Nothing Special   »   [go: up one dir, main page]

WO2019148950A1 - 城市建筑群地震反应非线性历程分析方法及装置 - Google Patents

城市建筑群地震反应非线性历程分析方法及装置 Download PDF

Info

Publication number
WO2019148950A1
WO2019148950A1 PCT/CN2018/117680 CN2018117680W WO2019148950A1 WO 2019148950 A1 WO2019148950 A1 WO 2019148950A1 CN 2018117680 W CN2018117680 W CN 2018117680W WO 2019148950 A1 WO2019148950 A1 WO 2019148950A1
Authority
WO
WIPO (PCT)
Prior art keywords
building
history
shear
mass
nonlinear
Prior art date
Application number
PCT/CN2018/117680
Other languages
English (en)
French (fr)
Inventor
陆新征
许镇
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810112837.3A external-priority patent/CN108647366B/zh
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2019148950A1 publication Critical patent/WO2019148950A1/zh
Priority to US16/940,141 priority Critical patent/US11371907B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Definitions

  • the invention relates to the technical field of civil engineering, in particular to a method and a device for analyzing a nonlinear process of seismic response of an urban building group.
  • the current seismic damage analysis methods for urban buildings are mainly: vulnerability matrix method and capability spectrum method.
  • the vulnerability matrix method is only applicable to areas with rich seismic damage data, and is not suitable for generalization; the ability spectrum method is difficult to consider the influence of time-domain characteristics of ground motion on the structure; therefore, these two methods are difficult to meet the earthquake of urban buildings in China. Need for harm analysis
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • an object of the present invention is to provide a nonlinear process analysis method for seismic response of urban buildings, which can accurately reflect seismic damage characteristics of buildings of different heights, and is simple and efficient.
  • Another object of the present invention is to provide a nonlinear history analysis device for seismic response of urban buildings.
  • an embodiment of the present invention provides a method for analyzing a nonlinear process of seismic response of a city building group, comprising the steps of: collecting building data; acquiring a model corresponding to the building data according to the building data; The model corresponding to the building data establishes a multi-mass shear series model or a multi-mass parallel shear bending coordination model corresponding to the building data; and the acceleration time history data of the ground motion input according to each building passes through the multi-mass shearing series
  • the model or the multi-mass parallel shear-bending coordination model performs nonlinear history calculation to obtain a nonlinear history calculation result; and obtains the seismic damage state and analysis of each floor of each building according to the nonlinear history calculation result result.
  • the nonlinear history analysis method for seismic response of urban buildings in the embodiments of the present invention establishes a multi-mass shear series model or a multi-mass parallel shear bending coordination model through building data, and performs nonlinear history calculation according to the acceleration time history data of the ground motion. According to the calculation results, the seismic damage status of each floor of each building is analyzed, and the seismic damage characteristics of buildings with different heights are accurately reflected, which is closer to the actual earthquake damage effect. The calculation efficiency is high and the modeling method is simple. It can be used for typical urban earthquake scenarios. Accurate and timely earthquake damage prediction and seismic damage analysis.
  • seismic response nonlinear history analysis method of the urban building group may further have the following additional technical features:
  • the building data includes one or more of a structure type, a building height, a building layer number, a building age, a floor area, and a usage function.
  • the multi-mass shear series model or the multi-mass parallel shear-bending coordination model corresponding to the building data is established according to a model corresponding to the building data, and further includes: The use function, the height of the building, and the type of structure establish the multi-mass shearing tandem model for the unstructured masonry, the masonry structure, the frame structure, and the structure below the preset layer, and the shear wall structure and the frame shear
  • the multi-mass point parallel shear bending coordination model is established between the force wall structure and the preset layer and the pre-predetermined layer.
  • the seismic response nonlinear history analysis method of the urban building group according to the structure type, the building height, the number of the building layers, the construction age, The floor area and the use function determine the multi-mass shear series model, wherein the skeleton line of the multi-mass shear series model is a trilinear skeleton line, and the reciprocating force relationship between the layers adopts a single parameter reciprocating force a model; determining, according to the structure type, the building height, the number of building layers, the construction age, the floor area, and the use function, the multi-mass parallel shear bending coordination model, wherein the plurality of The mass-parallel shear-bending coordination model consists of curved beams, shear beams and rigid links to simultaneously consider bending deformation and shear deformation of tall buildings.
  • the acceleration time history data according to the ground motion input by each building is nonlinear through the multi-mass shear series model or the multi-mass parallel shear bending coordination model
  • the history calculation further includes: acquiring acceleration time history data input by each of the buildings; and performing nonlinear history analysis of the structure by using the motion equation in the structural dynamics according to the acceleration time history data.
  • the earthquake damage state and the analysis result of each floor of each building include the earthquake damage state of each floor of each building, the displacement history result of each floor of each building, The results of the speed history of each floor of each building, the acceleration history results of each floor of each building, and the visualization and animation of the seismic response and damage state of the urban complex.
  • a seismic response nonlinear history analysis device for a city building group, comprising: an acquisition module for collecting building data; an acquisition module, the acquisition module and the acquisition module Connected to obtain a model corresponding to the building data according to the building data; a building module, the building module is connected to the acquiring module, and configured to establish, according to the model corresponding to the building data, the building data correspondingly a particle shear series model or a multi-mass parallel shear bending coordination model; a calculation module, the calculation module being connected to the building module, configured to pass the multi-mass shear according to the acceleration time history data of the ground motion input of each building Cutting a series model or the multi-mass parallel shear bending coordination model to perform nonlinear history calculation to obtain a nonlinear history calculation result; and an analysis module, the analysis module being connected to the calculation module for using the nonlinearity The result of the history calculation results in the damage state and analysis results of each floor of each building.
  • the seismic response nonlinear history analysis device of the urban building group establishes a multi-mass shear series model or a multi-mass parallel shear bending coordination model through building data, and performs nonlinear history calculation according to the acceleration time history data of the ground motion, According to the calculation results, the seismic damage status of each floor of each building is analyzed, and the seismic damage characteristics of buildings with different heights are accurately reflected, which is closer to the actual earthquake damage effect.
  • the calculation efficiency is high and the modeling method is simple. It can be used for typical urban earthquake scenarios. Accurate and timely earthquake damage prediction and seismic damage analysis.
  • seismic response nonlinear history analysis device of the urban building group may further have the following additional technical features:
  • the building module is specifically configured to establish the plurality of structures without the anti-masonry, the masonry structure, the frame structure, and the preset layer according to the use function, the building height, and the structure type.
  • the mass point shearing series model is used, and the multi-mass parallel shear-bending coordination model is established for the shear wall structure, the frame shear wall structure and the preset layer and the building above the preset layer.
  • the calculation module is specifically configured to acquire acceleration time history data input by each of the buildings, and perform structure according to the motion equation in structural dynamics according to the acceleration time history data.
  • Nonlinear history analysis is specifically configured to acquire acceleration time history data input by each of the buildings, and perform structure according to the motion equation in structural dynamics according to the acceleration time history data.
  • the earthquake damage state and the analysis result of each floor of each building include the earthquake damage state of each floor of each building, the displacement history result of each floor of each building, The results of the speed history of each floor of each building, the acceleration history results of each floor of each building, and the visualization and animation of the seismic response and damage state of the urban complex.
  • FIG. 1 is a flow chart of a method for analyzing a nonlinear process of seismic response of an urban building group according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a method for analyzing a nonlinear process of seismic response of an urban building group according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a multi-mass shear series model and a multi-mass parallel shear bending coordination model according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a model trilinear skeleton line and a single parameter reciprocating force model between layers according to an embodiment of the present invention
