Nothing Special   »   [go: up one dir, main page]

WO2019155730A1 - 車体の接着位置の最適化解析方法及び最適化解析装置 - Google Patents

車体の接着位置の最適化解析方法及び最適化解析装置 Download PDF

Info

Publication number
WO2019155730A1
WO2019155730A1 PCT/JP2018/043462 JP2018043462W WO2019155730A1 WO 2019155730 A1 WO2019155730 A1 WO 2019155730A1 JP 2018043462 W JP2018043462 W JP 2018043462W WO 2019155730 A1 WO2019155730 A1 WO 2019155730A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle body
optimization analysis
model
analysis
skeleton model
Prior art date
Application number
PCT/JP2018/043462
Other languages
English (en)
French (fr)
Inventor
斉藤 孝信
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US16/966,126 priority Critical patent/US12091095B2/en
Priority to MX2020008312A priority patent/MX2020008312A/es
Priority to EP18905652.6A priority patent/EP3751435A4/en
Priority to KR1020207023310A priority patent/KR102424466B1/ko
Priority to CN201880088643.2A priority patent/CN111684451B/zh
Publication of WO2019155730A1 publication Critical patent/WO2019155730A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D27/00Connections between superstructure or understructure sub-units
    • B62D27/02Connections between superstructure or understructure sub-units rigid
    • B62D27/026Connections by glue bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D65/00Designing, manufacturing, e.g. assembling, facilitating disassembly, or structurally modifying motor vehicles or trailers, not otherwise provided for
    • B62D65/02Joining sub-units or components to, or positioning sub-units or components with respect to, body shell or other sub-units or components
    • B62D65/024Positioning of sub-units or components with respect to body shell or other sub-units or components
    • B62D65/028Positioning of sub-units or components with respect to body shell or other sub-units or components by determining relative positions by measurement
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/20Configuration CAD, e.g. designing by assembling or positioning modules selected from libraries of predesigned modules
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design

