WO2019163346A1 - 空気調和機 - Google Patents
空気調和機 Download PDFInfo
- Publication number
- WO2019163346A1 WO2019163346A1 PCT/JP2019/001444 JP2019001444W WO2019163346A1 WO 2019163346 A1 WO2019163346 A1 WO 2019163346A1 JP 2019001444 W JP2019001444 W JP 2019001444W WO 2019163346 A1 WO2019163346 A1 WO 2019163346A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- indoor
- temperature
- control unit
- indoor temperature
- air conditioner
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/74—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/86—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
Definitions
- This disclosure relates to air conditioners.
- Patent Document 1 JP-A-5-10625
- the air conditioner starts the compressor and sets the blower in the indoor unit (hereinafter referred to as “indoor blower”) to the high wind mode to perform the heating operation. do.
- the temperature reading value of the room temperature sensor exceeds the room temperature set value in a shorter time than when the indoor fan does not operate in the strong wind mode. At this time, when the heating operation is temporarily stopped and the temperature reading value of the room temperature sensor is lower than the room temperature setting value again, the heating operation is resumed, and thus the problem of frequent start / stop occurs.
- This disclosure provides an air conditioner that can suppress an increase in the number of starts and stops.
- the air conditioner of this disclosure is A refrigerant circuit having a compressor, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger, in which the refrigerant circulates; An indoor fan for blowing air to the indoor heat exchanger; An indoor temperature sensor for detecting the indoor temperature; A control device, The control device During cooling operation, when the room temperature detected by the room temperature sensor is equal to or lower than the room temperature set by the user, the cooling operation is temporarily stopped, while during heating operation, the room temperature detected by the room temperature sensor is A first operation control unit for temporarily stopping the heating operation when the temperature is equal to or higher than the indoor temperature set by the user; After the cooling operation is temporarily stopped by the first operation control unit, when the room temperature detected by the room temperature sensor is higher than the room temperature set by the user, or the heating operation is performed by the first operation control unit When the indoor temperature detected by the indoor temperature sensor is lower than the indoor temperature set by the user after the suspension is stopped, the determination unit determines whether the indoor air conditioning load is equal to or lower than a predetermined air conditioning load.
- the indoor fan rotates at a rotational speed lower than the rotational speed that can be manually set by the user, and the compressor A second operation control unit that restarts the cooling operation or the heating operation under a condition of driving at a predetermined frequency.
- the cooling operation or the heating operation is restarted by the second operation control unit according to the determination result of the determination unit.
- the cooling operation or the heating operation is restarted under the condition that the indoor fan rotates at a rotation speed lower than the rotation speed that can be manually set by the user, an increase in the number of start / stop times can be suppressed.
- the control device is configured to restart the cooling operation or the heating operation temporarily stopped by the first operation control unit when the determination unit determines that the indoor air conditioning load exceeds a predetermined air conditioning load.
- the predetermined frequency is equal to or lower than a frequency used for driving the compressor in the cooling operation or the heating operation restarted by the third operation control unit.
- the frequency used for driving the compressor in the cooling operation or the heating operation restarted by the third operation control unit when the cooling operation or the heating operation is restarted by the second operation control unit, the frequency used for driving the compressor in the cooling operation or the heating operation restarted by the third operation control unit.
- the compressor is driven. Therefore, the occurrence of dew can be suppressed during the cooling operation, while the occurrence of a short circuit can be suppressed during the heating operation.
- the predetermined frequency is the lowest frequency among the frequencies for operating the compressor.
- the compressor when the cooling operation or the heating operation is resumed by the second operation control unit, the compressor is driven at the lowest frequency among the frequencies for operating the compressor.
- production of a circuit can be heightened.
- the cooling operation or heating operation that is temporarily stopped by the first operation control unit is an automatic cooling operation or automatic heating operation that automatically changes the rotation speed of the indoor fan according to the indoor temperature detected by the indoor temperature sensor. is there.
- the first cooling unit can surely temporarily stop the automatic cooling operation or the automatic heating operation.
- the control device After the cooling operation is restarted by the second operation control unit, the control device is configured such that the room temperature detected by the room temperature sensor is higher than the room temperature set by the user, or the second operation control.
- the control mode of the rotational speed of the indoor fan and the frequency of the compressor is set.
- a control mode changing unit for changing to the control mode of the cooling operation or the heating operation temporarily stopped by the first operation control unit.
- control mode changing unit can suppress an increase in the difference between the room temperature and the set temperature after the cooling operation is restarted by the second operation control unit.
- the rated cooling output is less than 2.2 kW.
- the rated cooling capacity is less than 2.2 kW, air conditioning suitable for a narrow space such as a washroom or a kitchen can be performed.
- FIG. 1 is a configuration diagram of a multi-type air conditioner including a low-capacity indoor unit 20C according to an embodiment of the present disclosure.
- the multi-type air conditioner includes an indoor unit 20A having an indoor heat exchanger 4A and an indoor fan 5A, an indoor unit 20B having an indoor heat exchanger 4B and an indoor fan 5B, and indoor heat exchange.
- a low-capacity indoor unit 20C having a unit 4C and an indoor fan 5C, and an outdoor unit 10 connected to the indoor units 20A and 20B and the low-capacity indoor unit 20C via a refrigerant pipe.
- the indoor fans 5A, 5B, 5C send air to the indoor heat exchangers 4A, 4B, 4C.
- the outdoor unit 10 corresponds to a multi-type air conditioner to which a plurality of indoor units can be connected, and the low-capacity indoor unit 20C can operate as an indoor unit of the multi-type air conditioner.
- 1 is a compressor
- 2 is a four-way switching valve with one end connected to the discharge side of the compressor
- 3 is an outdoor heat exchanger with one end connected to the other end of the four-way switching valve
- EVA , EVB, EVC are electric expansion valves having one end connected to the other end of the outdoor heat exchanger 3, respectively.
- An exchanger 6 is an accumulator in which one end is connected to the other end of the indoor heat exchangers 4A, 4B, and 4C via the four-way switching valve 2 and the other end is connected to the suction side of the compressor 1.
- Indoor fans 5A, 5B, 5C are arranged in the vicinity of the indoor heat exchangers 4A, 4B, 4C, respectively.
- the electric expansion valve EVC is an example of an expansion mechanism.
- a plurality of refrigerant pipe connection portions 7A, 7B, 7C are connected to the other ends of the electric expansion valves EVA, EVB, EVC, and the plurality of refrigerant pipe connection portions 7A, 7B, 7C are connected to the other refrigerant piping connection ports (refrigerant pipes).
- One end of each of the indoor heat exchangers 4A, 4B, 4C is connected.
- a plurality of refrigerant pipe connection portions 8A, 8B, and 8C are connected to the other ends of the indoor heat exchangers 4A, 4B, and 4C through connection pipes (refrigerant pipes).
- the compressor 1, the four-way switching valve 2, the outdoor heat exchanger 3, the electric expansion valves EVA, EVB, EVC, the indoor heat exchangers 4A, 4B, 4C, and the accumulator 6 constitute a refrigerant circuit.
- This refrigerant circuit is filled with, for example, a slightly flammable R32 refrigerant.
- a discharge pipe temperature sensor 11 is provided on the discharge side of the compressor 1.
- the outdoor heat exchanger 3 is provided with an outdoor heat exchanger temperature sensor 12 for detecting the outdoor heat exchanger temperature, and an outdoor temperature sensor 13 for detecting the outdoor temperature is provided in the vicinity of the outdoor heat exchanger 3.
- the indoor heat exchanger 4A is provided with an indoor heat exchanger temperature sensor 15A that detects the temperature of the indoor heat exchanger, and an indoor temperature sensor 16A that detects the indoor temperature is provided near the indoor heat exchanger 4A.
- the indoor heat exchanger 4B is provided with an indoor heat exchanger temperature sensor 15B that detects the temperature of the indoor heat exchanger, and an indoor temperature sensor 16B that detects the indoor temperature is provided near the indoor heat exchanger 4B.
- the indoor heat exchanger 4C is provided with an indoor heat exchanger temperature sensor 15C that detects the temperature of the indoor heat exchanger, and an indoor temperature sensor 16C that detects the indoor temperature is provided near the indoor heat exchanger 4C.
- the outdoor unit 10 includes an outdoor control device 18 including a microcomputer and an input / output circuit.
- the indoor units 20A and 20B are each provided with an indoor control device (not shown), and the low-capacity indoor unit 20C is provided with an indoor control device 100 (shown in FIG. 3).
- the indoor control device 100 is an example of a control device.