  • FIG. 6 is a flow chart of calibration of a bearing capacity of a frame structure skeleton line according to an embodiment of the present invention
  • FIG. 7 is a flow chart of calibration of a frame line displacement parameter of a frame structure according to an embodiment of the present invention.
  • FIG. 8 is a flow chart of calibration of bearing capacity parameters of a masonry structure skeleton line according to an embodiment of the present invention.
  • FIG. 9 is a probability distribution diagram of peak bearing capacity of a skeleton line of a non-armed masonry structure according to an embodiment of the present invention.
  • FIG. 10 is a flow chart of calibration of displacement parameters of a masonry structure skeleton line according to an embodiment of the present invention.
  • FIG. 11 is a flow chart of parameter calibration of a high-rise building model according to an embodiment of the present invention.
  • FIG. 12 is a composition diagram of an architectural age and a building type in the urban area of Tangshan according to an embodiment of the present invention.
  • Figure 13 is a time history curve of input ground motion in accordance with one embodiment of the present invention.
  • 15 is a schematic structural diagram of a seismic response nonlinear history analysis device for a city building group according to an embodiment of the present invention.
  • a method and apparatus for analyzing a nonlinear process of seismic response of a city building group according to an embodiment of the present invention will be described below with reference to the accompanying drawings.
  • a method for analyzing a nonlinear process of seismic response of a city building group according to an embodiment of the present invention will be described with reference to the accompanying drawings.
  • FIG. 1 is a flow chart of a method for analyzing a nonlinear process of seismic response of a city building group according to an embodiment of the present invention. The method for analyzing a nonlinear process of seismic response of a city building group according to an embodiment of the present invention will be described in detail with reference to FIG. 1 and FIG.
  • the seismic response nonlinear process analysis method of the urban building group includes the following steps:
  • step S101 building data is collected.
  • the building data includes one or more of a type of structure, a building height, a number of building levels, a building age, a floor area, and a usage function.
  • building data can be obtained through field research, access to GIS (Geographic Information System) information and other related channels. Further, to obtain specific information of each building within the area under consideration, for some important buildings, more detailed information, such as architectural drawings, may be collected, and a fine finite element model is established, and relevant parameters are obtained for subsequent parameter determination. To make the simulation results more accurate.
  • GIS Geographic Information System
  • S102 Acquire a model corresponding to the building data according to the building data.
  • a multi-mass shear series model is established for the unstructured masonry, the masonry structure, the frame structure, and the structure below the preset layer according to the use function, the building height, and the structure type, and the shear wall structure is
  • a multi-mass parallel shear-bending coordination model is established for the frame shear wall structure and the preset layer and the building above the preset layer.
  • S103 Establish a multi-mass shear series model or a multi-mass parallel shear bending coordination model corresponding to the building data according to the model corresponding to the building data.
  • each building there are a large number of middle and low-rise buildings in the city, and most of the middle and low-rise buildings have clear structure types and regular body shapes, and generally exhibit a relatively obvious shear deformation mode. It is therefore possible to simplify each building into a multi-mass shear tandem model as shown in Figure 3(a).
  • the model assumes that the quality of each layer of the structure is concentrated on the floor. The floor is considered rigid and ignores the rotational displacement of the floor, so each layer can be simplified into a single particle.
  • the dots between the different floors are connected by a shear spring.
  • the force-displacement relationship of the shear spring between the floors is shown in Figure 4.
  • the skeleton line is a trilinear skeleton line.
  • the interlayer hysteresis model uses the single parameter hysteresis model shown in Fig. 4(b).
  • each building can be simplified to the multi-mass parallel shear-bending coordination model shown in Fig. 3(b), which adopts a trilinear skeleton line and can simultaneously consider high-rise Bending deformation and shear deformation of the building.
  • one embodiment of the present invention adopts different parameter calibration methods, and the parameter calibration method is based on the seismic design specifications of the building, a large amount of test data and numerical analysis. Therefore, no matter what type of structure, only need to know the structural type, height, number of layers, construction age, floor area, practical functions and other macro information of the building, you can determine each of the skeleton line and hysteresis model in Figure 3.
  • the parameters are simple and convenient, making them ideal for modeling large-scale regional buildings.
  • the parameter determination process of the frame structure is performed.
  • the parameter determination process of the frame structure is as shown in FIG. 5, and specifically includes:
  • the elastic parameters include the mass and stiffness parameters of each layer.
  • the mass m of each layer may be obtained by multiplying the mass of the floor area by the floor area; the shear stiffness between the layers may be according to the mass of each layer and the first-order period T 1 according to formula (1) get. After obtaining m and k 0 , the stiffness matrix and mass matrix of the structure can be obtained.
  • [ ⁇ 1 ] is the mode vector of the first-order mode of the structure
  • [A] and [I] are the coefficient matrix of the stiffness matrix [K] and the mass matrix [M], respectively;
  • the first-order period T 1 can be based on Chinese architecture.
  • the formula proposed in the structural load specification (GB 50009-2012) is calculated as shown in equation (2).
  • the model recommends using equation (3) to calculate the first-order period.
  • n is the number of floors of the structure
  • H is the total height of the house
  • B is the width of the floor of the house.
  • the skeleton line parameters include bearing capacity parameters and displacement parameters.
  • the bearing capacity parameter calibration process is shown in Figure 6, and the displacement parameter calibration process is shown in Figure 7.
  • Bearing capacity parameters include design bearing capacity, yield bearing capacity, peak bearing capacity and ultimate bearing capacity.
  • the frame structure has undergone strict seismic design, so the design bearing capacity V d,i of each floor can be obtained according to the calculation method of the design bearing capacity in the specification.
  • the model uses the bottom shear method to calculate the design bearing capacity of each layer of the structure.
  • the yield bearing capacity V y,i and the peak bearing capacity V p,i are calculated using equations (4) and (5) , respectively.
  • V y,i ⁇ y V d,i , (4)
  • V p,i ⁇ p V y,i , (5)
  • ⁇ y is the yield super-strong coefficient of the RC frame structure.
  • ⁇ p is the peak super-strong coefficient of the structure, and is calculated according to equations (6), (7), and (8).
  • Displacement parameters include yield displacement, peak displacement, and ultimate displacement.
  • the yield displacement, peak displacement, and ultimate displacement are determined according to equations (9), (10), and (11), respectively.
  • k 0 is the initial stiffness between the structural layer; interlaminar shear secant stiffness k secant (FIG. 6) according to formula (12) is calculated, ⁇ is the secant stiffness reduction factor peaked structural bearing capacity. ⁇ complete is the interlayer displacement angle when the structure is destroyed, and h is the layer height of the structure.
  • the hysteresis energy parameter ⁇ can be calculated according to equation (13):
  • a p is the area enclosed by the pinch envelope
  • a b is the area enclosed by the ideal elastoplastic hysteresis curve.
  • the masonry structure parameters are determined.
  • the masonry structure is divided into an anti-masonry structure and an anti-masonry structure, and the elastic parameters and the hysteresis parameters of the two types of masonry structures are determined similarly to the frame structure;
  • the calibration method is quite different from the framework structure, including:
  • the mass m of each layer can be obtained by multiplying the mass of the floor area by the floor area; the shear stiffness between the layers can be obtained according to the mass of each layer and the first-order period T 1 according to the formula (1). After obtaining m and k 0 , the stiffness matrix and mass matrix of the structure can be obtained.
  • the first-order period without anti-masonry and fortification masonry can be determined according to equations (14) and (15) respectively. For structures with large differences in the length and direction of the plane of the structure, the model is recommended to use equations (16) and (17). Calculate the first order period.
  • the method for determining the bearing capacity without the anti-masonry structure and the fortified masonry structure is shown in Fig. 8.
  • the bearing capacity of the masonry structure includes yield bearing capacity, peak bearing capacity and ultimate bearing capacity.
  • the peak bearing capacity V p,i of each layer of the anti-masonry structure is calculated according to formula (18).
  • V p,i RA i , (18)
  • R is the peak load carrying capacity of the unit building area, which can be taken according to Figure 8;
  • a i is the area of the ith layer of the structure.
  • V y,i V p,i / ⁇ y , (19)
  • the design bearing capacity V d,i (GB50011-2010) of each layer of the fortified masonry structure is first obtained according to the bottom shearing method.
  • the yield bearing force V y,i and the peak load carrying capacity V p,i of each layer of the structure are then calculated by equations (20) and (21).
  • V p,i ⁇ p V y,i , (21)