Definitions

  • the present invention relates to an optimization analysis method and an optimization analysis apparatus for an adhesive bonding position of an automotive body, and particularly uses welding and a structural adhesive in combination.
  • the present invention relates to an optimization analysis method and an optimization analysis apparatus for a bonding position of a vehicle body for obtaining an optimal position for bonding with the structural adhesive in the case.
  • CAE computer-aided engineering
  • Patent Document 1 discloses a technology for optimizing a component of a complex structure by topology optimization.
  • a structure such as a vehicle body is formed by joining a plurality of parts (parts) as a parts set by welding or the like, and if the amount of joining at the part to be joined is increased (for example, it is known that the rigidity of the entire structure is improved, such as addition of spot welding points. However, it is desired to reduce the amount of bonding as much as possible from the viewpoint of cost.
  • Patent Document 1 does not disclose how to apply an optimization technique for optimizing a position to be bonded with a structural adhesive in combination with welding for forming a structure such as a vehicle body. . Therefore, there has been a demand for a technique for obtaining an optimum position for bonding with the structural adhesive when welding and a structural adhesive are used in combination.
  • the present invention has been made in view of the above problems, and its object is to use a vehicle body structure model in which a plurality of parts are welded as a set of parts in combination with the welding.
  • An object of the present invention is to provide an optimization analysis method and an optimization analysis device for a bonding position of a vehicle body for obtaining an optimal position for bonding the component assembly with a structural adhesive.
  • the method for optimizing the bonding position of a vehicle body according to the present invention includes a plurality of parts composed of a two-dimensional element and / or a three-dimensional element.
  • a vehicle body skeleton model in which a welding part to be welded as a part set is set in advance is used in combination with the welding to obtain an optimum position for bonding the part set with a structural adhesive.
  • the computer places an adhesive candidate position as the structural adhesive at a position to be a candidate for bonding with the structural adhesive, and a computer in response to an operator instruction, Set optimization analysis conditions including the loading conditions to be loaded on the vehicle body skeleton model in the optimization analysis for the vehicle body skeleton model in which adhesive elements are arranged
  • An optimization analysis condition setting step and a computer performs an optimization analysis using the adhesion element of the vehicle body skeleton model for which the optimization analysis condition is set as an optimization analysis target, and an adhesion satisfying the optimization analysis condition And an optimization analysis step for obtaining a position of the element as a position to be bonded by the structural adhesive.
  • the method for optimizing a bonding position of a vehicle body according to the present invention is characterized in that, in the above invention, the bonding candidate position setting step continuously arranges the bonding elements.
  • the computer is a chassis model in a vehicle body skeleton model in which equipment for door assembly or closure panels is set.
  • a vehicle model generation step for generating a vehicle model by connecting the vehicle model, and a computer performs a driving analysis of the vehicle model, and a connecting portion ( a travel analysis step of acquiring a load and / or displacement generated at a connecting point as a load condition, and the load condition acquired in the travel analysis step is a load in the optimization analysis condition setting step. It is characterized as a condition.
  • the computer connects the chassis model to the vehicle body skeleton model in which a mass corresponding to the fitting or the lid is set.
  • the load condition acquired in the travel analysis step is used as the load condition in the optimization analysis condition setting step.
  • the optimization analysis method for the bonding position of the vehicle body according to the present invention is characterized in that, in the above invention, the bonding candidate position setting step arranges the bonding element in a vehicle body skeleton model in which a fitting and / or a lid is set. To do.
  • the bonding candidate position setting step arranges the bonding element in a vehicle body skeleton model in which a mass corresponding to a fitting and / or a lid is set. It is characterized by that.
  • the apparatus for analyzing the optimization of the bonding position of a vehicle body according to the present invention has a plurality of parts composed of planar elements and / or three-dimensional elements, and a welding portion for welding the plurality of parts as a part set is preset.
  • the vehicle body skeleton model is used to obtain an optimal position for bonding the component assembly with the structural adhesive in combination with the welding, and the candidate position to be bonded with the structural adhesive is Optimization including an adhesion candidate position setting unit for arranging an adhesive element as a structural adhesive and a load condition to be applied to the vehicle body skeleton model in an optimization analysis for the vehicle body skeleton model on which the adhesive element is arranged An optimization analysis condition setting unit for setting analysis conditions, and performing an optimization analysis on the adhesion element of the vehicle body skeleton model in which the optimization analysis conditions are set as an optimization analysis target, and performing the optimization analysis
  • the position of the bonding element satisfying the matter characterized in that it comprises, and optimization analysis unit for determining a position for bonding with an adhesive for the construction.
  • the apparatus for optimizing the bonding position of a vehicle body according to the present invention is characterized in that, in the above invention, the bonding candidate position setting unit continuously arranges the bonding elements.
  • the vehicle body adhesion position optimization analyzing apparatus includes, in the above invention, a vehicle model generation unit that generates a vehicle model by connecting a chassis model to a vehicle body skeleton model in which a fitting or a lid is set, and the vehicle A travel analysis unit that performs a travel analysis of the model and acquires a load and / or displacement generated at a connection portion of the vehicle body skeleton model with the chassis model during travel as a load condition, and the load acquired by the travel analysis unit
  • the condition is a load condition in the optimization analysis condition setting unit.
  • the vehicle body adhesion position optimization analysis apparatus is the vehicle model generation unit that generates a vehicle model by connecting a chassis model to a vehicle body skeleton model in which a mass corresponding to a fitting or a lid is set. And a travel analysis unit that performs a travel analysis of the vehicle model and acquires, as a load condition, a load and / or a displacement that occurs at a connection portion of the vehicle body skeleton model with the chassis model during travel.
  • the load condition acquired in step 1 is used as the load condition in the optimization analysis condition setting unit.
  • the apparatus for optimizing a bonding position of a vehicle body according to the present invention is characterized in that, in the above invention, the bonding candidate position setting unit arranges the bonding element in a vehicle body skeleton model in which a fitting and / or a lid is set. To do.
  • the adhesion candidate position setting unit arranges the adhesion element in a vehicle body skeleton model in which a mass corresponding to a fitting and / or a lid is set. It is characterized by that.
  • the present invention it is possible to perform an optimization analysis by giving a load condition that acts on a vehicle body skeleton model of the automobile assuming that the vehicle is running, and the structural adhesive is used together with the welding. It is possible to accurately obtain the optimum position for bonding the component assembly.
  • FIG. 1 is a block diagram of an apparatus for optimizing the bonding position of a vehicle body according to an embodiment of the present invention.
  • FIG. 2 is an explanatory view for explaining a vehicle body skeleton model used in the present embodiment and a welded portion preset in the vehicle body skeleton model ((a): perspective view, (b): side view).
  • FIG. 3 is an explanatory diagram for explaining a vehicle body skeleton model used in the present embodiment and a fixed connection portion set in the vehicle body skeleton model.
  • FIG. 4 is a diagram for explaining the position of the connecting portion connected to the chassis model in the vehicle body skeleton model used in the present embodiment.
  • FIG. 5 is a diagram for explaining generation of a vehicle model used for travel analysis according to the present embodiment (perspective view).
  • FIG. 6 is a diagram for explaining generation of a vehicle model used for travel analysis according to the present embodiment (bottom view).
  • FIG. 7 is a diagram illustrating an example of a vehicle body skeleton model in which mass elements are set in the vehicle body skeleton model used in the present embodiment.
  • FIG. 8 is a diagram illustrating another example of a vehicle body skeleton model in which mass elements are set in the vehicle body skeleton model used in the present embodiment.
  • FIG. 9 is a diagram illustrating an example in which adhesive elements are arranged at positions that are candidates for bonding a part set to a vehicle body skeleton model in which mass elements are set in the optimization analysis according to the present embodiment ((a ): Perspective view, (b): side view).
  • FIG. 7 is a diagram illustrating an example of a vehicle body skeleton model in which mass elements are set in the vehicle body skeleton model used in the present embodiment.
  • FIG. 8 is a diagram illustrating another example of a vehicle body skeleton model in which mass elements are set
  • FIG. 10 shows a component assembly (a) in which a welded portion is set in advance in the optimization analysis according to the present embodiment, and an adhesive element (b) that is continuously arranged at positions that are candidates for bonding the component assembly. ) And an adhesive element remaining after satisfying the optimization analysis condition and an adhesive element (c) erased without satisfying the optimization analysis condition (No. 1).
  • FIG. 11 is a diagram illustrating a preferred arrangement of adhesive elements that are candidates for adhering component sets in the optimization analysis according to the present embodiment.
  • FIG. 12 shows a component assembly (a) in which a welded portion is set in advance in the optimization analysis according to the present embodiment, and an adhesive element (b) continuously arranged at a candidate position for adhering the component assembly.
  • FIG. 13 is a flowchart showing a processing flow of the optimization analysis method for the adhesion position of the vehicle body according to the embodiment of the present invention.
  • FIG. 14 is a diagram for explaining an example of the traveling conditions set in the traveling analysis step of the method for optimizing the bonding position of the vehicle body according to the present embodiment ((a): steering angle, ( b): Running path (running path)).
  • FIG. 15 is a block diagram showing another aspect of the optimization analysis apparatus for the bonding position of the vehicle body according to the present invention.
  • FIG. 16 is a flowchart showing another aspect of the optimization analysis method for the bonding position of the vehicle body according to the present invention.
  • FIG. 17 is a diagram illustrating a steering angle set as a traveling condition in the traveling analysis, a traveling trajectory of the vehicle model, and a result of a load generated in the front side connection portion in the vehicle body skeleton model acquired by the traveling analysis in the embodiment.
  • A ((a): Steering angle, (b): Traveling track, (c): Connection portion position, (d): Time-dependent change in load generated at the connection portion, (e): Magnitude of load generated at the connection portion And direction).
  • FIG. 17 is a diagram illustrating a steering angle set as a traveling condition in the traveling analysis, a traveling trajectory of the vehicle model, and a result of a load generated in the front side connection portion in the vehicle body skeleton model acquired by the traveling analysis in the embodiment.
  • A ((a): Steering angle, (b): Traveling track, (c): Connection portion
  • FIG. 18 is a diagram illustrating a steering angle set as a traveling condition in the traveling analysis, a traveling trajectory of the vehicle model, and a result of a load generated at a connection portion on the rear side in the vehicle body skeleton model acquired by the traveling analysis in the embodiment.
  • A ((a): Steering angle, (b): Traveling track, (c): Connection portion position, (d): Time-dependent change in load generated at the connection portion, (e): Magnitude of load generated at the connection portion And direction).
  • FIG. 19 is a diagram showing a vehicle body skeleton model to be analyzed in the embodiment ((a): no setting of mass corresponding to a revolving door component or a rotating door component, (b) rotation There is a door component setting).
  • FIG. 19 is a diagram showing a vehicle body skeleton model to be analyzed in the embodiment ((a): no setting of mass corresponding to a revolving door component or a rotating door component, (b) rotation There is a door
  • FIG. 20 is a diagram for explaining the load condition given to the vehicle body skeleton model as the optimization analysis condition in the embodiment (front-side connection portion).
  • FIG. 21 is a diagram for explaining a load condition given to the vehicle body skeleton model as an optimization analysis condition in the embodiment (rear-side connection portion).
  • FIG. 22 is a diagram illustrating an analysis result of body deformation when a load condition acquired by traveling analysis is applied in the embodiment (part 1).
  • FIG. 23 is a diagram illustrating an analysis result of the vehicle body deformation when the load condition acquired by the travel analysis is given in the embodiment (part 2).
  • FIG. 24 is a diagram illustrating an analysis result of vehicle body deformation when a virtual load condition is applied in the embodiment (part 1).
  • FIG. 25 is a diagram illustrating an analysis result of the vehicle body deformation when a virtual load condition is applied in the embodiment (part 2).
  • FIG. 26 is a diagram illustrating an adhesive element obtained by performing an optimization analysis by applying a load condition acquired in a running analysis, with an adhesive element arranged in a vehicle body skeleton model in which mass is not set as an analysis target in the embodiment.
  • FIG. 27 is a diagram illustrating an adhesive element obtained by performing an optimization analysis by giving a virtual load condition with an adhesive element arranged in a vehicle body skeleton model in which mass is not set as an analysis target.
  • FIG. 28 is a diagram illustrating an adhesive element obtained by performing an optimization analysis by applying a load condition acquired in a traveling analysis, with an adhesive element arranged in a vehicle body skeleton model with a mass set as an analysis target in the example.
  • FIG. 29 is a diagram illustrating an adhesive element obtained by performing an optimization analysis with a virtual load condition applied to an adhesive element arranged in a vehicle body skeleton model in which mass is set in an example.
  • FIG. 30 shows an adhesive element obtained by performing an optimization analysis by applying a load condition acquired in a traveling analysis, with an adhesive element arranged in a vehicle body skeleton model set with a rotating door component set as an analysis target in the embodiment.
  • FIG. 31 is a diagram illustrating an adhesive element obtained by performing an optimization analysis with a virtual load condition applied to an adhesive element arranged in a vehicle body skeleton model in which a rotating door component is set in the embodiment. is there.
  • FIG. 32 is a graph showing the rigidity improvement rate of the vehicle body in which the adhesive elements obtained by the optimization analysis in which the application length of the structural adhesive is changed as a constraint condition in the example are arranged.
  • a method and an apparatus for optimizing the bonding position of a vehicle body according to an embodiment of the present invention will be described below with reference to FIGS.
  • the vehicle body skeleton model targeted by the present invention will be described.
  • the vehicle body skeleton model used in the present invention is composed of a plurality of parts such as chassis parts, and each part of the vehicle body skeleton model is modeled using plane elements and / or three-dimensional elements. It is. Further, the vehicle body skeleton model used in the present invention includes a welded portion for welding each part as a part set, a fixed connecting portion for fixing or connecting a fitting or a lid, a suspension structure, It has a connection part which connects with the body model provided with a steering mechanism (steering structure).
  • a steering mechanism steering structure
  • FIG. 2 to FIG. 4 show an example of the vehicle body skeleton model 31.
  • the vehicle body skeleton model 31 is preset with a welded portion 33 to be welded for each part assembly.
  • skeleton model which concerns on this invention includes the spot welded and the thing welded continuously by arc welding (arc welding) or laser welding (laser welding).
  • a hinge 35a, a hinge 35b, and a striker 35c which are fixed connecting portions 35 for fixing or connecting a revolving door as a lid, are set. Yes.
  • the fixed connection part of the vehicle body skeleton model according to the present invention is not limited to these.
  • a fixed connection part for fixing an engine such as an engine mount for fixing an engine, a sliding door other than a revolving door ( Includes slides that fix or connect lids such as doors and bonnets.
  • a suspension mechanism having a tire, a suspension arm, a suspension spring, a shock absorber, and the like, and a steering Connection portions (Node 1 to Node 12 in FIG. 4) connected to a chassis model 51 (see FIG. 5) having a steering mechanism having a steering wheel or the like are set in advance.
  • six connection portions Node 1, 2, 7, 8, 9, and 10) are set on the front side
  • six connection portions Node 3, 4, 5, 6, 11, and 12
  • the X axis indicates the vehicle body longitudinal direction
  • the Y axis indicates the vehicle body width direction
  • the Z axis indicates the vehicle body height direction (the same applies to the following drawings).
  • the vehicle body skeleton model 31 analyzes an elastic body, a viscoelastic body, or an elasto-plasticity in order to analyze a deformation behavior (deformation behavior) when a load or inertia force is applied. It is modeled as a body (elastic-plastic body). Also, the chassis model 51 (FIG. 5) connected to the connection part of the vehicle body skeleton model 31 is a rigid body, an elastic body, or an elasto-plastic body for a component (link) such as a suspension arm, and a tire or a suspension spring is an elastic body. Alternatively, it is modeled as a viscoelastic body or an elastoplastic body.
  • optical analysis device 1 for vehicle body bonding position
