WO2019037787A1 - 具有微结构的透光结构体及具有该透光结构体的灯具 - Google Patents
具有微结构的透光结构体及具有该透光结构体的灯具 Download PDFInfo
- Publication number
- WO2019037787A1 WO2019037787A1 PCT/CN2018/102349 CN2018102349W WO2019037787A1 WO 2019037787 A1 WO2019037787 A1 WO 2019037787A1 CN 2018102349 W CN2018102349 W CN 2018102349W WO 2019037787 A1 WO2019037787 A1 WO 2019037787A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- microstructures
- emitting
- emitting surface
- transmitting structure
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V5/00—Refractors for light sources
- F21V5/04—Refractors for light sources of lens shape
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0035—Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/0036—2-D arrangement of prisms, protrusions, indentations or roughened surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0035—Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/0038—Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0063—Means for improving the coupling-out of light from the light guide for extracting light out both the major surfaces of the light guide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0065—Manufacturing aspects; Material aspects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V23/00—Arrangement of electric circuit elements in or on lighting devices
- F21V23/04—Arrangement of electric circuit elements in or on lighting devices the elements being switches
- F21V23/0442—Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by means of a sensor, e.g. motion or photodetectors
- F21V23/0471—Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by means of a sensor, e.g. motion or photodetectors the sensor detecting the proximity, the presence or the movement of an object or a person
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2103/00—Elongate light sources, e.g. fluorescent tubes
- F21Y2103/10—Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0058—Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
- G02B6/0061—Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
Definitions
- the present invention relates to a luminaire, and more particularly to a light-transmitting structure having a microstructure and a luminaire having the light-transmitting structure.
- a conventional lamp is a lamp body having a lamp cover, and the lamp cover is a light-transmitting structure that is not transparent to decorate, shield the light source, and generate a plurality of rays generated by at least one of the light-emitting members.
- An illumination direction can be provided via the lamp cover.
- the conventional lampshade still has some problems in practical applications. For example, since the conventional lampshade does not have opacity in order to shield the light source, it shields the building material decoration or the backboard decoration located behind the lampshade, such as an art installation, an art exhibition, etc., without visual Penetration, which affects the visual and openness of the overall space.
- the installation cost of the overall luminaire is increased, and excessive heat energy is generated in use, and light spots are easily generated when light is refracted.
- the addition of high-power and a large number of illuminating parts to the luminaire will also cause the luminaire to consume more power, thereby increasing the use cost of the luminaire.
- an object of the present invention is to provide a light-transmitting structure having a microstructure and a lamp having the light-transmitting structure, which can improve the light-emitting rate of the overall lamp and adjust the light-emitting range by structural design. And reduce the generation of light spots.
- the present invention provides a light-transmitting structure having a microstructure for receiving a plurality of light beams, the light-transmitting structure comprising at least: a first light-emitting surface; and a second light-emitting surface corresponding to the light-emitting structure a first light-emitting surface is disposed; and a plurality of microstructures are disposed on the second light-emitting surface; wherein each of the microstructures includes at least a first structural refractive surface and a second structural refractive surface; wherein the plurality of light rays are
- the light traveling direction has a perpendicular interference relationship with the plurality of microstructures, or a non-parallel interference relationship, and a luminous flux received and refracted by each of the first structural refractive surfaces is higher than each of the Another luminous flux received and refracted by the refractive surface of the second structure.
- the vertical interference relationship is that the plurality of microstructures receive and refract the plurality of rays completely or partially vertically
- the non-parallel interference relationship is that the plurality of microstructures are completely non-parallel or partially non-parallel and The plurality of rays are refracted.
- the plurality of microstructures are one or a combination of a V-shaped optical refractive structure, a U-shaped optical refractive structure, and a curved optical refractive structure.
- the spacing between at least one of the two adjacent microstructures of the plurality of microstructures is different from the spacing between at least one other of the plurality of microstructures.
- the spacing between any two adjacent ones of the plurality of microstructures is tapered or tapered along a direction away from the source of the plurality of rays.
- the depth between each of the microstructures and the second light-emitting surface is gradually shallower or deeper along a direction away from the light source of the plurality of rays.
- an acute angle between the first structural refractive surface and the second light-emitting surface in each of the microstructures is smaller than an acute angle between the second structural refractive surface and the second light-emitting surface.
- each of the microstructures is arranged in a continuous, discontinuous or partially continuous arrangement with another adjacent one of the microstructures.
- the light transmitting structure when the light transmitting structure does not receive the plurality of light rays, the light transmitting structure is in a visually penetrating state, and when the plurality of microstructures receive and refract the plurality of light rays, the light transmitting structure In a light state.
- the visually penetrating state refers to at least one object that is visually permeable from the first light-emitting surface to the second light-emitting surface
- the light-emitting state refers to the light-transmitting structure receiving and refracting the light-transmitting structure.
- the plurality of rays of light cause a luminous flux that is transmitted from the first light-emitting surface to be higher than another luminous flux that is transmitted from the second light-emitting surface.
- the material of the light transmissive structure is polycarbonate (PC), acrylonitrile butadiene styrene (ABS resin) or a combination thereof.
- the light transmitting structure is a circular light transmitting structure, a square light transmitting structure, a polygonal light transmitting structure or an irregular shaped light transmitting structure.
- the light transmissive structure is applied to the field of lamps, the field of illumination, the window panel or the display frame.
- the present invention also provides a light-transmitting structure having a microstructure, receiving a plurality of light beams of at least one light-emitting member of a light fixture, the light-transmitting structure body comprising at least: a first light-emitting surface; a second light-emitting surface; a light path between the first light-emitting surfaces is disposed correspondingly; and a plurality of microstructures are disposed on the second light-emitting surface; wherein the light-transmitting structure is when the plurality of microstructures do not receive the plurality of light rays In a visually penetrating state, when the plurality of microstructures receive and refract the plurality of rays, the light-transmitting structure is in a light-emitting state, and a luminous flux of the light refracted from the first light-emitting surface ( The luminous flux is higher than another luminous flux of light refracted from the second light-emitting surface.
- the visually penetrating state is a visually penetrating object located at the second light-emitting surface, wherein the light-emitting state is such that the plurality of microstructures receive and refract the plurality of light rays from the first light-emitting surface The amount of light that is transmitted is higher than the amount of light that is transmitted from the second light-emitting surface.
- the light-transmitting structure is a hollow light-transmitting structure, and the first light-emitting surface and the second light-emitting surface are respectively located on a first light-transmissive plate body and a second light-transmissive plate body; wherein the hollow The second light-emitting surface of the light-transmitting structure includes a second light-emitting inner surface and a second light-emitting outer surface, and the second light-emitting inner surface is closer to the first light-emitting surface than the second light-emitting outer surface, and The plurality of microstructures are disposed on the second light exiting outer surface.
- the light channel is a gap between the second light emitting inner surface and the first light emitting surface for the plurality of light rays to travel.
- the spacing between at least one of the two adjacent microstructures of the plurality of microstructures is different from the spacing between at least one other of the plurality of microstructures.
- the spacing between any two adjacent ones of the plurality of microstructures is tapered or tapered along a direction away from the source of the plurality of rays.
- the depth between each of the microstructures and the second light-emitting outer surface is gradually shallower or deeper along a direction away from the light source of the plurality of rays.
- each of the microstructures includes a first structural refractive surface and a second structural refractive surface; wherein an acute angle between the first structural refractive surface and the second light emitting outer surface is smaller than the second structure An acute angle between the refractive surface and the outer surface of the second light exiting surface.
- the plurality of microstructures receive and refract the plurality of rays, and a portion of the rays are evenly distributed on the second light-emitting surface and are evenly scattered outward.
- the present invention also provides a light-transmitting structure having a microstructure, receiving a plurality of light beams of at least one light-emitting member of a light fixture, the light-transmitting structure body comprising at least: a light-incident surface for receiving the plurality of light beams; a first light-emitting surface on one side of the light-incident surface; a second light-emitting surface on the other side of the light-incident surface, and corresponding to the first light-emitting surface; and a plurality of microstructures, The second light-emitting surface; wherein the plurality of microstructures are configured to receive and refract the plurality of light rays to be respectively emitted from the first light-emitting surface and the second light-emitting surface; wherein, the first light-emitting surface
- the luminous flux of the refracted light is higher than the other luminous flux of the light refracted from the second light-emitting surface.
- the light incident surface is perpendicular to the second light exiting surface such that the plurality of microstructure portions vertically receive and refract the plurality of light beams; or the light incident surface and the second light exiting surface are non-parallel to The plurality of microstructure portions are received and refracted in a non-parallel manner.
- the spacing between any two adjacent ones of the plurality of microstructures is tapered or tapered along a direction away from the light incident surface.
- the depth between each of the microstructures and the second light-emitting surface is shallower or deeper in a direction away from the light-incident surface.
- each of the microstructures includes a first structural refractive surface and a second structural refractive surface; wherein an acute angle between the first structural refractive surface and the second light emitting surface is smaller than the second structural refractive index An acute angle between the face and the second light exiting surface.
- the present invention also provides a light-transmitting structure having a microstructure, receiving a plurality of light beams of at least one light-emitting member of a light fixture, the light-transmitting structure body comprising at least: a light-incident surface for receiving the plurality of light beams; a first light-emitting surface; and a second light-emitting surface having a plurality of microstructures, corresponding to the first light-emitting surface, and a vertical arrangement relationship between the second light-emitting surface and the light-incident surface Or a non-parallel arrangement relationship; wherein the plurality of microstructures are configured to cause a luminous flux of light refracted from the first light-emitting surface to be higher than that refracted from the second light-emitting surface Another luminous flux of light.
- the vertical arrangement relationship is that the second light-emitting surface is perpendicularly adjacent to one side of the light-incident surface, or the non-parallel relationship is that the second light-emitting surface is adjacent to one side of the light-incident surface. And has a non-vertical angle.
- the spacing between any two adjacent ones of the plurality of microstructures is tapered or tapered along a direction away from the light incident surface.
- the second light-emitting surface comprises a second light-emitting inner surface and a second light-emitting outer surface, the second light-emitting inner surface corresponds to the first light-emitting surface, and the plurality of microstructures are disposed on the second light-emitting surface An outer surface; wherein the gap is between the second light-emitting inner surface and the first light-emitting surface for the plurality of light rays to travel.
- the invention also provides a lamp having a light transmitting structure, comprising at least: a lamp body; at least one light emitting member disposed on the lamp body, and generating a plurality of light beams by a control circuit board; and a light transmitting structure
- the light-transmitting structure includes at least a light-incident surface for receiving the plurality of light beams, a first light-emitting surface on one side of the light-incident surface, and a second light-emitting surface.
- the manner of setting is different from the arrangement of at least one other of the plurality of microstructures, such that the plurality of rays received and refracted through the plurality of microstructures refracted from the first light-emitting surface A luminous flux is higher than another luminous flux of light refracted from the second light-emitting surface.
- the plurality of microstructures are any one or a combination of a V-shaped optical refractive structure, a U-shaped optical refractive structure, and a curved optical refractive structure.
- the arrangement is such that the spacing between the two adjacent ones of the plurality of microstructures is tapered or tapered along a position away from the at least one illuminating member.
- the arrangement is such that the depth between each of the microstructures and the second light-emitting surface is shallower or deeper away from the at least one light-emitting member.
- each of the microstructures includes a first structural refractive surface and a second structural refractive surface, wherein an acute angle between the first structural refractive surface and the second light emitting surface is smaller than the An acute angle between the refractive surface of the second structure and the second light exiting surface.
- the arrangement is such that each of the microstructures is arranged in a continuous, discontinuous or partially continuous arrangement with another adjacent one of the microstructures.
- the luminaire main body comprises a joint structure having a guide groove, and the light transmissive structure body is assembled and communicates with the at least one illuminating member by the guide groove.
- the bonding structure has a plurality of heat dissipation fins, and the plurality of heat dissipation fins are located on the same side as the second light extraction surface.
- the luminaire further includes a passive human body infrared sensor (PIR Motion sensor) and a microwave (microwave) sensor electrically connected to the control circuit board, wherein the passive human body infrared ray
- PIR Motion sensor passive human body infrared sensor
- microwave microwave sensor
- the present invention also provides a light-transmitting structure having a microstructure for receiving a plurality of light beams, the light-transmitting structure comprising at least: a first light-emitting surface; and a second light-emitting surface corresponding to the first light-emitting surface And a plurality of microstructures disposed on the second light-emitting surface; wherein each of the microstructures includes at least a first structural refractive surface and a second structural refractive surface; wherein the multiple light rays travel in a direction of light
- the plurality of microstructures have a vertical interference relationship or a non-parallel interference relationship such that the plurality of rays refract light from the first light-emitting surface and the second light-emitting surface, respectively.
- the present invention also provides a light-transmitting structure having a microstructure, receiving a plurality of light beams of at least one light-emitting member of a light fixture, the light-transmitting structure body comprising at least: a first light-emitting surface; a second light-emitting surface; a light path between the first light-emitting surfaces is disposed correspondingly; and a plurality of microstructures are disposed on the second light-emitting surface; wherein the light-transmitting structure is when the plurality of microstructures do not receive the plurality of light rays In a visually penetrating state, when the plurality of microstructures receive and refract the plurality of rays from the first light-emitting surface and the second light-emitting surface, respectively, the light-transmitting structure is in a light-emitting state.
