WO2019038958A1 - Rotary electric machine - Google Patents
Rotary electric machine Download PDFInfo
- Publication number
- WO2019038958A1 WO2019038958A1 PCT/JP2018/007317 JP2018007317W WO2019038958A1 WO 2019038958 A1 WO2019038958 A1 WO 2019038958A1 JP 2018007317 W JP2018007317 W JP 2018007317W WO 2019038958 A1 WO2019038958 A1 WO 2019038958A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hole
- embedded
- rotor core
- central axis
- magnetic pole
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Definitions
- Embodiments of the present invention relate to a rotating electrical machine in which permanent magnets are provided on a rotor.
- a permanent magnet type rotary electric machine using such a permanent magnet is being applied as a motor or a generator of a train or a car.
- a permanent magnet type rotary electric machine includes a cylindrical stator and a cylindrical rotor rotatably supported inside the stator.
- the rotor comprises a rotor core and a plurality of permanent magnets embedded in the rotor core.
- a permanent magnet type rotary electric machine has been proposed that forms a magnetic circuit that can use reluctance torque in addition to magnet torque by arranging permanent magnets in the rotor so as to form a V shape that opens toward the outer peripheral surface side. ing.
- a mounting space is small, and it is required to achieve high torque and high output in a limited space. Furthermore, it is desirable to be lighter if the torque is the same.
- the present invention has been made in view of the above points, and its object is to provide a permanent magnet type rotary electric machine capable of reducing its weight while maintaining torque characteristics.
- the rotating electrical machine includes a stator having a stator core and an armature winding, a shaft rotatable around a central axis, and a plurality of the shaft coaxially fixed to the shaft and arranged in the circumferential direction. And a rotor having a plurality of permanent magnets embedded in the rotor core and disposed for each of the magnetic poles.
- the rotor core has an inner hole coaxially formed with the central axis and into which the shaft is fitted, and a plurality of magnetic pole central axes extending radially with respect to the central axis and passing through the centers of the magnetic poles.
- Each of the embedded holes has an inner circumferential space and an outer circumferential surface extending to the inner circumferential side and the outer circumferential side of the permanent magnet in the loading region in which the permanent magnet is loaded and in the direction orthogonal to the magnetization direction of the permanent magnet.
- the inner peripheral side gaps of the two embedded holes are located opposite to each other with the magnetic pole central axis interposed therebetween, and the outer peripheral side gaps of the two embedded holes are separated from the magnetic pole central axis And located adjacent to and adjacent to the outer circumferential air gap of the embedded hole of the adjacent magnetic pole.
- the gap between the outer periphery of the buried hole and the outer gap of the buried hole of the adjacent magnetic pole is W1
- the gap between the gap and the loading region of the buried hole is W2
- the inner periphery of the gap and the buried hole Assuming that the distance from the air gap is W3 and the distance between the inner hole of the rotor core and the inner air gap of the embedded hole is W4, the rotor core is W1 ⁇ W2, W1 ⁇ W3, W1 ⁇ W4. Is formed.
- FIG. 1 is a cross-sectional view showing a permanent magnet type rotary electric machine according to an embodiment.
- FIG. 2 is an enlarged cross-sectional view of a part of a rotor of the permanent magnet type rotating electric machine.
- FIG. 3 is a perspective view showing a rotor core and a permanent magnet of the rotary electric machine.
- FIG. 4 is an enlarged cross-sectional view of a part of a rotor of a permanent magnet type rotary electric machine according to a modification;
- FIG. 1 is a cross-sectional view of a permanent magnet type rotary electric machine according to an embodiment
- FIG. 2 is a cross-sectional view showing a part of the rotor in an enlarged manner
- FIG. 3 is a perspective view showing the rotor.
- the rotary electric machine 10 is, for example, an inner rotor type rotary electric machine, and has an annular or cylindrical stator 12 supported by a fixed frame (not shown), and a central axis C inside the stator. And a rotor 14 rotatably supported coaxially with the stator 12.
- the rotary electric machine 10 is suitably applied to, for example, a drive motor or a generator in a hybrid vehicle (HEV) or an electric vehicle (EV).
- HEV hybrid vehicle
- EV electric vehicle
- the stator 12 includes a cylindrical stator core 16 and an armature winding 18 wound around the stator core 16.
- the stator core 16 is configured by laminating a large number of annular magnetic steel plates such as a magnetic material such as silicon steel in a concentric manner.
- a plurality of slots 20 are formed in the inner peripheral portion of the stator core 16. The plurality of slots 20 are arranged at equal intervals in the circumferential direction. Each slot 20 opens in the inner circumferential surface of the stator core 16 and extends radially from the inner circumferential surface. Each slot 20 extends over the entire axial length of the stator core 16.
- the inner peripheral portion of the stator core 16 constitutes a plurality of (for example, 48 in the present embodiment) stator teeth 21 facing the rotor 14.
- An armature winding 18 is embedded in the plurality of slots 20 and wound around each stator tooth 21. By passing a current through the armature winding 18, a predetermined flux linkage is formed on the stator 12 (the stator teeth 21).
- the rotor 14 is fixed to a cylindrical shaft (rotary shaft) 22 rotatably supported at its both ends by bearings (not shown) and substantially at the axial center of the shaft 22
- a cylindrical rotor core 24 and a plurality of permanent magnets 26 embedded in the rotor core 24 are provided.
- the rotor 14 is coaxially disposed inside the stator 12 with a slight gap. That is, the outer peripheral surface of the rotor 14 faces the inner peripheral surface of the stator 12 with a slight gap.
- the rotor core 24 has an inner hole 25 formed coaxially with the central axis C.
- the shaft 22 is inserted and fitted in the bore 25 and extends coaxially with the rotor core 24.
- the rotor core 24 is configured as a laminated body in which a large number of magnetic materials, for example, annular electromagnetic steel plates 24 a such as silicon steel, are concentrically stacked.
- the rotor 14 is set to a plurality of magnetic poles, for example, eight poles.
- an axis extending radially and radially through the center of each magnetic pole relative to the central axis C is electrically and magnetically 90 ° with respect to the d axis (magnetic pole central axis) and the d axis.
- the spaced apart axes are referred to as the q-axis.
- the direction in which the flux linkage formed by the stator 12 easily flows is referred to as the q-axis.
- the d axis and the q axis are provided alternately in the circumferential direction of the rotor core 24 and in a predetermined phase.
- the one magnetic pole portion of the rotor core 24 refers to a region between q axes (a circumferential angle region of 1 ⁇ 8 circumference). For this reason, the rotor core 24 is configured to have eight poles (magnetic poles). The circumferential center of one magnetic pole is the d axis.
- embedded holes 34 magnet embedded holes having a shape corresponding to the shape of permanent magnet 26 are formed on both sides of each d axis, and a line Is located in Permanent magnets 26 are respectively disposed in the embedded holes 34.
- Each embedding hole 34 extends through the rotor core 24 in the axial direction.
- the embedded holes 34 have a substantially rectangular cross-sectional shape and are each inclined with respect to the d-axis.
- the two embedded holes 34 are arranged, for example, substantially in a V-shape. That is, the inner circumferential ends of the two embedding holes 34 are respectively adjacent to the d-axis and face each other with a slight gap.
- a narrow magnetic path narrowing portion (bridge portion) 36 is formed between the inner peripheral side ends of the two embedded holes 34.
