Nothing Special   »   [go: up one dir, main page]

WO2019039601A1 - Analyzing device and analysis method - Google Patents

Analyzing device and analysis method Download PDF

Info

Publication number
WO2019039601A1
WO2019039601A1 PCT/JP2018/031431 JP2018031431W WO2019039601A1 WO 2019039601 A1 WO2019039601 A1 WO 2019039601A1 JP 2018031431 W JP2018031431 W JP 2018031431W WO 2019039601 A1 WO2019039601 A1 WO 2019039601A1
Authority
WO
WIPO (PCT)
Prior art keywords
particulate matter
analyzed
magnetic susceptibility
particulate
state
Prior art date
Application number
PCT/JP2018/031431
Other languages
French (fr)
Japanese (ja)
Inventor
河野 誠
清香 森
Original Assignee
株式会社カワノラボ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カワノラボ filed Critical 株式会社カワノラボ
Priority to JP2019537716A priority Critical patent/JP6850504B2/en
Publication of WO2019039601A1 publication Critical patent/WO2019039601A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/42Apparatus for the treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Definitions

  • the present invention relates to an analyzer and an analysis method.
  • Particulate organisms such as yeast and fungi are cultured in vitro or in incubators and used for various studies. For example, cultured particulate organisms are used for evaluating the efficacy of pharmaceuticals, toxicity tests of environmental chemicals, food functional evaluation, and cosmetic functional evaluation. Also in the field of regenerative medicine, studies using particulate organisms such as iPS cells (induced pluripotent stem cells) and ES cells (embryonic stem cells) have been conducted.
  • iPS cells induced pluripotent stem cells
  • ES cells embryonic stem cells
  • the quality of the particulate organism is generally evaluated by a method of analyzing a gene contained in the particulate organism or a method of observing the particulate organism to which a fluorescent dye is added.
  • particulate organisms targeted for quality evaluation can not be targeted for research.
  • culture experts rely on their own “can” to determine whether cultured cells (particulate organisms) are defective. For this reason, it is easy to produce an individual difference in judgment of whether it is inferior goods.
  • the degree of activation of cultured cells is low or when the cultured cells are malformed, it is judged to be a defective product.
  • the present inventors have used the volume magnetic susceptibility (magnetic susceptibility per unit volume) of particulate organisms (for example, red blood cells that are a type of blood cells) to determine the quality (characteristics) such as surface area of particulate organisms. Proposed an apparatus and method for evaluating (analyzing) (Patent Document 1).
  • an object of the present invention is to provide an analysis apparatus and an analysis method which can evaluate the quality of particulate matter in a living state and can use the particulate matter after evaluation for the next research. It is in.
  • An analyzer includes a magnetic field generation unit, an observation unit, a processing unit, and a storage unit.
  • the magnetic field generation unit generates a magnetic field to magnetically migrate particulate matter to be analyzed.
  • the observation unit observes the particulate matter to be analyzed.
  • the processing unit measures the magnetic migration velocity and particle diameter of the particulate matter to be analyzed from the observation result of the observation unit, and based on the measured magnetic migration velocity and particle diameter, the particles to be analyzed are Measure the volume susceptibility of the
  • the storage unit stores reference data indicating the relationship between the volume magnetic susceptibility of the reference particulate matter and the particle diameter.
  • the processing unit analyzes the particulate matter to be analyzed by comparing the volume magnetic susceptibility and the particle diameter of the particulate matter to be analyzed with the reference data.
  • the reference data indicates a relationship between volume magnetic susceptibility and particle diameter of each of a plurality of types of reference particulate matter
  • the processing unit is configured to determine the volume susceptibility and particles of the particulate matter to be analyzed.
  • the type of particulate matter to be analyzed is analyzed by comparing the diameter with the reference data.
  • the reference data indicates, for each state that the reference particulate matter can have, the relationship between the volume magnetic susceptibility and the particle diameter of the reference particulate matter of the same type as the particulate matter to be analyzed.
  • the processing unit analyzes the state of the particulate matter to be analyzed by comparing the volume magnetic susceptibility and the particle diameter of the particulate matter to be analyzed with the reference data.
  • the state that the reference particulate matter can have corresponds to the function that the reference particulate matter can exhibit.
  • the state that the reference particulate matter can possess is at least a part of each stage in which the function declines from the alive state to the dead state of the reference particulate matter. It corresponds.
  • the state that the reference particulate matter can have corresponds to the state in which the reference particulate matter is alive and the state in which the reference particulate matter is dead.
  • the state that the reference particulate matter may have corresponds to the activity of the reference particulate matter.
  • the activity corresponds to the amount of adenosine triphosphate produced.
  • the particulate organism to be analyzed is a yeast, a fungus or a cell.
  • the particle analysis method comprises the steps of observing particulate matter to be analyzed which is to be subjected to magnetophoresis, measuring the magnetic migration velocity and particle diameter of the particulate matter to be analyzed from observation results, and Measuring the volume magnetic susceptibility of the particulate matter to be analyzed based on the determined magnetic migration velocity and the particle size, and comparing the volume susceptibility and particle size of the particulate matter to be analyzed with reference data And the analysis step of analyzing the particulate matter to be analyzed, wherein the reference data indicates the relationship between the volume magnetic susceptibility of the reference particulate matter and the particle size.
  • the reference data indicates the relationship between volume magnetic susceptibility and particle diameter of each of a plurality of types of reference particulate matter, and in the analysis step, the volume susceptibility and particles of the particulate matter to be analyzed are determined. The type of particulate matter to be analyzed is analyzed by comparing the diameter with the reference data.
  • the reference data indicates, for each state that the reference particulate matter can have, the relationship between the volume magnetic susceptibility and the particle diameter of the reference particulate matter of the same type as the particulate matter to be analyzed.
  • the analysis step analyzes the state of the particulate organism to be analyzed by comparing the volume magnetic susceptibility and the particle diameter of the particulate organism to be analyzed with the reference data.
  • the state that the reference particulate matter can have corresponds to the function that the reference particulate matter can exhibit.
  • the state that the reference particulate matter can possess is at least a part of each stage in which the function declines from the alive state to the dead state of the reference particulate matter. It corresponds.
  • the state that the reference particulate matter can have corresponds to the state in which the reference particulate matter is alive and the state in which the reference particulate matter is dead.
  • the state that the reference particulate matter may have corresponds to the activity of the reference particulate matter.
  • the activity corresponds to the amount of adenosine triphosphate produced.
  • the particulate organism to be analyzed is a yeast, a fungus or a cell.
  • FIG. 1 It is a schematic diagram of the analyzer which concerns on Embodiment 1 of this invention.
  • (A) And (b) is a figure which shows the movement of the particulate-form thing which concerns on Embodiment 1 of this invention. It is a figure which shows the structure of the analyzer which concerns on Embodiment 1 of this invention. It is a figure which shows an example of the measurement result of each particle diameter of three types of yeast which concerns on Embodiment 1 of this invention, and a volume magnetic susceptibility. It is a figure which shows an example of the reference data which concern on Embodiment 1 of this invention. It is a flowchart which shows the analysis method which concerns on Embodiment 1 of this invention.
  • FIG. 1 is a schematic view of an analyzer 10 of the present embodiment.
  • the analyzer 10 of the present embodiment analyzes the type of particulate matter p to be analyzed.
  • the analyzer 10 analyzes the type of yeast, the type of fungus, and the type of cell.
  • the present embodiment will be described with an example of analyzing the type of yeast.
  • the analyzer 10 includes a magnetic field generation unit 20, an observation unit 30, and a calculation unit 40.
  • the cell 21 is disposed in the vicinity of the magnetic field generation unit 20.
  • the magnetic field generation unit 20 generates a magnetic field to magnetically migrate the particulate matter p in the cell 21.
  • the observation unit 30 observes the particulate matter p in the cell 21.
  • the calculation unit 40 measures (calculates) the particle diameter and the magnetic migration velocity of the particulate matter p from the result of observation by the observation unit 30.
  • the computing unit 40 measures (calculates) the volume magnetic susceptibility of the particulate organism p based on the particle diameter of the particulate organism p and the magnetic migration velocity. Then, the computing unit 40 analyzes the type of the particulate organism p based on the particle size and volume magnetic susceptibility of the particulate organism p.
  • the analyzer 10 will be described in more detail.
  • the magnetic field generation unit 20 generates a magnetic field gradient (gradient of magnetic flux density) to exert magnetic force on the particulate matter p in the cell 21. As a result, the particulate organism p magnetically migrates.
  • the magnetic field generation unit 20 includes a pair of permanent magnets that generate a magnetic field gradient.
  • the two permanent magnets constituting the pair of permanent magnets are disposed, for example, with a gap of a fixed distance of 100 ⁇ m or more and 500 ⁇ m or less.
  • the cell 21 is disposed in the air gap between the two permanent magnets.
  • the cell 21 is a capillary tube.
  • the capillary tube is an example of a tubular member.
  • the material of the cell 21 is not particularly limited as long as the material can transmit visible light or laser light.
  • the cell 21 may be made of glass or plastic.
  • Particulate organisms p are present in the medium m.
  • One particulate organism p may be present in the medium m, or a plurality of particulate organisms p may be present in the medium m.
  • the plurality of particulate organisms p may be dispersed in the medium m or may be localized in the medium m.
  • the medium m is typically a culture solution.
  • Particulate organisms p are introduced into the cell 21 together with the medium m, for example by means of a microsyringe, a micropump or an autosampler.
  • the particulate organism p can be introduced into the cell 21 together with the medium m on the basis of the principle of siphon.
  • a droplet containing the particulate organism p may be introduced into the cell 21 (capillary tube) by capillary action. When a droplet containing particulate matter p is dropped on one end of the capillary tube, the capillary flow causes the droplet to flow in the capillary tube.
  • the volume susceptibility of the particulate organism p varies depending on the type of particulate organism p.
  • the difference in volume magnetic susceptibility is derived from the composition of the surface part (cell wall or cell membrane) and the inside of the particulate organism p. Specifically, due to the fact that the affinity to the medium m differs depending on the composition of the cell wall or cell membrane and the constitution inside the cell, the volume magnetic susceptibility of the particulate organism p differs depending on the type of the particulate organism p.
  • the observation unit 30 observes the particulate matter p in the cell 21 and generates a signal indicating the observation result.
  • the calculation unit 40 measures (calculates) the particle diameter and the magnetic migration velocity of the particulate organism p based on the signal generated by the observation unit 30.
  • the calculation unit 40 includes a storage unit 41 and a processing unit 42.
  • the storage unit 41 stores a program, setting information, and the like.
  • the storage unit 41 may be configured by, for example, a storage device and a semiconductor memory.
  • the storage device is, for example, an HDD (Hard Disk Drive).
  • the storage unit 41 may have, for example, a random access memory (RAM) and a read only memory (ROM) as a semiconductor memory.
  • the processing unit 42 executes various programs such as numerical calculation, information processing, and device control by executing a program stored in the storage unit 41.
  • the processing unit 42 is configured of, for example, a processor such as a CPU (Central Processing Unit).
  • a general-purpose computer such as a personal computer is used as the calculation unit 40.
  • the processing unit 42 analyzes the temporal change of the position of the particulate matter p in the cell 21 from the observation result of the observation unit 30. For example, the processing unit 42 measures the position of the particulate matter p in the cell 21 at predetermined time intervals. In other words, the positions of the particulate matter p at different times are measured. The processing unit 42 measures the magnetic migration velocity of the particulate organism p from the temporal change of the position of the particulate organism p.
  • the processing unit 42 measures the particle diameter of the particulate organism p from the signal generated by the observation unit 30.
  • the processing unit 42 further measures the volume magnetic susceptibility of the particulate organism p based on the particle size and the magnetic migration velocity of the particulate organism p.
  • the processing unit 42 calculates the volume magnetic susceptibility of the particulate matter p based on the following formula (1).
  • v ⁇ 2 ( ⁇ s ⁇ m) r 2 / 9 ⁇ o ⁇ B (dB / dx) (1)
  • Equation (1) v is the magnetic migration velocity of the particulate organism p, ⁇ s is the volume magnetic susceptibility of the particulate organism p, ⁇ m is the volume magnetic susceptibility of the medium m, and r is the particulate organism p Is the radius of the medium m, ⁇ o is the permeability of a vacuum, B is the flux density, and dB / dx is the magnetic field gradient (gradient of the magnetic flux density). Equation (1) is derived from the fact that the difference between the magnetic force received by the particulate matter p and the medium m in the axial direction (x direction) of the cell 21 (capillary tube) and the viscous resistance are approximately equal.
  • the storage unit 41 stores reference data 43.
  • the reference data 43 indicates the relationship between the standard particle size and the volume magnetic susceptibility of each of a plurality of types of particulate matter.
  • the processing unit 42 analyzes the type of the particulate organism p to be analyzed by comparing the particle size and the volume magnetic susceptibility of the particulate organism p to be analyzed with the reference data 43.
  • the reference data 43 indicates the relationship between the standard particle size and the volume magnetic susceptibility of each of a plurality of types of yeast.
  • a particulate organism showing a relationship between a standard particle size and a volume magnetic susceptibility may be described as a "reference particulate organism".
  • FIGS. 2 (a) and 2 (b) are figures which show the movement of particulate-form organism p.
  • FIGS. 2 (a) and 2 (b) show the relationship between the volume magnetic susceptibility of the particulate matter p and the medium m and the moving direction of the particulate matter p.
  • the magnetic field generation unit 20 includes a permanent magnet 20a of which the magnetic pole is N and a permanent magnet 20b of which the magnetic pole is S.
  • the two permanent magnets 20 a and 20 b face each other across the cell 21.
  • the particulate matter p moves in a direction away from the magnetic field (magnetic field generation unit 20).
  • FIG. 2B when the volume magnetic susceptibility of the particulate organism p is larger than that of the medium m, the particulate organism p moves in a direction approaching the magnetic field (magnetic field generation unit 20) .
  • the movement of the particulate matter p is determined according to the volume susceptibility of the particulate matter p and the medium m.
  • the particulate matter p receives a force in the vicinity of the end of the permanent magnet 20a, 20b.
  • the particulate matter p receives a force in the range of about ⁇ 200 ⁇ m from the vicinity of the end of the permanent magnets 20 a and 20 b.
  • FIG. 3 is a diagram showing the configuration of the analyzer 10. As shown in FIG. As shown in FIG. 3, the analyzer 10 further comprises a light source 50.
  • the observation unit 30 also includes a magnifying unit 32 and an imaging unit 34.
  • the light source 50 emits light of relatively high intensity including a visible light component.
  • the light source 50 irradiates the cell 21 with light. As a result, light is emitted to the particulate matter p.
  • the wavelength spectrum of the light emitted from the light source 50 may be relatively broad.
  • a halogen lamp is preferably used as the light source 50.
  • the particulate organism p introduced into the cell 21 is magnified by the magnifying unit 32 at an appropriate magnification and imaged by the imaging unit 34.
  • the position of the particulate matter p can be specified from the imaging result of the imaging unit 34 (the image captured by the imaging unit 34).
  • the magnifying unit 32 includes an objective lens
  • the imaging unit 34 includes a charge coupled device (CCD).
  • each pixel of the imaging unit 34 may be configured by a photodiode or a photomultiplier.
  • the imaging unit 34 images, for example, the particulate matter p at predetermined time intervals.
  • the imaging unit 34 may image light emitted from the light source 50 and transmitted through the cell 21 or may image light emitted from the light source 50 and scattered by the particulate matter p.
  • the calculation unit 40 analyzes the temporal change of the position of the particulate matter p from the imaging result of the imaging unit 34, and the temporal change of the position of the particulate matter p from the temporal change of the position of the particulate matter p. Measure the magnetophoretic velocity.
  • the calculation unit 40 measures the particle diameter of the particulate matter p from the imaging result of the particulate matter p.
  • the computing unit 40 executes the following process. That is, first, the image captured by the imaging unit 34 is converted to monochrome and the luminance thereof is digitized. Next, the boundary of the particulate matter p is set by comparing the derivative of the luminance value with the threshold value. Next, the area of the particulate matter p is detected from the set boundary, and the particle diameter is measured (calculated) from the radius of the circle corresponding to the area.
  • FIG. 4 is a view showing an example of measurement results of particle diameter and volume magnetic susceptibility of each of three types of yeast (analytical target).
  • the horizontal axis represents particle diameter
  • the vertical axis represents volume magnetic susceptibility
  • the circle marks indicate the measurement results of particle size and volume magnetic susceptibility of beer top fermentation yeast (Saccharomyces cerevisiae (American Ale))
  • the triangle marks indicate the measurement results of particle size and volume magnetic susceptibility of soy sauce yeast (Zygosaccharomyces rouxii)
  • the square marks indicate the measurement results of the particle size and volume magnetic susceptibility of a standard strain (Saccharomyces cerevisiae NRIC 1560 T (Type strain)).
  • the volume magnetic susceptibility of the particulate matter p varies depending on the type of the particulate matter p.
  • the type of particulate organism p can be analyzed based on the volume magnetic susceptibility of the particulate organism p.
  • the particulate organism p is any of beer top surface fermentation yeast (Saccharomyces cerevisiae (American Ale)), soy sauce yeast (Zygosaccharomyces rouxii), and a standard strain (Saccharomyces cerevisiae NRIC 1560 T (Type strain)) is taken as an example.
  • the present embodiment will be described.
  • FIG. 5 is a view showing an example of reference data 43 according to the first embodiment. Specifically, the relationship between the standard particle size and volume magnetic susceptibility of three types of yeast (beer top fermentation yeast, soy sauce yeast, and standard strain) is shown. In the following description, a yeast (a reference particulate organism) showing a relationship between a standard particle diameter and a volume magnetic susceptibility may be described as a "reference yeast”.
  • the horizontal axis represents particle diameter
  • the vertical axis represents volume magnetic susceptibility
  • the graph 60 shows the relationship between the particle diameter and the volume magnetic susceptibility of each of a plurality of types of reference yeasts.
  • the storage unit 41 described with reference to FIG. 1 stores data corresponding to the graph 60 as the reference data 43. Specifically, the storage unit 41 stores data indicating the equation of the graph 60 as the reference data 43. Alternatively, the storage unit 41 stores data indicating a table corresponding to the graph 60 as the reference data 43.
  • the graph 60 may include a first graph 61 indicated by an alternate long and short dash line, a second graph 62 indicated by an alternate long and short line, and a third graph 63 indicated by a solid line.
  • the first graph 61 shows the relationship between the standard particle size and volume magnetic susceptibility of beer top surface fermentation yeast
  • the second graph 62 shows the relationship between the standard particle size and volume magnetic susceptibility of soy sauce yeast
  • the third graph 63 shows the relationship between the standard particle size and volume magnetic susceptibility of the standard strain.
  • the reference data 43 includes first data corresponding to the first graph 61, second data corresponding to the second graph 62, and third data corresponding to the third graph 63.
  • the first data is data indicating a formula of the first graph 61 or a table corresponding to the first graph 61
  • the second data is a formula corresponding to the formula of the second graph 62 or the second graph 62
  • the third data is data representing a formula of the third graph 63 or a table corresponding to the third graph 63.
  • the beer top surface fermenting yeast, the soy sauce yeast, and the standard strain each have different volume magnetic susceptibility. Therefore, the processing unit 42 refers to the first data corresponding to the first graph 61, the second data corresponding to the second graph 62, and the third data corresponding to the third graph 63. It can be analyzed whether it is a beer top fermentation yeast, a soy sauce yeast or a standard strain.
  • the processing unit 42 refers to the reference data 43 and, for each type of reference particulate matter, the volume magnetization of the reference particulate matter having the same particle size as the particle size of the particulate matter p to be analyzed. Determine the rate.
  • the volume magnetic susceptibility of the reference particulate matter having the same particle diameter as the particle diameter of the particulate matter p to be analyzed may be referred to as “reference volume magnetic susceptibility”.
  • the processing unit 42 determines the reference volume magnetic susceptibility closest to the volume magnetic susceptibility of the particulate matter p to be analyzed among the reference volume magnetic susceptibility.
  • the processing unit 42 analyzes the type of the particulate matter p to be analyzed based on the result of the determination.
  • the reference data 43 may indicate the range of volume magnetic susceptibility for each particle diameter.
  • the processing unit 42 refers to the reference data 43 to determine, for each type of reference particulate matter, the volume magnetic susceptibility of the reference particulate matter having the same particle size as the particle size of the particulate matter p to be analyzed. Determine the range.
  • the range of the volume magnetic susceptibility of the reference particulate matter having the same particle diameter as the particle diameter of the particulate matter p to be analyzed may be referred to as “the range of the reference volume susceptibility”.
  • the processing unit 42 determines, from the range of the reference volume magnetic susceptibility, the range of the reference volume magnetic susceptibility including the value of the volume magnetic susceptibility of the particulate matter p to be analyzed.
  • the reference data 43 may indicate the range of the volume magnetic susceptibility and the median value of the volume magnetic susceptibility for each particle diameter.
  • the processing unit 42 refers to the reference data 43 to determine, for each type of reference particulate matter, the volume magnetic susceptibility of the reference particulate matter having the same particle size as the particle size of the particulate matter p to be analyzed. Determine the range (range of reference volume susceptibility) and the median. The processing unit 42 determines, from the range of the reference volume magnetic susceptibility, the range of the reference volume magnetic susceptibility including the value of the volume magnetic susceptibility of the particulate matter p to be analyzed.
  • the processing unit 42 calculates the volume susceptibility of the particulate matter p to be analyzed from the median. Determine the closest median.
  • the reference data 43 may indicate an average value instead of the median value.
  • FIG. 6 is a flowchart showing the analysis method of the present embodiment.
  • the analysis method of the present embodiment can be carried out using the analysis device 10 described with reference to FIGS.
  • a particulate organism p (analytical target) to be magnetically electrophoresed is observed (step S1).
  • the magnetic migration velocity and particle diameter of the particulate organism p are measured from the observation result (step S2).
  • the volume magnetic susceptibility of the particulate organism p is measured based on the measured magnetophoretic measurement and the particle diameter (step S3).
  • the type of particulate organism p is analyzed by comparing the particle size and volume magnetic susceptibility of particulate organism p with reference data 43 (step S4).
  • the magnetic field generating unit 20 causes the particulate organism p in the cell 21 to undergo magnetic migration
  • the observation unit 30 causes the particulate organism p in the magnetic migration to occur.
  • the processing unit 42 measures the particle diameter and volume magnetic susceptibility of the particulate organism p from the result of observation by the observation unit 30.
  • the processing unit 42 compares the particle size and volume magnetic susceptibility of the particulate organism p with the reference data 43 stored in the storage unit 41.
  • the reference data 43 indicates the relationship between the standard particle size and volume magnetic susceptibility of each of a plurality of types of particulate matter, as described above.
  • the quality of the particulate matter p can be evaluated. Specifically, the type of particulate organism p can be analyzed. Moreover, according to Embodiment 1, the particle size and volume magnetic susceptibility of the particulate organism p can be measured by observing the particulate organism p during magnetophoresis. Therefore, the type of particulate matter p can be analyzed in the living state. Therefore, it becomes possible to utilize the particulate matter p after evaluation for the next study.
  • the particulate-form organism p is not limited to yeast.
  • the particulate organism p may, for example, be a cell.
  • the particulate organism p is a cell, for example, it can be analyzed whether the particulate organism p is an iPS cell or an ES cell.
  • Particulate organisms p may also be, for example, fungi.
  • analysis of the type of fungi will be described with reference to FIGS. 7 and 8.