- the present invention also provides a light-transmitting structure having a microstructure, receiving a plurality of light beams of at least one light-emitting member of a light fixture, the light-transmitting structure body comprising at least: a light-incident surface for receiving the plurality of light beams; a first light-emitting surface; and a second light-emitting surface having a plurality of microstructures, corresponding to the first light-emitting surface, and a vertical arrangement relationship between the second light-emitting surface and the light-incident surface Or in a non-parallel relationship.
- the invention also provides a luminaire having a light transmitting structure, comprising at least: a luminaire main body; at least one illuminating member disposed on the luminaire main body, and generating a plurality of light beams by a control circuit board; and a light transmitting structure
- the body is coupled to the luminaire body, and the at least one illuminating member is disposed adjacent to the periphery of the light transmitting structure;
- the light transmitting structure at least includes: a light incident surface for receiving the plurality of light rays; a light-emitting surface on one side of the light-incident surface; a second light-emitting surface on the other side of the light-incident surface corresponding to the first light-emitting surface; and a plurality of microstructures disposed on the first surface a light-emitting surface; wherein, by means of the arrangement of at least one of the plurality of microstructures, different from the arrangement of at least one of the plurality of microstructures, so as to
- the light-transmitting structure of the present invention and the lamp having the light-transmitting structure are mainly made by using the structural design of the light-transmitting structure and the structural design and arrangement of the microstructure, so that the overall light-transmitting structure can be used according to actual use.
- the structural design is changed according to the demand, so as to produce the corresponding lighting effect and the use state, in addition to improving the light output rate of the overall luminaire, adjusting the light-emitting range and reducing the generation of the light spot, and adjusting the use state according to the demand.
- Such as visual penetration or light-emitting state and thus have a variety of effects.
- FIG. 1A is a perspective view of a first preferred embodiment of the present invention.
- FIG. 1B is a perspective view of another perspective view of the lamp shown in FIG. 1A.
- Figure 1C is an exploded perspective view of a portion of the structure of the luminaire shown in Figure 1A.
- FIG. 1D is another perspective exploded view of a portion of the structure of the luminaire shown in FIG. 1A.
- FIG. 1E is a partial enlarged view of the portion of the microstructure shown in FIG. 1A applied to the light transmitting structure.
- FIG. 1E is a partial enlarged view of the portion of the microstructure shown in FIG. 1A applied to the light transmitting structure.
- FIG. 2A is a perspective view showing a light transmitting structure in a second preferred embodiment of the present invention.
- Fig. 2B is a schematic cross-sectional view showing a part of the structure of the light-transmitting structure along the line A-A' in Fig. 2A.
- Fig. 2C is an enlarged partial cross-sectional view showing the A2 region shown in Fig. 2B.
- Fig. 2D is a schematic view showing the luminous flux of the light transmitting structure shown in Fig. 2A.
- Figure 3 is a cross-sectional view showing a portion of an element in a third preferred embodiment of the present invention.
- Figure 4 is a cross-sectional view showing a portion of an element in a fourth preferred embodiment of the present invention.
- Figure 5 is a perspective view showing a part of components in a fifth preferred embodiment of the present invention.
- Figure 6 is a perspective view showing a part of components in a sixth preferred embodiment of the present invention.
- Fig. 7A is a perspective view showing a part of components in a seventh preferred embodiment of the present invention.
- Fig. 7B is a view showing a state of use of the light transmitting structure shown in Fig. 7A in the seventh preferred embodiment.
- FIG. 1A to 1E are respectively a perspective view of a first preferred embodiment of the present invention, an exploded perspective view of a portion of the structure, and a partial enlarged view of the portion of the microstructure shown in FIG. 1A applied to the light transmissive structure.
- the luminaire 10 includes a light transmitting structure 100 and a luminaire main body 150
- the luminaire main body 150 includes a bonding structure 120 , a control circuit board 130 , and a sensor 140 .
- the light transmitting structure 100 and the bonding structure 120 are symmetric with the left and right sides and have the same element structure, as shown in FIG. 1C to FIG. 1D of the present embodiment, and therefore, only the right side of the light transmitting structure 100 and the bonding structure 120
- the component structure of the side is presented to explain the main technical features of the present invention in detail.
- the light transmitting structure 100 of the present embodiment includes a light incident surface 101 , a first light emitting surface 102 , a second light emitting surface 103 , and a plurality of microstructures 110 .
- the first light-emitting surface 102 and the second light-emitting surface 103 are respectively adjacent to the first side 101a and the second side 101b of the light-incident surface 101 such that the first light-emitting surface 102 corresponds to the second light-emitting surface 103.
- the microstructures 110 are located on the second light-emitting surface 103, wherein the microstructures 110 may be any one of a V-shaped optical refractive structure, a U-shaped optical refractive structure, and a curved optical refractive structure, or a combination thereof, and the embodiment will
- the V-shaped optical refractive structure 110 is taken as an illustration, but the practical application should not be limited by this example.
- the light-transmitting structure 100 of the present embodiment is a closed and solid thin light-transmissive structure, it is not limited thereto in practical use, and is a closed and hollow light-transmitting structure, or is semi-closed.
- the hollow or solid light-transmitting structure and the like can be equally changed, and can be used as an implementation example of the invention or the concept of the present invention.
- the bonding structure 120 includes a first side surface 120a, a second side surface 120b, a third side surface 120c, and a guiding groove 121
- the guiding groove 121 includes a first opening side 121a and a second opening side 121b, and the first opening side 121a and The second opening sides 121b are respectively located on the first side surface 120a and the second side surface 120b, that is, the guiding groove 121 communicates with the bonding structure 120, so that the light is self-contained from the first side surface 120a of the bonding structure 120 (ie, the guiding groove 121)
- An open side 121a) travels to the second side 120b of the bonding structure 120 (i.e., the second opening side 121b of the channel 121).
- the guiding groove 121 is communicated with the bonding structure 120, and at the same time, the light transmitting structure 100 is partially confined therein so that the light can pass through the guiding groove 121 and then enter the optical surface 101. Received and refracted.
- the structural design of the combined structure is not limited by this example, and the same effect can be achieved by other limiting structures or limiting means.
- the control circuit board 130 includes a plurality of light emitting members 131, such as light emitting diodes (LEDs), for generating a plurality of light rays by controlling the circuit board.
- the sensor 140 in this example will be described by the passive human body infrared sensor 140.
- the passive human body infrared sensor 140 is located at the bottom of the lamp body 150 and electrically connected to the aforementioned control circuit board 130 for Sensing an object drives the control circuit board to control the light-emitting members 131 to generate the light.
- the sensor 140 can also be applied to various other types of sensors such as a microwave sensor. That is, although the passive human body infrared sensor 140 is described as an example in this example, it should not be limited by this example.
- the bonding structure 120 is configured to assemble and limit both the control circuit board 130 and the light transmitting structure 100 to be respectively located on the first side 120a and the second side 120b of the bonding structure 120, and then first by the guiding slot 121.
- the opening side 121a and the second opening side 121b enable the control circuit board 130 and the light transmitting structure 100 to communicate with each other, thereby allowing the light incident surface 101 of the light transmitting structure 100 to receive the light on the control circuit board 130.
- the light generated by the piece 131 is configured to assemble and limit both the control circuit board 130 and the light transmitting structure 100 to be respectively located on the first side 120a and the second side 120b of the bonding structure 120, and then first by the guiding slot 121.
- the opening side 121a and the second opening side 121b enable the control circuit board 130 and the light transmitting structure 100 to communicate with each other, thereby allowing the light incident surface 101 of the light transmitting structure 100 to receive the light on the control circuit board 130.
- the light-emitting members 131 are located outside the light-transmitting structure 100, and are spaced apart from the light-incident surface 101 by a distance, but the actual use is not limited thereto, and the light-emitting elements may also be used for the light-emitting structures.
- the piece 131 is arranged as close as possible to the light incident surface 101 to increase the amount of light entering the light incident surface 101.
- the light transmitting structure 100 receives the light through the light incident surface 101, and the V-shaped optical refractive structures 110 located on the second light emitting surface 103 are configured to receive and refract the light, and the first light is emitted from the first light.
- the luminous flux of the light refracted by the surface is higher than the luminous flux of the light refracted from the second light-emitting surface.
- the light incident surface 101 in this example is a light incident surface
- the first light emitting surface 102 is a main light emitting surface
- the second light emitting surface 103 is a light reflecting surface, and is located at the second
- the V-shaped optical refractive structures 110 of the light-emitting surface 103 receive and refract the light, and the light flux emitted from the first light-emitting surface 102 is higher than the other light flux emitted from the second light-emitting surface 103.
- the light rays are emitted from the first light-emitting surface 102 and the second light-emitting surface 103, and the light-emitting surfaces of the first light-emitting surface 102 are emitted, but the light flux of the first light-emitting surface 102 is the second light-emitting surface.
- the other luminous flux is at least 2 to 4 times, but not limited thereto, and the structural design can be adjusted according to practical applications.
- the luminous flux L1 and the other luminous flux L2 will be described in more detail in the following description with the second preferred embodiment. Relationship.
- the light-transmitting structure 100 of the present invention is mainly such that the distance between any two adjacent V-shaped optical refractive structures in the V-shaped optical refractive structures 110 is completely the same, partially identical or completely Differently, the luminous flux of the overall luminaire 10 (i.e., the light extraction rate as described in the industry) and the range of light extraction can be improved.
- the light transmitting structure 100 adopts a planar light transmitting structure, and the V-shaped optical refractive structures are arranged and arranged on the second light emitting surface 103, wherein the second The light-emitting surface 103 further includes a V-shaped optical refractive structure 110a of the A1 region and a V-shaped optical refractive structure 110b of the B1 region.
- the V-shaped optical refractive structure 110a of the A1 region is adjacent to the light incident surface 101, corresponding to the light incident surface adjacent to the light, and the V-shaped optical refractive structure 110b of the B1 region is away from the light incident surface 101, which is equivalent to being away from the light source. .
- the pitch between each of the V-shaped optical refractive structures 110a in the A1 region is equal, and as shown in FIG. 1D, the pitch a1 is equal to the pitch a2.
- the spacing b1, b2, b3, b4, b5 between any two adjacent V-shaped optical refractive structures 110b of the V-type optical refractive structures 110b in the B1 region is along a direction away from the light incident surface 101.
- the pitch b5 is smaller than the pitch b4 and smaller than the pitch b3, and the pitch b2 is smaller than the pitch b1.
- the spacings a1, a2, b1, b2, b3, b4, b5 between the two adjacent V-shaped optical refractive structures of the V-shaped optical refractive structures 110, 110a, 110b may be based on actual lamps
- the lighting effect of the product is required to be adjusted in the direction away from the light-emitting members 131 (away from the light-incident surface 101), so that the pitches a1, a2, b1, b2, b3, b4, b5 are adjusted to be equal and tapered. Or a wider design, and arranged in the second light-emitting surface 103.
- the light transmitting structure 100 is received and refracted by the light rays to the V-shaped optical refractive structures 110, 110a, 110b, and the refracted portions are evenly distributed on the first light-emitting surface 102.
- the luminous flux (extraction rate), the light-emitting range, and the generation of the light spot which are transmitted from the first light-emitting surface 102 are improved.
- the pitches a1, a2, b1, b2, b3, b4, b5 can be changed and adjusted, and of course, there are other preferred embodiments.
- the second preferred embodiment will be described below as an example.
- FIG. 2A to 2D are respectively a perspective view of a light-transmitting structure according to a second preferred embodiment of the present invention, a partial cross-sectional enlarged view of a partial structure, and a light-emitting structure shown in FIG. 2A.
- the light transmitting structure 200 in this example includes a light incident surface 201 , a first light emitting surface 202 , a second light emitting surface 203 , and a plurality of microstructures 210 .
- the first light-emitting surface 202 and the second light-emitting surface 203 are respectively adjacent to the two sides of the light-incident surface 201 such that the first light-emitting surface 102 corresponds to the second light-emitting surface 103.
- the microstructures 210 are identically located on the second light exit surface 203.
- the microstructures 210 are still described by the V-shaped optical refractive structure 210, and wherein the V-shaped optical refractive structure 210a1 will be described, which includes at least a first structural refractive surface 211a and a second structural refractive surface 211b, and first The structural refractive surface 211a and the second structural refractive surface 211b form acute angles ⁇ 1, ⁇ 2 with the second light-emitting surface, respectively.
- the light transmitting structure 200 differs in depth between each of the V-shaped optical refractive structures 210 and the second light-emitting surface 203 by the V-shaped optical refractive structures 210.
- the width of the cut surface of each of the V-shaped optical refractive structures 210 on the second light-emitting surface 203 is different, thereby improving the light-emitting quality of the entire V-shaped optical refractive structure 210, that is, effectively improving the luminous flux and the light-emitting range of the first light-emitting surface. And effectively reduce the generation of light spots.
- the V-shaped optical refractive structure 210 similarly includes a V-shaped optical refractive structure 210a of the A2 region and a V-shaped optical refractive structure 210b of the B2 region at the second light-emitting surface 203; wherein, the A2 region
- the V-shaped optical refractive structure 210a includes a plurality of V-shaped optical refractive structures 210a1, 210a2, 210a3, and the V-shaped optical refractive structure 210b of the B2 region includes a plurality of V-shaped optical refractive structures 210b1, 210b2, 210b3, 210b4, 210b5.
- the V-shaped optical refractive structures 210a1, 210a2, 210a3 of the A2 region are adjacent to the light incident surface 201, and the V-shaped optical refractive structures 210b1, 210b2, 210b3, 210b4, 210b5 of the B2 region are further away from the light incident surface 201; That is, the V-shaped optical refractive structures 210a1, 210a2, 210a3 of the A2 region are closer to the light source than the V-shaped optical refractive structures 210b1, 210b2, 210b3, 210b4, 210b5 of the B2 region.