- the outer circumferential ends of the two embedded holes 34 are spaced apart from the d-axis along the circumferential direction of the rotor core 24 and located near the outer circumferential surface of the rotor core 24 and near the q-axis. Thereby, the end on the outer peripheral side of the embedded hole 34 is opposed to the outer peripheral end of the embedded hole 34 of the adjacent magnetic pole with the q axis interposed therebetween.
- a narrow magnetic path narrowing portion (bridge portion) 38 is formed between the outer peripheral side end of each embedded hole 34 and the outer peripheral edge of the rotor core 24.
- the two embedding holes 34 are arranged such that the distance from the d-axis gradually increases from the inner circumferential end toward the outer circumferential end.
- each embedded hole 34 has a rectangular loading area 34 a corresponding to the cross-sectional shape of the permanent magnet 26 and the longitudinal direction of this loading area 34 a (direction perpendicular to the magnetization direction of the permanent magnet 26).
- Two air gaps inner space side space 34b and outer space side space 34c) extending to both sides, and a pair of protruding into the embedded hole 34 from the inner peripheral end face of the embedded hole 34 at both ends in the longitudinal direction of the loading region 34a.
- a locking projection 34d a locking projection 34d.
- the inner space 34 b and the outer space 34 c function as a flux barrier that suppresses the leakage of magnetic flux from the longitudinal ends of the permanent magnet 26 to the rotor core 24.
- a plurality of air gap holes (cavity portions) 30 are formed in the rotor core 24.
- the air holes 30 extend through the rotor core 24 in the axial direction, respectively.
- the air gap holes 30 are located approximately at the radial center of the rotor core 24 on the q-axis, respectively, and are provided between two embedded holes 34 of adjacent magnetic poles.
- the void hole 30 has a polygonal, for example, triangular cross-sectional shape.
- the cross section of the air gap hole 30 has one side 30a orthogonal to the q-axis, and two sides 30b and 30c facing each other at intervals in the buried hole 34.
- Each air gap hole 30 functions as a flux barrier that makes it difficult to pass the magnetic flux, and regulates the flow of the interlinking magnetic flux of the stator 12 and the flow of the magnetic flux of the permanent magnet 26. Further, by forming the air gap hole 30, the weight reduction of the rotor core 24 can be achieved.
- the permanent magnet 26 is loaded in the respective embedding holes 34 and embedded in the rotor core 24.
- the permanent magnet 26 is formed in, for example, an elongated flat plate having a rectangular cross section, and has a length L1 substantially equal to the axial length of the rotor core 24.
- the permanent magnet 26 may be configured by combining a plurality of divided magnets in the axial direction (longitudinal direction), in which case the total length of the plurality of magnets is approximately equal to the axial length of the rotor core 24 It is formed in the same way.
- Each permanent magnet 26 is embedded over substantially the entire length of the rotor core 24.
- the magnetization direction of the permanent magnet 26 is orthogonal to the front and back surfaces of the permanent magnet 26.
- the permanent magnet 26 is loaded in the loading area 34 a of the embedded hole 34 and fixed to the rotor core 24 by an adhesive or the like. Further, in the permanent magnet 26, a pair of corner portions respectively abut on the locking convex portion 34d. Thereby, the permanent magnet 26 is positioned in the loading area 34a.
- Two permanent magnets 26 located on both sides of each d-axis are arranged substantially in a V-shape. That is, the two permanent magnets 26 are arranged such that the distance from the d-axis gradually increases from the inner circumferential end toward the outer circumferential end.
- Two permanent magnets 26 located on both sides of each d axis that is, two permanent magnets 26 constituting one magnetic pole, are arranged such that the magnetization directions are the same.
- two permanent magnets 26 located on both sides of each q axis are arranged such that the magnetization directions are opposite to each other.
- the rotary electric machine 10 is a single layer distributed winding with eight poles (four pole pairs) and 48 slots, in which the front and back of the N pole and the S pole of the permanent magnet 26 are alternately arranged for each adjacent magnetic pole 40.
- the distance between the outer peripheral side air gaps 34c of two adjacent magnetic poles is W1
- the distance between the air gap holes 30 and the loading region 34a of the embedded holes 34 is W2
- the inner peripheries of the air gap holes 30 and the embedded holes 34 Let W3 be the distance from the side air gap 34b, and W4 be the distance between the shaft 22, ie, the inner hole 25 of the rotor core 24 and the inner space 34b of the embedded hole 34.
- the rotor core 24 is formed to satisfy the relationship of W1 ⁇ W2, W1 ⁇ W3, and W1 ⁇ W4.
- the interval W1 is the narrowest and forms the narrowest magnetic path.
- W2 ⁇ W4 and W3 ⁇ W4, and a magnetic path with the widest distance W4 is formed between the inner space 34b of the embedded hole 34 and the inner hole 25.
- the intervals W2 and W3 may be either W2 ⁇ W3 or W3 ⁇ W2, and the width of the magnetic path formed between the embedded hole 34 and the air gap hole 30 is larger than the interval W1 and larger than the interval W4. It should be small.
- the rotary electric machine 10 when the armature winding 18 is energized, the flux linkage from the armature winding 18 and the generated magnetic field of the permanent magnet 26 The interaction causes the rotor 14 to rotate about the shaft 22. In addition to the magnet torque caused by the attractive force and the repulsive force generated between the stator 12 and the permanent magnet 26, the rotary electric machine 10 uses the total torque of the reluctance torque to minimize the magnetic path through which the magnetic flux passes. It is rotationally driven. The rotary electric machine 10 can output electrical energy to be supplied as electrical energy as mechanical energy from the shaft 22 integrally rotating with the rotor 14.
- the intervals W1, W2, W3 and W4 of each part of the rotor 14 are respectively magnetic flux Corresponds to the width of the magnetic path through which By setting these intervals to W1 ⁇ W2, W1 ⁇ W2 and W1 ⁇ W4, that is, by narrowing the interval W1 of the outer peripheral side air gaps 34c of the embedded holes 34 of the adjacent magnetic poles 40, the magnetic path of this portion The width of the As a result, the flow of the magnetic flux can be restricted, the leakage of the magnetic flux to the adjacent magnetic pole can be prevented, and the magnetic flux can efficiently flow in the magnetic path on the magnetic pole central axis (d axis) side.
- the magnetic flux flowing from the armature winding 18 into the rotor 14 and the magnetic flux of the permanent magnet 26 can effectively contribute to torque generation, and torque characteristics of the rotary electric machine can be improved. Furthermore, the weight of the rotor core 24 can be reduced and the weight reduction of the rotary electric machine 10 can be contributed by providing a plurality of the air gaps 30 to set the above-described interval, that is, the magnetic path width. By setting the intervals W1 ⁇ W2, W1 ⁇ W2 and W1 ⁇ W4, the substantially triangular air gap 30 can be maximized while minimizing the reduction in torque due to the reduction in the q-axis magnetic flux. As described above, according to the present embodiment, a permanent magnet type rotary electric machine capable of reducing the weight while maintaining the torque characteristics can be obtained.
- the present invention is not limited to the above-described embodiment as it is, and at the implementation stage, the constituent elements can be modified and embodied without departing from the scope of the invention.
- various inventions can be formed by appropriate combinations of a plurality of constituent elements disclosed in the above embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, components in different embodiments may be combined as appropriate.
- the number of magnetic poles of the rotor, the size, the shape, and the like are not limited to the above-described embodiment, and can be variously changed according to the design.
- the cross-sectional shape of the air gap hole 30 is not limited to a triangle, and various shapes can be selected.