  • the reference data 43 described with reference to FIG. 1 shows the relationship between the standard particle size and the volume magnetic susceptibility of each of a plurality of types of fungi.
  • FIG. 7 is a diagram showing an example of the measurement results of the particle size and volume magnetic susceptibility of each of three types of fungi (analytical target).
  • the horizontal axis indicates particle diameter
  • the vertical axis indicates volume magnetic susceptibility.
  • black triangles indicate the measurement results of particle diameter and volume magnetic susceptibility of Staphylococcus aureus (Staphylococcus aureus ATCC 12600)
  • squares indicate measurement results of particle diameter and volume magnetic susceptibility of lactic acid bacteria (Lactobacillus delbrueckii subsp. Bulgaricus)
  • the white triangles indicate the measurement results of particle size and volume magnetic susceptibility of beer top fermentation yeast (Saccharomyces cerevisiae (American Ale)).
  • the volume magnetic susceptibility of fungi varies depending on the type of fungi.
  • the type of fungus can be analyzed based on the volume susceptibility of the fungus.
  • the particulate organism p is any of Staphylococcus aureus (Staphylococcus aureus ATCC 12600), lactic acid bacteria (Lactobacillus delbrueckii subsp. Bulgaricus), and beer top fermented yeast (Saccharomyces cerevisiae (American Ale)) A case will be described as an example.
  • FIG. 8 is a diagram illustrating another example of the reference data 43 according to the first embodiment. Specifically, the relationship between the standard particle size and volume magnetic susceptibility of three kinds of fungi (S. aureus, lactic acid bacteria and beer top fermented yeast) is shown. In the following description, a fungus (reference particulate organism) showing a relationship between a standard particle size and a volume magnetic susceptibility may be described as a "reference fungus”.
  • the horizontal axis represents particle diameter
  • the vertical axis represents volume magnetic susceptibility
  • the graph 70 shows the relationship between the particle size and the volume magnetic susceptibility of each of a plurality of types of reference fungi.
  • the storage unit 41 described with reference to FIG. 1 stores data corresponding to the graph 70 as the reference data 43.
  • the storage unit 41 stores, as the reference data 43, data indicating an expression of the graph 70 or data indicating a table corresponding to the graph 70.
  • the graph 70 may include a fourth graph 71 indicated by an alternate long and short dash line, a fifth graph 72 indicated by an alternate long and short dash line, and a sixth graph 73 indicated by a solid line.
  • the fourth graph 71 shows the relationship between the standard particle diameter and volume magnetic susceptibility of Staphylococcus aureus
  • the fifth graph 72 shows the relationship between the standard particle diameter and volume magnetic susceptibility of lactic acid bacteria
  • the sixth graph 73 shows the relationship between the standard particle size and volume magnetic susceptibility of beer top fermentation yeast.
  • the reference data 43 includes fourth data corresponding to the fourth graph 71, fifth data corresponding to the fifth graph 72, and sixth data corresponding to the sixth graph 73.
  • the fourth data is data indicating a formula of the fourth graph 71 or a table corresponding to the fourth graph 71
  • a fifth data is a formula corresponding to the formula of the fifth graph 72 or the fifth graph 72
  • the sixth data is data representing a formula of the sixth graph 73 or a table corresponding to the sixth graph 73.
  • the processing unit 42 refers to the fourth data corresponding to the fourth graph 71, the fifth data corresponding to the fifth graph 72, and the sixth data corresponding to the sixth graph 73. It can be analyzed whether it is Staphylococcus aureus, lactic acid bacteria, or beer top fermented yeast.
  • Embodiment 2 differs from Embodiment 1 in that the state of particulate matter p to be analyzed is analyzed.
  • the reference data 43 indicates the relationship between the volume magnetic susceptibility and the particle diameter of the reference particulate matter of the same type as that of the particulate matter p to be analyzed, for each state that the reference particulate matter may have.
  • the processing unit 42 analyzes the state of the particulate organism p by comparing the volume magnetic susceptibility and particle diameter of the particulate organism p with the reference data 43.
  • the reference data 43 corresponds to the degree of deterioration of the function of the reference particulate matter.
  • the reference data 43 corresponds to at least a part of each stage in which the function of the reference particulate matter decreases from the living state to the dead state. Therefore, it is possible to analyze to which of the stages in which the function declines from the living state to the dead state to which the particulate matter p belongs.
  • the reference data 43 corresponds to the state in which the reference particulate matter is alive and the state in which the reference particulate matter is dead. In this case, life and death of the particulate matter p can be analyzed.
  • the state in which the particulate matter p is alive, and the state in which the particulate matter p is dead are states in which the function of the particulate matter p decreases from the alive state to the dead state. Two stages are shown.
  • the reference data 43 indicates the relationship between the volume magnetic susceptibility and the particle diameter shown when the same kind of reference particulate matter as the particulate matter p to be analyzed is alive, and the particulate matter p to be analyzed The relationship between the volume magnetic susceptibility and the particle size shown when the same kind of reference particulate matter is dead is shown.
  • the processing unit 42 analyzes whether the particulate organism p is alive or dead by comparing the volume magnetic susceptibility and particle diameter of the particulate organism p with the reference data 43.
  • FIG. 9 is a view showing measurement results of the particle size and volume magnetic susceptibility of the particulate organism p. Specifically, the measurement results of the particle size and volume magnetic susceptibility of a standard strain (Saccharomyces cerevisiae NRIC 1560 T (Type strain)) are shown.
  • a standard strain Sacharomyces cerevisiae NRIC 1560 T (Type strain)
  • the horizontal axis indicates particle diameter
  • the vertical axis indicates volume magnetic susceptibility.
  • the white circles indicate the volume magnetic susceptibility of the dead particulate matter p.
  • Black circles indicate the volume magnetic susceptibility of the living particulate matter p.
  • the volume susceptibility of the particulate organism p differs depending on whether the particulate organism p is alive or dead. Therefore, based on the volume magnetic susceptibility of the particulate matter p, the life and death of the particulate matter p can be analyzed.
  • the present embodiment will be described by way of example in which the particulate organism p is a standard strain (Saccharomyces cerevisiae NRIC 1560 T (Type strain)).
  • the difference in volume magnetic susceptibility reflects the degree of biological activity (enzyme reaction) inside the cell. Also, the difference in volume magnetic susceptibility reflects the change in the substance (component) that constitutes the cell. Specifically, when life activity (function) is reduced or stopped, cell decomposition starts, and as a result, substances (components) constituting the cell are changed. Therefore, according to the present embodiment, by measuring the volume magnetic susceptibility, it is possible to monitor how the function of the particulate organism p declines. Also, it can be analyzed whether the particulate matter p is alive or dead.
  • FIG. 10 is a diagram of an example of reference data 43 according to the second embodiment.
  • the horizontal axis indicates particle diameter
  • the vertical axis indicates volume magnetic susceptibility.
  • the graph 100 shows the relationship between the volume magnetic susceptibility and the particle diameter shown when the reference particulate matter is alive, and the relationship between the volume magnetic susceptibility and the particle diameter when the reference particulate matter is dead. Show.
  • the storage unit 41 illustrated in FIG. 1 stores data corresponding to the graph 100 as the reference data 43. Specifically, the storage unit 41 illustrated in FIG. 1 stores, as the reference data 43, data indicating an expression of the graph 100 or data indicating a table corresponding to the graph 100.
  • the graph 100 includes two types of graphs (seventh graph 101 and eighth graph 102).
  • a seventh graph 101 indicated by a chain line indicates the relationship between volume magnetic susceptibility and particle diameter shown when the reference particulate matter is dead
  • an eighth graph 102 indicated by a solid line indicates that the reference particulate matter is alive.
  • the reference data 43 includes seventh data corresponding to the seventh graph 101 and eighth data corresponding to the eighth graph 102.
  • the seventh data is data indicating a formula of the seventh graph 101 or a table corresponding to the seventh graph 101
  • a eighth data is a formula corresponding to the formula of the eighth graph 102 or the eighth graph 102.
  • the seventh graph 101 shows the relationship between the standard particle diameter and volume magnetic susceptibility of the dead standard strain
  • the eighth graph 102 shows the standard particle diameter of the live standard strain and The relationship with the volume magnetic susceptibility is shown.
  • the processing unit 42 refers to the seventh data corresponding to the seventh graph 101 and the eighth data corresponding to the eighth graph 102 to determine whether the standard strain (particulate organism p) is alive or dead. It can be analyzed.
  • the processing unit 42 refers to the reference data 43 and determines the reference volume magnetic susceptibility closest to the volume magnetic susceptibility of the particulate matter p to be analyzed.
  • the processing unit 42 analyzes the degree of deterioration of the function of the particulate matter p based on the result of this determination.
  • the processing unit 42 analyzes the degree of deterioration of the function of the particulate organism p using the range of the reference volume magnetic susceptibility or the range and the median of the reference volume magnetic susceptibility. You may Alternatively, as described in the first embodiment, the range and the average value of the reference volume magnetic susceptibility may be used to analyze the degree of the decrease in the function of the particulate organism p.
  • FIG. 11 is a flowchart showing an analysis method according to the second embodiment.
  • the analysis method according to the second embodiment can be performed using the analysis device 10 described with reference to FIGS. 1, 9 and 10.
  • step S3 the processing from step S1 to step S3 is the same as the analysis method described with reference to FIG.
  • the volume magnetic susceptibility of the particulate organism p analytical target
  • step S5 the particle size and volume susceptibility of the particulate organism p are compared with the reference data 43.
  • the degree of deterioration of the function of the particulate organism p is analyzed (step S5).
  • the processing unit 42 compares the particle size and volume magnetic susceptibility of the particulate organism p with the reference data 43 stored in the storage unit 41.
  • the reference data 43 corresponds to at least a part of each stage in which the function of the reference particulate matter decreases from the living state to the dead state, as described above.
  • Embodiment 2 As in Embodiment 1, the quality of the particulate organism p can be evaluated. Specifically, the degree of decline in the function of the particulate organism p can be analyzed. Also, after the evaluation, it becomes possible to separate the living particulate matter p and use it for the next study.
  • the particulate-form organism p is not limited to yeast.
  • Particulate organisms p may be cells other than yeast.
  • the particulate organism p may be an animal cell.
  • FIG. 12 is a view showing an example of measurement results of particle diameter and volume magnetic susceptibility of each of three types of animal cells.
  • FIG. 12 shows an example of the measurement results of the particle size and volume magnetic susceptibility of three types of Jurkat cells (acute T cell leukemia of human origin) with different degrees of functional decline.
  • Jurkat cells were cultured using a MES (2-morpholinoethanesulfonic acid) medium at an atmosphere temperature of 37 ° C. under a carbon dioxide concentration of 7% without medium exchange.
  • MES -morpholinoethanesulfonic acid
  • As cells at the start of culture cells obtained by subculturing frozen cells for 3 passages were used.
  • the animal cells are cultured without changing the medium, the cells become hypotrophic and deteriorate over time.
  • the degree of deterioration of the animal cells corresponds to the degree of decline of the function of the animal cells.
  • the horizontal axis indicates particle diameter
  • the vertical axis indicates volume magnetic susceptibility.
  • triangular marks indicate the measurement results of particle diameter and volume magnetic susceptibility of Jurkat cells at the start of culture. Squares indicate the measurement results of particle size and volume magnetic susceptibility of Jurkat cells cultured for 24 hours. The diamond marks indicate the measurement results of particle size and volume magnetic susceptibility of Jurkat cells cultured for 264 hours.
  • the volume susceptibility of Jurkat cells changes according to the culture time.
  • the volume susceptibility of Jurkat cells differs depending on the degree of deterioration of Jurkat cells (the degree of loss of function).
  • the longer the culture time the weaker the diamagnetism of Jurkat cells.
  • the greater the loss of function of Jurkat cells the weaker the diamagnetism. Therefore, based on the volume susceptibility of animal cells, it is possible to analyze the state of the animal cells (the degree of decline in function).
  • Embodiment 3 differs from Embodiments 1 and 2 in that the degree of the ability of the particulate organism p is analyzed as the state of the particulate organism p to be analyzed.
  • the ability of the particulate organism p includes, for example, a bioactive ability (activity), a differentiation ability, or a generation ability of a protein or the like.
  • the reference data 43 indicates the relationship between the volume magnetic susceptibility and the particle diameter of the reference particulate matter of the same type as that of the particulate matter p to be analyzed, for each degree of the ability of the reference particulate matter.
  • the processing unit 42 analyzes the degree of the ability of the particulate organism p by comparing the volume magnetic susceptibility and particle diameter of the particulate organism p with the reference data 43.
  • the present embodiment will be described by way of example in which the activity of the particulate organism p is analyzed.
  • the reference data 43 indicates the relationship between the volume magnetic susceptibility and the particle diameter of the reference particulate matter of the same type as that of the particulate matter p to be analyzed for each activity.
  • FIG. 13 (a) is a view showing the measurement results of the activity of the particulate organism p. Specifically, the measurement results of the activity of a standard strain (Saccharomyces cerevisiae NRIC 1560 T (Type strain)) are shown. Specifically, the measurement results of the degree of activity after 7 hours from the start of culture of the standard strain are shown.
  • a standard strain Sacharomyces cerevisiae NRIC 1560 T (Type strain)
  • Type strain Type strain
  • the horizontal axis indicates the measurement time
  • the vertical axis indicates the activity.
  • the vertical axis shows the absorbance of light at 450 nm.
  • NADPH is a coenzyme produced at the time of synthesis of ATP (adenosine tri-phosphate: adenosine triphosphate), and the larger the amount of NADPH produced, the higher the absorbance. In other words, the larger the amount of synthesized ATP, the higher the absorbance.
  • the amount of ATP synthesized corresponds to the activity of the particulate organism p, and the larger the amount of ATP synthesized, the higher the activity of the particle organism p.
  • the absorbance corresponds to the activity of the particulate organism p. Specifically, the higher the activity of the particulate organism p, the higher the absorbance.
  • FIG. 13 (a) square marks indicate the activity of standard strains cultured in a culture solution containing 5% by weight of sodium chloride (NaCl). Further, triangle marks indicate the activity of standard strains cultured in a culture solution adjusted to pH (hydrogen ion index) of 1.0. On the other hand, the circle indicates the activity of the standard strain cultured without applying stress. As shown in FIG. 13 (a), application of stress lowers the activity (the amount of ATP synthesis) of the particulate organism p.
  • FIG. 13 (b) is a view showing measurement results of particle diameter and volume magnetic susceptibility of the particulate matter p to be analyzed. Specifically, the measurement results of the particle size and volume magnetic susceptibility of a standard strain (Saccharomyces cerevisiae NRIC 1560 T (Type strain)) cultured for 7 hours are shown.
  • a standard strain Sacharomyces cerevisiae NRIC 1560 T (Type strain)
  • the horizontal axis indicates particle diameter
  • the vertical axis indicates volume magnetic susceptibility.
  • square marks indicate volume magnetic susceptibility of standard strains cultured for 7 hours in a culture solution containing 5% by weight of sodium chloride (NaCl).
  • triangle marks indicate volume magnetic susceptibility of standard strains cultured for 7 hours in a culture solution adjusted to pH (hydrogen ion index) of 1.0.
  • the circle indicates the volume susceptibility of a standard strain cultured for 7 hours without applying stress.
  • the volume magnetic susceptibility of the particulate organism p varies depending on the degree of activity. Therefore, based on the particle size and volume magnetic susceptibility of the particulate organism p, the activity of the particulate organism p can be analyzed.
  • the present embodiment will be described by way of example in which the particulate organism p is a standard strain (Saccharomyces cerevisiae NRIC 1560 T (Type strain)).
  • the difference in volume magnetic susceptibility reflects the degree of biological activity inside the cell.
  • the difference in volume magnetic susceptibility reflects the dynamics of the dynamics in the surface layer (surface modifying molecule) of the cell membrane.
  • the dynamics in the surface layer of the cell membrane corresponds to the amount of ATP produced.
  • FIG. 14 is a diagram of an example of the reference data 43 according to the third embodiment.
  • the horizontal axis represents particle diameter
  • the vertical axis represents volume magnetic susceptibility.
  • the graph 130 shows the relationship between the volume magnetic susceptibility and the particle diameter of the reference particulate matter for each activity.
  • the storage unit 41 illustrated in FIG. 1 stores data corresponding to the graph 130 as the reference data 43.
  • the storage unit 41 illustrated in FIG. 1 stores, as the reference data 43, data indicating an expression of the graph 130 or data indicating a table corresponding to the graph 130.
  • the graph 130 may include three types of graphs (a ninth graph 131, a tenth graph 132, and an eleventh graph 133).
  • the reference data 43 includes ninth data corresponding to the ninth graph 131, tenth data corresponding to the tenth graph 132, and eleventh data corresponding to the eleventh graph 133.
  • the ninth data is data indicating a formula of the ninth graph 131 or a table corresponding to the ninth graph 131
  • a tenth data is a formula corresponding to the formula of the tenth graph 132 or the tenth graph 132.
  • the eleventh data is data indicating a formula of the eleventh graph 133 or a table corresponding to the eleventh graph 133.
  • the ninth graph 131 shows the relationship between the standard particle size and volume magnetic susceptibility of a standard strain cultured for 7 hours in a culture solution containing 5% by weight of sodium chloride (NaCl), and the tenth graph 132 shows the relationship between the standard particle size and volume magnetic susceptibility of a standard strain cultured for 7 hours in a culture solution adjusted to pH (hydrogen ion index) of 1.0, and the eleventh graph 133 gives stress The relationship between the standard particle diameter and volume magnetic susceptibility of a standard strain cultured without 7 hours is shown.
  • NaCl sodium chloride
  • the processing unit 42 refers to the ninth data corresponding to the ninth graph 131, the tenth data corresponding to the tenth graph 132, and the tenth data corresponding to the eleventh graph 133, The degree of activity can be analyzed.
  • the processing unit 42 refers to the reference data 43 to determine the reference volume magnetic susceptibility closest to the volume magnetic susceptibility of the particulate matter p.
  • the processing unit 42 analyzes the degree of the ability of the particulate matter p based on the result of this determination.
  • the processing unit 42 analyzes the degree of the ability of the particulate organism p using the range of the reference volume magnetic susceptibility or the range and the median of the reference volume magnetic susceptibility. It is also good.
  • the range and the average value of the reference volume magnetic susceptibility may be used to analyze the degree of the ability of the particulate organism p.
  • FIG. 15 is a flowchart showing an analysis method according to the third embodiment.
  • the analysis method according to the third embodiment can be performed using the analysis device 10 described with reference to FIGS. 1, 13 and 14.
  • step S3 the processing from step S1 to step S3 is the same as the analysis method described with reference to FIG.
  • step S3 when the volume magnetic susceptibility of the particulate organism p (analytical target) is measured (step S3), the particle size and volume magnetic susceptibility of the particulate organism p are compared with the reference data 43.
  • step S6 The degree of ability of the particulate organism p is analyzed (step S6).
  • the processing unit 42 compares the particle size and volume magnetic susceptibility of the particulate organism p with the reference data 43 stored in the storage unit 41.
  • the reference data 43 shows, as already described, the relationship between the volume magnetic susceptibility and the particle diameter of the reference particulate matter of the same type as that of the particulate matter p to be analyzed, for each degree of the ability of the reference particulate matter. .
  • the quality of the particulate organism p can be evaluated. Specifically, the degree of ability of the particulate organism p can be analyzed. In addition, it becomes possible to use the particulate organism p after evaluation for the next study.
  • the degree of ability of yeast was analyzed, but the particulate organism p is not limited to yeast. Particulate organisms p may be cells other than yeast. For example, the particulate organism p may be an animal cell.
  • the degree of the ability of the particulate organism p was analyzed, but based on the degree of the ability of the particulate organism p (eg, physiologically active ability, differentiation ability, or ability to produce proteins etc.) It may be further analyzed whether the rod-like organism p is non-defective (normal) or defective (abnormal). Alternatively, by comparing the particle size and volume magnetic susceptibility of the particulate organism p with the reference data 43, it is analyzed whether the particulate organism p is good or defective as the state of the particulate organism p. Good. For example, it can be analyzed whether the particulate organism p is a normally differentiated iPS cell or a cancerous iPS cell.
  • the magnetic field generation unit 20 includes the pair of permanent magnets 20a and 20b, but the magnetic field generation unit 20 includes a pair of pole pieces (pole pieces) to generate a magnetic field gradient. It is also good.
  • the magnetic field generator 20 may include an electromagnet, a magnetic circuit, or a superconducting magnet to generate a magnetic field gradient.
  • the magnetic field generation unit 20 includes a pair of pole pieces, two pole pieces constituting the pair of pole pieces are arranged with a gap of a predetermined distance, for example, not less than 100 ⁇ m and not more than 500 ⁇ m.
  • the cell 21 is located in the air gap between the two pole pieces.
  • the pole pieces may be, for example, magnetized iron pieces.
  • the iron piece may be magnetized by, for example, a permanent magnet, an electromagnet, a magnetic circuit, or a superconducting magnet.
  • the cell 21 is a capillary tube, but the cell 21 may be a glass cell or a plastic cell.
  • the glass cell and the plastic cell have a recess for holding the medium m containing the particulate matter p.
  • the glass cell and the plastic cell have a flow path through which the medium m containing the particulate matter p flows.
  • the cell 21 is a glass cell or a plastic cell having a microchannel, when a droplet containing the particulate matter p is dropped to one end of the microchannel, the droplet flows in the microchannel by capillary action. .
  • the particle size of the particulate organism p is measured by image analysis, but the Brownian motion of the particulate organism p may be analyzed to measure the particle size of the particulate organism p.
  • the diffusion coefficient is calculated from the dispersion of the change (displacement) of the position of the particulate matter p in the direction (y direction) orthogonal to the axial direction (x direction) of the cell 21 (capillary tube), and this diffusion coefficient
  • the particle size of the particulate organism p can be measured from Specifically, the particulate matter p is affected by the magnetic field gradient in the axial direction (x direction) of the cell 21 (capillary tube), but in the direction (y direction) orthogonal to the axial direction of the cell 21 Hardly receive Therefore, the diffusion coefficient D can be calculated from the dispersion of the displacement of the position of the particulate matter p in the y direction. Specifically, the diffusion coefficient D can be calculated by dividing the square of the moving distance in the y direction of the particulate matter p performing Brownian motion by a time twice as long.
  • the processing unit 42 measures the particle size of the particulate matter p from the diffusion coefficient D based on the following equation (2).
  • d is the particle size of the particulate organism p
  • k is the Boltzmann constant
  • T is the absolute temperature
  • is the viscosity of the medium m.
  • d kT / (3 ⁇ D) (2)
  • the analysis device 10 includes the light source 50.
  • the analysis device 10 may include a laser, or may further include a laser in addition to the light source 50.
  • the analyzer 10 includes the light source 50 and the laser, when emitting light from the light source 50, the emission of the laser beam from the laser is stopped, and when the laser beam is emitted from the laser, the light from the light source 50 Stop the light emission.
  • the particulate matter p introduced into the cell 21 is irradiated with a laser beam.
  • the observation unit 30 observes the particulate matter p by the laser light (scattered light) scattered by the particulate matter p in the cell 21.
  • the imaging unit 34 described with reference to FIG. 3 images the laser light scattered by the particulate organism p through the enlargement unit 32.
  • the capillary tube is preferably a square capillary having a square cross-sectional shape orthogonal to the axial direction.
  • the computing unit 40 measures the particle diameter of the particulate matter p, but the image captured by the imaging unit 34 is displayed on the display, and from the image displayed on the display An analyzer may measure the particle size of the particulate matter p.
  • the image taken by the imaging unit 34 may be printed, and the analyst may measure the particle diameter of the particulate matter p from the printed image.
  • the imaging unit 34 images the particulate matter p at predetermined time intervals to measure the magnetophoretic velocity of the particulate matter p.
  • a laser for example, a laser is used.
  • the magnetic migration velocity of the particulate organism p may be measured based on the Doppler method.
  • the present invention is useful in the fields of medicine, environmental chemistry, food, cosmetics and regenerative medicine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Dispersion Chemistry (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