- the depths c1, c2, and c3 between the V-type optical refractive structures 210a1, 210a2, and 210a3 of the A2 region and the second light-emitting surface 203 are gradually deeper, that is, the depth, away from the light-incident surface 201.
- C1 is smaller than the depth c2 is smaller than the depth c3, and the cut surface widths d1, d2, d3, d4, d5 of the V-shaped optical refractive structures 210b1, 210b2, 210b3, 210b4, 210b5 of the B2 region on the second light-emitting surface 203 are along away from The direction of the light incident surface 201 is gradually wide, that is, the cut surface width d1 is smaller than the cut surface width d2, and the cut surface width d3 is smaller than the cut surface width d4, which is smaller than the cut surface width d5.
- the acute angle ⁇ 1 between the first structural refractive surface 211a and the second light-emitting surface 203 in the V-shaped optical refractive structure 210a1 is smaller than the second structural refractive surface 211b and the second light-emitting.
- the acute angle between the surfaces 203 is such that the refractive area of the first structural refractive surface 211a is larger than the refractive area of the second structural refractive surface 211b, so that the luminous flux received and refracted from each of the first structural refractive surfaces 211a L1 is higher than another luminous flux L2 received and refracted by each of the second structural refractive surfaces 211b; wherein the luminous flux referred to herein is equivalent to the light output rate of the light in the industry, that is, in this example
- the light-emitting rate of the first light-emitting surface 202 is greater than the light-emitting rate of the second light-emitting surface 203.
- each V-shaped optical refractive structure 210 in this example is arranged in a discontinuous manner with another adjacent V-shaped optical refractive structure 210.
- the arrangement manner of continuous connection, discontinuous connection or partial continuous connection may be adjusted according to the actual requirements of the light transmission structure and the light source design, and should not be used in this example. For the limit.
- the light transmitting structure may be any one of a curved transparent structure and a curved transparent structure in addition to the planar transparent structure, and should not be used in the above embodiment. limit.
- the difference between the width of each of the two adjacent microstructures, the depth of each microstructure and the second light-emitting surface, the width of the cut surface, and the acute angle may be further changed. In order to meet the actual product effects and lighting effects. Therefore, it is within the scope of the present invention to provide various equivalent structures for achieving this function.
- FIG. 3 and FIG. 4 are respectively a cross-sectional view of a part of the components in the third preferred embodiment, and a cross-sectional view of a part of the components in the fourth preferred embodiment.
- this example will explain the main inventive concept of the present invention with some of the elements in the luminaire 30 of the third preferred embodiment.
- This example includes the light transmitting structure 300, the bonding structure 320, and the control circuit board 330 as in the previous example.
- the light transmitting structure 300 further includes a light incident surface 301, a first light emitting surface 302, a second light emitting surface 303, and a plurality of microstructures 310, for example, a V-shaped optical refractive structure in the foregoing example.
- the first light-emitting surface 302 and the second light-emitting surface 303 are respectively adjacent to the first side 301a and the second side 301b of the light-incident surface 301, so that the first light-emitting surface 302 corresponds to the second light-emitting surface 303.
- the V-shaped optical refractive structures 310 are located on the second light-emitting surface 303, and include a V-type optical refractive structure 310a of the A3 region and a V-shaped optical refractive structure 310b of the B3 region.
- a plurality of heat dissipation fins 321 are added, and the portion of the bonding structure 320 further includes a first side surface 320a, a second side surface 320b, a third side surface 320c, and a guiding groove 322, wherein the heat dissipation fins
- the 321 is arranged on the third side 320c, and the guiding groove 322 includes an opening side 322a, and the guiding groove 322 is located between the second side 320b and the third side 320c; wherein the opening side 322a is combined with the transparent structure 300 It is used, and the light incident surface 301 can be closely matched with the open side 322a.
- the control circuit board 330 includes at least one illuminating member 331, such as a light emitting diode (LED), for generating a plurality of light rays by controlling the circuit board 330, and completely passing through the guiding groove 322 to leak light.
- illuminating member 331 such as a light emitting diode (LED)
- the pitch of any two adjacent V-shaped optical refractive structures 310a may be equal to each other, and away from the B3 region of the light incident surface 301, any two adjacent V-types
- the pitch of the optical refractive structure 310b is tapered along a position away from the at least one illuminating member 331, thereby improving the light extraction rate of the overall luminaire 30 on the first light-emitting surface 302 while reducing the generation of the light spot.
- the light-transmitting structure 300 of the present example is a curved-surface light-transmissive structure 300, and the first light-emitting surface 302 is matched to the appearance of the curved-surface light-transmitting structure 300.
- the second light-emitting surface 303 is a concave surface, and the V-shaped optical refractive structures 310 are arranged on the second light-emitting surface 303 (concave surface), so that part of the light received and refracted can be obtained from the first surface.
- a light exiting surface 302 (convex surface) is outwardly diffused to enhance the light exiting range of the overall luminaire 30.
- the light-transmitting structure 300 can be applied to an outdoor light or a street lamp. By arranging the V-shaped optical refractive structures 310 on the concave surface, the light is diffused outwardly to enhance the overall light-emitting range, thereby improving The range of vision of pedestrians at night.
- the luminaire of the present invention can change the installation position of the V-shaped optical refraction structure to produce other illumination effects.
- this example will use some of the components in the luminaire 40 of the fourth embodiment as an illustration of how other lighting effects can be produced.
- this example includes the light transmitting structure 400, the bonding structure 420, and the control circuit board 430 as in the previous example.
- the light transmitting structure 400 further includes a light incident surface 401, a first light emitting surface 402, a second light emitting surface 403, and a plurality of microstructures 410, such as the V-shaped optical refractive structure in the foregoing example.
- the first light-emitting surface 402 and the second light-emitting surface 403 are respectively adjacent to the first side 401a and the second side 401b of the light-incident surface 401, so that the first light-emitting surface 402 corresponds to the second light-emitting surface 403.
- the V-shaped optical refractive structures 410 are located on the second light-emitting surface 403, and include a V-shaped optical refractive structure 410a of the A4 region and a V-shaped optical refractive structure 410b of the B4 region.
- the portion of the bonding structure 420 further includes a first side surface 420a, a second side surface 420b, a third side surface 420c, a plurality of heat dissipation fins 421, and a guiding channel 422.
- the heat dissipation fins 421 are arranged on the third side surface 420c.
- the slot 422 includes an open side 422a, and the guiding slot 422 is located between the second side 420b and the third side 420c.
- the opening side 422a is used for combining with the transparent structure 400, and the light incident surface 401 is It is closely attached to the open side 422a.
- the control circuit board 430 includes at least one light-emitting component 431, such as a light-emitting diode (LED), for generating a plurality of light rays by the control circuit board 430, and completely passing through the light guide channel 422 to the light entering the light without leaking light.
- a light-emitting component 431 such as a light-emitting diode (LED)
- LED light-emitting diode
- the spacing of any two adjacent V-shaped optical refractive structures 410a is equal to each other, and away from the B4 region of the light incident surface 401, any two adjacent V-shaped optics
- the pitch of the refractive structure 410b is tapered along a position away from the at least one illuminating member 431, thereby improving the light-emitting rate of the overall luminaire on the first light-emitting surface 402 while reducing the generation of the light spot.
- the light-transmitting structure 400 of the present example is a curved-surface light-transmitting structure, but the first light-emitting surface corresponding to the appearance of the curved-surface light-transmitting structure.
- 402 is a concave surface
- the second light-emitting surface 403 is a convex surface
- the V-shaped optical refractive structures 410 are arranged on the second light-emitting surface 403 (convex surface), so that part of the light received and refracted can be self-contained.
- the first light-emitting surface 402 (concave surface) is concentrated from the outside to the inside, thereby allowing the light-emitting range of the overall luminaire 40 to be concentrated in a specific area.
- the light transmissive structure 400 can be applied to a table lamp. By arranging the V-type optical refraction structures 410 on the convex surface, the light is concentrated on the table to facilitate reading by the user.
- a portion of the microstructure may be combined with an appearance shape of the light transmitting structure, and one or a combination of a V-shaped optical refractive structure, a U-shaped optical refractive structure, and a curved optical refractive structure may be selected, and simultaneously Depending on the appearance shape of the light-transmitting structure and the position of the light-emitting member, different adjacent structures may be designed to have different pitches and widths, and each microstructure may be adjusted to be disposed between the light-emitting surfaces of the microstructures. Depth, face width and acute angle.
- the convex surface and the concave surface of the second light emitting surface can be correspondingly designed, and the spacing between any two adjacent microstructures is designed to be tapered. And gradually widening; or, when a plurality of light-emitting members are disposed on both sides of the light-transmitting structure, the spacing between any two adjacent microstructures is designed to be gradually toward the center of the light-transmitting structure along the two sides narrow.
- the overall height of the corresponding microstructure and the width of the cutting surface can be designed, and the depth between each microstructure and the light-emitting surface disposed on the microstructure, the width of the cutting surface, and Sharp angle.
- the height of the microstructure (that is, the depth of the cutting surface) can be gradually increased away from the direction of the plurality of illuminating members, and the depth of the cutting surface is gradually deepened, for example, the light transmitting structure in the first preferred embodiment
- the height of the V-shaped optical refractive structure 110b of the B1 region of 100 is greater than the height of the V-shaped optical refractive structure 110a of the A1 region, and the V-shaped optical refractive structure 210b of the B2 region of the light transmitting structure 200 of the second preferred embodiment.
- the height is greater than the height of the V-shaped optical refractive structure 210b of the A2 region.
- the microstructure of the present invention can be designed such that the pitch between the entire microstructures, the acute angle of each microstructure, the height, and the width of the cut surface are adjusted corresponding to the positions at which the plurality of light-emitting members are disposed.
- the appearance shape of the light transmitting structure may be a circle, an ellipse, a polygon (ie, a polygon) or an irregular shape, such as a triangle, a quadrangle, a pentagon, or in addition to the rectangle in the foregoing embodiment.
- a hexagonal shape or the like, or a specially shaped flower, a cloud or a geometric shape and when the appearance shape of the light transmitting structure is a circular shape, an elliptical shape or an irregular shape, the position of the light emitting member can be set in the light transmitting structure.
- one or more of the selected V-type optical refractive structure, U-shaped optical refractive structure, and curved optical refractive structure may be centered on the light-emitting member and then arranged radially on the second light-emitting surface (light) Refractive surface).
- the microstructure disposed in the light transmitting structure may be adjusted according to at least one position of the light emitting member or a plurality of light sources.
- the structure is designed such that the light-transmitting structure can be in various states, such as a visually penetrating state, a light-emitting state, or a partial light-emitting state, depending on the strength of the light source, thereby having various optical visual effects.
- FIG. 5 and FIG. 5 are respectively a perspective view of the light-transmitting structure in the fifth preferred embodiment, and a perspective view of the light-transmitting structure in the sixth preferred embodiment.
- the light transmitting structure 500 of the present example is a circular light transmitting structure 500 including a light incident surface 501 , a first light emitting surface 502 , a second light emitting surface 503 , and a plurality of microstructures 510 .
- the light transmitting structure 500 can be adjacent to a light source, and the light source can be located at or adjacent to the light incident surface 501, corresponding to the center of the light transmitting structure 500.
- the spacing between any two adjacent microstructures 510 of the microstructures 510 may be gradually narrowed outward from the light incident surface 501, and the depth of the microstructure 510 and the width of the cutting surface may also be outwardly deeper. And gradually widening, that is, the cutting depth and width of the microstructure 510 gradually increase outward from the center of the circle.
- the light transmitting structure 600 of this example is also a circular light transmitting structure 600 , which includes a light incident surface 601 , a first light emitting surface 602 , a second light emitting surface 603 , and a plurality of micro Structure 610.
- the light incident surface 601 of the present example is located at the circumference of the circular light transmitting structure 600 for receiving a plurality of light rays refracted from the circumference toward the center of the circle, which is equivalent to the light emitting member. It is disposed at the circumference (light-in surface 601) and causes the light rays generated to travel toward the center of the circle.
- the light traveling direction of the light rays may have a vertical interference relationship with the microstructures 610, or may be in a non-parallel interference relationship, and a light flux that is transmitted through the first light-emitting surface 602 is higher than that through the first light-emitting surface 602.
- the vertical interference relationship is that the microstructures 610 receive and refract the light rays completely or partially vertically
- the non-parallel interference relationship is that the microstructures 610 receive and refract the light rays completely non-parallel or partially non-parallel.
- the pitch of any two adjacent microstructures 610 in the microstructures 610 may be gradually narrowed inward from the light incident surface 601, and the depth of the microstructure 610 and the width of the cut surface may also be gradually increased inward. Deep and wide, that is, the cutting depth and width of the microstructure 610 gradually increase from the circumference to the inside.
- the light-transmitting structure of the present invention is designed by a plurality of microstructures located on the second light-emitting surface, so that the microstructures receive and refract the light, thereby refracting from the first light-emitting surface.
- the luminous flux of the transmitted light is significantly higher than the other luminous flux of the light refracted from the second light-emitting surface, so that the light-transmitting structure should receive light and be in two states, respectively, which are visually penetrating.
- the seventh preferred embodiment will be described as an explanation of the operation of the light-transmitting structure of the present invention in other fields.
- FIG. 7A and FIG. 7B are respectively a perspective view of a part of the components and a state of use of the seventh embodiment of the present invention. As shown in FIG. 7A and FIG.
