대한 SEM 사진이다.
도 5는 제조예 1에 따른 분리막 및 폴리에틸렌 다공성 기재에 대한 TMA(Thermomechanical Analysis) 분석 결과이다.
도 6은 제조예 1 및 제조예 5에 따른 분리막 및 폴리에틸렌 다공성 기재에 대한 셧다운(shut down) 및 멜트다운(melt down) 측정 결과이다.
도 7은 실시예 1 및 비교예 4에 따른 리튬전지에 대한 충,방전 사이클 결과이다.
<도면의 주요 부분에 대한 부호의 설명>
100: 리튬전지 116: 양극판
117: 음극판 118: 분리막
10: 분리막 코팅층 20: 제1 유기입자
30: 제2 유기입자 40: 무기입자
이하, 본 발명의 일 실시예에 따른 분리막, 상기 분리막의 제조방법 및 이를 포함하는 리튬전지에 관하여 상세히 설명하기로 한다. 이하는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 특허청구범위의 범주에 의해 정의될 뿐이다.
[분리막]
일구현예에 따른 분리막은 기재 및 상기 기재의 적어도 일 면에 배치된 코팅층을 포함하고, 상기 코팅층은 제1 유기입자, 제2 유기입자 및 무기입자를 포함하고, 상기 제1 유기입자의 평균 입경은 제2 유기입자 및 무기입자의 평균 입경보다 크고, 상기 제1 유기입자는 코팅층 표면적의 5% 이상 15% 이하에 해당하는 면적비로 코팅층 표면에 분포되어 있고, 상기 코팅층 내 유기입자 및 무기입자의 중량비는 20:80 내지 40:60이다.
본 발명에 따른 분리막은 코팅층 내 접착 기능을 하는 제1 유기입자와 필러 기능을 하는 제2 유기입자와 무기입자를 포함함으로써 별도의 접착층을 구비하지 않고도 분리막과 전극 간의 접착력을 상승시키고, 우수한 내열성, 절연성 및 통기도를 나타내는 것을 특징으로 한다.
본 발명의 분리막에서 상기 기재는 다공성 기재일 수 있다. 상기 다공성 기재는 폴리올레핀을 포함하는 다공성 막일 수 있다. 폴리올레핀은 우수한 단락 방지 효과를 가지며 또한 셧다운 효과에 의하여 전지 안정성을 향상시킬 수 있다. 예를 들어, 상기 다공성 기재는 폴리에틸렌, 폴리프로필렌, 폴리부텐, 폴리염화비닐 등의 폴리올레핀, 및 이들의 혼합물 혹은 공중합체 등의 수지로 이루어지는 막일 수 있으나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 사용될 수 있는 다공성막이라면 모두 가능하다. 예를 들어, 폴리올레핀계 수지로 이루어지는 다공성막; 폴리올레핀계의 섬유를 직조한 다공성막; 폴리올레핀을 포함하는 부직포; 절연성 물질 입자의 집합체 등이 사용될 수 있다. 예를 들어, 폴리올레핀을 포함하는 다공성막은 상기 기재 상에 형성되는 코팅층을 제조하기 위한 바인더 용액의 도포성이 우수하고, 분리막의 막 두께를 얇게 하여 전지 내의 활물질 비율을 높여 단위 부피당 용량을 높일 수 있다.
예를 들어, 다공성 기재의 재료로서 사용하는 폴리올레핀은 폴리에틸렌, 폴리프로필렌 등의 호모중합체, 공중합체, 또는 이들의 혼합물일 수 있다. 폴리에틸렌은, 저밀도, 중밀도, 고밀도의 폴리에틸렌일 수 있고, 기계적 강도의 관점에서, 고밀도의 폴리에틸렌이 사용될 수 있다. 또한, 폴리에틸렌은 유연성을 부여할 목적에서 2 종 이상을 혼합할 수 있다. 폴리에틸렌의 조제에 사용하는 중합 촉매는 특별히 제한되지 않으며, 지글러-나타계 촉매나 필립스계 촉매나 메탈로센계 촉매 등을 사용할 수 있다. 기계적 강도와 고투과성을 양립시키는 관점에서, 폴리에틸렌의 중량평균분자량은 10만 내지 1200만일 수 있으며, 예를 들어, 20만 내지 300만일 수 있다. 폴리프로필렌은, 호모중합체, 랜덤공중합체, 블록공중합체일 수 있으며, 이를 단독 또는 2 이상 혼합하여 사용할 수 있다. 또한, 중합 촉매는 특별히 제한되지 않으며, 지글러-나타계 촉매나 메탈로센계 촉매 등을 사용할 수 있다. 또한, 입체 규칙성도 특별히 제한되지 않으며, 이소택틱, 신디오택틱 또는 어택틱 폴리프로필렌을 사용할 수 있다. 또한, 본 발명의 효과를 해치지 않는 범위에서, 폴리올레핀에는 폴리에틸렌 혹은 폴리프로필렌 이외의 폴리올레핀 및 산화방지제 등의 첨가제를 첨가할 수 있다.
예를 들어, 다공성 기재는 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀을 포함하고, 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 분리막, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 분리막, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 분리막 등과 같은 혼합 다층막이 사용될 수도 있으나 이들로 한정되지 않으며 당해 기술분야에서 다공성 기재로 사용될 수 있는 재료 및 구성이라면 모두 가능하다.
예를 들어, 다공성 기재는 디엔계 단량체를 포함하는 단량체 조성물을 중합하여 제조되는 디엔계 중합체를 포함할 수 있다. 상기 디엔계 단량체는 공역 디엔계 단량체, 비공역 디엔계 단량체일 수 있다. 예를 들어, 상기 디엔계 단량체는 1,3-부타디엔, 이소프렌, 2-클로로-1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 1,3-펜타디엔, 클로로프렌, 비닐피리딘, 비닐노보넨, 디시클로펜타디엔 및 1,4-헥사디엔으로 이루어진 군에서 선택된 하나 이상을 포함하나 반드시 이들로 한정되지 않으며 당해 기술분야에서 디엔계 단량체로 사용될 수 있는 것이라면 모두 가능하다.
분리막에서 다공성 기재의 두께는 1 내지 100㎛일 수 있다. 예를 들어, 다공성 기재의 두께는 1 내지 30㎛일 수 있다. 예를 들어, 다공성 기재의 두께는 5 내지 20㎛일 수 있다. 예를 들어, 다공성 기재의 두께는 5 내지 15㎛일 수 있다. 예를 들어, 다공성 기재의 두께는 5 내지 10㎛일 수 있다. 다공성 기재의 두께가 1㎛ 미만이면 분리막의 기계적 물성을 유지하기 어려울 수 있으며, 다공성 기재의 두께가 100㎛ 초과이면 리튬전지의 내부 저항이 증가할 수 있다.
분리막에서 다공성 기재의 기공도는 5 내지 95%일 수 있다. 기공도가 5% 미만이면 리튬전지의 내부 저항 증가할 수 있으며, 기공도가 95% 초과이면 다공성 기재의 기계적 물성을 유지하기 어려울 수 있다.
분리막에서 다공성 기재의 기공 크기는 0.01 내지 10㎛일 수 있다. 예를 들어, 분리막에서 다공성 기재의 기공 크기는 0.01 내지 5㎛일 수 있다. 예를 들어, 분리막에서 다공성 기재의 기공 크기는 0.01 내지 1㎛일 수 있다. 다공성 기재의 기공 크기가 0.01㎛ 미만이면 리튬전지의 내부 저항이 증가할 수 있으며, 다공성 기재의 기공 크기가 10㎛ 초과이면 다공성 기재의 기계적 물성을 유지하기 어려울 수 있다.
상기 코팅층은 제1 유기입자, 제2 유기입자 및 무기입자를 포함할 수 있다. 구체적으로는, 도 2는 예시적인 구현예에 따른 분리막 코팅층의 모식도를 도시하고, 도 3 및 4는 각각 예시적인 구현예에 따른 분리막의 표면 및 단면에 대한 SEM 사진이다.
도 2 내지 도 4에 나타난 바와 같이, 제1 유기입자(20), 제2 유기입자(30) 및 무기입자(40)는 코팅층(10) 내 혼합되어 있을 수 있다. 즉, 본 발명의 분리막에 포함되는 코팅층은 제1 유기입자, 제2 유기입자 및 무기입자가 별도의 층으로 구성된 것이 아니라, 서로 혼합된 형태의 층으로 구성될 수 있다. 여기서, 상기 제1 유기입자는 분리막과 전극의 접착력을 좋게 하는 전극 접착제로 작용하며 다공성 코팅층의 표면으로부터 엠보싱 형태를 형성하여 일정 높이 이상으로 돌출될 수 있다.
즉, 상기 제1 유기입자는 다공성 코팅층 표면으로부터 엠보싱 형태로 돌출되어 전극 접착제로서 작용한다. 이를 위해 상기 제1 유기 입자의 평균 입경은 제2 유기입자 및 무기입자의 평균 입경보다 크며, 코팅층 표면으로부터 0.1 내지 0.5㎛의 높이의 엠보싱 형태로 돌출될 수 있다. 예를 들어, 제1 유기입자는 코팅층 표면으로부터 0.1 내지 0.4㎛의 높이로 돌출될 수 있다. 예를 들어, 제1 유기입자는 코팅층 표면으로부터 0.2 내지 0.3㎛의 높이로 돌출될 수 있다. 이를 위해 상기 제1 유기입자는 제2 유기입자 및 무기입자에 대해 각각 1.1 내지 5 배의 평균 입경을 가질 수 있다.
상기 제1 유기입자의 평균 입경은 0.3 내지 0.7㎛일 수 있다. 예를 들어, 상기 제1 유기입자의 평균 입경은 0.3 내지 0.5㎛일 수 있다. 예를 들어, 상기 제1 유기입자의 평균 입경은 0.4 내지 0.5㎛일 수 있다. 상기 제1 유기입자의 평균 입경이 0.3㎛ 미만이면 주변보다 돌출되지 않아 전극 접착제로서의 기능을 발휘하기 어렵고, 통기도 확보가 어려워 저항이 커지는 문제가 발생할 수 있다. 또한, 상기 제1 유기입자의 평균 입경이 0.7㎛ 초과이면 전극과 분리막의 접착 면적이 넓어지고, 코팅 후 분리막의 두께가 너무 두꺼워서 전지의 저항이 커지는 문제가 있다.