An analyzing device (10) is provided with a magnetic field generating unit (20), an observation unit (30), a processing unit (42) and a storage unit (41). The magnetic field generating unit (20) generates a magnetic field to cause magnetophoresis of a particulate organism (p) being analyzed. The observation unit (30) observes the particulate organism (p). The processing unit (42) measures the magnetophoretic velocity and the particle size of the particulate organism (p) from observation results obtained by the observation unit (30), and measures the bulk susceptibility of the particulate organism (p) on the basis of the measured magnetophoretic velocity and particle size. The storage unit (41) stores reference data (43) indicating a relationship between the bulk susceptibility and the particle size of a reference particulate organism. Further, the processing unit (42) analyzes the particulate organism (p) by comparing the bulk susceptibility and the particle size of the particulate organism (p) with the reference data (43).

Description

分析装置、及び分析方法Analyzer and analysis method
 本発明は、分析装置、及び分析方法に関する。 The present invention relates to an analyzer and an analysis method.
 酵母や菌類のような粒子状生物は、試験管内又は培養器内で培養されて、様々な研究に用いられる。例えば、培養された粒子状生物は、医薬品の有効性の評価、環境化学物質の毒性試験、食品の機能性評価、及び化粧品の機能性評価に用いられる。また、再生医療分野においても、iPS細胞(induced pluripotent stem cell)やES細胞(embryonic stem cell)のような粒子状生物を用いた研究が行われている。 Particulate organisms such as yeast and fungi are cultured in vitro or in incubators and used for various studies. For example, cultured particulate organisms are used for evaluating the efficacy of pharmaceuticals, toxicity tests of environmental chemicals, food functional evaluation, and cosmetic functional evaluation. Also in the field of regenerative medicine, studies using particulate organisms such as iPS cells (induced pluripotent stem cells) and ES cells (embryonic stem cells) have been conducted.
 粒子状生物の品質は、一般的に、粒子状生物に含まれる遺伝子を解析する方法や、蛍光色素を付与した粒子状生物を観察する方法によって評価される。しかし、これらの方法によって品質を評価した場合、品質評価の対象とした粒子状生物を研究の対象とすることができない。また、再生医療分野では、培養細胞(粒子状生物)が不良品であるか否かの判断を、培養熟練者が自身の「カン」を頼りに行っている。このため、不良品であるか否かの判断に個人差が生じ易い。なお、再生医療分野では、培養細胞の活性化の程度が低い場合や、培養細胞が奇形である場合に、不良品であると判断される。 The quality of the particulate organism is generally evaluated by a method of analyzing a gene contained in the particulate organism or a method of observing the particulate organism to which a fluorescent dye is added. However, when the quality is evaluated by these methods, particulate organisms targeted for quality evaluation can not be targeted for research. Also, in the field of regenerative medicine, culture experts rely on their own “can” to determine whether cultured cells (particulate organisms) are defective. For this reason, it is easy to produce an individual difference in judgment of whether it is inferior goods. In the regenerative medicine field, when the degree of activation of cultured cells is low or when the cultured cells are malformed, it is judged to be a defective product.
 一方、本発明者等は過去に、粒子状生物(例えば血液細胞の一種である赤血球)の体積磁化率(単位体積当たりの磁化率)を用いて、粒子状生物の表面積等の品質(特性)を評価(分析)する装置及び方法を提案した(特許文献1)。 On the other hand, in the past, the present inventors have used the volume magnetic susceptibility (magnetic susceptibility per unit volume) of particulate organisms (for example, red blood cells that are a type of blood cells) to determine the quality (characteristics) such as surface area of particulate organisms. Proposed an apparatus and method for evaluating (analyzing) (Patent Document 1).
国際公開第2015/030184号International Publication No. 2015/030184
 本発明者は、粒子状生物の体積磁化率について更に研究を進めた結果、本発明を完成するに至った。すなわち、本発明の目的は、生きた状態で粒子状生物の品質を評価できるとともに、評価後の粒子状生物を次の研究へ利用することが可能となる分析装置、及び分析方法を提供することにある。 As a result of further studies on the volume magnetic susceptibility of particulate matter, the present inventors have completed the present invention. That is, an object of the present invention is to provide an analysis apparatus and an analysis method which can evaluate the quality of particulate matter in a living state and can use the particulate matter after evaluation for the next research. It is in.
 本発明に係る分析装置は、磁場生成部と、観察部と、処理部と、記憶部とを備える。前記磁場生成部は、磁場を生成して、分析対象の粒子状生物を磁気泳動させる。前記観察部は、前記分析対象の粒子状生物を観察する。前記処理部は、前記観察部の観察結果から前記分析対象の粒子状生物の磁気泳動速度と粒子径とを測定し、前記測定した磁気泳動速度と粒子径とに基づいて、前記分析対象の粒子状生物の体積磁化率を測定する。前記記憶部は、基準粒子状生物の体積磁化率と粒子径との関係を示す基準データを記憶する。前記処理部は、前記分析対象の粒子状生物の体積磁化率及び粒子径を前記基準データと比較することにより、前記分析対象の粒子状生物を分析する。 An analyzer according to the present invention includes a magnetic field generation unit, an observation unit, a processing unit, and a storage unit. The magnetic field generation unit generates a magnetic field to magnetically migrate particulate matter to be analyzed. The observation unit observes the particulate matter to be analyzed. The processing unit measures the magnetic migration velocity and particle diameter of the particulate matter to be analyzed from the observation result of the observation unit, and based on the measured magnetic migration velocity and particle diameter, the particles to be analyzed are Measure the volume susceptibility of the The storage unit stores reference data indicating the relationship between the volume magnetic susceptibility of the reference particulate matter and the particle diameter. The processing unit analyzes the particulate matter to be analyzed by comparing the volume magnetic susceptibility and the particle diameter of the particulate matter to be analyzed with the reference data.
 ある実施形態において、前記基準データは、複数種類の基準粒子状生物のそれぞれの体積磁化率と粒子径との関係を示し、前記処理部は、前記分析対象の粒子状生物の体積磁化率及び粒子径を前記基準データと比較することにより、前記分析対象の粒子状生物の種類を分析する。 In one embodiment, the reference data indicates a relationship between volume magnetic susceptibility and particle diameter of each of a plurality of types of reference particulate matter, and the processing unit is configured to determine the volume susceptibility and particles of the particulate matter to be analyzed. The type of particulate matter to be analyzed is analyzed by comparing the diameter with the reference data.
 ある実施形態において、前記基準データは、前記分析対象の粒子状生物と同じ種類の基準粒子状生物の体積磁化率と粒子径との関係を、前記基準粒子状生物が有し得る状態ごとに示し、前記処理部は、前記分析対象の粒子状生物の体積磁化率及び粒子径を前記基準データと比較することにより、前記分析対象の粒子状生物の状態を分析する。 In one embodiment, the reference data indicates, for each state that the reference particulate matter can have, the relationship between the volume magnetic susceptibility and the particle diameter of the reference particulate matter of the same type as the particulate matter to be analyzed. The processing unit analyzes the state of the particulate matter to be analyzed by comparing the volume magnetic susceptibility and the particle diameter of the particulate matter to be analyzed with the reference data.
 ある実施形態において、前記基準粒子状生物が有し得る状態は、前記基準粒子状生物が示し得る機能に対応する。 In one embodiment, the state that the reference particulate matter can have corresponds to the function that the reference particulate matter can exhibit.
 ある実施形態において、前記基準粒子状生物が有し得る状態は、前記基準粒子状生物が生きている状態から死んでいる状態へ向かって機能が低下していく各段階のうちの少なくとも一部に対応する。 In one embodiment, the state that the reference particulate matter can possess is at least a part of each stage in which the function declines from the alive state to the dead state of the reference particulate matter. It corresponds.
 ある実施形態において、前記基準粒子状生物が有し得る状態は、前記基準粒子状生物が生きている状態と、前記基準粒子状生物が死んでいる状態とに対応する。 In one embodiment, the state that the reference particulate matter can have corresponds to the state in which the reference particulate matter is alive and the state in which the reference particulate matter is dead.
 ある実施形態において、前記基準粒子状生物が有し得る状態は、前記基準粒子状生物の活性度に対応する。 In one embodiment, the state that the reference particulate matter may have corresponds to the activity of the reference particulate matter.
 ある実施形態において、前記活性度は、アデノシン三リン酸の生成量に対応する。 In one embodiment, the activity corresponds to the amount of adenosine triphosphate produced.
 ある実施形態において、前記分析対象の粒子状生物は、酵母、菌類、又は細胞である。 In one embodiment, the particulate organism to be analyzed is a yeast, a fungus or a cell.
 本発明に係る粒子分析方法は、磁気泳動する分析対象の粒子状生物を観察するステップと、観察結果から前記分析対象の粒子状生物の磁気泳動速度と粒子径とを測定するステップと、前記測定した磁気泳動速度と粒子径とに基づいて、前記分析対象の粒子状生物の体積磁化率を測定するステップと、前記分析対象の粒子状生物の体積磁化率及び粒子径を基準データと比較することにより、前記分析対象の粒子状生物を分析する分析ステップとを包含し、前記基準データは、基準粒子状生物の体積磁化率と粒子径との関係を示す。 The particle analysis method according to the present invention comprises the steps of observing particulate matter to be analyzed which is to be subjected to magnetophoresis, measuring the magnetic migration velocity and particle diameter of the particulate matter to be analyzed from observation results, and Measuring the volume magnetic susceptibility of the particulate matter to be analyzed based on the determined magnetic migration velocity and the particle size, and comparing the volume susceptibility and particle size of the particulate matter to be analyzed with reference data And the analysis step of analyzing the particulate matter to be analyzed, wherein the reference data indicates the relationship between the volume magnetic susceptibility of the reference particulate matter and the particle size.
 ある実施形態において、前記基準データは、複数種類の基準粒子状生物のそれぞれの体積磁化率と粒子径との関係を示し、前記分析ステップにおいて、前記分析対象の粒子状生物の体積磁化率及び粒子径を前記基準データと比較することにより、前記分析対象の粒子状生物の種類を分析する。 In one embodiment, the reference data indicates the relationship between volume magnetic susceptibility and particle diameter of each of a plurality of types of reference particulate matter, and in the analysis step, the volume susceptibility and particles of the particulate matter to be analyzed are determined. The type of particulate matter to be analyzed is analyzed by comparing the diameter with the reference data.
 ある実施形態において、前記基準データは、前記分析対象の粒子状生物と同じ種類の基準粒子状生物の体積磁化率と粒子径との関係を、前記基準粒子状生物が有し得る状態ごとに示し、前記分析ステップにおいて、前記分析対象の粒子状生物の体積磁化率及び粒子径を前記基準データと比較することにより、前記分析対象の粒子状生物の状態を分析する。 In one embodiment, the reference data indicates, for each state that the reference particulate matter can have, the relationship between the volume magnetic susceptibility and the particle diameter of the reference particulate matter of the same type as the particulate matter to be analyzed. The analysis step analyzes the state of the particulate organism to be analyzed by comparing the volume magnetic susceptibility and the particle diameter of the particulate organism to be analyzed with the reference data.
 ある実施形態において、前記基準粒子状生物が有し得る状態は、前記基準粒子状生物が示し得る機能に対応する。 In one embodiment, the state that the reference particulate matter can have corresponds to the function that the reference particulate matter can exhibit.
 ある実施形態において、前記基準粒子状生物が有し得る状態は、前記基準粒子状生物が生きている状態から死んでいる状態へ向かって機能が低下していく各段階のうちの少なくとも一部に対応する。 In one embodiment, the state that the reference particulate matter can possess is at least a part of each stage in which the function declines from the alive state to the dead state of the reference particulate matter. It corresponds.
 ある実施形態において、前記基準粒子状生物が有し得る状態は、前記基準粒子状生物が生きている状態と、前記基準粒子状生物が死んでいる状態とに対応する。 In one embodiment, the state that the reference particulate matter can have corresponds to the state in which the reference particulate matter is alive and the state in which the reference particulate matter is dead.
 ある実施形態において、前記基準粒子状生物が有し得る状態は、前記基準粒子状生物の活性度に対応する。 In one embodiment, the state that the reference particulate matter may have corresponds to the activity of the reference particulate matter.
 ある実施形態において、前記活性度は、アデノシン三リン酸の生成量に対応する。 In one embodiment, the activity corresponds to the amount of adenosine triphosphate produced.
 ある実施形態において、前記分析対象の粒子状生物は、酵母、菌類、又は細胞である。 In one embodiment, the particulate organism to be analyzed is a yeast, a fungus or a cell.
 本発明によれば、生きた状態で粒子状生物の品質を評価できるとともに、評価後の粒子状生物を次の研究へ利用することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, while being able to evaluate the quality of particulate matter in a living state, it becomes possible to utilize the particulate matter after evaluation to the next research.
本発明の実施形態1に係る分析装置の模式図である。It is a schematic diagram of the analyzer which concerns on Embodiment 1 of this invention. (a)及び(b)は本発明の実施形態1に係る粒子状生物の動きを示す図である。(A) And (b) is a figure which shows the movement of the particulate-form thing which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る分析装置の構成を示す図である。It is a figure which shows the structure of the analyzer which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る3種類の酵母のそれぞれの粒子径及び体積磁化率の測定結果の一例を示す図である。It is a figure which shows an example of the measurement result of each particle diameter of three types of yeast which concerns on Embodiment 1 of this invention, and a volume magnetic susceptibility. 本発明の実施形態1に係る基準データの一例を示す図である。It is a figure which shows an example of the reference data which concern on Embodiment 1 of this invention. 本発明の実施形態1に係る分析方法を示すフローチャートである。It is a flowchart which shows the analysis method which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る3種類の菌類のそれぞれの粒子径及び体積磁化率の測定結果の一例を示す図である。It is a figure which shows an example of the measurement result of each particle diameter of three types of fungi which concern on Embodiment 1 of this invention, and a volume magnetic susceptibility. 本発明の実施形態1に係る基準データの他例を示す図である。It is a figure which shows the other example of the reference data which concern on Embodiment 1 of this invention. 本発明の実施形態2に係る分析対象の粒子状生物の粒子径及び体積磁化率の測定結果を示す図である。It is a figure which shows the measurement result of the particle diameter of the particulate-form object of analysis object which concerns on Embodiment 2 of this invention, and volume magnetic susceptibility. 本発明の実施形態2に係る基準データの一例を示す図である。It is a figure which shows an example of the reference data which concern on Embodiment 2 of this invention. 本発明の実施形態2に係る分析方法を示すフローチャートである。It is a flowchart which shows the analysis method which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る3種類の動物細胞のそれぞれの粒子径及び体積磁化率の測定結果の一例を示す図である。It is a figure which shows an example of the measurement result of each particle diameter of three types of animal cells which concern on Embodiment 2 of this invention, and a volume magnetic susceptibility. (a)は、本発明の実施形態3に係る分析対象の粒子状生物の活性度の測定結果を示す図であり、(b)は、本発明の実施形態3に係る分析対象の粒子状生物の粒子径及び体積磁化率の測定結果を示す図である。(A) is a figure which shows the measurement result of the activity of the particulate-form object of analysis object which concerns on Embodiment 3 of this invention, (b) is a particulate-form object of analysis object which concerns on Embodiment 3 of this invention It is a figure which shows the measurement result of the particle diameter of this, and volume magnetic susceptibility. 本発明の実施形態3に係る基準データの一例を示す図である。It is a figure which shows an example of the reference data which concern on Embodiment 3 of this invention. 本発明の実施形態3に係る分析方法を示すフローチャートである。It is a flowchart which shows the analysis method which concerns on Embodiment 3 of this invention.
 以下、図面を参照して本発明の実施形態を説明する。ただし、本発明は以下の実施形態に限定されない。図中、同一又は相当部分については同一の参照符号を付して説明を繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments. In the drawings, the same or corresponding portions are denoted by the same reference characters and description thereof will not be repeated.
[実施形態1]
 図1は、本実施形態の分析装置10の模式図である。本実施形態の分析装置10は、分析対象である粒子状生物pの種類を分析する。例えば、分析装置10は、酵母の種類、菌類の種類、及び細胞の種類を分析する。以下、酵母の種類を分析する場合を例に、本実施形態を説明する。分析装置10は、磁場生成部20と、観察部30と、演算部40とを備える。磁場生成部20の近傍にセル21が配置される。
Embodiment 1
FIG. 1 is a schematic view of an analyzer 10 of the present embodiment. The analyzer 10 of the present embodiment analyzes the type of particulate matter p to be analyzed. For example, the analyzer 10 analyzes the type of yeast, the type of fungus, and the type of cell. Hereinafter, the present embodiment will be described with an example of analyzing the type of yeast. The analyzer 10 includes a magnetic field generation unit 20, an observation unit 30, and a calculation unit 40. The cell 21 is disposed in the vicinity of the magnetic field generation unit 20.
 磁場生成部20は、磁場を生成してセル21内の粒子状生物pを磁気泳動させる。観察部30は、セル21内の粒子状生物pを観察する。演算部40は、観察部30による観察の結果から、粒子状生物pの粒子径及び磁気泳動速度を測定(算出)する。また、演算部40は、粒子状生物pの粒子径及び磁気泳動速度に基づいて、粒子状生物pの体積磁化率を測定(算出)する。そして、演算部40は、粒子状生物pの粒子径及び体積磁化率に基づいて、粒子状生物pの種類を分析する。以下、分析装置10について更に詳細に説明する。 The magnetic field generation unit 20 generates a magnetic field to magnetically migrate the particulate matter p in the cell 21. The observation unit 30 observes the particulate matter p in the cell 21. The calculation unit 40 measures (calculates) the particle diameter and the magnetic migration velocity of the particulate matter p from the result of observation by the observation unit 30. In addition, the computing unit 40 measures (calculates) the volume magnetic susceptibility of the particulate organism p based on the particle diameter of the particulate organism p and the magnetic migration velocity. Then, the computing unit 40 analyzes the type of the particulate organism p based on the particle size and volume magnetic susceptibility of the particulate organism p. Hereinafter, the analyzer 10 will be described in more detail.
 磁場生成部20は、磁場勾配(磁束密度の勾配)を生成して、セル21内の粒子状生物pに磁気力を作用させる。この結果、粒子状生物pが磁気泳動する。本実施形態において、磁場生成部20は、磁場勾配を生成する一対の永久磁石を備える。一対の永久磁石を構成する2つの永久磁石は、例えば100μm以上500μm以下の一定距離の空隙を空けて配置される。セル21は、2つの永久磁石の間の空隙に配置される。 The magnetic field generation unit 20 generates a magnetic field gradient (gradient of magnetic flux density) to exert magnetic force on the particulate matter p in the cell 21. As a result, the particulate organism p magnetically migrates. In the present embodiment, the magnetic field generation unit 20 includes a pair of permanent magnets that generate a magnetic field gradient. The two permanent magnets constituting the pair of permanent magnets are disposed, for example, with a gap of a fixed distance of 100 μm or more and 500 μm or less. The cell 21 is disposed in the air gap between the two permanent magnets.
 本実施形態において、セル21はキャピラリー管である。キャピラリー管は管状部材の一例である。セル21の材質は、可視光あるいはレーザー光を透過し得る材質であれば特に限定されない。例えば、セル21は、ガラス製あるいはプラスチック製であり得る。 In the present embodiment, the cell 21 is a capillary tube. The capillary tube is an example of a tubular member. The material of the cell 21 is not particularly limited as long as the material can transmit visible light or laser light. For example, the cell 21 may be made of glass or plastic.
 粒子状生物pは、媒体m中に存在する。媒体m中に1つの粒子状生物pが存在してもよいし、媒体m中に複数の粒子状生物pが存在してもよい。媒体m中に複数の粒子状生物pが存在する場合、複数の粒子状生物pは、媒体m中で分散していてもよいし、媒体m中で偏在していてもよい。媒体mは、典型的には、培養液である。 Particulate organisms p are present in the medium m. One particulate organism p may be present in the medium m, or a plurality of particulate organisms p may be present in the medium m. When a plurality of particulate organisms p exist in the medium m, the plurality of particulate organisms p may be dispersed in the medium m or may be localized in the medium m. The medium m is typically a culture solution.
 粒子状生物pは、例えばマイクロシリンジ、マイクロポンプ、又はオートサンプラーにより、媒体mと共にセル21に導入される。あるいは、粒子状生物pは、サイフォンの原理に基づいて、媒体mと共にセル21に導入され得る。あるいは、粒子状生物pを含む液滴を毛細管現象によってセル21(キャピラリー管)に導入してもよい。粒子状生物pを含む液滴がキャピラリー管の一方端に滴下されると、毛細管現象によって液滴がキャピラリー管を流れる。 Particulate organisms p are introduced into the cell 21 together with the medium m, for example by means of a microsyringe, a micropump or an autosampler. Alternatively, the particulate organism p can be introduced into the cell 21 together with the medium m on the basis of the principle of siphon. Alternatively, a droplet containing the particulate organism p may be introduced into the cell 21 (capillary tube) by capillary action. When a droplet containing particulate matter p is dropped on one end of the capillary tube, the capillary flow causes the droplet to flow in the capillary tube.
 粒子状生物pの体積磁化率は、粒子状生物pの種類によって異なる。体積磁化率の差異は、粒子状生物pの表層部(細胞壁又は細胞膜)及び内部の組成に由来する。詳しくは、媒体mに対する親和性が細胞壁又は細胞膜の組成によって異なること、及び細胞内部の構成が異なることにより、粒子状生物pの種類に応じて、粒子状生物pの体積磁化率が相違する。 The volume susceptibility of the particulate organism p varies depending on the type of particulate organism p. The difference in volume magnetic susceptibility is derived from the composition of the surface part (cell wall or cell membrane) and the inside of the particulate organism p. Specifically, due to the fact that the affinity to the medium m differs depending on the composition of the cell wall or cell membrane and the constitution inside the cell, the volume magnetic susceptibility of the particulate organism p differs depending on the type of the particulate organism p.
 観察部30は、セル21内の粒子状生物pを観察して、観察結果を示す信号を生成する。演算部40は、観察部30が生成する信号に基づいて、粒子状生物pの粒子径及び磁気泳動速度を測定(算出)する。演算部40は、記憶部41と、処理部42とを備える。 The observation unit 30 observes the particulate matter p in the cell 21 and generates a signal indicating the observation result. The calculation unit 40 measures (calculates) the particle diameter and the magnetic migration velocity of the particulate organism p based on the signal generated by the observation unit 30. The calculation unit 40 includes a storage unit 41 and a processing unit 42.
 記憶部41は、プログラム及び設定情報などを記憶する。記憶部41は、例えば、ストレージデバイス及び半導体メモリーによって構成され得る。ストレージデバイスは、例えば、HDD(Hard Disk Drive)である。記憶部41は、半導体メモリーとして、例えば、RAM(Random Access Memory)及びROM(Read Only Memory)を有し得る。処理部42は、記憶部41に記憶されたプログラムを実行することによって、数値計算や情報処理、機器制御のような様々な処理を行う。処理部42は、例えばCPU(Central Processing Unit)のようなプロセッサーによって構成される。演算部40として、例えばパーソナルコンピューターのような汎用コンピューターが用いられる。 The storage unit 41 stores a program, setting information, and the like. The storage unit 41 may be configured by, for example, a storage device and a semiconductor memory. The storage device is, for example, an HDD (Hard Disk Drive). The storage unit 41 may have, for example, a random access memory (RAM) and a read only memory (ROM) as a semiconductor memory. The processing unit 42 executes various programs such as numerical calculation, information processing, and device control by executing a program stored in the storage unit 41. The processing unit 42 is configured of, for example, a processor such as a CPU (Central Processing Unit). For example, a general-purpose computer such as a personal computer is used as the calculation unit 40.
 処理部42は、観察部30の観察結果から、セル21内における粒子状生物pの位置の時間的な変化を分析する。例えば、処理部42は、所定の時間間隔ごとに、セル21内における粒子状生物pの位置を測定する。換言すると、異なる時刻の粒子状生物pの位置を測定する。処理部42は、粒子状生物pの位置の時間的な変化から、粒子状生物pの磁気泳動速度を測定する。 The processing unit 42 analyzes the temporal change of the position of the particulate matter p in the cell 21 from the observation result of the observation unit 30. For example, the processing unit 42 measures the position of the particulate matter p in the cell 21 at predetermined time intervals. In other words, the positions of the particulate matter p at different times are measured. The processing unit 42 measures the magnetic migration velocity of the particulate organism p from the temporal change of the position of the particulate organism p.