- the indoor control devices of the indoor units 20A and 20B and the indoor control device 100 of the low capacity indoor unit 20C communicate with the outdoor control device 18 of the outdoor unit 10 via a communication line (not shown), thereby
- the control device 18, the indoor control devices of the indoor units 20A and 20B, and the indoor control device 100 of the low-capacity indoor unit 20C operate in cooperation, thereby operating as a multi-type air conditioner.
- the four-way switching valve 2 is switched to the dotted line position and the operation of the compressor 1 is started. Then, the electric expansion valves EVA, EVB, EVC are each opened to a predetermined opening degree.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is condensed by a heat exchange with the outdoor air by operating an outdoor fan (not shown) in the outdoor heat exchanger 3 to become a liquid refrigerant.
- the liquid refrigerant from the indoor heat exchangers 4A, 4B, 4C is decompressed by the electric expansion valves EVA, EVB, EVC, and then the indoor fans 5A, 5B, 5C are operated to operate the indoor heat exchanger 4A, At 4B and 4C, it evaporates by heat exchange with room air to become a gas refrigerant, and returns to the suction side of the compressor 1.
- the rated cooling capacity of the indoor units 20A and 20B is 2.2 kW
- the rated cooling capacity of the low capacity indoor unit 20C is 0.8 kW. That is, the low-capacity indoor unit 20C has a lower capacity than the indoor units 20A and 20B.
- the four-way switching valve 2 is switched to the position of the solid line, and the operation of the compressor 1 is started. Then, the electric expansion valves EVA, EVB, EVC are each opened to a predetermined opening degree.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is condensed by heat exchange with indoor air in the indoor heat exchangers 4A, 4B, and 4C by operating the indoor fans 5A, 5B, and 5C. Become.
- the liquid refrigerant from the indoor heat exchangers 4A, 4B, 4C is decompressed by the electric expansion valves EVA, EVB, EVC, and then an outdoor fan (not shown) is operated by the outdoor heat exchanger 3. It evaporates by heat exchange with the outdoor air to become a gas refrigerant and returns to the suction side of the compressor 1.
- FIG. 2 is an external view of the low-capacity indoor unit 20C viewed obliquely from below.
- This indoor unit is a ceiling-embedded indoor unit.
- the low-capacity indoor unit 20C includes a casing main body 101, a rectangular panel 102 attached to the lower side of the casing main body 101, and a grill 103 detachably attached to the panel 102. ing.
- the blower outlet 110 is provided along the short side of the panel 102 on one side in the longitudinal direction of the panel 102.
- a flap 120 is rotatably attached to the panel 102.
- FIG. 2 shows a state in which the air outlet 110 is closed by the flap 120.
- a drain socket 107 is provided so as to protrude from the side wall of the casing body 101.
- a drain hose (not shown) is connected to the drain socket 107 from the outside.
- the pipe connecting portions 105 and 106 are provided so as to protrude from the side wall of the casing main body 101.
- a refrigerant pipe (not shown) is connected to the pipe connecting portions 105 and 106 from the outside.
- reference numeral 108 denotes an electrical component part
- reference numerals 111 to 113 denote suspension fittings provided so as to protrude laterally from the casing main body 101, respectively.
- FIG. 3 is a block diagram of the indoor control device 100 of the low-capacity indoor unit 20C.
- the low-capacity indoor unit 20C includes an indoor control device 100 including a microcomputer and an input / output circuit as shown in FIG.
- an indoor heat exchanger temperature sensor 15C In the indoor control device 100, an indoor heat exchanger temperature sensor 15C, an indoor temperature sensor 16C, a fan motor 21, a flap drive unit 22, and a display unit 23 are connected.
- the indoor control device 100 includes a first operation control unit 100a, a determination unit 100b, a second operation control unit 100c, and a control mode change unit 100e.
- the indoor control device 100 can grasp the outdoor temperature detected by the outdoor temperature sensor 13 by communicating with the outdoor control device 18.
- the first operation control unit 100a temporarily stops the automatic cooling operation, while during the automatic heating operation, When the room temperature detected by the room temperature sensor 16C is equal to or higher than the room temperature set by the user, the automatic heating operation is temporarily stopped.
- the automatic cooling operation means a cooling operation in which the rotation speed of the indoor fan 5C is automatically changed according to the room temperature detected by the room temperature sensor 16C.
- the automatic heating operation means a heating operation in which the rotational speed of the indoor fan 5C is automatically changed according to the indoor temperature detected by the indoor temperature sensor 16C.
- the determination unit 100b is configured such that the room temperature detected by the room temperature sensor 16C is higher than the room temperature set by the user, or the first operation. If the indoor temperature detected by the indoor temperature sensor 16C is lower than the indoor temperature set by the user after the automatic heating operation is temporarily stopped by the control unit 100a, is the indoor air conditioning load equal to or lower than the predetermined air conditioning load? Determine whether or not.
- the second operation control unit 100c rotates the indoor fan 5C at a rotation speed lower than the rotation speed that can be manually set by the user.
- the automatic cooling operation or the automatic heating operation is restarted under the condition that the compressor 1 is driven at a predetermined frequency.
- the third operation control unit 100d resumes the automatic cooling operation or the automatic heating operation temporarily stopped by the first operation control unit 100a. .
- the control mode changing unit 100e is configured to start the second operation when the indoor temperature detected by the indoor temperature sensor 16C is higher than the indoor temperature set by the user after the automatic cooling operation is resumed by the second operation control unit. After the automatic heating operation is resumed by the control unit, when the indoor temperature detected by the indoor temperature sensor 16C is lower than the indoor temperature set by the user, the rotational speed of the indoor fan 5C and the frequency of the compressor 1 are controlled. The mode is changed to the control mode of automatic cooling operation or automatic heating operation temporarily stopped by the first operation control unit 100a.
- FIG. 4 is a flowchart for explaining the control performed by the indoor control device 100 during the automatic cooling operation. This control starts in response to the start of automatic cooling operation.
- step S1 the room temperature T 1 detected by the room temperature sensor 16C is a temperature obtained by subtracting a predetermined temperature (eg, 2 ° C.) from the set temperature T 0. (Hereinafter, it is referred to as “first reference temperature T 0-2 ”).
- first reference temperature T 0-2 a predetermined temperature obtained by subtracting a predetermined temperature (eg, 2 ° C.) from the set temperature T 0.
- step S2 the automatic cooling operation is thermo-OFF. That is, the compressor 1 and the indoor fan 5C are stopped, and the automatic cooling operation is temporarily stopped.
- step S3 the indoor temperature T 1 is the set temperature T 0 at a predetermined temperature (for example, 1 ° C.) and the mixture was temperature (hereinafter, referred to as "second reference temperature T 0 + 1".) Or more or is not Determine whether.
- the process proceeds to the next step S4.
- step S3 performed when the indoor temperature T 1 of the determined not second reference temperature T 0 + 1 or more, the step S3 again.
- step S4 it is determined whether the indoor air conditioning load is equal to or less than a predetermined standard air conditioning load. More specifically, in step S4, the indoor temperature T 1 is predetermined indoor temperature (e.g. 27 ° C.) or less, and the outdoor temperature T 2 detected by the outdoor temperature sensor 13 is a predetermined outdoor temperature (e.g. 35 ° C. ) It is determined whether the following is true. In this step S4, the indoor temperature T 1 is less than the predetermined indoor temperature, and when the outdoor temperature T 2 is determined to be equal to or less than a predetermined outdoor temperature, the flow proceeds to the next step S5. On the other hand, in step S4, the indoor temperature T 1 is less than the predetermined indoor temperature, and when the outdoor temperature T 2 is determined not to become below a predetermined outdoor temperature, in step S11, and restarts the automatic cooling operation Return to step S1.
- the indoor temperature T 1 is predetermined indoor temperature (e.g. 27 ° C.) or less
- the outdoor temperature T 2 detected by the outdoor temperature sensor 13 is a predetermined
- step S5 the small capacity cooling operation is started.
- the rotation speed of the indoor fan 5C in the small capacity cooling operation is set to a rotation speed (for example, 650 rpm) smaller than the rotation speed corresponding to the minimum air volume that can be manually set in the low capacity indoor unit 20C during the cooling operation.
- the air volume of the low-capacity indoor unit 20C is, for example, 1 m 3 / min.
- the frequency of the compressor 1 in the small capacity cooling operation is set to a frequency (6 Hz) lower than the frequency (for example, 10 Hz) of the compressor 1 for the automatic cooling operation restarted in step S11. Further, during the small capacity cooling operation, the rotation speed of the indoor fan 5C and the frequency of the compressor 1 are kept constant.