상기 코팅층에 사용되는 제1 유기입자는 당업계에서 사용가능한 유기물 입자로서 점착성을 가져야 한다. 이를 위해 제1 유기입자는 전극조립체의 라미네이션이 수행되는 온도보다 낮은 유리전이온도(T g)를 갖는 것이 바람직하다. 예컨대, 상기 제1 유기입자의 유리전이온도(T g)는 50 내지 70℃일 수 있다. 상기 범위를 벗어나, 제1 유기입자의 유리전이온도(T g)가 지나치게 높을 경우, 전극과의 접착력을 위해 프레스 온도를 올리게 되면 전해액 부반응이 발생하는 문제점이 있고, 반면에 지나치게 낮을 경우, 코팅 후 건조 온도 또는 제품 이송 중에 필름화되어 분리막 상호간 접착으로 조립 공정에 영향을 주는 문제점이 있다.
상기 제1 유기입자는 전해액에 의한 팽윤도 측면에서도 리튬전지에 사용하기 바람직하여야 하며 구체적으로는, 상기 제1 유기입자는 전해액에 약 50 내지 70℃에서 70 내지 80시간 방치시 약 800%의 팽윤도를 나타내는 구형의 입자일 수 있다. 전해핵에 의한 팽윤으로 리튬이온 이동 저항을 낮추고 전극과의 접착 면적을 향상시킬 수 있다. 또한, 슬러리 제조 단계에서 용매 또는 분산액에서 용해되지 않아 코팅 후 입자 형태가 유지되어야 통기도 저하를 최소화할 수 있다.
상기 제1 유기입자의 구체적인 예로는 폴리스티렌, 폴리비닐리덴 플루오라이드, 폴리메틸메타크릴레이트, 폴리아크릴로니트릴, 폴리비닐리돈, 폴리비닐아세테이트, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 아크릴레이트, 아조디카본아마이드 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 제1 유기입자는 단일 입자이거나 또는 단일 입자가 모여서 이루어진 2차 입차의 형태일 수 있다.
상기 제1 유기입자는 코팅층 표면적의 5% 이상 15% 이하에 해당하는 면적비로 코팅층 표면에 분포될 수 있다. 예를 들어, 상기 제1 유기입자는 코팅층 표면적의 6 내지 14%에 해당하는 면적비로 코팅층 표면에 분포될 수 있다. 예를 들어, 상기 제1 유기입자는 코팅층 표면적의 7 내지 12%에 해당하는 면적비로 코팅층 표면에 분포될 수 있다. 상기 제1 유기입자의 코팅층 면적비가 5% 미만일 경우 전극 접착 효과를 나타내기 어렵고, 상기 제1 유기입자의 코팅층 면적비가 15 % 초과일 경우 내열성 및 전지성능 측면에서 불리하다.
일 구현예에 따르면, 상기 제1 유기입자는 코팅층 표면적 13㎛×9㎛ 내에 20 내지 100개 존재할 수 있다. 예를 들어, 상기 제1 유기입자는 코팅층 표면적 13㎛×9㎛ 내에 30 내지 90개 존재할 수 있다. 예를 들어, 상기 제1 유기입자는 코팅층 표면적 13㎛×9㎛ 내에 40 내지 80개 존재할 수 있다. 제1 유기입자가 코팅층 표면적 13㎛×9㎛ 내에 상기 범위 내로 존재할 경우, 전극 접착력, 내열성 및 전지 성능이 우수하다.
상기 제2 유기입자는 필러로서 작용하며, 무기물 필러에 비해 균일한 박막 코팅이 가능하고 통기성 및 절연성 측면에서 유리하다.
구체적으로는, 상기 제2 유기입자는 분리막 내에서 지지체의 역할을 할 수 있다. 예를 들어, 고온에서 분리막이 수축하려고 할 때 제2 유기입자가 무기필러 사이에 존재하여 분리막의 수축을 억제할 수 있다. 또한, 분리막 상에 배치된 코팅층이 제2 유기입자를 포함함으로써 충분한 기공률이 확보되고 내열특성이 향상될 수 있다. 따라서, 바인더의 함량을 줄여, 필러를 상대적으로 더 많이 포함하는 분리막을 포함하는 리튬전지는 향상된 안정성을 확보할 수 있다.
상기 제2 유기입자의 평균 입경은 0.15 내지 0.35㎛일 수 있다. 예를 들어, 상기 제2 유기입자의 평균 입경은 0.2 내지 0.3㎛일 수 있다. 상기 제2 유기입자의 평균 입경이 상기 범위일 경우, 균일한 두께의 박막 코팅층을 형성하여 분리막의 두께를 감소시킬 수 있으며, 적절한 공극률을 가질 수 있다.
상기 제2 유기입자의 종횡비(aspect ratio)는 각각 1:0.5 내지 1:2일 수 있다. 예를 들어, 상기 제2 유기입자의 종횡비는 각각 1:0.7 내지 1:1.5일 수 있다. 예를 들어, 상기 제2 유기입자의 종횡비는 각각 1:0.8 내지 1:1.2일 수 있다. 상기 제2 유기입자의 종횡비가 각각 상기 범위일 경우, 불균일한 무기입자와의 혼합성이 증가되어, 균일한 두께의 박막 코팅층을 형성하여 분리막의 두께를 감소시킬 수 있으며, 적절한 공극률 및 내열 특성을 가질 수 있다.
상기 제2 유기입자는 가교된 고분자(cross-linked polymer)일 수 있다. 상기 제2 유기입자는 유리전이온도(T g)가 나타나지 않는 고도로 가교된 고분자일 수 있으며, 고도로 가교된 고분자를 사용할 경우, 내열성이 개선되어 고온에서 다공성 기재의 수축을 효과적으로 억제할 수 있다. 또한, 상기 제2 유기입자의 열 분해 온도(thermal decomposition temperature)는 300℃ 이상일 수 있다. 예를 들어, 상기 제2 유기입자의 열 분해 온도는 300℃ 내지 500℃일 수 있다. 이때, 상기 제2 유기입자는 열 분해시 총 흡열량이 250 J/g 이상일 수 있다.
상기 제2 유기입자는 예를 들어, 아크릴레이트계 화합물 및 이의 유도체, 디알릴 프탈레이트계 화합물 및 이의 유도체, 폴리이미드계 화합물 및 이의 유도체, 폴리우레탄계 화합물 및 이의 유도체, 이들의 공중합체, 또는 이들의 조합을 포함할 수 있으나 이들로 한정되지 않으며 당해 기술분야에서 필러로 사용될 수 있는 것이라면 모두 가능하다. 예를 들어, 상기 제2 유기입자는 가교된 폴리스티렌 입자, 가교된 폴리메틸메타크릴레이트 입자일 수 있다.
상기 제1 유기입자 또는 제2 유기입자는 코어-쉘 구조일 수 있다. 예를 들어, 상기 제1 유기입자는 코어-쉘 구조일 수 있다. 예를 들어, 상기 제2 유기입자는 코어-쉘 구조일 수 있다. 예를 들어, 상기 제1 유기입자 및 제2 유기입자 모두 코어-쉘 구조일 수 있다.
상기 코어-쉘 구조는 코어부 및 쉘부를 포함하며, 상기 쉘부의 중량은 상기 코어부의 총 중량을 기준으로 50 중량% 이하일 수 있다. 코어로서 상기 언급된 각각 제1 유기입자 또는 제2 유기입자 화합물을 포함할 수 있으며, 쉘로서 소정의 온도에서 용융되어 셧다운 기능 및 전극접착 기능을 갖는 물질을 포함할 수 있다.
상기 쉘에 포함될 수 있는 물질은 용융점(T m)이 130℃ 이하인 열가소성 수지일 수 있다. 구체적으로는, 폴리에틸렌(PE), 폴리비닐클로라이드(PVC), 폴리프로피렌(PP), 폴리스티렌(PS), 폴리아크릴로니트릴(PAN), 스티렌-아크릴로니트릴(SAN), 아크릴로니트릴-부타디엔-스티렌(ABS), 폴리메틸메타크릴레이트(PMMA), 폴리테트라플루오로에틸렌(PTFE), 폴리클로로트리플루오로에틸렌(PCTFE) 등일 수 있다.
상기 제2 유기입자가 코어-쉘 구조일 경우, 130℃ 이상의 고온에서 용융점이 130℃ 이하인 제2 유기입자의 쉘부가 용융되며, 용융된 쉘부가 분리막을 코팅하여 셧다운 효과 및 전극접착 효과를 부여하도록 기능할 수 있다.
상기 코팅층 내 제1 유기입자 및 제2 유기입자의 중량비는 30:70 내지 60:40일 수 있다. 예를 들어, 상기 제1 유기입자 및 제2 유기입자의 중량비는 30:70 내지 50:50일 수 있다. 예를 들어, 상기 제1 유기입자 및 제2 유기입자의 중량비는 40:60 내지 50:50일 수 있다. 상기 제1 유기입자 및 제2 유기입자의 중량비가 상기 범위 내인 경우, 내열성이 우수하고, 전극접착력 증가에 따른 계면저항 감소로 셀 성능이 향상될 수 있다.
상기 무기입자의 평균 입경은 0.2 내지 0.4㎛일 수 있다. 예를 들어, 상기 무기입자의 평균 입경은 0.25 내지 0.4㎛일 수 있다. 예를 들어, 상기 무기입자의 평균 입경은 0.25 내지 0.35㎛일 수 있다. 상기 무기입자는 필러로서 작용하며, 제2 유기입자와 혼합되어 균일한 박막 코팅이 가능하고, 분리막의 내열성을 개선하고, 셀 저항을 더욱 감소시킬 수 있다.
상기 무기입자는 금속 산화물, 준금속 산화물, 또는 이들의 조합일 수 있다. 구체적으로 상기 무기입자는 보헤마이트(boehmite), 알루미나(Al 2O 3), BaSO 4, MgO, Mg(OH) 2, 클레이(clay), 실리카(SiO 2), 및 TiO 2 중에서 선택된 하나 이상일 수 있다. 상기 보헤마이트, 알루미나, 실리카 등은 입자 크기가 작아 분산액을 만들기에 용이하다. 예를 들어, 상기 무기입자는 AlO(OH), Al 2O 3, SiO 2, TiO 2, SnO 2, CeO 2, NiO, CaO, ZnO, MgO, ZrO 2, Y 2O 3, SrTiO 3, BaTiO 3, MgF 2, Mg(OH) 2 또는 이들의 조합일 수 있다.