 また、処理部42は、観察部30が生成する信号から、粒子状生物pの粒子径を測定する。処理部42は、更に、粒子状生物pの粒子径及び磁気泳動速度に基づいて、粒子状生物pの体積磁化率を測定する。 Further, the processing unit 42 measures the particle diameter of the particulate organism p from the signal generated by the observation unit 30. The processing unit 42 further measures the volume magnetic susceptibility of the particulate organism p based on the particle size and the magnetic migration velocity of the particulate organism p.
 例えば、処理部42は、以下の式(1)に基づいて、粒子状生物pの体積磁化率を算出する。
  v={2(χs-χm)r2/9ημo}B(dB/dx)・・・(1)
For example, the processing unit 42 calculates the volume magnetic susceptibility of the particulate matter p based on the following formula (1).
v = {2 (χs−χm) r 2 / 9ημ o } B (dB / dx) (1)
 式(1)において、vは粒子状生物pの磁気泳動速度であり、χsは粒子状生物pの体積磁化率であり、χmは媒体mの体積磁化率であり、rは粒子状生物pの半径であり、ηは媒体mの粘性率であり、μoは真空の透磁率であり、Bは磁束密度であり、dB/dxは磁場勾配(磁束密度の勾配)である。なお、式(1)は、セル21(キャピラリー管)の軸方向(x方向)において粒子状生物p及び媒体mが受ける磁気力の差と、粘性抵抗力とがほぼ等しいことから導かれる。 In equation (1), v is the magnetic migration velocity of the particulate organism p, χ s is the volume magnetic susceptibility of the particulate organism p, χ m is the volume magnetic susceptibility of the medium m, and r is the particulate organism p Is the radius of the medium m, μ o is the permeability of a vacuum, B is the flux density, and dB / dx is the magnetic field gradient (gradient of the magnetic flux density). Equation (1) is derived from the fact that the difference between the magnetic force received by the particulate matter p and the medium m in the axial direction (x direction) of the cell 21 (capillary tube) and the viscous resistance are approximately equal.
 記憶部41は、基準データ43を記憶している。本実施形態において、基準データ43は、複数種類の粒子状生物のそれぞれの標準的な粒子径と体積磁化率との関係を示す。処理部42は、分析対象の粒子状生物pの粒子径及び体積磁化率を基準データ43と比較することにより、分析対象の粒子状生物pの種類を分析する。本実施形態において、基準データ43は、複数種類の酵母のそれぞれの標準的な粒子径と体積磁化率との関係を示す。なお、以下の説明において、標準的な粒子径と体積磁化率との関係を示す粒子状生物を「基準粒子状生物」と記載する場合がある。 The storage unit 41 stores reference data 43. In the present embodiment, the reference data 43 indicates the relationship between the standard particle size and the volume magnetic susceptibility of each of a plurality of types of particulate matter. The processing unit 42 analyzes the type of the particulate organism p to be analyzed by comparing the particle size and the volume magnetic susceptibility of the particulate organism p to be analyzed with the reference data 43. In the present embodiment, the reference data 43 indicates the relationship between the standard particle size and the volume magnetic susceptibility of each of a plurality of types of yeast. In the following description, a particulate organism showing a relationship between a standard particle size and a volume magnetic susceptibility may be described as a "reference particulate organism".
 続いて図2(a)及び図2(b)を参照して、粒子状生物pの動きを説明する。図2(a)及び図2(b)は、粒子状生物pの動きを示す図である。詳しくは、図2(a)及び図2(b)は、粒子状生物p及び媒体mの体積磁化率と粒子状生物pの移動方向との関係を示す。図2(a)及び図2(b)に示すように、磁場生成部20は、磁極がN極の永久磁石20aと、磁極がS極の永久磁石20bとを備える。2つの永久磁石20a、20bは、セル21を挟んで対向する。 Subsequently, the movement of the particulate matter p will be described with reference to FIGS. 2 (a) and 2 (b). Fig.2 (a) and FIG.2 (b) are figures which show the movement of particulate-form organism p. Specifically, FIGS. 2 (a) and 2 (b) show the relationship between the volume magnetic susceptibility of the particulate matter p and the medium m and the moving direction of the particulate matter p. As shown in FIGS. 2A and 2B, the magnetic field generation unit 20 includes a permanent magnet 20a of which the magnetic pole is N and a permanent magnet 20b of which the magnetic pole is S. The two permanent magnets 20 a and 20 b face each other across the cell 21.
 図2(a)に示すように、粒子状生物pの体積磁化率が媒体mの体積磁化率よりも小さい場合、粒子状生物pは磁場(磁場生成部20)から遠ざかる方向に移動する。一方、図2(b)に示すように、粒子状生物pの体積磁化率が媒体mの体積磁化率よりも大きい場合、粒子状生物pは磁場(磁場生成部20)に近づく方向に移動する。 As shown in FIG. 2A, when the volume magnetic susceptibility of the particulate matter p is smaller than that of the medium m, the particulate matter p moves in a direction away from the magnetic field (magnetic field generation unit 20). On the other hand, as shown in FIG. 2B, when the volume magnetic susceptibility of the particulate organism p is larger than that of the medium m, the particulate organism p moves in a direction approaching the magnetic field (magnetic field generation unit 20) .
 図2(a)及び図2(b)に示すように、粒子状生物pの動きは、粒子状生物p及び媒体mの体積磁化率に応じて決定される。なお、粒子状生物pは永久磁石20a、20bの端部の近傍において力を受ける。例えば、粒子状生物pは永久磁石20a、20bの端部の近傍から±200μm程度の範囲で力を受ける。 As shown in FIGS. 2 (a) and 2 (b), the movement of the particulate matter p is determined according to the volume susceptibility of the particulate matter p and the medium m. The particulate matter p receives a force in the vicinity of the end of the permanent magnet 20a, 20b. For example, the particulate matter p receives a force in the range of about ± 200 μm from the vicinity of the end of the permanent magnets 20 a and 20 b.
 続いて図3を参照して、分析装置10について更に説明する。図3は、分析装置10の構成を示す図である。図3に示すように、分析装置10は、光源50を更に備える。また、観察部30は、拡大部32及び撮像部34を備える。 Subsequently, the analyzer 10 will be further described with reference to FIG. FIG. 3 is a diagram showing the configuration of the analyzer 10. As shown in FIG. As shown in FIG. 3, the analyzer 10 further comprises a light source 50. The observation unit 30 also includes a magnifying unit 32 and an imaging unit 34.
 光源50は、可視光成分を含む比較的高い強度の光を出射する。光源50は、セル21に光を照射する。この結果、粒子状生物pに光が照射される。光源50から出射される光の波長スペクトルは比較的ブロードであってもよい。光源50として、例えば、ハロゲンランプが好適に用いられる。 The light source 50 emits light of relatively high intensity including a visible light component. The light source 50 irradiates the cell 21 with light. As a result, light is emitted to the particulate matter p. The wavelength spectrum of the light emitted from the light source 50 may be relatively broad. For example, a halogen lamp is preferably used as the light source 50.
 セル21に導入された粒子状生物pは、拡大部32によって適当な倍率で拡大されて、撮像部34で撮像される。撮像部34の撮像結果(撮像部34が撮像した画像)から、粒子状生物pの位置を特定できる。例えば、拡大部32は対物レンズを含み、撮像部34は電荷結合素子(Charge Coupled Device:CCD)を含む。あるいは、撮像部34の各画素は、フォトダイオード又は光電子倍増管で構成されてもよい。撮像部34は、例えば、所定の時間間隔ごとに粒子状生物pを撮像する。なお、撮像部34は、光源50から出射されてセル21を透過した光を撮像してもよいし、光源50から出射されて粒子状生物pによって散乱された光を撮像してもよい。 The particulate organism p introduced into the cell 21 is magnified by the magnifying unit 32 at an appropriate magnification and imaged by the imaging unit 34. The position of the particulate matter p can be specified from the imaging result of the imaging unit 34 (the image captured by the imaging unit 34). For example, the magnifying unit 32 includes an objective lens, and the imaging unit 34 includes a charge coupled device (CCD). Alternatively, each pixel of the imaging unit 34 may be configured by a photodiode or a photomultiplier. The imaging unit 34 images, for example, the particulate matter p at predetermined time intervals. The imaging unit 34 may image light emitted from the light source 50 and transmitted through the cell 21 or may image light emitted from the light source 50 and scattered by the particulate matter p.
 演算部40(処理部42)は、撮像部34の撮像結果から、粒子状生物pの位置の時間的な変化を分析し、粒子状生物pの位置の時間的な変化から粒子状生物pの磁気泳動速度を測定する。 The calculation unit 40 (processing unit 42) analyzes the temporal change of the position of the particulate matter p from the imaging result of the imaging unit 34, and the temporal change of the position of the particulate matter p from the temporal change of the position of the particulate matter p. Measure the magnetophoretic velocity.
 また、演算部40(処理部42)は、粒子状生物pの撮像結果から粒子状生物pの粒子径を測定する。例えば、演算部40(処理部42)は、以下の処理を実行する。即ち、まず、撮像部34によって撮像された画像をモノクロ化し、その輝度を数値化する。次に、輝度値の微分値をしきい値と比較して粒子状生物pの境界を設定する。次に、設定した境界から粒子状生物pの面積を検出し、その面積に対応する円の半径から粒子径を測定(算出)する。あるいは、粒子状生物pの中心を規定し、粒子状生物pの中心を通過する複数の直線を引き、各直線において粒子状生物pの境界と交わる2つの点の間の距離の平均を算出する。 In addition, the calculation unit 40 (processing unit 42) measures the particle diameter of the particulate matter p from the imaging result of the particulate matter p. For example, the computing unit 40 (processing unit 42) executes the following process. That is, first, the image captured by the imaging unit 34 is converted to monochrome and the luminance thereof is digitized. Next, the boundary of the particulate matter p is set by comparing the derivative of the luminance value with the threshold value. Next, the area of the particulate matter p is detected from the set boundary, and the particle diameter is measured (calculated) from the radius of the circle corresponding to the area. Alternatively, define the center of the particulate organism p, draw a plurality of straight lines passing through the center of the particulate organism p, and calculate the average of the distance between two points intersecting the boundary of the particulate organism p in each straight line .
 続いて図4を参照して、複数種類の粒子状生物pのそれぞれの粒子径及び体積磁化率の測定結果について説明する。図4は、3種類の酵母(分析対象)のそれぞれの粒子径及び体積磁化率の測定結果の一例を示す図である。 Then, with reference to FIG. 4, the measurement result of each particle diameter and volume magnetic susceptibility of several types of particulate matter p is demonstrated. FIG. 4 is a view showing an example of measurement results of particle diameter and volume magnetic susceptibility of each of three types of yeast (analytical target).
 図4において、横軸は粒子径を示し、縦軸は体積磁化率を示す。また、丸印はビール上面発酵酵母(Saccharomyces cerevisiae (American Ale))の粒子径及び体積磁化率の測定結果を示し、三角印は醤油酵母(Zygosaccharomyces rouxii)の粒子径及び体積磁化率の測定結果を示し、四角印は標準株(Saccharomyces cerevisiae NRIC1560T (Type strain))の粒子径及び体積磁化率の測定結果を示す。図4に示すように、粒子状生物pの体積磁化率は、粒子状生物pの種類によって異なる。したがって、粒子状生物pの体積磁化率に基づいて、粒子状生物pの種類を分析することができる。以下、粒子状生物pが、ビール上面発酵酵母(Saccharomyces cerevisiae (American Ale))、醤油酵母(Zygosaccharomyces rouxii)、及び標準株(Saccharomyces cerevisiae NRIC1560T (Type strain))のいずれかである場合を例に、本実施形態を説明する。 In FIG. 4, the horizontal axis represents particle diameter, and the vertical axis represents volume magnetic susceptibility. In addition, the circle marks indicate the measurement results of particle size and volume magnetic susceptibility of beer top fermentation yeast (Saccharomyces cerevisiae (American Ale)), and the triangle marks indicate the measurement results of particle size and volume magnetic susceptibility of soy sauce yeast (Zygosaccharomyces rouxii) The square marks indicate the measurement results of the particle size and volume magnetic susceptibility of a standard strain (Saccharomyces cerevisiae NRIC 1560 T (Type strain)). As shown in FIG. 4, the volume magnetic susceptibility of the particulate matter p varies depending on the type of the particulate matter p. Therefore, the type of particulate organism p can be analyzed based on the volume magnetic susceptibility of the particulate organism p. Hereinafter, the case where the particulate organism p is any of beer top surface fermentation yeast (Saccharomyces cerevisiae (American Ale)), soy sauce yeast (Zygosaccharomyces rouxii), and a standard strain (Saccharomyces cerevisiae NRIC 1560 T (Type strain)) is taken as an example. The present embodiment will be described.
 続いて図5を参照して、基準データ43について説明する。図5は、実施形態1に係る基準データ43の一例を示す図である。詳しくは、3種類の酵母(ビール上面発酵酵母、醤油酵母、及び標準株)の標準的な粒子径と体積磁化率との関係を示す。なお、以下の説明において、標準的な粒子径と体積磁化率との関係を示す酵母(基準粒子状生物)を「基準酵母」と記載する場合がある。 Subsequently, the reference data 43 will be described with reference to FIG. FIG. 5 is a view showing an example of reference data 43 according to the first embodiment. Specifically, the relationship between the standard particle size and volume magnetic susceptibility of three types of yeast (beer top fermentation yeast, soy sauce yeast, and standard strain) is shown. In the following description, a yeast (a reference particulate organism) showing a relationship between a standard particle diameter and a volume magnetic susceptibility may be described as a "reference yeast".
 図5において、横軸は粒子径を示し、縦軸は体積磁化率を示す。また、グラフ60は、複数種類の基準酵母のそれぞれの粒子径と体積磁化率との関係を示す。図1を参照して説明した記憶部41は、基準データ43として、グラフ60に対応するデータを記憶する。具体的には、記憶部41は、基準データ43として、グラフ60の式を示すデータを記憶する。又は、記憶部41は、基準データ43として、グラフ60に対応するテーブルを示すデータを記憶する。 In FIG. 5, the horizontal axis represents particle diameter, and the vertical axis represents volume magnetic susceptibility. Further, the graph 60 shows the relationship between the particle diameter and the volume magnetic susceptibility of each of a plurality of types of reference yeasts. The storage unit 41 described with reference to FIG. 1 stores data corresponding to the graph 60 as the reference data 43. Specifically, the storage unit 41 stores data indicating the equation of the graph 60 as the reference data 43. Alternatively, the storage unit 41 stores data indicating a table corresponding to the graph 60 as the reference data 43.
 例えば、図5に示すように、グラフ60は、一点鎖線で示す第1グラフ61と、鎖線で示す第2グラフ62と、実線で示す第3グラフ63とを含み得る。本実施形態において、第1グラフ61はビール上面発酵酵母の標準的な粒子径と体積磁化率との関係を示し、第2グラフ62は醤油酵母の標準的な粒子径と体積磁化率との関係を示し、第3グラフ63は標準株の標準的な粒子径と体積磁化率との関係を示す。この場合、基準データ43は、第1グラフ61に対応する第1データと、第2グラフ62に対応する第2データと、第3グラフ63に対応する第3データとを含む。例えば、第1データは、第1グラフ61の式、又は第1グラフ61に対応するテーブルを示すデータであり、第2データは、第2グラフ62の式、又は第2グラフ62に対応するテーブルを示すデータであり、第3データは、第3グラフ63の式、又は第3グラフ63に対応するテーブルを示すデータである。 For example, as shown in FIG. 5, the graph 60 may include a first graph 61 indicated by an alternate long and short dash line, a second graph 62 indicated by an alternate long and short line, and a third graph 63 indicated by a solid line. In the present embodiment, the first graph 61 shows the relationship between the standard particle size and volume magnetic susceptibility of beer top surface fermentation yeast, and the second graph 62 shows the relationship between the standard particle size and volume magnetic susceptibility of soy sauce yeast And the third graph 63 shows the relationship between the standard particle size and volume magnetic susceptibility of the standard strain. In this case, the reference data 43 includes first data corresponding to the first graph 61, second data corresponding to the second graph 62, and third data corresponding to the third graph 63. For example, the first data is data indicating a formula of the first graph 61 or a table corresponding to the first graph 61, and the second data is a formula corresponding to the formula of the second graph 62 or the second graph 62. The third data is data representing a formula of the third graph 63 or a table corresponding to the third graph 63.
 図4を参照して説明したように、ビール上面発酵酵母、醤油酵母、及び標準株はそれぞれ異なる体積磁化率を有する。したがって、処理部42は、第1グラフ61に対応する第1データ、第2グラフ62に対応する第2データ、及び第3グラフ63に対応する第3データを参照して、粒子状生物pが、ビール上面発酵酵母であるのか、醤油酵母であるのか、標準株であるのかを分析することができる。 As described with reference to FIG. 4, the beer top surface fermenting yeast, the soy sauce yeast, and the standard strain each have different volume magnetic susceptibility. Therefore, the processing unit 42 refers to the first data corresponding to the first graph 61, the second data corresponding to the second graph 62, and the third data corresponding to the third graph 63. It can be analyzed whether it is a beer top fermentation yeast, a soy sauce yeast or a standard strain.
 具体的には、処理部42は、基準データ43を参照して、基準粒子状生物の種類ごとに、分析対象の粒子状生物pの粒子径と同じ粒子径を有する基準粒子状生物の体積磁化率を判定する。以下、分析対象の粒子状生物pの粒子径と同じ粒子径を有する基準粒子状生物の体積磁化率を「基準体積磁化率」と記載する場合がある。処理部42は、基準体積磁化率のうちから、分析対象の粒子状生物pの体積磁化率に最も近い基準体積磁化率を判定する。処理部42は、この判定の結果に基づき、分析対象の粒子状生物pの種類を分析する。 Specifically, the processing unit 42 refers to the reference data 43 and, for each type of reference particulate matter, the volume magnetization of the reference particulate matter having the same particle size as the particle size of the particulate matter p to be analyzed. Determine the rate. Hereinafter, the volume magnetic susceptibility of the reference particulate matter having the same particle diameter as the particle diameter of the particulate matter p to be analyzed may be referred to as “reference volume magnetic susceptibility”. The processing unit 42 determines the reference volume magnetic susceptibility closest to the volume magnetic susceptibility of the particulate matter p to be analyzed among the reference volume magnetic susceptibility. The processing unit 42 analyzes the type of the particulate matter p to be analyzed based on the result of the determination.
 なお、基準データ43は、粒子径ごとに体積磁化率の範囲を示してもよい。この場合、処理部42は、基準データ43を参照して、基準粒子状生物の種類ごとに、分析対象の粒子状生物pの粒子径と同じ粒子径を有する基準粒子状生物の体積磁化率の範囲を判定する。以下、分析対象の粒子状生物pの粒子径と同じ粒子径を有する基準粒子状生物の体積磁化率の範囲を「基準体積磁化率の範囲」と記載する場合がある。処理部42は、基準体積磁化率の範囲のうちから、分析対象の粒子状生物pの体積磁化率の値を含む基準体積磁化率の範囲を判定する。 The reference data 43 may indicate the range of volume magnetic susceptibility for each particle diameter. In this case, the processing unit 42 refers to the reference data 43 to determine, for each type of reference particulate matter, the volume magnetic susceptibility of the reference particulate matter having the same particle size as the particle size of the particulate matter p to be analyzed. Determine the range. Hereinafter, the range of the volume magnetic susceptibility of the reference particulate matter having the same particle diameter as the particle diameter of the particulate matter p to be analyzed may be referred to as “the range of the reference volume susceptibility”. The processing unit 42 determines, from the range of the reference volume magnetic susceptibility, the range of the reference volume magnetic susceptibility including the value of the volume magnetic susceptibility of the particulate matter p to be analyzed.
 あるいは、基準データ43は、粒子径ごとに体積磁化率の範囲と体積磁化率の中央値とを示してもよい。この場合、処理部42は、基準データ43を参照して、基準粒子状生物の種類ごとに、分析対象の粒子状生物pの粒子径と同じ粒子径を有する基準粒子状生物の体積磁化率の範囲(基準体積磁化率の範囲)及び中央値を判定する。処理部42は、基準体積磁化率の範囲のうちから、分析対象の粒子状生物pの体積磁化率の値を含む基準体積磁化率の範囲を判定する。複数の基準体積磁化率の範囲が、分析対象の粒子状生物pの体積磁化率の値を含む場合、処理部42は、中央値のうちから、分析対象の粒子状生物pの体積磁化率に最も近い中央値を判定する。なお、基準データ43は、中央値に替えて平均値を示してもよい。 Alternatively, the reference data 43 may indicate the range of the volume magnetic susceptibility and the median value of the volume magnetic susceptibility for each particle diameter. In this case, the processing unit 42 refers to the reference data 43 to determine, for each type of reference particulate matter, the volume magnetic susceptibility of the reference particulate matter having the same particle size as the particle size of the particulate matter p to be analyzed. Determine the range (range of reference volume susceptibility) and the median. The processing unit 42 determines, from the range of the reference volume magnetic susceptibility, the range of the reference volume magnetic susceptibility including the value of the volume magnetic susceptibility of the particulate matter p to be analyzed. When the plurality of reference volume magnetic susceptibility ranges include the value of the volume magnetic susceptibility of the particulate matter p to be analyzed, the processing unit 42 calculates the volume susceptibility of the particulate matter p to be analyzed from the median. Determine the closest median. The reference data 43 may indicate an average value instead of the median value.
 続いて図6を参照して、本実施形態の分析方法について説明する。図6は、本実施形態の分析方法を示すフローチャートである。本実施形態の分析方法は、図1~図5を参照して説明した分析装置10を使用して実行し得る。 Subsequently, the analysis method of the present embodiment will be described with reference to FIG. FIG. 6 is a flowchart showing the analysis method of the present embodiment. The analysis method of the present embodiment can be carried out using the analysis device 10 described with reference to FIGS.
 図6に示すように、まず、磁気泳動する粒子状生物p(分析対象)を観察する(ステップS1)。次に、観察結果から粒子状生物pの磁気泳動速度と粒子径とを測定する(ステップS2)。次に、測定した磁気泳動測及び粒子径に基づいて粒子状生物pの体積磁化率を測定する(ステップS3)。次に、粒子状生物pの粒子径及び体積磁化率を基準データ43と比較することにより、粒子状生物pの種類を分析する(ステップS4)。 As shown in FIG. 6, first, a particulate organism p (analytical target) to be magnetically electrophoresed is observed (step S1). Next, the magnetic migration velocity and particle diameter of the particulate organism p are measured from the observation result (step S2). Next, the volume magnetic susceptibility of the particulate organism p is measured based on the measured magnetophoretic measurement and the particle diameter (step S3). Next, the type of particulate organism p is analyzed by comparing the particle size and volume magnetic susceptibility of particulate organism p with reference data 43 (step S4).
 粒子状生物pの粒子径及び体積磁化率を測定する際には、磁場生成部20がセル21内の粒子状生物pを磁気泳動させ、観察部30が、磁気泳動中の粒子状生物pを観察する。そして、処理部42が、観察部30による観察の結果から、粒子状生物pの粒子径と体積磁化率とを測定する。 When measuring the particle size and volume magnetic susceptibility of the particulate organism p, the magnetic field generating unit 20 causes the particulate organism p in the cell 21 to undergo magnetic migration, and the observation unit 30 causes the particulate organism p in the magnetic migration to occur. Observe. Then, the processing unit 42 measures the particle diameter and volume magnetic susceptibility of the particulate organism p from the result of observation by the observation unit 30.
 粒子状生物pの種類を分析する際には、処理部42が、粒子状生物pの粒子径及び体積磁化率を、記憶部41が記憶する基準データ43と比較する。基準データ43は、既に説明したように、複数種類の粒子状生物のそれぞれの標準的な粒子径と体積磁化率との関係を示す。 When analyzing the type of particulate organism p, the processing unit 42 compares the particle size and volume magnetic susceptibility of the particulate organism p with the reference data 43 stored in the storage unit 41. The reference data 43 indicates the relationship between the standard particle size and volume magnetic susceptibility of each of a plurality of types of particulate matter, as described above.
 以上、実施形態1について説明した。実施形態1によれば、粒子状生物pの品質を評価することができる。具体的には、粒子状生物pの種類を分析することができる。また、実施形態1によれば、磁気泳動中の粒子状生物pを観察することにより、粒子状生物pの粒子径及び体積磁化率を測定することができる。したがって、生きた状態で粒子状生物pの種類を分析できる。したがって、評価後の粒子状生物pを次の研究へ利用することが可能となる。 The first embodiment has been described above. According to Embodiment 1, the quality of the particulate matter p can be evaluated. Specifically, the type of particulate organism p can be analyzed. Moreover, according to Embodiment 1, the particle size and volume magnetic susceptibility of the particulate organism p can be measured by observing the particulate organism p during magnetophoresis. Therefore, the type of particulate matter p can be analyzed in the living state. Therefore, it becomes possible to utilize the particulate matter p after evaluation for the next study.
 なお、本実施形態では酵母の種類を分析したが、粒子状生物pは酵母に限定されない。粒子状生物pは、例えば、細胞であり得る。粒子状生物pが細胞である場合、例えば、粒子状生物pが、iPS細胞であるのか、ES細胞であるのかを分析することができる。また、粒子状生物pは、例えば、菌類であり得る。以下、図7及び図8を参照して、菌類の種類の分析について説明する。菌類の種類を分析する場合、図1を参照して説明した基準データ43は、複数種類の菌類のそれぞれの標準的な粒子径と体積磁化率との関係を示す。 In addition, although the kind of yeast was analyzed in this embodiment, the particulate-form organism p is not limited to yeast. The particulate organism p may, for example, be a cell. When the particulate organism p is a cell, for example, it can be analyzed whether the particulate organism p is an iPS cell or an ES cell. Particulate organisms p may also be, for example, fungi. Hereinafter, analysis of the type of fungi will be described with reference to FIGS. 7 and 8. When analyzing the type of fungi, the reference data 43 described with reference to FIG. 1 shows the relationship between the standard particle size and the volume magnetic susceptibility of each of a plurality of types of fungi.