  • ⁇ y and ⁇ p are respectively the yield super-strong coefficient and the peak super-strong coefficient of the anti-masonry structure. According to statistics, the median value of ⁇ y is 2.33, and the median value of ⁇ p is 1.41.
  • the ultimate bearing capacity is taken as 85% of the peak load capacity.
  • the displacement parameters of the anti-masonry structure and the forged masonry structure include the yield point, the peak point, the softening point and the displacement of the limit point on the skeleton line, which can be determined according to the method shown in FIG.
  • the yield displacement ⁇ u y, i which is not provided with the anti-masonry structure and the forged masonry structure , can be determined according to the formula (22).
  • the peak displacement angle is taken according to equation (23), where h is a single layer height.
  • the median value of ⁇ p without the anti-masonry structure is 0.00268, and the median value of the anti-masonry structure is 0.00317.
  • the softening point displacement angle is taken according to the formula (24), where h is a single layer height.
  • the hysteresis energy consumption parameter ⁇ is the same as the frame structure determination method and can be calculated according to equation (13).
  • the process of determining the parameters of a high-rise building is:
  • the high-rise building skeleton line adopts the same skeleton line form as the frame structure, and the parameter determination process is as shown in FIG. 11, which specifically includes:
  • Elastic parameters include bending stiffness EI and shear stiffness GA. These two parameters can be determined according to the first-order period and the second-order period of the structure. The first two periods of the structure can be determined based on modal analysis, actual detection, or empirical formulas. Further, the bending stiffness EI and the shear stiffness GA can be determined according to the formulas (25) to (28).
  • the model uses the mode decomposition response spectrum method to calculate the spectral displacement D j corresponding to each mode shape of the seismic action structure.
  • the interlayer displacement ⁇ u i,j of the structure and the rotation angle ⁇ i,j can be obtained by the equations (29), (30), (31) and (32).
  • ⁇ i,j is the mode vector of the jth mode of the i-th layer
  • is the mode participation coefficient
  • V i,j ⁇ u i,j GA/h i , (33)
  • the coupling model adjusts the design shear force and bending moment according to the Code for Seismic Design of Buildings (GB 50011-2010) and the Technical Regulations for Concrete Structures of High-rise Buildings (JGJ 3-2010) to meet the minimum shear force and bottom. Strengthen the requirements of regional bending moments. Yield shear and yield bending moments can be obtained by equations (37) and (38).
  • V y,i V d,i ⁇ y , (37)
  • the yield interlayer displacement and the yield interlayer displacement angle can be obtained.
  • the peak shear force V p,i and the peak bending moment M p,i of the layers of the bending spring and the shear spring can be determined according to equations (43) and (44).
  • V p,i ⁇ p V y,i , (43
  • ⁇ p is the peak super-strong coefficient and can be determined according to equation (40).
  • the peak inter-layer displacement ⁇ u p,i of the structure and the peak inter-layer rotation angle ⁇ p,i can be determined according to the equations (47) and (48).
  • S104 Calculate the nonlinear history calculation by using the multi-mass shear series model or the multi-mass parallel shear bending coordination model according to the acceleration time history data of the ground motion input of each building.
  • each building inputs an acceleration time history data; using the equation of motion in the structural dynamics (Eq. (49)), the nonlinear history analysis of the structure is performed.
  • M is the model mass matrix
  • C is the damping matrix
  • Rayleigh damping is used in the present invention
  • F is the structural internal force
  • ü And
  • u are the acceleration, velocity and displacement vectors corresponding to the degrees of the structure
  • u g is the ground motion acceleration time history.
  • an embodiment of the present invention develops a corresponding program to perform related calculations more quickly and smoothly.
  • the Tangshan City Planning Bureau obtained the building attribute information of 230,683 buildings in the area, including the structure type, height, number of floors, construction age, floor area, etc., and the data is detailed. Using these data, each building can be simulated using the analytical model used in the present invention. The composition of the building age and building type is shown in Figure 12.
  • the multi-mass shear series model and the multi-mass parallel shear-bending coordination model proposed by the present invention were used to simulate the earthquake damage in Tangshan City.
  • the proportion of the degree of damage according to the classification of building fortification is shown in Table 1. (The ratio of good and slight damage is 0, so it is omitted). It is worth noting that in the above case, 230, 683 buildings, the overall operation time for four ground motions only takes about 5 hours. If parallel technology is introduced, this time will be further shortened.
  • the seismic response nonlinear process analysis method of the urban building group proposed in the embodiment of the present invention can obtain the seismic damage state, displacement, acceleration and other important data of each floor of each building.
  • the multi-mass shear series model and the parallel shear bending coordination model of the embodiment of the invention can accurately reflect the seismic damage characteristics of different height buildings, and have extremely high calculation efficiency and simple modeling method, and can be used for typical urban earthquake scenarios.
  • the earthquake damage prediction and near-real-time seismic damage analysis after the earthquake provide support for post-earthquake rescue work and related decisions.
  • the nonlinear history analysis method for seismic response of urban buildings in the embodiments of the present invention establishes a multi-mass shear series model or a multi-mass parallel shear bending coordination model through building data, and performs nonlinear history calculation according to the acceleration time history data of the ground motion. According to the calculation results, the seismic damage status of each floor of each building is analyzed, and the seismic damage characteristics of buildings with different heights are accurately reflected, which is closer to the actual earthquake damage effect. The calculation efficiency is high and the modeling method is simple. It can be used for typical urban earthquake scenarios. Accurate and timely earthquake damage prediction and seismic damage analysis.
  • Figure 15 is a diagram showing a seismic response nonlinear history analysis device for a city building group according to an embodiment of the present invention.
  • the seismic response nonlinear history analysis device 10 of the urban building group includes: an acquisition module 100 for collecting building data; an acquisition module 200, and an acquisition module connected to the collection module, configured to acquire building data corresponding according to the building data.
  • the construction module 300 is connected to the acquisition module, and is configured to establish a multi-mass shear series model or a multi-mass parallel shear bending coordination model corresponding to the building data according to the model corresponding to the building data;
  • the calculation module 400, the calculation module and the The construction modules are connected to perform nonlinear history calculation by the multi-mass shear series model or the multi-mass parallel shear bending coordination model according to the acceleration time history data of the ground motion input of each building, to obtain the nonlinear history calculation result;
  • the analysis module 500 is connected to the calculation module and is configured to obtain the earthquake damage state and the analysis result of each floor of each building according to the nonlinear history calculation result.
  • the building module 300 is specifically configured to establish multi-mass shearing for the unstructured masonry, the masonry structure, the frame structure, and the structure below the preset layer according to the use function, the building height, and the structure type.
  • the tandem model, and the multi-mass parallel shear-bending coordination model is established for the shear wall structure, the frame shear wall structure and the preset layer and the building above the preset layer.
  • the calculation module 400 is specifically configured to acquire acceleration time history data input by each building, and perform nonlinear history analysis of the structure by using motion equations in structural dynamics according to acceleration time history data. .
  • the damage state and analysis result of each floor of each building includes the damage state of each floor of each building, the displacement history result of each floor of each building, and each The results of the speed history of each floor of the building, the acceleration history results of each floor of each building, and the visualization and animation of the seismic response and damage state of the urban complex.
  • the seismic response nonlinear history analysis device of the urban building group establishes a multi-mass shear series model or a multi-mass parallel shear bending coordination model through building data, and performs nonlinear history calculation according to the acceleration time history data of the ground motion, According to the calculation results, the seismic damage status of each floor of each building is analyzed, and the seismic damage characteristics of buildings with different heights are accurately reflected, which is closer to the actual earthquake damage effect.
  • the calculation efficiency is high and the modeling method is simple. It can be used for typical urban earthquake scenarios. Accurate and timely earthquake damage prediction and seismic damage analysis.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Computational Mathematics (AREA)
  • Civil Engineering (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Architecture (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种城市建筑群地震反应非线性历程分析方法及装置,其中,方法包括:采集建筑数据(S101);根据建筑数据获取建筑数据对应的模型(S102);根据建筑数据对应的模型建立建筑数据对应的多质点剪切串联模型或多质点并联剪切弯曲协调模型(S103);根据每个建筑输入的地震动的加速度时间历程数据通过多质点剪切串联模型或多质点并联剪切弯曲协调模型进行非线性历程计算,以得到非线性历程计算结果(S104);以及根据非线性历程计算结果得到每个建筑每个楼层的震害状态及分析结果(S105)。该方法能够准确反应不同高度建筑震害特征,更接近实际震害,计算效率高且建模方法简单,可以用于城市典型地震情景下准确及时的震害预测与震害分析。