- the air gap hole 30 may be a hole having a pentagonal cross sectional shape.
- the void hole 30 may have a shape having at least two sides 30 a and 30 b facing each other at predetermined intervals in the embedding hole 34.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
This rotary electric machine is provided with a stator (12) and a rotor (14). The rotor comprises a rotor iron core (24) and multiple permanent magnets (26) embedded in the rotor iron core and forming multiple magnetic poles. The rotor iron core comprises two embedding holes (34) which are provided on both sides of each magnetic pole center axis (d) and in which the permanent magnets are loaded, and multiple air gaps (30) which are provided between adjacent magnetic pole center axes and which face the embedding holes at an interval. Defining W1 as the interval between the outer periphery-side air gap (34c) of an embedding hole and the outer periphery-side air gap (34c) of the adjacent magnetic pole, W2 as the interval between the air gap and the loading region of the embedding hole, W3 as the interval between the air gap and the inner periphery-side air gap (34b) of the embedding hole, and W4 as the interval between the inner hole of the rotor iron core and the inner periphery-side air gap (34b), the rotor iron core is formed such that W1 ≤ W2, W1 ≤ W3 and W1 ≤ W4.<u> <b/> </u> <u> <b/> </u>
Description
この発明の実施形態は、回転子に永久磁石が設けられた回転電機に関する。
Embodiments of the present invention relate to a rotating electrical machine in which permanent magnets are provided on a rotor.
近年、永久磁石の目覚しい研究開発により、高磁気エネルギ積の永久磁石が開発されている。このような永久磁石を用いた永久磁石型の回転電機が電車や自動車の電動機あるいは発電機として適用されつつある。通常、永久磁石型の回転電機は、円筒状の固定子と、この固定子の内側に回転自在に支持された円柱形状の回転子と、を備えている。回転子は、回転子鉄心と、この回転子鉄心内に埋め込まれた複数の永久磁石と、を備えている。
In recent years, high magnetic energy product permanent magnets have been developed through remarkable research and development of permanent magnets. A permanent magnet type rotary electric machine using such a permanent magnet is being applied as a motor or a generator of a train or a car. In general, a permanent magnet type rotary electric machine includes a cylindrical stator and a cylindrical rotor rotatably supported inside the stator. The rotor comprises a rotor core and a plurality of permanent magnets embedded in the rotor core.
外周面側に向かって開くV字形となるように永久磁石を回転子内に配置することにより、マグネットトルクに加えて、リラクタンストルクを利用できる磁気回路を形成する永久磁石型の回転電機が提案されている。
A permanent magnet type rotary electric machine has been proposed that forms a magnetic circuit that can use reluctance torque in addition to magnet torque by arranging permanent magnets in the rotor so as to form a V shape that opens toward the outer peripheral surface side. ing.
移動体の駆動源として用いられる回転電機では、取り付けスペースが小さく、限られた空間の中で高トルク、高出力化することが要求される。更に、同じトルクであれば、より軽量であることが望まれている。
In a rotating electrical machine used as a drive source of a moving body, a mounting space is small, and it is required to achieve high torque and high output in a limited space. Furthermore, it is desirable to be lighter if the torque is the same.
この発明は以上の点に鑑みなされたもので、その課題は、トルク特性を維持しつつ重量の低減が可能な永久磁石型の回転電機を提供することにある。
The present invention has been made in view of the above points, and its object is to provide a permanent magnet type rotary electric machine capable of reducing its weight while maintaining torque characteristics.
実施形態によれば、回転電機は、固定子鉄心および電機子巻線を有する固定子と、中心軸線の回りで回転自在なシャフトと、前記シャフトに同軸的に固定され、円周方向に並ぶ複数の磁極を有する回転子鉄心と、前記回転子鉄心に埋設され前記磁極ごとに配置された複数の永久磁石と、を有する回転子と、を備えている。前記回転子鉄心は、前記中心軸線と同軸的に形成され前記シャフトが嵌合される内孔と、それぞれ前記中心軸線に対して放射方向に延び前記磁極の中心を通る複数の磁極中心軸と、前記回転子鉄心の円周方向において前記磁極中心軸の両側に設けられ、それぞれ前記永久磁石が装填された2つの埋め込み孔と、それぞれ隣合う前記磁極の間に設けられ、間隔を置いて前記埋め込み孔に対向する複数の空隙孔と、を有している。埋め込み孔の各々は、前記永久磁石が装填された装填領域と、前記永久磁石の磁化方向と直交する方向において前記永久磁石の内周側と外周側とにそれぞれ延出する内周側空隙および外周側空隙と、を含み、前記2つの埋め込み孔の内周側空隙は、前記磁極中心軸を挟んで互いに対向して位置し、前記2つの埋め込み孔の外周側空隙は、前記磁極中心軸から離間し、隣の磁極の埋め込み孔の外周側空隙に隣接対向して位置している。前記埋め込み孔の外周側空隙と隣の磁極の埋め込み孔の外周側空隙との間隔をW1、前記空隙孔と前記埋め込み孔の装填領域との間隔をW2、前記空隙孔と前記埋め込み孔の内周側空隙との間隔をW3、前記回転子鉄心の内孔と前記埋め込み孔の内周側空隙との間隔をW4とした場合、前記回転子鉄心は、W1≦W2、W1≦W3、W1≦W4に形成されている。
According to an embodiment, the rotating electrical machine includes a stator having a stator core and an armature winding, a shaft rotatable around a central axis, and a plurality of the shaft coaxially fixed to the shaft and arranged in the circumferential direction. And a rotor having a plurality of permanent magnets embedded in the rotor core and disposed for each of the magnetic poles. The rotor core has an inner hole coaxially formed with the central axis and into which the shaft is fitted, and a plurality of magnetic pole central axes extending radially with respect to the central axis and passing through the centers of the magnetic poles. It is provided on two sides of the magnetic pole central axis in the circumferential direction of the rotor core, and is provided between two embedded holes respectively loaded with the permanent magnets and the adjacent magnetic poles and spaced apart from each other. And a plurality of void holes facing the holes. Each of the embedded holes has an inner circumferential space and an outer circumferential surface extending to the inner circumferential side and the outer circumferential side of the permanent magnet in the loading region in which the permanent magnet is loaded and in the direction orthogonal to the magnetization direction of the permanent magnet. And the inner peripheral side gaps of the two embedded holes are located opposite to each other with the magnetic pole central axis interposed therebetween, and the outer peripheral side gaps of the two embedded holes are separated from the magnetic pole central axis And located adjacent to and adjacent to the outer circumferential air gap of the embedded hole of the adjacent magnetic pole. The gap between the outer periphery of the buried hole and the outer gap of the buried hole of the adjacent magnetic pole is W1, the gap between the gap and the loading region of the buried hole is W2, the inner periphery of the gap and the buried hole Assuming that the distance from the air gap is W3 and the distance between the inner hole of the rotor core and the inner air gap of the embedded hole is W4, the rotor core is W1 ≦ W2, W1 ≦ W3, W1 ≦ W4. Is formed.
以下に、図面を参照しながら、種々の実施形態について説明する。なお、実施形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施形態とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。
Hereinafter, various embodiments will be described with reference to the drawings. In addition, the same code | symbol shall be attached | subjected to a common structure through embodiment, and the overlapping description is abbreviate | omitted. In addition, each drawing is a schematic view for promoting the embodiment and the understanding thereof, and there are places where the shape, size, ratio, etc. are different from those of the actual device, but referring to the following description and known techniques. The design can be changed as appropriate.