- the air volume of the low-capacity indoor unit 20C is, for example, six levels of “large air volume”, “first intermediate air volume”, “medium air volume”, “second intermediate air volume”, “small air volume”, and “micro air volume”. It is possible to set manually.
- the “first intermediate air volume” is smaller than the “large air volume” and larger than the “medium air volume”.
- the “second intermediate air volume” is an air volume that is smaller than the “medium air volume” and larger than the “small air volume”.
- the “large air volume” is an air volume larger than the “medium air volume”
- the “small air volume” is an air volume smaller than the “medium air volume”.
- the “minute air volume” corresponds to the minimum air volume that can be manually set in the low-capacity indoor unit 20C. Further, when the “minute air volume” is manually set, the rotational speed of the indoor fan 5C is, for example, 1000 rpm.
- step S6 it is determined whether the indoor temperature T 1 is exceeds the set temperature T 0.
- step S6 when the indoor temperature T 1 is is determined to exceed the set temperature T 0, in step S7, and ends the small capacity cooling operation, the process proceeds to step S11.
- step S6 when the indoor temperature T 1 is is determined not to exceed the set temperature T 0, is performed again step S6.
- the first operation control unit 100a executes step S2
- the determination unit 100b executes step S4
- the second operation control unit 100c executes step S5.
- the third operation control unit 100d executes step S11.
- the control mode changing unit 100e executes steps S7 and S11.
- the second operation control unit 100c executes step S5. Therefore, the rotation speed is lower than the rotation speed that can be manually set by the user.
- the indoor fan 5C rotates. Therefore, since no indoor temperature T 1 is below the set temperature T 0 in a short time, when cooling the room, it is possible to suppress the increase of the start-stop number.
- the second operation control unit 100c executes step S5, so that the frequency is lower than the frequency of the compressor 1 for automatic cooling operation restarted in step S11.
- the compressor 1 is driven at a low frequency. Therefore, condensation is less likely to occur at the flap 120. That is, the occurrence of dew can be suppressed in the low-capacity indoor unit 20C.
- Step S2 since the first operation control unit 100a executes Step S2, the automatic cooling operation can be surely temporarily stopped.
- control mode changing unit 100e executes the step S7, S11, it is possible to suppress after small capacity cooling operation is started, that the difference between the indoor temperature T 1 of the set temperature T 0 increases.
- the rated cooling capacity of the low-capacity indoor unit 20C is less than 2.2 kW, it is possible to perform cooling suitable for a narrow space such as a washroom or a kitchen.
- FIG. 5 is a flowchart for explaining the control performed by the indoor control device 100 during the automatic heating operation. This control starts in response to the start of automatic heating operation.
- step S21 the temperature of the room temperature T 1 of which is detected by the indoor temperature sensor 16C is, by adding a predetermined temperature (for example, 2 ° C.) from the set temperature T 0 (Hereinafter, referred to as “third reference temperature T 0 + 2 ”).
- a predetermined temperature for example, 2 ° C.
- step S21 if it is determined that the indoor temperature T 1 is at the third reference temperature T 0 + 2 or more, the process proceeds to the next step S22.
- step S21 performs the indoor temperature T 1 is is determined not to be the third reference temperature T 0 + 2 or more, the step S21 again.
- the set temperature T 0 means, for example, a temperature set by a user with a remote controller (not shown).
- step S22 the automatic heating operation is thermo-off. That is, the compressor 1 and the indoor fan 5C are stopped, and the automatic heating operation is temporarily stopped.
- step S23 the indoor temperature T 1 is the set temperature T 0 at a predetermined temperature (for example, 1 ° C.) and the mixture was temperature (hereinafter, referred to as "second reference temperature T 0 + 1".) Or more or is not Determine whether.
- the process proceeds to the next step S24.
- step S23 it performs the indoor temperature T 1 of the determined not second reference temperature T 0 + 1 or more, the step S23 again.
- step S24 it is determined whether the indoor air conditioning load is equal to or less than a predetermined standard air conditioning load. More specifically, in step S24, the indoor temperature T 1 is predetermined indoor temperature (e.g. 20 ° C.) or less, and the outdoor temperature T 2 detected by the outdoor temperature sensor 13 is a predetermined outdoor temperature (e.g. 7 ° C. ) It is determined whether it is above. In this step S24, the indoor temperature T 1 is less than the predetermined indoor temperature, and when the outdoor temperature T 2 is determined to be equal to or greater than the predetermined outdoor temperature, the flow proceeds to the next step S25. On the other hand, in step S24, the indoor temperature T 1 is less than the predetermined indoor temperature, and when the outdoor temperature T 2 is determined not to become higher than a predetermined outdoor temperature, in step S31, and restarts the automatic heating operation Return to step S21.
- the indoor temperature T 1 is predetermined indoor temperature (e.g. 20 ° C.) or less
- the outdoor temperature T 2 detected by the outdoor temperature sensor 13 is
- step S25 the small capacity heating operation is started.
- the rotation speed of the indoor fan 5C in the small capacity heating operation is set to a rotation speed (for example, 800 rpm) smaller than the rotation speed corresponding to the minimum air volume that can be manually set in the low capacity indoor unit 20C, that is, the “micro air volume”.
- the air volume of the low-capacity indoor unit 20C is, for example, 1.5 m 3 / min.
- the frequency of the compressor 1 in the small capacity heating operation is set to a frequency (10 Hz) lower than the frequency (for example, 14 Hz) of the compressor 1 for the automatic heating operation restarted in step S31. Further, during the small capacity heating operation, the rotation speed of the indoor fan 5C and the frequency of the compressor 1 are kept constant.
- step S26 it is determined whether the indoor temperature T 1 is less than the set temperature T 0.
- step S26 when the indoor temperature T 1 is is determined to be less than the set temperature T 0, in step S27, and terminates the small capacity heating operation, the flow proceeds to step S31.
- step S26 when the indoor temperature T 1 is is determined not to be less than the set temperature T 0, is performed again step S26.
- the first operation control unit 100a executes step S22
- the determination unit 100b executes step S24
- the second operation control unit 100c executes step S25.
- the third operation control unit 100d executes step S31.
- the control mode changing unit 100e executes steps S27 and S31.
- the second operation control unit 100c executes Step S25, so that the rotation speed is lower than the rotation speed that can be manually set by the user.
- the indoor fan 5C rotates. Therefore, since no indoor temperature T 1 is higher than the set temperature T 0 in a short time, when heating the room, it is possible to suppress the increase of the start-stop number.
- step S25 when the low-capacity indoor unit 20C returns to the thermo state and performs the automatic heating operation, since the second operation control unit 100c executes step S25, the frequency of the compressor 1 for the automatic heating operation restarted in step S31 is exceeded.
- the compressor 1 is driven at a low frequency. Therefore, the phenomenon that the warm air blown from the low-capacity indoor unit 20C rises without passing through the lower part of the indoor space and is sucked into the low-capacity indoor unit 20C is less likely to occur. That is, the occurrence of a short circuit can be suppressed.
- control mode changing unit 100e executes the steps S27, S31, it is possible to suppress after small capacity heating operation is started, that the difference between the indoor temperature T 1 of the set temperature T 0 increases.
- the rated cooling capacity of the low-capacity indoor unit 20C is less than 2.2 kW, heating suitable for a narrow space such as a washroom or a kitchen can be performed.
- the rated cooling capacity of the low-capacity indoor unit 20C is 0.8 kW, but may be other than 0.8 kW.
- the low-capacity indoor unit 20C is installed from the viewpoint of air-conditioning the low-capacity indoor unit 20C in a space such as a washroom (for example, a room area of 3.3 m 2 ⁇ ceiling height of 2.4 m).
- the rated cooling capacity is preferably less than 2.2 kW.
- step S2 when the automatic cooling operation is turned off in step S2, the control in steps S2 to S7 and S11 is performed.
- the cooling operation other than the automatic cooling operation for example, the cooling in which the air flow rate is fixed.
- the same control as in steps S2 to S7 and S11 may be performed.
- step S4 when it is determined in step S4 that the indoor air conditioning load is not equal to or less than the predetermined standard air conditioning load, the automatic cooling operation temporarily stopped with the thermo OFF is resumed in step S11.
- an operation other than the automatic cooling operation for example, a cooling operation in which the air flow rate is fixed may be started.
- the frequency of the compressor 1 during the small capacity cooling operation is set to be lower than the frequency of the compressor 1 for the automatic cooling operation restarted in step S11. It may be the same as the frequency or the same as the lowest frequency among the frequencies for operating the compressor.