Description

城市建筑群地震反应非线性历程分析方法及装置
相关申请的交叉引用
本申请要求清华大学于2018年02月05日提交的、发明名称为“城市建筑群地震反应非线性历程分析方法及装置”的、中国专利申请号“201810112837.3”和“201820207959.6”的优先权。
技术领域
本发明涉及土木工程技术领域,特别涉及一种城市建筑群地震反应非线性历程分析方法及装置。
背景技术
我国地震频发,大量人口稠密的城市处于高烈度地区,一旦发生地震,将造成严重的人员伤亡和经济损失。为了降低地震带来的城市经济损失与人员伤亡,对城市建筑地震群响应的合理预测显得尤为重要。
目前的城市建筑群震害分析方法主要为:易损性矩阵方法和能力谱法。易损性矩阵法仅适用于震害资料丰富的地区,且不适合推广;能力谱法难以考虑地震动的时域特性对结构的影响;因此,这两种方法都难以满足我国城市建筑群震害分析的需要
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种城市建筑群地震反应非线性历程分析方法,该方法能够准确反应不同高度建筑震害特征,简洁且效率高。
本发明的另一个目的在于提出一种城市建筑群地震反应非线性历程分析装置。
为达到上述目的,本发明一方面实施例提出了一种城市建筑群地震反应非线性历程分析方法,包括以下步骤:采集建筑数据;根据所述建筑数据获取所述建筑数据对应的模型;根据所述建筑数据对应的模型建立所述建筑数据对应的多质点剪切串联模型或多质点并联剪切弯曲协调模型;根据每个建筑输入的地震动的加速度时间历程数据通过所述多质点剪切串联模型或所述多质点并联剪切弯曲协调模型进行非线性历程计算,以得到非线性历程计算结果;以及根据所述非线性历程计算结果得到所述每个建筑每个楼层的震害状态及分析结果。
本发明实施例的城市建筑群地震反应非线性历程分析方法,通过建筑数据建立多质点剪切串联模型或多质点并联剪切弯曲协调模型,并根据地震动的加速度时间历程数据进行非线性历程计算,根据计算结果分析每个建筑每个楼层的震害状态,达到准确反应不同高度建筑震害特征,更接近实际震害的效果,且计算效率高、建模方法简单,可以用于城市典型地震情景下准确及时的震害预测与震害分析。
另外,根据本发明上述实施例的城市建筑群地震反应非线性历程分析方法还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,所述建筑数据包括结构类型、建筑高度、建筑层数、建造年代、楼层面积和使用功能中的一项或多项。
进一步地,在本发明的一个实施例中,所述根据所述建筑数据对应的模型建立所述建筑数据对应的多质点剪切串联模型或多质点并联剪切弯曲协调模型,进一步包括:根据所述使用功能、所述建筑高度以及所述结构类型对未设防砌体、砌体结构、框架结构以及预设层以下结构建立所述多质点剪切串联模型,且对剪力墙结构、框架剪力墙结构与预设层及预设层以上建筑建立所述多质点并联剪切弯曲协调模型。
进一步地,在本发明的一个实施例中,在所述的城市建筑群地震反应非线性历程分析方法中,根据所述结构类型、所述建筑高度、所述建筑层数、所述建造年代、所述楼层面积和所述使用功能确定所述多质点剪切串联模型,其中,所述多质点剪切串联模型的骨架线为三线性骨架线,层间往复受力关系采用单参数往复受力模型;根据所述结构类型、所述建筑高度、所述建筑层数、所述建造年代、所述楼层面积和所述使用功能确定所述多质点并联剪切弯曲协调模型,其中,所述多质点并联剪切弯曲协调模型由弯曲梁、剪切梁和刚性链杆构成,以同时考虑高层建筑的弯曲变形和剪切变形。
进一步地,在本发明的一个实施例中,所述根据每个建筑输入的地震动的加速度时间历程数据通过所述多质点剪切串联模型或所述多质点并联剪切弯曲协调模型进行非线性历程计算,进一步包括:获取所述每个建筑输入的加速度时程数据;根据所述加速度时程数据通过结构动力学中的运动方程进行结构的非线性历程分析。
进一步地,在本发明的一个实施例中,所述每个建筑每个楼层的震害状态及分析结果包括每个建筑每个楼层的震害状态、每个建筑每个楼层的位移历程结果、每个建筑每个楼层的速度历程结果、每个建筑每个楼层的加速度历程结果和城市建筑群地震反应与破坏状态的可视化图片与动画。
为达到上述目的,本发明另一方面实施例提出了一种城市建筑群地震反应非线性历程分析装置,包括:采集模块,用于采集建筑数据;获取模块,所述获取模块与所述采集模块相连,用于根据所述建筑数据获取所述建筑数据对应的模型;构建模块,所述构建模块 与所述获取模块相连,用于根据所述建筑数据对应的模型建立所述建筑数据对应的多质点剪切串联模型或多质点并联剪切弯曲协调模型;计算模块,所述计算模块与所述构建模块相连,用于根据每个建筑输入的地震动的加速度时间历程数据通过所述多质点剪切串联模型或所述多质点并联剪切弯曲协调模型进行非线性历程计算,以得到非线性历程计算结果;以及分析模块,所述分析模块与所述计算模块相连,用于根据所述非线性历程计算结果得到所述每个建筑每个楼层的震害状态及分析结果。
本发明实施例的城市建筑群地震反应非线性历程分析装置,通过建筑数据建立多质点剪切串联模型或多质点并联剪切弯曲协调模型,并根据地震动的加速度时间历程数据进行非线性历程计算,根据计算结果分析每个建筑每个楼层的震害状态,达到准确反应不同高度建筑震害特征,更接近实际震害的效果,且计算效率高、建模方法简单,可以用于城市典型地震情景下准确及时的震害预测与震害分析。
另外,根据本发明上述实施例的城市建筑群地震反应非线性历程分析装置还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,所述构建模块具体用于根据使用功能、建筑高度以及结构类型对未设防砌体、砌体结构、框架结构以及预设层以下结构建立所述多质点剪切串联模型,且对剪力墙结构、框架剪力墙结构与预设层及预设层以上建筑建立所述多质点并联剪切弯曲协调模型。
进一步地,在本发明的一个实施例中,所述计算模块具体用于获取所述每个建筑输入的加速度时程数据,并根据所述加速度时程数据通过结构动力学中的运动方程进行结构的非线性历程分析。
进一步地,在本发明的一个实施例中,所述每个建筑每个楼层的震害状态及分析结果包括每个建筑每个楼层的震害状态、每个建筑每个楼层的位移历程结果、每个建筑每个楼层的速度历程结果、每个建筑每个楼层的加速度历程结果和城市建筑群地震反应与破坏状态的可视化图片与动画。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本发明实施例的城市建筑群地震反应非线性历程分析方法的流程图;
图2为根据本发明具体实施例的城市建筑群地震反应非线性历程分析方法的流程图;
图3为根据本发明一个实施例的多质点剪切串联模型和多质点并联剪切弯曲协调模型示意图;
图4为根据本发明一个实施例的模型三线性骨架线与层间单参数往复受力模型示意图;
图5为根据本发明一个实施例的框架结构模型参数标定的流程图;
图6为根据本发明一个实施例的框架结构骨架线承载力参数标定流程图;
图7为根据本发明一个实施例的框架结构骨架线位移参数标定流程图;
图8为根据本发明一个实施例的砌体结构骨架线承载力参数标定流程图;
图9为根据本发明一个实施例的非设防砌体结构骨架线峰值承载力取值概率分布图;
图10为根据本发明一个实施例的砌体结构骨架线位移参数标定流程图;
图11为根据本发明一个实施例的高层建筑模型参数标定的流程图;
图12为根据本发明一个实施例的唐山市区建筑年代和建筑类型的组成图;
图13为根据本发明一个实施例的输入地震动的时程曲线;
图14为根据本发明一个实施例的输入地震动的PGA衰减关系图;
图15为根据本发明一个实施例的城市建筑群地震反应非线性历程分析装置结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图描述根据本发明实施例提出的城市建筑群地震反应非线性历程分析方法及装置,首先将参照附图描述根据本发明实施例提出的城市建筑群地震反应非线性历程分析方法。