- the light-transmissive window panel 70 of the present embodiment includes: a light-transmitting structure 700 and a light-emitting member 73, wherein the light-transmitting structure 700 includes two light-introducing surfaces 701, a first light-emitting surface 702, and a second The light-emitting surface 703 and the plurality of microstructures 710, and the light-emitting elements 73 are two LED strips 731, 732 or two LED strips 731, 732.
- the two light incident surfaces 701 are the left and right sides of the light transmitting structure 700.
- the other embodiments may also be the upper and lower sides of the light transmitting structure 700, and the second light emitting surface 703 is compared.
- the first light-emitting surface 702 is closer to an object 80, that is, the first light-emitting surface 702 of the light-transmissive window panel 70 of the present invention is a smooth light-transparent surface that is outwardly displayed, and the second light-emitting surface 703 is oriented toward the interior.
- the microstructures 710 are disposed on the second light-emitting surface 703 for receiving and refracting a plurality of light rays from the two light-introducing surfaces 701, wherein the structures of the microstructures 710 are designed
- the position of the light source ie, the position where the light-emitting members 73, 731, and 732 are disposed
- the spacing between the 710s is gradually narrower.
- the structural design of the microstructure 710 for example, the spacing between the micro-structures, the depth of the micro-structure cutting, the acute angle and the width of the cutting surface, can be adjusted according to the position of the light source, and can also be based on the strength of the light source (light-emitting parts)
- the power is adjusted to the corresponding structural design, and the actual use of the microstructure should not be limited by all of the above preferred embodiments.
- the two LED strips 731, 732 or the two LED strips 731, 732 of the illuminating member 73 are respectively located at or disposed on the two light incident surfaces 701, and should sense the brightness of the surrounding environment or a control circuit board.
- the command signal generates the light.
- the actual operation mode of the light-transmissive window panel 70 can be applied to a display window of a department store, or can be applied to a bus booth located on a pedestrian walkway.
- the display window is used as an illustration.
- the light-emitting member 73 does not generate a plurality of light rays
- the light-transmissive window panel 70 does not receive the light and is in a visually penetrating state
- the micro-light Structure 710 receives and refracts the light rays in a light exiting state.
- the visually penetrating state refers to a portion of the object 80 that is visually permeable from the first light exiting surface 702 to the rear of the second light exiting surface 703, as shown in FIG. 7A.
- the light-emitting state means that the microstructures 710 receive and refract the light, so that a light flux that is transmitted from the first light-emitting surface is higher than another light flux that is transmitted from the second light-emitting surface, thereby
- the light-transmitting structure 700 forms a bright surface, which is equivalent to a light wall effect, and thus cannot see through to a portion of the area where the object 80 is shielded by the light wall effect of the second light-emitting surface 703, and is as shown in FIG. 7B.
- the light-transmissive window panel 70 can drive the light-emitting member 73 to generate the light according to the actual use situation of the shopping mall or the store, and meet the situation of the situation used at the time, such as a pedestrian passing or adjacent to the application transparent window.
- the light-emitting member 73 can then generate the light to attract the passers-by to focus on the display window to meet the commercial marketing requirements of the commodity.
- the light-transmissive window panel 70 can also be applied to a bus booth, which can be driven to generate the light according to the dark change of the surrounding environment, so that the light-transmissive window panel 70 is in a visually transparent state or Light out state.
- the light-emitting member 73 can be driven to generate the light by a sensor (not shown), so that the light-transmitting structure 700 is at The light-emitting state forms a light wall to facilitate pedestrian walking or bus stop, and has the effect of public environmental safety.
- the illuminating member 73 can be a sensor (not shown) without generating any light, so that the light transmitting structure 700 is in a visually transparent state, so as to facilitate the pedestrian to see around.
- the senor can be applied with a photo-sensing device, and the light-receiving element converts the optical signal into a telecommunication signal, thereby driving the illuminating member to generate light according to changes in ambient brightness.
- the sensor can be Various other types of sensors should not be limited by the preferred embodiments described above.
- the material of the light-transmitting structure of the present invention may be polycarbonate (PC), acrylonitrile butadiene-styrene (ABS resin) or a combination thereof.
- PC polycarbonate
- ABS resin acrylonitrile butadiene-styrene
- the plastic material can be integrally molded, or the light-transmitting structure can process the microstructure.
- the V-shaped optical refractive structure in the foregoing embodiments can be formed once in a single cutting manner. It does not require too many complicated and cumbersome methods and processes.
- the manufacturing process of the light-transmitting structure of the present invention is simple, and the light-shielding structure with micro-structures of different arrangement and combination is selected in combination with the actual lighting effect requirement of the lamp, and at the same time, the spot problem of the lamp is effectively improved, Solve multiple defects in existing fixtures.
- the light-transmitting structure of the present invention and the lamp having the light-transmitting structure are mainly made by using the appearance shape of the light-transmitting structure and the structural design and arrangement of the microstructure, so that the entire light-transmitting structure can be made According to the actual use requirements, the structural design is changed to produce corresponding lighting effects and usage states, in addition to improving the light output rate of the overall luminaire, adjusting the light-emitting range, and reducing the generation of light spots, and adjusting the corresponding requirements according to the use requirements.
- the state of use such as the visually penetrating state or the light-emitting state in the preferred embodiment described above, has various efficacies and the like.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Planar Illumination Modules (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