- step S22 when the automatic heating operation is turned off in step S22, the control in steps S22 to S27 and S31 is performed.
- the heating operation other than the automatic heating operation for example, heating in which the air flow rate is fixed
- the same control as in steps S22 to S27 and S31 may be performed.
- step S24 when it is determined in step S24 that the indoor air conditioning load is not equal to or less than the predetermined standard air conditioning load, the automatic heating operation temporarily stopped with the thermo-OFF is resumed in step S31.
- an operation other than the automatic heating operation for example, a heating operation in which the air flow rate is fixed may be started.
- the frequency of the compressor 1 at the time of small capacity heating operation was made to become lower than the frequency of the compressor 1 of automatic heating operation restarted by step S31, It may be the same as the frequency or the same as the lowest frequency among the frequencies for operating the compressor.
- At least one of the first operation control unit 100a, the determination unit 100b, the second operation control unit 100c, and the control mode change unit 100e may be configured by software or by hardware. It may be configured.
- Compressor 2 Four-way selector valve, 3 outdoor heat exchanger, 4A, 4B, 4C Indoor heat exchanger 5A, 5B, 5C Indoor fan 6 Accumulator 7A, 7B, 7C Refrigerant pipe connection part 8A, 8B, 8C Refrigerant pipe connection part 10 Outdoor unit 11 Discharge pipe temperature sensor 12 Outdoor heat exchanger temperature Sensor 13 Outdoor temperature sensor 15A, 15B, 15C Indoor heat exchanger temperature sensor 16A, 16B, 16C Indoor temperature sensor 18 Outdoor controller 20A, 20B ... Indoor unit 20C Low-capacity indoor unit 100 Indoor controller 100a First operation controller 100b Determination unit 100c Second operation control unit 100d Third operation control unit 100e Control mode change unit EVA, EVB, EVC Electric expansion valve
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- Air Conditioning Control Device (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
空気調和機の制御装置(100)は、第1運転制御部(100a)で冷房運転が一時停止された後、室内温度センサ(16c)によって検出された室内温度(T1)が、ユーザが設定した室内温度(T0)よりも高いとき、または、第1運転制御部(100a)で暖房運転が一時停止された後、室内温度センサ(16c)によって検出された室内温度(T1)が、ユーザが設定した室内温度(T0)よりも低いとき、室内の空調負荷が所定の空調負荷以下であるか否かを判定する判定部(100b)と、判定部(100b)によって室内の空調負荷が所定の空調負荷以下であると判定されたとき、ユーザが手動で設定可能な回転数よりも低い回転数で室内ファン(5c)が回転し、かつ、圧縮機(1)が所定の周波数で駆動する条件で、冷房運転または暖房運転を再開させる第2運転制御部(100c)とを有する。
Description
この開示は、空気調和機に関する。
従来、空気調和機としては、特開平5-10625号公報(特許文献1)に開示されたものがある。この空気調和機は、室温センサの温度読取値が室温設定値より低いとき、圧縮機を起動させると共に、室内機内の送風機(以下、「室内送風機」と言う。)を強風モードにして、暖房運転をする。
上記従来の空気調和機では、室内送風機が強風モードで運転するので、室内送風機が強風モードで運転しないときよりも短い時間で、室温センサの温度読取値が室温設定値を超える。このとき、上記暖房運転を一時停止させて、再び、室温センサの温度読取値が室温設定値より低いとき、暖房運転を再開すると、発停が頻繁に繰り返されてしまうという問題が生じてしまう。
この開示では、発停の増加を抑制できる空気調和機を提供する。
この開示の空気調和機は、
圧縮機、室外熱交換器、膨張機構および室内熱交換器を有し、冷媒が循環する冷媒回路と、
上記室内熱交換器に送風する室内ファンと、
室内温度を検出する室内温度センサと、
制御装置と
を備え、
上記制御装置は、
冷房運転時、上記室内温度センサによって検出された室内温度が、ユーザが設定した室内温度以下であるとき、冷房運転を一時停止させる一方、暖房運転時、上記室内温度センサによって検出された室内温度が、ユーザが設定した室内温度以上であるとき、暖房運転を一時停止させる第1運転制御部と、
上記第1運転制御部で冷房運転が一時停止された後、上記室内温度センサによって検出された室内温度が、ユーザが設定した室内温度よりも高いとき、または、上記第1運転制御部で暖房運転が一時停止された後、上記室内温度センサによって検出された室内温度が、ユーザが設定した室内温度よりも低いとき、室内の空調負荷が所定の空調負荷以下であるか否かを判定する判定部と、
上記判定部によって室内の空調負荷が所定の空調負荷以下であると判定されたとき、ユーザが手動で設定可能な回転数よりも低い回転数で上記室内ファンが回転し、かつ、上記圧縮機が所定の周波数で駆動する条件で、冷房運転または暖房運転を再開させる第2運転制御部と
を有する。
圧縮機、室外熱交換器、膨張機構および室内熱交換器を有し、冷媒が循環する冷媒回路と、
上記室内熱交換器に送風する室内ファンと、
室内温度を検出する室内温度センサと、
制御装置と
を備え、
上記制御装置は、
冷房運転時、上記室内温度センサによって検出された室内温度が、ユーザが設定した室内温度以下であるとき、冷房運転を一時停止させる一方、暖房運転時、上記室内温度センサによって検出された室内温度が、ユーザが設定した室内温度以上であるとき、暖房運転を一時停止させる第1運転制御部と、
上記第1運転制御部で冷房運転が一時停止された後、上記室内温度センサによって検出された室内温度が、ユーザが設定した室内温度よりも高いとき、または、上記第1運転制御部で暖房運転が一時停止された後、上記室内温度センサによって検出された室内温度が、ユーザが設定した室内温度よりも低いとき、室内の空調負荷が所定の空調負荷以下であるか否かを判定する判定部と、
上記判定部によって室内の空調負荷が所定の空調負荷以下であると判定されたとき、ユーザが手動で設定可能な回転数よりも低い回転数で上記室内ファンが回転し、かつ、上記圧縮機が所定の周波数で駆動する条件で、冷房運転または暖房運転を再開させる第2運転制御部と
を有する。
上記構成によれば、上記第1運転制御部により、冷房運転および暖房運転が停止した後、判定部の判定結果に応じて、第2運転制御部により、冷房運転または暖房運転が再開する。このとき、ユーザが手動で設定可能な回転数よりも低い回転数で室内ファンが回転する条件で、冷房運転または暖房運転が再開するので、発停回数の増加を抑制することができる。
この開示の一態様に係る空気調和機では、
上記制御装置は、上記判定部によって室内の空調負荷が所定の空調負荷を超えると判定されたとき、上記第1運転制御部で一時停止させた冷房運転または暖房運転を再開させる第3運転制御部を有し、