图1为根据本发明实施例的城市建筑群地震反应非线性历程分析方法的流程图,结合图1和图2对本发明实施例提出的城市建筑群地震反应非线性历程分析方法进行详细讲解。
如图1所示,该城市建筑群地震反应非线性历程分析方法包括以下步骤:
在步骤S101中,采集建筑数据。
在本发明的一个实施例中,建筑数据包括结构类型、建筑高度、建筑层数、建造年代、楼层面积和使用功能中的一项或多项。
可以理解的是,建筑数据可以通过实地调研、查阅GIS(Geographic Information System地理信息系统)信息等相关渠道获取。进一步地,获取所考虑区域范围内每栋建筑的具体信息,对于一些重要建筑,可以搜集更加详细的信息,如建筑图纸等,进行精细有限元模 型建立,并获取相关参数,以供后续参数确定,使得模拟结果更加准确。
S102:根据建筑数据获取建筑数据对应的模型。
在本发明的一个实施例中,根据使用功能、建筑高度以及结构类型对未设防砌体、砌体结构、框架结构以及预设层以下结构建立多质点剪切串联模型,且对剪力墙结构、框架剪力墙结构与预设层及预设层以上建筑建立多质点并联剪切弯曲协调模型。
具体地,可以依据建筑的使用功能、建筑高度以及结构类型,未设防砌体、砌体结构、框架结构以及10层以下结构应选用多质点剪切串联模型,因为该模型可以准确地把握该类建筑在地震作用下的剪切变形模式;剪力墙结构、框架剪力墙结构与10层及10层以上建筑建立多质点并联剪切弯曲协调模型,因为该模型可以准确地把握该类建筑在地震作用下剪切-弯曲耦合的变形模式。
S103:根据建筑数据对应的模型建立建筑数据对应的多质点剪切串联模型或多质点并联剪切弯曲协调模型。
在本发明的一个实施例中,城市中存在大量中低层建筑,大部分中低层建筑结构类型明确,形体规则,通常表现出较为明显的剪切变形模式。因此可以将每栋建筑简化成图3(a)所示的多质点剪切串联模型。该模型假设结构每一层的质量都集中在楼面上,认为楼板为刚性并且忽略楼板的转动位移,因此可以将每一层简化成一个质点。不同楼层之间的质点通过剪切弹簧连接在一起。楼层之间剪切弹簧的力-位移关系如图4所示。其中骨架线为三线性骨架线,如图4(a)所示,层间滞回模型采用图4(b)所示的单参数滞回模型。
其中,高层建筑的侧向整体弯曲变形不可忽略,因此可以将每栋建筑简化为图3(b)所示的多质点并联剪切弯曲协调模型,该模型采用三线性骨架线,能够同时考虑高层建筑的弯曲变形和剪切变形。
针对上述两种模型以及不同结构类型的结构,本发明的一个实施例分别采用不同的参数标定方法,参数标定方法是建立在建筑抗震设计规范、大量的试验数据和数值分析的基础之上的。因此,无论是何种结构类型,都只需要知道建筑的结构类型、高度、层数、建造年代、楼层面积、实用功能等宏观信息,就可以确定图3中骨架线和滞回模型中的各个参数,简单方便,从而非常适用于大规模区域建筑群的建模。
下面将对本发明实施例的各类结构的参数确定方法进行详细介绍:
首先,进行框架结构的参数确定流程,框架结构的参数确定流程如图5所示,具体包括:
(1)弹性参数标定。
其中,弹性参数包括各层的质量和刚度参数。
在本发明的一个实施例中,各层的质量m可以根据单位楼层面积的质量乘以楼层面积 得到;层间的剪切刚度可以根据各层的质量和一阶周期T 1根据式(1)得到。得到m和k 0后就可以得到结构的刚度矩阵和质量矩阵。
Figure PCTCN2018117680-appb-000001
其中,[Φ 1]是结构一阶振型的振型向量;[A]和[I]分别为刚度矩阵[K]和质量矩阵[M]的系数矩阵;一阶周期T 1可以根据中国建筑结构荷载规范(GB 50009-2012)中建议的公式计算,如式(2)所示,对于结构平面长短轴方向尺寸相差较大的结构,模型建议采用式(3)计算一阶周期。
T 1=(0.05~0.1)n,         (2)
Figure PCTCN2018117680-appb-000002
其中,n为结构的楼层数,H为房屋总高度,B为房屋平面宽度。
(2)骨架线参数标定。
骨架线参数包括承载力参数和位移参数,其承载力参数标定过程如图6所示,位移参数标定过程如图7所示。
(a)承载力参数包括设计承载力、屈服承载力、峰值承载力和极限承载力。
框架结构都经过严格的抗震设计,因此各楼层的设计承载力V d,i可以根据规范中设计承载力的计算方法得到,该模型采用底部剪力法来计算结构的各层设计承载力。
进行屈服承载力V y,i和峰值承载力V p,i分别用式(4)和(5)计算。
V y,i=Ω yV d,i,        (4)
V p,i=Ω pV y,i,         (5)
其中,Ω y为RC框架结构的屈服超强系数,在该模型中建议取Ω y=1.1;Ω p为结构的峰值超强系数,根据式(6)、(7)、(8)计算。
Ω p=K 1K 2,             (6)
K 1=0.1519DI 2-2.8238DI+14.9082,            (7)
K 2=1-(0.0099n-0.0197),            (8)
其中DI为的结构的抗震设防烈度,n为结构的层数。
可以理解的是,因为框架结构具有很好的延性,所以取极限承载力等于峰值承载力。
(b)位移参数包括屈服位移、峰值位移和极限位移。屈服位移、峰值位移和极限位移分别根据式(9)、(10)、(11)确定。
Δu y,i=V y,i/k 0,            (9)
Δu p,i=V p,i/k secant,             (10)
Δu u,i=δ completeh,              (11)
k secant=ηk 0,             (12)
其中k 0为结构层间初始刚度;层间剪切的割线刚度k secant(图6所示)可以根据式(12)计算得到,η为结构达到峰值承载力时割线刚度折减系数。δ complete为结构毁坏时的层间位移角,h为结构的层高。
(3)滞回参数标定。
滞回耗能参数τ可以根据式(13)计算:
Figure PCTCN2018117680-appb-000003
其中,A p为捏拢包络线所围成的面积;A b为理想弹塑性滞回曲线所围成的面积。
接着,在本发明的一个实施例中,确定砌体结构参数。
在本发明的一个实施例中,将砌体结构分为未设防砌体结构和设防砌体结构,两类砌体结构的弹性参数以及滞回参数的确定方法和框架结构类似;但骨架线参数标定方法与框架结构有较大差异,具体包括:
(1)弹性参数标定
各层的质量m可以根据单位楼层面积的质量乘以楼层面积得到;层间的剪切刚度可以根据各层的质量和一阶周期T 1根据式(1)得到。得到m和k 0后就可以得到结构的刚度矩阵和质量矩阵。未设防砌体和设防砌体的一阶周期可以分别按照式(14)和式(15)确定;对于结构平面长短轴方向尺寸相差较大的结构,模型建议采用式(16)和(17)计算一阶周期。
T 1=0.064+0.053n,未设防砌体结构,         (14)
T 1=0.221+0.025n,设防砌体结构,         (15)
Figure PCTCN2018117680-appb-000004
未设防砌体结构,      (16)
Figure PCTCN2018117680-appb-000005
设防砌体结构。     (17)
(2)骨架线参数标定。
(a)未设防砌体结构和设防砌体结构的承载力确定方法如图8所示。砌体结构承载力包含屈服承载力,峰值承载力和极限承载力。
对于未设防砌体,根据式(18)计算未设防砌体结构各层的峰值承载力V p,i
V p,i=RA i,         (18)
其中R为单位建筑面积的结构峰值承载力,可以根据图8进行取值;A i为结构第i层的面积。计算得到各层的峰值承载力之后,可以根据未设防砌体结构的峰值超强系数Ω p按照式(19)计算未设防砌体的各层屈服承载力V y,i。根据统计,Ω p的中位值为1.40。
V y,i=V p,iy,          (19)
对于设防砌体,首先按照底部剪力法得到设防砌体结构各层的设计承载力V d,i(GB50011-2010)。之后再通过式(20)和式(21)计算结构各层的屈服承载力V y,i和峰值承载力V p,i