상기 무기입자는 구상(sphere), 판상(plate), 섬유상(fiber) 등일 수 있으나 이들로 한정되지 않으며 당해 기술분야에서 사용가능한 형태라면 모두 가능하다.
판상의 무기입자는 예를 들어 보헤마이트, 알루미나, 수산화마그네슘 등이 있다. 이 경우, 고온에서의 분리막 면적의 축소가 더욱 억제되고, 상대적으로 많은 기공도를 확보할 수 있으며, 리튬전지의 관통 평가시에 특성이 향상될 수 있다.
상기 무기입자가 판상 또는 섬유상일 경우, 상기 무기입자의 종횡비(aspect ratio)는 약 1:5 내지 1:100일 수 있다. 예를 들어, 상기 종횡비는 약 1:10 내지 1:100일 수 있다. 예를 들어, 상기 종횡비는 약 1:5 내지 1:50일 수 있다. 예를 들어, 상기 종횡비는 약 1:10 내지 1:50일 수 있다.
*판상 무기 입자의 평탄면에서 단축에 대한 장축의 길이 비율은 1 내지 3일 수 있다. 예를 들어, 상기 평탄면에서 단축에 대한 장축의 길이 비율은 1 내지 2일 수 있다. 예를 들어, 상기 평탄면에서 단축에 대한 장축의 길이 비율은 약 1일 수 있다. 상기 종횡비와 단축에 대한 장축의 길이 비율은 주사전자현미경(SEM)을 통해 측정할 수 있다. 상기 종횡비 및 장축에 대한 단축의 길이 범위에서 분리막 수축이 억제될 수 있으고, 상대적으로 향상된 기공도가 확보되며, 리튬전지의 관통 특성이 향상될 수 있다.
상기 무기입자가 판 모양일 경우, 다공성 기재의 일면에 대한 무기입자 평판면의 평균 각도는 0도 내지 30도일 수 있다. 예를 들어, 다공성 기재의 일면에 대한 무기입자 평판면의 각도가 0도에 수렴할 수 있다. 즉, 다공성 기재의 일면과 무기입자의 평판면이 평행일 수 있다. 예를 들어, 다공성 기재의 일면에 대한 무기 입자의 평판면의 평균 각도가 상기 범위일 경우 다공성 기재의 열수축을 효과적으로 막을 수 있어, 수축률이 감소된 분리막을 제공할 수 있다.
상기 코팅층 내 유기입자 및 무기입자의 중량비는 20:80 내지 80:20일 수 있다. 예를 들어, 상기 코팅층 내 유기입자 및 무기입자의 중량비는 20:80 내지 40:60일 수 있다. 예를 들어, 유기입자 및 무기입자의 중량비는 30:70 내지 40:60일 수 있다. 예를 들어, 유기입자 및 무기입자의 중량비는 30:70 내지 50:50일 수 있다. 코팅층 내 유기입자 및 무기입자의 중량비가 상기 범위 내인 경우, 내열성이 우수하고, 전극접착력 증가에 따른 계면저항 감소로 셀 성능이 향상될 수 있다.
상기 코팅층의 두께는 0.3 내지 5.0㎛일 수 있다. 즉, 본 발명의 분리막에 포함되는 코팅층은 제1 유기입자, 제2 유기입자 및 무기입자의 평균 입경 및 이들의 중량비를 소정의 범위로 한정함으로써, 코팅층의 전극 접착력뿐만 아니라 기재에 대한 결착력을 상승시켜, 균일한 코팅이 가능하고 코팅층의 박막화를 가능하게 할 수 있다. 예를 들어, 상기 코팅층의 두께는 0.3 내지 4.0㎛일 수 있다. 예를 들어, 상기 코팅층의 두께는 0.3 내지 3.0㎛일 수 있다. 예를 들어, 상기 코팅층의 두께는 0.3 내지 2.0㎛일 수 있다. 코팅층의 두께가 상기 범위를 만족할 경우, 이를 포함하는 분리막이 향상된 전극 접착력과 내열성 및 절연성을 제공할 수 있다. 특히, 일면이 1㎛ 이하인 코팅층을 형성하는 것이 가능하여, 전체 분리막의 두께뿐만 아니라, 전극조립체의 두께를 최소화할 수 있으며, 이를 통해 전지의 부피당 용량을 극대화할 수 있다.
상기 코팅층은 셧다운 기능을 갖는 제3 유기입자를 더 포함할 수 있다. 즉 제3 유기 입자는 소정의 온도에서 용융되어 분리막 내의 기공을 밀폐시켜 전류의 흐름을 차단할 수 있다. 상기 셧다운이란 리튬전지의 온도 상승에 따라 분리막 내 기공이 막히게 됨으로써 리튬이온이 이동할 수 없게 되어 열폭주를 저지하는 것을 말하며, 셧다운 온도는 이러한 셧다운이 나타나는 온도를 의미한다.
즉, 본 발명에 따르면 리튬전지가 고온에 노출될 경우, 열폭주가 발생하기 전에 상기 제3 유기입자가 먼저 녹아 상기 분리막 기재의 적어도 일면에 고분자 박막을 형성하거나 또는 상기 분리막 기재의 기공에 침투하여 전해액의 이동을 방해하고, 전류 흐름을 차단함으로써 리튬전지의 안정성을 향상시킬 수 있다.
상기 제3 유기입자의 용융점(Tm)은 80 내지 130℃일 수 있다. 예를 들어, 제3 유기입자의 용융점은 90 내지 120℃일 수 있다. 상기 다공성 기재의 셧다운 온도보다 낮을수록 리튬전지에 열폭주가 발생하기 전에 상기 다공성 기재의 기공을 미리 막음으로써 리튬전지의 안전성을 더욱 향상시킬 수 있다.
상기 제3 유기입자의 평균 입경은 분리막의 제조 과정 동안 분리막 내 기공이 막히지 않도록 보장되는 한 원칙적으로 자유롭게 선택 가능하다. 상기 제3 유기입자의 평균 입경은 분리막 내 다공성 기재의 기공 크기보다 큰 것이 바람직하며, 예를 들어, 상기 제3 유기입자의 평균 입경은 0.1 내지 0.5㎛일 수 있다. 예를 들어, 제3 유기입자의 평균 입경은 0.1 내지 0.4㎛일 수 있다. 예를 들어, 제3 유기입자의 평균 입경은 0.2 내지 0.3㎛일 수 있다.
상기 제3 유기입자의 종류로는 예를 들어, 천연 또는 인조 왁스, (저융점) 중합체, 예를 들면, 폴리올레핀 또는 이의 혼합물이나 폴리스타일렌, 폴리메타메틸아크릴레이트계 등의 아크릴레이트계일 수 있으며, 이 경우에, 제3 유기입자는 입자가 목적하는 셧다운 온도에서 용융되고 분리막 내 기공을 밀폐하여 추가로 이온 유출을 방지하도록 선택된다. 구체적으로는 제3 유기입자는 폴리에틸렌 왁스 및 아크릴레이트계인 것이 바람직하다.
상기 코팅층은 필러 기능을 하는 제2 유기입자 및 무기입자간의 결착성 강화를 위하여 유기 바인더 고분자를 더 포함할 수 있다. 이러한 유기 바인더 고분자의 구체적인 예로는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(polyvinylidene fluoride-cohexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐아세테이트(polyvinylacetate), 폴리비닐알코올(polyvinyl alchol), 에틸렌 비닐 아세테이트 공중합체(polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드(polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트(celluloseacetate), 셀룰로오스 아세테이트 부틸레이트(cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate), 시아노에틸플루란(cyanoethylpullulan), 시아노에틸폴리비닐알코올 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스(cyanoethylcellulose), 시아노에틸수크로오스(cyanoethylsucrose), 플루란(pullulan), 카르복실 메틸 셀룰로오스(carboxyl methyl cellulose), 폴리아크릴아마이드(polyacrylamide) 및 이들의 혼합물을 사용할 수 있으나, 이에 제한되는 것은 아니다.
바인더 고분자의 용매로는 사용하고자 하는 바인더 고분자와 용해도 지수가 유사하며, 끓는점이 낮은 것이 바람직하다. 이는 균일한 혼합과 이후 용매 제거를 용이하게 하기 위해서이다. 사용 가능한 용매의 예로는 아세톤, 테트라하이드로퓨란, 메틸렌클로라이드, 클로로포름, 디메틸포름아미드, N-메틸-2-피롤리돈, 시클로헥산, 물 또는 이들의 혼합체 등이 있다.
또한, 상기 코팅층에 포함되는 바인더는 유리전이온도(T g) 값이 -50℃ 이상으로 코팅 및 건조 후 입자 형태에서 점접착 형태로 존재하는 수계 바인더일 수 있다. 예를 들어, 상기 바인더는 아크릴레이트(acrylate) 또는 스티렌(styrene)을 포함할 수 있다. 상기 수계 바인더를 사용할 경우, 접착력이 높은 코팅층 구현이 가능하고, 통기성 측면에서 유리하다.
상기 코팅층은 상기 기재의 일면 또는 양면에 배치될 수 있다. 예를 들어, 상기 기재의 일면에만 코팅층이 배치되고, 타면에서는 코팅층이 배치되지 않을 수 있다. 예를 들어, 상기 코팅층은 상기 기재의 양면에 배치될 수 있다. 상기 코팅층이 상기 기재의 양면에 배치됨에 의하여 바인더와 전극활물질층의 접착력이 더욱 향상될 수 있어 리튬전지의 부피 변화가 억제될 수 있다. 또한, 코팅층은 단층 또는 다층 구조일 수 있다. 다층구조는 2층 구조, 3층 구조, 4층 구조일 수 있으나 반드시 이러한 구조로 한정되지 않으며 요구되는 분리막 특성에 따라 선택될 수 있다.
상기 분리막의 양면에 배치된 코팅층이 동일한 조성을 가질 수 있다. 상기 분리막의 양면에 동일한 조성을 가지는 코팅층이 배치됨에 의하여 분리막의 일면 및 타면에서 동일한 접착력이 전극활물질층에 작용하여 리튬전지의 부피 변화가 균일하게 억제될 수 있다.
[분리막의 제조방법]
다른 구현예에 따른 분리막의 제조방법은, 상술한 분리막을 제조하는 방법으로서, (a) 제1 유기입자, 제2 유기입자 및 무기입자를 포함하는 슬러리를 준비하는 단계; 및 (b) 기재의 적어도 일 면에 상기 슬러리를 도포한 후, 건조하는 단계를 포함한다.