上記所定の周波数は、上記第3運転制御部で再開される冷房運転または暖房運転で上記圧縮機を駆動するために使用する周波数以下である。
上記制御装置は、上記判定部によって室内の空調負荷が所定の空調負荷を超えると判定されたとき、上記第1運転制御部で一時停止させた冷房運転または暖房運転を再開させる第3運転制御部を有し、
上記所定の周波数は、上記第3運転制御部で再開される冷房運転または暖房運転で上記圧縮機を駆動するために使用する周波数以下である。
上記態様によれば、上記第2運転制御部により、冷房運転または暖房運転が再開するとき、第3運転制御部で再開される冷房運転または暖房運転で上記圧縮機を駆動するために使用する周波数以下で、圧縮機が駆動する。したがって、冷房運転時、露付きの発生を抑制することができる一方、暖房運転時、ショートサーキットの発生を抑制することができる。
この開示の一態様に係る空気調和機では、
上記所定の周波数は、上記圧縮機を運転するための周波数のうちの最低周波数である。
上記所定の周波数は、上記圧縮機を運転するための周波数のうちの最低周波数である。
上記態様によれば、上記第2運転制御部により、冷房運転または暖房運転が再開するとき、圧縮機を運転するための周波数のうちの最低周波数で、圧縮機が駆動するので、露付きおよびショートサーキットの発生を抑制する効果を高めることができる。
この開示の一態様に係る空気調和機では、
上記第1運転制御部で一時停止させる冷房運転または暖房運転は、上記室内温度センサによって検出された室内温度に応じて上記室内ファンの回転数を自動的に変更する自動冷房運転または自動暖房運転である。
上記第1運転制御部で一時停止させる冷房運転または暖房運転は、上記室内温度センサによって検出された室内温度に応じて上記室内ファンの回転数を自動的に変更する自動冷房運転または自動暖房運転である。
上記態様によれば、上記第1制御部により、自動冷房運転または自動暖房運転を確実に一時停止させることができる。
この開示の一態様に係る空気調和機では、
上記制御装置は、上記第2運転制御部で冷房運転が再開された後、上記室内温度センサによって検出された室内温度が、ユーザが設定した室内温度よりも高いとき、または、上記第2運転制御部で暖房運転が再開された後、上記室内温度センサによって検出された室内温度が、ユーザが設定した室内温度よりも低いとき、上記室内ファンの回転数と上記圧縮機の周波数との制御モードを、上記第1運転制御部で一時停止させた冷房運転または暖房運転の制御モードに変更する制御モード変更部を有する。
上記制御装置は、上記第2運転制御部で冷房運転が再開された後、上記室内温度センサによって検出された室内温度が、ユーザが設定した室内温度よりも高いとき、または、上記第2運転制御部で暖房運転が再開された後、上記室内温度センサによって検出された室内温度が、ユーザが設定した室内温度よりも低いとき、上記室内ファンの回転数と上記圧縮機の周波数との制御モードを、上記第1運転制御部で一時停止させた冷房運転または暖房運転の制御モードに変更する制御モード変更部を有する。
上記態様によれば、上記制御モード変更部により、第2運転制御部で冷房運転が再開された後、室内温度と設定温度との差が増加するのを抑制することができる。
この開示の一態様に係る空気調和機では、
冷房定格出力が2.2kw未満である。
冷房定格出力が2.2kw未満である。
上記態様によれば、定格冷房能力が2.2kW未満であるので、洗面所やキッチンなどの狭い空間に適した空調を行うことができる。
以下、空気調和機の実施形態を説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
図1は、本開示の一実施形態の低能力室内機20Cを備えたマルチ型空気調和機の構成図である。
上記マルチ型空気調和機は、図1に示すように、室内熱交換器4Aと室内ファン5Aを有する室内機20Aと、室内熱交換器4Bと室内ファン5Bを有する室内機20Bと、室内熱交換器4Cと室内ファン5Cを有する低能力室内機20Cと、室内機20A,20Bおよび低能力室内機20Cに冷媒配管を介して接続された室外機10とを備えている。この室内ファン5A,5B,5Cは、室内熱交換器4A,4B,4Cに送風する。
室外機10は、複数の室内機が接続可能なマルチ型空気調和機に対応しており、低能力室内機20Cは、マルチ型空気調和機の室内機として動作可能である。
図1において、1は圧縮機、2は圧縮機1の吐出側に一端が接続された四路切換弁、3は四路切換弁2の他端に一端が接続された室外熱交換器、EVA,EVB,EVCは室外熱交換器3の他端に一端が夫々接続された電動膨脹弁、4A,4B,4Cは電動膨脹弁EVA,EVB,EVCの他端に一端が夫々接続された室内熱交換器、6は室内熱交換器4A,4B,4Cの他端に四路切換弁2を介して一端が接続され、他端が圧縮機1の吸入側に接続されたアキュムレータである。室内熱交換器4A,4B,4C近傍に室内ファン5A,5B,5Cを夫々配置している。なお、電動膨脹弁EVCは膨張機構の一例である。
また、電動膨脹弁EVA,EVB,EVCの他端に複数の冷媒配管接続部7A,7B,7Cが接続され、その複数の冷媒配管接続部7A,7B,7Cに連絡配管(冷媒配管)を介して室内熱交換器4A,4B,4Cの一端を夫々接続している。また、室内熱交換器4A,4B,4Cの他端に連絡配管(冷媒配管)を介して複数の冷媒配管接続部8A,8B,8Cが接続されている。
上記圧縮機1と四路切換弁2と室外熱交換器3と電動膨脹弁EVA,EVB,EVCと室内熱交換器4A,4B,4Cおよびアキュムレータ6で冷媒回路を構成している。この冷媒回路には、例えば、微燃性のR32冷媒が充填されている。
また、上記圧縮機1の吐出側に吐出管温度センサ11を設けている。また、室外熱交換器3に室外熱交換器温度を検出する室外熱交換器温度センサ12を設けると共に、室外熱交換器3の近傍に室外温度を検出する室外温度センサ13を設けている。
また、室内熱交換器4Aに室内熱交換器温度を検出する室内熱交換器温度センサ15Aを設け、室内熱交換器4Aの近傍に室内温度を検出する室内温度センサ16Aを設けている。また、室内熱交換器4Bに室内熱交換器温度を検出する室内熱交換器温度センサ15Bを設け、室内熱交換器4Bの近傍に室内温度を検出する室内温度センサ16Bを設けている。また、室内熱交換器4Cに室内熱交換器温度を検出する室内熱交換器温度センサ15Cを設け、室内熱交換器4Cの近傍に室内温度を検出する室内温度センサ16Cを設けている。
上記室外機10は、マイクロコンピュータと入出力回路などからなる室外制御装置18を備えている。また、室内機20A,20Bは、図示しない室内制御装置を夫々備えており、低能力室内機20Cは、室内制御装置100(図3に示す)を備えている。なお、室内制御装置100は制御装置の一例である。
室内機20A,20Bの各室内制御装置および低能力室内機20Cの室内制御装置100は、室外機10の室外制御装置18と通信線(図示せず)を介して互いに通信を行うことにより、室外制御装置18と室内機20A,20Bの室内制御装置および低能力室内機20Cの室内制御装置100が協調動作することにより、マルチ型空気調和機として動作する。
上記マルチ型空気調和機において、室内機20A,20Bおよび低能力室内機20Cで冷房運転を行う場合、四路切換弁2を点線の位置に切り換えて、圧縮機1の運転を開始する。そして、電動膨脹弁EVA,EVB,EVCを夫々所定の開度に開く。そして、圧縮機1から吐出した高温高圧のガス冷媒は、室外熱交換器3で室外ファン(図示せず)を運転することにより室外空気との熱交換により凝縮して液冷媒となる。次に、室内熱交換器4A,4B,4Cからの液冷媒は、電動膨脹弁EVA,EVB,EVCで減圧された後、室内ファン5A,5B,5Cを運転することにより室内熱交換器4A,4B,4Cで室内空気との熱交換により蒸発してガス冷媒となり、圧縮機1の吸入側に戻る。
ここで、室内機20A,20Bの定格冷房能力は2.2kWであり、低能力室内機20Cの定格冷房能力は0.8kWである。すなわち、低能力室内機20Cは、室内機20A,20Bよりも能力が低い。
一方、室内機20A,20Bおよび低能力室内機20Cで暖房運転を行う場合、四路切換弁2を実線の位置に切り換えて、圧縮機1の運転を開始する。そして、電動膨脹弁EVA,EVB,EVCを夫々所定の開度に開く。そして、圧縮機1から吐出した高温高圧のガス冷媒は、室内ファン5A,5B,5Cを運転することにより室内熱交換器4A,4B,4Cで室内空気との熱交換により凝縮して液冷媒となる。次に、室内熱交換器4A,4B,4Cからの液冷媒は、電動膨脹弁EVA,EVB,EVCで減圧された後、室外熱交換器3で室外ファン(図示せず)を運転することにより室外空気との熱交換により蒸発してガス冷媒となり、圧縮機1の吸入側に戻る。
図2は、低能力室内機20Cを斜め下方から見た外観図である。この室内機は、天井埋め込み型の室内機である。
低能力室内機20Cは、図2に示すように、ケーシング本体101と、ケーシング本体101の下側に取り付けられた矩形状のパネル102と、パネル102に着脱可能に取り付けられたグリル103とを備えている。
パネル102の長手方向の一方に、パネル102の短辺に沿って吹出口110を設けている。また、パネル102にフラップ120を回動可能に取り付けている。図2では、フラップ120により吹出口110が閉じられた状態を示す。
また、ケーシング本体101の側壁から突出するようにドレンソケット107を設けている。このドレンソケット107に外部からドレンホース(図示せず)を接続する。また、配管接続部105,106を、ケーシング本体101の側壁から突出するように設けている。この配管接続部105,106に、外部から冷媒配管(図示せず)を接続する。
なお、図2において、108は電装品部であり、111~113は、ケーシング本体101から側方に突出するように夫々設けられた吊り金具である。