 図7は、3種類の菌類(分析対象)のそれぞれの粒子径及び体積磁化率の測定結果の一例を示す図である。図7において、横軸は粒子径を示し、縦軸は体積磁化率を示す。また、黒三角印は黄色ブドウ球菌(Staphylococcus aureus ATCC12600)の粒子径及び体積磁化率の測定結果を示し、四角印は乳酸菌(Lactobacillus delbrueckii subsp.bulgaricus)の粒子径及び体積磁化率の測定結果を示し、白三角印はビール上面発酵酵母(Saccharomyces cerevisiae (American Ale))の粒子径及び体積磁化率の測定結果を示す。 FIG. 7 is a diagram showing an example of the measurement results of the particle size and volume magnetic susceptibility of each of three types of fungi (analytical target). In FIG. 7, the horizontal axis indicates particle diameter, and the vertical axis indicates volume magnetic susceptibility. Also, black triangles indicate the measurement results of particle diameter and volume magnetic susceptibility of Staphylococcus aureus (Staphylococcus aureus ATCC 12600), and squares indicate measurement results of particle diameter and volume magnetic susceptibility of lactic acid bacteria (Lactobacillus delbrueckii subsp. Bulgaricus) The white triangles indicate the measurement results of particle size and volume magnetic susceptibility of beer top fermentation yeast (Saccharomyces cerevisiae (American Ale)).
 図7に示すように、菌類の体積磁化率は、菌類の種類によって異なる。したがって、菌類の体積磁化率に基づいて、菌類の種類を分析することができる。以下、菌類の種類の分析について、粒子状生物pが、黄色ブドウ球菌(Staphylococcus aureus ATCC12600)、乳酸菌(Lactobacillus delbrueckii subsp.bulgaricus)、及びビール上面発酵酵母(Saccharomyces cerevisiae (American Ale))のいずれかである場合を例に説明する。 As shown in FIG. 7, the volume magnetic susceptibility of fungi varies depending on the type of fungi. Thus, the type of fungus can be analyzed based on the volume susceptibility of the fungus. In the following, for the analysis of the type of fungi, the particulate organism p is any of Staphylococcus aureus (Staphylococcus aureus ATCC 12600), lactic acid bacteria (Lactobacillus delbrueckii subsp. Bulgaricus), and beer top fermented yeast (Saccharomyces cerevisiae (American Ale)) A case will be described as an example.
 図8は、実施形態1に係る基準データ43の他例を示す図である。詳しくは、3種類の菌類(黄色ブドウ球菌、乳酸菌、及びビール上面発酵酵母)の標準的な粒子径と体積磁化率との関係を示す。なお、以下の説明において、標準的な粒子径と体積磁化率との関係を示す菌類(基準粒子状生物)を「基準菌類」と記載する場合がある。 FIG. 8 is a diagram illustrating another example of the reference data 43 according to the first embodiment. Specifically, the relationship between the standard particle size and volume magnetic susceptibility of three kinds of fungi (S. aureus, lactic acid bacteria and beer top fermented yeast) is shown. In the following description, a fungus (reference particulate organism) showing a relationship between a standard particle size and a volume magnetic susceptibility may be described as a "reference fungus".
 図8において、横軸は粒子径を示し、縦軸は体積磁化率を示す。また、グラフ70は、複数種類の基準菌類のそれぞれの粒子径と体積磁化率との関係を示す。図1を参照して説明した記憶部41は、基準データ43として、グラフ70に対応するデータを記憶する。具体的には、記憶部41は、基準データ43として、グラフ70の式を示すデータ、又はグラフ70に対応するテーブルを示すデータを記憶する。 In FIG. 8, the horizontal axis represents particle diameter, and the vertical axis represents volume magnetic susceptibility. Further, the graph 70 shows the relationship between the particle size and the volume magnetic susceptibility of each of a plurality of types of reference fungi. The storage unit 41 described with reference to FIG. 1 stores data corresponding to the graph 70 as the reference data 43. Specifically, the storage unit 41 stores, as the reference data 43, data indicating an expression of the graph 70 or data indicating a table corresponding to the graph 70.
 例えば、図8に示すように、グラフ70は、一点鎖線で示す第4グラフ71と、鎖線で示す第5グラフ72と、実線で示す第6グラフ73とを含み得る。本実施形態において、第4グラフ71は黄色ブドウ球菌の標準的な粒子径と体積磁化率との関係を示し、第5グラフ72は乳酸菌の標準的な粒子径と体積磁化率との関係を示し、第6グラフ73はビール上面発酵酵母の標準的な粒子径と体積磁化率との関係を示す。この場合、基準データ43は、第4グラフ71に対応する第4データと、第5グラフ72に対応する第5データと、第6グラフ73に対応する第6データとを含む。例えば、第4データは、第4グラフ71の式、又は第4グラフ71に対応するテーブルを示すデータであり、第5データは、第5グラフ72の式、又は第5グラフ72に対応するテーブルを示すデータであり、第6データは、第6グラフ73の式、又は第6グラフ73に対応するテーブルを示すデータである。 For example, as shown in FIG. 8, the graph 70 may include a fourth graph 71 indicated by an alternate long and short dash line, a fifth graph 72 indicated by an alternate long and short dash line, and a sixth graph 73 indicated by a solid line. In the present embodiment, the fourth graph 71 shows the relationship between the standard particle diameter and volume magnetic susceptibility of Staphylococcus aureus, and the fifth graph 72 shows the relationship between the standard particle diameter and volume magnetic susceptibility of lactic acid bacteria. The sixth graph 73 shows the relationship between the standard particle size and volume magnetic susceptibility of beer top fermentation yeast. In this case, the reference data 43 includes fourth data corresponding to the fourth graph 71, fifth data corresponding to the fifth graph 72, and sixth data corresponding to the sixth graph 73. For example, the fourth data is data indicating a formula of the fourth graph 71 or a table corresponding to the fourth graph 71, and a fifth data is a formula corresponding to the formula of the fifth graph 72 or the fifth graph 72. The sixth data is data representing a formula of the sixth graph 73 or a table corresponding to the sixth graph 73.
 図7を参照して説明したように、黄色ブドウ球菌、乳酸菌、及びビール上面発酵酵母はそれぞれ異なる体積磁化率を有する。したがって、処理部42は、第4グラフ71に対応する第4データ、第5グラフ72に対応する第5データ、及び第6グラフ73に対応する第6データを参照して、粒子状生物pが、黄色ブドウ球菌であるのか、乳酸菌であるのか、ビール上面発酵酵母であるのかを分析することができる。 As described with reference to FIG. 7, S. aureus, lactic acid bacteria, and beer top fermented yeast each have different volume magnetic susceptibility. Therefore, the processing unit 42 refers to the fourth data corresponding to the fourth graph 71, the fifth data corresponding to the fifth graph 72, and the sixth data corresponding to the sixth graph 73. It can be analyzed whether it is Staphylococcus aureus, lactic acid bacteria, or beer top fermented yeast.
[実施形態2]
 続いて図1、図9~図11を参照して、本発明の実施形態2について説明する。但し、実施形態1と異なる事項を説明し、実施形態1と同じ事項についての説明は割愛する。実施形態2は、分析対象である粒子状生物pの状態を分析する点で実施形態1と異なる。
Second Embodiment
A second embodiment of the present invention will now be described with reference to FIGS. 1 and 9 to 11. However, items different from the first embodiment will be described, and description of the same items as the first embodiment will be omitted. Embodiment 2 differs from Embodiment 1 in that the state of particulate matter p to be analyzed is analyzed.
 本実施形態において、基準データ43は、分析対象の粒子状生物pと同じ種類の基準粒子状生物の体積磁化率と粒子径との関係を、基準粒子状生物が有し得る状態ごとに示す。処理部42は、粒子状生物pの体積磁化率及び粒子径を基準データ43と比較することにより、粒子状生物pの状態を分析する。 In the present embodiment, the reference data 43 indicates the relationship between the volume magnetic susceptibility and the particle diameter of the reference particulate matter of the same type as that of the particulate matter p to be analyzed, for each state that the reference particulate matter may have. The processing unit 42 analyzes the state of the particulate organism p by comparing the volume magnetic susceptibility and particle diameter of the particulate organism p with the reference data 43.
 詳しくは、本実施形態に係る基準データ43は、基準粒子状生物が有する機能の低下の程度に対応する。具体的には、基準データ43は、生きている状態から死んでいる状態へ向かって基準粒子状生物の機能が低下していく各段階のうちの少なくとも一部に対応する。したがって、生きている状態から死んでいる状態へ向かって機能が低下していく各段階のうちの何れの段階に粒子状生物pが属しているかを分析することができる。例えば、基準データ43は、基準粒子状生物が生きている状態と、基準粒子状生物が死んでいる状態とに対応する。この場合、粒子状生物pの生死を分析することができる。粒子状生物pが生きている状態、及び粒子状生物pが死んでいる状態は、生きている状態から死んでいる状態へ向かって粒子状生物pの機能が低下していく各段階のうちの2つの段階を示す。 Specifically, the reference data 43 according to the present embodiment corresponds to the degree of deterioration of the function of the reference particulate matter. Specifically, the reference data 43 corresponds to at least a part of each stage in which the function of the reference particulate matter decreases from the living state to the dead state. Therefore, it is possible to analyze to which of the stages in which the function declines from the living state to the dead state to which the particulate matter p belongs. For example, the reference data 43 corresponds to the state in which the reference particulate matter is alive and the state in which the reference particulate matter is dead. In this case, life and death of the particulate matter p can be analyzed. The state in which the particulate matter p is alive, and the state in which the particulate matter p is dead are states in which the function of the particulate matter p decreases from the alive state to the dead state. Two stages are shown.
 以下、粒子状生物pの生死を分析する場合を例に、本実施形態を説明する。この場合、基準データ43は、分析対象の粒子状生物pと同じ種類の基準粒子状生物が生きている場合に示す体積磁化率と粒子径との関係、及び、分析対象の粒子状生物pと同じ種類の基準粒子状生物が死んでいる場合に示す体積磁化率と粒子径との関係を示す。処理部42は、粒子状生物pの体積磁化率及び粒子径を基準データ43と比較することにより、粒子状生物pが生きているか死んでいるかを分析する。 Hereinafter, the present embodiment will be described by way of example of analyzing the life and death of the particulate matter p. In this case, the reference data 43 indicates the relationship between the volume magnetic susceptibility and the particle diameter shown when the same kind of reference particulate matter as the particulate matter p to be analyzed is alive, and the particulate matter p to be analyzed The relationship between the volume magnetic susceptibility and the particle size shown when the same kind of reference particulate matter is dead is shown. The processing unit 42 analyzes whether the particulate organism p is alive or dead by comparing the volume magnetic susceptibility and particle diameter of the particulate organism p with the reference data 43.
 図9は、粒子状生物pの粒子径及び体積磁化率の測定結果を示す図である。詳しくは、標準株(Saccharomyces cerevisiae NRIC1560T (Type strain))の粒子径及び体積磁化率の測定結果を示す。 FIG. 9 is a view showing measurement results of the particle size and volume magnetic susceptibility of the particulate organism p. Specifically, the measurement results of the particle size and volume magnetic susceptibility of a standard strain (Saccharomyces cerevisiae NRIC 1560 T (Type strain)) are shown.
 図9において、横軸は粒子径を示し、縦軸は体積磁化率を示す。また、白丸印は、死んでいる粒子状生物pの体積磁化率を示す。黒丸印は、生きている粒子状生物pの体積磁化率を示す。図9に示すように、粒子状生物pの体積磁化率は、粒子状生物pが生きているか死んでいるかによって異なる。したがって、粒子状生物pの体積磁化率に基づいて、粒子状生物pの生死を分析することができる。以下、粒子状生物pが標準株(Saccharomyces cerevisiae NRIC1560T (Type strain))である場合を例に、本実施形態を説明する。 In FIG. 9, the horizontal axis indicates particle diameter, and the vertical axis indicates volume magnetic susceptibility. Also, the white circles indicate the volume magnetic susceptibility of the dead particulate matter p. Black circles indicate the volume magnetic susceptibility of the living particulate matter p. As shown in FIG. 9, the volume susceptibility of the particulate organism p differs depending on whether the particulate organism p is alive or dead. Therefore, based on the volume magnetic susceptibility of the particulate matter p, the life and death of the particulate matter p can be analyzed. Hereinafter, the present embodiment will be described by way of example in which the particulate organism p is a standard strain (Saccharomyces cerevisiae NRIC 1560 T (Type strain)).
 体積磁化率の差異は、細胞内部の生命活動(酵素反応)の程度を反映している。また、体積磁化率の差異は、細胞を構成する物質(成分)の変化を反映している。具体的には、生命活動(機能)が低下又は停止すると、細胞の分解が始まり、その結果、細胞を構成する物質(成分)が変化する。したがって、本実施形態によれば、体積磁化率を測定することにより、粒子状生物pの機能が低下していく様子をモニタリングすることができる。また、粒子状生物pが生きているか死んでいるかを分析することができる。 The difference in volume magnetic susceptibility reflects the degree of biological activity (enzyme reaction) inside the cell. Also, the difference in volume magnetic susceptibility reflects the change in the substance (component) that constitutes the cell. Specifically, when life activity (function) is reduced or stopped, cell decomposition starts, and as a result, substances (components) constituting the cell are changed. Therefore, according to the present embodiment, by measuring the volume magnetic susceptibility, it is possible to monitor how the function of the particulate organism p declines. Also, it can be analyzed whether the particulate matter p is alive or dead.
 続いて図10を参照して、実施形態2に係る基準データ43について説明する。図10は、実施形態2に係る基準データ43の一例を示す図である。図10において、横軸は粒子径を示し、縦軸は体積磁化率を示す。また、グラフ100は、基準粒子状生物が生きている場合に示す体積磁化率と粒子径との関係、及び、基準粒子状生物が死んでいる場合に示す体積磁化率と粒子径との関係を示す。図1に示す記憶部41は、基準データ43として、グラフ100に対応するデータを記憶する。具体的には、図1に示す記憶部41は、基準データ43として、グラフ100の式を示すデータ、又はグラフ100に対応するテーブルを示すデータを記憶する。 Subsequently, reference data 43 according to the second embodiment will be described with reference to FIG. FIG. 10 is a diagram of an example of reference data 43 according to the second embodiment. In FIG. 10, the horizontal axis indicates particle diameter, and the vertical axis indicates volume magnetic susceptibility. Further, the graph 100 shows the relationship between the volume magnetic susceptibility and the particle diameter shown when the reference particulate matter is alive, and the relationship between the volume magnetic susceptibility and the particle diameter when the reference particulate matter is dead. Show. The storage unit 41 illustrated in FIG. 1 stores data corresponding to the graph 100 as the reference data 43. Specifically, the storage unit 41 illustrated in FIG. 1 stores, as the reference data 43, data indicating an expression of the graph 100 or data indicating a table corresponding to the graph 100.
 図10に示すように、グラフ100は、2種類のグラフ(第7グラフ101及び第8グラフ102)を含む。例えば、鎖線で示す第7グラフ101は、基準粒子状生物が死んでいる場合に示す体積磁化率と粒子径との関係を示し、実線で示す第8グラフ102は、基準粒子状生物が生きている場合に示す体積磁化率と粒子径との関係を示す。この場合、基準データ43は、第7グラフ101に対応する第7データと、第8グラフ102に対応する第8データとを含む。例えば、第7データは、第7グラフ101の式、又は第7グラフ101に対応するテーブルを示すデータであり、第8データは、第8グラフ102の式、又は第8グラフ102に対応するテーブルを示すデータである。 As shown in FIG. 10, the graph 100 includes two types of graphs (seventh graph 101 and eighth graph 102). For example, a seventh graph 101 indicated by a chain line indicates the relationship between volume magnetic susceptibility and particle diameter shown when the reference particulate matter is dead, and an eighth graph 102 indicated by a solid line indicates that the reference particulate matter is alive. The relationship between the volume magnetic susceptibility and the particle diameter shown in FIG. In this case, the reference data 43 includes seventh data corresponding to the seventh graph 101 and eighth data corresponding to the eighth graph 102. For example, the seventh data is data indicating a formula of the seventh graph 101 or a table corresponding to the seventh graph 101, and a eighth data is a formula corresponding to the formula of the eighth graph 102 or the eighth graph 102. Is data indicative of
 本実施形態において、第7グラフ101は、死んでいる標準株の標準的な粒子径と体積磁化率との関係を示し、第8グラフ102は、生きている標準株の標準的な粒子径と体積磁化率との関係を示す。 In the present embodiment, the seventh graph 101 shows the relationship between the standard particle diameter and volume magnetic susceptibility of the dead standard strain, and the eighth graph 102 shows the standard particle diameter of the live standard strain and The relationship with the volume magnetic susceptibility is shown.
 図9を参照して説明したように、死んでいる標準株と、生きている標準株とは、互いに異なる体積磁化率を有する。したがって、処理部42は、第7グラフ101に対応する第7データ、及び第8グラフ102に対応する第8データを参照して、標準株(粒子状生物p)が生きているか死んでいるかを分析することができる。 As described with reference to FIG. 9, the dead standard strain and the live standard strain have different volume magnetic susceptibility. Therefore, the processing unit 42 refers to the seventh data corresponding to the seventh graph 101 and the eighth data corresponding to the eighth graph 102 to determine whether the standard strain (particulate organism p) is alive or dead. It can be analyzed.
 例えば、処理部42は、実施形態1と同様に、基準データ43を参照して、分析対象の粒子状生物pの体積磁化率に最も近い基準体積磁化率を判定する。処理部42は、この判定の結果に基づき、粒子状生物pの機能の低下の程度を分析する。なお、処理部42は、実施形態1において説明したように、基準体積磁化率の範囲、又は、基準体積磁化率の範囲及び中央値を用いて、粒子状生物pの機能の低下の程度を分析してもよい。あるいは、実施形態1において説明したように、基準体積磁化率の範囲及び平均値を用いて、粒子状生物pの機能の低下の程度を分析してもよい。 For example, as in the first embodiment, the processing unit 42 refers to the reference data 43 and determines the reference volume magnetic susceptibility closest to the volume magnetic susceptibility of the particulate matter p to be analyzed. The processing unit 42 analyzes the degree of deterioration of the function of the particulate matter p based on the result of this determination. As described in the first embodiment, the processing unit 42 analyzes the degree of deterioration of the function of the particulate organism p using the range of the reference volume magnetic susceptibility or the range and the median of the reference volume magnetic susceptibility. You may Alternatively, as described in the first embodiment, the range and the average value of the reference volume magnetic susceptibility may be used to analyze the degree of the decrease in the function of the particulate organism p.
 続いて図11を参照して、実施形態2に係る分析方法について説明する。図11は、実施形態2に係る分析方法を示すフローチャートである。実施形態2に係る分析方法は、図1、図9、及び図10を参照して説明した分析装置10を使用して実行し得る。 Subsequently, an analysis method according to the second embodiment will be described with reference to FIG. FIG. 11 is a flowchart showing an analysis method according to the second embodiment. The analysis method according to the second embodiment can be performed using the analysis device 10 described with reference to FIGS. 1, 9 and 10.
 図11に示すように、ステップS1~ステップS3までの処理は、図6を参照して説明した分析方法と同様であるため、説明を割愛する。実施形態2に係る分析方法では、粒子状生物p(分析対象)の体積磁化率を測定すると(ステップS3)、粒子状生物pの粒子径及び体積磁化率を基準データ43と比較することにより、粒子状生物pの機能の低下の程度を分析する(ステップS5)。粒子状生物pを分析する際には、処理部42が、粒子状生物pの粒子径及び体積磁化率を、記憶部41が記憶する基準データ43と比較する。基準データ43は、既に説明したように、生きている状態から死んでいる状態へ向かって基準粒子状生物の機能が低下していく各段階のうちの少なくとも一部に対応する。 As shown in FIG. 11, the processing from step S1 to step S3 is the same as the analysis method described with reference to FIG. In the analysis method according to the second embodiment, when the volume magnetic susceptibility of the particulate organism p (analytical target) is measured (step S3), the particle size and volume susceptibility of the particulate organism p are compared with the reference data 43. The degree of deterioration of the function of the particulate organism p is analyzed (step S5). When analyzing the particulate organism p, the processing unit 42 compares the particle size and volume magnetic susceptibility of the particulate organism p with the reference data 43 stored in the storage unit 41. The reference data 43 corresponds to at least a part of each stage in which the function of the reference particulate matter decreases from the living state to the dead state, as described above.
 以上、実施形態2について説明した。実施形態2によれば、実施形態1と同様に、粒子状生物pの品質を評価することができる。具体的には、粒子状生物pの機能の低下の程度を分析することができる。また、評価後に、生きている粒子状生物pを分離して、次の研究へ利用することが可能となる。 The second embodiment has been described above. According to Embodiment 2, as in Embodiment 1, the quality of the particulate organism p can be evaluated. Specifically, the degree of decline in the function of the particulate organism p can be analyzed. Also, after the evaluation, it becomes possible to separate the living particulate matter p and use it for the next study.
 なお、本実施形態では、酵母(標準株)の状態(機能の低下の程度)を分析したが、粒子状生物pは酵母に限定されない。粒子状生物pは、酵母以外の細胞であり得る。例えば、粒子状生物pは、動物細胞であり得る。 In addition, in this embodiment, although the state (the grade of the fall of a function) of yeast (standard stock | strain) was analyzed, the particulate-form organism p is not limited to yeast. Particulate organisms p may be cells other than yeast. For example, the particulate organism p may be an animal cell.
 図12は、3種類の動物細胞のそれぞれの粒子径及び体積磁化率の測定結果の一例を示す図である。詳しくは、図12は、機能の低下の程度が異なる3種類のJurkat細胞(ヒト由来の急性T細胞性白血病)のそれぞれの粒子径及び体積磁化率の測定結果の一例を示す。具体的には、MES(2-モルホリノエタンスルホン酸)培地を使用し、雰囲気温度37℃、二酸化炭素濃度7%の環境の下で、培地交換を行うことなく、Jurkat細胞を培養した。培養開始時の細胞には、凍結細胞を3代継代培養して得た細胞を用いた。培地交換を行うことなく動物細胞を培養した場合、細胞は貧栄養化し、時間の経過とともに劣化していく。動物細胞の劣化の程度は、動物細胞の機能の低下の程度に対応する。 FIG. 12 is a view showing an example of measurement results of particle diameter and volume magnetic susceptibility of each of three types of animal cells. Specifically, FIG. 12 shows an example of the measurement results of the particle size and volume magnetic susceptibility of three types of Jurkat cells (acute T cell leukemia of human origin) with different degrees of functional decline. Specifically, Jurkat cells were cultured using a MES (2-morpholinoethanesulfonic acid) medium at an atmosphere temperature of 37 ° C. under a carbon dioxide concentration of 7% without medium exchange. As cells at the start of culture, cells obtained by subculturing frozen cells for 3 passages were used. When the animal cells are cultured without changing the medium, the cells become hypotrophic and deteriorate over time. The degree of deterioration of the animal cells corresponds to the degree of decline of the function of the animal cells.
 図12において、横軸は粒子径を示し、縦軸は体積磁化率を示す。また、図12において、三角印は、培養開始時のJurkat細胞の粒子径及び体積磁化率の測定結果を示す。四角印は、24時間培養したJurkat細胞の粒子径及び体積磁化率の測定結果を示す。菱形印は、264時間培養したJurkat細胞の粒子径及び体積磁化率の測定結果を示す。 In FIG. 12, the horizontal axis indicates particle diameter, and the vertical axis indicates volume magnetic susceptibility. Further, in FIG. 12, triangular marks indicate the measurement results of particle diameter and volume magnetic susceptibility of Jurkat cells at the start of culture. Squares indicate the measurement results of particle size and volume magnetic susceptibility of Jurkat cells cultured for 24 hours. The diamond marks indicate the measurement results of particle size and volume magnetic susceptibility of Jurkat cells cultured for 264 hours.
 図12に示すように、培地交換を行うことなくJurkat細胞を培養した場合、Jurkat細胞の体積磁化率は、培養時間に応じて変化する。換言すると、Jurkat細胞の体積磁化率は、Jurkat細胞の劣化の程度(機能の低下の程度)によって異なる。具体的には、培養時間が長いほど、Jurkat細胞の反磁性が弱まる。換言すると、Jurkat細胞の機能の低下が大きいほど、反磁性が弱まる。したがって、動物細胞の体積磁化率に基づいて、動物細胞の状態(機能の低下の程度)を分析することができる。 As shown in FIG. 12, when Jurkat cells are cultured without medium replacement, the volume susceptibility of Jurkat cells changes according to the culture time. In other words, the volume susceptibility of Jurkat cells differs depending on the degree of deterioration of Jurkat cells (the degree of loss of function). Specifically, the longer the culture time, the weaker the diamagnetism of Jurkat cells. In other words, the greater the loss of function of Jurkat cells, the weaker the diamagnetism. Therefore, based on the volume susceptibility of animal cells, it is possible to analyze the state of the animal cells (the degree of decline in function).
[実施形態3]
 続いて図1、図13~図15を参照して、本発明の実施形態3について説明する。但し、実施形態1及び2と異なる事項を説明し、実施形態1及び2と同じ事項についての説明は割愛する。実施形態3は、分析対象である粒子状生物pの状態として、粒子状生物pが有する能力の程度を分析する点で実施形態1及び2と異なる。粒子状生物pの能力は、例えば、生理活性能力(活性度)、分化能力、又はタンパク質等の生成能力を含む。
Third Embodiment
A third embodiment of the present invention will now be described with reference to FIGS. 1 and 13 to 15. However, matters different from the first and second embodiments will be described, and the description of the same matters as the first and second embodiments will be omitted. Embodiment 3 differs from Embodiments 1 and 2 in that the degree of the ability of the particulate organism p is analyzed as the state of the particulate organism p to be analyzed. The ability of the particulate organism p includes, for example, a bioactive ability (activity), a differentiation ability, or a generation ability of a protein or the like.