상기 (b) 과정 중, 상기 기재의 양면에 상기 슬러리를 도포하고, 이때, 상기 슬러리를 상기 기재의 양면에 동시에 도포할 수 있다.
상기 슬러리는 용융점(Tm)이 80 내지 130℃인 제3 유기입자를 추가로 더 포함할 수 있다.
상기 분리막은 슬러리를 기재 위에 도포함으로써 형성될 수 있다. 상기 슬러리를 도포하는 방법은 특별히 한정되지 않으며 당해 기술분야에서 사용될 수 있는 방법이라면 모두 가능하다. 예를 들어, 인쇄, 압축, 압입, 롤러 도포, 블레이드 도포, 쇄모도포, 디핑 도포, 분사 도포 또는 류연 도포 등의 방법에 의해 형성될 수 있다.
상기 다공성 코팅층 형성용 슬러리를 코팅한 직후에 또는 거의 동시에, 점착층 형성을 위해 수계 바인더 화합물의 수성 분산액을 다공성 코팅층에 도포할 수 있다. 또한, 상기 점착층 형성을 위한 분산액의 분산매로 물이 사용될 수 있다.
건조는 당업계에 공지되어 있는 방법을 사용할 수 있으며, 사용된 용매의 증기압을 고려한 온도 범위에서 오븐 또는 가열식 챔버를 사용하여 배치식 또는 연속식으로 가능하다. 상기 건조는 상기 슬러리 내에 존재하는 용매를 거의 제거하는 것이며, 이는 생산성 등을 고려하여 가능한 빠른 것이 바람직하며, 예컨대 1분 이하, 바람직하게는 30초 이하의 시간 동안 실시될 수 있다.
상기 분리막과 전극과의 접착 강도(peel strength)가 0.01 내지 3.0 N/m일 수 있다. 예를 들어, 분리막과 전극과의 접착 강도(peel strength)가 0.1 내지 2.0 N/m일 수 있다. 예를 들어, 분리막과 전극과의 접착 강도(peel strength)가 0.2 내지 1.5 N/m일 수 있다. 예를 들어, 분리막과 전극과의 접착 강도(peel strength)가 0.4 내지 1.5 N/m일 수 있다. 상기 접착 강도 범위에서 리튬전지의 부피 변화가 효과적으로 억제될 수 있다.
상기 분리막의 통기도가 50 내지 300 초(sec)/100cc일 수 있다. 예를 들어, 분리막의 통기도가 100 내지 200 초(sec)/100cc일 수 있다. 예를 들어, 분리막의 통기도가 130 내지 180 초(sec)/100cc일 수 있다. 예를 들어, 분리막의 통기도가 130 내지 150 초(sec)/100cc일 수 있다. 상기 통기도 범위에서 리튬전지의 내부 저항 증가가 효과적으로 억제될 수 있다.
상기 분리막과 전극과의 압착공정 후 막저항이 0.1 내지 3Ω일 수 있다. 예를 들어, 상기 분리막과 전극과의 압착공정 후 막저항이 0.3 내지 1Ω일 수 있다. 예를 들어, 상기 분리막과 전극과의 압착공정 후 막저항이 0.5 내지 0.8Ω일 수 있다. 막저항이 상기 범위 내일 경우, 리튬전지의 저항 증가를 억제할 수 있어 율특성 및 수명특성이 효과적으로 개선될 수 있다.
상기 분리막의 절연 파괴 전압(breakdown voltage, BDV)이 0.5 내지 3.0 kV일 수 있다. 예를 들어, 상기 분리막의 절연 파괴 전압이 0.7 내지 2.5 kV일 수 있다. 예를 들어, 상기 분리막의 절연 파괴 전압이 1.0 내지 2.0 kV일 수 있다. 절연 파괴 전압이 상기 범위 내일 경우, 이물질에 의한 파단(short) 불량 및 OCV 강하 등의 불량을 개선할 수 있다.
상기 분리막의 열수축 변화(%)는 50℃ 내지 150℃의 온도 범위에서 10% 이하일 수 있다. 예를 들어, 상기 분리막의 열수축 변화(%)는 50℃ 내지 150℃의 온도 범위에서 MD(Machine Direction) 및 TD(Transverse Direction) 방향 모두에서 10% 이하일 수 있다. 예를 들어, 상기 분리막의 열수축 변화(%)는 50℃ 내지 150℃의 온도 범위에서 MD(Machine Direction) 및 TD(Transverse Direction) 방향 모두에서 1% 내지 8%일 수 있다. 예를 들어, 상기 분리막의 열수축 변화(%)는 50℃ 내지 150℃의 온도 범위에서 MD(Machine Direction) 및 TD(Transverse Direction) 방향 모두에서 1% 내지 5%일 수 있다. 분리막의 열수축 변화(%)가 50℃ 내지 150℃의 온도 범위에서 상기 범위일 경우, 분리막의 열수축 특성을 억제할 수 있어 율특성 및 수명특성이 효과적으로 개선될 수 있다.
상기와 같은 제조방법에 의해 제조된 본 발명의 분리막은 리튬전지의 분리막으로서 사용될 수 있다.
[리튬 전지]
다른 구현예에 따른 리튬전지는 양극; 음극; 및 상기 양극과 음극 사이에 개재되는 상술한 분리막을 포함한다. 상기 리튬전지가 상술한 분리막을 포함함에 의하여 전극(양극 및 음극)과 분리막 사이의 접착력을 부여함으로서 리튬전지의 충방전 시의 부피 변화가 억제할 수 있으며, 접착으로 인한 양/음극간의 균일한 간격으로 인해 전위(potential) 균일성을 부여하여 전지 신뢰성을 향상 시킬 수 있다. 따라서, 리튬전지의 부피 변화에 수반되는 리튬전지의 열화가 억제되어 리튬전지의 안정성 및 수명 특성이 향상될 수 있다.
상기 리튬전지는 예를 들어 다음과 같은 방법으로 제조될 수 있다.
먼저, 음극활물질, 도전재, 바인더 및 용매가 혼합된 음극활물질 조성물이 준비된다. 상기 음극활물질 조성물이 금속 집전체 위에 직접 코팅되어 음극판이 제조된다. 다르게는, 상기 음극활물질 조성물이 별도의 지지체 상에 캐스팅된 다음, 상기 지지체로부터 박리된 필름이 금속 집전체상에 라미네이션되어 음극판이 제조될 수 있다. 상기 음극은 상기에서 열거한 형태에 한정되는 것은 아니고 상기 형태 이외의 형태일 수 있다.
상기 음극활물질은 비탄소계 재료일 수 있다. 예를 들어, 상기 음극활물질은 리튬과 합금을 형성할 수 있는 금속, 리튬과 합금을 형성할 수 있는 금속의 합금 및 리튬과 합금을 형성할 수 있는 금속의 산화물로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다.
예를 들어, 상기 리튬과 합금가능한 금속은 Si, Sn, Al, Ge, Pb, Bi, Sb Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13~16족 원소, 전이금속, 희토류 원소 또는 이들의 조합 원소이며, Si는 아님), Sn-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13~16족 원소, 전이금속, 희토류 원소 또는 이들의 조합 원소이며, Sn은 아님) 등일 수 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po, 또는 이들의 조합일 수 있다.
예를 들어, 상기 전이금속 산화물은 리튬 티탄 산화물, 바나듐 산화물, 리튬 바나듐 산화물 등일 수 있다.
예를 들어, 상기 비전이금속 산화물은 SnO 2, SiO x(0<x<2) 등일 수 있다.
구체적으로, 상기 음극활물질은 Si, Sn, Pb, Ge, Al, SiOx(0<x≤2), SnOy(0<y≤2), Li 4Ti 5O 12, TiO 2, LiTiO 3, Li 2Ti 3O 7로 이루어진 군에서 선택된 하나 이상일 수 있으나, 반드시 이들로 한정되지 않으며 비탄소계 음극활물질로서 당해 기술분야에서 사용되는 것이라면 모두 가능하다.
또한, 상기 비탄소계 음극활물질과 탄소계 재료의 복합체도 사용될 수 있으며 상기 비탄소계 재료 외에 탄소계 음극활물질을 추가적으로 포함할 수 있다.
상기 탄소계 재료로는 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 결정질 탄소는 무정형(non-shaped), 판상, 린편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연일 수 있으며, 상기 비정질 탄소는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치(mesophase pitch) 탄화물, 소성된 코크스 등일 수 있다.
상기 도전재로는 아세틸렌 블랙, 케첸블랙, 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말, 금속 섬유, 등을 사용할 수 있고, 또한 폴리페닐렌 유도체 등의 도전성 재료를 1종 또는 1종 이상을 혼합하여 사용할 수 있으나, 이들로 한정되지 않으며, 당해 기술분야에서 도전재로 사용될 수 있는 것이라면 모두 사용될 수 있다. 또한, 상술한 결정성 탄소계 재료가 도전재로 추가될 수 있다.
상기 바인더로는 비닐리덴 플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌, 카르복실메틸셀룰로우즈, 폴리아크릴아마이드, 폴리아크릴릭산, 폴리비닐알콜, 폴리아세테이트, 폴리비닐피롤리돈 및 그 혼합물 또는 스티렌 부타디엔 고무계 폴리머 등이 사용될 수 있으나, 이들로 한정되지 않으며 당해 기술분야에서 결합제로 사용될 수 있는 것이라면 모두 사용될 수 있다.
상기 용매로는 N-메틸피롤리돈, 아세톤, 에탄올 또는 물 등이 단독 또는 혼합하여 사용될 수 있으나, 이들로 한정되지 않으며 당해 기술분야에서 사용될 수 있는 것이라면 모두 사용될 수 있다.
상기, 음극활물질, 도전재, 바인더 및 용매의 함량은 리튬전지에서 통상적으로 사용되는 수준이다. 리튬전지의 용도 및 구성에 따라 상기 도전재, 바인더 및 용매 중 하나 이상이 생략될 수 있다.
한편, 상기 음극제조에 사용되는 바인더가 상기 분리막의 코팅층에 포함되는 바인더 조성물과 동일할 수 있다.
다음으로, 양극활물질, 도전재, 바인더 및 용매가 혼합된 양극활물질 조성물이 준비된다. 상기 양극활물질 조성물이 금속 집전체상에 직접 코팅 및 건조되어 양극판이 제조된다. 다르게는, 상기 양극활물질 조성물이 별도의 지지체상에 캐스팅된 다음, 상기 지지체로부터 박리된 필름이 금속 집전체상에 라미네이션되어 양극판이 제조될 수 있다.