一种具有微结构的透光结构体(100),可应用于灯具领域以及透光面板领域。该透光结构体(100)至少包括入光表面(101)、第一出光表面(102)、第二出光表面(103)以及多个微结构(110)。其中,第一出光表面(102)以及第二出光表面(103)分别邻接于入光表面(101)的两侧边(101a,101b),而多个微结构(110)设置于第二出光表面(103)。多个微结构(110)用以接收并折射入光表面(101)接收的多束光线,而得以使自第一出光表面(102)所折射透出的光线的一光通量高于自第二出光表面(103)所折射的光线的另一光通量。藉此,能够提升整体灯具的出光率、调整出光范围并减少光斑的产生。还提供了一种具有该透光结构体(100)的灯具(10)。
Description
本发明关于灯具,尤其是关于一种具有微结构的透光结构体及具有该透光结构体的灯具。
传统习知的灯具为具有一灯罩的灯具主体,而该灯罩为一无法透光的导光结构体,用以装饰、遮蔽光源,并使灯具主体中的至少一发光件所产生的多束光线,可经由该灯罩而提供一照明方向。
然而,习知的灯罩于实际应用上仍有些许问题存在。举例来说,由于习知的灯罩为了遮蔽光源,而不具有可透光性,因而遮蔽了位于灯罩后方的建材装潢或是背板装饰,像是艺术装置、艺术陈列物等,而不具有视觉穿透性,从而影响了整体空间的视觉性以及开阔性。
再者,为在灯具领域中为了追求更佳的照明效果,习知的灯具除了不具有视觉性以及开阔性之外,仍有其他的问题存在,例如:需要提升整体灯具的光通量(相当于灯罩的出光率)以及提升灯具的出光范围。因此,习知具有灯罩的灯具通常选用更高功率的发光件(LED),抑或增设更多数量的发光件来改善上述的问题。
然而,此举因使用高功率且较多数量的发光件,而易造成整体灯具的安装成本提高、使用上亦会产生过多热能以及光线折射时易会产生光斑等多种缺失。且,灯具增设高功率且较多数量的发光件,亦会同时造成灯具必需消耗更多的电力,进而提升灯具的使用成本。
有鉴于此,对于目前市面上具有灯罩的灯具该如何具有视觉性以及开阔性,并同时能提升整体的照明效果,实仍须思考如何能以更简单的技术手段解决此现有技术问题,便为本发明发展的主要目的。
发明内容
针对现有技术存在的不足,本发明的目的在于,提供一种具有微结构的透光结构体及具有该透光结构体的灯具,通过结构设计而能够提升整体灯具的出光率、调整出光范围并减少光斑的产生。
为实现上述目的,本发明提供一种具有微结构的透光结构体,用以接收多束光线,该透光结构体至少包括:一第一出光表面;一第二出光表面,相对应于该第一出光表面设置;以及多个微结构,设置于该第二出光表面;其中,每一该微结构至少包括一第一结构折射面以及一第二结构折射面;其中,该多束光线的光行进方向与该多个微结构间呈一垂直干涉关系,或者呈一非平行干涉关系,且每一该第一结构折射面所接收并折射后的一光通量(luminous flux)高于每一该第二结构折射面所接收并折射后的另一光通量。
较佳地,该垂直干涉关系为该多个微结构完全或部分垂直地接收并折射该多束光线,而该非平行干涉关系为该多个微结构完全非平行地或部分非平行地接收并折射该多束光线。
较佳地,该多个微结构为V型光学折射结构、U型光学折射结构及曲面光学折射结构中的一者或其组合。
较佳地,该多个微结构中的至少一组两相邻微结构间的间距不同于该多个微结构中的至少另一组两相邻微结构间的间距。
较佳地,该多个微结构中任两相邻的该微结构间的间距,是沿着远离该多束光线的光源方向呈渐窄或渐宽。
较佳地,每一该微结构与该第二出光表面之间的深度,是沿着远离该多束光线的光源方向呈渐浅或渐深。
较佳地,每一该微结构中的该第一结构折射面与该第二出光表面之间的锐角夹角小于该第二结构折射面与该第二出光表面之间的锐角夹角。
较佳地,每一该微结构与其相邻的另一该微结构间为连续相接、非连续相接或部分连续相接的排列设置方式。
较佳地,该透光结构体未接收该多束光线时,该透光结构体处于一视觉穿透状态,而当该多个微结构接收并折射该多束光线时,该透光结构体处于一出光状态。
较佳地,该视觉穿透状态是指视觉可自该第一出光表面处透视到位于该第二出光表面处的至少一物件,而该出光状态是指该透光结构体因接收并折射该多束光线,而使自该第一出光表面所透出的一光通量高于自该第二出光表面所透出的另一光通量。
较佳地,该透光结构体的材料为聚碳酸酯(Polycarbonate,PC塑料)、丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile Butadiene Styrene,ABS树脂)或其结合。
较佳地,该透光结构体为一圆形透光结构体、一方形透光结构体、一多边形透光结构体或一不规则形状的透光结构体。
较佳地,该透光结构体应用于灯具领域、照明领域、门窗面板或展示框架。
本发明还提供一种具有微结构的透光结构体,接收一灯具的至少一发光件的多束光线,该透光结构体至少包括:一第一出光表面;一第二出光表面,与该第一出光表面之间具有一光通道而相对应设置;以及多个微结构,设置于该第二出光表面;其中,当该多个微结构未接收该多束光线时,该透光结构体处于一视觉穿透状态,而当该多个微结构接收并折射该多束光线时,该透光结构体处于一出光状态,且自该第一出光表面所折射透出的光线的一光通量(luminous flux)高于自该第二出光表面所折射透出的光线的另一光通量。
较佳地,该视觉穿透状态为视觉穿透位于该第二出光表面处的一物件,该出光状态为该多个微结构接收并折射该多束光线后,使自该第一出光表面所透出的一光通量高于自该第二出光表面所透出的另一光通量。
较佳地,该透光结构体为一中空透光结构体,该第一出光表面以及该第二出光表面分别位于一第一透光板体以及一第二透光板体;其中,该中空透光结构体中的该第二出光表面包括一第二出光内表面以及一第二出光外表面,该第二出光内表面较于该第二出光外表面更邻近于该第一出光表面,而该多个微结构设置于该第二出光外表面。
较佳地,该光通道为一间隙,其位于该第二出光内表面与该第一出光表面之间,以供该多束光线行进。
较佳地,该多个微结构中的至少一组两相邻微结构间的间距不同于该多个微结构中的至少另一组两相邻微结构间的间距。
较佳地,该多个微结构中任两相邻的该微结构间的间距,是沿着远离该多束光线的光源方向呈渐窄或渐宽。
较佳地,每一该微结构与该第二出光外表面之间的深度,是沿着远离该多束光线的光源方向呈渐浅或渐深。
较佳地,每一该微结构包括一第一结构折射面与一第二结构折射面;其中,该第一结构折射面与该第二出光外表面之间的锐角夹角小于该第二结构折射面与该第二出光外表面之间的锐角夹角。
较佳地,该多个微结构接收并折射该多束光线,而使其中部分光线平均分布于该第二出光表面,并平均地向外散射。
本发明还提供一种具有微结构的透光结构体,接收一灯具的至少一发光件的多束光线,该透光结构体至少包括:一入光表面,用以接收该多束光线;一第一出光表面,位于该入光表面的一侧边;一第二出光表面,位于该入光表面的另一侧边,且与该第 一出光表面相对应设置;以及多个微结构,设置于该第二出光表面;其中,该多个微结构用以接收并折射该多束光线以使其分别自该第一出光表面与该第二出光表面透出;其中,自该第一出光表面所折射透出的光线的一光通量(luminous flux)高于自该第二出光表面所折射透出的光线的另一光通量。
较佳地,该入光表面与该第二出光表面垂直,以使该多个微结构部分垂直地接收并折射该多束光线;或者该入光表面与该第二出光表面为非平行,以使该多个微结构部分非平行地接收并折射该多束光线。
较佳地,该多个微结构中任两相邻的该微结构间的间距,是沿着远离该入光表面的方向呈渐窄或渐宽。
较佳地,每一该微结构与该第二出光表面之间的深度,是沿着远离该入光表面的方向呈渐浅或渐深。
较佳地,每一该微结构包括一第一结构折射面与一第二结构折射面;其中,该第一结构折射面与该第二出光表面之间的锐角夹角小于该第二结构折射面与该第二出光表面之间的锐角夹角。
本发明还提供一种具有微结构的透光结构体,接收一灯具的至少一发光件的多束光线,该透光结构体至少包括:一入光表面,用以接收该多束光线;一第一出光表面;以及一具有多个微结构的第二出光表面,其与该第一出光表面相隔一间隙而相对应设置,且该第二出光表面与该入光表面间呈一垂直设置关系,或者呈一非平行设置关系;其中,该多个微结构用以使自该第一出光表面所折射透出的光线的一光通量(luminous flux)高于自该第二出光表面所折射透出的光线的另一光通量。
较佳地,该垂直设置关系为该第二出光表面垂直邻接于该入光表面的一侧边,或者,该非平行设置关系为该第二出光表面邻接于该入光表面的一侧边,并具有一非垂直角度。
较佳地,该多个微结构中任两相邻的该微结构间的间距,是沿着远离该入光表面的方向呈渐窄或渐宽。
较佳地,该第二出光表面包括一第二出光内表面以及一第二出光外表面,该第二出光内表面对应于该第一出光表面,而该多个微结构设置于该第二出光外表面;其中,该间隙位于该第二出光内表面与该第一出光表面之间,以供该多束光线行进。
本发明还提供一种具有透光结构体的灯具,至少包括:一灯具主体;至少一发光件,设置于该灯具主体,且因一控制电路板而产生多束光线;以及一透光结构体,结合于该灯具主体,该透光结构体至少包括:一入光表面,用以接收该多束光线;一第 一出光表面,位于该入光表面的一侧边;一第二出光表面,位于该入光表面的另一侧边,且相对应于该第一出光表面;以及多个微结构,设置于该第二出光表面;其中,藉由该多个微结构中的至少一微结构的设置方式,不同于该多个微结构中的至少另一微结构的设置方式,以使经由该多个微结构接收并折射的该多束光线自该第一出光表面所折射透出的光线的一光通量高于自该第二出光表面所折射透出的光线的另一光通量。
较佳地,该多个微结构为V型光学折射结构、U型光学折射结构及曲面光学折射结构中的任一者或其组合。
较佳地,该设置方式为该多个微结构中的任两相邻的该微结构间的间距,是沿着远离该至少一发光件的位置方向呈渐窄或渐宽。
较佳地,该设置方式为每一该微结构与该第二出光表面之间的深度,是沿着远离该至少一发光件呈渐浅或渐深。
较佳地,该设置方式为每一该微结构包括一第一结构折射面与一第二结构折射面,其中,该第一结构折射面与该第二出光表面之间的锐角夹角小于该第二结构折射面与该第二出光表面之间的锐角夹角。
较佳地,该设置方式为每一该微结构与其相邻的另一该微结构间为连续相接、非连续相接或部分连续相接的排列设置方式。
较佳地,该灯具主体包括一具有导槽的结合结构,该透光结构体藉由该导槽而组接并连通该至少一发光件。
较佳地,该结合结构具有多个散热鳍片,且该多个散热鳍片与该第二出光表面位于同侧。
较佳地,该灯具还包括一被动式人体红外线感测器(PIR Motion sensor)与一微波(Microwave)感测器中的任一者,其电性连接于该控制电路板,其中该被动式人体红外线感测器或该微波感测器,用以感测一物件而驱使该控制电路板控制该至少一发光件产生该多束光线。
本发明还提供一种具有微结构的透光结构体,用以接收多束光线,该透光结构体至少包括:一第一出光表面;一第二出光表面,相对应于该第一出光表面设置;以及多个微结构,设置于该第二出光表面;其中,每一该微结构至少包括一第一结构折射面以及一第二结构折射面;其中,该多束光线的光行进方向与该多个微结构间呈一垂直干涉关系,或者呈一非平行干涉关系,以使该多束光线分别自该第一出光表面与该第二出光表面折射出光。
本发明还提供一种具有微结构的透光结构体,接收一灯具的至少一发光件的多束光线,该透光结构体至少包括:一第一出光表面;一第二出光表面,与该第一出光表面之间具有一光通道而相对应设置;以及多个微结构,设置于该第二出光表面;其中,当该多个微结构未接收该多束光线时,该透光结构体处于一视觉穿透状态,而当该多个微结构接收并分别自该第一出光表面与该第二出光表面折射该多束光线时,该透光结构体处于一出光状态。
本发明还提供一种具有微结构的透光结构体,接收一灯具的至少一发光件的多束光线,该透光结构体至少包括:一入光表面,用以接收该多束光线;一第一出光表面;以及一具有多个微结构的第二出光表面,其与该第一出光表面相隔一间隙而相对应设置,且该第二出光表面与该入光表面间呈一垂直设置关系,或者呈一非平行设置关系。
本发明还提供一种具有透光结构体的灯具,其至少包括:一灯具主体;至少一发光件,设置于该灯具主体,且因一控制电路板而产生多束光线;以及一透光结构体,结合于该灯具主体,且该至少一发光件设置于该透光结构体的邻近周围处;该透光结构体至少包括:一入光表面,用以接收该多束光线;一第一出光表面,位于该入光表面的一侧边;一第二出光表面,位于该入光表面的另一侧边,且相对应于该第一出光表面;以及多个微结构,设置于该第二出光表面;其中,藉由该多个微结构中的至少一微结构的设置方式,不同于该多个微结构中的至少另一微结构的设置方式,以使经由该多个微结构接收并折射的该多束光线分别自该第一出光表面与该第二出光表面折射出光。
本发明的透光结构体及具有该透光结构体的灯具主要是藉由运用透光结构体的结构设计与其微结构的结构设计以及排列设置,而得以使整体透光结构体可依据实际使用需求而变更结构设计,从而产生对应的照明效果以及使用状态,以达到除了能提升整体灯具的出光率、调整出光范围以及减少光斑的产生之外,还可应使用需求而对应调整其使用状态,如视觉穿透状态或出光状态,进而具有多种功效。
图1A:为本发明第一较佳实施例的立体示意图。
图1B:为图1A所示的灯具的另一视角立体示意图。
图1C:为图1A所示的灯具中部分结构的分解示意图。
图1D:为图1A所示的灯具中部分结构的另一视角分解示意图。
图1E:为图1A所示的各部分微结构应用于透光结构体的局部放大图。
图2A:为本发明第二较佳实施例中的透光结构体的立体示意图。
图2B:为沿图2A中A-A’线的透光结构体中部分结构的剖面示意图。
图2C:为图2B中所示A2区域的局部剖面放大图。
图2D:为应用图2A所示的透光结构体的光通量示意图。
图3:为本发明第三较佳实施例中部分元件的剖面示意图。
图4:为本发明第四较佳实施例中部分元件的剖面示意图。
图5:为本发明第五较佳实施例中部分元件的立体示意图。
图6:为本发明第六较佳实施例中部分元件的立体示意图。
图7A:为本发明第七较佳实施例中部分元件的立体示意图。
图7B:为图7A所示的透光结构体于第七较佳实施例中的使用状态图。
以下提出实施例以对本发明进行详细说明,该实施例仅用以作为范例说明,并不会限缩本发明欲保护的范围。此外,实施例中的图式省略不必要或以通常技术即可完成的元件,以清楚显示本发明的技术特点。
请参阅图1A至图1E,分别为本发明第一较佳实施例的立体示意图、部分结构的分解示意图,以及图1A所示的各部分微结构应用于透光结构体的局部放大图。
于其中,请参阅图1A至图1B,灯具10包括透光结构体100以及灯具主体150,且该灯具主体150包括结合结构120、控制电路板130以及感测器140;其中,本实施例的透光结构体100与结合结构120,因为左右两侧对称且具有相同的元件结构,如本实施例图1C至图1D所示,因此,仅以透光结构体100与结合结构120的右侧边的元件结构来呈现,以详细说明本发明主要的技术特征。
其中,本实施例的透光结构体100包括入光表面101、第一出光表面102、第二出光表面103以及多个微结构110。第一出光表面102以及第二出光表面103分别邻接于入光表面101的第一侧边101a以及第二侧边101b,以使第一出光表面102相对应于第二出光表面103。而该些微结构110位于第二出光表面103,其中该些微结构110可为V型光学折射结构、U型光学折射结构及曲面光学折射结构中的任一者或及其组合,而本实施例将举V型光学折射结构110来作为说明,但实际应用并不应以本例为限制。
另外,本实施例透光结构体100虽为一封闭且实心的薄形透光结构体,但于实际运用上并不以此为限,举凡封闭且中空透光结构体、抑或是半封闭且中空或实心的透 光结构体等等各式均等变化,皆可作为本案发明或创作概念的实施运用例。
再者,结合结构120包括第一侧面120a、第二侧面120b、第三侧面120c以及导槽121,而导槽121包括第一开口侧121a以及第二开口侧121b,且第一开口侧121a以及第二开口侧121b分别位于第一侧面120a以及第二侧面120b,亦即导槽121连通于结合结构120之中,以使光线得以自结合结构120的第一侧面120a(即导槽121的第一开口侧121a),行进至结合结构120的第二侧面120b(即导槽121的第二开口侧121b)。亦即,本例藉由导槽121连通于结合结构120之中,并同时得以使透光结构体100,被部分限位于其中,以使光线得以行经导槽121后,再自入光表面101被接收并折射。当然,于其他实施例中,结合结构的结构设计并非以本例为限制,可以其他限位结构或限位手段而达到相同的功效。