図1は、実施形態に係る永久磁石型の回転電機の断面図、図2は、回転子の一部を拡大して示す断面図、図3は、回転子を示す斜視図である。
図1に示すように、回転電機10は、例えば、インナーロータ型の回転電機として構成され、図示しない固定枠に支持された環状あるいは円筒状の固定子12と、固定子の内側に中心軸線Cの回りで回転自在に、かつ固定子12と同軸的に支持された回転子14と、を備えている。回転電機10は、例えば、ハイブリッド自動車(HEV)や電気自動車(EV)において、駆動モータあるいは発電機に好適に適用される。 FIG. 1 is a cross-sectional view of a permanent magnet type rotary electric machine according to an embodiment, FIG. 2 is a cross-sectional view showing a part of the rotor in an enlarged manner, and FIG. 3 is a perspective view showing the rotor.
As shown in FIG. 1, the rotaryelectric machine 10 is, for example, an inner rotor type rotary electric machine, and has an annular or cylindrical stator 12 supported by a fixed frame (not shown), and a central axis C inside the stator. And a rotor 14 rotatably supported coaxially with the stator 12. The rotary electric machine 10 is suitably applied to, for example, a drive motor or a generator in a hybrid vehicle (HEV) or an electric vehicle (EV).
図1に示すように、回転電機10は、例えば、インナーロータ型の回転電機として構成され、図示しない固定枠に支持された環状あるいは円筒状の固定子12と、固定子の内側に中心軸線Cの回りで回転自在に、かつ固定子12と同軸的に支持された回転子14と、を備えている。回転電機10は、例えば、ハイブリッド自動車(HEV)や電気自動車(EV)において、駆動モータあるいは発電機に好適に適用される。 FIG. 1 is a cross-sectional view of a permanent magnet type rotary electric machine according to an embodiment, FIG. 2 is a cross-sectional view showing a part of the rotor in an enlarged manner, and FIG. 3 is a perspective view showing the rotor.
As shown in FIG. 1, the rotary
固定子12は、円筒状の固定子鉄心16と固定子鉄心16に巻き付けられた電機子巻線18とを備えている。固定子鉄心16は、磁性材、例えば、ケイ素鋼などの円環状の電磁鋼板を多数枚、同芯状に積層して構成されている。固定子鉄心16の内周部には、複数のスロット20が形成されている。複数のスロット20は、円周方向に等間隔を置いて並んでいる。各スロット20は、固定子鉄心16の内周面に開口し、この内周面から放射方向に延出している。また、各スロット20は、固定子鉄心16の軸方向の全長に亘って延在している。複数のスロット20を形成することにより、固定子鉄心16の内周部は、回転子14に面する複数(例えば、本実施形態では48個)の固定子ティース21を構成している。複数のスロット20に電機子巻線18が埋め込まれ、各固定子ティース21に巻き付けられている。電機子巻線18に電流を流すことにより、固定子12(固定子ティース21)に所定の鎖交磁束が形成される。
The stator 12 includes a cylindrical stator core 16 and an armature winding 18 wound around the stator core 16. The stator core 16 is configured by laminating a large number of annular magnetic steel plates such as a magnetic material such as silicon steel in a concentric manner. A plurality of slots 20 are formed in the inner peripheral portion of the stator core 16. The plurality of slots 20 are arranged at equal intervals in the circumferential direction. Each slot 20 opens in the inner circumferential surface of the stator core 16 and extends radially from the inner circumferential surface. Each slot 20 extends over the entire axial length of the stator core 16. By forming the plurality of slots 20, the inner peripheral portion of the stator core 16 constitutes a plurality of (for example, 48 in the present embodiment) stator teeth 21 facing the rotor 14. An armature winding 18 is embedded in the plurality of slots 20 and wound around each stator tooth 21. By passing a current through the armature winding 18, a predetermined flux linkage is formed on the stator 12 (the stator teeth 21).
図1および図3に示すように、回転子14は、両端が図示しない軸受により回転自在に支持された円柱形状のシャフト(回転軸)22と、このシャフト22の軸方向ほぼ中央部に固定された円筒形状の回転子鉄心24と、回転子鉄心24内に埋め込まれた複数の永久磁石26と、を有している。回転子14は、固定子12の内側に僅かな隙間を置いて同軸的に配置されている。すなわち、回転子14の外周面は、僅かな隙間をおいて、固定子12の内周面に対向している。回転子鉄心24は中心軸線Cと同軸的に形成された内孔25を有している。シャフト22は内孔25に挿通および嵌合され、回転子鉄心24と同軸的に延在している。回転子鉄心24は、磁性材、例えば、ケイ素鋼などの円環状の電磁鋼板24aを多数枚、同芯状に積層した積層体として構成されている。
As shown in FIG. 1 and FIG. 3, the rotor 14 is fixed to a cylindrical shaft (rotary shaft) 22 rotatably supported at its both ends by bearings (not shown) and substantially at the axial center of the shaft 22 A cylindrical rotor core 24 and a plurality of permanent magnets 26 embedded in the rotor core 24 are provided. The rotor 14 is coaxially disposed inside the stator 12 with a slight gap. That is, the outer peripheral surface of the rotor 14 faces the inner peripheral surface of the stator 12 with a slight gap. The rotor core 24 has an inner hole 25 formed coaxially with the central axis C. The shaft 22 is inserted and fitted in the bore 25 and extends coaxially with the rotor core 24. The rotor core 24 is configured as a laminated body in which a large number of magnetic materials, for example, annular electromagnetic steel plates 24 a such as silicon steel, are concentrically stacked.
本実施形態において、回転子14は、複数磁極、例えば、8極に設定されている。回転子鉄心24において、中心軸線Cに対して径方向あるいは放射方向に各磁極の中心を通って延びる軸をd軸(磁極中心軸)、およびd軸に対して電気的、磁気的に90°離間した軸をq軸と称する。ここでは、固定子12によって形成される鎖交磁束の流れ易い方向をq軸と称する。d軸およびq軸は、回転子鉄心24の円周方向に交互に、かつ、所定の位相で設けられている。回転子鉄心24の1磁極分とは、q軸間の領域(1/8周の周角度領域)をいう。このため、回転子鉄心24は、8極(磁極)に構成されている。1磁極のうちの周方向中央がd軸となる。
In the present embodiment, the rotor 14 is set to a plurality of magnetic poles, for example, eight poles. In the rotor core 24, an axis extending radially and radially through the center of each magnetic pole relative to the central axis C is electrically and magnetically 90 ° with respect to the d axis (magnetic pole central axis) and the d axis. The spaced apart axes are referred to as the q-axis. Here, the direction in which the flux linkage formed by the stator 12 easily flows is referred to as the q-axis. The d axis and the q axis are provided alternately in the circumferential direction of the rotor core 24 and in a predetermined phase. The one magnetic pole portion of the rotor core 24 refers to a region between q axes (a circumferential angle region of 1⁄8 circumference). For this reason, the rotor core 24 is configured to have eight poles (magnetic poles). The circumferential center of one magnetic pole is the d axis.
