WO2019035436A1 - Culture substrate for pluripotent stem cell and method for producing pluripotent stem cell - Google Patents
Culture substrate for pluripotent stem cell and method for producing pluripotent stem cell Download PDFInfo
- Publication number
- WO2019035436A1 WO2019035436A1 PCT/JP2018/030175 JP2018030175W WO2019035436A1 WO 2019035436 A1 WO2019035436 A1 WO 2019035436A1 JP 2018030175 W JP2018030175 W JP 2018030175W WO 2019035436 A1 WO2019035436 A1 WO 2019035436A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pluripotent stem
- substrate
- stem cells
- block copolymer
- culture
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M3/00—Tissue, human, animal or plant cell, or virus culture apparatus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
Definitions
- the present invention is a culture substrate which can exfoliate pluripotent stem cells by temperature change by having a layer of a temperature responsive polymer on the substrate, and is excellent in mass productivity and without damaging the cells.
- the present invention relates to a method for producing pluripotent stem cells capable of producing pluripotent stem cells.
- Pluripotent stem cells such as embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells) are cells having the ability (differentiation pluripotency) to differentiate into various tissues of the living body, and cells in the field of regenerative medicine Much attention has been drawn as a source. In order to apply pluripotent stem cells to regenerative medicine, it is essential to grow the necessary number of pluripotent stem cells in an undifferentiated state and collect them as single cells or cell aggregates (except for cell sheet). is there.
- ES cells embryonic stem cells
- iPS cells induced pluripotent stem cells
- pluripotent stem cells In order to maintain the undifferentiated state of pluripotent stem cells, there is a method of culturing mouse embryo-derived fibroblasts as a scaffold by feeder cells prepared by gamma irradiation or antibiotic administration.
- the culture method of pluripotent stem cells using feeder cells complicates the process of culture, and infection of endogenous virus between different animals can occur.
- a culture method which avoids the use of feeder cells between different species of animals as much as possible is required.
- a culture substrate for iPS cells coated with an extracellular matrix such as laminin (Patent Document 1) is known. According to such a substrate, it is possible to culture pluripotent stem cells in an undifferentiated state without using feeder cells, that is, in a feeder-free environment.
- a proteolytic enzyme is used. Proteolytic enzymes degrade proteins on multicellular surfaces, and play a role in cleaving the bond between pluripotent stem cells and a substrate and the bond between pluripotent stem cells.
- proteolytic enzymes are known to adversely affect cell viability, and a method of separating cells from a substrate without using proteolytic enzymes is important as a method that does not damage cells.
- Patent Document 2 uses a cell culture support coated with a thermoresponsive polymer having an upper limit or lower limit critical solution temperature of 0 to 80 ° C. in water, peels cells by temperature change, and recovers a cell sheet Methods are disclosed.
- the method described in Patent Document 2 has a problem that it can not be applied to pluripotent stem cells.
- Patent Document 2 mainly aims at recovery of a cell sheet, and does not obtain single cells or clumps of cells.
- An object of the present invention is to culture pluripotent stem cells in a feeder-free environment, and by changing the temperature of the culture substrate, it is possible to detach pluripotent stem cells from the culture substrate without using a proteolytic enzyme.
- An object of the present invention is to provide a culture substrate capable of recovering pluripotent stem cells as single cells or cell aggregates.
- Another object of the present invention is to provide a method for producing pluripotent stem cells, which is excellent in mass productivity and can produce pluripotent stem cells as single cells or cell aggregates without damaging the cells.
- the present inventors have conducted intensive studies, and as a result, it is possible that the culture substrate having a layer made of a thermoresponsive polymer and the method for producing a specific pluripotent stem cell can solve the above-mentioned problems.
- the present invention has been completed.
- the substrate surface has a layer of a temperature responsive polymer having a response temperature to water in the range of 0 ° C. to 50 ° C., and the layer is selected from the group consisting of matrigel, laminin, fibronectin, vitronectin and collagen
- a culture substrate for pluripotent stem cells characterized in that at least one type of bio-derived substance is immobilized.
- B Block segment having pluripotent stem cell adhesion.
- B Water insoluble block segment.
- the block segment of the above (B) is a block polymer comprising at least one kind of repeating unit among repeating units represented by the following general formula (1): Or the culture substrate of the pluripotent stem cells as described in [3].
- R 1 is a hydrogen atom or a methyl group
- Q is a divalent bond selected from an ester bond, an amide bond, a urethane bond or an ether bond
- R 2 is a group represented by the following general formula (2), ( And 3) a substituent represented by (4), (5), (6), (7) or (8), a hydrocarbon group having 1 to 30 carbon atoms or a hydrogen atom.
- R 3 is a divalent hydrocarbon group having 1 to 10 carbon atoms
- R 4 and R 5 are each independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
- R 6 is a divalent hydrocarbon group having 1 to 10 carbon atoms
- R 7 is a divalent hydrocarbon group having 1 to 4 carbon atoms
- R 8 and R 9 are each independently Hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms
- X is a sulfonate anion group, a carboxylate anion group or a phosphate anion group.
- R 10 is a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, i is an integer of 1 to 300, and j is an integer of 0 to 60).
- R 11 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
- R 12 is a divalent hydrocarbon group having 1 to 12 carbon atoms, or a (poly) oxyethylene group
- R 13 is a divalent hydrocarbon group having 1 to 4 carbon atoms
- R 14 , R 15 and R 16 are each independently a hydrogen atom or a hydrocarbon group having 1 to 2 carbon atoms.
- A represents an ether bond or an ester bond
- R 17 represents a divalent hydrocarbon group having 1 to 5 carbon atoms
- R 18 represents a fluorine atom
- n represents an integer of 0 to 4
- R 19 represents a divalent hydrocarbon group of 1 to 5 carbon atoms, which may be absent.
- R 20 , R 21 , R 22 , R 23 and R 24 are each independently hydrogen
- the block copolymer containing the block segment of (A) and (B) is a block copolymer having a constituent unit ratio of 80 to 99 wt% of the block segment of (A) A culture substrate for pluripotent stem cells according to any one of [2] to [4].
- the laminin adsorption rate determined from the following formula.
- the culture substrate for pluripotent stem cells according to any one of the above [1] to [9], wherein the pluripotent stem cells are human induced pluripotent stem cells.
- a method for producing pluripotent stem cells comprising producing undifferentiated pluripotent stem cells through the following steps (1) to (3). (1) A step of seeding pluripotent stem cells on the culture substrate according to any one of the above [1] to [10]. (2) culturing the pluripotent stem cells seeded on the culture substrate in a liquid at a temperature higher than the response temperature of the temperature responsive polymer. (3) A step of cooling the culture substrate to a temperature lower than the response temperature of the temperature responsive polymer, and exfoliating pluripotent stem cells cultured in the liquid from the substrate.
- pluripotent stem cells can be cultured in a feeder-free environment, and pluripotent stem cells can be detached from the substrate without using a proteolytic enzyme by changing the temperature of the culture substrate, Pluripotent stem cells can be provided as a culture substrate that can be recovered as single cells or cell aggregates.
- a method for producing pluripotent stem cells which is excellent in mass productivity and can produce pluripotent stem cells as single cells or cell aggregates without damaging the cells.
- the present embodiment modes for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail.
- the following embodiment is an example for describing the present invention, and is not intended to limit the present invention to the following contents.
- the present invention can be appropriately modified and implemented within the scope of the spirit of the present invention.
- temperature responsive polymer refers to a polymer whose degree of hydrophilicity / hydrophobicity changes with temperature change.