図3は、低能力室内機20Cの室内制御装置100のブロック図である。
上記低能力室内機20Cは、図3に示すように、マイクロコンピュータと入出力回路などからなる室内制御装置100を備えている。室内制御装置100は、室内熱交換器温度センサ15Cと、室内温度センサ16Cと、ファンモータ21と、フラップ駆動部22と、表示部23が接続されている。また、室内制御装置100は、第1運転制御部100aと、判定部100bと、第2運転制御部100cと、制御モード変更部100eとを有する。また、室内制御装置100は、室外制御装置18と通信を行うことにより、室外温度センサ13によって検出された室外温度を把握することが可能となっている。
第1運転制御部100aは、自動冷房運転時、室内温度センサ16Cによって検出された室内温度が、ユーザが設定した室内温度以下であるとき、自動冷房運転を一時停止させる一方、自動暖房運転時、室内温度センサ16Cによって検出された室内温度が、ユーザが設定した室内温度以上であるとき、自動暖房運転を一時停止させる。
ここで、上記自動冷房運転とは、室内温度センサ16Cによって検出された室内温度に応じて室内ファン5Cの回転数を自動的に変更する冷房運転を意味する。また、上記自動暖房運転とは、室内温度センサ16Cによって検出された室内温度に応じて室内ファン5Cの回転数を自動的に変更する暖房運転を意味する。
判定部100bは、第1運転制御部100aで自動冷房運転が一時停止された後、室内温度センサ16Cによって検出された室内温度が、ユーザが設定した室内温度よりも高いとき、または、第1運転制御部100aで自動暖房運転が一時停止された後、室内温度センサ16Cによって検出された室内温度が、ユーザが設定した室内温度よりも低いとき、室内の空調負荷が所定の空調負荷以下であるか否かを判定する。
第2運転制御部100cは、判定部100bによって室内の空調負荷が所定の空調負荷以下であると判定されたとき、ユーザが手動で設定可能な回転数よりも低い回転数で室内ファン5Cが回転し、かつ、圧縮機1が所定の周波数で駆動する条件で、自動冷房運転または自動暖房運転を再開させる。
第3運転制御部100dは、判定部100bによって室内の空調負荷が所定の空調負荷を超えると判定されたとき、第1運転制御部100aで一時停止させた自動冷房運転または自動暖房運転を再開させる。
制御モード変更部100eは、第2運転制御部で自動冷房運転が再開された後、室内温度センサ16Cによって検出された室内温度が、ユーザが設定した室内温度よりも高いとき、または、第2運転制御部で自動暖房運転が再開された後、室内温度センサ16Cによって検出された室内温度が、ユーザが設定した室内温度よりも低いとき、室内ファン5Cの回転数と圧縮機1の周波数との制御モードを、第1運転制御部100aで一時停止させた自動冷房運転または自動暖房運転の制御モードに変更する。
図4は、室内制御装置100が自動冷房運転時に行う制御を説明するためのフローチャートである。この制御は自動冷房運転の開始に応じてスタートする。
上記制御がスタートすると、図4に示すように、まず、ステップS1で、室内温度センサ16Cによって検出された室内温度T1が、設定温度T0から所定の温度(例えば2℃)を引いた温度(以下、「第1基準温度T0-2」と言う。)以下になっているか否かを判定する。このステップS1で、室内温度T1が第1基準温度T0-2以下であると判定すると、次のステップS2に進む。一方、ステップS1で、室内温度T1が第1基準温度T0-2以下でないと判定されると、ステップS1を再度行う。なお、設定温度T0とは、例えば、ユーザがリモコン(図示せず)で設定する温度を意味する。
次に、ステップS2で、自動冷房運転をサーモOFFする。すなわち、圧縮機1および室内ファン5Cを停止させて、自動冷房運転を一時停止状態にする。
次に、ステップS3で、室内温度T1が、設定温度T0に所定の温度(例えば1℃)を加えた温度(以下、「第2基準温度T0+1」と言う。)以上であるか否かを判定する。このステップS3で、室内温度T1を第2基準温度T0+1以上であると判定すると、次のステップS4に進む。一方、ステップS3で、室内温度T1を第2基準温度T0+1以上でないと判定されると、ステップS3を再度行う。
次に、ステップS4で、室内の空調負荷が所定の標準空調負荷以下であるか否かを判定する。より具体的に言うと、ステップS4では、室内温度T1が所定の室内温度(例えば27℃)以下、かつ、室外温度センサ13によって検出された室外温度T2が所定の室外温度(例えば35℃)以下になっているかが判定される。このステップS4で、室内温度T1が所定の室内温度以下、かつ、室外温度T2が所定の室外温度以下になっていると判定されると、次のステップS5に進む。一方、ステップS4で、室内温度T1が所定の室内温度以下、かつ、室外温度T2が所定の室外温度以下になっていないと判定されると、ステップS11で、自動冷房運転を再開して、ステップS1に戻る。
次に、ステップS5で、小能力冷房運転を開始する。この小能力冷房運転での室内ファン5Cの回転数は、冷房運転時、低能力室内機20Cに手動で設定可能な最小風量に対応する回転数よりも小さい回転数(例えば650rpm)に設定される。このとき、低能力室内機20Cの風量は、例えば1m3/minとなる。また、小能力冷房運転での圧縮機1の周波数は、ステップS11で再開する自動冷房運転ための圧縮機1の周波数(例えば10Hz)よりも低い周波数(6Hz)に設定される。また、小能力冷房運転中、室内ファン5Cの回転数と、圧縮機1の周波数とは、一定に保持される。
ここで、低能力室内機20Cの風量は、例えば、「大風量」、「第1中間風量」、「中風量」、「第2中間風量」、「小風量」、「微小風量」の6段階に手動で設定することが可能になっている。この「第1中間風量」は、「大風量」より少なく、かつ、「中風量」よりも多い風量である。また、「第2中間風量」は、「中風量」よりも少なく、かつ、「小風量」よりも多い風量である。また、「大風量」は「中風量」よりも多い風量であり、「小風量」は「中風量」よりも少ない風量である。すなわち、「微小風量」が、低能力室内機20Cに手動で設定可能な最小風量に相当する。また、「微小風量」が手動で設定されたとき、室内ファン5Cの回転数は例えば1000rpmとなる。
次に、ステップS6で、室内温度T1が設定温度T0を超えているか否かを判定する。このステップS6で、室内温度T1が設定温度T0を超えていると判定されると、ステップS7で、小能力冷房運転を終了させて、ステップS11に進む。一方、ステップS6で、室内温度T1が設定温度T0を超えていないと判定されると、ステップS6を再び行う。
ここで、第1運転制御部100aがステップS2を、判定部100bがステップS4を、第2運転制御部100cがステップS5を、それぞれ実行する。また、ステップS4からステップS11に進んだとき、第3運転制御部100dがステップS11を実行する。また、ステップS6からステップS11に進んだとき、制御モード変更部100eがステップS7,S11を実行する。
このように、低能力室内機20Cがサーモ復帰して自動冷房運転を行うとき、第2運転制御部100cがステップS5を実行するので、ユーザが手動で設定可能な回転数よりも低い回転数で室内ファン5Cが回転する。したがって、室内温度T1が短時間で設定温度T0を下回ることがないので、室内を冷房するとき、発停回数の増加を抑制することができる。
また、低能力室内機20Cがサーモ復帰して自動冷房運転を行うとき、第2運転制御部100cがステップS5を実行するので、ステップS11で再開する自動冷房運転ための圧縮機1の周波数よりも低い周波数で圧縮機1が駆動する。したがって、フラップ120で結露が生じ難くなる。すなわち、低能力室内機20Cにおいて、露付の発生を抑制することができる。
また、第1運転制御部100aがステップS2を実行するので、自動冷房運転を確実に一時停止させることができる。
また、第3運転制御部100dおよび制御モード変更部100eがS11を実行するので、ユーザは低能力室内機20Cの風量を再度設定しなくて済む。
また、制御モード変更部100eがステップS7,S11を実行するので、小能力冷房運転が開始された後、室内温度T1と設定温度T0との差が増大するのを抑制することができる。
また、低能力室内機20Cの定格冷房能力が2.2kW未満であるので、洗面所やキッチンなどの狭い空間に適した冷房を行うことができる。
図5は、室内制御装置100が自動暖房運転時に行う制御を説明するためのフローチャートである。この制御は自動暖房運転の開始に応じてスタートする。
上記制御がスタートすると、図5に示すように、まず、ステップS21で、室内温度センサ16Cによって検出された室内温度T1が、設定温度T0から所定の温度(例えば2℃)を加えた温度(以下、「第3基準温度T0+2」と言う。)以上になっているか否かを判定する。このステップS21で、室内温度T1が第3基準温度T0+2以上であると判定すると、次のステップS22に進む。一方、ステップS21で、室内温度T1が第3基準温度T0+2以上でないと判定されると、ステップS21を再度行う。なお、設定温度T0とは、例えば、ユーザがリモコン(図示せず)で設定する温度を意味する。
次に、ステップS22で、自動暖房運転をサーモOFFする。すなわち、圧縮機1および室内ファン5Cを停止させて、自動暖房運転を一時停止状態にする。
次に、ステップS23で、室内温度T1が、設定温度T0に所定の温度(例えば1℃)を加えた温度(以下、「第2基準温度T0+1」と言う。)以上であるか否かを判定する。このステップS23で、室内温度T1を第2基準温度T0+1以上であると判定すると、次のステップS24に進む。一方、ステップS23で、室内温度T1を第2基準温度T0+1以上でないと判定されると、ステップS23を再度行う。