상기 양극활물질로서 리튬코발트산화물, 리튬니켈코발트망간산화물, 리튬니켈코발트알루미늄산화물, 리튬철인산화물, 및 리튬망간산화물로 이루어진 군에서 선택된 하나 이상을 포함할 수 있으나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 이용 가능한 모든 양극활물질이 사용될 수 있다.
예를 들어, Li aA 1 - bB bD 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 및 0 ≤ b ≤ 0.5이다); Li aE 1 - bB bO 2 - cD c(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiE 2 - bB bO 4 - cD c(상기 식에서, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); Li aNi 1 -b-cCo bB cD α(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); Li aNi 1 -b- cCo bB cO 2 - αF α(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); Li aNi 1 -b- cCo bB cO 2 - αF 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); Li aNi 1 -b- cMn bB cD α(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); Li aNi 1 -b-cMn bB cO 2-αF α(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); Li aNi 1 -b- cMn bB cO 2 - αF 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); Li aNi bE cG dO 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0.001 ≤ d ≤ 0.1이다.); Li aNi bCo cMn dGeO 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤0.5, 0.001 ≤ e ≤ 0.1이다); Li aNiG bO 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다); Li aCoG bO 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다); Li aMnG bO 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다); Li aMn 2G bO 4(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다); QO 2; QS 2; LiQS 2; V 2O 5; LiV 2O 5; LiIO 2; LiNiVO 4; Li (3-f)J 2(PO 4) 3(0 ≤ f ≤ 2); Li (3-f)Fe 2(PO 4) 3(0 ≤ f ≤ 2); LiFePO 4의 화학식 중 어느 하나로 표현되는 화합물을 사용할 수 있다:
상기 화학식에 있어서, A는 Ni, Co, Mn, 또는 이들의 조합이고; B는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고; D는 O, F, S, P, 또는 이들의 조합이고; E는 Co, Mn, 또는 이들의 조합이고; F는 F, S, P, 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, 또는 이들의 조합이고; Q는 Ti, Mo, Mn, 또는 이들의 조합이고; I는 Cr, V, Fe, Sc, Y, 또는 이들의 조합이며; J는 V, Cr, Mn, Co, Ni, Cu, 또는 이들의 조합이다.
물론 이 화합물 표면에 코팅층을 갖는 것도 사용할 수 있고, 또는 상기 화합물과 코팅층을 갖는 화합물을 혼합하여 사용할 수도 있다. 이 코팅층은 코팅 원소의 옥사이드, 하이드록사이드, 코팅 원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트, 또는 코팅 원소의 하이드록시카보네이트의 코팅 원소 화합물을 포함할 수 있다. 이들 코팅층을 이루는 화합물은 비정질 또는 결정질일 수 있다. 상기 코팅층에 포함되는 코팅 원소로는 Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물을 사용할 수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극 활물질의 물성에 악영향을 주지 않는 방법(예를 들어 스프레이 코팅, 침지법 등)으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며, 이에 대하여는 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한 설명은 생략하기로 한다.
예를 들어, LiNiO 2, LiCoO 2, LiMn xO 2x(x=1, 2), LiNi 1 - xMn xO 2(0<x<1), LiNi 1 -x-yCo xMn yO 2 (0≤x≤0.5, 0≤y≤0.5), LiFeO 2, V 2O 5, TiS, MoS 등이 사용될 수 있다.
양극활물질 조성물에서 도전재, 바인더 및 용매는 상기 음극활물질 조성물의 경우와 동일한 것을 사용할 수 있다. 한편, 상기 양극활물질 조성물 및/또는 음극활물질 조성물에 가소제를 더 부가하여 전극판 내부에 기공을 형성하는 것도 가능하다.
상기 양극활물질, 도전재, 일반적인 바인더 및 용매의 함량은 리튬전지에서 통상적으로 사용하는 수준이다. 리튬전지의 용도 및 구성에 따라 상기 도전재, 일반적인 바인더 및 용매 중 하나 이상이 생략될 수 있다.
한편, 상기 양극제조에 사용되는 바인더가 상기 분리막의 코팅층에 포함되는 바인더 조성물과 동일할 수 있다.
다음으로, 상기 양극과 음극 사이에 상술한 분리막이 배치된다.
양극/분리막/음극을 포함하는 전극조립체에서 양극과 음극 사이에 배치된 분리막은 상술한 바와 같이 기재 및 상기 기재의 적어도 일 면에 배치된 코팅층을 포함하고, 상기 코팅층은 제1 유기입자, 제2 유기입자 및 무기입자를 포함하고, 상기 제1 유기입자의 평균 입경은 제2 유기입자 및 무기입자의 평균 입경보다 크고, 상기 제1 유기입자는 코팅층 표면으로부터 0.1㎛ 내지 0.5㎛의 높이로 돌출되어 있으며, 코팅층 표면적의 5% 이상 15% 이하에 해당하는 면적비로 코팅층 표면에 분포되어 있고, 상기 코팅층 내 유기입자 및 무기입자의 중량비는 20:80 내지 40:60인, 분리막이다.
분리막은 별도로 준비되어 양극과 음극 사이에 배치될 수 있다. 다르게는, 분리막은 양극/분리막/음극을 포함하는 전극조립체를 젤리롤 형태로 권취한 후, 젤리롤을 전지케이스 또는 파우치에 수용하고, 전지케이스 또는 파우치 수용된 상태에서 젤리롤을 가압하에서 열적 연화시켜며 초기 충전(pre-charging)하고, 충전된 젤리롤을 가압하에서 충방전시키는 화성 단계를 거침에 의하여 준비될 수 있다. 보다 구체적인 분리막의 제조방법은 상기의 분리막 제조방법 부분을 참조한다.
다음으로 전해질이 준비된다.
상기 전해질은 액체 또는 겔(gel) 상태일 수 있다.
예를 들어, 상기 전해질은 유기 전해액일 수 있다. 또한, 상기 전해질은 고체일 수 있다. 예를 들어, 보론산화물, 리튬옥시나이트라이드 등일 수 있으나 이들로 한정되지 않으며 당해 기술분야에서 고체전해질로 사용될 수 있은 것이라면 모두 사용가능하다. 상기 고체 전해질은 스퍼터링 등의 방법으로 상기 음극상에 형성될 수 있다.
예를 들어, 유기 전해액이 준비될 수 있다. 유기 전해액은 유기 용매에 리튬염이 용해되어 제조될 수 있다.
상기 유기 용매는 당해 기술분야에서 유기 용매로 사용될 수 있는 것이라면 모두 사용될 수 있다. 예를 들어, 프로필렌카보네이트, 에틸렌카보네이트, 플루오로에틸렌카보네이트, 부틸렌카보네이트, 디메틸카보네이트, 디에틸카보네이트, 메틸에틸카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트, 메틸이소프로필카보네이트, 디프로필카보네이트, 디부틸카보네이트, 에틸프로피오네이트, 프로필프로피오네이트, 벤조니트릴, 아세토니트릴, 테트라히드로퓨란, 2-메틸테트라히드로퓨란, γ-부티로락톤, 디옥소란, 4-메틸디옥소란, N,N-디메틸포름아미드, 디메틸아세트아미드, 디메틸설폭사이드, 디옥산, 1,2-디메톡시에탄, 설포란, 디클로로에탄, 클로로벤젠, 니트로벤젠, 디에틸렌글리콜, 디메틸에테르 또는 이들의 혼합물 등이다.
상기 리튬염도 당해 기술분야에서 리튬염으로 사용될 수 있는 것이라면 모두 사용될 수 있다. 예를 들어, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4, LiCF 3SO 3, Li(CF 3SO 2) 2N, LiC 4F 9SO 3, LiAlO 2, LiAlCl 4, LiN(C xF 2x + 1SO 2)(C yF 2y + 1SO 2)(단 x, y는 자연수), LiCl, LiI 또는 이들의 혼합물 등이다.
상기 리튬전지는 양극, 음극 및 분리막을 포함한다. 상술한 양극, 음극 및 분리막이 젤리롤 형태로 와인딩되거나 접혀서 전지케이스 또는 파우치에 수용된다. 이어서, 상기 전지케이스 또는 파우치에 유기 전해액이 주입되고 캡(cap) 어셈블리(6)로 밀봉되어 리튬전지가 완성된다. 상기 전지케이스는 원통형, 각형, 박막형 등일 수 있다. 예를 들어, 상기 리튬전지는 박막형전지일 수 있다. 상기 리튬전지는 리튬이온전지일 수 있다. 상기 리튬전지는 리튬폴리머전지일 수 있다.
상기 양극 및 음극 사이에 분리막이 배치되어 전극조립체가 형성될 수 있다. 상기 전극조립체가 바이셀 구조로 적층되거나 젤리롤 형태로 권취된 다음, 유기 전해액에 함침되고, 얻어진 결과물이 파우치에 수용되어 밀봉되면 리튬폴리머전지가 완성된다.
도 1에 보여지는 바와 같이, 파우치형 리튬이차폴리머 전지(100)의 구성은 전극 조립체(110)와, 전극 조립체(110)를 밀봉하여 수납하는 케이스(120)를 구비한다. 전극 조립체(110)는 전지부(111)와, 상기 전지부(111)의 두 전극과 각각 연결되는 양극탭(112) 및 음극탭(113)을 포함한다.
전지부(111)는 양극판(116)과, 음극판(117) 및 상기 전극판들(116,117)사이에 개재되는 분리막(118)를 포함한다. 전지부(111)의 조립은 양극판(116)과 음극판(117)사이에 분리막(118)를 개재한 후, 이들을 함께 권취시킴으로써 이루어진다.
전지부(111)의 양극판(116)은 양극탭(112)과 연결되고 음극판(117)은 음극탭(113)과 연결되어 양극탭(112)과 음극탭(113)은 각각 외부의 단자와 연결된다. 양극탭(112)과 음극탭(113)에는 각각 케이스(120)와의 절연을 실시하기 위하여 보호테이프(114)(115)가 감겨져 있다.
파우치 케이스(120)는 전지부(111)가 수납되는 하부 케이스(122)와 하부 케이스(122)의 상면을 밀폐하는 상부 케이스(121)로 이루어진다.