 本実施形態において、基準データ43は、分析対象の粒子状生物pと同じ種類の基準粒子状生物の体積磁化率と粒子径との関係を、基準粒子状生物が有する能力の程度ごとに示す。処理部42は、粒子状生物pの体積磁化率及び粒子径を基準データ43と比較することにより、粒子状生物pが有する能力の程度を分析する。以下では、粒子状生物pの活性度を分析する場合を例に、本実施形態を説明する。この場合、基準データ43は、分析対象の粒子状生物pと同じ種類の基準粒子状生物の体積磁化率と粒子径との関係を活性度ごとに示す。 In the present embodiment, the reference data 43 indicates the relationship between the volume magnetic susceptibility and the particle diameter of the reference particulate matter of the same type as that of the particulate matter p to be analyzed, for each degree of the ability of the reference particulate matter. The processing unit 42 analyzes the degree of the ability of the particulate organism p by comparing the volume magnetic susceptibility and particle diameter of the particulate organism p with the reference data 43. In the following, the present embodiment will be described by way of example in which the activity of the particulate organism p is analyzed. In this case, the reference data 43 indicates the relationship between the volume magnetic susceptibility and the particle diameter of the reference particulate matter of the same type as that of the particulate matter p to be analyzed for each activity.
 図13(a)は、粒子状生物pの活性度の測定結果を示す図である。詳しくは、標準株(Saccharomyces cerevisiae NRIC1560T (Type strain))の活性度の測定結果を示す。具体的には、標準株の培養を開始してから7時間後の活性度の測定結果を示している。 FIG. 13 (a) is a view showing the measurement results of the activity of the particulate organism p. Specifically, the measurement results of the activity of a standard strain (Saccharomyces cerevisiae NRIC 1560 T (Type strain)) are shown. Specifically, the measurement results of the degree of activity after 7 hours from the start of culture of the standard strain are shown.
 図13(a)において、横軸は測定時間を示し、縦軸は活性度を示す。詳しくは、縦軸は、450nmの光の吸光度を示す。具体的には、NADPHによりホルマザン色素が還元されることで、450nmの光を吸収するようになることから、この波長における吸光度を測定した。NADPHは、ATP(adenosine tri-phosphate:アデノシン三リン酸)の合成時に生成される補酵素であり、NADPHの生成量が多い程、吸光度が高くなる。換言すると、ATPの合成量が多い程、吸光度が高くなる。ATPの合成量は、粒子状生物pの活性度に対応しており、ATPの合成量が多い程、粒子状生物pの活性度は高くなる。したがって、吸光度は、粒子状生物pの活性度に対応する。具体的には、粒子状生物pの活性度が高い程、吸光度が高くなる。 In FIG. 13 (a), the horizontal axis indicates the measurement time, and the vertical axis indicates the activity. Specifically, the vertical axis shows the absorbance of light at 450 nm. Specifically, since the formazan dye is reduced by NADPH to absorb light of 450 nm, the absorbance at this wavelength was measured. NADPH is a coenzyme produced at the time of synthesis of ATP (adenosine tri-phosphate: adenosine triphosphate), and the larger the amount of NADPH produced, the higher the absorbance. In other words, the larger the amount of synthesized ATP, the higher the absorbance. The amount of ATP synthesized corresponds to the activity of the particulate organism p, and the larger the amount of ATP synthesized, the higher the activity of the particle organism p. Thus, the absorbance corresponds to the activity of the particulate organism p. Specifically, the higher the activity of the particulate organism p, the higher the absorbance.
 また、図13(a)において、四角印は、5重量%の塩化ナトリウム(NaCl)を含む培養液内で培養した標準株の活性度を示す。また、三角印は、pH(水素イオン指数)を1.0に調整した培養液内で培養した標準株の活性度を示す。一方、丸印は、ストレスを与えることなく培養した標準株の活性度を示す。図13(a)に示すように、ストレスを与えることにより、粒子状生物pの活性度(ATP合成量)は低くなる。 Also, in FIG. 13 (a), square marks indicate the activity of standard strains cultured in a culture solution containing 5% by weight of sodium chloride (NaCl). Further, triangle marks indicate the activity of standard strains cultured in a culture solution adjusted to pH (hydrogen ion index) of 1.0. On the other hand, the circle indicates the activity of the standard strain cultured without applying stress. As shown in FIG. 13 (a), application of stress lowers the activity (the amount of ATP synthesis) of the particulate organism p.
 図13(b)は、分析対象の粒子状生物pの粒子径及び体積磁化率の測定結果を示す図である。詳しくは、7時間培養した標準株(Saccharomyces cerevisiae NRIC1560T (Type strain))の粒子径及び体積磁化率の測定結果を示す。 FIG. 13 (b) is a view showing measurement results of particle diameter and volume magnetic susceptibility of the particulate matter p to be analyzed. Specifically, the measurement results of the particle size and volume magnetic susceptibility of a standard strain (Saccharomyces cerevisiae NRIC 1560 T (Type strain)) cultured for 7 hours are shown.
 図13(b)において、横軸は粒子径を示し、縦軸は体積磁化率を示す。また、図13(b)において、四角印は、5重量%の塩化ナトリウム(NaCl)を含む培養液内で7時間培養した標準株の体積磁化率を示す。また、三角印は、pH(水素イオン指数)を1.0に調整した培養液内で7時間培養した標準株の体積磁化率を示す。一方、丸印は、ストレスを与えることなく7時間培養した標準株の体積磁化率を示す。 In FIG. 13 (b), the horizontal axis indicates particle diameter, and the vertical axis indicates volume magnetic susceptibility. Also, in FIG. 13 (b), square marks indicate volume magnetic susceptibility of standard strains cultured for 7 hours in a culture solution containing 5% by weight of sodium chloride (NaCl). Further, triangle marks indicate volume magnetic susceptibility of standard strains cultured for 7 hours in a culture solution adjusted to pH (hydrogen ion index) of 1.0. On the other hand, the circle indicates the volume susceptibility of a standard strain cultured for 7 hours without applying stress.
 図13(a)及び図13(b)に示すように、粒子状生物pの体積磁化率は、活性度に応じて異なる。したがって、粒子状生物pの粒子径及び体積磁化率に基づいて、粒子状生物pの活性度を分析することができる。以下、粒子状生物pが標準株(Saccharomyces cerevisiae NRIC1560T (Type strain))である場合を例に、本実施形態を説明する。 As shown in FIGS. 13 (a) and 13 (b), the volume magnetic susceptibility of the particulate organism p varies depending on the degree of activity. Therefore, based on the particle size and volume magnetic susceptibility of the particulate organism p, the activity of the particulate organism p can be analyzed. Hereinafter, the present embodiment will be described by way of example in which the particulate organism p is a standard strain (Saccharomyces cerevisiae NRIC 1560 T (Type strain)).
 体積磁化率の差異は、細胞内部の生命活動の程度を反映している。また、体積磁化率の差異は、細胞膜の表層(表面修飾分子)における物質動態の強弱を反映している。細胞膜の表層における物質動態の強弱は、ATP生成量に対応する。 The difference in volume magnetic susceptibility reflects the degree of biological activity inside the cell. In addition, the difference in volume magnetic susceptibility reflects the dynamics of the dynamics in the surface layer (surface modifying molecule) of the cell membrane. The dynamics in the surface layer of the cell membrane corresponds to the amount of ATP produced.
 続いて図14を参照して、実施形態3に係る基準データ43について説明する。図14は、実施形態3に係る基準データ43の一例を示す図である。図14において、横軸は粒子径を示し、縦軸は体積磁化率を示す。また、グラフ130は、基準粒子状生物の体積磁化率と粒子径との関係を活性度ごとに示す。図1に示す記憶部41は、基準データ43として、グラフ130に対応するデータを記憶する。具体的には、図1に示す記憶部41は、基準データ43として、グラフ130の式を示すデータ、又はグラフ130に対応するテーブルを示すデータを記憶する。 Subsequently, reference data 43 according to the third embodiment will be described with reference to FIG. FIG. 14 is a diagram of an example of the reference data 43 according to the third embodiment. In FIG. 14, the horizontal axis represents particle diameter, and the vertical axis represents volume magnetic susceptibility. Further, the graph 130 shows the relationship between the volume magnetic susceptibility and the particle diameter of the reference particulate matter for each activity. The storage unit 41 illustrated in FIG. 1 stores data corresponding to the graph 130 as the reference data 43. Specifically, the storage unit 41 illustrated in FIG. 1 stores, as the reference data 43, data indicating an expression of the graph 130 or data indicating a table corresponding to the graph 130.
 例えば、図14に示すように、グラフ130は、3種類のグラフ(第9グラフ131、第10グラフ132、及び第11グラフ133)を含み得る。この場合、基準データ43は、第9グラフ131に対応する第9データと、第10グラフ132に対応する第10データと、第11グラフ133に対応する第11データとを含む。例えば、第9データは、第9グラフ131の式、又は第9グラフ131に対応するテーブルを示すデータであり、第10データは、第10グラフ132の式、又は第10グラフ132に対応するテーブルを示すデータであり、第11データは、第11グラフ133の式、又は第11グラフ133に対応するテーブルを示すデータである。 For example, as shown in FIG. 14, the graph 130 may include three types of graphs (a ninth graph 131, a tenth graph 132, and an eleventh graph 133). In this case, the reference data 43 includes ninth data corresponding to the ninth graph 131, tenth data corresponding to the tenth graph 132, and eleventh data corresponding to the eleventh graph 133. For example, the ninth data is data indicating a formula of the ninth graph 131 or a table corresponding to the ninth graph 131, and a tenth data is a formula corresponding to the formula of the tenth graph 132 or the tenth graph 132. The eleventh data is data indicating a formula of the eleventh graph 133 or a table corresponding to the eleventh graph 133.
 本実施形態において、第9グラフ131は、5重量%の塩化ナトリウム(NaCl)を含む培養液内で7時間培養した標準株の標準的な粒子径及び体積磁化率の関係を示し、第10グラフ132は、pH(水素イオン指数)を1.0に調整した培養液内で7時間培養した標準株の標準的な粒子径及び体積磁化率の関係を示し、第11グラフ133は、ストレスを与えることなく7時間培養した標準株の標準的な粒子径及び体積磁化率の関係を示す。 In the present embodiment, the ninth graph 131 shows the relationship between the standard particle size and volume magnetic susceptibility of a standard strain cultured for 7 hours in a culture solution containing 5% by weight of sodium chloride (NaCl), and the tenth graph 132 shows the relationship between the standard particle size and volume magnetic susceptibility of a standard strain cultured for 7 hours in a culture solution adjusted to pH (hydrogen ion index) of 1.0, and the eleventh graph 133 gives stress The relationship between the standard particle diameter and volume magnetic susceptibility of a standard strain cultured without 7 hours is shown.
 図13を参照して説明したように、標準株は活性度に応じて異なる体積磁化率を有する。したがって、処理部42は、第9グラフ131に対応する第9データ、第10グラフ132に対応する第10データ、及び第11グラフ133に対応する第10データを参照して、粒子状生物pの活性度を分析することができる。 As described with reference to FIG. 13, the standard strain has different volume susceptibility depending on the degree of activity. Therefore, the processing unit 42 refers to the ninth data corresponding to the ninth graph 131, the tenth data corresponding to the tenth graph 132, and the tenth data corresponding to the eleventh graph 133, The degree of activity can be analyzed.
 例えば、処理部42は、実施形態1と同様に、基準データ43を参照して、粒子状生物pの体積磁化率に最も近い基準体積磁化率を判定する。処理部42は、この判定の結果に基づき、粒子状生物pの能力の程度を分析する。なお、処理部42は、実施形態1において説明したように、基準体積磁化率の範囲、又は、基準体積磁化率の範囲及び中央値を用いて、粒子状生物pの能力の程度を分析してもよい。あるいは、実施形態1において説明したように、基準体積磁化率の範囲及び平均値を用いて、粒子状生物pの能力の程度を分析してもよい。 For example, as in the first embodiment, the processing unit 42 refers to the reference data 43 to determine the reference volume magnetic susceptibility closest to the volume magnetic susceptibility of the particulate matter p. The processing unit 42 analyzes the degree of the ability of the particulate matter p based on the result of this determination. As described in the first embodiment, the processing unit 42 analyzes the degree of the ability of the particulate organism p using the range of the reference volume magnetic susceptibility or the range and the median of the reference volume magnetic susceptibility. It is also good. Alternatively, as described in the first embodiment, the range and the average value of the reference volume magnetic susceptibility may be used to analyze the degree of the ability of the particulate organism p.
 続いて図15を参照して、実施形態3に係る分析方法について説明する。図15は、実施形態3に係る分析方法を示すフローチャートである。実施形態3に係る分析方法は、図1、図13、及び図14を参照して説明した分析装置10を使用して実行し得る。 Subsequently, an analysis method according to the third embodiment will be described with reference to FIG. FIG. 15 is a flowchart showing an analysis method according to the third embodiment. The analysis method according to the third embodiment can be performed using the analysis device 10 described with reference to FIGS. 1, 13 and 14.
 図15に示すように、ステップS1~ステップS3までの処理は、図6を参照して説明した分析方法と同様であるため、説明を割愛する。実施形態3に係る分析方法では、粒子状生物p(分析対象)の体積磁化率を測定すると(ステップS3)、粒子状生物pの粒子径及び体積磁化率を基準データ43と比較することにより、粒子状生物pの能力の程度を分析する(ステップS6)。粒子状生物pを分析する際には、処理部42が、粒子状生物pの粒子径及び体積磁化率を、記憶部41が記憶する基準データ43と比較する。基準データ43は、既に説明したように、分析対象の粒子状生物pと同じ種類の基準粒子状生物の体積磁化率と粒子径との関係を、基準粒子状生物が有する能力の程度ごとに示す。 As shown in FIG. 15, the processing from step S1 to step S3 is the same as the analysis method described with reference to FIG. In the analysis method according to the third embodiment, when the volume magnetic susceptibility of the particulate organism p (analytical target) is measured (step S3), the particle size and volume magnetic susceptibility of the particulate organism p are compared with the reference data 43. The degree of ability of the particulate organism p is analyzed (step S6). When analyzing the particulate organism p, the processing unit 42 compares the particle size and volume magnetic susceptibility of the particulate organism p with the reference data 43 stored in the storage unit 41. The reference data 43 shows, as already described, the relationship between the volume magnetic susceptibility and the particle diameter of the reference particulate matter of the same type as that of the particulate matter p to be analyzed, for each degree of the ability of the reference particulate matter. .
 以上、実施形態3について説明した。実施形態3によれば、実施形態1及び2と同様に、粒子状生物pの品質を評価することができる。具体的には、粒子状生物pの能力の程度を分析することができる。また、評価後の粒子状生物pを次の研究へ利用することが可能となる。 The third embodiment has been described above. According to the third embodiment, as in the first and second embodiments, the quality of the particulate organism p can be evaluated. Specifically, the degree of ability of the particulate organism p can be analyzed. In addition, it becomes possible to use the particulate organism p after evaluation for the next study.
 なお、本実施形態では、酵母(標準株)の能力の程度を分析したが、粒子状生物pは酵母に限定されない。粒子状生物pは、酵母以外の細胞であり得る。例えば、粒子状生物pは、動物細胞であり得る。 In the present embodiment, the degree of ability of yeast (standard strain) was analyzed, but the particulate organism p is not limited to yeast. Particulate organisms p may be cells other than yeast. For example, the particulate organism p may be an animal cell.
 また、本実施形態では、粒子状生物pの能力の程度を分析したが、粒子状生物pの能力の程度(例えば、生理活性能力、分化能力、又はタンパク質等の生成能力)に基づいて、粒子状生物pが良品(正常)であるのか不良品(異常)であるのかを更に分析してもよい。あるいは、粒子状生物pの粒子径及び体積磁化率を基準データ43と比較することにより、粒子状生物pの状態として、粒子状生物pが良品であるのか不良品であるのかを分析してもよい。例えば、粒子状生物pが、正常に分化したiPS細胞であるのか、がん化したiPS細胞であるのかを分析することができる。 Further, in the present embodiment, the degree of the ability of the particulate organism p was analyzed, but based on the degree of the ability of the particulate organism p (eg, physiologically active ability, differentiation ability, or ability to produce proteins etc.) It may be further analyzed whether the rod-like organism p is non-defective (normal) or defective (abnormal). Alternatively, by comparing the particle size and volume magnetic susceptibility of the particulate organism p with the reference data 43, it is analyzed whether the particulate organism p is good or defective as the state of the particulate organism p. Good. For example, it can be analyzed whether the particulate organism p is a normally differentiated iPS cell or a cancerous iPS cell.
 以上、本発明の実施形態について図面を参照しながら説明した。但し、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。 The embodiments of the present invention have been described above with reference to the drawings. However, the present invention is not limited to the above embodiment, and can be implemented in various modes without departing from the scope of the invention.
 例えば、本発明の実施形態では、磁場生成部20が一対の永久磁石20a、20bを備えたが、磁場生成部20は、磁場勾配を生成するために一対の磁極片(ポールピース)を備えてもよい。あるいは、磁場生成部20は、磁場勾配を生成するために、電磁石、磁気回路、又は超電導磁石を備えてもよい。磁場生成部20が一対の磁極片を備える場合、一対の磁極片を構成する2つの磁極片は、例えば100μm以上500μm以下の一定距離の空隙を空けて配置される。セル21は、2つの磁極片の間の空隙に配置される。磁極片は、例えば、磁化された鉄片であり得る。鉄片は、例えば永久磁石、電磁石、磁気回路、又は超電導磁石によって磁化し得る。 For example, in the embodiment of the present invention, the magnetic field generation unit 20 includes the pair of permanent magnets 20a and 20b, but the magnetic field generation unit 20 includes a pair of pole pieces (pole pieces) to generate a magnetic field gradient. It is also good. Alternatively, the magnetic field generator 20 may include an electromagnet, a magnetic circuit, or a superconducting magnet to generate a magnetic field gradient. When the magnetic field generation unit 20 includes a pair of pole pieces, two pole pieces constituting the pair of pole pieces are arranged with a gap of a predetermined distance, for example, not less than 100 μm and not more than 500 μm. The cell 21 is located in the air gap between the two pole pieces. The pole pieces may be, for example, magnetized iron pieces. The iron piece may be magnetized by, for example, a permanent magnet, an electromagnet, a magnetic circuit, or a superconducting magnet.
 また、本発明の実施形態では、セル21がキャピラリー管であったが、セル21は、ガラスセル又はプラスチックセルであってもよい。ガラスセル及びプラスチックセルは、粒子状生物pを含む媒体mを保持する凹部を有する。あるいは、ガラスセル及びプラスチックセルは、粒子状生物pを含む媒体mが流れる流路を有する。セル21が、マイクロ流路を有するガラスセル又はプラスチックセルである場合、粒子状生物pを含む液滴がマイクロ流路の一方端に滴下されると、毛細管現象によって液滴がマイクロ流路を流れる。 Moreover, in the embodiment of the present invention, the cell 21 is a capillary tube, but the cell 21 may be a glass cell or a plastic cell. The glass cell and the plastic cell have a recess for holding the medium m containing the particulate matter p. Alternatively, the glass cell and the plastic cell have a flow path through which the medium m containing the particulate matter p flows. When the cell 21 is a glass cell or a plastic cell having a microchannel, when a droplet containing the particulate matter p is dropped to one end of the microchannel, the droplet flows in the microchannel by capillary action. .
 また、本発明の実施形態では、画像解析によって粒子状生物pの粒子径を測定したが、粒子状生物pのブラウン運動を解析して、粒子状生物pの粒子径を測定してもよい。 In the embodiment of the present invention, the particle size of the particulate organism p is measured by image analysis, but the Brownian motion of the particulate organism p may be analyzed to measure the particle size of the particulate organism p.
 具体的には、セル21(キャピラリー管)の軸方向(x方向)に直交する方向(y方向)における粒子状生物pの位置の変化(変位)の分散から拡散係数を算出し、この拡散係数から粒子状生物pの粒子径を測定することができる。詳しくは、粒子状生物pは、セル21(キャピラリー管)の軸方向(x方向)に磁場勾配の影響を受けるが、セル21の軸方向に直交する方向(y方向)には磁場勾配の影響をほとんど受けない。したがって、y方向における粒子状生物pの位置の変位の分散から拡散係数Dを算出することができる。具体的には、拡散係数Dは、ブラウン運動を行う粒子状生物pのy方向の移動距離の2乗を2倍の時間で除算することによって算出することができる。 Specifically, the diffusion coefficient is calculated from the dispersion of the change (displacement) of the position of the particulate matter p in the direction (y direction) orthogonal to the axial direction (x direction) of the cell 21 (capillary tube), and this diffusion coefficient The particle size of the particulate organism p can be measured from Specifically, the particulate matter p is affected by the magnetic field gradient in the axial direction (x direction) of the cell 21 (capillary tube), but in the direction (y direction) orthogonal to the axial direction of the cell 21 Hardly receive Therefore, the diffusion coefficient D can be calculated from the dispersion of the displacement of the position of the particulate matter p in the y direction. Specifically, the diffusion coefficient D can be calculated by dividing the square of the moving distance in the y direction of the particulate matter p performing Brownian motion by a time twice as long.
 処理部42は、以下の式(2)に基づいて、拡散係数Dから粒子状生物pの粒子径を測定する。式(2)において、dは粒子状生物pの粒子径であり、kはボルツマン定数であり、Tは絶対温度であり、ηは媒体mの粘性率である。
  d=kT/(3πηD)・・・(2)
The processing unit 42 measures the particle size of the particulate matter p from the diffusion coefficient D based on the following equation (2). In formula (2), d is the particle size of the particulate organism p, k is the Boltzmann constant, T is the absolute temperature, and η is the viscosity of the medium m.
d = kT / (3πηD) (2)
 また、本発明の実施形態では、分析装置10が光源50を備えたが、分析装置10は、光源50に替えてレーザーを備えてもよいし、光源50に加えてレーザーを更に備えてもよい。分析装置10が光源50とレーザーとを備える場合、光源50から光を出射する際には、レーザーからのレーザー光の出射を停止させ、レーザーからレーザー光を出射する際には、光源50からの光の出射を停止させる。レーザーを使用する場合、セル21に導入された粒子状生物pにレーザー光を照射する。観察部30は、セル21内の粒子状生物pによって散乱されたレーザー光(散乱光)によって粒子状生物pを観察する。例えば、図3を参照して説明した撮像部34が、拡大部32を介して、粒子状生物pによって散乱されたレーザー光を撮像する。 In the embodiment of the present invention, the analysis device 10 includes the light source 50. However, instead of the light source 50, the analysis device 10 may include a laser, or may further include a laser in addition to the light source 50. . When the analyzer 10 includes the light source 50 and the laser, when emitting light from the light source 50, the emission of the laser beam from the laser is stopped, and when the laser beam is emitted from the laser, the light from the light source 50 Stop the light emission. When a laser is used, the particulate matter p introduced into the cell 21 is irradiated with a laser beam. The observation unit 30 observes the particulate matter p by the laser light (scattered light) scattered by the particulate matter p in the cell 21. For example, the imaging unit 34 described with reference to FIG. 3 images the laser light scattered by the particulate organism p through the enlargement unit 32.
 なお、レーザーを使用する場合、例えば動的光散乱法又は静的光散乱法に基づいて粒子状生物pの粒子径を測定してもよい。また、レーザー光を粒子状生物pに照射する場合、キャピラリー管は、その軸方向に直交する断面形状が正方形の正方形型キャピラリーであることが好ましい。正方形型キャピラリーを使用することにより、セル21の側面のうちレーザー光が照射される面を鏡面仕上げにすることが容易になる。 In addition, when using a laser, you may measure the particle diameter of particulate-form thing p based on a dynamic light scattering method or a static light scattering method, for example. In addition, when irradiating the particulate matter p with a laser beam, the capillary tube is preferably a square capillary having a square cross-sectional shape orthogonal to the axial direction. By using a square capillary, it becomes easy to mirror-finish the side to which a laser beam is irradiated among the side surfaces of the cell 21.
 また、本発明の実施形態では、演算部40(処理部42)が粒子状生物pの粒子径を測定したが、撮像部34が撮像した画像をディスプレイに表示させ、ディスプレイに表示された画像から、分析者が粒子状生物pの粒子径を測定してもよい。あるいは、撮像部34が撮像した画像を印刷して、印刷した画像から、分析者が粒子状生物pの粒子径を測定してもよい。 Further, in the embodiment of the present invention, the computing unit 40 (processing unit 42) measures the particle diameter of the particulate matter p, but the image captured by the imaging unit 34 is displayed on the display, and from the image displayed on the display An analyzer may measure the particle size of the particulate matter p. Alternatively, the image taken by the imaging unit 34 may be printed, and the analyst may measure the particle diameter of the particulate matter p from the printed image.
 また、本発明の実施形態では、撮像部34が所定の時間間隔ごとに粒子状生物pを撮像することにより、粒子状生物pの磁気泳動速度を測定したが、レーザーを使用して、例えばレーザードップラー法に基づいて粒子状生物pの磁気泳動速度を測定してもよい。 In the embodiment of the present invention, the imaging unit 34 images the particulate matter p at predetermined time intervals to measure the magnetophoretic velocity of the particulate matter p. However, using a laser, for example, a laser is used. The magnetic migration velocity of the particulate organism p may be measured based on the Doppler method.
 本発明は、医薬品分野、環境化学分野、食品分野、化粧品分野、及び再生医療分野等に有用である。 The present invention is useful in the fields of medicine, environmental chemistry, food, cosmetics and regenerative medicine.
10   分析装置
20   磁場生成部
30   観察部
32   拡大部
34   撮像部
40   演算部
41   記憶部
42   処理部
43   基準データ
50   光源
p    粒子状生物
m    媒体
10 analyzer 20 magnetic field generation unit 30 observation unit 32 enlargement unit 34 imaging unit 40 calculation unit 41 storage unit 42 processing unit 43 reference data 50 light source p particulate matter medium