  • the configuration of the vehicle body adhesion position optimization analysis apparatus 1 (hereinafter simply referred to as “optimization analysis apparatus 1”) according to the embodiment of the present invention will be described below mainly based on the block diagram shown in FIG. .
  • the optimization analysis apparatus 1 is an apparatus for obtaining an optimal position where a plurality of parts constituting the vehicle body skeleton model 31 (see FIGS. 2 to 4) are bonded together with a structural adhesive in combination with welding for joining parts as a set of parts. Yes, it is composed of a PC (personal computer), etc., and includes a display device 3, an input device 5, a memory storage 7, a working data memory 9, and an arithmetic processing unit (Arithmetic processing unit) 11.
  • the display device 3, the input device 5, the storage device 7, and the work data memory 9 are connected to the arithmetic processing unit 11, and each function is executed by a command from the arithmetic processing unit 11.
  • the display device 3 is used for displaying analysis results and the like, and includes a liquid crystal monitor or the like.
  • the input device 5 is used for a display instruction of the vehicle body skeleton model file 30, an operator's condition input, and the like, and includes a keyboard, a mouse, and the like.
  • the storage device 7 is used for storing various files such as the vehicle body skeleton model file 30 and is configured by a hard disk or the like.
  • the work data memory 9 is used for temporary storage and calculation of data used in the arithmetic processing unit 11, and is composed of a RAM (Random Access Memory) or the like.
  • the arithmetic processing unit 11 includes a vehicle model generation unit 13, a travel analysis unit 15, an adhesion candidate position setting unit 17, an optimization analysis condition setting unit 19, and an optimization analysis unit 21. And a CPU (central processing unit) such as a PC. Each of these units functions when the CPU executes a predetermined program.
  • the vehicle model generation unit 13 is preset with a welded portion to be welded as a component set, and as shown in FIGS. 5 and 6, the vehicle body skeleton model 31 has a rotating door configuration as a fitting or lid.
  • a vehicle model 61 is generated by connecting a chassis model 51 having an undercarriage mechanism, a steering mechanism, and the like to the vehicle body skeleton model 41 in which the parts 43 are set, and a connection portion (in FIG. It is connected to the chassis model 51 via the equivalent to Node 1 to 12.
  • FIGS. 5 and 6 show an example in which a revolving door component 43 that is a lid is set as an example of a vehicle body skeleton model 41 in which a fitting or a lid is set.
  • a vehicle model may be generated using a vehicle body skeleton model in which a mass corresponding to a fitting or a lid is set.
  • FIG. 7 shows an example of a vehicle body skeleton model 71 in which a mass corresponding to a fitting or a lid is set.
  • a vehicle body skeleton model 71 shown in FIG. 7 has a mass element 73 corresponding to the mass of the rotary door component 43 at a predetermined position in a region where the rotary door component 43 is fixed or connected to the fixed connection portion 35 of the vehicle skeleton model 31. Is set.
  • the predetermined position for setting the mass element 73 is a straight line connecting one set (the hinge 35a and the striker 35c, the hinge 35b and the striker 35c) among the plurality of fixed connecting portions 35, or the shape of the vehicle body on which a lid or the like is mounted. It can be on the curve which connects the fixed connection part 35 along.
  • a mass element 73 is set at the midpoint of a straight line connecting the hinge 35a and the striker 35c.
  • the predetermined position for setting the mass corresponding to the fitting or the lid is not limited to the straight line or the curved line, and is surrounded by the straight line except for the straight line connecting the hinge 35a and the hinge 35b. It may be on a plane or a curved surface surrounded by the curve.
  • the fixed connection parts are connected by a straight line so that two straight lines intersect each other, and the straight line It is preferable to set a mass element on the top.
  • two of the four fixed connecting portions excluding the hinges are connected by a curve in accordance with the curvature of the vehicle body, and the mass element is set on the curve or on the curved surface surrounded by the curve You may do it.
  • the mass element 73 having a mass corresponding to the mass of the fitting or the lid is set at the predetermined position, and the mass element 73 and the fixed connecting portion 35 are connected using the rigid element 75 (see FIG. 7).
  • FIG. 7 is an example in which one mass element 73 is set on the center of a straight line connecting the fixed connecting portions 35. As shown in FIG. 8, a plurality of mass elements are arranged on the point that equally divides the straight line. 73 may be set. When a plurality of mass elements 73 are set, the mass of each mass element 73 may be determined such that the total mass of each mass element 73 corresponds to the mass of the fitting or the lid.
  • a mass element having a mass corresponding to the mass of the fitting or the lid is set at the predetermined position, and the mass element and the fixed connecting portion are connected using a beam element.
  • the sum of the mass of each of the mass element and the beam element is set so as to correspond to the mass of the fitting or the lid fixed or connected to the fixed connection portion.
  • the mass of the beam element is determined by the cross-sectional area given as the cross-sectional characteristic of the beam element and the material density given as the material property.
  • the cross-sectional area of the beam element is determined, for example, by giving the radius of the beam element.
  • a beam element is a linear element and is a rod element (bar element) as long as it can transmit a tension and compression load acting in the axial direction of the element.
  • the mass of the rod element is set by a cross-sectional area (or radius) given as a cross-sectional characteristic and a material density given as a material characteristic, like the beam element.
  • the mass of the beam element is determined by the cross-sectional area given as the cross-sectional characteristic of the beam element and the material density given as the material characteristic.
  • the cross-sectional area is determined by giving the radius of the beam element.
  • the travel analysis unit 15 performs a travel analysis using the vehicle model 61 generated by the vehicle model generation unit 13 as an analysis target, and loads and / or displacements generated at a connection portion of the vehicle body skeleton model 41 with the chassis model 51 during the travel. It is acquired as a condition.
  • the traveling analysis unit 15 acquires a load, a displacement, and the like generated at a connection part of the vehicle body skeleton model 41 with the chassis model 51 for the vehicle model 61 that is traveling under the set travel condition.
  • the vehicle model generation unit 13 includes a chassis model in which components such as a suspension included in the travel analysis software are combined. Can be used to generate a vehicle model.
  • the adhesion candidate position setting unit 17 arranges an adhesive element as the structural adhesive at a position to be a candidate for adhesion with the structural adhesive in the vehicle body skeleton model 31.
  • the vehicle body skeleton model 71 in which the mass element 73 is set is bonded to a candidate position to be bonded with the structural adhesive.
  • a vehicle body skeleton model 47 in which the element 45 is arranged is shown.
  • the position that is a candidate for bonding in the vehicle body skeleton model 47 includes a portion (for example, a flange portion) where a plurality of parts of the vehicle body skeleton model 71 (vehicle body skeleton model 31) are welded as a component set. Then, as shown in FIG. 10A, the adhesive element 45 is continuously located at a position offset from the axis of the welded portion 33 as shown in FIG. To arrange.
  • FIG. 11A in the case of a component set 81 in which a component 83 having a flange portion 83a and a vertical wall portion 83b is spot-welded to a component 85, a load is applied to the vehicle body to mainly deform. What is easy is an R portion (R portion) 83c in which a flange portion (83a) and a vertical wall portion (side wall portion) 83b are continuous. Therefore, in such a component set 81, it is effective to improve rigidity by applying a structural adhesive to the R portion 83c side of the flange portion 83a. Therefore, also in the present embodiment, as shown in FIG. 11B, it is preferable to arrange the adhesive element 45 as a candidate position for adhering the R portion 83 c side to the welded portion 33.
  • FIG. 10 is a case where a structural adhesive is applied and bonded to a position offset from the axis of the welded portion 33, but the position to be a candidate for bonding is not limited to this, and is shown in FIG.
  • the adhesive element 45 may be continuously arranged (superimposed on the welded portion 33) on a preset axis of the welded portion 33.
  • metal powder is mixed in in order to give the structural adhesive electrical conductivity. Even if spot welding is performed along the site where the structural adhesive is applied, there is no problem in the process.
  • the width and the total length of the adhesive elements, the distance to be offset with respect to the welded portion, or the like may be set as appropriate.
  • the adhesive elements 45 are continuously arranged.
  • the present invention may be such that the adhesive elements are discretely arranged. What is necessary is just to set suitably the number of elements, the space
  • the adhesive element is preferably composed of a three-dimensional element, but the adhesive element is not limited to a three-dimensional element, and may be composed of a planar element and / or a beam element.
  • the optimization analysis condition setting unit 19 sets optimization analysis conditions including a load condition applied to the vehicle body skeleton model 47 in the optimization analysis for the vehicle body skeleton model 47 (FIG. 9) on which the adhesive element 45 is arranged. Is.
  • the load condition applied to the vehicle body skeleton model 47 may be the load condition acquired by the travel analysis unit 15. Alternatively, when the travel analysis by the travel analysis unit 15 is not performed, a load acting on the vehicle body during travel of the actual vehicle may be measured, or an assumed virtual load may be applied.
  • the optimization analysis condition setting unit 19 sets two types of objective analysis conditions and constraint conditions as optimization analysis conditions in the optimization analysis.
  • the objective condition is a condition set according to the purpose of the optimization analysis. For example, the strain energy is minimized, the absorbed energy is maximized, and the generated stress is minimized. and so on.
  • the constraint condition is a constraint imposed on the optimization analysis.
  • the constraint condition is that the vehicle body skeleton model 47 has a predetermined rigidity, and the total length of the adhesive elements arranged in the vehicle body skeleton model (the structural adhesive is used). Equivalent to the coating length to be applied to a component assembly).
  • a plurality of constraint conditions can be set.
  • the optimization analysis unit 21 performs an optimization analysis on the adhesion element 45 of the vehicle body skeleton model 47 for which the optimization analysis condition is set by the optimization analysis condition setting unit 19, and performs the analysis for the adhesion element satisfying the optimization analysis condition.
  • the position 45 is obtained as the position to be bonded with the structural adhesive.
  • topology optimization can be applied to the optimization analysis by the optimization analysis unit 21.
  • a density method is used in topology optimization, discretization is preferable when the intermediate density is large, and in this case, it is expressed by the following formula (1).
  • the penalty coefficient often used for discretization is 2 or more, and in the optimization of the bonding position according to the present invention, the value of the penalty coefficient may be set as appropriate.
  • the adhesive elements that do not satisfy the optimization analysis condition (objective condition, constraint condition, load condition) set by the optimization analysis condition setting unit 19 are deleted, and the significant optimization condition is satisfied. Since the adhesive element remains, the position of the residual adhesive element can be determined as the position to be bonded with the structural adhesive.
  • the optimization analysis is performed with the adhesive elements 45 continuously arranged as shown in FIG. 10B being analyzed, and the adhesive elements 45a satisfying the optimization analysis condition remain as shown in FIG. 10C.
  • the position of the remaining adhesive element 45a may be obtained as the position to be bonded with the structural adhesive.
  • the adhesive element 45 is arranged so as to overlap the welded portion 33 as shown in FIG. 12 (b)
  • the position of the remaining adhesive element 45a so as to satisfy the optimization analysis condition can be changed with a structural adhesive. What is necessary is just to obtain
  • optimization analysis unit 21 may perform a topology optimization process, or may be an optimization process based on another calculation method.
  • optimization analysis unit 21 for example, commercially available analysis software using a finite element method can be used.
  • the optimization analysis unit 21 may perform the optimization analysis in consideration of the inertial force acting on the rotating door component 43 or the mass element 73 by the inertia relief method when the automobile is running.
  • the inertia relief method is the stress from the force acting on the object in uniform acceleration motion in the state where the object is supported (free support state) at the support point that becomes the reference of the coordinate of inertial force. (Stress) and analysis method for obtaining strain, and is used for static analysis of moving airplanes and ships.
  • optical analysis method for bonding position of vehicle body>
  • An optimization analysis method (hereinafter simply referred to as “optimization analysis method”) for the adhesion position of the vehicle body according to the present embodiment will be described below.
  • the optimization analysis method includes a plurality of parts including planar elements and / or three-dimensional elements, and a vehicle body in which a welding portion 33 for welding the plurality of parts as a part set is set in advance.
  • a skeleton model 31 is used to obtain an optimal position for bonding the component assembly with a structural adhesive in combination with the welding.
  • adhesion candidate position setting step S5 As shown in FIG. Step S3, adhesion candidate position setting step S5, optimization analysis condition setting step S7, and optimization analysis step S9 are included.
  • each step will be described. In the following description, each step is executed using the optimization analysis apparatus 1 configured by a computer.
  • the vehicle model generation step S1 includes a vehicle body skeleton model 41 in which a welded portion to be welded as a part set is set in advance and a rotating door component 43 is set as shown in FIG.
  • This is a step of generating a vehicle model 61 by connecting a chassis model 51 having a mechanism, a steering mechanism, and the like, and is performed by the vehicle model generation unit 13 in the optimization analysis apparatus 1.
  • connection position of the chassis model 51 in the vehicle body skeleton model 41 is a portion (connection portion) to which a suspension and a sub-frame are attached.
  • connection portions in the vehicle body skeleton model 41 connection portions (Nodes 1 to 12 in FIG. 4) preset in the vehicle body skeleton model 31 can be used.
  • the vehicle body skeleton model 41 shown in FIG. 5 has a rotating door component 43 set as a lid, and the lid, the shape of the fitting, and the like of the rotating door component 43 are already determined.
  • the vehicle body skeleton model 31 is set as a model of these.
  • the vehicle body skeleton model 71 in which the mass element 73 having a mass corresponding to the fitting or the lid is set. May be used.
  • the vehicle model 61 generated in the vehicle model generation step S1 is used to perform a travel analysis of the vehicle model 61 under arbitrarily set travel conditions, and the chassis model 51 in the vehicle body skeleton model 41 is traveled.
  • This is a step of acquiring vehicle body characteristics at the time of traveling in which the load and / or displacement generated in the connecting portion is acquired as a load condition.
  • the driving conditions set in the driving analysis step S3 include driving and steering of the vehicle model 61, for example.
  • the vehicle model 61 is driven, for example, by applying a load to the vehicle model 61, and the vehicle model 61 can be accelerated or driven at a constant speed.
  • the steering of the vehicle model 61 can be performed via a steering mechanism by controlling the steering angle of a steering handle provided in the chassis model 51, for example.
  • FIG. 14 shows an example of the driving condition in the driving analysis, the steering angle of the steering wheel (FIG. 14A) in the double lane change in which the lane migration is performed twice continuously during the driving, and the steering angle.
  • the running locus (runnig locus) of the vehicle model 61 (FIG. 14B) is shown.
  • connection portions (Nodes 1 to 12 in FIG. 4) with the chassis model 51 in the vehicle body skeleton model 41 The load and / or displacement that occurs in
  • the load generated at the connection portion of the vehicle body skeleton model 41 changes with the behavior of the vehicle.
  • the traveling analysis step S3 the behavior of the vehicle in the traveling analysis and occurs at each connection portion. Based on the result of the load, the load generated at the connecting portion in the vehicle body skeleton model 41 can be appropriately acquired.
  • the vehicle traveling analysis is performed using the vehicle model 61 in which the vehicle body skeleton model 41 and the chassis model 51 connected with the fitting or the lid are connected.
  • the load or displacement can be obtained in consideration of the inertial force acting on the fitting or the lid during traveling.
  • the travel analysis step according to the present invention is not limited to performing the travel analysis using the vehicle model 61 obtained by connecting the vehicle body skeleton model 41 and the chassis model 51 to which the equipment or lid is set, but the equipment or lid
  • the vehicle body skeleton model 71 (FIG. 7) in which the mass corresponding to is set may be used to perform travel analysis using a vehicle model (not shown) connected to the chassis model 51.
  • FIG. 9 shows an example in which adhesive elements 45 are continuously arranged on a vehicle body skeleton model 71 in which mass elements 73 are set as an example in which adhesive elements are arranged at positions that are candidates for adhesion.
  • the adhesive element 45 to be arranged in the adhesion candidate position setting step S5 is, as shown in FIG. 10 described above, continuously arranged at a position offset from the axis of the welded portion 33 preset in the component assembly 37, As shown in FIG. 12 described above, the adhesive element 45 may be continuously arranged on the axis of the welded portion 33.
  • variety of the adhesive element 45, the length to arrange continuously, the distance offset from the welding part 33, etc. should just be set suitably.
  • the adhesion candidate position setting step S5 is not limited to the continuous arrangement of the adhesive elements 45, and may be a discrete arrangement of the adhesive elements 45. In this case, the number of adhesive elements What is necessary is just to set the space