控制电路板130包括多个发光件131,例如:发光二极管(LED),用以因控制电路板而产生多束光线。本例中的感测器140将举被动式人体红外线感测器140来作为说明,该被动式人体红外线感测器140位于灯具主体150的底部,且电性连接于前述的控制电路板130,用以感测一物件而驱使控制电路板控制该些发光件131产生该些光线。然而,感测器140于实际应用中除了上述的被动式人体红外线感测器之外,还可应用微波(Microwave)感测器等等各式其他种类的感测器。亦即,于此例中虽举被动式人体红外线感测器140来作为说明,但不应以本例为限制。
接着说明上述各元件的连接关系以及作动关系。结合结构120用以组装并限位控制电路板130与透光结构体100两者,使其分别位于结合结构120的第一侧面120a以及第二侧面120b,且再藉由导槽121的第一开口侧121a以及第二开口侧121b,从而使控制电路板130与透光结构体100得以彼此相连通,进而使透光结构体100的入光表面101得以接收控制电路板130上的该些发光件131所产生的该些光线。其中,本实施例该些发光件131位于透光结构体100的外部,且其与入光表面101之间相隔一段距离,但于实际运用上并不以此为限,也可将该些发光件131尽量安排邻近于入光表面101,以增加入光表面101的入光量。
再者,透光结构体100经由入光表面101接收该些光线,且位于第二出光表面103的该些V型光学折射结构110用以接收并折射该些光线,而使自该第一出光表面所折射透出的光线的一光通量(luminous flux)高于自该第二出光表面所折射透出的光线的另一光通量。亦即,于本例中的入光表面101为一光线入光面,第一出光表面102为一主要光线出光面,而第二出光表面103则为一光线折射面,并藉由位于第二出光表面103的该些V型光学折射结构110接收并折射该些光线,而使自第一出光表面102 出光的光通量高于自第二出光表面103出光的另一光通量。
也就是说,该些光线皆会自第一出光表面102以及第二出光表面103向外透出光线,相当于两出光表面皆会出光,但第一出光表面102的光通量为该第二出光表面的另一光通量的至少2至4倍,但不以此为限,可依实际应用而调整结构设计,将于后述中以第二较佳实施例更详细说明其中光通量L1与另一光通量L2的关系。
要特别说明的是,本发明的透光结构体100主要是藉由该些V型光学折射结构110中的任两相邻的V型光学折射结构间的间距距离完全相同、部分相同或是完全不同,从而得以提升整体灯具10的光通量(亦即,业界所述的出光率)以及出光范围。
详细来说,请再搭配参阅图1E,于本实施例中,透光结构体100采用一平面透光结构体,且该些V型光学折射结构排列分布于第二出光表面103,其中第二出光表面103更包括A1区域的V型光学折射结构110a以及B1区域的V型光学折射结构110b。其中,A1区域的V型光学折射结构110a邻近于入光表面101,相当于邻近前述的光线入光面,而B1区域的V型光学折射结构110b则远离于入光表面101,相当于远离光源。
且,其中A1区域中的每一V型光学折射结构110a间的间距为相等,如图1D所示,间距a1等于间距a2。反之,B1区域中该些V型光学折射结构110b中的任两相邻的V型光学折射结构110b间的间距b1、b2、b3、b4、b5,是沿着远离于入光表面101的方向呈渐窄,如图1B所示,由此可知间距b5小于间距b4小于间距b3小于间距b2小于间距b1。
也就是说,该些V型光学折射结构110、110a、110b中的任两相邻的该V型光学折射结构间的间距a1、a2、b1、b2、b3、b4、b5,可依据实际灯具产品的照明效果需求,沿着远离该些发光件131的位置方向(远离于入光表面101),而使该些间距a1、a2、b1、b2、b3、b4、b5调整呈相等、渐窄或渐宽的设计,而排列分布于第二出光表面103。
由此,透光结构体100藉由该些光线被接收并折射于该些V型光学折射结构110、110a、110b,而经折射后的部分该些光线得以平均分布于第一出光表面102,从而达到提升自第一出光表面102所透出的光通量(出光率)、出光范围,以及有效地减少光斑的产生。
而透光结构体中微结构的设计,除了上述第一较佳实施例中该些间距a1、a2、b1、b2、b3、b4、b5可变化调整之外,当然还有其他较佳实施态样的设计,以下将举第二较佳实施例来作为说明。
请参阅图2A至图2D,其分别为本发明第二较佳实施例的透光结构体的立体示意图、部分结构的局部剖面放大图,以及应用图2A所示的透光结构体所产生的光通量示意图。
如图2A至图2D所示,本例中的透光结构体200包括入光表面201、第一出光表面202、第二出光表面203以及多个微结构210。第一出光表面202以及第二出光表面203分别邻接于入光表面201的两侧边,以使第一出光表面102相对应于第二出光表面103。而该些微结构210相同地位于第二出光表面203。其中,该些微结构210仍以V型光学折射结构210来作为说明,且其中将以V型光学折射结构210a1说明,其至少包括第一结构折射面211a以及第二结构折射面211b,且第一结构折射面211a以及第二结构折射面211b分别与第二出光表面形成锐角角度θ1、θ2。
于第二较佳实施例中将清楚地说明,透光结构体200如何藉由该些V型光学折射结构210中的每一V型光学折射结构210与第二出光表面203之间的深度不同,以及每一V型光学折射结构210于第二出光表面203的切割面宽度不同,从而得以提升整体V型光学折射结构210的出光品质,亦即有效地提升第一出光表面的光通量、出光范围以及有效地减少光斑的产生。
详细来说,如图2B所示,V型光学折射结构210于第二出光表面203同样地包括A2区域的V型光学折射结构210a,以及B2区域的V型光学折射结构210b;其中,A2区域V型光学折射结构210a包括多个V型光学折射结构210a1、210a2、210a3,而B2区域的V型光学折射结构210b包括多个V型光学折射结构210b1、210b2、210b3、210b4、210b5。
再者,A2区域的V型光学折射结构210a1、210a2、210a3邻近于入光表面201,而B2区域的V型光学折射结构210b1、210b2、210b3、210b4、210b5则远离于入光表面201;亦即,A2区域的V型光学折射结构210a1、210a2、210a3相较于B2区域的V型光学折射结构210b1、210b2、210b3、210b4、210b5更为邻近于光源。
而由图2B可得知,A2区域的V型光学折射结构210a1、210a2、210a3与第二出光表面203之间的深度c1、c2、c3是沿着远离入光表面201呈渐深,即深度c1小于深度c2小于深度c3,而B2区域的V型光学折射结构210b1、210b2、210b3、210b4、210b5于第二出光表面203的切割面宽度d1、d2、d3、d4、d5是沿着远离于入光表面201的方向呈渐宽,即切割面宽度d1小于切割面宽度d2小于切割面宽度d3小于切割面宽度d4小于切割面宽度d5。
此外,请再搭配参阅图2C以及图2D,V型光学折射结构210a1中的第一结构折 射面211a与第二出光表面203之间的锐角夹角θ1小于第二结构折射面211b与第二出光表面203之间的锐角夹角θ2,以使第一结构折射面211a的折射面积大于第二结构折射面211b的折射面积,从而使自每一第一结构折射面211a所接收并折射后的光通量L1高于每一该第二结构折射面211b所接收并折射后的另一光通量L2;其中,本发明此处所指的光通量相当于业界所述光线的出光率,也就是说于本例中的第一出光表面202的出光率大于第二出光表面203的出光率。
又,本例中的每一V型光学折射结构210与其相邻的另一V型光学折射结构210间为非连续相接的排列设置方式。然而,于其他实施例中亦可为连续相接、非连续相接或部分连续相接的排列设置方式,应得以因应透光结构体与光源设计的实际需求而调整变更,不应以本例为限制。
当然,上述的各元件可由本技术领域普通技术人员进行各种均等的变更或设计,并依据实际运用时的需求而调整各元件的结构设计及规格,不应以本实施例为限制。
举例来说,透光结构体除了上述平面透光结构体之外,还可为一弧面透光结构体及一曲面透光结构体中的任一者,不应以上述的实施例而有限制。且,对应透光结构体的外观形状不同,可进而变换任两相邻的两微结构间的间距宽窄、每一微结构与第二出光表面的深度、切割面宽度及锐角角度的不同设计,以符合实际的产品效果及照明效果需求。因此,只要能达到此功用的各种均等结构,亦均属本发明的权利保护范围内。
由此,本发明将举第三较佳实施例以及第四较佳实施例来作为说明。请参阅图3以及图4,其分别为第三较佳实施例中部分元件的剖面示意图,以及第四较佳实施例中部分元件的剖面示意图。
如图3所示,本例将以第三较佳实施例的灯具30中的部分元件来说明本发明的主要发明概念。本例与前例相同地包括透光结构体300、结合结构320以及控制电路板330。其中,透光结构体300仍包括入光表面301、第一出光表面302、第二出光表面303以及多个微结构310,例如:前例中的V型光学折射结构。第一出光表面302以及第二出光表面303分别邻接于入光表面301的第一侧边301a以及第二侧边301b,以使第一出光表面302相对应于第二出光表面303。且,该些V型光学折射结构310位于第二出光表面303,包括A3区域的V型光学折射结构310a以及B3区域的V型光学折射结构310b。
但特别说明的是,此例中增设了多个散热鳍片321,结合结构320的部分仍包括第一侧面320a、第二侧面320b、第三侧面320c以及导槽322,其中该些散热鳍片321 排列于第三侧面320c,而导槽322包括一开口侧322a,且导槽322位于第二侧面320b以及第三侧面320c之间;其中,开口侧322a用以与透光结构体300相结合之用,且使入光表面301可与开口侧322a紧配于一起。控制电路板330包括至少一发光件331,例如:发光二极管(LED),用以因控制电路板330而产生多束光线,并经由导槽322以不会漏出光线的方式完全而行经至入光表面301处。
再者,邻近于入光表面301的A3区域中,任两相邻的V型光学折射结构310a的间距可彼此相等,而远离于入光表面301的B3区域中,任两相邻的V型光学折射结构310b的间距沿着远离该至少一发光件331的位置方向呈渐窄,从而得以提升整体灯具30于第一出光表面302的出光率,并同时减少光斑的产生。
然而,本例相较于前例的不同处为本例的透光结构体300为一弧面透光结构体300,且对应该弧面透光结构体300的外观形状而使第一出光表面302为一凸面,而第二出光表面303为一凹面,且该些V型光学折射结构310排列分布于第二出光表面303(凹面)上,从而得以使接收并折射后的部分光线可自该第一出光表面302(凸面)向外扩散,以提升整体灯具30的出光范围。举例来说,透光结构体300可运用于户外灯或路灯,藉由将该些V型光学折射结构310排列分布于凹面上,而得以使光线向外扩散而提升整体的出光范围,进而提升行人于夜晚时的视野范围。
另一方面,本发明的灯具可变更V型光学折射结构的设置位置而产生其他照明效果。请再参阅图4,本例将以第四实施例的灯具40中的部分元件来作为说明如何产生其他的照明效果。
如图4所示,本例与前例相同地包括透光结构体400、结合结构420以及控制电路板430。其中,透光结构体400仍包括入光表面401、第一出光表面402、第二出光表面403以及多个微结构410,例如:前例中的V型光学折射结构。第一出光表面402以及第二出光表面403分别邻接于入光表面401的第一侧边401a以及第二侧边401b,以使第一出光表面402相对应于第二出光表面403。且,该些V型光学折射结构410位于第二出光表面403,包括A4区域的V型光学折射结构410a以及B4区域的V型光学折射结构410b。
而结合结构420的部分仍包括第一侧面420a、第二侧面420b、第三侧面420c、多个散热鳍片421以及导槽422,其中该些散热鳍片421排列于第三侧面420c,而导槽422包括一开口侧422a,且导槽422位于第二侧面420b以及第三侧面420c之间;其中,开口侧422a用以与透光结构体400相结合之用,且使入光表面401可与开口侧422a紧配于一起。控制电路板430包括至少一发光件431,例如:发光二极管(LED), 用以因控制电路板430而产生多束光线,并经由导槽422而以不会漏出光线的方式完全行经至入光表面401处。
再者,邻近于入光表面401的A4区域中,任两相邻的V型光学折射结构410a的间距彼此相等,而远离于入光表面401的B4区域中,任两相邻的V型光学折射结构410b的间距沿着远离该至少一发光件431的位置方向呈渐窄,从而得以提升整体灯具于第一出光表面402的出光率,并同时减少光斑的产生。
然而,本例相较于前例的不同处为本例的透光结构体400虽然同样地为一弧面透光结构体,但对应该弧面透光结构体的外观形状而使第一出光表面402为一凹面,而第二出光表面403则为一凸面,且该些V型光学折射结构410排列分布于第二出光表面403(凸面)上,从而得以使接收并折射后的部分光线可自该第一出光表面402(凹面)由外向内地集中,因而使整体灯具40的出光范围得以集中于特定的区域中。举例来说,透光结构体400可运用于一桌灯,藉由将该些V型光学折射结构410排列分布于凸面上,而得以使光线集中于桌面上,以利于使用者阅读。
须特别地说明的是,微结构的部分可配合透光结构体的外观形状,而选用V型光学折射结构、U型光学折射结构及曲面光学折射结构中的一者或多者组合,且同时可依据透光结构体的外观形状以及发光件的设置位置,而设计出任两相邻的微结构间具有不同的间距宽窄,并可调整每一微结构与设置于该微结构的出光表面之间的深度、切割面宽度以及锐角角度。
也就是说,倘若透光结构体为一曲面透光结构体时,可相对应第二出光表面(光线折射面)的凸面以及凹面,而设计出任两相邻的微结构间的间距呈渐窄以及渐宽;抑或,多个发光件设置于透光结构体的两侧边时,而设计出任两相邻的微结构间的间距沿着该两侧边而朝向透光结构体的中央呈渐窄。进一步还可依据曲面弧度的深浅,而设计出相对应微结构的整体高度及切割面宽度,亦即可调整每一微结构与设置于该微结构的出光表面之间的深度、切割面宽度以及锐角角度。
也就是说,微结构的高度(亦即切割面的深度)可以远离多个发光件的方向而逐渐增加,相当于切割面的深度逐渐加深,例如:第一较佳实施例中透光结构体100的B1区域的V型光学折射结构110b的高度大于A1区域的V型光学折射结构110a的高度,以及第二较佳实施例中透光结构体200的B2区域的V型光学折射结构210b的高度大于A2区域的V型光学折射结构210b的高度。亦即,本发明的微结构的设计可为整体微结构间的间距、每一微结构的锐角角度、高度及切割面宽度对应多个发光件的设置位置而调整。
除此之外,透光结构体的外观形状除了前述实施例中的长方形之外,亦可为圆形、椭圆形、多角形(即多边形)或不规则形状,像是三角形、四角形、五角形或六角形等,抑或为特殊造型的花朵、云朵或是几何形状,且当透光结构体的外观形状为圆形、椭圆形或不规则形状时,发光件的设置位置可设置于透光结构体的中心点,所选用的V型光学折射结构、U型光学折射结构及曲面光学折射结构中的一者或多者组合可以发光件为中心,再以放射状的方式排列于第二出光表面(光线折射面)。
又或者是,当透光结构体为一半球体、一球体或其他特殊造型的立体形状时,设置于透光结构体中的微结构可应至少一发光件的设置位置或多个光源,而调整其结构的设计,以应光源的强弱而使透光结构体得以处于多种状态,像是视觉穿透状态、出光状态或部分出光状态等,从而具有多种不同的光学视觉效果。
如同上述,将举第五较佳实施例以及第六较佳实施例来作为说明。请参阅图5以及图5,其分别为第五较佳实施例中透光结构体的立体示意图,以及第六较佳实施例中透光结构体的立体示意图。
如图5所示,本例的透光结构体500为一圆形透光结构体500,其包括入光表面501、第一出光表面502、第二出光表面503以及多个微结构510。其中,透光结构体500可邻近于一光源,且该光源可位于或邻近于入光表面501,相当于透光结构体500的圆心处。且该些微结构510中的任两相邻的微结构510的间距,可自入光表面501而向外呈渐窄,且微结构510的深度及切割面宽度亦可相同地向外呈渐深及渐宽,亦即微结构510的切割深度及宽度自圆心处而向外逐渐增加。