- the degree of hydrophilicity / hydrophobicity of the polymer changes to be more hydrophobic at a certain temperature, and it becomes water soluble
- this boundary temperature is referred to as “lower critical solution temperature (LCST)”.
- LCST lower critical solution temperature
- a temperature responsive polymer dissolves in water at a temperature lower than LCST, it becomes insoluble in water at a temperature higher than LCST.
- the temperature responsive polymer is water insoluble, it does not have LCST, but has a response temperature in which the degree of hydrophilicity / hydrophobicity changes with temperature change.
- the “biologically-derived substance” is a substance present in the body of an organism, but may be a natural product, or may be artificially synthesized by genetic engineering or the like. In addition, it may be a substance chemically synthesized based on the aforementioned biological substance.
- the substance derived from a living organism but for example, nucleic acids, proteins, polysaccharides which are basic materials constituting the living body, nucleotides and nucleosides which are components thereof, amino acids, various sugars, lipids, vitamins and hormones is there.
- pluripotent stem cell adhesion refers to adhesion of pluripotent stem cells to a culture substrate at a temperature at which pluripotent stem cells are cultured.
- water-insoluble in the block segment indicates that at least a part of the homopolymer consisting only of monomer units constituting the block segment is insoluble in water.
- pluripotent stem cell proliferative refers to the pliability of pluripotent stem cells at culture temperature, and having proliferative refers to culture of pluripotent stem cells at culture temperature. It adheres to the material and shows that it can grow. Furthermore, high proliferative means that the cells proliferate to more pluripotent stem cells when compared in the same culture period.
- pluripotent stem cell releasability indicates the removability of pluripotent stem cells grown on the culture substrate from the culture substrate
- with releasability Fig. 6 shows that pluripotent stem cells grown on a culture substrate can be detached from the culture substrate by an external stimulus.
- high releasability indicates that pluripotent stem cells are detached from the culture substrate by a weaker external stimulus such as short-time cooling or weak stress.
- having a cold peelability indicates that it has peelability, and further cooling the culture substrate increases peelability as compared to the case without cooling.
- the term “external stimulation” refers to mechanical stimulation such as ultrasound, vibration and convection, electromagnetic stimulation such as light, electricity and magnetism, and thermodynamic stimulation such as heating and cooling. , Excluding those due to biological reactions such as enzyme reactions.
- the “undifferentiated maintenance rate” of pluripotent stem cells indicates the proportion of undifferentiated pluripotent stem cells contained in cultured cells, and it is possible to stain undifferentiated markers of pluripotent stem cells. , Can be measured by a flow cytometer.
- the undifferentiated maintenance rate is high, it means that the purity of pluripotent stem cells is high, which is preferable.
- the culture substrate of the present invention has a layer of a temperature responsive polymer having a response temperature to water in the range of 0 ° C. to 50 ° C. on the surface of the substrate. By having a layer of a temperature responsive polymer, the culture substrate of the present invention has the ability to cool off pluripotent stem cells.
- the "culture substrate” refers to the entire article (for example, the portion shown by reference numeral 10 in FIG. 1) for culturing pluripotent stem cells, and is based on the substrate and the temperature responsive polymer Including layers.
- base material indicates a base material (for example, a portion shown by reference numeral 1 in FIG. 1) coated with a layer of a temperature responsive polymer.
- the temperature responsive polymer has a response temperature in the range of 0 ° C. to 50 ° C.
- the culture substrate of the present invention has pluripotent stem cell adhesion and proliferation near body temperature (37 ° C.) and a temperature range which does not damage cells. Have a cold peelability. If it does not have a response temperature, it does not have cold peelability.
- the response temperature is in the range of 10 ° C to 40 ° C because it is suitable for imparting pluripotent stem cell adhesiveness and proliferation near the body temperature and for imparting cooling peelability in a temperature range that does not damage cells. Is more preferably in the range of 15 ° C.
- the temperature-responsive polymer has hydrophobicity, so that proteins are easily adsorbed, and the adsorbed proteins can be used as a scaffold to allow adhesion culture of cells.
- the change to hydrophilicity promotes cell detachment. If the response temperature is less than 0 ° C., it becomes difficult to impart cooling peelability in a temperature range that does not damage the cells, and if it exceeds 50 ° C., there is no pluripotent stem cell adhesiveness and proliferation near body temperature. , Cell culture becomes difficult.
- the response temperature is in the range of 0 ° C. to 30 ° C. because it is suitable for suppressing cell detachment at the time of medium exchange. Is more preferably in the range of 5 ° C. to 25 ° C., particularly preferably 5 ° C. to 20 ° C., and most preferably 10 ° C. to 20 ° C.
- the type of the thermoresponsive polymer is not particularly limited, but a block copolymer coated on a base material, a copolymer weight immobilized on a base material via a reactive group such as an azide group, etc.
- immobilized on the base material can be used suitably by apply
- the temperature responsive polymer is preferably a block copolymer containing at least the following block segments (A) and (B).
- the block copolymer contains the block segment (A), it is easy to impart pluripotent stem cell adhesiveness and proliferation to the culture substrate of the present invention at around body temperature, and a temperature range which does not damage the cells. It is easy to give cold
- LCST of block segment (A) when it is described as "LCST of block segment (A)" in the present invention, LCST of a homopolymer consisting only of repeating units constituting the block segment (A) is shown.
- the LCST of the block segment (A) is a temperature at which the homopolymer is insolubilized in water, for example, while heating the aqueous solution at a rate of 1 ° C./min in an aqueous solution in which 0.6 wt% of the homopolymer is dissolved. It can obtain
- the LCST can be determined by determining the transmittance at a temperature lower than the LCST and the temperature at which the transmittance of the average value of the transmittances at a temperature higher than the LCST is obtained (midpoint method).
- the temperature range to be measured is a range including a temperature range of 5 ° C. or more in which the transmittance is substantially constant at a temperature less than LCST, and further includes a temperature range of 5 ° C. or more in which the transmittance is constant at a temperature of LCST or more.
- the response temperature is measured by finding a temperature which is insoluble in water but the degree of hydrophilicity / hydrophobicity changes due to temperature change. be able to.
- the degree of hydrophilicity / hydrophobicity of the block copolymer is measured by immersing the block copolymer-coated substrate in water and measuring the contact angle of air bubbles in water.
- the temperature of the block copolymer is changed by changing the temperature of water, and after waiting for the temperature to stabilize, the contact angle at various temperatures is determined by measuring the contact angle of the bubble again. .
- the bubble contact angle is generally constant at a large value (small water contact angle), but the bubble contact angle becomes a small value (large water contact angle) at the response temperature.
- a curve that is approximately constant above the response temperature is obtained (eg, FIG. 3).
- the response temperature can be determined by determining the contact angle at a temperature lower than the response temperature and the contact angle at an average value of the contact angles at a temperature higher than the response temperature (midpoint method).
- the temperature range to be measured includes a temperature range of 10 ° C. or more at which the contact angle becomes substantially constant at a temperature lower than the response temperature, and further includes a temperature range at 10 ° C. or more at which the contact angle becomes substantially constant at a temperature higher than the response temperature. It is.
- the response temperature of the temperature responsive polymer there are those which adjust the property of the copolymerizable monomer and the copolymerization rate.
- the temperature responsive polymer copolymerized with a hydrophilic monomer shifts the response temperature to the high temperature side as the composition increases.
- the response temperature shifts to the low temperature side as the composition increases.
- the suitable LCST of the block segment (A) changes depending on the nature of the monomer of the block segment (B) to be copolymerized
- the response temperature of the temperature responsive polymer is 0 to 50 ° C.