  • the adhesive element is preferably composed of a three-dimensional element, but the adhesive element is not limited to a three-dimensional element, and may be composed of a planar element.
  • optimization analysis condition setting step S7 optimization analysis conditions including a load condition to be applied to the vehicle body skeleton model 31 in the optimization analysis are set for the vehicle body skeleton model 31 in which the adhesive element 45 is arranged.
  • the optimization analysis condition setting unit 19 performs it according to an operator's instruction.
  • the load condition included in the optimization analysis condition in the optimization analysis condition setting step S7 may be the load condition acquired in the travel analysis step S3.
  • a load acting on the vehicle body when the vehicle travels may be measured, or an assumed virtual load may be applied to the connection portion of the vehicle body skeleton model.
  • optimization analysis condition setting step S7 there are two types of optimization analysis conditions set in the optimization analysis condition setting step S7, which are an objective condition and a constraint condition, and are set as appropriate according to the purpose of the optimization analysis.
  • ⁇ Optimization analysis step ⁇ In the optimization analysis step S9, an optimization analysis is performed on the vehicle body skeleton model 31 (see FIG. 9) in which the adhesion element 45 is arranged at a position that is a candidate for adhesion in the adhesion candidate position setting step S5, and an optimization analysis condition setting step.
  • the adhesive element 45 satisfying the optimization analysis condition set in S7 is obtained, and the position of the obtained adhesive element 45 is set as a position to be adhered by the structural adhesive.
  • the optimization analysis apparatus 1 performs the optimization analysis. Performed by the unit 21.
  • the optimization analysis step S9 when the optimization analysis is performed on the adhesive element 45 set in the component assembly 37, the optimization analysis is performed as shown in FIG.
  • the adhesive element 45a that satisfies the condition remains, and the adhesive element 45b that does not satisfy the optimization analysis condition is deleted in the process of optimization analysis.
  • the position of the remaining adhesive element 45a can be obtained as the position to be bonded with the structural adhesive.
  • Topology optimization can be applied to the optimization analysis in the optimization analysis step S9. Further, when applying the density method in topology optimization, it is preferable to set the penalty coefficient of the element to 4 or more to perform discretization.
  • the inertial force that acts on the fitting or the lid when the vehicle is running may be considered using the inertia relief method.
  • the vehicle model is connected to the vehicle model to obtain a load condition that occurs at the connection with the chassis model in the vehicle body skeleton model at the time of running, and the structure is positioned as a candidate for bonding with the structural adhesive.
  • the optimization analysis method and the optimization analysis device for the bonding position of the vehicle body set the fitting or lid in the running analysis, or set the mass element corresponding to the fitting or lid and optimize
  • the analysis is not limited to the one in which the adhesive element is arranged on the body frame model in which the fitting, the lid, or the mass element is set. That is, in the optimization analysis, it is not always necessary to use a vehicle body skeleton model in which a fitting or a lid is set, or a vehicle body skeleton model in which a mass corresponding to the fitting or the lid is set. It is also possible to perform an optimization analysis by arranging an adhesive element on a vehicle body skeleton model in which a mass corresponding to a fitting or a lid is not set. However, when performing an optimization analysis using a vehicle skeleton model in which a fitting or a lid or a mass corresponding to the fitting or lid is not set, the load condition acquired by the traveling analysis is given as the optimization analysis condition. Shall.
  • the optimization analysis method and the optimization analysis device for the adhesion position of the vehicle body sets the fitting or lid in the running analysis, or sets the mass corresponding to the fitting or lid and acquires the load condition
  • the optimization analysis may use a fitting or lid, or a vehicle skeleton model that does not set a mass corresponding to the fitting or lid. Good.
  • the load acquired by the travel analysis is given as a load condition.
  • the present invention measures the load acting on the vehicle body skeleton model when the vehicle travels without performing the travel analysis, An optimization analysis may be performed by giving a specific load condition.
  • the optimization analysis apparatus 23 provided with the analysis part 21 can be illustrated.
  • an adhesion candidate position setting step S5 As an optimization analysis method for a vehicle body adhesion position according to another embodiment of the present invention, an adhesion candidate position setting step S5, an optimization analysis condition setting step S7, The thing including conversion analysis step S9 can be illustrated.
  • a specific example of a virtual load condition given in the optimization analysis will be described in an example described later.
  • the optimization analysis method and the optimization analysis device for the bonding position of the vehicle body according to the present invention are optimal for bonding with a structural adhesive in combination with spot welding of spot welding, continuous welding such as laser welding or arc welding. It can be applied when determining the position.
  • a structural adhesive a material having a Young's modulus of 2 to 4 GPa can be suitably used.
  • the vehicle body skeleton model 31 used in this embodiment includes a welded portion 33 (see FIG. 2) provided at a site where each component is welded as a component set, and a fixed connecting portion 35 (see FIG. 2) for fixing or connecting a fitting or a lid. 3) and a connecting part (Nodes 1 to 12 in FIG. 4) connected to the chassis model 51 (see FIG. 5) having a suspension mechanism or the like, and the mass of the vehicle body skeleton model 31 is about 300 kg. On the other hand, the mass of the rotating door component 43 was about 79 kg with four pieces.
  • ten mass elements 73 are evenly arranged on a straight line connecting the upper hinge 35a and the striker 35c, and the mass elements 73, the mass elements 73, the hinge 35a, and the mass element 73
  • a vehicle body skeleton model 77 in which a mass corresponding to a rotating door component is set is generated.
  • the mass of each mass element 73 was set so that the sum total was equal to the mass of the rotating door component.
  • a vehicle model 61 was generated by connecting a vehicle body skeleton model 77 and a chassis model 51, and a running analysis was performed.
  • the vehicle body skeleton model 77 and the chassis model 51 are connected to the vehicle body skeleton model 31 via connection portions (FIG. 4, Nodes 1 to 12) set in advance.
  • the traveling condition of the vehicle model 61 in the traveling analysis was a double lane change shown in FIG. That is, from the start of running to 1.0 sec, a load was applied to the vehicle model 61 to accelerate to 50 km / h, and thereafter, the vehicle was run at a constant speed without acceleration. Next, the steering angle for the lane change was given as shown in FIG. 14, and the lane was changed by starting to turn the steering wheel at the time of 1.0 sec, and it was simulated until it returned to the original lane at the time of 5.0 sec.
  • the load generated at the connection portion (Node 1 to 12) between the vehicle body skeleton model 77 and the chassis model 51 when the vehicle model 61 was traveling was obtained by the traveling analysis under the traveling conditions described above.
  • FIG. 17 shows the result of the load generated in the connecting part (Node 1, 2, 7 to 10) on the vehicle front side obtained by the traveling analysis.
  • 17A shows the steering angle of the steering in the running analysis
  • FIG. 17B shows the running trajectory of the vehicle model 61
  • FIG. 17C shows the front side connecting portions (Nodes 1, 2, 7 to 10) for acquiring the load.
  • FIG. 17 (d) shows the change over time in the load in the Y direction (vehicle width direction) generated at Nodes 7 and 8 of the connecting portion
  • FIG. 18 shows the loads at the vehicle rear side connection parts (Nodes 3 to 6, 11, and 12) obtained by running analysis.
  • 18 (a) shows the steering angle of the steering in the running analysis
  • FIG. 18 (b) shows the running locus of the vehicle model 61
  • FIG. 18 (c) shows the rear side connecting parts (Nodes 3 to 6, 11, 12 for acquiring the load).
  • FIG. 18 (d) shows the change over time in the load in the Y direction (vehicle width direction) generated in the nodes 11 and 12 of the connecting portion
  • FIG. 17 and FIG. 18 there is a difference in the load generated in each connecting portion (FIG. 17 (d) and FIG. 18 (d)), and the magnitude and direction of the load are different for each position of the connecting portion. (FIG. 17 (e) and FIG. 18 (e)).
  • the elapsed time for specifying the load is immediately after starting the steering wheel in the traveling analysis, and the rear side is slightly delayed compared to the front side, but the time for specifying the load is The selection can be made as appropriate based on the behavior of the vehicle in the travel analysis and the result of the load generated at each connecting portion.
  • the vehicle body skeleton model 31 (FIG. 19 (a)) in which the mass of the revolving door component part is not set and the vehicle body skeleton model 41 (FIG. 19 (b)) in which the revolving door component part 43 is set are also included.
  • the vehicle model is generated by connecting to the vehicle body model 51, and travel analysis is performed, and the load generated at the connection with the vehicle body model 51 is acquired.
  • 20 (a) and 20 (b) show the magnitude of the load generated in the front side connecting portions (Node 1, 2, 7 to 10) acquired by the traveling analysis using the vehicle body skeleton model 77 in which the mass element 73 is set.
  • the direction (FIG. 17 (e)) is displayed, and the load value at each connecting portion is as shown in FIG. 20 (b).
  • 21 (a) and 21 (b) show the magnitude of the load generated in the rear side connecting portions (Nodes 3 to 6, 11, and 12) obtained by running analysis using the vehicle body skeleton model 77 in which the mass element 73 is set.
  • the direction (FIG. 18 (e)) is displayed, and the magnitude of the load at each connecting portion is as shown in FIG. 21 (b).
  • the running analysis is not performed, and the bonding position optimization analysis is performed by applying a virtual load assuming a lane change to the connection portion of the vehicle body skeleton model 77 in which the mass element 73 is set.
  • the difference in loading conditions was examined.
  • 20 (c) and 20 (d) show the magnitude and direction of a virtual load applied to the front side connection part (Node 1, 2, 7 to 10) of the vehicle body skeleton model 77 in which the mass element 73 is set.
  • FIGS. 22 to 25 show the analysis results of the vehicle body deformation when the load acquired by the running analysis is given as a load condition to the connection part of the vehicle body skeleton model.
  • 22 and 23 show the analysis results of the vehicle body deformation when the load condition acquired by the traveling analysis is given to the connection portion on the rear side.
  • 22 and 23 are analysis results of the vehicle body displacement amount
  • (a) is a vehicle body skeleton model 77 in which a mass element 73 having a mass corresponding to the rotating door component 43 is set.
  • (B) is a vehicle body skeleton model 31 in which the mass of the revolving door component 43 is not set (no mass setting)
  • (c) is a vehicle body skeleton model 41 in which the revolving door component 43 is set (door setting).
  • D shows the magnitude and direction of the load at the rear side connection obtained by running analysis.
  • FIG. 22 shows the vehicle body from the front left side
  • FIG. 23 shows the vehicle body from the rear left side. Both FIG. 22 and FIG. .
  • the displacement amount of the vehicle body in the vehicle body skeleton model 31 without setting the mass is the vehicle body skeleton model 77 with the mass setting (FIGS. 22A and 23A) and Displacement in the entire vehicle body, although some differences were observed in parts with large displacement (roof portion, etc.) compared to the vehicle body skeleton model 41 with door settings (FIGS. 22 (c) and 23 (c)) Shows a similar trend.
  • 24 and 25 show the analysis results of the vehicle body deformation when a virtual load condition assuming a lane change is given to the connection portion on the rear side.
  • FIGS. 24 and 25 are analysis results of the vehicle body displacement amount, and (a) is a mass element corresponding to the mass of the rotating door component 43, respectively.
  • 73 is a vehicle body skeleton model 77 (with mass setting)
  • (b) is a vehicle body skeleton model 31 (without mass setting) that does not set the mass of the revolving door component 43
  • (c) is a revolving door component 43.
  • (d) shows the magnitude and direction of a virtual load applied to the rear side connecting portion.
  • FIG. 24 shows the vehicle body from the front left side
  • FIG. 25 shows the vehicle body from the rear left side. Both FIG. 24 and FIG. .
  • both the optimization analysis of the bonding position given the load condition obtained by the running analysis and the optimization analysis of the bonding position given the virtual load condition without performing the running analysis are performed and optimized.
  • the difference of load conditions in the analysis was examined.
  • the adhesive element 45 is assumed to be a three-dimensional element, and the adhesive elements 45 are continuously arranged on all flange portions in the vehicle body skeleton model. At this time, the total length of the continuously arranged adhesive elements was 102.8 m. In the setting of 102.8 m, the adhesive element 45 is arranged in almost all the parts sets constituting the vehicle body skeleton model, and the adhesive element 45 that is the object of the optimization analysis is also continuously arranged for the door opening. Yes.
  • optimization analysis conditions were set with the adhesive element 45 arranged in the vehicle body skeleton model as an analysis target.
  • the optimization analysis condition is set to maximize the vehicle body rigidity as the objective condition
  • the application length of the structural adhesive is set as the constraint condition.
  • the application length of the structural adhesive corresponds to the total length of the adhesive element 45a remaining by the optimization analysis.
  • a load condition in the optimization analysis an optimization analysis is performed by applying a load generated in the connection portion (Nodes 1 to 12 in FIG. 4) of the vehicle body skeleton model 31 obtained by the travel analysis, and an adhesion satisfying the optimization analysis condition is performed. Element 45 was determined.
  • 26 (a) and 26 (b) show an optimization analysis by applying the load (FIG. 26 (c)) obtained by the traveling analysis performed using the vehicle body skeleton model 31 with no mass set to the vehicle body skeleton model 31.
  • This is the adhesive element 45a obtained by performing the above and is within the scope of the present invention (Invention Example 1).
  • 27 (a) and 27 (b) show an adhesive element 45a obtained by applying a virtual load (FIG. 27 (c)) to the vehicle body skeleton model 31 without mass and performing an optimization analysis without running analysis. That is outside the scope of the present invention (Comparative Example 1).
  • FIG. 28 (a) and 28 (b) show a vehicle body skeleton model 77 with a mass setting.
  • a vehicle body skeleton model 77 with a mass setting is used to perform a travel analysis and the load conditions (FIG. 28 (c)) acquired by the travel analysis are used.
  • 77 is an adhesive element 45a optimized by performing an optimization analysis by giving it to 77, and is within the scope of the present invention (Invention Example 2).
  • 29 (a) and 29 (b) are optimized by performing an optimization analysis by giving a virtual load condition (FIG. 29 (c)) to the vehicle body skeleton model 77 with a mass setting without running analysis.
  • the adhesive element 45a is within the scope of the present invention (Invention Example 3).
  • 30 and 31 show the result of the adhesive element 45a optimized by performing optimization analysis on the adhesive element 45 arranged in the vehicle body skeleton model 41 with the door setting.
  • 30 (a) and 30 (b) show a vehicle body skeleton model 41 with a door setting and a vehicle body skeleton model 41 with a door setting.
  • 41 is an adhesive element 45a optimized by performing an optimization analysis by giving to 41, and is within the scope of the present invention (Invention Example 4).
  • 31 (a) and 31 (b) were optimized by performing an optimization analysis by applying a virtual load (FIG. 31 (c)) to the vehicle body skeleton model 41 with a door setting without performing a running analysis.
  • the adhesive element 45a is within the scope of the present invention (Invention Example 5).
  • Invention Example 3 in which a virtual load is input to the vehicle body skeleton model 77 with mass setting, the adhesive element 45a around the door opening is compared with Comparative Example 1 without mass setting. Survival increased.
  • Invention Example 2 in which the load in the running analysis is input to the vehicle body skeleton model 77 with mass setting, the remaining adhesive element 45a around the door opening further increases. became.
  • FIG. 32 shows the result of the rigidity improvement rate of the vehicle body in which the optimized adhesive element 45a obtained by the optimization analysis is added for the above-described Invention Examples 1 to 5 and Comparative Example 1.
  • the rigidity of the vehicle body is the average value of the values obtained by dividing the load by the displacement at the connection portion to which the load is applied
  • the rigidity improvement rate is the average rigidity obtained on the basis of the vehicle body skeleton model 31 before performing the optimization analysis. It is a relative change, and an adhesive element 45a obtained by changing the application length of the structural adhesive is added as a constraint in the optimization analysis.
  • the rigidity improvement rate at the application length of 102.8 m of the structural adhesive is the result when the adhesive elements 45 are arranged for all the component sets in the vehicle body skeleton model 31 without performing the optimization analysis. is there. Therefore, only when the application length is 102.8 m, the rigidity improvement rates of the traveling analysis load and the virtual load are equal.
  • the optimization analysis method and the optimization analysis device for the bonding position of the vehicle body using the vehicle body skeleton model in which a welded portion that welds a plurality of parts as a component set is set in advance, By using optimization analysis to determine the optimal position to bond the assembly with the structural adhesive in combination with welding, accurately determine the optimal position to bond to improve the rigidity of the vehicle during driving It was suggested that
  • a vehicle body skeleton model in which a plurality of parts are welded as a part set is used, and a vehicle body bond for obtaining an optimum position for bonding the part set with a structural adhesive in combination with the welding.
  • a position optimization analysis method and an optimization analysis apparatus can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Resistance Welding (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