次に、ステップS24で、室内の空調負荷が所定の標準空調負荷以下であるか否かを判定する。より具体的に言うと、ステップS24では、室内温度T1が所定の室内温度(例えば20℃)以下、かつ、室外温度センサ13によって検出された室外温度T2が所定の室外温度(例えば7℃)以上になっているかが判定される。このステップS24で、室内温度T1が所定の室内温度以下、かつ、室外温度T2が所定の室外温度以上になっていると判定されると、次のステップS25に進む。一方、ステップS24で、室内温度T1が所定の室内温度以下、かつ、室外温度T2が所定の室外温度以上になっていないと判定されると、ステップS31で、自動暖房運転を再開して、ステップS21に戻る。
次に、ステップS25で、小能力暖房運転を開始する。この小能力暖房運転での室内ファン5Cの回転数は、低能力室内機20Cに手動で設定可能な最小風量つまり「微小風量」に対応する回転数よりも小さい回転数(例えば800rpm)に設定される。このとき、低能力室内機20Cの風量は、例えば1.5m3/minとなる。また、小能力暖房運転での圧縮機1の周波数は、ステップS31で再開する自動暖房運転ための圧縮機1の周波数(例えば14Hz)よりも低い周波数(10Hz)に設定される。また、小能力暖房運転中、室内ファン5Cの回転数と、圧縮機1の周波数とは、一定に保持される。
次に、ステップS26で、室内温度T1が設定温度T0未満であるか否かを判定する。このステップS26で、室内温度T1が設定温度T0未満であると判定されると、ステップS27で、小能力暖房運転を終了させて、ステップS31に進む。一方、ステップS26で、室内温度T1が設定温度T0未満でないと判定されると、ステップS26を再び行う。
ここで、第1運転制御部100aがステップS22を、判定部100bがステップS24を、第2運転制御部100cがステップS25を、それぞれ実行する。また、ステップS24からステップS31に進んだとき、第3運転制御部100dがステップS31を実行する。また、ステップS26からステップS31に進んだとき、制御モード変更部100eがステップS27,S31を実行する。
このように、低能力室内機20Cがサーモ復帰して自動暖房運転を行うとき、第2運転制御部100cがステップS25を実行するので、ユーザが手動で設定可能な回転数よりも低い回転数で室内ファン5Cが回転する。したがって、室内温度T1が短時間で設定温度T0を上回ることがないので、室内を暖房するとき、発停回数の増加を抑制することができる。
また、低能力室内機20Cがサーモ復帰して自動暖房運転を行うとき、第2運転制御部100cがステップS25を実行するので、ステップS31で再開する自動暖房運転ための圧縮機1の周波数よりも低い周波数で圧縮機1が駆動する。したがって、低能力室内機20Cから吹き出された暖気が、室内空間の下部を経由せずに舞い上がって、低能力室内機20Cに吸い込まれるという現象が、起こり難くなる。すなわち、ショートサーキットの発生を抑制することができる。
また、第1運転制御部100aがステップS22を実行するので、自動暖房運転を確実に一時停止させることができる。
また、第3運転制御部100dおよび制御モード変更部100eがS31を実行するので、ユーザは低能力室内機20Cの風量を再度設定しなくて済む。
また、制御モード変更部100eがステップS27,S31を実行するので、小能力暖房運転が開始された後、室内温度T1と設定温度T0との差が増大するのを抑制することができる。
また、低能力室内機20Cの定格冷房能力が2.2kW未満であるので、洗面所やキッチンなどの狭い空間に適した暖房を行うことができる。
上記実施形態では、低能力室内機20Cの定格冷房能力は、0.8kWであったが、0.8kW以外であってもよい。このようにする場合、設置箇所が洗面所などの空間(例えば、部屋面積3.3m2×天井高さ2.4mの空間)を低能力室内機20Cを空調する観点上、低能力室内機20Cの定格冷房能力を2.2kW未満とするのが好ましい。
上記実施形態では、ステップS2で、自動冷房運転がサーモOFFされたとき、ステップS2~S7,S11の制御が行われたが、自動冷房運転以外の冷房運転(例えば、送風量が固定される冷房運転)が、サーモOFFでされたとき、ステップS2~S7,S11と同様の制御が行われるようにしてもよい。
上記実施形態では、ステップS4で、室内の空調負荷が所定の標準空調負荷以下でないと判定されたとき、ステップS11で、サーモOFFで一時停止された自動冷房運転が再開されるようになっていたが、自動冷房運転以外の運転(例えば、送風量が固定される冷房運転)が開始されるようにしてもよい。
上記実施形態では、小能力冷房運転時の圧縮機1の周波数は、ステップS11で再開する自動冷房運転の圧縮機1の周波数よりも低くなるようにしていたが、自動冷房運転の圧縮機1の周波数と同じにしたり、圧縮機を運転するための周波数のうちの最低周波数と同じにしたりしてもよい。
上記実施形態では、ステップS22で、自動暖房運転がサーモOFFされたとき、ステップS22~S27,S31の制御が行われたが、自動暖房運転以外の暖房運転(例えば、送風量が固定される暖房運転)が、サーモOFFでされたとき、ステップS22~S27,S31と同様の制御が行われるようにしてもよい。
上記実施形態では、ステップS24で、室内の空調負荷が所定の標準空調負荷以下でないと判定されたとき、ステップS31で、サーモOFFで一時停止された自動暖房運転が再開されるようになっていたが、自動暖房運転以外の運転(例えば、送風量が固定される暖房運転)が開始されるようにしてもよい。
上記実施形態では、小能力暖房運転時の圧縮機1の周波数は、ステップS31で再開する自動暖房運転の圧縮機1の周波数よりも低くなるようにしていたが、自動暖房運転の圧縮機1の周波数と同じにしたり、圧縮機を運転するための周波数のうちの最低周波数と同じにしたりしてもよい。
上記実施形態において、第1運転制御部100aと、判定部100bと、第2運転制御部100cと、制御モード変更部100eとの少なくとも一つは、ソフトウェアで構成されてもよいし、ハードウェアで構成されてもよい。
本開示の具体的な実施の形態について説明したが、本開示は上記第1,第2実施形態に限定されるものではなく、本開示の範囲内で種々変更して実施することができる。
1 圧縮機
2 四路切換弁、
3 室外熱交換器、
4A,4B,4C 室内熱交換器
5A,5B,5C 室内ファン
6 アキュムレータ
7A,7B,7C 冷媒配管接続部
8A,8B,8C 冷媒配管接続部
10 室外機
11 吐出管温度センサ
12 室外熱交換器温度センサ
13 室外温度センサ
15A,15B,15C 室内熱交換器温度センサ
16A,16B,16C 室内温度センサ
18 室外制御装置
20A,20B…室内機
20C 低能力室内機
100 室内制御装置
100a 第1運転制御部
100b 判定部
100c 第2運転制御部
100d 第3運転制御部
100e 制御モード変更部
EVA,EVB,EVC 電動膨脹弁
2 四路切換弁、
3 室外熱交換器、
4A,4B,4C 室内熱交換器
5A,5B,5C 室内ファン
6 アキュムレータ
7A,7B,7C 冷媒配管接続部
8A,8B,8C 冷媒配管接続部
10 室外機
11 吐出管温度センサ
12 室外熱交換器温度センサ
13 室外温度センサ
15A,15B,15C 室内熱交換器温度センサ
16A,16B,16C 室内温度センサ
18 室外制御装置
20A,20B…室内機
20C 低能力室内機
100 室内制御装置
100a 第1運転制御部
100b 判定部
100c 第2運転制御部
100d 第3運転制御部
100e 制御モード変更部
EVA,EVB,EVC 電動膨脹弁
Claims (6)
- 圧縮機(1)、室外熱交換器(3)、膨張機構(EVC)および室内熱交換器(4C)を有し、冷媒が循環する冷媒回路と、
上記室内熱交換器(4C)に送風する室内ファン(5c)と、
室内温度を検出する室内温度センサ(16c)と、
制御装置(100)と
を備え、
上記制御装置(100)は、
冷房運転時、上記室内温度センサ(16c)によって検出された室内温度(T1)が、ユーザが設定した室内温度(T0)以下であるとき、冷房運転を一時停止させる一方、暖房運転時、上記室内温度センサ(16c)によって検出された室内温度(T1)が、ユーザが設定した室内温度(T0)以上であるとき、暖房運転を一時停止させる第1運転制御部(100a)と、
上記第1運転制御部(100a)で冷房運転が一時停止された後、上記室内温度センサ(16c)によって検出された室内温度(T1)が、ユーザが設定した室内温度(T0)よりも高いとき、または、上記第1運転制御部(100a)で暖房運転が一時停止された後、上記室内温度センサ(16c)によって検出された室内温度(T1)が、ユーザが設定した室内温度(T0)よりも低いとき、室内の空調負荷が所定の空調負荷以下であるか否かを判定する判定部(100b)と、
上記判定部(100b)によって室内の空調負荷が所定の空調負荷以下であると判定されたとき、ユーザが手動で設定可能な回転数よりも低い回転数で上記室内ファン(5c)が回転し、かつ、上記圧縮機(1)が所定の周波数で駆動する条件で、冷房運転または暖房運転を再開させる第2運転制御部(100c)と
を有することを特徴とする空気調和機。 - 請求項1に記載の空気調和機において、
上記制御装置(100)は、上記判定部100bによって室内の空調負荷が所定の空調負荷を超えると判定されたとき、上記第1運転制御部(100a)で一時停止させた冷房運転または暖房運転を再開させる第3運転制御部(100d)を有し、
上記所定の周波数は、上記第3運転制御部(100d)で再開される冷房運転または暖房運転で上記圧縮機(1)を駆動するために使用する周波数以下であることを特徴とする空気調和機。 - 請求項1または2に記載の空気調和機において、