상,하부 케이스(121)(122)는 가장자리인 3변에 접합이 이루어지는 실링부(123)가 형성된다. 도 1에는 나타나 있지 않으나, 전지부(111)이 케이스(120)에 수납되고 이를 밀봉한 다음에는 고분자 전해질을 형성하기 위한 조성이 주입되고 이를 광 또는 열처리하여 폴리머 전해질이 구비된 리튬폴리머전지(100)가 제작된다.
또한, 상기 전극조립체는 복수개 적층되어 전지팩을 형성하고, 이러한 전지팩이 고용량 및 고출력이 요구되는 모든 기기에 사용될 수 있다. 예를 들어, 노트북, 스마트폰, 전기차량 등에 사용될 수 있다.
특히, 상기 리튬전지는 고율특성 및 수명특성이 우수하므로 전기차량(electric vehicle, EV)에 적합하다. 예를 들어, 플러그인하이브리드차량(plug-in hybrid electric vehicle, PHEV) 등의 하이브리드 차량에 적합하다.
이하의 실시예 및 비교예를 통하여 본 창의적 개념이 더욱 상세하게 설명된다. 단, 실시예는 본 창의적 개념을 예시하기 위한 것으로서 이들만으로 본 창의적 개념의 범위가 한정되는 것이 아니다.
(분리막의 제조)
제조예 1: 제1 유기입자의 코팅층 표면 면적비 : 9%
제2 유기입자로서 평균 입경(D50) 0.25㎛의 가교된 폴리메틸메타크릴레이트(PMMA, Nippon Shokubai) 23 중량부, 무기입자로서 평균 입경(D50) 0.7㎛의 보헤마이트(AlOOH, Nabaltec) 65 중량부 및 제1 유기입자로서 평균 입경(D50) 0.5㎛의 폴리스티렌 12 중량부를 혼합하여 코팅층 형성용 슬러리를 제조하였다. 상기 제1 유기입자의 60℃ 전해액에서 72시간 방치 후의 스웰링 정도가 800% 이며, 상기 제2 유기입자의 스웰링은 110% 미만이었다.
상기 코팅층 형성용 조성물을 두께 7.5㎛, 통기시간 115sec의 폴리에틸렌 다공성 기재 양면에 그라비아 코팅하여 다공성 기재의 양면에 두께 3.0㎛의 제1 유기입자, 제2 유기입자 및 무기입자의 블렌드 코팅층이 각각 배치된 분리막을 제조하였다. 상기 코팅층의 두께는 일면 기준으로 1.5㎛이었다. 분리막의 두께는 10.5㎛이었다. 이때, 상기 폴리에틸렌 다공성 기재를 100cc의 공기가 통과하는데 걸리는 시간은 145초(sec)였으며, 절연파괴전압(BDV)은 1.253 KV였다.
제조예 2: 제1 유기입자의 코팅층 표면 면적비 : 5%
제2 유기입자 8 중량부, 무기입자 80 중량부 및 제1 유기입자 12 중량부를 혼합한 것을 제외하고는 제조예 1과 동일한 방법으로 분리막을 제조하였다.
제조예 3: 제1 유기입자의 코팅층 표면 면적비 : 15%
제2 유기입자 10 중량부, 무기입자 67 중량부 및 제1 유기입자 23 중량부를 혼합한 것을 제외하고는 제조예 1과 동일한 방법으로 분리막을 제조하였다.
제조예 4: 무기입자로 평균입경 0.4㎛인 보헤마이트를 사용
무기입자로 평균입경(D50) 0.4㎛인 보헤마이트를 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 분리막을 제조하였다.
제조예 5: 코어-쉘 구조의 제2 유기입자 사용
쉘이 135℃에서 용융되는 코어-쉘 구조의 제2 유기입자를 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 분리막을 제조하였다.
비교제조예 1: 무기입자 미포함
제2 유기입자 80 중량부 및 제1 유기입자 20 중량부를 혼합한 것을 제외하고는 제조예 1과 동일한 방법으로 분리막을 제조하였다.
비교제조예 2: 제2 유기입자 미포함
무기입자 80 중량부 및 제1 유기입자 20 중량부를 혼합한 것을 제외하고는 제조예 1과 동일한 방법으로 분리막을 제조하였다.
비교제조예 3: 제1 유기입자 미포함
제2 유기입자 20 중량부 및 무기입자 80 중량부를 혼합한 것을 제외하고는 제조예 1과 동일한 방법으로 분리막을 제조하였다.
비교제조예 4: 제1 유기입자의 코팅층 표면 면적비 : 20%
제2 유기입자 20 중량부, 무기입자 50 중량부 및 제1 유기입자 30 중량부를 혼합한 것을 제외하고는 제조예 1과 동일한 방법으로 분리막을 제조하였다.
(리튬전지의 제조)
실시예 1
(음극의 제조)
평균 입경 25㎛의 흑연 입자(C1SR, 일본탄소) 97중량%, 스티렌-부타디엔 고무(SBR)바인더(Zeon) 1.5중량% 및 카르복시메틸셀룰로오스(CMC, NIPPON A&L) 1.5중량%를 혼합한 후 증류수에 투입하고 기계식 교반기를 사용하여 60분간 교반하여 음극활물질 슬러리를 제조하였다. 상기 슬러리를 닥터 블레이드를 사용하여 10㎛ 두께의 구리 집전체 위에 도포하고 100℃의 열풍건조기에서 0.5시간 동안 건조한 후 진공, 120℃의 조건에서 4시간 동안 다시 한번 건조하고, 압연(roll press)하여 음극판을 제조하였다.
(양극의 제조)
LiCoO 2 97중량%, 도전재로서 카본 블랙 분말 1.5중량% 및 폴리비닐리덴플루오라이드(PVdF, SOLVAY) 1.5중량%를 혼합하여 N-메틸-2-피롤리돈 용매에 투입한 후 기계식 교반기를 사용하여 30분간 교반하여 양극활물질 슬러리를 제조하였다. 상기 슬러리를 닥터 블레이드를 사용하여 20㎛ 두께의 알루미늄 집전체 위에 도포하고 100℃의 열풍건조기에서 0.5시간 동안 건조한 후 진공, 120℃의 조건에서 4시간 동안 다시 한번 건조하고, 압연(roll press)하여 양극판을 제조하였다.
(전극 조립체 젤리롤)
상기에서 제조한 양극판과 음극판 사이에 상기 제조예 1에서 제조된 분리막을 개재한 후 권취하여 전극조립체 젤리롤을 준비하였다. 젤리롤을 파우치에 삽입하고 전해액을 주입한 후, 파우치를 진공밀봉하였다.
전해액은 1.3M의 LiPF 6가 에틸렌카보네이트(EC)/에틸메틸카보네이트 (EMC)/디에틸카보네이트(DEC)의 2/4/4 혼합용매에 용해된 것을 사용하였다.
파우치에 삽입된 젤리롤에 250kgf/cm 2의 압력을 가하면서 1시간 동안 70℃의 온도로 열적 연화(thermal softening)시키면서 SOC의 70%까지 초기 충전(pre-cahrging)시켰다.
이어서, 상기 파우치에서 가스를 제거하고(degassing), 상기 젤리롤에 200kgf/cm 2의 압력을 가하면서 1시간 동안 45℃의 온도에서 0.2C rate의 전류로 전압이 4.3V에 이를 때까지 정전류 충전하고, 4.3V를 유지하면서 전류가 0.05C가 될 때까지 정전압 충전하였다. 이어서, 방전시에 전압이 3.0V에 이를 때까지 0.2C의 정전류로 방전하는 사이클을 5회 반복하여 화성 단계를 수행하였다.
실시예 2 내지 5
제조예 2 내지 5에서 제조된 분리막을 각각 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬전지를 제조하였다.
비교예 1 내지 4
비교제조예 1 내지 4에서 제조된 분리막을 각각 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬전지를 각각 제조하였다.
평가예 1: 분리막의 표면 모폴러지 측정
제조예 1의 분리막에 대하여 표면 및 단면 이미지를 주사전자현미경(SEM)으로 측정하였고, 이의 결과를 각각 도 3 및 도 4에 나타내었다.
도 3 및 도 4에 나타난 바와 같이, 제1 유기입자가 엠보싱 형태로 돌출되었음을 확인할 수 있다.
또한, 제조예 1 내지 5 및 비교제조예 1 내지 4의 분리막에 대하여 코팅층의 모폴러지 특성을 주사전자현미경(SEM) 이미지로부터 측정하였고, 이의 결과를 표 1에 나타내었다.
제1 유기입자의 면적비(%) 제1 유기입자의 면적 당 개수(면적: 13㎛×9㎛)
제조예 1 9% 53
제조예 2 5% 30
제조예 3 15% 86
제조예 4 9% 51
제조예 5 9% 52
비교제조예 1 14% 79
비교제조예 2 16% 89
비교제조예 3 - -
비교제조예 4 20% 116
표 1에 나타난 바와 같이, 제1 유기입자, 제2 유기입자 및 무기입자를 모두 포함하는 제조예 1 내지 3의 분리막의 경우, 제1 유기입자의 면적비가 코팅층 표면적의 각각 9%, 5% 및 15%인 것으로 나타났다. 이때 제1 유기입자의 면적(13㎛×9㎛) 당 개수는 각각 53, 30 및 86 개인 것으로 나타났다. 또한, 제조예 4 및 5의 분리막의 경우, 제1 유기입자의 면적비가 둘 다 코팅층 표면적의 9%로 나타났다.
이에 반해, 비교제조예 4의 분리막의 경우 제1 유기입자의 면적비가 코팅층 표면적의 20%인 것으로 나타났고, 제1 유기입자의 면적(13㎛×9㎛) 당 개수도 116 개로 높았다.
평가예 2: 분리막의 내열성 평가
제조예 1의 분리막 및 7.5㎛ 두께의 폴리에틸렌 다공성 기재에 대하여 열기계분석기(Thermomechanical Analysis, TMA)를 이용하여 온도 증가에 따른 MD(Machine Direction) 및 TD(Transverse Direction) 방향으로 분리막의 열수축 변화(%)를 측정하였고, 이의 결과를 도 5에 나타내었다. TA 사의 Q400을 이용하였고, 5mm의 시료 크기, 0.015N의 측정 로드(load) 및 5℃/분(min)의 승온 속도에서 측정하였다.
도 5에 나타난 바와 같이, 제1 유기입자, 제2 유기입자 및 무기입자를 모두 포함하는 제조예 1의 분리막은 MD 및 TD 방향 모두에서 폴리에틸렌 다공성 기재에 비하여 열수축 변화가 억제되는 것으로 나타났다.