本発明に係る車体の接着位置の最適化解析方法は、複数の部品を部品組みとして溶接する溶接部が予め設定されている車体骨格モデルを用いて、溶接と併用して構造用接着剤で接着する最適な位置を求めるものであって、接着する候補となる位置に接着要素を配置する接着候補位置設定ステップS5と、最適化解析において荷重条件を含む最適化解析条件を設定する最適化解析条件設定ステップS7と、最適化解析条件が設定された車体骨格モデルの接着要素を最適化の解析対象として最適化解析を行い、最適化解析条件を満たす接着要素の位置を構造用接着剤により接着する位置として求める最適化解析ステップS9と、を含む。

Description

車体の接着位置の最適化解析方法及び最適化解析装置
 本発明は、車体(automotive body)の接着(adhesive bonding)位置の最適化解析(optimization analysis)方法及び最適化解析装置に関し、特に、溶接(welding)と構造用接着剤(structural adhesive)を併用した場合における前記構造用接着剤で接着する最適な位置を求める車体の接着位置の最適化解析方法及び最適化解析装置に関する。
 近年、自動車産業においては環境問題に起因した車体の軽量化(weight reduction of automotive body)が進められており、車体の設計にコンピュータ支援工学(computer aided enginerring)(以下、「CAE」という)解析は欠かせない技術となっている。このCAE解析では剛性解析(stiffness analysis)、衝突解析(crashworthiness analysis)、振動解析(vibration analysis)などが実施され、車体性能(automotive-body performance)の向上に大きく寄与している。また、CAE解析では単なる性能評価だけでなく、数理最適化(mathematical optimization)、板厚最適化(thickness optimization)、形状最適化(shape optimization)、トポロジー最適化(topology optimization)などの最適化解析技術を用いることにより、車体の軽量化だけでなく、剛性(stiffness)や耐衝突性能(crashworthiness performance)などといった各種特性の向上を達成した車体の設計支援をすることができる。
 最適化解析技術を用いた車体の設計支援の例として、例えば特許文献1には、複雑な構造体のコンポーネント(component)をトポロジー最適化により最適化する技術が開示されている。
特開2010-250818号公報
 車体のような構造体は、複数の部品(parts)を部品組み(parts set)として溶接(welding)などにより接合(joining)することによって形成されており、接合する部位における接合量を増やせば(例えば、スポット溶接(spot welding)点の追加など)、構造体全体としての剛性は向上することが知られている。しかしながら、コストの観点から接合量をできるだけ少なくすることが望まれている。
 そこで、車体の剛性を向上させるためには、部品同士を接合する溶接と併用して構造用接着剤を塗布して接着することが有効であることが知られている。しかしながら、車体の部品同士を接合する全てのフランジ部を接着するためには、構造用接着剤を100m以上の長さに塗布する場合もあり、この長さの塗布には時間がかかり生産コストの面で問題が生じる。
 そこで、車体の剛性などの性能を向上するため、特許文献1に開示された最適化技術を適用することで、溶接と併用して構造用接着剤で接着する最適な位置を求めることが考えられる。しかしながら、特許文献1には、車体のような構造体を形成する溶接と併用して構造用接着剤で接着する位置の最適化に関して、どのように最適化技術を適用するかについて開示されていない。そのため、溶接と構造用接着剤とを併用した場合における前記構造用接着剤で接着する最適な位置を求める技術が望まれていた。
 本発明は、上記課題に鑑みてなされたものであって、その目的は、複数の部品が部品組みとして溶接された自動車の車体骨格モデル(body structure model)を用いて、前記溶接と併用して構造用接着剤により前記部品組みを接着する最適な位置を求める車体の接着位置の最適化解析方法及び最適化解析装置を提供することにある。
 本発明に係る車体の接着位置の最適化解析方法は、平面要素(two-dimensional element)及び/又は立体要素(three-dimensional element)からなる複数の部品を有してなり、該複数の部品を部品組みとして溶接する溶接部(welding portion)が予め設定されている車体骨格モデルを用いて、前記溶接と併用して構造用接着剤により前記部品組みを接着する最適な位置を求めるものであって、コンピュータが、前記構造用接着剤で接着する候補となる位置に、前記構造用接着剤としての接着要素(adhesive element)を配置する接着候補位置設定ステップと、操作者の指示によりコンピュータが、前記接着要素が配置された前記車体骨格モデルに対して、最適化解析において該車体骨格モデルに負荷する荷重条件(loading condition)を含む最適化解析条件を設定する最適化解析条件設定ステップと、コンピュータが、前記最適化解析条件が設定された前記車体骨格モデルの前記接着要素を最適化の解析対象として最適化解析を行い、前記最適化解析条件を満たす接着要素の位置を前記構造用接着剤により接着する位置として求める最適化解析ステップと、を含むことを特徴とする。
 本発明に係る車体の接着位置の最適化解析方法は、上記発明において、前記接着候補位置設定ステップは、前記接着要素を連続して配置することを特徴とする。
 本発明に係る車体の接着位置の最適化解析方法は、上記発明において、コンピュータが、艤装品(equipment for door assembly)又は蓋物(closure panels)が設定された車体骨格モデルに車台モデル(chassis model)を接続して車両モデル(automobile model)を生成する車両モデル生成ステップと、コンピュータが、該車両モデルの走行解析(driving analysis)を行い、走行時に前記車体骨格モデルにおける前記車台モデルとの接続部(connecting point)に生じる荷重(load)及び/又は変位(displacement)を荷重条件として取得する走行解析ステップと、を含み、該走行解析ステップにおいて取得した荷重条件を、前記最適化解析条件設定ステップにおける荷重条件とすることを特徴とする。
 本発明に係る車体の接着位置の最適化解析方法は、上記発明において、コンピュータが、艤装品又は蓋物に相当する質量(mass)が設定された車体骨格モデルに車台モデルを接続して車両モデルを生成する車両モデル生成ステップと、コンピュータが、該車両モデルの走行解析を行い、走行時に前記車体骨格モデルにおける前記車台モデルとの接続部に生じる荷重及び/又は変位を荷重条件として取得する走行解析ステップと、を含み、該走行解析ステップにおいて取得した荷重条件を、前記最適化解析条件設定ステップにおける荷重条件とすることを特徴とする。
 本発明に係る車体の接着位置の最適化解析方法は、上記発明において、前記接着候補位置設定ステップは、艤装品及び/又は蓋物を設定した車体骨格モデルに前記接着要素を配置することを特徴とする。
 本発明に係る車体の接着位置の最適化解析方法は、上記発明において、前記接着候補位置設定ステップは、艤装品及び/又は蓋物に相当する質量を設定した車体骨格モデルに前記接着要素を配置することを特徴とする。
 本発明に係る車体の接着位置の最適化解析装置は、平面要素及び/又は立体要素からなる複数の部品を有してなり、該複数の部品を部品組みとして溶接する溶接部が予め設定されている車体骨格モデルを用いて、前記溶接と併用して構造用接着剤により前記部品組みを接着する最適な位置を求めるものであって、前記構造用接着剤で接着する候補となる位置に、前記構造用接着剤としての接着要素を配置する接着候補位置設定部と、前記接着要素が配置された前記車体骨格モデルに対して、最適化解析において該車体骨格モデルに負荷する荷重条件を含む最適化解析条件を設定する最適化解析条件設定部と、前記最適化解析条件が設定された前記車体骨格モデルの前記接着要素を最適化の解析対象として最適化解析を行い、前記最適化解析条件を満たす接着要素の位置を前記構造用接着剤により接着する位置として求める最適化解析部と、を備えることを特徴とする。
 本発明に係る車体の接着位置の最適化解析装置は、上記発明において、前記接着候補位置設定部は、前記接着要素を連続して配置することを特徴とする。
 本発明に係る車体の接着位置の最適化解析装置は、上記発明において、艤装品又は蓋物が設定された車体骨格モデルに車台モデルを接続して車両モデルを生成する車両モデル生成部と、該車両モデルの走行解析を行い、走行時に前記車体骨格モデルにおける前記車台モデルとの接続部に生じる荷重及び/又は変位を荷重条件として取得する走行解析部と、を備え、該走行解析部により取得した荷重条件を、前記最適化解析条件設定部における荷重条件とすることを特徴とする。
 本発明に係る車体の接着位置の最適化解析装置は、上記発明において、艤装品又は蓋物に相当する質量が設定された車体骨格モデルに車台モデルを接続して車両モデルを生成する車両モデル生成部と、該車両モデルの走行解析を行い、走行時に前記車体骨格モデルにおける前記車台モデルとの接続部に生じる荷重及び/又は変位を荷重条件として取得する走行解析部と、を備え、該走行解析部において取得した荷重条件を、前記最適化解析条件設定部における荷重条件とすることを特徴とする。
 本発明に係る車体の接着位置の最適化解析装置は、上記発明において、前記接着候補位置設定部は、艤装品及び/又は蓋物を設定した車体骨格モデルに前記接着要素を配置することを特徴とする。
 本発明に係る車体の接着位置の最適化解析装置は、上記発明において、前記接着候補位置設定部は、艤装品及び/又は蓋物に相当する質量を設定した車体骨格モデルに前記接着要素を配置することを特徴とする。
 本発明によれば、車両の走行時を想定して前記自動車の車体骨格モデルに作用する荷重条件を与えて最適化解析を行うことができて、前記溶接と併用して構造用接着剤により前記部品組みを接着する最適な位置を精度良く求めることができる。
図1は、本発明の実施の形態に係る車体の接着位置の最適化解析装置のブロック図である。 図2は、本実施の形態で用いる車体骨格モデルと、該車体骨格モデルに予め設定されている溶接部を説明する説明図である((a):斜視図、(b):側面図)。 図3は、本実施の形態で用いる車体骨格モデルと、該車体骨格モデルに設定されている固定連結部を説明する説明図である。 図4は、本実施の形態で用いる車体骨格モデルにおいて、車台モデルと接続する接続部の位置を説明する図である。 図5は、本実施の形態に係る走行解析に用いる車両モデルの生成について説明する図である(斜視図)。 図6は、本実施の形態に係る走行解析に用いる車両モデルの生成について説明する図である(下面図)。 図7は、本実施の形態で用いる車体骨格モデルに質量要素が設定された車体骨格モデルの一例を示す図である。 図8は、本実施の形態で用いる車体骨格モデルに質量要素が設定された車体骨格モデルの他の例を示す図である。 図9は、本実施の形態に係る最適化解析において、質量要素が設定された車体骨格モデルに、部品組みを接着する候補となる位置に接着要素を配置した一例を示す図である((a):斜視図、(b):側面図)。 図10は、本実施の形態に係る最適化解析において、溶接部が予め設定されている部品組み(a)と、該部品組みを接着する候補となる位置に連続的に配置した接着要素(b)と、最適化解析条件を満たして残存する接着要素及び最適化解析条件を満たさずに消去される接着要素(c)とを示す図である(その1)。 図11は、本実施の形態に係る最適化解析において、部品組みを接着する候補となる接着要素の好適な配置を説明する図である。 図12は、本実施の形態に係る最適化解析において、溶接部が予め設定されている部品組み(a)と、該部品組みを接着する候補となる位置に連続的に配置した接着要素(b)と、最適化解析条件を満たして残存する接着要素及び最適化解析条件を満たさずに消去される接着要素(c)とを説明する図である(その2)。 図13は、本発明の実施の形態に係る車体の接着位置の最適化解析方法の処理の流れを示すフローチャートである。 図14は、本実施の形態に係る車体の接着位置の最適化解析方法の走行解析ステップにおいて設定される走行条件の一例を説明する図である((a):操舵角(steering angle)、(b):走行軌跡(running path))。 図15は、本発明に係る車体の接着位置の最適化解析装置の他の態様を示すブロック図である。 図16は、本発明に係る車体の接着位置の最適化解析方法の他の態様を示すフローチャートである。 図17は、実施例において、走行解析での走行条件として設定した操舵角と車両モデルの走行軌跡と、走行解析により取得した車体骨格モデルにおけるフロント側の接続部に生じる荷重の結果を示す図である((a):操舵角、(b):走行軌跡、(c):接続部位置、(d):接続部に生じる荷重の経時変化、(e):接続部に生じた荷重の大きさ及び方向)。 図18は、実施例において、走行解析での走行条件として設定した操舵角と車両モデルの走行軌跡と、走行解析により取得した車体骨格モデルにおけるリア側の接続部に生じる荷重の結果を示す図である((a):操舵角、(b):走行軌跡、(c):接続部位置、(d):接続部に生じる荷重の経時変化、(e):接続部に生じた荷重の大きさ及び方向)。 図19は、実施例において、解析対象とした車体骨格モデルを示す図である((a):回転ドア(revolving door)構成部品又は回転ドア構成部品に相当する質量の設定なし、(b)回転ドア構成部品の設定あり)。 図20は、実施例において、最適化解析条件として車体骨格モデルに与える荷重条件を説明する図である(フロント側の接続部)。 図21は、実施例において、最適化解析条件として車体骨格モデルに与える荷重条件を説明する図である(リア側の接続部)。 図22は、実施例において、走行解析により取得した荷重条件を与えた場合の車体変形(body deformation)の解析結果を示す図である(その1)。 図23は、実施例において、走行解析により取得した荷重条件を与えた場合の車体変形の解析結果を示す図である(その2)。 図24は、実施例において、仮想的な荷重条件を与えた場合の車体変形の解析結果を示す図である(その1)。 図25は、実施例において、仮想的な荷重条件を与えた場合の車体変形の解析結果を示す図である(その2)。 図26は、実施例において、質量を設定しない車体骨格モデルに配置した接着要素を解析対象とし、走行解析で取得した荷重条件を与えて最適化解析を行って求めた接着要素を示す図である。 図27は、実施例において、質量を設定しない車体骨格モデルに配置した接着要素を解析対象とし、仮想的な荷重条件を与えて最適化解析を行って求めた接着要素を示す図である。 図28は、実施例において、質量を設定した車体骨格モデルに配置した接着要素を解析対象とし、走行解析で取得した荷重条件を与えて最適化解析を行って求めた接着要素を示す図である。 図29は、実施例において、質量を設定した車体骨格モデルに配置した接着要素を解析対象とし、仮想的な荷重条件を与えて最適化解析を行って求めた接着要素を示す図である。 図30は、実施例において、回転ドア構成部品を設定した車体骨格モデルに配置した接着要素を解析対象とし、走行解析で取得した荷重条件を与えて最適化解析を行って求めた接着要素を示す図である。 図31は、実施例において、回転ドア構成部品を設定した車体骨格モデルに配置した接着要素を解析対象とし、仮想的な荷重条件を与えて最適化解析を行って求めた接着要素を示す図である。 図32は、実施例において、制約条件として構造用接着剤の塗布長さを変更した最適化解析により求めた接着要素を配置した車体の剛性向上率を示すグラフである。
 本発明の一実施の形態に係る車体の接着位置の最適化方法及び最適化装置を、図1~図16を参照して以下に説明する。なお、車体の接着位置の最適化方法及び最適化装置の説明に先立ち、本発明で対象とする車体骨格モデルについて説明する。
<車体骨格モデル>
 本発明で用いる車体骨格モデルは、シャシー(chassis)部品などの複数の部品で構成されたものであり、車体骨格モデルの各部品は、平面要素及び/又は立体要素を使ってモデル化されたものである。また、本発明で用いる車体骨格モデルは、各部品を部品組みとして溶接する溶接部と、艤装品又は蓋物を固定又は連結する固定連結部(fixed connecting portion)と、足回り機構(suspension structure)やステアリング機構(steering structure)を備えた車体モデルと接続する接続部を有する。
 図2~図4に、車体骨格モデル31の一例を示す。車体骨格モデル31には、図2に示すように、部品組み毎に溶接する溶接部33が予め設定されている。なお、本発明に係る車体骨格モデルに予め設定されている溶接部33は、スポット溶接された溶接点や、アーク溶接(arc welding)やレーザー溶接(laser welding)により連続溶接されたものも含む。
 また、車体骨格モデル31においては、図3に示すように、蓋物としての回転ドアを固定又は連結する固定連結部35であるヒンジ(hinge)35a、ヒンジ35b及びストライカー(striker)35cが設定されている。
 本発明に係る車体骨格モデルの固定連結部はこれらに限定されるものではなく、例えば、エンジンを固定するエンジンマウント(engine mount)などの艤装品を固定するものや、回転ドア以外のスライドドア(slide door)やボンネット(bonnet)などといった蓋物を固定又は連結するものを含む。
 さらに、車体骨格モデル31においては、図4に示すように、タイヤ(tire)、サスペンションアーム(suspension arm)、サスペンションスプリング(suspension spring)、ショックアブソーバー(shock absorber)などを有する足回り機構と、ステアリングハンドル(steering wheel)などを有するステアリング機構を備えた車台モデル51(図5参照)と接続する接続部(図4中のNode1~Node12)が予め設定されている。図4においては、フロント側に6箇所(Node1、2、7、8、9及び10)、リア側に6箇所(Node3、4、5、6、11、12)の接続部が設定されている。なお、図4において、X軸は車体前後方向、Y軸は車体幅方向、Z軸は車体高さ方向を示す(以下の図においても同様)。
 なお、車体骨格モデル31は、荷重や慣性力(inertia force)が作用したときの変形挙動(deformation behavior)などを解析するため、弾性体(elastic body)若しくは粘弾性体(viscoelastic body)又は弾塑性体(elastic-plastic body)としてモデル化されたものである。また、車体骨格モデル31の接続部に接続される車台モデル51(図5)も、サスペンションアームなどの部品(リンク)を剛体、弾性体又は弾塑性体で、又、タイヤやサスペンションスプリングを弾性体若しくは粘弾性体又は弾塑性体としてモデル化したものである。
 車体骨格モデル31を構成する各部品の要素情報などや、各部品組みにおける溶接部33(図2)、艤装品又は蓋物を固定又は連結する固定連結部35(図3)、足回り機構と接続する接続部(図4)などに関する情報は、車体骨格モデルファイル30(図1参照)に格納されている。
<車体の接着位置の最適化解析装置>
 本発明の実施の形態に係る車体の接着位置の最適化解析装置1(以下、単に「最適化解析装置1」という)の構成について、主に図1に示すブロック図に基づいて以下に説明する。
 最適化解析装置1は、車体骨格モデル31(図2~図4参照)を構成する複数の部品を部品組みとして接合する溶接と併用して構造用接着剤で接着する最適な位置を求める装置であり、PC(パーソナルコンピュータ)などによって構成され、表示装置(display device)3、入力装置(input device)5、記憶装置(memory storage)7、作業用データメモリ(working data memory)9及び演算処理部(arithmetic processing unit)11を有している。そして、表示装置3、入力装置5、記憶装置7及び作業用データメモリ9は、演算処理部11に接続され、演算処理部11からの指令によってそれぞれの機能が実行される。
≪表示装置≫
 表示装置3は、解析結果などの表示に用いられ、液晶モニターなどで構成される。
≪入力装置≫
 入力装置5は、車体骨格モデルファイル30の表示指示や操作者の条件入力などに用いられ、キーボードやマウスなどで構成される。
≪記憶装置≫
 記憶装置7は、車体骨格モデルファイル30などの各種ファイルの記憶などに用いられ、ハードディスクなどで構成される。
≪作業用データメモリ≫
 作業用データメモリ9は、演算処理部11で使用するデータの一時保存や演算に用いられ、RAM(Random Access Memory)などで構成される。