- the LCST of the block segment (A) is preferably 10 to 75 ° C., more preferably 10 to 60 ° C., particularly preferably 20 to 50 ° C.
- the monomer unit constituting the block segment (A) is not particularly limited.
- (meth) acrylamide compounds such as acrylamide and methacrylamide; N, N-diethylacrylamide, N-ethylacrylamide, Nn -Propyl Acrylamide, Nn-Propyl Methacrylamide, N-Isopropyl Acrylamide, N-Isopropyl Methacrylamide, N-Cyclopropyl Acrylamide, N-Cyclopropyl Methacrylamide, N-Ethoxyethyl Acrylamide, N-Ethoxyethyl Methacrylamide, N N-alkyl substituted (meth) acrylamide derivatives such as -tetrahydrofurfuryl acrylamide, N-tetrahydrofurfuryl methacrylamide; N, N-dimethyl (meth) acrylamide, N, N-ethy N, N-dialkyl-substituted (meth) acrylamide derivatives such
- the block copolymer contains the water-insoluble block segment (B)
- mixing of the temperature-responsive polymer into the culture solution can be easily suppressed, which is preferable.
- the block segment (B) in the present invention is also suitable for enhancing the pluripotent stem cell adhesion of the culture substrate
- the homopolymer comprising the monomer unit of the block segment (B) is a pluripotent stem cell It is preferable to have adhesiveness.
- pluripotent stem cell adhesiveness There are no particular limitations on those having pluripotent stem cell adhesiveness, but for example, those having an ionic group, a hydrophilic group, a hydrophobic group, etc., and after covering them on the substrate surface, What surface-treated by gamma irradiation, plasma treatment, corona treatment etc. is mentioned.
- the block segment (B) in the present invention is also a block that contributes to controlling the response temperature of the block copolymer because it is suitable for setting the response temperature of the block copolymer to the range of 0 to 50 ° C. Is preferred. Since the block copolymer (B) has the block segment (B), the response temperature of the block segment (A) is shifted to the high temperature side or the low temperature side, and the response temperature of the block copolymer is controlled in the range of 0 to 50 ° C. be able to. When the block copolymer has the block segment (B), the response temperature of the block copolymer can be controlled, and various monomers can be used as monomer units constituting the block segment (B). is there. For controlling the response temperature of the block copolymer, for example, hydrophilic monomers, hydrophobic monomers, or both may be used for the block segment (B).
- the block segment (B) in the present invention is suitable for enhancing the releasability of pluripotent stem cells, it is a block that contributes to shortening the cooling time necessary for the exfoliation of pluripotent stem cells. preferable. Since the block copolymer has the block segment (B), when the culture substrate is at a temperature lower than the response temperature of the block copolymer, water easily enters the block copolymer, and the cell and the block copolymer The adhesion of the cells is apt to weaken, and the time required for detachment of pluripotent stem cells can be shortened.
- the block copolymer has the block segment (B)
- the time required for detachment of pluripotent stem cells can be shortened. It is preferable to use, for example, a hydrophilic monomer for the block segment (B) in order to shorten the cooling time required for the detachment of pluripotent stem cells.
- the block segment (B) in the present invention is preferably a block that contributes to adhesion to a substrate because it is suitable for firmly fixing the block copolymer to the substrate. Since the block segment (B) is a block that contributes to adhesion to the substrate, the block copolymer can be stably coated on the substrate even when the culture substrate is at a temperature lower than the response temperature of the block copolymer You can continue. For this reason, since the block segment (B) is a block that contributes to adhesion to the substrate, the immobilization of the block copolymer on the substrate is not limited to chemical coating, but is physically covered. You can also In order to enhance the adhesion between the block copolymer and the substrate, it is preferable to use, for example, a hydrophobic monomer or a monomer having a reactive functional group as the block segment (B).
- the block segment (B) is a block weight comprising at least one repeating unit of repeating units represented by the following general formula (1) since it is suitable for enhancing water insolubility. It is preferable to be combined.
- R 1 is a hydrogen atom or a methyl group
- Q is a divalent bond selected from an ester bond, an amide bond, a urethane bond or an ether bond
- R 2 is a group represented by the following general formula (2), ( And 3) a substituent represented by (4), (5), (6), (7) or (8), a hydrocarbon group having 1 to 30 carbon atoms or a hydrogen atom.
- R 3 is a divalent hydrocarbon group having 1 to 10 carbon atoms
- R 4 and R 5 are each independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
- R 6 is a divalent hydrocarbon group having 1 to 10 carbon atoms
- R 7 is a divalent hydrocarbon group having 1 to 4 carbon atoms
- R 8 and R 9 are each independently Hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms
- X is a sulfonate anion group, a carboxylate anion group or a phosphate anion group.
- R 10 is a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, i is an integer of 1 to 300, and j is an integer of 0 to 60).
- R 11 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
- R 12 is a divalent hydrocarbon group having 1 to 12 carbon atoms, or a (poly) oxyethylene group
- R 13 is a divalent hydrocarbon group having 1 to 4 carbon atoms
- R 14 , R 15 and R 16 are each independently a hydrogen atom or a hydrocarbon group having 1 to 2 carbon atoms.
- A represents an ether bond or a methylene group
- R 17 represents a C 3 -C 5 divalent hydrocarbon group
- R 18 represents a fluorine atom
- n represents an integer of 0 to 4.
- R 19 represents a divalent hydrocarbon group of 1 to 5 carbon atoms, which may be absent.
- R 20 , R 21 , R 22 , R 23 and R 24 are each independently hydrogen
- R 1 is a hydrogen atom or a methyl group.
- Q is a divalent bond selected from an ester bond, an amide bond, a urethane bond or an ether bond, preferably an ester bond or an amide bond, particularly preferably an ester bond.
- R 2 represents a substituent represented by the general formula (2), (3), (4), (5), (6), (7) or (8), having 1 to carbon atoms 30 indicates a hydrocarbon group or a hydrogen atom.
- R 2 enhances water insolubility, enhances pluripotent stem cell adhesion and proliferation, shifts the response temperature of the block copolymer to the high temperature side, or alternatively, pluripotent stem cells
- R 3 is a divalent hydrocarbon group having 1 to 10 carbon atoms, which is suitable for enhancing the releasability of pluripotent stem cells, and preferably has 1 to 6 carbon atoms.
- a methylene group, ethylene group, a propylene group, a butylene group, a pentamethylene group, a hexamethylene group etc. are illustrated as such an alkylene group, Preferably it is an ethylene group.
- R 4 and R 5 are each independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and since R 4 and R 5 are simultaneously suitable for enhancing the peelability of pluripotent stem cells, R 4 and R 5 are simultaneously It is preferably a methyl group or an ethyl group, and particularly preferably a methyl group.
- an aminomethyl group an N, N-dimethylaminomethyl group, an N, N-diethylaminomethyl group, an aminoethyl group, an N, N-dimethylaminoethyl group And N, N-diethylaminoethyl group, 3-aminopropyl group, 3- (N, N-dimethylamino) -propyl group, 3- (N, N-diethylamino) -propyl group, etc.
- N, N-dimethylaminomethyl group, N, N-dimethylaminoethyl group and N, N-diethylaminoethyl group are preferred since they are suitable for enhancing the exfoliation of stem cells.
- R 2 is represented by the general formula (2) is not particularly limited, for example, 2-dimethylaminoethyl acrylate, 2-dimethylaminoethyl methacrylate, 2-diethylamino Ethyl acrylate, 2-diethylaminoethyl methacrylate, N- [3- (dimethylamino) propyl] acrylamide and the like can be mentioned.