反之,请参阅图6,此例的透光结构体600同样地亦为一圆形透光结构体600,其包括入光表面601、第一出光表面602、第二出光表面603以及多个微结构610。其中,本例与前例不同之处在于,本例的入光表面601位于圆形透光结构体600的圆周处,用以接收自圆周处向圆心处折射的多束光线,相当于将发光件设置于圆周处(入光表面601),并使其所产生的该些光线朝向圆心处行进。
也就是说,该些光线的光行进方向与该些微结构610之间可呈一垂直干涉关系,抑或呈一非平行干涉关系,且经由第一出光表面602所透出的一光通量高于经由第二出光表面603所透出的另一光通量。其中,该垂直干涉关系为该些微结构610完全或部分垂直地接收并折射该些光线,而该非平行干涉关系为该些微结构610完全非平行地或部分非平行地接收并折射该些光线。
且,该些微结构610中的任两相邻的微结构610的间距,可自入光表面601而向内呈渐窄,且微结构610的深度及切割面宽度亦可同样地向内呈渐深及渐宽,亦即微 结构610的切割深度及宽度自圆周处而向内逐渐增加。
要特别说明的是,本发明的透光结构体藉由位于第二出光表面的多个微结构的结构设计,而使该些微结构接收并折射该些光线,从而使自第一出光表面所折射透出的光线的一光通量明显地高于自第二出光表面所折射透出的光线的另一光通量,因而使透光结构体应是否接收光线而处于两种状态,其分别为视觉穿透状态以及出光状态,将举第七较佳实施例来作为说明,本发明的透光结构体于其他领域的运用方式。
本发明的透光结构体除了上述的灯具领域之外,还可应用于其他照明领域、门窗面板、展示框架或是展示橱窗等。于本例中将举一透光橱窗面板70来作为说明。请参阅图7A以及图7B,其分别为本发明第七较佳实施例中部分元件的立体示意图以及使用状态图。如图7A以及图7B所示,本例的透光橱窗面板70包括:透光结构体700以及发光件73,其中透光结构体700包括两入光表面701、第一出光表面702、第二出光表面703以及多个微结构710,而发光件73为两发光二极管灯条731、732或是两发光二极管灯带731、732。
其中,两入光表面701为透光结构体700相互对应的左右两侧边,当然于其他实施例亦可为透光结构体700相互对应的上下两侧边,而第二出光表面703相较于第一出光表面702更为邻近于一物件80,亦即本发明的透光橱窗面板70的第一出光表面702为向外显示的一光滑透光表面,而第二出光表面703为朝向内部并邻近于内部所展示的物件80,且该些微结构710设置于该第二出光表面703上,用以接收并折射来自两入光表面701的多束光线,其中该些微结构710的结构设计应光源的设置位置(即发光件73、731、732的设置位置),而自透光结构体700的左右两侧边朝向中央处逐渐加深,且该些微结构710中任两相邻的该微结构710间的间距呈渐窄。
当然,微结构710的结构设计,例如:彼此间的间距,微结构切割的深度、锐角角度以及切割面宽度,除了可依据光源的设置位置而调整,还可再依据光源的强弱(发光件的功率)而调整其对应的结构设计,不应以上述所有较佳实施例而限制了微结构的实际使用态样。
而发光件73的两发光二极管灯条731、732或是两发光二极管灯带731、732分别位于或被设置于两入光表面701处,且应感测周围环境的亮度或是一控制电路板的指令信号而产生该些光线。
接续说明,此透光橱窗面板70的实际运用方式,可应用于一百货商场的展示橱窗,或是可应用于位于行人道上的公车亭。先以展示橱窗来作为说明,当发光件73未产生多束光线时,透光橱窗面板70未接收该些光线而处于一视觉穿透状态,而当发光件 73产生该些光线时,该些微结构710接收并折射该些光线而处于一出光状态。其中,该视觉穿透状态是指视觉可自该第一出光表面702处透视到位于该第二出光表面703后方处的物件80的部分区域,如同于图7A所示。
而该出光状态是指该些微结构710因接收并折射该些光线,而使自该第一出光表面所透出的一光通量高于自该第二出光表面所透出的另一光通量,从而使透光结构体700形成一亮光面,相当于一光墙效果,因而无法透视到物件80被该第二出光表面703的光墙效果所遮蔽的部分区域,并如同于图7B所示。
如此一来,透光橱窗面板70可应商场或卖场的实际使用情境,而驱使发光件73产生该些光线,而满足当时使用的情境状态,像是有路人行经或邻近于应用透光橱窗面板70的展示橱窗时,发光件73可随即产生该些光线,以吸引路人目光集中于展示橱窗中,以满足商品商业行销的需求。另一方面,透光橱窗面板70还可应用于一公车亭,该发光件73可应周围环境的阴暗变化,而被驱使产生该些光线,从而使透光橱窗面板70处于视觉穿透状态或出光状态。
举例来说,当周围环境为阴天、雨天或是天黑时,该发光件73可应一感测器(图未示出)而被驱使产生该些光线,从而使透光结构体700处于出光状态,进而形成一光墙,以利于行人行走或是公车停靠,而具有公共环境安全的功效。而当周围环境为晴天或是白天时,该发光件73可应该感测器(图未示出)而未产生任何光线,则使透光结构体700处于视觉穿透状态,以利于行人透视周围环境的状态,并观察公车是否到站,而具有多重的功效。其中,感测器可应用一光电感测器,藉由其中的光敏元件将光信号转换为电信信号,从而得以应环境亮度的变化而驱使发光件产生光线,如同于前述,感测器可为各式其他种类的感测器,不应以前述较佳实施例而受限制。
再者,本发明的透光结构体的材料可为聚碳酸酯(Polycarbonate,PC塑料)、丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile Butadiene Styrene,ABS树脂)或其结合。如此,便可藉由塑料射出的方式而一体成型,或是透光结构体在处理微结构的部分,例如:前述各实施例中的V型光学折射结构,可以单一次的切割方式而一次成型,并不需要过多复杂繁琐的工法及流程。由此,本发明的透光结构体的制造过程简便,且配合灯具实际的照明效果需求,而选用不同排列组合的具有微结构的透光结构体,并同时有效地改善灯具的光斑问题,以解决现有灯具的多项缺失。
是以,本发明的透光结构体及具有该透光结构体的灯具主要是藉由运用透光结构体的外观形状与微结构的结构设计以及排列设置,而得以使整体透光结构体可依据实际使用需求而变更结构设计,从而产生对应的照明效果以及使用状态,以达到除了能 提升整体灯具的出光率、调整出光范围以及减少光斑的产生之外,还可应使用需求而对应调整其使用状态,如上述较佳实施例中的视觉穿透状态或出光状态,进而具有多种功效等。
以上所述仅为本发明的较佳实施例,并非用以限定本发明的权利要求范围,因此凡其它未脱离本发明所揭示的精神下所完成的等效改变或修饰,均应包含于本发明的权利要求范围内。
Claims (40)
- 一种具有微结构的透光结构体,用以接收多束光线,该透光结构体至少包括:一第一出光表面;一第二出光表面,相对应于该第一出光表面设置;以及多个微结构,设置于该第二出光表面;其中,每一该微结构至少包括一第一结构折射面以及一第二结构折射面;其中,该多束光线的光行进方向与该多个微结构间呈一垂直干涉关系,或者呈一非平行干涉关系,且每一该第一结构折射面所接收并折射后的一光通量高于每一该第二结构折射面所接收并折射后的另一光通量。
- 如权利要求1所述的透光结构体,其中,该垂直干涉关系为该多个微结构完全或部分垂直地接收并折射该多束光线,而该非平行干涉关系为该多个微结构完全非平行地或部分非平行地接收并折射该多束光线。
- 如权利要求1所述的透光结构体,其中,该多个微结构为V型光学折射结构、U型光学折射结构及曲面光学折射结构中的一者或其组合。
- 如权利要求1所述的透光结构体,其中,该多个微结构中的至少一组两相邻微结构间的间距不同于该多个微结构中的至少另一组两相邻微结构间的间距。
- 如权利要求1所述的透光结构体,其中,该多个微结构中任两相邻的该微结构间的间距,是沿着远离该多束光线的光源方向呈渐窄或渐宽。
- 如权利要求1所述的透光结构体,其中,每一该微结构与该第二出光表面之间的深度,是沿着远离该多束光线的光源方向呈渐浅或渐深。
- 如权利要求1所述的透光结构体,其中,每一该微结构中的该第一结构折射面与该第二出光表面之间的锐角夹角小于该第二结构折射面与该第二出光表面之间的锐角夹角。
- 如权利要求1所述的透光结构体,其中,每一该微结构与其相邻的另一该微结构间为连续相接、非连续相接或部分连续相接的排列设置方式。
- 如权利要求1所述的透光结构体,其中,该透光结构体未接收该多束光线时, 该透光结构体处于一视觉穿透状态,而当该多个微结构接收并折射该多束光线时,该透光结构体处于一出光状态。
- 如权利要求9所述的透光结构体,其中,该视觉穿透状态是指视觉可自该第一出光表面处透视到位于该第二出光表面处的至少一物件,而该出光状态是指该透光结构体因接收并折射该多束光线,而使自该第一出光表面所透出的一光通量高于自该第二出光表面所透出的另一光通量。
- 如权利要求1所述的透光结构体,其中,该透光结构体的材料为聚碳酸酯、丙烯腈-丁二烯-苯乙烯共聚物或其结合。
- 如权利要求1所述的透光结构体,其中,该透光结构体为一圆形透光结构体、一方形透光结构体、一多边形透光结构体或一不规则形状的透光结构体。
- 如权利要求1所述的透光结构体,其中,该透光结构体应用于灯具领域、照明领域、门窗面板或展示框架。
- 一种具有微结构的透光结构体,接收一灯具的至少一发光件的多束光线,该透光结构体至少包括:一第一出光表面;一第二出光表面,与该第一出光表面之间具有一光通道而相对应设置;以及多个微结构,设置于该第二出光表面;其中,当该多个微结构未接收该多束光线时,该透光结构体处于一视觉穿透状态,而当该多个微结构接收并折射该多束光线时,该透光结构体处于一出光状态,且自该第一出光表面所折射透出的光线的一光通量高于自该第二出光表面所折射透出的光线的另一光通量。
- 如权利要求14所述的透光结构体,其中,该视觉穿透状态为视觉穿透位于该第二出光表面处的一物件,该出光状态为该多个微结构接收并折射该多束光线后,使自该第一出光表面所透出的一光通量高于自该第二出光表面所透出的另一光通量。
- 如权利要求14所述的透光结构体,其中,该透光结构体为一中空透光结构体,该第一出光表面以及该第二出光表面分别位于一第一透光板体以及一第二透光板体;其中,该中空透光结构体中的该第二出光表面包括一第二出光内表面以及一第二出光 外表面,该第二出光内表面较于该第二出光外表面更邻近于该第一出光表面,而该多个微结构设置于该第二出光外表面。
- 如权利要求16所述的透光结构体,其中,该光通道为一间隙,其位于该第二出光内表面与该第一出光表面之间,以供该多束光线行进。
- 如权利要求16所述的透光结构体,其中,该多个微结构中的至少一组两相邻微结构间的间距不同于该多个微结构中的至少另一组两相邻微结构间的间距;或者该多个微结构中任两相邻的该微结构间的间距,是沿着远离该多束光线的光源方向呈渐窄或渐宽;或者每一该微结构与该第二出光外表面之间的深度,是沿着远离该多束光线的光源方向呈渐浅或渐深。
- 如权利要求16所述的透光结构体,其中,每一该微结构包括一第一结构折射面与一第二结构折射面;其中,该第一结构折射面与该第二出光外表面之间的锐角夹角小于该第二结构折射面与该第二出光外表面之间的锐角夹角。
- 如权利要求14所述的透光结构体,其中,该多个微结构接收并折射该多束光线,而使其中部分光线平均分布于该第二出光表面,并平均地向外散射。
- 一种具有微结构的透光结构体,接收一灯具的至少一发光件的多束光线,该透光结构体至少包括:一入光表面,用以接收该多束光线;一第一出光表面,位于该入光表面的一侧边;一第二出光表面,位于该入光表面的另一侧边,且与该第一出光表面相对应设置;以及多个微结构,设置于该第二出光表面;其中,该多个微结构用以接收并折射该多束光线以使其分别自该第一出光表面与该第二出光表面透出;其中,自该第一出光表面所折射透出的光线的一光通量高于自该第二出光表面所折射透出的光线的另一光通量。
- 如权利要求21所述的透光结构体,其中,该入光表面与该第二出光表面垂直,以使该多个微结构部分垂直地接收并折射该多束光线;或者该入光表面与该第二出光表面为非平行,以使该多个微结构部分非平行地接收并折射该多束光线。
- 如权利要求21所述的透光结构体,其中,该多个微结构中任两相邻的该微结构间的间距,是沿着远离该入光表面的方向呈渐窄或渐宽;或者每一该微结构与该第二出光表面之间的深度,是沿着远离该入光表面的方向呈渐浅或渐深;或者每一该微结构包括一第一结构折射面与一第二结构折射面;其中,该第一结构折射面与该第二出光表面之间的锐角夹角小于该第二结构折射面与该第二出光表面之间的锐角夹角。
- 一种具有微结构的透光结构体,接收一灯具的至少一发光件的多束光线,该透光结构体至少包括:一入光表面,用以接收该多束光线;一第一出光表面;以及一具有多个微结构的第二出光表面,其与该第一出光表面相隔一间隙而相对应设置,且该第二出光表面与该入光表面间呈一垂直设置关系,或者呈一非平行设置关系;其中,该多个微结构用以使自该第一出光表面所折射透出的光线的一光通量高于自该第二出光表面所折射透出的光线的另一光通量。
- 如权利要求24所述的透光结构体,其中,该垂直设置关系为该第二出光表面垂直邻接于该入光表面的一侧边,或者,该非平行设置关系为该第二出光表面邻接于该入光表面的一侧边,并具有一非垂直角度。
- 如权利要求24所述的透光结构体,其中,该多个微结构中任两相邻的该微结构间的间距,是沿着远离该入光表面的方向呈渐窄或渐宽。
- 如权利要求24所述的透光结构体,其中,该第二出光表面包括一第二出光内表面以及一第二出光外表面,该第二出光内表面对应于该第一出光表面,而该多个微结构设置于该第二出光外表面;其中,该间隙位于该第二出光内表面与该第一出光表面之间,以供该多束光线行进。
- 一种具有透光结构体的灯具,至少包括:一灯具主体;至少一发光件,设置于该灯具主体,且因一控制电路板而产生多束光线;以及一透光结构体,结合于该灯具主体,该透光结构体至少包括:一入光表面,用以接收该多束光线;一第一出光表面,位于该入光表面的一侧边;一第二出光表面,位于该入光表面的另一侧边,且相对应于该第一出光表面;以及多个微结构,设置于该第二出光表面;其中,藉由该多个微结构中的至少一微结构的设置方式,不同于该多个微结构中的至少另一微结构的设置方式,以使经由该多个微结构接收并折射的该多束光线自该第一出光表面所折射透出的光线的一光通量高于自该第二出光表面所折射透出的光线的另一光通量。
- 如权利要求28所述的灯具,其中,该多个微结构为V型光学折射结构、U型光学折射结构及曲面光学折射结构中的任一者或其组合。
- 如权利要求28所述的灯具,其中,该设置方式为该多个微结构中的任两相邻的该微结构间的间距,是沿着远离该至少一发光件的位置方向呈渐窄或渐宽。
- 如权利要求28所述的灯具,其中,该设置方式为每一该微结构与该第二出光表面之间的深度,是沿着远离该至少一发光件呈渐浅或渐深。
- 如权利要求28所述的灯具,其中,该设置方式为每一该微结构包括一第一结构折射面与一第二结构折射面,其中,该第一结构折射面与该第二出光表面之间的锐角夹角小于该第二结构折射面与该第二出光表面之间的锐角夹角。
- 如权利要求28所述的灯具,其中,该设置方式为每一该微结构与其相邻的另一该微结构间为连续相接、非连续相接或部分连续相接的排列设置方式。
- 如权利要求28所述的灯具,其中,该灯具主体包括一具有导槽的结合结构,该透光结构体藉由该导槽而组接并连通该至少一发光件。
- 如权利要求34所述的灯具,其中,该结合结构具有多个散热鳍片,且该多个散热鳍片与该第二出光表面位于同侧。
- 如权利要求28或35所述的灯具,其中,该灯具还包括一被动式人体红外线感测器与一微波感测器中的任一者,其电性连接于该控制电路板,其中该被动式人体红外线感测器或该微波感测器,用以感测一物件而驱使该控制电路板控制该至少一发 光件产生该多束光线。
- 一种具有微结构的透光结构体,用以接收多束光线,该透光结构体至少包括:一第一出光表面;一第二出光表面,相对应于该第一出光表面设置;以及多个微结构,设置于该第二出光表面;其中,每一该微结构至少包括一第一结构折射面以及一第二结构折射面;其中,该多束光线的光行进方向与该多个微结构间呈一垂直干涉关系,或者呈一非平行干涉关系,以使该多束光线分别自该第一出光表面与该第二出光表面折射出光。
- 一种具有微结构的透光结构体,接收一灯具的至少一发光件的多束光线,该透光结构体至少包括:一第一出光表面;一第二出光表面,与该第一出光表面之间具有一光通道而相对应设置;以及多个微结构,设置于该第二出光表面;其中,当该多个微结构未接收该多束光线时,该透光结构体处于一视觉穿透状态,而当该多个微结构接收并分别自该第一出光表面与该第二出光表面折射该多束光线时,该透光结构体处于一出光状态。