V y,i=Ω yV d,i,             (20)
V p,i=Ω pV y,i,              (21)
其中Ω y,Ω p分别为设防砌体结构的屈服超强系数和峰值超强系数。根据统计,Ω y的中位值为2.33,Ω p的中位值为1.41。
在该实施例中,对于砌体结构,极限承载力取为峰值承载力的85%。
(b)未设防砌体结构和设防砌体结构的位移参数包括骨架线上屈服点、峰值点、软化点以及极限点的位移,可以分别按照图9所示的方法进行确定。
与框架结构类似,可以认为砌体结构在屈服点之前保持弹性工作状态。因此未设防砌体结构和设防砌体结构的屈服位移Δu y,i可以根据式(22)进行确定。峰值位移角按照式(23)取值,其中h为单层层高。根据统计,未设防砌体结构的δ p的中位值为0.00268,设防砌体结构的中位值为0.00317。软化点位移角按照式(24)取值,其中h为单层层高。
Δu y,i=V y,i/k 0,              (22)
Δu p,i=δ ph,          (23)
Δu soft,i=δ softh,         (24)
(3)滞回参数标定。
在本发明的一个实施例中,滞回耗能参数τ与框架结构确定方法相同,可以根据式(13)计算。确定高层建筑的参数流程为:
高层建筑骨架线采用与框架结构相同的骨架线形式,参数确定流程如图11所示,具体包括:
弹性参数包括弯曲刚度EI和剪切刚度GA。这两个参数可以根据结构的一阶周期和二阶周期确定。结构的前两阶周期可以根据模态分析、实际检测或者经验公式确定。再根据式(25)至(28)即可确定弯曲刚度EI和剪切刚度GA。
Figure PCTCN2018117680-appb-000006
Figure PCTCN2018117680-appb-000007
Figure PCTCN2018117680-appb-000008
Figure PCTCN2018117680-appb-000009
其中,α 0为结构弯剪刚度比,ω 1为一阶圆频率,γ j表示与第j阶结构振动相关的特征值参数。
(2)屈服参数标定
考虑到高阶振型对高层结构响应的贡献,该模型采用振型分解反应谱法来计算地震作用结构各阶振型对应的谱位移D j。通过式(29)、(30)、(31)和(32)可以求得结构的层间位移Δu i,j和转角Δθ i,j
u i,j=Γ jφ i,jD j,           (29)
Δu i,j=u i,j/u i 1,j,          (30)
Figure PCTCN2018117680-appb-000010
Δθ i,j=θ i,ji 1,j。          (32)
其中:φ i,j为第i层第j阶振型的振型向量,Γ为振型参与系数。根据式(33)、(34)就可以得到各阶振型对应的各层设计剪力V i,j和设计弯矩M i,j
V i,j=Δu i,jGA/h i,            (33)
M i,j=Δθ i,jEI/h i。           (34)
再根据SRSS(Square Root of the Sum of the Squares振型组合方法)对各阶地震作用进行组合(式(35)、(36)),便可以得到各层剪切弹簧的设计剪力和弯曲弹簧的设计弯矩,公式如下:
Figure PCTCN2018117680-appb-000011
Figure PCTCN2018117680-appb-000012
最后,该耦合模型根据《建筑抗震设计规范》(GB 50011-2010)和《高层建筑混凝土结构技术规程》(JGJ 3-2010)对设计剪力和弯矩进行调整,以满足最小剪力和底部加强区域弯矩的要求。屈服剪力和屈服弯矩可以通过式(37)、(38)得到。
V y,i=V d,iΩ y,           (37)
M y,i=M d,iΩ y。          (38)
根据统计回归,屈服超强系数Ω y与峰值超强系数Ω p与结构的抗震设防烈度DI的关系,如式(39)、(40)所示。
Ω y=-0.1565DI+2.7499,         (39)
Ω p=(-0.5589DI+7.6346)/(-0.1565DI+2.7499)。           (40)
根据式(41)、(42)可以得到屈服层间位移和屈服层间位移角。
Figure PCTCN2018117680-appb-000013
Figure PCTCN2018117680-appb-000014
(3)峰值参数标定。
在本发明的一个实施例中,弯曲弹簧和剪切弹簧各层的峰值剪力V p,i和峰值弯矩M p,i可以按照式(43)和式(44)确定。
V p,i=Ω pV y,i,            (43
M p,i=Ω pM y,i。           (44)
其中Ω p为峰值超强系数,可以按照式(40)确定。
由于混凝土结构开裂后刚度会下降,因此结构的峰值位移可以根据折减后的等效弯曲刚度E rI和等效剪切刚度G rA来计算。
E rI=ηEI,        (45)
G rA=ηGA。         (46)
美国ACI 315-08第10.10.4.1条建议了相应的刚度折减系数η。因此,结构的峰值层间位移Δu p,i和峰值层间转角Δθ p,i可以根据式(47)和式(48)确定。
Figure PCTCN2018117680-appb-000015
Figure PCTCN2018117680-appb-000016
S104:根据每个建筑输入的地震动的加速度时间历程数据通过多质点剪切串联模型或多质点并联剪切弯曲协调模型进行非线性历程计算,以得到非线性历程计算结果.
具体的,每栋建筑输入一个加速度时程数据;采用结构动力学中的运动方程(式(49)),进行结构的非线性历程分析。式中M为模型质量阵,C为阻尼矩阵,本发明中采用Rayleigh阻尼,F为结构内力,ü、
Figure PCTCN2018117680-appb-000017
和u为结构各自由度对应的加速度、速度和位移向量,u g为地震动加速度时程。
Figure PCTCN2018117680-appb-000018
S105:根据非线性历程计算结果得到每个建筑每个楼层的震害状态及分析结果。
其中,判断每个建筑每个楼层的震害状态,获得相应的位移、加速度等重要数据。基于以上步骤,本发明的一个实施例开发了相应的程序,以便更加快速、流畅地执行相关计算。
以唐山市区建筑为例,本发明实施例通过唐山市规划局获得了该地区230,683栋建筑的建筑属性信息,包括结构类型、高度、层数、建造年代、楼层面积等,数据详实。利用这些数据即可采用本发明所用的分析模型对每一栋建筑进行模拟。建筑年代和建筑类型的组成情况如图12所示。
由于唐山地震发生时,我国强震观测站很少,缺少质量较好的相关地震记录,因此本案例从美国联邦应急管理署P695报告中挑选了4条代表性近场地震(震源距小于10km)记录,其震级与唐山大地震相近,各地震动时程曲线如图13所示。其中,中国台湾Chichi 记录震级为7.6级,土耳其Kacaeli记录震级为7.5级,美国Denali地震震级为7.9级。
由于目标区域范围较广,单一的地震动输入和实际情况相差较大,因此需要考虑地震动的衰减。此次模拟按照椭圆的长短轴方向进行衰减,震中PGA=1160cm/s 2,如图14所示。根据上述PGA的衰减关系可以得到各个位置建筑的PGA大小,对地震动进行调幅,以此作为地震动的输入。
基于以上区域建筑基本信息及地震动信息,采用本发明提出的多质点剪切串联模型和多质点并联剪切弯曲协调模型对唐山市进行了震害模拟。按照建筑设防分类的不同破坏程度的比例统计如表1所示(完好和轻微破坏的比例均为0,所以略去)。值得注意的是,上述案例中230,683栋建筑,进行四条地震动的总体运算时间只需要约5个小时,如果引入并行技术,这一时间将进一步缩短。
表1
Figure PCTCN2018117680-appb-000019