- R 2 enhances water insolubility, enhances pluripotent stem cell adhesion and proliferation, shifts the response temperature of the block copolymer to the high temperature side, or alternatively, pluripotent stem cells
- the substituent represented by the general formula (3) can be used because it is suitable for enhancing the removability of
- R 6 is a divalent hydrocarbon group having 1 to 10 carbon atoms and is suitable for enhancing the releasability of pluripotent stem cells, it is preferably a methylene group or an ethylene group.
- R 7 is a divalent hydrocarbon group having 1 to 4 carbon atoms, and is preferably an alkylene group such as a methylene group, an ethylene group, a propylene group or a butylene group in order to enhance the peelability of the pluripotent stem cells. More preferably, it is an ethylene group.
- R 8 and R 9 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and since R 8 and R 9 are each suitable for enhancing the peelability of pluripotent stem cells, R 8 and 9 are preferably At the same time, it is a hydrogen atom or a methyl group, more preferably a methyl group.
- X is a sulfonate anion group, a carboxylate anion group or a phosphate anion group.
- dimethyl (ethyl) (carboxylatomethyl) aminium group dimethyl (ethyl) (2-carboxylatoethyl) aminium group, dimethyl (ethyl) (3-) Carboxylatopropyl) aminium group, dimethyl (propyl) (3-sulfonatopropyl) aminium group, dimethyl (propyl) (4-sulfonatobutyl) aminium group, dimethyl (ethyl) (2-sulfonatoethyl) aminium group, dimethyl (ethyl) ) (3-sulfonatopropyl) aminium group, dimethyl (ethyl) (2-phosphonatoethyl) aminium group, dimethyl (ethyl) (3-phosphonatopropyl) aminium group, etc.
- Ethyl) (carboxylatomethyl) aminium group dimethyl (ethyl) (2-carboxylatoethyl) aminium group, dimethyl (propyl) (3-sulfonatopropyl) aminium group, dimethyl (propyl) (4-sulfonatobutyl) aminium group, It is a dimethyl (ethyl) (2-sulfonatoethyl) aminium group.
- the monomer unit in which R 2 is represented by the general formula (3) is not particularly limited.
- N- (3-sulfopropyl) -N-methacroyloxyethyl- N, N-dimethylammonium betaine, N-methacryloyloxyethyl-N, N-dimethylammonium- ⁇ -N-methylcarboxybetaine and the like can be mentioned.
- R 2 enhances water insolubility, enhances pluripotent stem cell adhesion and proliferation, shifts the response temperature of the block copolymer to high temperature side or low temperature side, or exfoliates
- R 10 is a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, and is methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, isobutyl, tert. -Butyl group, n-hexyl group, isohexyl group etc.
- i is an integer of 1 to 300
- j is an integer of 0 to 60.
- a polyethylene glycol group, 2-hydroxyethyl group, 2-hydroxyethyl group, a hydroxymethyl group, 2-methoxyethyl group, a furfuryl group, tetrahydrofurfuryl group And the like but is preferably a polyethylene glycol group, a 2-methoxyethyl group or a tetrahydrofurfuryl group because it is suitable for enhancing the releasability of pluripotent stem cells.
- the monomer unit in which R 2 is represented by the general formula (4) is not particularly limited.
- hydroxyethyl acrylate, hydroxyethyl methacrylate, N- (2-hydroxyethyl) Acrylamide polyethylene glycol monoacrylate, polyethylene glycol monomethacrylate, polypropylene glycol monoacrylate, polypropylene glycol monomethacrylate, methoxypolyethylene glycol monoacrylate, methoxypolyethylene glycol monomethacrylate, diethylene glycol monomethyl ether acrylate, diethylene glycol monomethyl ether methacrylate, diethylene glycol monoethyl ether acrylate Diethylene glycol monoethyl ether Tacrylate, 2-methoxyethyl acrylate, 2-methoxyethyl methacrylate, 2-ethoxyethyl acrylate, 2-ethoxyethyl methacrylate, 3-butoxyethyl acrylate, 3-butoxyethyl meth
- R 2 shifts the response temperature of the block copolymer to the high temperature side or the low temperature side, or
- the substituent represented by the general formula (5) can be used because it is suitable for enhancing the releasability of functional stem cells.
- R 11 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
- the monomer unit in which R 2 is represented by the general formula (5) is not particularly limited.
- methoxymethyl acrylate, methoxymethyl methacrylate, 2-ethoxymethyl acrylate, 2- Ethoxymethyl methacrylate, 3-butoxymethyl acrylate, 3-butoxymethyl methacrylate, 3-butoxymethyl acrylamide and the like can be mentioned.
- R 2 enhances water insolubility, enhances pluripotent stem cell adhesion and proliferation, shifts the response temperature of the block copolymer to the high temperature side, or alternatively, pluripotent stem cells
- the substituent represented by the general formula (6) can be used because it is suitable for enhancing the removability of
- R 12 is a divalent hydrocarbon group having 1 to 12 carbon atoms, or a (poly) oxyethylene group, which is suitable for shortening the cooling time required to detach pluripotent stem cells It is preferably a divalent hydrocarbon group having 1 to 6 carbon atoms, particularly an alkylene group.
- a methylene group, ethylene group, a propylene group, a butylene group, a pentamethylene group, a hexamethylene group etc. are illustrated as such an alkylene group, Preferably it is an ethylene group.
- R 13 is a divalent hydrocarbon group having 1 to 4 carbon atoms, which is suitable for shortening the cooling time required for exfoliation of pluripotent stem cells, and is preferably an alkylene having 1 to 4 carbon atoms Examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group and the like, and an ethylene group is particularly preferable.
- R 14 , R 15 and R 16 are, independently of each other, a hydrogen atom or a hydrocarbon group having 1 to 2 carbon atoms, such as a methyl group or an ethyl group, which is suitable for enhancing the releasability of pluripotent stem cells
- R 14 , R 15 and R 16 be simultaneously a hydrogen atom or a methyl group, especially a methyl group.
- 2-ethyl phosphoryl choline group 3-propyl phosphoryl choline group, 4-butyl phosphoryl choline group, 6-hexyl phosphoryl choline group, 10-decyl phosphoryl choline group, omega- (although a poly) oxyethylene phosphoryl choline group etc. can be illustrated, since it is suitable in order to raise the exfoliation nature of pluripotent stem cells, preferably a 2-ethyl phosphoryl choline group is used.
- the monomer unit in which R 2 is represented by the general formula (6) is not particularly limited.
- R 2 enhances water insolubility, enhances pluripotent stem cell adhesion and proliferation, shifts the response temperature of the block copolymer to the low temperature side, or blocks Since it is suitable for covering a polymer by a chemical bond, the substituent which has a phenyl azide group represented by General formula (7) can be used.
- A is an ether bond or an ester bond.
- R 17 represents a divalent hydrocarbon group having 1 to 5 carbon atoms, and examples thereof include a propylene group, a butylene group, a pentamethylene group and a phenylene group.
- R 18 represents a fluorine atom, and n represents an integer of 0 to 4.
- the monomer unit in which R 2 is represented by the general formula (7) is not particularly limited.
- 4-azidophenyl acrylate, 4-azidophenyl methacrylate, 2-(( 4-azidobenzoyl) oxy) ethyl acrylate, 2-((4-azidobenzoyl) oxy) ethyl methacrylate and the like can be mentioned.