図1および図2に示すように、回転子鉄心24には、1磁極ごとに、2つの永久磁石26が埋設されている。回転子鉄心24の円周方向において、各d軸の両側に、永久磁石26の形状に対応した形状の磁石埋め込み孔(以下、埋め込み孔と称する)34が形成され、d軸に対して線対象に配置されている。これらの埋め込み孔34内に永久磁石26がそれぞれ配置されている。
As shown in FIGS. 1 and 2, two permanent magnets 26 are embedded in the rotor core 24 for each magnetic pole. In the circumferential direction of rotor core 24, magnet embedded holes (hereinafter referred to as embedded holes) 34 having a shape corresponding to the shape of permanent magnet 26 are formed on both sides of each d axis, and a line Is located in Permanent magnets 26 are respectively disposed in the embedded holes 34.
各埋め込み孔34は、回転子鉄心24を軸方向に貫通して延びている。埋め込み孔34は、ほぼ矩形の断面形状を有し、それぞれd軸に対して傾斜している。回転子鉄心24の中心軸線Cと直交する断面でみた場合、2つの埋め込み孔34は、例えば、ほぼV字状に並んで配置されている。すなわち、2つの埋め込み孔34の内周側の端はそれぞれd軸に隣接し、僅かな隙間をおいて互いに対向している。回転子鉄心24において、2つの埋め込み孔34の内周側端の間に、幅の狭い磁路狭隘部(ブリッジ部)36が形成されている。2つの埋め込み孔34の外周側の端は、回転子鉄心24の円周方向に沿ってd軸から離間し、回転子鉄心24の外周面の近傍およびq軸の近傍に位置している。これにより、埋め込み孔34の外周側の端は、隣合う磁極の埋め込み孔34の外周側端と、q軸を挟んで対向している。回転子鉄心24において、各埋め込み孔34の外周側端と回転子鉄心24の外周縁との間に幅の狭い磁路狭隘部(ブリッジ部)38が形成されている。このように、2つの埋め込み孔34は、内周側端から外周側端に向かうに従って、d軸からの距離が徐々に広がるように配置されている。
Each embedding hole 34 extends through the rotor core 24 in the axial direction. The embedded holes 34 have a substantially rectangular cross-sectional shape and are each inclined with respect to the d-axis. When viewed in a cross section orthogonal to the central axis C of the rotor core 24, the two embedded holes 34 are arranged, for example, substantially in a V-shape. That is, the inner circumferential ends of the two embedding holes 34 are respectively adjacent to the d-axis and face each other with a slight gap. In the rotor core 24, a narrow magnetic path narrowing portion (bridge portion) 36 is formed between the inner peripheral side ends of the two embedded holes 34. The outer circumferential ends of the two embedded holes 34 are spaced apart from the d-axis along the circumferential direction of the rotor core 24 and located near the outer circumferential surface of the rotor core 24 and near the q-axis. Thereby, the end on the outer peripheral side of the embedded hole 34 is opposed to the outer peripheral end of the embedded hole 34 of the adjacent magnetic pole with the q axis interposed therebetween. In the rotor core 24, a narrow magnetic path narrowing portion (bridge portion) 38 is formed between the outer peripheral side end of each embedded hole 34 and the outer peripheral edge of the rotor core 24. Thus, the two embedding holes 34 are arranged such that the distance from the d-axis gradually increases from the inner circumferential end toward the outer circumferential end.
図2に示すように、各埋め込み孔34は、永久磁石26の断面形状に対応した矩形状の装填領域34aと、この装填領域34aの長手方向(永久磁石26の磁化方向に垂直な方向)の両側に延出する2つの空隙(内周側空隙34bおよび外周側空隙34c)と、更に、装填領域34aの長手方向両端において埋め込み孔34の内周側端面から埋め込み孔34内に突出した一対の係止凸部34dと、を有している。内周側空隙34bおよび外周側空隙34cは、永久磁石26の長手方向両端部から回転子鉄心24への磁束漏れを抑制するフラックスバリアとして機能する。
As shown in FIG. 2, each embedded hole 34 has a rectangular loading area 34 a corresponding to the cross-sectional shape of the permanent magnet 26 and the longitudinal direction of this loading area 34 a (direction perpendicular to the magnetization direction of the permanent magnet 26). Two air gaps (inner space side space 34b and outer space side space 34c) extending to both sides, and a pair of protruding into the embedded hole 34 from the inner peripheral end face of the embedded hole 34 at both ends in the longitudinal direction of the loading region 34a. And a locking projection 34d. The inner space 34 b and the outer space 34 c function as a flux barrier that suppresses the leakage of magnetic flux from the longitudinal ends of the permanent magnet 26 to the rotor core 24.
回転子鉄心24に複数の空隙孔(空洞部)30が形成されている。空隙孔30は、それぞれ回転子鉄心24を軸方向に貫通して延びている。空隙孔30は、それぞれq軸上で、回転子鉄心24の径方向ほぼ中央に位置し、隣合う磁極の2つ埋め込み孔34の間に設けられている。空隙孔30は、多角形、例えば、三角形の断面形状を有している。空隙孔30の断面は、q軸に直交する一辺30aと、それぞれ埋め込み孔34に間隔を置いて対向する2辺30b、30cと、を有している。各空隙孔30は、磁束を通り難くするフラックスバリアとして機能し、固定子12の鎖交磁束の流れや永久磁石26の磁束の流れを規制する。また、空隙孔30を形成することにより、回転子鉄心24の軽量化を図ることができる。
A plurality of air gap holes (cavity portions) 30 are formed in the rotor core 24. The air holes 30 extend through the rotor core 24 in the axial direction, respectively. The air gap holes 30 are located approximately at the radial center of the rotor core 24 on the q-axis, respectively, and are provided between two embedded holes 34 of adjacent magnetic poles. The void hole 30 has a polygonal, for example, triangular cross-sectional shape. The cross section of the air gap hole 30 has one side 30a orthogonal to the q-axis, and two sides 30b and 30c facing each other at intervals in the buried hole 34. Each air gap hole 30 functions as a flux barrier that makes it difficult to pass the magnetic flux, and regulates the flow of the interlinking magnetic flux of the stator 12 and the flow of the magnetic flux of the permanent magnet 26. Further, by forming the air gap hole 30, the weight reduction of the rotor core 24 can be achieved.
図2および図3に示すように、永久磁石26は、各埋め込み孔34に装填され、回転子鉄心24に埋め込まれている。永久磁石26は、例えば、横断面が矩形状の細長い平板状に形成され、回転子鉄心24の軸方向長さとほぼ等しい長さL1を有している。永久磁石26は、軸方向(長手方向)に複数に分割された磁石を組み合わせて構成されてもよく、この場合、複数の磁石の合計の長さが回転子鉄心24の軸方向長さとほぼ等しくなうように形成される。各永久磁石26は回転子鉄心24のほぼ全長に亘って埋め込まれている。永久磁石26の磁化方向は、永久磁石26の表面および裏面と直交する方向としている。
As shown in FIGS. 2 and 3, permanent magnets 26 are loaded in the respective embedding holes 34 and embedded in the rotor core 24. The permanent magnet 26 is formed in, for example, an elongated flat plate having a rectangular cross section, and has a length L1 substantially equal to the axial length of the rotor core 24. The permanent magnet 26 may be configured by combining a plurality of divided magnets in the axial direction (longitudinal direction), in which case the total length of the plurality of magnets is approximately equal to the axial length of the rotor core 24 It is formed in the same way. Each permanent magnet 26 is embedded over substantially the entire length of the rotor core 24. The magnetization direction of the permanent magnet 26 is orthogonal to the front and back surfaces of the permanent magnet 26.