综上,通过以上案例,可以总结出本发明实施例提出的城市建筑群地震反应非线性历程分析方法可获得每个建筑每个楼层的震害状态及位移、加速度等重要数据。并且本发明实施例的多质点剪切串联模型和并联剪切弯曲协调模型可以准确反应不同高度建筑震害特征,而且具有极高的计算效率和简单的建模方法,可以用于城市典型地震情景的震害预测 与地震后的近实时震害分析,为震后救援工作及相关决策提供支持。
本发明实施例的城市建筑群地震反应非线性历程分析方法,通过建筑数据建立多质点剪切串联模型或多质点并联剪切弯曲协调模型,并根据地震动的加速度时间历程数据进行非线性历程计算,根据计算结果分析每个建筑每个楼层的震害状态,达到准确反应不同高度建筑震害特征,更接近实际震害的效果,且计算效率高、建模方法简单,可以用于城市典型地震情景下准确及时的震害预测与震害分析。
其次参照附图描述根据本发明实施例提出的城市建筑群地震反应非线性历程分析装置。
图15是本发明一个实施例的城市建筑群地震反应非线性历程分析装置。
如图15所示,该城市建筑群地震反应非线性历程分析装置10包括:采集模块100,用于采集建筑数据;获取模块200,获取模块与采集模块相连,用于根据建筑数据获取建筑数据对应的模型;构建模块300,构建模块与获取模块相连,用于根据建筑数据对应的模型建立建筑数据对应的多质点剪切串联模型或多质点并联剪切弯曲协调模型;计算模块400,计算模块与构建模块相连,用于根据每个建筑输入的地震动的加速度时间历程数据通过多质点剪切串联模型或多质点并联剪切弯曲协调模型进行非线性历程计算,以得到非线性历程计算结果;以及分析模块500,分析模块与计算模块相连,用于根据非线性历程计算结果得到每个建筑每个楼层的震害状态及分析结果。
需要说明的是,前述对城市建筑群地震反应非线性历程分析方法实施例的解释说明也适用于该实施例的装置,此处不再赘述。
进一步地,在本发明的一个实施例中,构建模块300具体用于根据使用功能、建筑高度以及结构类型对未设防砌体、砌体结构、框架结构以及预设层以下结构建立多质点剪切串联模型,且对剪力墙结构、框架剪力墙结构与预设层及预设层以上建筑建立多质点并联剪切弯曲协调模型
进一步地,在本发明的一个实施例中,计算模块400具体用于获取每个建筑输入的加速度时程数据,并根据加速度时程数据通过结构动力学中的运动方程进行结构的非线性历程分析。
进一步地,在本发明的一个实施例中,每个建筑每个楼层的震害状态及分析结果包括每个建筑每个楼层的震害状态、每个建筑每个楼层的位移历程结果、每个建筑每个楼层的速度历程结果、每个建筑每个楼层的加速度历程结果和城市建筑群地震反应与破坏状态的可视化图片与动画。
本发明实施例的城市建筑群地震反应非线性历程分析装置,通过建筑数据建立多质点剪切串联模型或多质点并联剪切弯曲协调模型,并根据地震动的加速度时间历程数据进行非线性历程计算,根据计算结果分析每个建筑每个楼层的震害状态,达到准确反应不同高 度建筑震害特征,更接近实际震害的效果,且计算效率高、建模方法简单,可以用于城市典型地震情景下准确及时的震害预测与震害分析。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种城市建筑群地震反应非线性历程分析方法,其特征在于,包括以下步骤:
    采集建筑数据;
    根据所述建筑数据获取所述建筑数据对应的模型;
    根据所述建筑数据对应的模型建立所述建筑数据对应的多质点剪切串联模型或多质点并联剪切弯曲协调模型;
    根据每个建筑输入的地震动的加速度时间历程数据通过所述多质点剪切串联模型或所述多质点并联剪切弯曲协调模型进行非线性历程计算,以得到非线性历程计算结果;以及根据所述非线性历程计算结果得到所述每个建筑每个楼层的震害状态及分析结果。
  2. 根据权利要求1所述的城市建筑群地震反应非线性历程分析方法,其特征在于,所述建筑数据包括结构类型、建筑高度、建筑层数、建造年代、楼层面积和使用功能中的一项或多项。
  3. 根据权利要求2所述的城市建筑群地震反应非线性历程分析方法,其特征在于,根据所述建筑数据对应的模型建立所述建筑数据对应的多质点剪切串联模型或多质点并联剪切弯曲协调模型,进一步包括:
    根据所述使用功能、所述建筑高度以及所述结构类型对未设防砌体、砌体结构、框架结构以及预设层以下结构建立所述多质点剪切串联模型,且对剪力墙结构、框架剪力墙结构与预设层及预设层以上建筑建立所述多质点并联剪切弯曲协调模型。
  4. 根据权利要求3所述的城市建筑群地震反应非线性历程分析方法,其特征在于,其中,根据所述结构类型、所述建筑高度、所述建筑层数、所述建造年代、所述楼层面积和所述使用功能确定所述多质点剪切串联模型,其中,所述多质点剪切串联模型的骨架线为三线性骨架线,层间往复受力关系采用单参数往复受力模型;根据所述结构类型、所述建筑高度、所述建筑层数、所述建造年代、所述楼层面积和所述使用功能确定所述多质点并联剪切弯曲协调模型,其中,所述多质点并联剪切弯曲协调模型由弯曲梁、剪切梁和刚性链杆构成,以同时考虑高层建筑的弯曲变形和剪切变形。
  5. 根据权利要求3所述的城市建筑群地震反应非线性历程分析方法,其特征在于,所述根据每个建筑输入的地震动的加速度时间历程数据通过所述多质点剪切串联模型或所述多质点并联剪切弯曲协调模型进行非线性历程计算,进一步包括:获取所述每个建筑输入的加速度时程数据;根据所述加速度时程数据通过结构动力学中的运动方程进行结构的非线性历程分析。
  6. 根据权利要求1-5任一项所述的城市建筑群地震反应非线性历程分析方法,其特征 在于,所述每个建筑每个楼层的震害状态及分析结果包括每个建筑每个楼层的震害状态、每个建筑每个楼层的位移历程结果、每个建筑每个楼层的速度历程结果、每个建筑每个楼层的加速度历程结果和城市建筑群地震反应与破坏状态的可视化图片与动画。
  7. 一种城市建筑群地震反应非线性历程分析装置,其特征在于,包括:
    采集模块,用于采集建筑数据;
    获取模块,所述获取模块与所述采集模块相连,用于根据所述建筑数据获取所述建筑数据对应的模型;
    构建模块,所述构建模块与所述获取模块相连,用于根据所述建筑数据对应的模型建立所述建筑数据对应的多质点剪切串联模型或多质点并联剪切弯曲协调模型;
    计算模块,所述计算模块与所述构建模块相连,用于根据每个建筑输入的地震动的加速度时间历程数据通过所述多质点剪切串联模型或所述多质点并联剪切弯曲协调模型进行非线性历程计算,以得到非线性历程计算结果;以及
    分析模块,所述分析模块与所述计算模块相连,用于根据所述非线性历程计算结果得到所述每个建筑每个楼层的震害状态及分析结果。
  8. 根据权利要求7所述的城市建筑群地震反应非线性历程分析装置,其特征在于,所述构建模块具体用于根据使用功能、建筑高度以及结构类型对未设防砌体、砌体结构、框架结构以及预设层以下结构建立所述多质点剪切串联模型,且对剪力墙结构、框架剪力墙结构与预设层及预设层以上建筑建立所述多质点并联剪切弯曲协调模型。
  9. 根据权利要求8所述的城市建筑群地震反应非线性历程分析装置,其特征在于,所述计算模块具体用于获取所述每个建筑输入的加速度时程数据,并根据所述加速度时程数据通过结构动力学中的运动方程进行结构的非线性历程分析
  10. 根据权利要求7-9任一项所述的城市建筑群地震反应非线性历程分析装置,其特征在于,所述每个建筑每个楼层的震害状态及分析结果包括每个建筑每个楼层的震害状态、每个建筑每个楼层的位移历程结果、每个建筑每个楼层的速度历程结果、每个建筑每个楼层的加速度历程结果和城市建筑群地震反应与破坏状态的可视化图片与动画。
PCT/CN2018/117680 2018-02-05 2018-11-27 城市建筑群地震反应非线性历程分析方法及装置 WO2019148950A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/940,141 US11371907B2 (en) 2018-02-05 2020-07-27 Method and device for city-scale nonlinear time-history analysis