- 一种具有微结构的透光结构体,接收一灯具的至少一发光件的多束光线,该透光结构体至少包括:一入光表面,用以接收该多束光线;一第一出光表面;以及一具有多个微结构的第二出光表面,其与该第一出光表面相隔一间隙而相对应设置,且该第二出光表面与该入光表面间呈一垂直设置关系,或者呈一非平行设置关系。
- 一种具有透光结构体的灯具,至少包括:一灯具主体;至少一发光件,设置于该灯具主体,且因一控制电路板而产生多束光线;以及一透光结构体,结合于该灯具主体,且该至少一发光件设置于该透光结构体的邻近周围处;该透光结构体至少包括:一入光表面,用以接收该多束光线;一第一出光表面,位于该入光表面的一侧边;一第二出光表面,位于该入光表面的另一侧边,且相对应于该第一出光表面;以及多个微结构,设置于该第二出光表面;其中,藉由该多个微结构中的至少一微结构的设置方式,不同于该多个微结构中的至少另一微结构的设置方式,以使经由该多个微结构接收并折射的该多束光线分别自该第一出光表面与该第二出光表面折射出光。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18849374.6A EP3674604A4 (en) | 2017-08-24 | 2018-08-24 | LIGHT TRANSMISSION STRUCTURE BODY INCLUDING MICROSTRUCTURE AND LAMP INCLUDING LIGHT TRANSMISSION STRUCTURE BODY |
US16/641,275 US11506829B2 (en) | 2017-08-24 | 2018-08-24 | Light-transmissible element with microstructures and lamp device using same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201721067584.X | 2017-08-24 | ||
CN201721067584 | 2017-08-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019037787A1 true WO2019037787A1 (zh) | 2019-02-28 |
Family
ID=65439379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/102349 WO2019037787A1 (zh) | 2017-08-24 | 2018-08-24 | 具有微结构的透光结构体及具有该透光结构体的灯具 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11506829B2 (zh) |
EP (1) | EP3674604A4 (zh) |
JP (2) | JP6742373B2 (zh) |
CN (2) | CN109424938A (zh) |
TW (3) | TWI706109B (zh) |
WO (1) | WO2019037787A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3674604A4 (en) * | 2017-08-24 | 2020-08-12 | Livingstyle Enterprises Limited | LIGHT TRANSMISSION STRUCTURE BODY INCLUDING MICROSTRUCTURE AND LAMP INCLUDING LIGHT TRANSMISSION STRUCTURE BODY |
CN113777781B (zh) * | 2021-09-01 | 2024-02-02 | 北京双翼麒电子有限公司 | 一种光圈透光结构的设计方法及光圈 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1469075A (zh) * | 2002-06-17 | 2004-01-21 | ����ŷ�������ʽ���� | 从两面发光的面光源和使用该面光源的两面显示装置 |
CN201078650Y (zh) * | 2007-08-03 | 2008-06-25 | 科桥电子股份有限公司 | 导光板 |
CN202303203U (zh) * | 2011-10-19 | 2012-07-04 | 胡爱斌 | 一种led台灯的新型导光板结构 |
CN102667553A (zh) * | 2009-12-03 | 2012-09-12 | 皇家飞利浦电子股份有限公司 | 透明的发光窗元件 |
CN202532227U (zh) * | 2011-12-23 | 2012-11-14 | 上海广中电子电器配件有限公司 | 双面发光型灯具结构 |
CN202884564U (zh) * | 2012-07-13 | 2013-04-17 | 上海广中电子电器配件有限公司 | 具有透明度的灯具以及使用该灯具的屏幕 |
CN203656611U (zh) * | 2013-10-04 | 2014-06-18 | 上海广中电子电器配件有限公司 | 具有曲面导光板的灯具 |
CN106200110A (zh) * | 2014-08-25 | 2016-12-07 | 欧姆龙株式会社 | 显示装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001044714A2 (en) * | 1999-11-30 | 2001-06-21 | Reflexite Corporation | Luminaire system |
JP2005165199A (ja) * | 2003-12-05 | 2005-06-23 | Alps Electric Co Ltd | プリズムシート及び照光装置及び面発光装置並びに液晶表示装置 |
US7593615B2 (en) * | 2006-02-10 | 2009-09-22 | Rpc Photonics, Inc. | Optical devices for guiding illumination |
JP2007225788A (ja) * | 2006-02-22 | 2007-09-06 | Citizen Electronics Co Ltd | 導光板及び該導光板を用いた表裏一体型バックライト及び該バックライトを用いた液晶表示装置。 |
TWM347535U (en) * | 2008-06-17 | 2008-12-21 | yun-heng Xu | Structural improvement of light guide plate |
WO2012098739A1 (ja) * | 2011-01-21 | 2012-07-26 | 三菱電機株式会社 | 面光源装置及び液晶表示装置 |
US9046225B2 (en) * | 2013-08-16 | 2015-06-02 | General Electric Company | Lighting system with improved illumination distribution |
CN204227325U (zh) * | 2014-09-23 | 2015-03-25 | 张冠辉 | 一种新型led圆形导光板 |
US20160363711A1 (en) * | 2015-06-10 | 2016-12-15 | General Electric Company | Lighting system with improved illumination distribution and output luminance variation |
TWI571994B (zh) * | 2015-06-30 | 2017-02-21 | 旭德科技股份有限公司 | 封裝基板及其製作方法 |
TWI571594B (zh) * | 2016-03-01 | 2017-02-21 | 茂林光電科技股份有限公司 | 照明燈具及其導光板設計方法 |
TWM540240U (zh) * | 2016-12-30 | 2017-04-21 | Excellence Optoelectronics Inc | 可消除色散的直射式led照明模組 |
EP3674604A4 (en) * | 2017-08-24 | 2020-08-12 | Livingstyle Enterprises Limited | LIGHT TRANSMISSION STRUCTURE BODY INCLUDING MICROSTRUCTURE AND LAMP INCLUDING LIGHT TRANSMISSION STRUCTURE BODY |
-
2018
- 2018-08-24 EP EP18849374.6A patent/EP3674604A4/en active Pending
- 2018-08-24 JP JP2018157824A patent/JP6742373B2/ja active Active
- 2018-08-24 CN CN201810975210.0A patent/CN109424938A/zh active Pending
- 2018-08-24 TW TW108140418A patent/TWI706109B/zh active
- 2018-08-24 TW TW107129664A patent/TWI691675B/zh active
- 2018-08-24 TW TW107211618U patent/TWM574203U/zh unknown
- 2018-08-24 CN CN201821375487.1U patent/CN208652458U/zh active Active
- 2018-08-24 WO PCT/CN2018/102349 patent/WO2019037787A1/zh unknown
- 2018-08-24 US US16/641,275 patent/US11506829B2/en active Active
- 2018-10-19 JP JP2018004055U patent/JP3220749U/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1469075A (zh) * | 2002-06-17 | 2004-01-21 | ����ŷ�������ʽ���� | 从两面发光的面光源和使用该面光源的两面显示装置 |
CN201078650Y (zh) * | 2007-08-03 | 2008-06-25 | 科桥电子股份有限公司 | 导光板 |
CN102667553A (zh) * | 2009-12-03 | 2012-09-12 | 皇家飞利浦电子股份有限公司 | 透明的发光窗元件 |
CN202303203U (zh) * | 2011-10-19 | 2012-07-04 | 胡爱斌 | 一种led台灯的新型导光板结构 |
CN202532227U (zh) * | 2011-12-23 | 2012-11-14 | 上海广中电子电器配件有限公司 | 双面发光型灯具结构 |
CN202884564U (zh) * | 2012-07-13 | 2013-04-17 | 上海广中电子电器配件有限公司 | 具有透明度的灯具以及使用该灯具的屏幕 |
CN203656611U (zh) * | 2013-10-04 | 2014-06-18 | 上海广中电子电器配件有限公司 | 具有曲面导光板的灯具 |
CN106200110A (zh) * | 2014-08-25 | 2016-12-07 | 欧姆龙株式会社 | 显示装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3674604A4 * |
Also Published As
Publication number | Publication date |
---|---|
TWM574203U (zh) | 2019-02-11 |
TW202012833A (zh) | 2020-04-01 |
CN208652458U (zh) | 2019-03-26 |
JP3220749U (ja) | 2019-04-04 |
US20200183076A1 (en) | 2020-06-11 |
TW201912996A (zh) | 2019-04-01 |
JP6742373B2 (ja) | 2020-08-19 |
TWI706109B (zh) | 2020-10-01 |
TWI691675B (zh) | 2020-04-21 |
EP3674604A4 (en) | 2020-08-12 |
JP2019040865A (ja) | 2019-03-14 |
US11506829B2 (en) | 2022-11-22 |
CN109424938A (zh) | 2019-03-05 |
EP3674604A1 (en) | 2020-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10422939B2 (en) | Waveguide having unidrectional illuminance | |
US7186005B2 (en) | Color-changing illumination device | |
JP5335945B2 (ja) | 光束制御部材および照明装置 | |
KR101330763B1 (ko) | 조명기구 | |
KR20120052289A (ko) | 자유 형태 조명 모듈 | |
JP6868016B2 (ja) | 照明システム及び光出力を生成する方法 | |
US20190041035A1 (en) | Lighting device with sparkling effect | |
US10895364B2 (en) | Energy reduction optics | |
EP2309170A1 (en) | Embedded lamp with auxiliary illumination | |
TWI706109B (zh) | 具有微結構的透光結構體及其燈具 | |
US10030822B2 (en) | Solar spectrum type LED eye-protection flat lamp | |
US10809447B2 (en) | Luminaire having an asymmetrical light distribution pattern | |
TWI500884B (zh) | 照明裝置與應用此照明裝置之隱蔽式照明模組 | |
CN214249470U (zh) | 透镜及灯具 | |
KR20110000608A (ko) | 측광원에 의해 발광하는 비구면렌즈를 이용한 엘이디 조명장치 | |
TWM486734U (zh) | 具照度均勻之燈具 | |
EP3263981B1 (en) | A method of producing optical elements for lighting devices and corresponding optical element | |
KR101713973B1 (ko) | Led 조명등용 확산 렌즈 | |
JP3172647U (ja) | 反射ユニット及びその光源モジュール | |
CN112902112B (zh) | 透镜及灯具 | |
CN102032529A (zh) | 导光组件 | |
JP6877174B2 (ja) | 防災用表示灯 | |
WO2019105059A1 (zh) | 一种补光灯及摄像机 | |
TWI426304B (zh) | 鏡片 | |
TW201422972A (zh) | 光源轉換系統 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18849374 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018849374 Country of ref document: EP Effective date: 20200324 |