永久磁石26は、埋め込み孔34の装填領域34aに装填され、接着剤等により回転子鉄心24に固定されている。更に、永久磁石26は、一対の角部が係止凸部34dにそれぞれ当接している。これにより、永久磁石26は、装填領域34a内に位置決めされている。各d軸の両側に位置する2つの永久磁石26は、ほぼV字状に並んで配置されている。すなわち、2つの永久磁石26は、内周側端から外周側端に向かうに従って、d軸からの距離が徐々に広がるように配置されている。
The permanent magnet 26 is loaded in the loading area 34 a of the embedded hole 34 and fixed to the rotor core 24 by an adhesive or the like. Further, in the permanent magnet 26, a pair of corner portions respectively abut on the locking convex portion 34d. Thereby, the permanent magnet 26 is positioned in the loading area 34a. Two permanent magnets 26 located on both sides of each d-axis are arranged substantially in a V-shape. That is, the two permanent magnets 26 are arranged such that the distance from the d-axis gradually increases from the inner circumferential end toward the outer circumferential end.
各d軸の両側に位置する2つの永久磁石26、すなわち、1磁極を構成する2つの永久磁石26は、磁化方向が同一となるように配置されている。また、各q軸の両側に位置する2つの永久磁石26は、磁化方向が逆向きとなるように配置されている。複数の永久磁石26を上記のように配置することにより、回転子鉄心24の外周部において各d軸上の領域は1つの磁極40を中心に形成し、各q軸上の領域は磁極間部42を中心に形成している。本実施形態では、回転電機10は、隣接する1磁極40毎に永久磁石26のN極とS極の表裏を交互に配置した、8極(4極対)、48スロットで、単層分布巻で巻線した永久磁石埋め込み型の回転電機を構成している。
Two permanent magnets 26 located on both sides of each d axis, that is, two permanent magnets 26 constituting one magnetic pole, are arranged such that the magnetization directions are the same. In addition, two permanent magnets 26 located on both sides of each q axis are arranged such that the magnetization directions are opposite to each other. By arranging the plurality of permanent magnets 26 as described above, in the outer peripheral portion of the rotor core 24, the region on each d axis is formed around one magnetic pole 40, and the region on each q axis is the interpole portion It is formed around 42. In this embodiment, the rotary electric machine 10 is a single layer distributed winding with eight poles (four pole pairs) and 48 slots, in which the front and back of the N pole and the S pole of the permanent magnet 26 are alternately arranged for each adjacent magnetic pole 40. The permanent magnet embedded type rotating electric machine wound with
図2に示すように、隣合う2つの磁極の外周側空隙34c間の間隔をW1、空隙孔30と埋め込み孔34の装填領域34aとの間隔をW2、空隙孔30と埋め込み孔34の内周側空隙34bとの間隔をW3、更に、シャフト22、すなわち、回転子鉄心24の内孔25と埋め込み孔34の内周側空隙34bとの間隔をW4とする。この場合、回転子鉄心24は、W1≦W2、かつW1≦W3、かつW1≦W4の関係を満たすように形成されている。間隔W1、W2、W3、W4の内、間隔W1が最も狭く、最も狭い磁路を形成している。また、W2≦W4およびW3≦W4であり、埋め込み孔34の内周側空隙34bと内孔25との間に、最も広い間隔W4の磁路が形成されている。なお、間隔W2、W3は、W2≦W3あるいはW3≦W2のいずれでもよく、埋め込み孔34と空隙孔30との間に形成される磁路の幅が、間隔W1よりも大きく、間隔W4よりも小さければよい。
As shown in FIG. 2, the distance between the outer peripheral side air gaps 34c of two adjacent magnetic poles is W1, the distance between the air gap holes 30 and the loading region 34a of the embedded holes 34 is W2, and the inner peripheries of the air gap holes 30 and the embedded holes 34 Let W3 be the distance from the side air gap 34b, and W4 be the distance between the shaft 22, ie, the inner hole 25 of the rotor core 24 and the inner space 34b of the embedded hole 34. In this case, the rotor core 24 is formed to satisfy the relationship of W1 ≦ W2, W1 ≦ W3, and W1 ≦ W4. Of the intervals W1, W2, W3 and W4, the interval W1 is the narrowest and forms the narrowest magnetic path. Further, W2 ≦ W4 and W3 ≦ W4, and a magnetic path with the widest distance W4 is formed between the inner space 34b of the embedded hole 34 and the inner hole 25. The intervals W2 and W3 may be either W2 ≦ W3 or W3 ≦ W2, and the width of the magnetic path formed between the embedded hole 34 and the air gap hole 30 is larger than the interval W1 and larger than the interval W4. It should be small.
上記のように構成された永久磁石型の回転電機10によれば、電機子巻線18に通電することにより、電機子巻線18から発生する鎖交磁束と、永久磁石26の発生磁界との相互作用により、回転子14がシャフト22を中心に回転する。回転電機10は、固定子12と永久磁石26との間に生じる吸引力と反発力に起因するマグネットトルクに加えて、磁束が通過する磁路を最短にしようとするリラクタンストルクとの総合トルクにより回転駆動される。回転電機10は、通電入力する電気的エネルギを、回転子14と一体回転するシャフト22から機械的エネルギとして出力することができる
回転子14の各部の間隔W1、W2、W3、W4は、それぞれ磁束が流れる磁路の幅に相当している。これらの間隔をW1≦W2、W1≦W2、W1≦W4とすることにより、すなわち、隣合う磁極40の埋め込み孔34の外周側空隙34cの間隔W1を最も狭くすることにより、この部分の磁路の幅を最も狭くしている。これにより、磁束の流れを規制し、隣接磁極への磁束漏れを防止し、磁極中心軸(d軸)側の磁路に効率よく磁束を流すことができる。電機子巻線18から回転子14内を流れる磁束および永久磁石26の磁束を有効にトルク発生に寄与させることができ、回転電機のトルク特性向上を図ることが可能となる。更に、上述した間隔、つまり、磁路幅を設定するために空隙孔30を複数設けることにより、回転子鉄心24の重量を低減し、回転電機10の軽量化に貢献することができる。前記間隔をW1≦W2、W1≦W2、W1≦W4とすることにより、q軸の磁束の低下によるトルクの低下を最小限としつつ、略三角形の空隙孔30を最大化することができる。
以上により、本実施形態によれば、トルク特性を維持しつつ重量の低減が可能な永久磁石型の回転電機が得られる。 According to the permanent magnet type rotatingelectrical machine 10 configured as described above, when the armature winding 18 is energized, the flux linkage from the armature winding 18 and the generated magnetic field of the permanent magnet 26 The interaction causes the rotor 14 to rotate about the shaft 22. In addition to the magnet torque caused by the attractive force and the repulsive force generated between the stator 12 and the permanent magnet 26, the rotary electric machine 10 uses the total torque of the reluctance torque to minimize the magnetic path through which the magnetic flux passes. It is rotationally driven. The rotary electric machine 10 can output electrical energy to be supplied as electrical energy as mechanical energy from the shaft 22 integrally rotating with the rotor 14. The intervals W1, W2, W3 and W4 of each part of the rotor 14 are respectively magnetic flux Corresponds to the width of the magnetic path through which By setting these intervals to W1 ≦ W2, W1 ≦ W2 and W1 ≦ W4, that is, by narrowing the interval W1 of the outer peripheral side air gaps 34c of the embedded holes 34 of the adjacent magnetic poles 40, the magnetic path of this portion The width of the As a result, the flow of the magnetic flux can be restricted, the leakage of the magnetic flux to the adjacent magnetic pole can be prevented, and the magnetic flux can efficiently flow in the magnetic path on the magnetic pole central axis (d axis) side. The magnetic flux flowing from the armature winding 18 into the rotor 14 and the magnetic flux of the permanent magnet 26 can effectively contribute to torque generation, and torque characteristics of the rotary electric machine can be improved. Furthermore, the weight of the rotor core 24 can be reduced and the weight reduction of the rotary electric machine 10 can be contributed by providing a plurality of the air gaps 30 to set the above-described interval, that is, the magnetic path width. By setting the intervals W1 ≦ W2, W1 ≦ W2 and W1 ≦ W4, the substantially triangular air gap 30 can be maximized while minimizing the reduction in torque due to the reduction in the q-axis magnetic flux.