- R 2 is used as a substrate to shift the response temperature of the block copolymer to the high temperature side or the low temperature side in order to enhance water insolubility and to enhance pluripotent stem cell adhesion and proliferation. It is represented by the general formula (8) because it is suitable for covering a block copolymer by physical interaction or for covering a block copolymer on a substrate by chemical bonding. It is preferable to use a substituent having an aromatic ring.
- R 19 represents a divalent hydrocarbon group having 1 to 5 carbon atoms, which may not be present.
- R 20 , R 21 , R 22 , R 23 and R 24 each independently represent a hydrogen atom, a hydroxyl group, a carboxyl group, an amino group or a hydrocarbon group having 1 to 4 carbon atoms.
- the monomer unit in which R 2 is represented by the general formula (8) is not particularly limited.
- R 2 enhances water insolubility, enhances pluripotent stem cell adhesion and proliferation, shifts the response temperature of the block copolymer to the low temperature side, or blocks It is preferable to use a hydrocarbon group having 1 to 30 carbon atoms because it is suitable for covering the polymer by physical interaction, and in order to stably coat the block copolymer on the substrate, it is preferable. It is a hydrocarbon group having 4 to 15 carbon atoms.
- the monomer unit represented by hydrocarbon group having 1 to 30 carbon atoms as R 2 is not particularly limited, and examples thereof include n-butyl acrylate, n-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, and t-butyl.
- the structure of the block copolymer containing the block segments of (A) and (B) in the present invention is not particularly limited, but a diblock copolymer having at least the block segments of (A) and (B) It is preferable to be combined.
- the block segment (A) and the block segment (B) may be directly bonded or may be bonded via a spacer.
- sequences may be block arrangement, and random arrangement and alternate arrangement may be sufficient.
- the constituent unit ratio of the block segment (A) in the block copolymer containing the block segments of (A) and (B) in the present invention is preferably from 40 to 40 from the viewpoint of enhancing the cold peelability of pluripotent stem cells. It is 99 wt%, more preferably 60 to 99 wt%, particularly preferably 80 to 99 wt%, and most preferably more than 90 wt%.
- undifferentiated pluripotent stem cells can be selectively exfoliated, and the cells exfoliated and recovered in the passage culture of pluripotent stem cells Undifferentiated maintenance rate can be increased.
- the constituent unit ratio of the block segment (B) is preferably 1 to 50 wt%, preferably 1 to 25 wt%, and more preferably 3 to 15 wt %, Most preferably 5 to 15 wt%.
- the molecular weight of the thermoresponsive polymer in the present invention is not particularly limited, but is preferably 1000 to 1,000,000 in number average molecular weight, and preferably 2000 to 500,000 because it is suitable for increasing the strength of the block copolymer. Is more preferably, 5,000 to 300,000 is particularly preferable, and 10,000 to 200,000 is most preferable.
- the temperature-responsive polymer in the present invention may contain a chain transfer agent, a polymerization initiator, a polymerization inhibitor and the like as necessary.
- the chain transfer agent is not particularly limited, and commonly used ones can be suitably used.
- dithiobenzoate, trithiocarbonate, 4-cyano-4-[(dodecylsulfonylthiocarbonyl) sulfonyl] pentan Noic acid, 2-cyanopropan-2-yl N-methyl-N- (pyridin-4-yl) carbamodithioate, methyl methyl 2-propionate (4-pyridinyl) carbamodithioate can be mentioned .
- the polymerization initiator is not particularly limited, and commonly used ones can be suitably used.
- azobisisobutyronitrile 1,1'-azobis (cyclohexanecarbonitrile), di-tert And butyl peroxide, tert-butyl hydroperoxide, hydrogen peroxide, potassium peroxodisulfate, benzoyl peroxide, triethyl borane, diethyl zinc and the like.
- polymerization inhibitor is not particularly limited, and commonly used ones can be suitably used, but hydroquinone, p-methoxyphenol, triphenylferdadil, 2,2,6,6-tetramethyl piperidine Examples include nyl-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxyl and the like.
- the layer of the thermoresponsive polymer preferably has a layer thickness of 5 to 1000 nm, preferably 5 to 200 nm, because it is suitable for enhancing pluripotent stem cell adhesion and proliferation and exfoliation. 20 to 100 nm is particularly preferable, and 35 to 80 nm is most preferable.
- thermoresponsive polymer is not particularly limited, it is suitable for uniforming the state of pluripotent stem cells to be cultured without causing any variation in the coating, and thus one type of block It is preferable that it is a copolymer or a mixture of 2 types of block copolymers, and it is more preferable that it is 1 type of block copolymer.
- “type of temperature responsive polymer” is regarded as the same type of block copolymer when all the blocks constituting the block copolymer are the same.
- the blocks are the same means that, when the blocks are mainly composed of one kind of monomer unit, the case in which the monomer units contained most in wt% ratio are the same, and When the block is composed of two or more types of monomer units, the case is shown where the upper two monomer units having a large wt% ratio are the same.
- the polydispersity (weight-average molecular weight M w / number-average molecular weight M n ) of each block is 1 to 20, since it is more preferable to make the state of pluripotent stem cells to be cultured uniform. It is more preferably 1 to 10, particularly preferably 1 to 5, and most preferably 1 to 2.
- the layer of the thermoresponsive polymer has a biological substance immobilized on the layer, and the biological substance is selected from the group consisting of matrigel, laminin, fibronectin, vitronectin and collagen. At least one type of
- the culture substrate of the present invention can culture pluripotent stem cells by having a bioderived substance immobilized in a layer composed of a temperature responsive polymer.
- the layer of the thermoresponsive polymer does not have a bio-derived substance, the adhesion of pluripotent stem cells to the culture substrate is weak, and pluripotent stem cells can not be cultured.
- non-covalent bond means electrostatic interaction, hydrophobic interaction, hydrogen bond, ⁇ - ⁇ interaction, dipole-dipole interaction, London dispersion force, other van der Waals. It shows a bonding force other than covalent bond derived from intermolecular force such as interaction. Immobilization of the bioderived substance to the block copolymer may be by a single bond or by a combination of two or more.
- the method for immobilizing the bio-derived substance is not particularly limited.
- the solution of the bio-derived substance is applied for a predetermined time to the substrate having the layer of temperature responsive polymer.
- a method or a method of immobilizing by adding a biologically-derived substance to a culture solution for culturing pluripotent stem cells can be suitably used.
- the biological material is at least one selected from the group consisting of matrigel, laminin, vitronectin, fibronectin and collagen.
- the culture substrate of the present invention has pluripotent stem cell adhesiveness and proliferation since the bio-derived substance is Matrigel, laminin, fibronectin, vitronectin, collagen or a combination thereof.
- the biomaterial is not Matrigel, laminin, vitronectin, fibronectin, or collagen, it does not have pluripotent stem cell adhesion and proliferation.
- laminins More preferably, it is a combination of at least four laminins, because it is suitable for imparting pluripotent stem cell adhesion and proliferation, either laminin and matrigel, laminin and fibronectin, or laminin and collagen. It is particularly preferred that it is a combination of and most preferably only laminin.
- These biological substances may be natural products, or may be artificially synthesized by genetic recombination technology etc., fragments cleaved with restriction enzymes etc., and synthetic proteins based on these biological substances Alternatively, it may be a synthetic peptide.
- Matrigel manufactured by Corning Incorporated
- Geltrex manufactured by Thermo Fisher Scientific
- laminin 511 laminin 511, laminin 521 or laminin 511 which has been reported to exhibit high activity against ⁇ 6 ⁇ 1 integrin expressed on the surface of human iPS cells E8 fragments can be used.