上記所定の周波数は、上記圧縮機(1)を運転するための周波数のうちの最低周波数であることを特徴とする空気調和機。 - 請求項1から3までのいずれか一項に記載の空気調和機において、
上記第1運転制御部(100a)で一時停止させる冷房運転または暖房運転は、上記室内温度センサ(16c)(16c)によって検出された室内温度(T1)に応じて上記室内ファン(5c)の回転数を自動的に変更する自動冷房運転または自動暖房運転であることを特徴とする空気調和機。 - 請求項1から4までのいずれか一項に記載の空気調和機において、
上記制御装置(100)は、上記第2運転制御部(100c)で冷房運転が再開された後、上記室内温度センサ(16c)によって検出された室内温度(T1)が、ユーザが設定した室内温度(T0)よりも高いとき、または、上記第2運転制御部(100c)で暖房運転が再開された後、上記室内温度センサ(16c)によって検出された室内温度(T1)が、ユーザが設定した室内温度(T0)よりも低いとき、上記室内ファン(5c)の回転数と上記圧縮機(1)の周波数との制御モードを、上記第1運転制御部(100a)で一時停止させた冷房運転または暖房運転の制御モードに変更する制御モード変更部(100e)を有することを特徴とする空気調和機。 - 請求項1から5までのいずれか一項に記載の空気調和機において、
冷房定格出力が2.2kw未満であることを特徴とする空気調和機。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018031172A JP2019143950A (ja) | 2018-02-23 | 2018-02-23 | 空気調和機 |
JP2018-031172 | 2018-02-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019163346A1 true WO2019163346A1 (ja) | 2019-08-29 |
Family
ID=67687578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/001444 WO2019163346A1 (ja) | 2018-02-23 | 2019-01-18 | 空気調和機 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019143950A (ja) |
WO (1) | WO2019163346A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111780488B (zh) * | 2020-06-23 | 2022-01-28 | 珠海格力电器股份有限公司 | 有效调节转速的压缩机控制方法、装置及制冷设备 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021214816A1 (ja) * | 2020-04-20 | 2021-10-28 | 三菱電機株式会社 | 冷凍サイクル装置、空気調和機および冷却装置 |
CN113028576B (zh) * | 2021-04-22 | 2022-05-06 | 宁波奥克斯电气股份有限公司 | 一种空调器控制方法、控制装置以及空调器 |
CN113959078B (zh) * | 2021-09-16 | 2023-02-28 | 青岛海尔空调电子有限公司 | 用于压缩机的控制方法、装置、设备及存储介质 |
CN113915749A (zh) * | 2021-10-27 | 2022-01-11 | 奥普家居股份有限公司 | 空调控制方法、空调装置、计算机可读存储介质 |
CN114294772A (zh) * | 2021-12-30 | 2022-04-08 | 海信(广东)空调有限公司 | 空调器健康功能控制方法、空调器和计算机存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56148543U (ja) * | 1980-04-08 | 1981-11-09 | ||
JPS5956645A (ja) * | 1983-06-06 | 1984-04-02 | Hitachi Ltd | 空気調和装置 |
JP2010078217A (ja) * | 2008-09-25 | 2010-04-08 | Daikin Ind Ltd | 空調システム |
JP2014020687A (ja) * | 2012-07-19 | 2014-02-03 | Mitsubishi Electric Corp | 空調装置 |
JP2015215107A (ja) * | 2014-05-08 | 2015-12-03 | 三菱電機株式会社 | 空気調和機 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005164202A (ja) * | 2003-12-05 | 2005-06-23 | Tokyo Electric Power Co Inc:The | ヒートポンプ式加熱システム |
JP5180489B2 (ja) * | 2007-02-20 | 2013-04-10 | 三洋電機株式会社 | 空気調和装置 |
-
2018
- 2018-02-23 JP JP2018031172A patent/JP2019143950A/ja active Pending
-
2019
- 2019-01-18 WO PCT/JP2019/001444 patent/WO2019163346A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56148543U (ja) * | 1980-04-08 | 1981-11-09 | ||
JPS5956645A (ja) * | 1983-06-06 | 1984-04-02 | Hitachi Ltd | 空気調和装置 |
JP2010078217A (ja) * | 2008-09-25 | 2010-04-08 | Daikin Ind Ltd | 空調システム |
JP2014020687A (ja) * | 2012-07-19 | 2014-02-03 | Mitsubishi Electric Corp | 空調装置 |
JP2015215107A (ja) * | 2014-05-08 | 2015-12-03 | 三菱電機株式会社 | 空気調和機 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111780488B (zh) * | 2020-06-23 | 2022-01-28 | 珠海格力电器股份有限公司 | 有效调节转速的压缩机控制方法、装置及制冷设备 |
Also Published As
Publication number | Publication date |
---|---|
JP2019143950A (ja) | 2019-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019163346A1 (ja) | 空気調和機 | |
AU2016288917B2 (en) | Refrigeration cycle apparatus and refrigeration cycle system | |
WO2018181567A1 (ja) | 冷凍装置の室内ユニット | |
WO2012043376A1 (ja) | 冷凍装置の室外ユニット | |
WO2010137311A1 (ja) | 暖房専用空気調和装置 | |
KR101045451B1 (ko) | 멀티 공기 조화기 및 그 제어방법 | |
WO2018134888A1 (ja) | 空気調和機 | |
WO2019146355A1 (ja) | 空気調和装置 | |
WO2019146377A1 (ja) | 空気調和装置 | |
WO2022190886A1 (ja) | 空気調和機 | |
JP2011257097A (ja) | 多室型空気調和装置 | |
JP6624219B2 (ja) | 空気調和機 | |
JP6562139B2 (ja) | 冷凍装置 | |
JP7212283B2 (ja) | 空気調和装置 | |
WO2019163451A1 (ja) | 低能力室内機 | |
JP2022177478A (ja) | 空気調和機 | |
WO2016117097A1 (ja) | 空気調和システム | |
JP7477475B2 (ja) | 空気調和機 | |
JP5233556B2 (ja) | 空気調和装置 | |
JP2005133970A (ja) | 空気調和装置 | |
WO2022254825A1 (ja) | 空気調和機 | |
US20240085042A1 (en) | Refrigeration cycle device and refrigerant leakage determination system | |
JP2022183876A (ja) | 空気調和機 | |
JP2007057189A (ja) | 空気調和装置 | |
JP2022037288A (ja) | 空気調和機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19756656 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19756656 Country of ref document: EP Kind code of ref document: A1 |