Claims (18)

  1.  磁場を生成して、分析対象の粒子状生物を磁気泳動させる磁場生成部と、
     前記分析対象の粒子状生物を観察する観察部と、
     前記観察部の観察結果から前記分析対象の粒子状生物の磁気泳動速度と粒子径とを測定し、前記測定した磁気泳動速度と粒子径とに基づいて、前記分析対象の粒子状生物の体積磁化率を測定する処理部と、
     基準粒子状生物の体積磁化率と粒子径との関係を示す基準データを記憶する記憶部と
     を備え、
     前記処理部は、前記分析対象の粒子状生物の体積磁化率及び粒子径を前記基準データと比較することにより、前記分析対象の粒子状生物を分析する、分析装置。
    A magnetic field generation unit that generates a magnetic field to cause magnetism of the particulate matter to be analyzed;
    An observation unit for observing the particulate matter to be analyzed;
    The magnetic migration velocity and the particle diameter of the particulate organism to be analyzed are measured from the observation result of the observation section, and the volume magnetization of the particulate organism to be analyzed is determined based on the measured magnetic migration velocity and particle diameter. A processing unit that measures the rate,
    A storage unit for storing reference data indicating the relationship between the volume magnetic susceptibility of the reference particulate matter and the particle diameter;
    The analysis unit analyzes the particulate matter to be analyzed by comparing the volume magnetic susceptibility and the particle diameter of the particulate matter to be analyzed with the reference data.
  2.  前記基準データは、複数種類の基準粒子状生物のそれぞれの体積磁化率と粒子径との関係を示し、
     前記処理部は、前記分析対象の粒子状生物の体積磁化率及び粒子径を前記基準データと比較することにより、前記分析対象の粒子状生物の種類を分析する、請求項1に記載の分析装置。
    The reference data indicates the relationship between volume magnetic susceptibility and particle diameter of each of a plurality of types of reference particulate matter,
    The analyzer according to claim 1, wherein the processing unit analyzes the type of particulate matter to be analyzed by comparing the volume magnetic susceptibility and the particle diameter of the particulate matter to be analyzed with the reference data. .
  3.  前記基準データは、前記分析対象の粒子状生物と同じ種類の基準粒子状生物の体積磁化率と粒子径との関係を、前記基準粒子状生物が有し得る状態ごとに示し、
     前記処理部は、前記分析対象の粒子状生物の体積磁化率及び粒子径を前記基準データと比較することにより、前記分析対象の粒子状生物の状態を分析する、請求項1に記載の分析装置。
    The reference data indicates, for each state that the reference particulate matter can have, the relationship between the volume magnetic susceptibility and the particle diameter of the reference particulate matter of the same type as the particulate matter to be analyzed;
    The analyzer according to claim 1, wherein the processing unit analyzes the state of the particulate matter to be analyzed by comparing the volume magnetic susceptibility and the particle diameter of the particulate matter to be analyzed with the reference data. .
  4.  前記基準粒子状生物が有し得る状態は、前記基準粒子状生物が示し得る機能に対応する、請求項3に記載の分析装置。 The analyzer according to claim 3, wherein the state that the reference particulate matter can have corresponds to the function that the reference particulate matter can exhibit.
  5.  前記基準粒子状生物が有し得る状態は、前記基準粒子状生物が生きている状態から死んでいる状態へ向かって機能が低下していく各段階のうちの少なくとも一部に対応する、請求項4に記載の分析装置。 The state that the reference particulate matter may have corresponds to at least a part of each stage in which the function is reduced from the alive state to the dead state of the reference particulate matter. The analyzer according to 4.
  6.  前記基準粒子状生物が有し得る状態は、前記基準粒子状生物が生きている状態と、前記基準粒子状生物が死んでいる状態とに対応する、請求項5に記載の分析装置。 The analyzer according to claim 5, wherein the state that the reference particulate matter can have corresponds to the state in which the reference particulate matter is alive and the state in which the reference particulate matter is dead.
  7.  前記基準粒子状生物が有し得る状態は、前記基準粒子状生物の活性度に対応する、請求項4に記載の分析装置。 The analyzer according to claim 4, wherein the state that the reference particulate matter can have corresponds to the activity of the reference particulate matter.
  8.  前記活性度は、アデノシン三リン酸の生成量に対応する、請求項7に記載の分析装置。 The analyzer according to claim 7, wherein the activity corresponds to the amount of produced adenosine triphosphate.
  9.  前記分析対象の粒子状生物は、酵母、菌類、又は細胞である、請求項1~請求項8のいずれか1項に記載の分析装置。 The analyzer according to any one of claims 1 to 8, wherein the particulate organism to be analyzed is a yeast, a fungus or a cell.
  10.  磁気泳動する分析対象の粒子状生物を観察するステップと、
     観察結果から前記分析対象の粒子状生物の磁気泳動速度と粒子径とを測定するステップと、
     前記測定した磁気泳動速度と粒子径とに基づいて、前記分析対象の粒子状生物の体積磁化率を測定するステップと、
     前記分析対象の粒子状生物の体積磁化率及び粒子径を基準データと比較することにより、前記分析対象の粒子状生物を分析する分析ステップと
     を包含し、
     前記基準データは、基準粒子状生物の体積磁化率と粒子径との関係を示す、分析方法。
    Observing the particulate matter to be analyzed which is to be magnetophoresed;
    Measuring the magnetic migration velocity and the particle size of the particulate matter to be analyzed from the observation result;
    Measuring the volume magnetic susceptibility of the particulate matter to be analyzed based on the measured magnetic migration velocity and particle diameter;
    Analyzing the particulate matter to be analyzed by comparing the volume magnetic susceptibility and the particle size of the particulate matter to be analyzed with reference data;
    The reference data is an analysis method showing a relationship between volume magnetic susceptibility and particle diameter of reference particulate matter.
  11.  前記基準データは、複数種類の基準粒子状生物のそれぞれの体積磁化率と粒子径との関係を示し、
     前記分析ステップにおいて、前記分析対象の粒子状生物の体積磁化率及び粒子径を前記基準データと比較することにより、前記分析対象の粒子状生物の種類を分析する、請求項10に記載の分析方法。
    The reference data indicates the relationship between volume magnetic susceptibility and particle diameter of each of a plurality of types of reference particulate matter,
    The analysis method according to claim 10, wherein in the analysis step, the type of particulate matter to be analyzed is analyzed by comparing the volume magnetic susceptibility and the particle diameter of the particulate matter to be analyzed with the reference data. .
  12.  前記基準データは、前記分析対象の粒子状生物と同じ種類の基準粒子状生物の体積磁化率と粒子径との関係を、前記基準粒子状生物が有し得る状態ごとに示し、
     前記分析ステップにおいて、前記分析対象の粒子状生物の体積磁化率及び粒子径を前記基準データと比較することにより、前記分析対象の粒子状生物の状態を分析する、請求項10に記載の分析方法。
    The reference data indicates, for each state that the reference particulate matter can have, the relationship between the volume magnetic susceptibility and the particle diameter of the reference particulate matter of the same type as the particulate matter to be analyzed;
    The analysis method according to claim 10, wherein in the analysis step, the state of the particulate matter to be analyzed is analyzed by comparing the volume magnetic susceptibility and the particle diameter of the particulate matter to be analyzed with the reference data. .
  13.  前記基準粒子状生物が有し得る状態は、前記基準粒子状生物が示し得る機能に対応する、請求項12に記載の分析方法。 The analysis method according to claim 12, wherein a state that the reference particulate matter can have corresponds to a function that the reference particulate matter can exhibit.
  14.  前記基準粒子状生物が有し得る状態は、前記基準粒子状生物が生きている状態から死んでいる状態へ向かって機能が低下していく各段階のうちの少なくとも一部に対応する、請求項13に記載の分析方法。 The state that the reference particulate matter may have corresponds to at least a part of each stage in which the function is reduced from the alive state to the dead state of the reference particulate matter. The analysis method as described in 13.
  15.  前記基準粒子状生物が有し得る状態は、前記基準粒子状生物が生きている状態と、前記基準粒子状生物が死んでいる状態とに対応する、請求項14に記載の分析方法。 The analysis method according to claim 14, wherein the state that the reference particulate matter can have corresponds to the state in which the reference particulate matter is alive and the state in which the reference particulate matter is dead.
  16.  前記基準粒子状生物が有し得る状態は、前記基準粒子状生物の活性度に対応する、請求項13に記載の分析方法。 The analysis method according to claim 13, wherein the state that the reference particulate matter can have corresponds to the activity of the reference particulate matter.
  17.  前記活性度は、アデノシン三リン酸の生成量に対応する、請求項16に記載の分析方法。 The analysis method according to claim 16, wherein the activity corresponds to the amount of produced adenosine triphosphate.
  18.  前記分析対象の粒子状生物は、酵母、菌類、又は細胞である、請求項10~請求項17のいずれか1項に記載の分析方法。 The analysis method according to any one of claims 10 to 17, wherein the particulate organism to be analyzed is a yeast, a fungus or a cell.
PCT/JP2018/031431 2017-08-25 2018-08-24 Analyzing device and analysis method WO2019039601A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019537716A JP6850504B2 (en) 2017-08-25 2018-08-24 Analytical device and analytical method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017162476 2017-08-25
JP2017-162476 2017-08-25