또한, 제조예 1 내지 5 및 비교제조예 1 내지 4의 분리막에 대하여 상기 측정방법과 동일하게 하여 분리막의 열수축 변화를 측정하였고, 이의 결과를 표 2에 나타내었다.
평가예 3: 분리막의 셧다운 멜트다운 특성 평가
제조예 1 및 제조예 5의 분리막, 및 7.5㎛ 두께의 폴리에틸렌 다공성 기재에 대하여 셧다운(shut down) 및 멜트다운(melt down) 특성을 측정하였고, 이의 결과를 도 6에 나타내었다.
도 6에 나타난 바와 같이, 쉘이 135℃에서 용융되는 코어-쉘 구조의 제2 유기입자를 포함하는 제조예 5의 분리막은 135℃에서부터 셧다운이 관찰되었다. 또한, 제1 유기입자, 제2 유기입자 및 무기입자를 모두 포함하는 제조예 1 및 제조예 5의 분리막은 폴리에틸렌 다공성 기재에 비하여 내열 특성이 우수하여 멜트다운이 발생하지 않았다.
평가예 4: 분리막의 절연성 평가
제조예 1 내지 5 및 비교제조예 1 내지 4의 분리막에 대하여 절연파괴 전압(breakdown voltage, BDV)을 평가하였고, 이의 결과를 하기 표 2에 나타내었다. 여기서, 절연파괴 전압(BDV)은 SUS 플레이트 사이에 분리막을 놓고 KIKISUI사 TOS5301을 사용하여 AC 모드로 전류를 0.3mA로 고정하고, 전압은 0.3kV까지 8초(sec)의 승압속도 높여주면서 승압이 멈추는(파단, short) 지점의 전압을 측정하였다.
평가예 5: 분리막의 통기도 평가
화성 단계를 거친 실시예 1 내지 5 및 비교예 1 내지 4의 파우치에서 분리막을 분리하여 통기도를 평가하였고, 이의 결과를 하기 표 2에 나타내었다. 여기서, 통기도는 측정 장비(EG01-55-1MR, 아사히 세이코)를 통해 100cc의 공기가 분리막을 통과하는데 걸리는 시간(단위: 초)을 측정하는 방식으로 측정하였다.
평가예 6: 전극과 분리막의 막저항 및 접착력 평가
제조예 1 내지 5 및 비교제조예 1 내지 4의 분리막에 대하여 전극과 분리막의 막저항 및 접착력을 평가하였고, 이의 결과를 하기 표 2에 나타내었다. 여기서, 분리막과 전극의 막저항 및 접착력을 측정하기 위하여, 이형 필름(film)/분리막/전극으로 적층된 전극조립체를 파우치에 삽입하고 전해액을 주입하였다. 상기 파우치에서 가스를 제거하고(degassing)하고 실링한 후, 85℃에서 400 kgf/cm 2의 압력을 3분 동안 가하였다. UTM을 이용하여 접착력을 측정하였다.
내열성(열수축 변화(%)) 절연성(BDV, kV) 통기도(sec/100cc) 막저항(Ω) 접착력(N/m)
MD TD
실시예 1 3 4 1.253 145 0.63 0.238
실시예 2 2 1 1.089 140 0.51 0.116
실시예 3 8 7 1.136 143 0.76 0.452
실시예 4 1 1 1.271 138 0.59 0.312
실시예 5 10 8 1.276 146 0.62 0.268
비교예 1 55 55 1.481 173 0.88 0.394
비교예 2 12 11 1.054 142 0.49 0.219
비교예 3 1 1 1.185 135 0.45 -
비교예 4 35 41 1.299 149 1.1 0.862
표 2에 나타난 바와 같이, 제1 유기입자, 제2 유기입자 및 무기입자를 모두 포함하는 실시예 1 내지 5의 분리막은 비교예 1 내지 4의 분리막에 비해 내열성, 절연성, 통기도, 막저항 및 접착력에서 모두 향상된 결과를 나타내었다.
이에 반해, 무기입자를 포함하지 않는 비교예 1, 제2 유기입자를 포함하지 않는 비교예 2, 및 제1 유기입자의 면적비가 20%인 비교예 4의 분리막의 경우, MD(Machine Direction) 및 TD(Transverse Direction) 방향 모두에서 열수축 변화가 크게 나타났다.
또한, 무기입자를 포함하지 않는 비교예 1의 분리막의 경우, 통기도가 나쁘게 나타났으며, 제1 유기입자의 면적비가 20%인 비교예 4의 분리막의 경우, 막저항 및 접착력이 매우 높게 나타났다.
또한, 제1 유기입자를 포함하지 않는 비교예 3의 분리막의 경우, 전극과 분리막의 접착력이 측정되지 않았다.
결론적으로, 본 발명의 일 실시예에 따른 분리막의 경우, 종래의 분리막에 대하여, 분리막의 내열성, 절연성, 통기도, 막저항 및 접착력에서 모두 우수한 특성을 나타내었다.
평가예 7: 충방전 사이클 특성 평가
실시예 1 및 비교예 4의 4.4V 리튬전지를 25℃ 및 1atm에서 1,50,100,150,200,250,300,350,400 cycle에서 0.2C 충전에 0.02C 컷오프 및 0.2C 방전에 2.75V 컷오프 조건을 사용하고, 나머지 cycle 조건에서는 1C 충전에 0.1C 컷오프 및 1C 방전에 3V 컷오프 조건을 사용하여 사이클 충방전을 수행하였다. 이의 결과를 도 7에 나타내었다.
도 7에 나타난 바와 같이, 제1 유기입자의 코팅층 표면적비가 9%인 실시예 1의 리튬전지는 제1 유기입자의 코팅층 표면적비가 20%인 비교예 4의 리튬전지에 비해 우수한 충방전 사이클 특성을 나타내었다.
일 측면에 따르면 신규한 구성의 코팅층을 포함하는 분리막을 채용함에 의하여 향상된 전극과의 접착력, 내열성, 절연성 및 통기도를 갖고, 리튬전지의 수명 특성이 향상될 수 있다.

Claims (15)

  1. 기재 및 상기 기재의 적어도 일 면에 배치된 코팅층을 포함하고,
    상기 코팅층은 제1 유기입자, 제2 유기입자 및 무기입자를 포함하고,
    상기 제1 유기입자의 평균 입경은 제2 유기입자 및 무기입자의 평균 입경보다 크고,
    상기 제1 유기입자는 코팅층 표면으로부터 0.1 내지 0.5㎛의 높이로 돌출되어 있으며, 코팅층 표면적의 5% 이상 15% 이하에 해당하는 면적비로 코팅층 표면에 분포되어 있고,
    상기 코팅층 내 유기입자 및 무기입자의 중량비는 20:80 내지 40:60인, 분리막.
  2. 제1항에 있어서
    상기 제1 유기입자의 평균 입경은 0.3 내지 0.7㎛인, 분리막.
  3. 제1항에 있어서,
    상기 제1 유기입자의 유리전이온도(T g)는 50 내지 70℃인, 분리막.
  4. 제1항에 있어서,
    상기 제1 유기입자는 폴리스티렌, 폴리비닐리덴 플루오라이드, 폴리메틸메타크릴레이트, 폴리아크릴로니트릴, 폴리비닐리돈, 폴리비닐아세테이트, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 아크릴레이트 및 아조디카본아마이드로 이루어진 군에서 선택된 1종 이상인, 분리막.
  5. 제1항에 있어서
    상기 제2 유기입자의 평균 입경은 0.15 내지 0.35㎛인, 분리막.
  6. 제1항에 있어서,
    상기 제2 유기입자는 가교된 폴리스티렌 또는 가교된 폴리메틸메타크릴레이트인, 분리막.
  7. 제1항에 있어서,
    상기 제1 유기 입자 또는 제2 유기입자는 코어-쉘 구조를 갖는, 분리막.
  8. 제1항에 있어서,
    상기 코팅층 내 제1 유기입자 및 제2 유기입자의 중량비는 30:70 내지 60:40인, 분리막.
  9. 제1항에 있어서,
    상기 무기입자의 평균 입경은 0.2 내지 0.4㎛인, 분리막.
  10. 제1항에 있어서,
    상기 무기입자는 보헤마이트(boehmite), 알루미나(Al 2O 3), BaSO 4, MgO, Mg(OH) 2, 클레이(clay), 실리카(SiO 2), 및 TiO 2로 이루어진 군에서 선택된 1종 이상인, 분리막.
  11. 제1항에 있어서,
    상기 코팅층의 일면의 두께는 0.3 내지 5.0㎛인, 분리막.
  12. 제1항에 있어서,
    상기 코팅층은 용융점(Tm)이 80 내지 130℃인 제3 유기입자를 더 포함하는, 분리막.
  13. 제1항에 있어서,
    상기 코팅층은 수계 바인더를 더 포함하는, 분리막.
  14. 양극;
    음극; 및
    상기 양극과 음극 사이에 개재되는 제1항 내지 제13항 중 어느 한 항에 따른 분리막을 포함하는 리튬전지.
  15. 제14항에 있어서,
    상기 분리막은 음극과의 접착 강도(peel strength)가 0.01 내지 3.0 N/m이고, 통기도가 50 내지 300 초(sec)/100cc이고, 절연 파괴 전압(breakdown voltage, BDV)이 0.5 내지 3.0 kV이며, 열수축 변화(%)가 50℃ 내지 150℃의 온도 범위에서 10% 이하인, 리튬전지.