- the laminin may be a natural product, or may be artificially synthesized by genetic engineering or the like, or may be a synthetic protein or a synthetic peptide based on the laminin. From the viewpoint of availability, for example, iMatrix-511 (manufactured by Nippi Co., Ltd.) can be suitably used as a commercial product.
- the vitronectin may be a natural product, may be artificially synthesized by genetic recombination technology or the like, and may be a synthetic protein or a synthetic peptide based on the vitronectin. From the viewpoint of availability, commercially available products such as vitronectin, derived from human plasma (manufactured by Wako Pure Chemical Industries, Ltd.), synthemax (manufactured by Corning Incorporated), Vitronectin (VTN-N) (manufactured by Thermo Fisher Scientific) are preferably used. be able to.
- the fibronectin may be a natural product, may be artificially synthesized by genetic recombination technology or the like, or may be a synthetic protein or a synthetic peptide based on the fibronectin. From the viewpoint of easy availability, for example, fibronectin solution, human plasma derived (manufactured by Wako Pure Chemical Industries, Ltd.) and Retronectin (manufactured by Takara Bio Inc.) can be suitably used as commercial products.
- the type of collagen is not particularly limited, and, for example, type I collagen or type IV collagen can be used.
- the collagen may be a natural product, may be artificially synthesized by genetic engineering or the like, or may be a synthetic peptide based on the collagen. From the viewpoint of availability, commercially available products such as collagen I, human (manufactured by Corning Incorporated) and collagen IV, human (manufactured by Corning Incorporated) can be suitably used.
- the laminin adsorption rate according to the following test is preferably 10% or more, more preferably 20% or more, because it is suitable for enhancing the proliferation and exfoliation of pluripotent stem cells. It is particularly preferably 20% to 80%, most preferably 30% to 60%.
- Laminin adsorption rate test A solution containing 2 to 2.5 ⁇ L of a laminin 511-E8 fragment solution at a concentration of 0.5 mg / mL per 1 mL of phosphate buffered saline is 0.2 mL / cm in an amount per unit area of culture substrate 2 Laminin adsorption rate determined from the following formula when dropped on a substrate and allowed to stand at 37 ° C. for 24 hours.
- the method for measuring the weight of the laminin 511-E8 fragment adsorbed to the culture substrate and the weight of the laminin 511-E8 fragment contained in the solution dropped onto the culture substrate is not particularly limited.
- a fluorescence-labeled laminin 511-E8 fragment with HiLyte Fluor TM 647 labeling Kit-NH 2 manufactured by Dojin chemical Laboratory
- the adsorption amount of the laminin 511-E8 fragment in the culture substrate is preferably 5 to 5000 ng / cm 2 because it is suitable for enhancing the proliferation and exfoliation of pluripotent stem cells. It is more preferably 10 to 1000 ng / cm 2 , particularly preferably 15 to 500 ng / cm 2 , and most preferably 20 to 100 ng / cm 2 .
- a laminin 511-E8 fragment for example, iMatrix-511 (manufactured by Nippi Co., Ltd.) can be used as a commercial product.
- the material of the substrate on which the layer of the thermoresponsive polymer is coated in the present invention is not particularly limited. However, not only substances such as glass and polystyrene which are usually used for cell culture but also form can generally be applied. For example, high molecular compounds such as polycarbonate, polyethylene terephthalate, polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, and polymethyl methacrylate, ceramics, metals, and the like can be used.
- the material of the substrate preferably contains at least one of glass, polystyrene, polycarbonate, polyethylene terephthalate, polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, and polypropylene, and glass, polystyrene, polycarbonate It is further preferable to include at least one of polyethylene terephthalate and polyethylene, and polystyrene, polycarbonate, polyethylene terephthalate, and polyethylene are particularly preferable because they are suitable for enhancing flexibility.
- a base material has pluripotent stem cell adhesiveness.
- the base material having pluripotent stem cell adhesiveness include those obtained by subjecting the base material to plasma treatment, corona treatment, UV treatment and the like.
- plate and a film may be sufficient,
- a fiber, porous particle, a porous membrane, and a hollow fiber may be sufficient.
- it may be a container (cell culture dish such as petri dish, flask, plate etc.) generally used for cell culture etc. From the viewpoint of easiness of culture operation, it is preferable to use a plate, a flat shape such as a film, or a flat porous membrane.
- the base material is a porous base material, which is suitable for enhancing the releasability of pluripotent stem cells, and the pore diameter of the porous base material is smaller than that of pluripotent stem cells to be cultured.
- the substrate is a porous substrate
- the releasability of pluripotent stem cells can be enhanced.
- the pore diameter of the porous substrate is smaller than that of pluripotent stem cells
- pluripotent stem cell adhesion and proliferation can be enhanced.
- the base material is a porous base material, nutrients can easily spread to cells during culture, and the undifferentiated maintenance rate of pluripotent stem cells can be increased in subculture.
- the pore diameter is more preferably 8 ⁇ m or less, particularly preferably 3 ⁇ m or less, and most preferably 1 ⁇ m or less because it is suitable for enhancing pluripotent stem cell adhesion and proliferation.
- the pore diameter is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, and more preferably 0.1 ⁇ m or more, because it is suitable for enhancing the releasability of pluripotent stem cells.
- the “pore diameter” of the porous substrate means an average value of the diameters of the pores of the porous substrate along the in-plane direction of the porous substrate, and It can be calculated by measuring the diameters of pores of 20 or more points in a laser microscope image, a scanning electron microscope image, and a transmission electron microscope image, and determining an average value.
- the pore density of the pores of the porous substrate is 10 to 10 10 cells / cm 2 because it is suitable for enhancing pluripotent stem cell adhesion and proliferation and exfoliation.
- 10 3 to 10 9 particles / cm 2 are more preferable, 10 5 to 10 9 particles / cm 2 are particularly preferable, and 10 5 to 10 7 particles / cm 2 are most preferable.
- the pore density of the pores of the porous substrate is 10 7 cells / cm 2 or less because it is suitable for enhancing the transparency of the porous substrate and facilitating observation of cells with a microscope. It is preferable, more preferably 10 6 / cm 2 or less, particularly preferably 10 5 / cm 2 or less, and most preferably 10 4 / cm 2 or less.
- the “pore density” of the pores of the porous substrate indicates the number of pores present per substrate area of the porous substrate, and a laser microscope image or scanning of the porous substrate In a type electron microscope image and a transmission electron microscope image, it can be calculated by finding the number of pores in a square region having a side of 200 times or more the pore diameter of the pores of the porous substrate.
- the “substrate area” of the porous substrate means the surface area of one principal surface of the porous substrate when it is assumed that no pores are present in the porous substrate.
- the porosity of the porous substrate is preferably 0.01 to 30%, and more preferably 0.01 to 20%, because it is suitable for enhancing the releasability of pluripotent stem cells. 0.01 to 5% is particularly preferable, and 0.01 to 1.5% is most preferable.
- the "porosity" of the porous substrate is a value obtained by dividing the total area of the pore portion by the substrate area for one main surface of the surface of the porous substrate, and the area ratio is It indicates how much void space exists in the surface of the material, and in a laser microscope image, a scanning electron microscope image, and a transmission electron microscope image of the porous substrate, at least 200 times the pore diameter of the pores of the porous substrate It can measure by observing the square area which makes length one side.
- the porosity is also preferably 80% or less, more preferably 50% or less, and particularly preferably 20% or less, because it is suitable for enabling observation of pluripotent stem cells by phase contrast microscopy. % Or less is most preferable.
- the porosity is preferably 0.1% or more because it is suitable for rapidly permeating the components contained in the culture medium and evenly distributing nutrition to the cells. 1% or more is more preferable, 5% or more is particularly preferable, and 10% or more is most preferable.