Publications (1)

Publication Number Publication Date
WO2019039601A1 true WO2019039601A1 (en) 2019-02-28

Family

ID=65440027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031431 WO2019039601A1 (en) 2017-08-25 2018-08-24 Analyzing device and analysis method

Country Status (2)

Country Link
JP (1) JP6850504B2 (en)
WO (1) WO2019039601A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11988636B2 (en) 2019-04-26 2024-05-21 Kawano Lab. Inc. Method for particle analysis and method for particle production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071645A (en) * 2000-08-30 2002-03-12 Univ Osaka Magnetic susceptibility measuring method and device for suspended magnetic particle
WO2015030184A1 (en) * 2013-08-30 2015-03-05 国立大学法人大阪大学 Dispersoid analysis method and dispersoid analysis device
WO2017069250A1 (en) * 2015-10-23 2017-04-27 株式会社堀場製作所 Particle analysis device and particle analysis method
WO2017069260A1 (en) * 2015-10-23 2017-04-27 株式会社カワノラボ Particle analysis device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071645A (en) * 2000-08-30 2002-03-12 Univ Osaka Magnetic susceptibility measuring method and device for suspended magnetic particle
WO2015030184A1 (en) * 2013-08-30 2015-03-05 国立大学法人大阪大学 Dispersoid analysis method and dispersoid analysis device
WO2017069250A1 (en) * 2015-10-23 2017-04-27 株式会社堀場製作所 Particle analysis device and particle analysis method
WO2017069260A1 (en) * 2015-10-23 2017-04-27 株式会社カワノラボ Particle analysis device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHALMERS ET AL.: "Femtogram Resolution of Iron Content on a Per Cell Basis: Ex Vivo Storage of Human Red Blood Cells Leads to Loss of Hemoglobin", ANAL. CHEM., vol. 89, 23 February 2017 (2017-02-23), pages 3702 - 3709, XP055578142 *
KOUNO, MAKOTO: "New particle analysis method using magnetic field: Evaluate surface modification volume, pore volume, and component uniformity", PETROTECH, vol. 38, no. 7, 1 July 2015 (2015-07-01), pages 27 - 31 *
MORI, SAYAKA ET AL.: "Evaluation of yeast cells by magnetic susceptibility", LECTURE ABSTRACTS OF 77TH DISCUSSION OF THE JAPAN SOCIETY FOR ANALYTICAL CHEMISTRY, vol. 146, 13 May 2017 (2017-05-13) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11988636B2 (en) 2019-04-26 2024-05-21 Kawano Lab. Inc. Method for particle analysis and method for particle production

Also Published As

Publication number Publication date
JP6850504B2 (en) 2021-03-31
JPWO2019039601A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
US11761023B2 (en) Analyzing and using motility kinematics of microorganisms
de Jonge et al. Live cell electron microscopy is probably impossible
Bennet et al. Influence of magnetic fields on magneto-aerotaxis
JP5927251B2 (en) Luminescence measurement method and luminescence measurement system
US10401349B2 (en) Compositions and methods for disease diagnosis using single cell analysis
Cattoni et al. Super-resolution imaging of bacteria in a microfluidics device
Foglia et al. New insights in enumeration methodologies of probiotic cells in finished products
Hoseinzadeh et al. A review of available techniques for determination of nano-antimicrobials activity
Lobete et al. Recent trends in non-invasive in situ techniques to monitor bacterial colonies in solid (model) food
Silge et al. Shedding light on host niches: label‐free in situ detection of M ycobacterium gordonae via carotenoids in macrophages by R aman microspectroscopy
Konieczny et al. Imaging flow cytometry to study biofilm-associated microbial aggregates
JP6850504B2 (en) Analytical device and analytical method
Kogermann et al. Single-cell level methods for studying the effect of antibiotics on bacteria during infection
Hartmann et al. A chip-calorimetric approach to the analysis of Ag nanoparticle caused inhibition and inactivation of beads-grown bacterial biofilms
Nastulyavichus et al. Dynamic light scattering detection of silver nanoparticles, food pathogen bacteria and their bactericidal interactions
Ortiz Ortega et al. Characterization Techniques for Morphology Analysis
Wu et al. The Advances and Applications of Characterization Technique for Exosomes: From Dynamic Light Scattering to Super-Resolution Imaging Technology
Bao et al. Comparative analysis using raman spectroscopy of the cellular constituents of Lacticaseibacillus paracasei Zhang in a normal and viable but nonculturable state
Wang et al. Advances in biofilm characterization: utilizing rheology and atomic force microscopy in foods and related fields
Mukherjee et al. Monitoring cell distribution and death in sessile forms of microbial biofilm: flow cytometry-fluorescence activated cell sorting (FCM-FACS)
Marvin Signal Optimization and Enhancement of Laser-Induced Breakdown Spectroscopy for Discrimination of Bacterial Organisms
Wang et al. Comparison of Escherichia coli surface attachment methods for single-cell, in vivo microscopy
Oleandro et al. Biospeckle analysis and biofilm electrostatic tests, two useful methods in microbiology
Zhu et al. Comparison of the effects of AgNPs on the morphological and mechanical characteristics of cancerous cells
JP2022069890A (en) Analysis device and analysis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848567

Country of ref document: EP

Kind code of ref document: A1