≪演算処理部≫
 演算処理部11は、図1に示すように、車両モデル生成部13と、走行解析部15と、接着候補位置設定部17と、最適化解析条件設定部19と、最適化解析部21とを有し、PCなどのCPU(中央演算処理装置(central processing unit))によって構成される。これらの各部は、CPUが所定のプログラムを実行することによって機能する。
 以下、演算処理部11内の各部の機能を説明する。なお、演算処理部11の各部の機能における具体的な処理内容については、後述する<車体の接着位置の最適化解析方法>において説明する。
(車両モデル生成部)
 車両モデル生成部13は、図2に示すように、部品組みとして溶接する溶接部が予め設定され、図5及び図6に示すように、車体骨格モデル31に艤装品又は蓋物としての回転ドア構成部品43が設定された車体骨格モデル41に足回り機構やステアリング機構などを有する車台モデル51を接続して車両モデル61を生成するものであり、車体骨格モデル41が有する接続部(図4中のNode1~12に相当)を介して車台モデル51と接続する。
 図5及び図6は、艤装品又は蓋物が設定された車体骨格モデル41の一例として、蓋物である回転ドア構成部品43が設定されたものであるが、本発明に係る車両モデル生成部は、艤装品又は蓋物に相当する質量を設定した車体骨格モデルを用いて車両モデルを生成するものであってもよい。
 艤装品又は蓋物に相当する質量を設定した車体骨格モデル71の一例を図7に示す。図7に示す車体骨格モデル71は、車体骨格モデル31の固定連結部35に回転ドア構成部品43が固定又は連結される領域内の所定位置に回転ドア構成部品43の質量に相当する質量要素73を設定したものである。
 質量要素73を設定する所定位置は、複数の固定連結部35のうち一組(ヒンジ35aとストライカー35c、ヒンジ35bとストライカー35c)を結ぶ直線上、若しくは、蓋物などが装着された車体の形状に沿って固定連結部35を結ぶ曲線上とすることができる。図7に例示する車体骨格モデル71においては、ヒンジ35aとストライカー35cとを結ぶ直線の中点に質量要素73が設定されている。
 もっとも、前記艤装品又は蓋物に相当する質量を設定する所定位置は、前記直線若しくは前記曲線の線上に限定されるものではなく、ヒンジ35aとヒンジ35bを結ぶ直線を除き、前記直線で囲まれた平面上、若しくは、前記曲線で囲まれた曲面上としても良い。
 また、車体骨格モデルに予め設定された4点の固定連結部で艤装品が固定又は連結される場合は、2本の直線が互いに交差するように前記固定連結部同士を直線で結び、該直線上に質量要素を設定することが好ましい。この場合においても、前記4点の固定連結部のうちヒンジ同士を除く2つを車体のもつ曲率に併せて曲線で接続し、該曲線上又は該曲線で囲まれた曲面上に質量要素を設定しても良い。
 艤装品又は蓋物に相当する質量を車体骨格モデルの所定位置に設定する具体的な質量設定方法として、例えば、以下の(1)、(2)及び(3)がある。
(1)前記所定位置に艤装品又は蓋物の質量に相当する質量を有する質量要素73を設定し、質量要素73と固定連結部35とを剛体要素75を用いて接続する(図7参照)。
 図7は、固定連結部35を結ぶ直線の中心上に一個の質量要素73を設定した例であるが、図8に示すように、前記直線を均等に分割する点上に複数個の質量要素73を設定しても良い。複数個の質量要素73を設定する場合、各質量要素73の質量の総和が前記艤装品又は蓋物の質量に相当するように、各質量要素73の質量を決定すれば良い。
(2)前記所定位置に艤装品又は蓋物の質量に相当する質量の質量要素(mass element)を設定し、該質量要素と固定連結部とをはり要素(beam element)を用いて接続する。この場合、質量要素とはり要素それぞれの質量の和は、固定連結部に固定又は連結される前記艤装品又は蓋物の質量に相当するように設定する。
 はり要素の質量は、はり要素の断面特性として与えられる断面積及び材料特性(material property)として与えられる材料密度(element density)により定められる。はり要素の断面積は、例えば、はり要素の半径を与えることにより決定される。
 さらに、はり要素を用いて質量要素を接続する場合には、後述する走行解析部15による走行解析において質量要素及びはり要素に作用する慣性力による荷重が車体骨格モデルに伝達するために必要な断面特性及び材料特性をはり要素に適宜設定する必要がある。
 なお、はり要素は、線状の要素であり、該要素の軸方向に作用する引張圧縮荷重(tension and compression load)を伝達できるものであればロッド要素(棒要素(bar element))であっても良く、該ロッド要素の質量は、はり要素と同様に、断面特性として与えられる断面積(又は半径)、及び、材料特性として与えられる材料密度により設定される。
(3)艤装品又は蓋物の質量に相当する質量を有するはり要素を用いて設定する。
 はり要素の質量は、はり要素の断面特性として与えられる断面積及び材料特性として与えられる材料密度により定められ、例えば、はり要素の半径を与えることにより前記断面積が決定される。
(走行解析部)
 走行解析部15は、車両モデル生成部13により生成された車両モデル61を解析対象として走行解析を行い、走行時に車体骨格モデル41における車台モデル51との接続部に生じる荷重及び/又は変位を荷重条件として取得するものである。
 車両モデル61の走行解析においては、車両モデル61の駆動(drive)や操舵などの走行条件(driving condition)を設定する必要があり、設定する走行条件としては、車両モデル61を駆動するために車両モデル61に付与する荷重や、車両モデル61を操舵するために車台モデル51が備えるステアリングハンドルに設定される操舵角が挙げられる。そして、走行解析部15は、設定された走行条件の下で走行している車両モデル61について、車体骨格モデル41における車台モデル51との接続部に生じた荷重や変位などを取得する。
 なお、走行解析部15としては、市販されている車両の走行解析ソフトウェアを用いることができ、この場合、車両モデル生成部13においては、当該走行解析ソフトウェアが有するサスペンションなどのコンポーネントを組み合わせた車台モデルを用いて車両モデルを生成することができる。
(接着候補位置設定部)
 接着候補位置設定部17は、車体骨格モデル31において構造用接着剤で接着する候補となる位置に前記構造用接着剤としての接着要素を配置するものである。図9に、構造用接着剤として立体要素からなる接着要素を配置した車体骨格モデルの一例として、質量要素73が設定された車体骨格モデル71について構造用接着剤で接着する候補となる位置に接着要素45を配置した車体骨格モデル47を示す。
 車体骨格モデル47における接着する候補となる位置は、車体骨格モデル71(車体骨格モデル31)が有する複数の部品を部品組みとして溶接する部位(例えばフランジ部)が挙げられる。そして、接着要素45は、図10(a)に示すように溶接部33が予め設定されている部品組み37について、図10(b)に示すように溶接部33の軸線からオフセットした位置に連続的に配置する。
 ここで、図11(a)に示すようにフランジ部83aと縦壁部83bとを有する部品83が部品85とスポット溶接されてなる部品組み81の場合、車体に荷重が負荷して主として変形しやすいのはフランジ部(flange portion)83aと縦壁部(side wall portion)83bとが連続するR部(R portion)83cである。そのため、このような部品組み81においては、フランジ部83aにおけるR部83c側に構造用接着剤を塗布することで剛性向上に対して効果的である。そのため、本実施の形態においても、図11(b)に示すように、溶接部33よりもR部83c側を接着する候補となる位置として接着要素45を配置することが好ましい。
 なお、図10は、溶接部33の軸線からオフセットした位置に構造用接着剤を塗布して接着する場合のものであったが、接着する候補となる位置はこれに限らず、図12に示す部品組み39のように、予め設定されている溶接部33の軸線上に接着要素45を連続して配置(溶接部33に重畳)したものであってもよい。例えば、実際の部品組みに対してスポット溶接と構造用接着剤とを併用して接合する場合に当該構造用接着剤に電導性(electric conductive)を持たせるために金属粉が混入されていれば、構造用接着剤を塗布した部位に沿ってスポット溶接したとしても、工程上に問題はない。
 また、上記のように接着要素を連続的に配置する場合は、接着要素の幅や全長、あるいは、溶接部に対してオフセット(offset)させる距離などは適宜設定すればよい。さらに、上記の例は、接着要素45を連続して配置するものであったが、本発明は、接着要素を離散的(discrete)に配置したものであってもよく、この場合においては、接着要素の個数や接着要素同士の間隔などを適宜設定すればよい。
 また、接着要素としては立体要素からなるものが好ましいが、接着要素は立体要素に限定されるものではなく、平面要素および/または・はり要素からなるものであってもよい。
(最適化解析条件設定部)
 最適化解析条件設定部19は、接着要素45が配置された車体骨格モデル47(図9)に対して、最適化解析において車体骨格モデル47に負荷する荷重条件を含む最適化解析条件を設定するものである。
 車体骨格モデル47に負荷する荷重条件は、走行解析部15により取得した荷重条件を与えればよい。若しくは、走行解析部15による走行解析を行わない場合には、実車両の走行時に車体に作用する荷重を測定するか、または、想定した仮想的な荷重を与えてもよい。
 さらに、最適化解析条件設定部19は、最適化解析における最適化解析条件として、目的条件(objective condition)と制約条件(constrained condition)の2種類を設定する。目的条件は、最適化解析の目的に応じて設定される条件であり、例えば、ひずみ(strain)エネルギーを最小にする、吸収エネルギー(absorved energy)を最大にして発生応力(stress)を最小にするなどがある。制約条件は、最適化解析を行う上で課す制約であり、例えば、車体骨格モデル47が所定の剛性を有するようにする条件や、車体骨格モデルに配置する接着要素の全長(構造用接着剤を部品組みに塗布する塗布長さに相当)などがある。なお、制約条件は複数設定可能である。
(最適化解析部)
 最適化解析部21は、最適化解析条件設定部19により最適化解析条件が設定された車体骨格モデル47の接着要素45を解析対象として最適化解析を行い、前記最適化解析条件を満たす接着要素45の位置を構造用接着剤で接着する位置として求めるものである。
 ここで、最適化解析部21による最適化解析には、例えば、トポロジー最適化を適用することができる。トポロジー最適化において密度法(density method)を用いる際に、中間的な密度が多い場合には離散化(discretization)が好ましく、この場合は以下に示す数式(1)であらわされる。
Figure JPOXMLDOC01-appb-M000001
 離散化によく用いられるペナルティ係数は2以上であり、本発明に係る接着位置の最適化において、ペナルティ係数の値は適宜設定すればよい。
 そして、トポロジー最適化により、最適化解析条件設定部19で設定された最適化解析条件(目的条件、制約条件、荷重条件)を満たさない接着要素は消去され、該最適化解析条件を満たす有意な接着要素が残存するので、該残存した接着要素の位置を構造用接着剤で接着する位置として決めることができる。
 例えば、図10(b)のように連続的に配置した接着要素45を解析対象として最適化解析を行い、図10(c)に示すように、最適化解析条件を満たす接着要素45aが残存して残りの接着要素45bが消去された場合、残存した接着要素45aの位置を構造用接着剤で接着する位置として求めればよい。また、図12(b)に示すように溶接部33に重畳するように接着要素45を配置した場合においても、最適化解析条件を満たすように残存した接着要素45aの位置を構造用接着剤で接着する位置として求めればよい。
 なお、最適化解析部21は、トポロジー最適化処理を行うものでもよいし、他の計算方式による最適化処理であってもよい。そして、最適化解析部21としては、例えば市販されている有限要素法(finite element method)を用いた解析ソフトを使用することができる。
 また、最適化解析部21は、自動車の走行時において回転ドア構成部品43又は質量要素73に作用する慣性力を慣性リリーフ法(inertia relief method)により考慮して最適化解析を行うとよい。慣性リリーフ法とは、慣性力の座標の基準となる支持点において物体が支持された状態(自由支持(free support)状態)で等加速度運動(uniformly accelerated motion)中の物体に作用する力から応力(stress)やひずみを求める解析手法であり、運動中の飛行機や船の静解析(static analysis)に使用されている。
<車体の接着位置の最適化解析方法>
 本実施の形態に係る車体の接着位置の最適化解析方法(以下、単に「最適化解析方法」という)について、以下に説明する。
 本実施の形態に係る最適化解析方法は、平面要素及び/又は立体要素からなる複数の部品を有してなり、該複数の部品を部品組みとして溶接する溶接部33が予め設定されている車体骨格モデル31を用いて、前記溶接と併用して構造用接着剤により前記部品組みを接着する最適な位置を求めるものであって、図13に示すように、車両モデル生成ステップS1と、走行解析ステップS3と、接着候補位置設定ステップS5と、最適化解析条件設定ステップS7と、最適化解析ステップS9と、を含む。以下、各ステップについて説明する。なお、以下の説明では、各ステップとも、コンピュータによって構成された最適化解析装置1を用いて実行するものとしている。
≪車両モデル生成ステップ≫
 車両モデル生成ステップS1は、図2に示すように、部品組みとして溶接する溶接部が予め設定され、図5に示すように、回転ドア構成部品43が設定された車体骨格モデル41と、足回り機構やステアリング機構などを有する車台モデル51とを接続して、車両モデル61を生成するステップであり、最適化解析装置1においては車両モデル生成部13が行うものである。
 車体骨格モデル41における車台モデル51の接続位置は、サスペンションやサブフレーム(sub-frame)が取り付けられる部位(接続部)である。車体骨格モデル41における接続部としては、車体骨格モデル31に予め設定された接続部(図4中のNode1~12)を用いることができる。
 さらに、図5に示す車体骨格モデル41は、蓋物として回転ドア構成部品43が設定されたものであり、回転ドア構成部品43のような蓋物や、艤装品の形状等が既に決定されている場合には、これらをモデル化したものを車体骨格モデル31に設定する。ただし、蓋物のデザインや艤装品の形状がまだ決定されていない場合にあっては、前掲の図7に示すように、艤装品又は蓋物に相当する質量の質量要素73を設定した車体骨格モデル71を用いてもよい。
≪走行解析ステップ≫
 走行解析ステップS3は、車両モデル生成ステップS1で生成された車両モデル61を用い、任意に設定された走行条件の下で車両モデル61の走行解析を行い、走行時に車体骨格モデル41における車台モデル51との接続部に生じる荷重及び/又は変位を荷重条件として取得する走行時における車体特性を取得するステップである。
 走行解析ステップS3において設定される走行条件としては、例えば、車両モデル61の駆動と操舵などがある。車両モデル61は、例えば車両モデル61に荷重を付与することにより駆動され、車両モデル61を加速走行(accelerated driving)や定速走行(constant speed driving)させることができる。また、車両モデル61の操舵は、例えば、車台モデル51が備えるステアリングハンドルの操舵角を制御し、ステアリング機構を介して行うことができる。
 図14に、走行解析における走行条件の一例として、走行中に車線移行(lane migration)を2回連続して行うダブルレーンチェンジにおけるステアリングハンドルの操舵角(図14(a))と、該操舵角を与えたときの車両モデル61の走行軌跡(runnig locus)(図14(b))を示す。
 そして、走行解析ステップS3においては、設定された走行条件の下で走行状態にある車両モデル61における車体特性として、車体骨格モデル41における車台モデル51との接続部(図4中のNode1~12)に生じる荷重及び/又は変位を取得する。
 なお、走行している車両モデル61においては、車体骨格モデル41の接続部に生じる荷重は車両の挙動とともに変化するが、走行解析ステップS3においては、走行解析における車両の挙動と各接続部に生じる荷重の結果に基づいて、車体骨格モデル41における接続部に生じた荷重を適宜取得することができる。
 前述のとおり、本実施の形態に係る走行解析ステップS3においては、艤装品又は蓋物が設定された車体骨格モデル41と車台モデル51とを接続した車両モデル61を用いて車両の走行解析を行うため、走行時において艤装品又は蓋物に作用する慣性力を考慮して、荷重又は変位を取得することができる。
 ただし、本発明に係る走行解析ステップは、艤装品又は蓋物が設定された車体骨格モデル41と車台モデル51とを接続した車両モデル61を用いて走行解析を行うものに限らず、艤装品又は蓋物に相当する質量を設定した車体骨格モデル71(図7)を車台モデル51と接続した車両モデル(図示なし)を用いて走行解析を行うものであっても良い。
≪接着候補位置設定ステップ≫
 接着候補位置設定ステップS5は、車体骨格モデル31について、部品組みとして接着する候補となる位置に接着要素45を配置するものであり、図1に示す最適化解析装置1においては接着候補位置設定部17が行う。図9に、接着する候補となる位置に接着要素を配置した一例として、質量要素73が設定された車体骨格モデル71に立体要素からなる接着要素45を連続して配置したものを示す。
 接着候補位置設定ステップS5において配置する接着要素45は、前掲の図10に示すように、部品組み37に予め設定されている溶接部33の軸線からオフセットした位置に連続的に配置するものや、前掲の図12に示すように、溶接部33の軸線上に接着要素45を連続的に配置したものであってもよい。このように接着要素45を連続的に配置する場合は、接着要素45の幅や連続配置する長さ、溶接部33からオフセットさせる距離などは、適宜設定すればよい。
 もっとも、接着候補位置設定ステップS5は、接着要素45を連続して配置するものに限らず、接着要素45を離散的に配置したものであってもよく、この場合においては、接着要素の個数や接着要素同士の間隔などを適宜設定すればよい。
 また、接着要素としては立体要素からなるものが好ましいが、接着要素は立体要素に限定されるものではなく、平面要素からなるものであってもよい。
≪最適化解析条件設定ステップ≫
 最適化解析条件設定ステップS7は、接着要素45が配置された車体骨格モデル31に対して、最適化解析において車体骨格モデル31に負荷する荷重条件を含む最適化解析条件を設定するものであり、最適化解析装置1においては操作者の指示により最適化解析条件設定部19が行う。
 最適化解析条件設定ステップS7において最適化解析条件に含まれる荷重条件は、走行解析ステップS3において取得した荷重条件を与えればよい。若しくは、走行解析ステップS3において走行解析を行わない場合には、車両の走行時に車体に作用する荷重を測定するか、想定される仮想的な荷重を車体骨格モデルの接続部に与えてもよい。
 また、最適化解析条件設定ステップS7において設定される最適化解析条件としては、目的条件と制約条件の2種類があり、最適化解析の目的に応じて適宜設定する。
≪最適化解析ステップ≫
 最適化解析ステップS9は、接着候補位置設定ステップS5において接着の候補となる位置に接着要素45が配置された車体骨格モデル31(図9参照)について最適化解析を行い、最適化解析条件設定ステップS7で設定された最適化解析条件を満たす接着要素45を求め、該求めた接着要素45の位置を構造用接着剤で接着する位置とするものであり、最適化解析装置1においては最適化解析部21が行う。
 例えば図10に示す部品組み37において、最適化解析ステップS9では、部品組み37に設定された接着要素45に対して最適化解析を行うと、図10(c)に示すように、最適化解析条件を満たす接着要素45aは残存し、最適化解析条件を満たさない接着要素45bは最適化解析の過程において消去される。これより、残存した接着要素45aの位置を構造用接着剤で接着する位置として求めることができる。
 最適化解析ステップS9における最適化解析には、トポロジー最適化を適用することができる。さらに、トポロジー最適化において密度法を適用する場合、要素のペナルティ係数を4以上に設定して離散化を行うようにすることが好ましい。
 そして、最適化解析において、自動車の走行時に艤装品又は蓋物に作用する慣性力は慣性リリーフ法を用いて考慮するとよい。