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201820207959 2018-02-05
CN201810112837.3 2018-02-05
CN201820207959.6 2018-02-05
CN201810112837.3A CN108647366B (zh) 2018-02-05 2018-02-05 城市建筑群地震反应非线性历程分析方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/940,141 Continuation US11371907B2 (en) 2018-02-05 2020-07-27 Method and device for city-scale nonlinear time-history analysis

Publications (1)

Publication Number Publication Date
WO2019148950A1 true WO2019148950A1 (zh) 2019-08-08

Family

ID=67477896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117680 WO2019148950A1 (zh) 2018-02-05 2018-11-27 城市建筑群地震反应非线性历程分析方法及装置

Country Status (2)

Country Link
US (1) US11371907B2 (zh)
WO (1) WO2019148950A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113268807A (zh) * 2021-07-19 2021-08-17 汕头大学 一种基于有限质点法的建筑群灾变模拟分布式计算方法
CN114254534A (zh) * 2021-12-13 2022-03-29 哈尔滨工业大学 一种基于钢筋三维加强效应的混凝土本构模型计算方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113435091B (zh) * 2021-06-29 2022-11-11 哈尔滨工业大学 一种快速评价城市建筑群桥梁群地震损伤的方法
CN113882863B (zh) * 2021-09-29 2024-07-05 重庆建工第七建筑工程有限责任公司 基于bim技术的地下复杂框剪结构施工方法
CN116227965A (zh) * 2022-12-05 2023-06-06 云南省设计院集团有限公司 一种智慧韧性城乡评估系统及方法
CN115657136B (zh) * 2022-12-29 2023-04-07 北京科技大学 一种高层建筑影响的建筑群地震反应谱修正方法及装置
CN116822249B (zh) * 2023-08-25 2023-12-15 北京科技大学 基于自动配楼建模的建筑群震后倒塌形态分析方法及装置
CN117033951B (zh) * 2023-10-10 2024-05-14 广州大学 多层及高层组合剪力墙结构地震损伤等级评估方法及系统
CN117236146B (zh) * 2023-11-16 2024-01-19 中冶建筑研究总院(深圳)有限公司 一种建筑结构性能评估方法、系统及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225185A (ja) * 2012-04-20 2013-10-31 Mitsubishi Electric Corp 損害計算装置、損害計算方法及び損害計算プログラム
CN204010481U (zh) * 2014-08-22 2014-12-10 金陵科技学院 土-地下结构相互作用体系地震反应简化模型
CN106049951A (zh) * 2016-05-25 2016-10-26 青岛理工大学 多级地震作用下工程结构抗震性能设计评估方法
CN108647366A (zh) * 2018-02-05 2018-10-12 清华大学 城市建筑群地震反应非线性历程分析方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8010387B2 (en) * 2003-06-04 2011-08-30 California Institute Of Technology Method, computer program product, and system for risk management
JP5113475B2 (ja) * 2007-10-04 2013-01-09 戸田建設株式会社 地震情報による建物の震度予測システム
CN107590853A (zh) * 2017-08-25 2018-01-16 北京科技大学 一种城市建筑群震害高真实度展示方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225185A (ja) * 2012-04-20 2013-10-31 Mitsubishi Electric Corp 損害計算装置、損害計算方法及び損害計算プログラム
CN204010481U (zh) * 2014-08-22 2014-12-10 金陵科技学院 土-地下结构相互作用体系地震反应简化模型
CN106049951A (zh) * 2016-05-25 2016-10-26 青岛理工大学 多级地震作用下工程结构抗震性能设计评估方法
CN108647366A (zh) * 2018-02-05 2018-10-12 清华大学 城市建筑群地震反应非线性历程分析方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113268807A (zh) * 2021-07-19 2021-08-17 汕头大学 一种基于有限质点法的建筑群灾变模拟分布式计算方法
CN114254534A (zh) * 2021-12-13 2022-03-29 哈尔滨工业大学 一种基于钢筋三维加强效应的混凝土本构模型计算方法

Also Published As

Publication number Publication date
US11371907B2 (en) 2022-06-28
US20200355574A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
WO2019148950A1 (zh) 城市建筑群地震反应非线性历程分析方法及装置
CN108647366B (zh) 城市建筑群地震反应非线性历程分析方法及装置
Mazza et al. Structural and non-structural intensity measures for the assessment of base-isolated structures subjected to pulse-like near-fault earthquakes
Pejovic et al. Optimal intensity measures for probabilistic seismic demand models of RC high-rise buildings
Ciampoli et al. Performance-based Aeolian risk assessment and reduction for tall buildings
CN107784154B (zh) 一种基于性态双谱的抗震性能概率评估方法
Zhang et al. A spectral-velocity-based combination-type earthquake intensity measure for super high-rise buildings
Tondini et al. Seismic performance and fragility functions of a 3D steel-concrete composite structure made of high-strength steel
Shan et al. Rapid seismic performance evaluation of existing frame structures using equivalent SDOF modeling and prior dynamic testing
Astriana et al. Assessing seismic performance of moment resisting frame and frame-shear wall system using seismic fragility curve
Sun et al. Computational modeling of a unique tower in Kuwait for structural health monitoring: Numerical investigations
CN111898186A (zh) 一种bim技术在样板临设中的应用方法
CN113536433A (zh) 基于bim平台的建筑灾后疏散动态逃生路线优化系统
Sangaki et al. Probabilistic integrated framework and models compatible with the reliability methods for seismic resilience assessment of structures
Bi et al. Field measurement and numerical analysis on wind-induced performance of modular structure with concrete cores
Pejovic et al. Novel optimal intensity measures for probabilistic seismic analysis of RC high-rise buildings with core
Hua et al. Resilience assessment and seismic risk assessment of reticulated shell structures considering multiple uncertainties
Tesfamariam et al. Wind and earthquake design framework for tall wood-concrete hybrid system
Cui et al. Time-cost ‘‘trade-off’’analysis for wind-induced inhabitability of tall buildings equipped with tuned mass dampers
Lu et al. High performance computing for regional building seismic damage simulation
CN112528528B (zh) 一种混合结构的抗震计算模态叠加方法
Gentile et al. Optimal retrofit selection for seismically-deficient RC buildings based on simplified performance assessment
Yang et al. Earthquake loss assessment procedures for regional buildings using random story-based structure models
Pejovic et al. Seismic loss assessment of RC high-rise buildings designed according to Eurocode 8
Periyasamy et al. Comfort assessment of wind induced vibrations for slender structures by field monitoring and numerical analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904257

Country of ref document: EP

Kind code of ref document: A1