- the shape of the pores possessed by the porous substrate is not particularly limited, but it has flat portions and pores because it is suitable for enhancing pluripotent stem cell adhesion and proliferation and exfoliation. It is preferable that it is a flat membrane. Moreover, since it is suitable to enable observation of pluripotent stem cells by phase contrast microscopy, it is preferable that the pore which a porous base material has is a cylindrical shape, and the independent cylindrical shape It is further preferred that It is suitable for observing the shape of the cells of this surface in which the shape of the pore is a cylindrical shape.
- a method of forming a layer of a temperature responsive polymer on the surface of a substrate As a method of forming a layer of a temperature responsive polymer on the surface of a substrate according to the present invention, a method of forming a layer by coating a temperature responsive polymer on a substrate by (1) chemical bonding, (2) A method of forming a layer by physical interaction can be performed alone or in combination. That is, (1) UV irradiation, electron beam irradiation, gamma ray irradiation, plasma treatment, corona treatment etc. can be used as a method by chemical bonding. Furthermore, when the temperature responsive polymer and the base material have appropriate reactive functional groups, generally used organic reactions such as radical reaction, anion reaction and cation reaction can be utilized.
- a matrix having a good compatibility with a temperature responsive polymer and a good coatability is used as a medium, and coating, brushing, dip coating, spin coating, bar coating, It is possible to use various methods commonly known such as flow coating, spray coating, roll coating, air knife coating, blade coating, gravure coating, microgravure coating, slot die coating and the like.
- the type of pluripotent stem cells is not particularly limited.
- embryonic stem cells ES cells
- induced pluripotent stem cells iPS cells
- somatic cell-derived embryonic stem cells nuclear transfer ES Cells or nt ES cells
- animal from which pluripotent stem cells are derived is not particularly limited, but may be, for example, a mammal. Examples of mammals include rodents (mouse, rat, etc.), primates (monkey, human, etc.), and may be laboratory animals or companion animals. In the present invention, it is preferably of primate origin, particularly preferably of human origin.
- the present invention also relates to a method of producing undifferentiated pluripotent stem cells using the culture substrate.
- the method is a method for producing pluripotent stem cells, which comprises producing undifferentiated pluripotent stem cells through the following steps (1) to (3).
- (1) A step of seeding pluripotent stem cells on the culture substrate.
- (2) culturing the pluripotent stem cells seeded on the culture substrate in a liquid at a temperature higher than the response temperature of the temperature responsive polymer.
- (3) A step of cooling the culture substrate to a temperature lower than the response temperature of the temperature responsive polymer and detaching the pluripotent stem cells cultured in the liquid from the substrate.
- the step (1) in the method for producing pluripotent stem cells of the present invention is a step of seeding pluripotent stem cells on the culture substrate using the culture substrate.
- seeding cells means that a medium in which the cells are dispersed (hereinafter referred to as "cell suspension”) is applied onto the culture substrate, or injected into the culture substrate, etc. 7 shows contacting a cell suspension with a culture substrate.
- the culture substrate does not have a layer of a temperature responsive polymer, it is not possible to detach pluripotent stem cells from the substrate due to temperature change in step (3).
- the culture substrate has a bio-based substance immobilized in a layer of a temperature responsive polymer, pluripotent stem cells can be cultured in the step (2) described later.
- the culture substrate does not have the bio-derived substance immobilized in the layer of the thermoresponsive polymer, the pluripotent stem cells can not be cultured in the step (2).
- the culture is carried out under conditions effective to maintain the undifferentiated nature of the pluripotent stem cells.
- Conditions effective for maintaining the undifferentiated nature are not particularly limited, but for example, it is preferable to set the density of pluripotent stem cells at the start of culture to the preferable range described as the cell density at the time of seeding, And the like in the presence of a liquid medium.
- an effective culture medium for maintaining the undifferentiated nature of pluripotent stem cells for example, insulin, transferrin, selenium, ascorbic acid, which is known as a factor for maintaining the undifferentiated nature of pluripotent stem cells
- a medium to which one or more of sodium bicarbonate, basic fibroblast growth factor, transforming growth factor ⁇ (TGF ⁇ ), CCL2, activin, and 2-mercaptomethanol is added can be suitably used.
- TGF beta transforming growth factor beta
- the type of medium to which the basic fibroblast growth factor has been added is not particularly limited.
- DMEM manufactured by Sigma-Aldrich Co. LLC
- Ham's F12 manufactured by Sigma-Aldrich Co. LLC
- D-MEM / Ham's F12 manufactured by Sigma-Aldrich Co.
- the cell density at the time of seeding is not particularly limited, but preferably 1.0 ⁇ 10 2 to 1.0 ⁇ 10 6 cells / cm 2 so that the cells can be maintained and proliferated.
- 5.0 ⁇ 10 2 to 5.0 ⁇ 10 5 cells / cm 2 are more preferable, 1.0 ⁇ 10 3 to 2.0 ⁇ 10 5 cells / cm 2 are particularly preferable, and 1.2 ⁇ 10 3 to 1
- the most preferable is .0 ⁇ 10 5 cells / cm 2 .
- the medium used in the above step (1) is also suitable for maintaining the survival of pluripotent stem cells, so that the medium supplemented with the basic fibroblast growth factor is further added with a Rho-linked kinase inhibitor. It is preferable to use a culture medium. In particular, when human pluripotent stem cells are used and the cell density of human pluripotent stem cells is low, when a Rho-linked kinase inhibitor is added, survival of human pluripotent stem cells can be maintained. It may be effective.
- Rho binding kinase inhibitor for example, (R)-(+)-trans-N- (4-pyridine) -4- (1-aminoethyl) -cyclohexanecarboxamide ⁇ 2HCl ⁇ H2O (manufactured by Wako Pure Chemical Industries, Ltd.) Y-27632), 1- (5-Isoquinolinessulfonyl) homopiperazine Hydrochloride (HA1077 manufactured by Wako Pure Chemical Industries, Ltd.) can be used.
- the concentration of the Rho-binding kinase inhibitor added to the culture medium is a range effective for maintaining the survival of human pluripotent stem cells and not affecting the undifferentiated state of human pluripotent stem cells, Preferably, it is 1 ⁇ M to 50 ⁇ M, more preferably 3 ⁇ M to 20 ⁇ M, still more preferably 5 ⁇ M to 15 ⁇ M, and most preferably 8 ⁇ M to 12 ⁇ M.
- pluripotent stem cells begin to adhere to the culture substrate.
- the seeded pluripotent stem cells are cultured at a temperature higher than the response temperature of the temperature responsive polymer.
- the culture temperature is equal to or higher than the response temperature of the thermoresponsive polymer, pluripotent stem cells can be proliferated.
- the culture temperature is lower than the response temperature of the thermoresponsive polymer, pluripotent stem cells can not be grown.
- the culture temperature is preferably 30 to 42 ° C., more preferably 32 to 40 ° C., particularly preferably 36 to 38 ° C., and most preferably 37 ° C. because the culture temperature is suitable for maintaining the cell proliferation ability, physiological activity and function. It is.
- step (3) It is preferable to perform the first medium replacement 22 to 26 hours after the start of the step (2). It is preferable to carry out a second medium exchange 48 to 72 hours later, and then exchange the medium every 24 to 48 hours. During this time, pluripotent stem cells proliferate and form a cell mass called a colony. The culture is continued until the size of the colonies is about 1 mm, and then the process proceeds to step (3).