 以上、本実施の形態に係る車体の接着位置の最適化解析方法及び最適化解析装置によれば、複数の部品を部品組みとして溶接する溶接部が予め設定されている車体骨格モデルと車台モデルとを接続した車両モデルにより走行解析を行い、該走行解析により走行時において車体骨格モデルにおける車台モデルとの接続部に生じる荷重条件を取得し、構造用接着剤で接着する候補となる位置に前記構造用接着剤としての接着要素を配置し、前記走行解析により取得した前記接続部に生じる荷重条件を与えて該接着要素を最適化の解析対象として最適化解析を行うことにより、走行時における自動車の剛性を向上させるために構造用接着剤で接着する最適な位置を精度良く求めることができる。
 ここで、本発明に係る車体の接着位置の最適化解析方法及び最適化解析装置は、走行解析において艤装品又は蓋物を設定、あるいは、艤装品又は蓋物に相当する質量要素を設定し、最適化解析においても艤装品又は蓋物あるいは質量要素が設定された車体骨格モデルに接着要素を配置するものに限るものではない。すなわち、最適化解析においては、艤装品又は蓋物を設定した車体骨格モデルや、艤装品又は蓋物に相当する質量を設定した車体骨格モデルを用いることを必ずしも要するものではなく、艤装品又は蓋物や該艤装品又は蓋物に相当する質量が設定されていない車体骨格モデルに接着要素を配置し、最適化解析を行うものであってもよい。ただし、艤装品又は蓋物や該艤装品又は蓋物に相当する質量が設定されていない車体骨格モデルを用いて最適化解析を行う場合には、最適化解析条件として走行解析により取得した荷重条件を与えるものとする。
 また、本発明に係る車体の接着位置の最適化解析方法及び最適化解析装置は、走行解析において艤装品又は蓋物を設定、あるいは、艤装品又は蓋物に相当する質量を設定して荷重条件を取得し、該取得した荷重条件を最適化解析条件として与えるものであれば、最適化解析においては、艤装品又は蓋物、あるいは、艤装品又は蓋物に相当する質量を設定しない車体骨格モデルを用いてもよい。
 なお、上記の説明は、走行解析により取得した荷重を荷重条件として与えるものであったが、本発明は、走行解析を行わずに車両走行時に車体骨格モデルに作用する荷重を測定するか、仮想的な荷重条件を与えて最適化解析を行うようにしたものであってもよい。
 この場合、本発明の他の実施の形態に係る車体の接着位置の最適化解析装置として、図15に示すように、接着候補位置設定部17と、最適化解析条件設定部19と、最適化解析部21とを備えてなる最適化解析装置23が例示できる。同様に、本発明の他の実施の形態に係る車体の接着位置の最適化解析方法としては、図16に示すように、接着候補位置設定ステップS5と、最適化解析条件設定ステップS7と、最適化解析ステップS9とを含むものが例示できる。なお、最適化解析において与える仮想的な荷重条件の具体例については、後述する実施例にて説明する。
 さらに、本発明に係る車体の接着位置の最適化解析方法及び最適化解析装置は、スポット溶接の点溶接やレーザー溶接又はアーク溶接などの連続溶接と併用して構造用接着剤で接着する最適な位置を求める場合に適用することができる。なお、構造用接着剤としては、ヤング率(Young’s modulus)が2~4GPaのものを好適に用いることができる。
 以下、本発明の効果を確認する実験を行ったので、これについて説明する。実験では、まず、図2~図4に示す車体骨格モデル31を用いて、図8に示すように、車体骨格モデル31に蓋物としての回転ドア構成部品が固定又は連結される領域内の所定位置に回転ドア構成部品43に相当する質量要素73を設定した。
 本実施例で用いた車体骨格モデル31は、各部品を部品組みとして溶接する部位に設けられた溶接部33(図2参照)と、艤装品又は蓋物を固定又は連結する固定連結部35(図3参照)と、足回り機構などを有する車台モデル51(図5参照)と接続する接続部(図4中のNode1~12)を有するものであり、車体骨格モデル31の質量は約300kgであるのに対し、回転ドア構成部品43の質量は4枚で約79kgであった。
 そこで、図8に示すように、上側のヒンジ35aとストライカー35cとを結ぶ直線上に10個の質量要素73を均等に配置し、質量要素73同士、質量要素73とヒンジ35a及び質量要素73とストライカー35cを剛体要素75で接続することにより、回転ドア構成部品に相当する質量を設定した車体骨格モデル77を生成した。ここで、各質量要素73の質量は、その総和が前記回転ドア構成部品の質量と等しくなるように設定した。
 次に、図5に示すように、車体骨格モデル77と車台モデル51とを接続することにより車両モデル61を生成し、走行解析を行った。車両モデル61の生成にあたり、車体骨格モデル77と車台モデル51は、車体骨格モデル31に予め設定されていた接続部(図4、Node1~12)を介して接続した。
 走行解析における車両モデル61の走行条件は、図14に示すダブルレーンチェンジとした。すなわち、走行開始から1.0secまで、車両モデル61に荷重を与えて50km/hまで加速し、その後は加速無しで定速走行させた。次いで、レーンチェンジとなる操舵角を図14に示すように与え、1.0secの時点でハンドルを切り始めて車線を変更し、5.0secの時点で元の車線に戻るまでをシミュレートした。
 そして、上記の走行条件下での走行解析により、車両モデル61の走行時において車体骨格モデル77と車台モデル51との接続部(Node1~12)に生じる荷重を取得した。
 図17に、走行解析により取得した車両フロント側の接続部(Node1、2、7~10)に生じた荷重の結果を示す。図17(a)は走行解析におけるステアリングの操舵角、図17(b)は車両モデル61の走行軌跡、図17(c)は荷重を取得するフロント側の接続部(Node1、2、7~10)の位置、図17(d)は接続部のうちNode7及び8に生じたY方向(車幅方向)の荷重の経時変化、図17(e)は走行開始からt=1.14sec経過時に各接続部で生じた荷重の向きと大きさを表したものである。
 図18に、走行解析により取得した車両リア側の接続部(Node3~6、11、12)における荷重を示す。図18(a)は走行解析におけるステアリングの操舵角、図18(b)は車両モデル61の走行軌跡、図18(c)は荷重を取得するリア側の接続部(Node3~6、11、12)の位置、図18(d)は接続部のうちNode11及び12に生じたY方向(車幅方向)の荷重の経時変化、図18(c)は走行開始からt=1.37sec経過時に各接続部で生じた荷重の向きと大きさを表したものである。
 図17及び図18から、各接続部に発生する荷重に差が見られ(図17(d)及び図18(d))、また、荷重の大きさと向きは接続部の位置毎に異なっている(図17(e)及び図18(e))。
 なお、本実施例では、フロント側の接続部(Node1、2、7~10)については、走行開始からt=1.14sec経過時における荷重(図17)、リア側の接続部(Node3~6、11、12)については、走行開始からt=1.37sec経過時における荷重(図18)それぞれを、走行時において接続部に生じた荷重として特定した。
 なお、上記の荷重を特定する経過時間は、走行解析においてハンドルを切り始めた直後とし、また、リア側についてはフロント側に比べて若干遅れた時間としたが、荷重を特定する時間については、走行解析における車両の挙動と各接続部に生じる荷重の結果に基づいて、適宜選択することができる。
 本実施例では、回転ドア構成部品の質量を設定しない車体骨格モデル31(図19(a))、及び、回転ドア構成部品43を設定した車体骨格モデル41(図19(b))についても、質量要素73を設定した車体骨格モデル77(図8)と同様に車台モデル51と接続して車両モデルをそれぞれ生成して走行解析を行い、車台モデル51との接続部に生じる荷重を取得した。
 図20(a)、(b)は、質量要素73を設定した車体骨格モデル77を用いた走行解析により取得したフロント側の接続部(Node1、2、7~10)に生じた荷重の大きさと向き(図17(e))を表示したものであり、各接続部における荷重の値は図20(b)に示すとおりである。
 図21(a)、(b)は、質量要素73を設定した車体骨格モデル77を用いた走行解析により取得したリア側の接続部(Node3~6、11、12)に生じた荷重の大きさと向き(図18(e))を表示したものであり、各接続部における荷重の大きさは図21(b)に示すとおりである。
 本実施例では、走行解析を行わず、質量要素73を設定した車体骨格モデル77の接続部にレーンチェンジを想定した仮想的な荷重を与えて接着位置の最適化解析を行い、最適化解析における荷重条件の違いについて検討した。図20(c)、(d)は、質量要素73を設定した車体骨格モデル77のフロント側の接続部(Node1、2、7~10)に与える仮想的な荷重の大きさと向きを示したものであり、各接続部に一様の荷重(=1000N)を同一方向(Y方向)に与えた。図21(c)、(d)は、質量要素73を設定した車体骨格モデル77のリア側の接続部(Node3~6、11、12)に与える仮想的荷重の大きさと向きを示したものであり、各接続部に一様の荷重(=1000N)を同一方向(Y方向)に与えた。
 次に、走行解析により取得した荷重を車体骨格モデルの接続部に荷重条件として与えたときの車体変形の解析結果を図22~図25に示す。
 図22及び図23に、走行解析により取得した荷重条件をリア側の接続部に与えたときの車体変形の解析結果を示す。図22及び図23において、(a)~(c)は車体変位量の解析結果であって、(a)は回転ドア構成部品43に相当する質量の質量要素73を設定した車体骨格モデル77(質量設定あり)、(b)は回転ドア構成部品43の質量を設定していない車体骨格モデル31(質量設定なし)、(c)は回転ドア構成部品43を設定した車体骨格モデル41(ドア設定あり)についての結果であり、(d)は走行解析により取得したリア側の接続部における荷重の大きさと向きを表示したものである。また、図22は、フロント左側から車体を表示したもの、図23は、リア左側から車体を表示したものであり、図22及び図23ともに、車体の変位量を1000倍にして表示している。
 質量を設定しない車体骨格モデル31における車体の変位量(図22(b)、図23(b))は、質量設定ありの車体骨格モデル77(図22(a)、図23(a))及びドア設定ありの車体骨格モデル41(図22(c)、図23(c))に比べて変位の大きい部位(ルーフ部(roof portion)など)にいくらか差異が見られたものの、車体全体における変位は同様の傾向を示している。
 図24及び図25に、レーンチェンジを想定した仮想的な荷重条件をリア側の接続部に与えたときの車体変形の解析結果を示す。
 図22及び図23と同様、図24及び図25において、(a)~(c)は車体変位量の解析結果であって、それぞれ(a)は回転ドア構成部品43の質量に相当する質量要素73を設定した車体骨格モデル77(質量設定あり)、(b)は回転ドア構成部品43の質量を設定していない車体骨格モデル31(質量設定なし)、(c)は回転ドア構成部品43を設定した車体骨格モデル41(ドア設定あり)についての結果であり、(d)はリア側の接続部に与えた仮想的な荷重の大きさと向きを表示したものである。また、図24は、フロント左側から車体を表示したもの、図25は、リア左側から車体を表示したものであり、図24及び図25ともに、車体の変位量を1000倍にして表示している。
 仮想的な荷重を入力した場合においても、質量設定なしの車体骨格モデル31における車体の変位量(図24(b)、図25(b))は、質量設定ありの車体骨格モデル77(図24(a)、図25(a))及びドア設定ありの車体骨格モデル41(図24(c)、図25(c))の場合に比べて変位の大きい部位(ルーフ部など)にいくらか差異が見られたものの、車体全体における変位は同様の傾向を示している。
 しかしながら、仮想的な荷重を用いた場合における車体の変位(図24及び図25)は、走行解析により取得した荷重を用いた場合(図22及び図23)に比べて全体的に大きい値であり(図中の「変位の総和」参照)、荷重条件の違いが車体変位に影響することがわかった。
 このように、走行解析により取得した荷重を与えた場合と、仮想的な荷重を入力した場合とを比較すると、いずれの車体骨格モデルにおいても変形挙動に大きな違いが見られたため、構造用接着剤で接着する最適な位置の最適化解析においては、走行解析により取得した荷重を与えることが好ましいと考えられる。
 次に、構造用接着剤で接着する候補となる位置に配置した接着要素を対象として最適化解析を行った結果について説明する。
 本実施例では、走行解析により取得した荷重条件を与えた接着位置の最適化解析と、走行解析を行わずに仮想的な荷重条件を与えた接着位置の最適化解析の双方を行い、最適化解析における荷重条件の違いについて検討した。
 本実施例では、走行解析の場合と同様に、質量設定ありの車体骨格モデル77(図8)に接着要素45を連続的に配置した場合、回転ドア構成部品43に相当する質量を設定しない車体骨格モデル31(図19(a))に接着要素45を連続的に配置した場合、及び、回転ドア構成部品43を設定した車体骨格モデル41(図19(b))に接着要素45を連続的に配置した場合、のそれぞれについて接着位置の最適化解析を行った。
 ここで、接着要素45は立体要素からなるものとし、車体骨格モデルにおけるすべてのフランジ部に接着要素45を連続的に配置した。このとき、連続して配置した接着要素の全長は102.8mであった。102.8mの設定では、車体骨格モデルを構成するほぼ全ての部品組みに接着要素45が配置され、ドアオープニング(door opening)についても最適化解析の対象である接着要素45が連続して配置されている。
 次に、車体骨格モデルに配置した接着要素45を解析対象として最適化解析条件を設定した。本実施例では、最適化解析条件として、目的条件には車体剛性の最大化を設定し、制約条件には構造用接着剤の塗布長さを設定した。ここで、構造用接着剤の塗布長さは、最適化解析により残存した接着要素45aの全長に対応する。さらに最適化解析における荷重条件として、走行解析により取得した車体骨格モデル31の接続部(図4におけるNode1~12)に生じた荷重を与えて最適化解析を行い、前記最適化解析条件を満たす接着要素45を求めた。
 図26~図31に、荷重条件として車体リア側に横曲げ(lateral bending)荷重を与え、制約条件として構造用接着剤の塗布長さ20mを与えた最適化解析により求めた接着要素45aの結果を示す。
 図26(a)、(b)は、質量を設定していない車体骨格モデル31を用いて行った走行解析により取得した荷重(図26(c))を車体骨格モデル31に与えて最適化解析を行って求めた接着要素45aであり、本発明の範囲内である(発明例1)。図27(a)、(b)は、走行解析をせずに仮想的な荷重(図27(c))を質量なしの車体骨格モデル31に与えて最適化解析を行って求めた接着要素45aであり、本発明の範囲外である(比較例1)。
 図28及び図29に、質量設定ありの車体骨格モデル77に配置した接着要素45について最適化解析を行って求めた接着要素45aの結果を示す。
 図28(a)、(b)は、質量設定ありの車体骨格モデル77を用いて走行解析を行い、該走行解析により取得した荷重条件(図28(c))を質量設定ありの車体骨格モデル77に与えて最適化解析を行って最適化された接着要素45aであり、本発明の範囲内である(発明例2)。図29(a)、(b)は、走行解析をせずに仮想的な荷重条件(図29(c))を質量設定ありの車体骨格モデル77に与えて最適化解析を行って最適化された接着要素45aであり、本発明の範囲内である(発明例3)。
 図30及び図31に、ドア設定ありの車体骨格モデル41に配置した接着要素45について最適化解析を行って最適化された接着要素45aの結果を示す。
 図30(a)、(b)は、ドア設定ありの車体骨格モデル41を用いて走行解析を行い、該走行解析により取得した荷重条件(図30(c))をドア設定ありの車体骨格モデル41に与えて最適化解析を行って最適化された接着要素45aであり、本発明の範囲内である(発明例4)。図31(a)、(b)は、走行解析をせずに仮想的な荷重(図31(c))をドア設定ありの車体骨格モデル41に与えて最適化解析を行って最適化された接着要素45aであり、本発明の範囲内である(発明例5)。
 質量設定なしの車体骨格モデル31に対して走行解析で取得した荷重条件を与えた発明例1においては、図26(a)、(b)に示すように、ドアオープニング周りに接着要素45aが残存したのに対し、仮想荷重を与えた比較例1においては、図27(a)、(b)に示すように、ドアオープニング周りにおける接着要素の残存は見られず、荷重条件の違いにより、最適化解析により残存する接着要素45aの位置は異なる結果となった。
 また、質量設定ありの車体骨格モデル77に仮想荷重を入力した発明例3(図29(a)、(b))においては、質量設定なしの比較例1に比べてドアオープニング周りの接着要素45aの残存が増えた。そして、質量設定ありの車体骨格モデル77に走行解析での荷重を入力した発明例2(図28(a)、(b))においては、ドアオープニング周りの接着要素45aの残存がさらに増える結果となった。
 さらに、ドア設定ありの車体骨格モデル41を用いて最適化解析を行った発明例5においては、質量設定ありの車体骨格モデル77を用いた発明例4に近い接着要素45aの残存が見られた。
 以上、本発明においては、走行解析により取得した荷重条件を用いた最適化解析においては、艤装品又は蓋物あるいはこれらに相当する質量のいずれもが設定されていない車体骨格モデルを用いても、最適化解析によりドアオープニング周りに接着要素が残存し、構造用接着剤で接着するのに適切な位置を求めることができた。
 また、走行解析をせずに仮想的な荷重条件を与えて最適化解析を行う場合においては、艤装品又は蓋物あるいはこれらに相当する質量が設定された車体骨格モデルを用いて最適化解析を行うことで、ドアオープニング周りに接着要素が残存し、構造用接着剤で接着するのに適切な位置を求めることができた。
 図32に、上記の発明例1~発明例5及び比較例1について、最適化解析により求めた最適化された接着要素45aを追加した車体の剛性向上率の結果を示す。ここで、車体の剛性は、荷重を与える接続部における変位で荷重を割った値の平均値とし、剛性向上率は、最適化解析を行う前の車体骨格モデル31を基準として求めた平均剛性の相対変化であり、最適化解析における制約条件として構造用接着剤の塗布長さを変更して求めた接着要素45aを追加したものである。
 図32において構造用接着剤の塗布長さ102.8mにおける剛性向上率は、最適化解析を行わずに、車体骨格モデル31における全ての部品組みに対して接着要素45を配置したものときの結果である。そのため、塗布長さ102.8mの場合のみ、走行解析荷重と仮想荷重の剛性向上率は等しい値となっている。
 図32より、質量設定なしの車体骨格モデルに仮想荷重を与えた比較例1の剛性向上率は、発明例1~発明例5の剛性向上率より大きく外れる結果となった。また、発明例1における剛性向上率は、塗布長さが大きい場合には発明例2~発明例5の剛性向上率との差が大きくなるものの、塗布長さが小さい場合には、ほぼ同程度の剛性向上率となった。さらに、発明例2~発明例5については、質量設定や荷重条件の違いにより剛性向上率の値にいくらか差が見られるもののその差は大きくなく、制約条件として与えた塗布長さの変化に対する剛性向上率(improvement rate of stiffness)の変化は同様の傾向を示す結果であった。
 以上より、本発明に係る車体の接着位置の最適化解析方法及び最適化解析装置によれば、複数の部品を部品組みとして溶接する溶接部が予め設定されている車体骨格モデルを用いて、前記溶接と併用して構造用接着剤で前記部品組みを接着する最適な位置を求める最適化解析を行うことにより、走行時における自動車の剛性を向上させるために接着する最適な位置を精度良く求めることができることが示唆された。
 本発明によれば、複数の部品が部品組みとして溶接された自動車の車体骨格モデルを用いて、前記溶接と併用して構造用接着剤により前記部品組みを接着する最適な位置を求める車体の接着位置の最適化解析方法及び最適化解析装置を提供することができる。
  1 最適化解析装置
  3 表示装置
  5 入力装置
  7 記憶装置
  9 作業用データメモリ
 11 演算処理部
 13 車両モデル生成部
 15 走行解析部
 17 接着候補位置設定部
 19 最適化解析条件設定部
 21 最適化解析部
 23 最適化解析装置
 30 車体骨格モデルファイル
 31 車体骨格モデル(質量設定なし)
 33 溶接部
 35 固定連結部
 35a ヒンジ(上側)
 35b ヒンジ(下側)
 35c ストライカー
 37 部品組み
 41 車体骨格モデル(ドア設定あり)
 43 回転ドア構成部品
 45 接着要素
 45a 接着要素(最適化解析により残存)
 47 車体骨格モデル(接着要素配置)
 51 車台モデル
 61 車両モデル
 71 車体骨格モデル(質量設定あり)
 73 質量要素
 75 剛体要素
 77 車体骨格モデル(質量設定あり)
 81 部品組み
 83 部品
 83a フランジ部
 83b 縦壁部
 83c R部
 85 部品