As described above, according to the present embodiment, a permanent magnet type rotary electric machine capable of reducing the weight while maintaining the torque characteristics can be obtained.
回転子14の各部の間隔W1、W2、W3、W4は、それぞれ磁束が流れる磁路の幅に相当している。これらの間隔をW1≦W2、W1≦W2、W1≦W4とすることにより、すなわち、隣合う磁極40の埋め込み孔34の外周側空隙34cの間隔W1を最も狭くすることにより、この部分の磁路の幅を最も狭くしている。これにより、磁束の流れを規制し、隣接磁極への磁束漏れを防止し、磁極中心軸(d軸)側の磁路に効率よく磁束を流すことができる。電機子巻線18から回転子14内を流れる磁束および永久磁石26の磁束を有効にトルク発生に寄与させることができ、回転電機のトルク特性向上を図ることが可能となる。更に、上述した間隔、つまり、磁路幅を設定するために空隙孔30を複数設けることにより、回転子鉄心24の重量を低減し、回転電機10の軽量化に貢献することができる。前記間隔をW1≦W2、W1≦W2、W1≦W4とすることにより、q軸の磁束の低下によるトルクの低下を最小限としつつ、略三角形の空隙孔30を最大化することができる。
以上により、本実施形態によれば、トルク特性を維持しつつ重量の低減が可能な永久磁石型の回転電機が得られる。 According to the permanent magnet type rotating
As described above, according to the present embodiment, a permanent magnet type rotary electric machine capable of reducing the weight while maintaining the torque characteristics can be obtained.
なお、この発明は上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化可能である。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
例えば、回転子の磁極数、寸法、形状等は、前述した実施形態に限定されることなく、設計に応じて種々変更可能である。空隙孔30の断面形状は、三角形に限らず、種々の形状を選択可能である。例えば、図4に示すように、空隙孔30は、五角形の断面形状を有する孔としてもよい。空隙孔30は、埋め込み孔34に所定の間隔を置いて対向する少なくとも2辺30a、30bを有する形状であればよい。 The present invention is not limited to the above-described embodiment as it is, and at the implementation stage, the constituent elements can be modified and embodied without departing from the scope of the invention. In addition, various inventions can be formed by appropriate combinations of a plurality of constituent elements disclosed in the above embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, components in different embodiments may be combined as appropriate.
For example, the number of magnetic poles of the rotor, the size, the shape, and the like are not limited to the above-described embodiment, and can be variously changed according to the design. The cross-sectional shape of theair gap hole 30 is not limited to a triangle, and various shapes can be selected. For example, as shown in FIG. 4, the air gap hole 30 may be a hole having a pentagonal cross sectional shape. The void hole 30 may have a shape having at least two sides 30 a and 30 b facing each other at predetermined intervals in the embedding hole 34.
例えば、回転子の磁極数、寸法、形状等は、前述した実施形態に限定されることなく、設計に応じて種々変更可能である。空隙孔30の断面形状は、三角形に限らず、種々の形状を選択可能である。例えば、図4に示すように、空隙孔30は、五角形の断面形状を有する孔としてもよい。空隙孔30は、埋め込み孔34に所定の間隔を置いて対向する少なくとも2辺30a、30bを有する形状であればよい。 The present invention is not limited to the above-described embodiment as it is, and at the implementation stage, the constituent elements can be modified and embodied without departing from the scope of the invention. In addition, various inventions can be formed by appropriate combinations of a plurality of constituent elements disclosed in the above embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, components in different embodiments may be combined as appropriate.
For example, the number of magnetic poles of the rotor, the size, the shape, and the like are not limited to the above-described embodiment, and can be variously changed according to the design. The cross-sectional shape of the
Claims (4)
- 固定子鉄心および電機子巻線を有する固定子と、
中心軸線の回りで回転自在なシャフトと、前記シャフトに同軸的に固定され、円周方向に並ぶ複数の磁極を有する回転子鉄心と、前記回転子鉄心に埋設され前記磁極ごとに配置された複数の永久磁石と、を有する回転子と、を備え、
前記回転子鉄心は、前記中心軸線と同軸的に形成され前記シャフトが嵌合される内孔と、それぞれ前記中心軸線に対して放射方向に延び前記磁極の中心を通る複数の磁極中心軸と、前記回転子鉄心の円周方向において前記磁極中心軸の両側に設けられ、それぞれ前記永久磁石が装填された2つの埋め込み孔と、それぞれ隣合う前記磁極の間に設けられ、間隔を置いて前記埋め込み孔に対向する複数の空隙孔と、を有し、
前記埋め込み孔の各々は、前記永久磁石が装填された装填領域と、前記永久磁石の磁化方向と直交する方向において前記永久磁石の内周側と外周側とにそれぞれ延出する内周側空隙および外周側空隙と、を含み、
前記2つの埋め込み孔の内周側空隙は、前記磁極中心軸を挟んで互いに対向して位置し、前記2つの埋め込み孔の外周側空隙は、前記磁極中心軸から離間し、隣の磁極の埋め込み孔の外周側空隙に隣接対向して位置し、
前記埋め込み孔の外周側空隙と隣の磁極の埋め込み孔の外周側空隙との間隔をW1、前記空隙孔と前記埋め込み孔の装填領域との間隔をW2、前記空隙孔と前記埋め込み孔の内周側空隙との間隔をW3、前記回転子鉄心の内孔と前記埋め込み孔の内周側空隙との間隔をW4とした場合、前記回転子鉄心は、W1≦W2、W1≦W3、W1≦W4に形成されている回転電機。 A stator having a stator core and an armature winding,
A shaft rotatable around a central axis, a rotor core coaxially fixed to the shaft and having a plurality of magnetic poles aligned in a circumferential direction, and a plurality of cores embedded in the rotor core and disposed for each of the magnetic poles A permanent magnet, and a rotor having
The rotor core has an inner hole coaxially formed with the central axis and into which the shaft is fitted, and a plurality of magnetic pole central axes extending radially with respect to the central axis and passing through the centers of the magnetic poles. It is provided on two sides of the magnetic pole central axis in the circumferential direction of the rotor core, and is provided between two embedded holes respectively loaded with the permanent magnets and the adjacent magnetic poles and spaced apart from each other. A plurality of void holes facing the holes;
Each of the embedded holes has a loading region in which the permanent magnet is loaded, an inner circumferential space extending to the inner circumferential side and the outer circumferential side of the permanent magnet in a direction orthogonal to the magnetization direction of the permanent magnet, and An outer circumferential air gap, and
The inner spaces of the two embedded holes are located opposite to each other with the magnetic pole central axis interposed therebetween, and the outer spaces of the two embedded holes are separated from the magnetic pole central axis, and the adjacent magnetic poles are embedded Adjacent to the gap on the outer periphery of the hole
The gap between the outer periphery of the buried hole and the outer gap of the buried hole of the adjacent magnetic pole is W1, the gap between the gap and the loading region of the buried hole is W2, the inner periphery of the gap and the buried hole Assuming that the distance from the air gap is W3 and the distance between the inner hole of the rotor core and the inner air gap of the embedded hole is W4, the rotor core is W1 ≦ W2, W1 ≦ W3, W1 ≦ W4. The rotating electrical machine being formed on. - 前記空隙孔は、それぞれ前記埋め込み孔と間隔を置いて対向する少なくとも2辺を有する断面形状に形成されている請求項1に記載の回転電機。 The rotary electric machine according to claim 1, wherein the air gap hole is formed in a cross-sectional shape having at least two sides facing each other at a distance from the embedded hole.