PCT/KR2019/000650 2018-02-26 2019-01-16 분리막, 이의 제조방법 및 이를 포함하는 리튬전지 WO2019164130A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19757163.1A EP3761399A4 (en) 2018-02-26 2019-01-16 SEPARATOR, PROCESS FOR ITS MANUFACTURING AND LITHIUM BATTERY THEREFORE
CN201980025133.5A CN111954943B (zh) 2018-02-26 2019-01-16 隔板、用于制造其的方法和包括其的锂电池
US16/975,670 US20210005858A1 (en) 2018-02-26 2019-01-16 Separator, method for manufacturing same, and lithium battery including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180023100A KR102210884B1 (ko) 2018-02-26 2018-02-26 분리막, 이의 제조방법 및 이를 포함하는 리튬전지
KR10-2018-0023100 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019164130A1 true WO2019164130A1 (ko) 2019-08-29

Family

ID=67688273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000650 WO2019164130A1 (ko) 2018-02-26 2019-01-16 분리막, 이의 제조방법 및 이를 포함하는 리튬전지

Country Status (5)

Country Link
US (1) US20210005858A1 (ko)
EP (1) EP3761399A4 (ko)
KR (1) KR102210884B1 (ko)
CN (1) CN111954943B (ko)
WO (1) WO2019164130A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540690A (zh) * 2020-04-13 2021-10-22 三星Sdi株式会社 隔板和包括隔板的锂电池
CN115023854A (zh) * 2020-02-12 2022-09-06 日本瑞翁株式会社 电化学元件用层叠体和电化学元件
JP2023508242A (ja) * 2020-11-30 2023-03-01 寧徳時代新能源科技股▲分▼有限公司 セパレータ、それを含む二次電池および装置
JP2023508241A (ja) * 2020-11-30 2023-03-01 寧徳時代新能源科技股▲分▼有限公司 セパレータ、その製造方法およびそれに関連する二次電池、電池モジュール、電池パックならびに装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102209826B1 (ko) 2018-03-06 2021-01-29 삼성에스디아이 주식회사 분리막, 이의 제조방법 및 이를 포함하는 리튬전지
WO2019226996A1 (en) 2018-05-25 2019-11-28 American Nano, LLC Batteries incorporating silica fibers
WO2022027550A1 (zh) 2020-08-07 2022-02-10 宁德时代新能源科技股份有限公司 聚合物集流体、其制备方法及其相关的二次电池、电池模块、电池包和装置
CN115836436A (zh) * 2020-11-30 2023-03-21 宁德时代新能源科技股份有限公司 一种隔离膜、其制备方法及其相关的二次电池、电池模块、电池包和装置
KR102582604B1 (ko) * 2020-11-30 2023-09-22 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 분리막, 그 제조 방법 및 이와 관련된 이차 전지, 배터리 모듈, 배터리 팩 및 장치
CN115803960A (zh) 2020-11-30 2023-03-14 宁德时代新能源科技股份有限公司 一种隔离膜、含有它的二次电池及其相关的电池模块、电池包和装置
EP4071914A1 (en) * 2020-11-30 2022-10-12 Contemporary Amperex Technology Co., Limited Separator, preparation method therefor and related secondary battery thereof, battery module, battery pack and device
CN113675531A (zh) * 2021-07-13 2021-11-19 宁德新能源科技有限公司 隔离膜、锂离子电芯及用电装置
CN113708008A (zh) * 2021-07-29 2021-11-26 惠州锂威新能源科技有限公司 一种隔离膜及其制备方法、应用
WO2023133882A1 (zh) * 2022-01-17 2023-07-20 宁德时代新能源科技股份有限公司 隔膜及其相关的二次电池、电池模块、电池包和用电装置
CN114094283B (zh) * 2022-01-20 2022-04-08 江苏卓高新材料科技有限公司 粘结性与透气性俱佳的隔膜及其制备方法
CN117957710A (zh) * 2022-01-28 2024-04-30 株式会社Lg新能源 包含隔膜的锂二次电池
WO2024138743A1 (zh) * 2022-12-30 2024-07-04 宁德时代新能源科技股份有限公司 隔离膜及其制备方法、电池和用电装置
KR20230167125A (ko) * 2022-03-25 2023-12-07 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 분리막 및 그 제조 방법, 전지 및 전기 장치
CN114716907A (zh) * 2022-04-19 2022-07-08 安徽利科新材料科技有限公司 一种生物基聚合物复合pmma的锂电池隔膜涂敷液的制备方法及其应用
KR20240141480A (ko) * 2023-03-20 2024-09-27 에스케이이노베이션 주식회사 분리막 및 상기 분리막을 포함하는 전기화학소자
CN118693461A (zh) * 2024-08-26 2024-09-24 宁德卓高新材料科技有限公司 一种pmma涂覆隔膜及其制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130099463A (ko) * 2012-02-29 2013-09-06 주식회사 엘지화학 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
KR20140135956A (ko) * 2012-03-06 2014-11-27 소니 주식회사 세퍼레이터, 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템
KR20160117109A (ko) * 2015-03-30 2016-10-10 에스케이이노베이션 주식회사 접착성과 통기성이 우수한 이차전지용 분리막 및 이의 제조방법
KR20160118979A (ko) * 2015-04-02 2016-10-12 주식회사 엘지화학 리튬 이차전지용 세퍼레이터 및 그의 제조방법
KR20170007210A (ko) * 2015-07-10 2017-01-18 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4676728B2 (ja) * 2004-08-30 2011-04-27 株式会社巴川製紙所 電子部品用セパレータ及びその製造方法
JP5225173B2 (ja) * 2009-03-30 2013-07-03 三菱製紙株式会社 リチウムイオン二次電池用セパレータ
JP6015676B2 (ja) * 2012-01-19 2016-10-26 ソニー株式会社 セパレータ、非水電解質電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
KR101541473B1 (ko) * 2012-11-30 2015-08-05 주식회사 엘지화학 표면 특성이 다른 무기물 입자의 이중 다공성 코팅층을 포함하는 이차전지용 분리막, 이를 포함하는 이차전지, 및 상기 분리막의 제조방법
KR102253020B1 (ko) * 2014-11-19 2021-05-14 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
KR102343231B1 (ko) * 2014-11-19 2021-12-23 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
HUE054762T2 (hu) * 2015-03-20 2021-09-28 Zeon Corp Összetétel nemvizes másodlagos akkumulátor funkcionális rétegéhez, funkcionális réteg nemvizes másodlagos akkumulátorokhoz és nemvizes másodlagos akkumulátor
CN108140784A (zh) * 2015-07-22 2018-06-08 赛尔格有限责任公司 改进的膜、隔板、电池和方法
KR102228628B1 (ko) * 2016-03-31 2021-03-15 주식회사 엘지화학 접착층을 포함하는 전기화학소자용 분리막 및 이를 포함하는 전극 조립체
EP3487946A4 (en) * 2016-07-22 2020-03-18 Celgard LLC IMPROVED COATINGS, COATED SEPARATORS, BATTERIES AND RELATED METHODS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130099463A (ko) * 2012-02-29 2013-09-06 주식회사 엘지화학 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
KR20140135956A (ko) * 2012-03-06 2014-11-27 소니 주식회사 세퍼레이터, 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템
KR20160117109A (ko) * 2015-03-30 2016-10-10 에스케이이노베이션 주식회사 접착성과 통기성이 우수한 이차전지용 분리막 및 이의 제조방법
KR20160118979A (ko) * 2015-04-02 2016-10-12 주식회사 엘지화학 리튬 이차전지용 세퍼레이터 및 그의 제조방법
KR20170007210A (ko) * 2015-07-10 2017-01-18 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115023854A (zh) * 2020-02-12 2022-09-06 日本瑞翁株式会社 电化学元件用层叠体和电化学元件
CN113540690A (zh) * 2020-04-13 2021-10-22 三星Sdi株式会社 隔板和包括隔板的锂电池
EP3896782A3 (en) * 2020-04-13 2021-10-27 Samsung SDI Co., Ltd. Separator and lithium battery including the same
CN113540690B (zh) * 2020-04-13 2024-01-05 三星Sdi株式会社 隔板和包括隔板的锂电池
JP2023508242A (ja) * 2020-11-30 2023-03-01 寧徳時代新能源科技股▲分▼有限公司 セパレータ、それを含む二次電池および装置
JP2023508241A (ja) * 2020-11-30 2023-03-01 寧徳時代新能源科技股▲分▼有限公司 セパレータ、その製造方法およびそれに関連する二次電池、電池モジュール、電池パックならびに装置
JP7446459B2 (ja) 2020-11-30 2024-03-08 寧徳時代新能源科技股▲分▼有限公司 セパレータ、その製造方法およびそれに関連する二次電池、電池モジュール、電池パックならびに装置
JP7451745B2 (ja) 2020-11-30 2024-03-18 寧徳時代新能源科技股▲分▼有限公司 セパレータ、それを含む二次電池および装置

Also Published As

Publication number Publication date
KR20190102572A (ko) 2019-09-04
EP3761399A1 (en) 2021-01-06
EP3761399A4 (en) 2021-12-01
KR102210884B1 (ko) 2021-02-02
US20210005858A1 (en) 2021-01-07
CN111954943A (zh) 2020-11-17
CN111954943B (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
WO2019164130A1 (ko) 분리막, 이의 제조방법 및 이를 포함하는 리튬전지
WO2019009564A1 (ko) 분리막, 이를 채용한 리튬전지 및 분리막의 제조 방법
KR20190105881A (ko) 분리막, 이의 제조방법 및 이를 포함하는 리튬전지
WO2012060604A2 (ko) 내열성 분리막, 전극 조립체 및 이를 이용한 이차 전지와 그 제조방법
WO2016159720A1 (ko) 리튬 이차전지용 복합 분리막 및 이의 제조방법
WO2020060310A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020055217A1 (ko) 전기화학소자용 세퍼레이터 및 이의 제조방법
WO2016159724A1 (ko) 리튬 이차전지용 융착형 복합 분리막 및 이의 제조방법
WO2019156410A1 (ko) 리튬이차전지용 분리막 및 이를 포함하는 리튬이차전지
WO2020013671A1 (ko) 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
WO2020159296A1 (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2019103545A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020091537A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2021210922A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
WO2021086088A1 (ko) 개선된 전극접착력 및 저항 특성을 갖는 리튬이차전지용 분리막 및 상기 리튬이차전지용 분리막을 포함하는 리튬이차전지
WO2019132456A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2022240225A1 (ko) 세퍼레이터 코팅용 조성물, 이를 이용한 세퍼레이터의 제조 방법, 세퍼레이터 및 이를 채용한 리튬 전지
WO2022045858A1 (ko) 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
WO2021172774A1 (ko) 탭 상에 형성된 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2021020887A1 (ko) 전기화학소자용 복합 분리막 및 이를 포함하는 전기화학소자
WO2022240275A1 (ko) 세퍼레이터 코팅용 조성물, 이를 이용한 세퍼레이터의 제조 방법, 세퍼레이터 및 이를 채용한 리튬 전지
WO2019240501A1 (ko) 무기 코팅층을 포함하는 전기화학소자용 분리막 및 이를 제조하는 방법
WO2019078649A1 (ko) 전극 조립체 및 상기 전극 조립체를 포함하는 전기화학소자
WO2022119408A1 (ko) 음극의 제조방법
WO2022145993A1 (ko) 음극 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019757163

Country of ref document: EP

Effective date: 20200928