Claims (12)

  1.  平面要素及び/又は立体要素からなる複数の部品を有してなり、該複数の部品を部品組みとして溶接する溶接部が予め設定されている車体骨格モデルを用いて、前記溶接と併用して構造用接着剤により前記部品組みを接着する最適な位置を求める車体の接着位置の最適化解析方法であって、
     コンピュータが、前記構造用接着剤で接着する候補となる位置に、前記構造用接着剤としての接着要素を配置する接着候補位置設定ステップと、
     操作者の指示によりコンピュータが、前記接着要素が配置された前記車体骨格モデルに対して、最適化解析において該車体骨格モデルに負荷する荷重条件を含む最適化解析条件を設定する最適化解析条件設定ステップと、
     コンピュータが、前記最適化解析条件が設定された前記車体骨格モデルの前記接着要素を最適化の解析対象として最適化解析を行い、前記最適化解析条件を満たす接着要素の位置を前記構造用接着剤により接着する位置として求める最適化解析ステップと、
     を含むことを特徴とする車体の接着位置の最適化解析方法。
  2.  前記接着候補位置設定ステップは、前記接着要素を連続して配置することを特徴とする請求項1に記載の車体の接着位置の最適化解析方法。
  3.  コンピュータが、艤装品又は蓋物が設定された車体骨格モデルに車台モデルを接続して車両モデルを生成する車両モデル生成ステップと、
     コンピュータが、該車両モデルの走行解析を行い、走行時に前記車体骨格モデルにおける前記車台モデルとの接続部に生じる荷重及び/又は変位を荷重条件として取得する走行解析ステップと、を含み、
     該走行解析ステップにおいて取得した荷重条件を、前記最適化解析条件設定ステップにおける荷重条件とすることを特徴とする請求項1又は2に記載の車体の接着位置の最適化解析方法。
  4.  コンピュータが、艤装品又は蓋物に相当する質量が設定された車体骨格モデルに車台モデルを接続して車両モデルを生成する車両モデル生成ステップと、
     コンピュータが、該車両モデルの走行解析を行い、走行時に前記車体骨格モデルにおける前記車台モデルとの接続部に生じる荷重及び/又は変位を荷重条件として取得する走行解析ステップと、を含み、
     該走行解析ステップにおいて取得した荷重条件を、前記最適化解析条件設定ステップにおける荷重条件とすることを特徴とする請求項1又は2に記載の車体の接着位置の最適化解析方法。
  5.  前記接着候補位置設定ステップは、艤装品及び/又は蓋物を設定した車体骨格モデルに前記接着要素を配置することを特徴とする請求項1乃至4のいずれか一項に記載の車体の接着位置の最適化解析方法。
  6.  前記接着候補位置設定ステップは、艤装品及び/又は蓋物に相当する質量を設定した車体骨格モデルに前記接着要素を配置することを特徴とする請求項1乃至4のいずれか一項に記載の車体の接着位置の最適化解析方法。
  7.  平面要素及び/又は立体要素からなる複数の部品を有してなり、該複数の部品を部品組みとして溶接する溶接部が予め設定されている車体骨格モデルを用いて、前記溶接と併用して構造用接着剤により前記部品組みを接着する最適な位置を求める車体の接着位置の最適化解析装置であって、
     前記構造用接着剤で接着する候補となる位置に、前記構造用接着剤としての接着要素を配置する接着候補位置設定部と、
     前記接着要素が配置された前記車体骨格モデルに対して、最適化解析において該車体骨格モデルに負荷する荷重条件を含む最適化解析条件を設定する最適化解析条件設定部と、
     前記最適化解析条件が設定された前記車体骨格モデルの前記接着要素を最適化の解析対象として最適化解析を行い、前記最適化解析条件を満たす接着要素の位置を前記構造用接着剤により接着する位置として求める最適化解析部と、
     を備えることを特徴とする車体の接着位置の最適化解析装置。
  8.  前記接着候補位置設定部は、前記接着要素を連続して配置することを特徴とする請求項7に記載の車体の接着位置の最適化解析装置。
  9.  艤装品又は蓋物が設定された車体骨格モデルに車台モデルを接続して車両モデルを生成する車両モデル生成部と、
     該車両モデルの走行解析を行い、走行時に前記車体骨格モデルにおける前記車台モデルとの接続部に生じる荷重及び/又は変位を荷重条件として取得する走行解析部と、を備え、
     該走行解析部により取得した荷重条件を、前記最適化解析条件設定部における荷重条件とすることを特徴とする請求項7又は8に記載の車体の接着位置の最適化解析装置。
  10.  艤装品又は蓋物に相当する質量が設定された車体骨格モデルに車台モデルを接続して車両モデルを生成する車両モデル生成部と、
     該車両モデルの走行解析を行い、走行時に前記車体骨格モデルにおける前記車台モデルとの接続部に生じる荷重及び/又は変位を荷重条件として取得する走行解析部と、を備え、
     該走行解析部において取得した荷重条件を、前記最適化解析条件設定部における荷重条件とすることを特徴とする請求項7又は8に記載の車体の接着位置の最適化解析装置。
  11.  前記接着候補位置設定部は、艤装品及び/又は蓋物を設定した車体骨格モデルに前記接着要素を配置することを特徴とする請求項7乃至10のいずれか一項に記載の車体の接着位置の最適化解析装置。
  12.  前記接着候補位置設定部は、艤装品及び/又は蓋物に相当する質量を設定した車体骨格モデルに前記接着要素を配置することを特徴とする請求項7乃至10のいずれか一項に記載の車体の接着位置の最適化解析装置。
PCT/JP2018/043462 2018-02-09 2018-11-27 車体の接着位置の最適化解析方法及び最適化解析装置 WO2019155730A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/966,126 US12091095B2 (en) 2018-02-09 2018-11-27 Automotive body adhesive bonding position optimization analysis method and optimization analysis device
MX2020008312A MX2020008312A (es) 2018-02-09 2018-11-27 Metodo de analisis de optimizacion y dispositivo de analisis de optimizacion de union adhesiva de carroceria automotriz.
EP18905652.6A EP3751435A4 (en) 2018-02-09 2018-11-27 AUTOMOTIVE BODYWORK ADHESIVE LINK POSITION OPTIMIZATION ANALYSIS PROCESS AND OPTIMIZATION ANALYSIS DEVICE
KR1020207023310A KR102424466B1 (ko) 2018-02-09 2018-11-27 차체의 접착 위치의 최적화 해석 방법 및 최적화 해석 장치
CN201880088643.2A CN111684451B (zh) 2018-02-09 2018-11-27 车身的粘接位置的优化解析方法及优化解析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018021813A JP6590009B2 (ja) 2018-02-09 2018-02-09 車体の接着位置の最適化解析方法及び装置
JP2018-021813 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019155730A1 true WO2019155730A1 (ja) 2019-08-15

Family

ID=67548631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043462 WO2019155730A1 (ja) 2018-02-09 2018-11-27 車体の接着位置の最適化解析方法及び最適化解析装置

Country Status (7)

Country Link
US (1) US12091095B2 (ja)
EP (1) EP3751435A4 (ja)
JP (1) JP6590009B2 (ja)
KR (1) KR102424466B1 (ja)
CN (1) CN111684451B (ja)
MX (1) MX2020008312A (ja)
WO (1) WO2019155730A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112560188A (zh) * 2020-12-24 2021-03-26 北京交通大学 高速列车部件间关联关系的判断方法
WO2021225037A1 (ja) * 2020-05-07 2021-11-11 Jfeスチール株式会社 車体の接着位置の最適化解析方法及び装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11263365B2 (en) * 2019-02-08 2022-03-01 Honda Motor Co., Ltd. Post-aging adhesive testing
JP7115613B1 (ja) * 2021-01-27 2022-08-09 Jfeスチール株式会社 車体の接合位置の最適化解析方法、装置及びプログラム
WO2022163047A1 (ja) * 2021-01-27 2022-08-04 Jfeスチール株式会社 車体の接合位置の最適化解析方法、装置及びプログラム
CN113239596B (zh) * 2021-05-31 2022-02-15 北京理工大学 一种基于目标分流的车身轻量化方法
KR102687503B1 (ko) * 2021-11-15 2024-07-24 재단법인 경북하이브리드부품연구원 C-smc기반 경량 트렁크 리드 이너 설계 시스템
CN114741418A (zh) * 2022-04-07 2022-07-12 北京汽车集团越野车有限公司 车身断面结构的优化方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005250647A (ja) * 2004-03-02 2005-09-15 Hitachi Ltd 解析モデル作成装置
JP2010250818A (ja) 2009-04-10 2010-11-04 Livermore Software Technology Corp トポロジー最適化における工業製品の最適設計を得る方法
JP2016071770A (ja) * 2014-10-01 2016-05-09 Jfeスチール株式会社 構造体モデルの連続接合適用部位特定装置及び方法
JP6222302B1 (ja) * 2016-07-05 2017-11-01 Jfeスチール株式会社 車体の接合位置の最適化解析方法及び装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363806A (en) * 1976-11-18 1978-06-07 Nippon Telegr & Teleph Corp <Ntt> Control signal detector circuit
US5729463A (en) * 1995-09-01 1998-03-17 Ulsab Trust Designing and producing lightweight automobile bodies
US6766206B1 (en) * 2000-07-26 2004-07-20 Ford Global Technologies, Llc System and method for designing automotive structure using adhesives
DE10297132B4 (de) * 2001-08-23 2016-09-15 General Motors Corp. Fahrgestell eines Fahrzeugs mit programmierbaren Betriebseigenschaften
JP4094885B2 (ja) * 2002-05-08 2008-06-04 住友ゴム工業株式会社 車両のシミュレーション方法
JP5418374B2 (ja) 2010-04-06 2014-02-19 新日鐵住金株式会社 スポット溶接部のスポット溶接構造体への剛性寄与度分析方法及びそのプログラム
CN104781816B (zh) 2012-11-06 2017-10-10 杰富意钢铁株式会社 结构体的接合位置的优化解析方法以及装置
JP5942872B2 (ja) 2013-02-01 2016-06-29 Jfeスチール株式会社 構造体の接合位置の最適化解析方法及び装置
JP5585672B2 (ja) * 2013-02-01 2014-09-10 Jfeスチール株式会社 形状最適化解析方法及び装置
CN107506545A (zh) 2017-08-18 2017-12-22 中车唐山机车车辆有限公司 城轨车辆车身复合材料粘接强度分析方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005250647A (ja) * 2004-03-02 2005-09-15 Hitachi Ltd 解析モデル作成装置
JP2010250818A (ja) 2009-04-10 2010-11-04 Livermore Software Technology Corp トポロジー最適化における工業製品の最適設計を得る方法
JP2016071770A (ja) * 2014-10-01 2016-05-09 Jfeスチール株式会社 構造体モデルの連続接合適用部位特定装置及び方法
JP6222302B1 (ja) * 2016-07-05 2017-11-01 Jfeスチール株式会社 車体の接合位置の最適化解析方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3751435A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021225037A1 (ja) * 2020-05-07 2021-11-11 Jfeスチール株式会社 車体の接着位置の最適化解析方法及び装置
EP4148408A4 (en) * 2020-05-07 2023-10-18 JFE Steel Corporation ANALYSIS METHOD AND DEVICE FOR OPTIMIZING THE VEHICLE BODY ADHESION POSITION
CN112560188A (zh) * 2020-12-24 2021-03-26 北京交通大学 高速列车部件间关联关系的判断方法
CN112560188B (zh) * 2020-12-24 2023-09-15 北京交通大学 高速列车部件间关联关系的判断方法

Also Published As

Publication number Publication date
JP2019139475A (ja) 2019-08-22
US12091095B2 (en) 2024-09-17
CN111684451A (zh) 2020-09-18
MX2020008312A (es) 2020-09-21
US20210024142A1 (en) 2021-01-28
KR20200104908A (ko) 2020-09-04
CN111684451B (zh) 2024-03-01
EP3751435A4 (en) 2021-03-31
KR102424466B1 (ko) 2022-07-22
JP6590009B2 (ja) 2019-10-16
EP3751435A1 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
WO2019155730A1 (ja) 車体の接着位置の最適化解析方法及び最適化解析装置
KR102240212B1 (ko) 차체의 접합 위치의 최적화 해석 방법 및 장치
JP6222302B1 (ja) 車体の接合位置の最適化解析方法及び装置
JP6090400B1 (ja) 車体の剛性解析方法
WO2020054153A1 (ja) 車体の振動特性の適正化解析方法及び装置
JP6958670B1 (ja) 車体の接着位置の最適化解析方法及び装置
JP2019128868A (ja) 車体部品の補剛部材の形状最適化解析方法及び装置
JP6098699B1 (ja) 車両の走行解析方法
JP7287336B2 (ja) 車体の接合位置の最適化解析方法及び装置
JP7099561B1 (ja) 車体部品の分割位置及び一体化の決定方法及び装置
Shahhosseini et al. Beam-like major compliant joint methodology for automotive body structures
De Gaetano et al. Innovative methodologies for concept modelling of vehicle body structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207023310

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018905652

Country of ref document: EP

Effective date: 20200909