- 前記各磁極中心軸の両側に設けられた2つの前記埋め込み孔および2つの永久磁石は、前記磁極中心軸に対して線対象に配置され、内周側端から外周側端に向かうに従って、前記磁極中心軸からの距離が徐々に広がるように配置されている請求項1又は2に記載の回転電機。 The two embedded holes and two permanent magnets provided on both sides of each magnetic pole central axis are arranged in line symmetry with respect to the magnetic pole central axis, and the magnetic poles are arranged from the inner peripheral end toward the outer peripheral end The rotating electrical machine according to claim 1, wherein the rotating electrical machine is arranged such that the distance from the central axis gradually increases.
- 前記永久磁石は、矩形の断面形状を有する板状に形成され、前記回転子鉄心の軸方向全長に亘って延在している請求項1から3のいずれか1項に記載の回転電機。 The electric rotating machine according to any one of claims 1 to 3, wherein the permanent magnet is formed in a plate shape having a rectangular cross-sectional shape and extends over the entire axial length of the rotor core.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-159789 | 2017-08-22 | ||
JP2017159789A JP6755840B2 (en) | 2017-08-22 | 2017-08-22 | Rotating machine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019038958A1 true WO2019038958A1 (en) | 2019-02-28 |
Family
ID=65438667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/007317 WO2019038958A1 (en) | 2017-08-22 | 2018-02-27 | Rotary electric machine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6755840B2 (en) |
WO (1) | WO2019038958A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019109714A1 (en) * | 2019-04-12 | 2020-10-15 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Rotor of an electrical machine |
CN113036965A (en) * | 2020-12-31 | 2021-06-25 | 上海大学 | Method for reducing magnetic steel eddy current loss of full neodymium iron boron permanent magnet motor at high speed and motor structure |
WO2022017712A1 (en) * | 2020-07-22 | 2022-01-27 | Valeo Siemens Eautomotive Germany Gmbh | Rotor lamination, laminated rotor core, rotor, electrical machine, and vehicle |
WO2023135693A1 (en) * | 2022-01-13 | 2023-07-20 | 株式会社 東芝 | Rotor and rotating electric machine |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007104888A (en) * | 2005-09-07 | 2007-04-19 | Toshiba Corp | Rotary electric machine |
WO2009069575A1 (en) * | 2007-11-28 | 2009-06-04 | Kabushiki Kaisha Toshiba | Rotary machine rotor |
JP2010178535A (en) * | 2009-01-30 | 2010-08-12 | Toshiba Industrial Products Manufacturing Corp | Rotor of permanent magnet type rotary electric machine and the rotary electric machine |
CN102355071A (en) * | 2011-09-28 | 2012-02-15 | 苏州和鑫电气股份有限公司 | Built-in permanent-magnetic motor rotor and motor comprising same |
JP2013042596A (en) * | 2011-08-16 | 2013-02-28 | Toshiba Corp | Permanent magnet type rotary electric machine and manufacturing method therefor |
JP2016063650A (en) * | 2014-09-18 | 2016-04-25 | 株式会社東芝 | Permanent magnet type electrical rotating machine |
-
2017
- 2017-08-22 JP JP2017159789A patent/JP6755840B2/en active Active
-
2018
- 2018-02-27 WO PCT/JP2018/007317 patent/WO2019038958A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007104888A (en) * | 2005-09-07 | 2007-04-19 | Toshiba Corp | Rotary electric machine |
WO2009069575A1 (en) * | 2007-11-28 | 2009-06-04 | Kabushiki Kaisha Toshiba | Rotary machine rotor |
JP2010178535A (en) * | 2009-01-30 | 2010-08-12 | Toshiba Industrial Products Manufacturing Corp | Rotor of permanent magnet type rotary electric machine and the rotary electric machine |
JP2013042596A (en) * | 2011-08-16 | 2013-02-28 | Toshiba Corp | Permanent magnet type rotary electric machine and manufacturing method therefor |
CN102355071A (en) * | 2011-09-28 | 2012-02-15 | 苏州和鑫电气股份有限公司 | Built-in permanent-magnetic motor rotor and motor comprising same |
JP2016063650A (en) * | 2014-09-18 | 2016-04-25 | 株式会社東芝 | Permanent magnet type electrical rotating machine |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019109714A1 (en) * | 2019-04-12 | 2020-10-15 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Rotor of an electrical machine |
WO2022017712A1 (en) * | 2020-07-22 | 2022-01-27 | Valeo Siemens Eautomotive Germany Gmbh | Rotor lamination, laminated rotor core, rotor, electrical machine, and vehicle |
CN113036965A (en) * | 2020-12-31 | 2021-06-25 | 上海大学 | Method for reducing magnetic steel eddy current loss of full neodymium iron boron permanent magnet motor at high speed and motor structure |
WO2023135693A1 (en) * | 2022-01-13 | 2023-07-20 | 株式会社 東芝 | Rotor and rotating electric machine |
JP7318138B1 (en) * | 2022-01-13 | 2023-07-31 | 株式会社東芝 | Rotors and Rotating Electric Machines |
Also Published As
Publication number | Publication date |
---|---|
JP2019041450A (en) | 2019-03-14 |
JP6755840B2 (en) | 2020-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7535145B2 (en) | Axial air gap-type electric motor | |
CN108352744B (en) | Permanent magnet motor | |
JP5382156B2 (en) | Rotating electric machine | |
WO2019039413A1 (en) | Rotary electric device | |
JP7293371B2 (en) | Rotor of rotary electric machine | |
JP6539004B1 (en) | Rotor and rotating electric machine | |
JP2020022335A (en) | Rotor of dynamo-electric machine | |
WO2013129022A1 (en) | Hybrid excitation-type rotating electric machine | |
WO2019038958A1 (en) | Rotary electric machine | |
US11837919B2 (en) | Rotary electric machine | |
JP6466612B1 (en) | Rotating electric machine | |
KR100680201B1 (en) | Permanent magnet type motor | |
JP4500843B2 (en) | Axial gap type motor | |
CN111466066B (en) | Rotating electrical machine | |
WO2023276514A1 (en) | Rotor, method for manufacturing same, and electric motor | |
JP2020182358A (en) | Rotor of rotating electric machine | |
WO2023132011A1 (en) | Rotor | |
JP2014050253A (en) | Permanent magnet rotary electric machine rotor, and permanent magnet rotary electric machine | |
JP7224986B2 (en) | Rotating electric machine | |
JP2022105865A (en) | Rotor, and rotary electric machine comprising the rotor | |
JP2021048682A (en) | Rotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18849254 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18849254 Country of ref document: EP Kind code of ref document: A1 |