- the culture substrate on which the pluripotent stem cells are cultured is cooled to a temperature lower than the response temperature of the temperature responsive polymer, Stem cells are detached from the culture substrate.
- the temperature at the time of cooling is preferably 0 to 30 ° C., more preferably 3 to 25 ° C., and still more preferably 5 to 50 ° C. in order to detach pluripotent stem cells in a short time and reduce damage by cooling. It is 20 ° C.
- the cooling time is preferably 120 minutes or less, more preferably 90 minutes or less, particularly preferably 75 minutes or less, and most preferably 60 minutes or less.
- the method for cooling the culture substrate in the step (3) is not particularly limited, but for example, a method of cooling the culture substrate by placing it in a refrigerator, a method of placing the culture substrate on a cool plate and cooling it, It is possible to use a method in which the medium is replaced with a cooled medium or buffer solution and left for a predetermined time.
- the method of generating convection is not particularly limited.
- the culture There can be mentioned a method of applying physical vibration to the substrate and a method of generating natural convection such as Marangoni convection by giving a temperature difference.
- the culture substrate of the present invention is suitable for simplifying the process of exfoliating cells and enhancing the mass productivity of cells when culturing a large amount of cells, it is preferable to exfoliate the cells by a weak external stimulus. It is further preferable to peel by cooling and pipetting, cooling and tapping, and it is particularly preferable to peel by cooling and tapping. It is most preferable to peel off only by cooling.
- pipetting indicates an operation of causing convection in the culture environment by repeating suction and discharge of the culture solution using an instrument such as a pipetman.
- “tapping” shows the operation which gives vibration to culture environment by tapping a culture container.
- the culture substrate of the present invention is suitable for use in cell culture prepared from cultured pluripotent stem cells for preparation of undifferentiated maintenance culture or differentiation induction spheroids, pluripotent pluripotent cells are passaged.
- the undifferentiated maintenance rate of adult stem cells is preferably 70% or more, more preferably 80% or more, particularly preferably 90% or more, and most preferably 95% or more.
- the undifferentiated maintenance rate can be measured by a flow cytometer using cells stained with undifferentiated markers.
- the GPC apparatus uses HLC-8320GPC manufactured by Tosoh Corp., the column uses two TSKgel Super AWM-H manufactured by Tosoh Corp., the column temperature is set to 40 ° C., and the eluent contains 10 mM sodium trifluoroacetate. It was measured using 1,1,1,3,3,3-hexafluoro-2-isopropanol or N, N-dimethylformamide containing 10 mM lithium bromide. The measurement sample was prepared and measured at 1.0 mg / mL. The calibration curve of molecular weight used polymethyl methacrylate (made by Polymer Laboratories Ltd.) of known molecular weight.
- ⁇ Surface structure> The surface structure of the temperature-responsive polymer-coated substrate at the culture temperature was observed with an AFM in water (SPM-9600 manufactured by Shimadzu Corporation). The cantilever was measured using BL-AC40TS-C2 (manufactured by Olympus Corporation).
- the reaction solution is poured into 300 mL of hexane, and the precipitated pale yellow solid is filtered and dried under reduced pressure for 1 day to obtain a polymer of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate (2-methacryloyloxyethyl phosphorylcholine / n Butyl methacrylate diblock polymer) was obtained.
- the water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3.
- the contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 20 to 45 ° C., and the response temperature was determined by the midpoint method, the response temperature was 34 ° C.
- reaction solution was poured into 300 mL of hexane, and the precipitated pale yellow solid was filtered and dried under reduced pressure for 1 day to obtain 2-methacryloyloxyethyl phosphorylcholine / n-butyl methacrylate diblock polymer.
- the water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3.
- the contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that.
- [Pluripotent stem cell culture evaluation and exfoliation evaluation] The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
- the water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3.
- the contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that.
- [Pluripotent stem cell culture evaluation and exfoliation evaluation] The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
- test tube equipped with a three-way cock
- 5.95 g (0.7 mmol) of the n-butyl methacrylate polymer having the above-mentioned terminal alkyne 15.84 g (140 mmol) of N-isopropylacrylamide, 11.5 mg of azobisisobutyronitrile 0.07 mmol) was added and dissolved in 140 mL of 1,4-dioxane.
- the test tubes were frozen by immersion in liquid nitrogen and vacuum degassed with a vacuum pump and allowed to return to room temperature. This operation was repeated three times to remove dissolved oxygen in the test tube, and then reacted at 65 ° C. for 43 hours.
- reaction solvent was evaporated under reduced pressure using a rotary evaporator, and the reaction solution was concentrated.
- the concentrate was poured into 1000 mL of hexane, and the precipitated pale red solid was recovered and dried under reduced pressure to obtain an N-isopropylacrylamide / n-butyl methacrylate diblock copolymer having a terminal alkyne.
- reaction solvent was evaporated under reduced pressure using a rotary evaporator, and the reaction solution was concentrated.
- the concentrate was poured into 500 ml of hexane and the red oil adhering to the bottom was recovered.
- the red oil obtained was washed twice with 300 mL of hexane and dried under vacuum to obtain a polyethylene glycol methacrylate polymer block having a terminal azide.
- the three-way cock was removed and exposed to air to deactivate the copper catalyst.
- the reaction solution was passed through a column packed with activated alumina to remove the copper catalyst, and the solution was concentrated by a rotary evaporator.
- the concentrate was slowly poured into 50 mL of pure water, and the precipitated solid content was collected by centrifugation (3000 rpm ⁇ 3 minutes).
- the obtained solid content was dissolved in 2 ml of methanol and poured again slowly into 50 ml of pure water, and the precipitated solid content was recovered by centrifugation (3000 rpm ⁇ 3 minutes).
- the water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3.
- the contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 20 to 45 ° C., and the response temperature was determined by the midpoint method, the response temperature was 34 ° C.
- the culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
- Example 5 Synthesis was carried out in the same manner as Example 4 [Synthesis of block copolymer] except that polymerization was carried out at 65 ° C. for 9 hours using 5.20 g (40 mmol) of 2-methoxyethyl acrylate instead of 12.01 g of polyethylene glycol methacrylate.
- To synthesize a diblock copolymer [Preparation of Base Material Coated with Block Copolymer] It produced by the method similar to Example 1 [preparation of the base material with which the block copolymer was coated] except having used the said block copolymer. [Response temperature measurement of block copolymer] It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
- the water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3.
- the contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 20 to 45 ° C., and the response temperature was determined by the midpoint method, the response temperature was 33 ° C.
- the culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
- Example 6 [Synthesis of block copolymer]
- 36 mg (90 ⁇ mol) of 4-cyano-4-[(dodecylsulfonylthiocarbonyl) sulfonyl] pentanoic acid 1.28 g (9 mmol) of n-butyl methacrylate, 3 mg (18 ⁇ mol) of azobis (isobutyronitrile)
- azobis isobutyronitrile
- reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated.
- the concentrate was poured into 250 mL of methanol, and the precipitated yellow oily substance was recovered and dried under reduced pressure to obtain an n-butyl methacrylate polymer.
- the water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3.
- the contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 20 to 45 ° C., and the response temperature was determined by the midpoint method, the response temperature was 32 ° C.
- Example 1 Pururipotent Stem Cell Culture Evaluation and Detachment Evaluation except that the base material coated with the block copolymer was used.
- Example 7 [Synthesis of block copolymer]
- 0.40 g (0.1 mmol) of 4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, 7.11 g (50 mmol) of n-butyl methacrylate, azobis (isobutyronitrile) 33 mg (0.2 mmol) was added and dissolved in 50 mL of 1,4-dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 70 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 250 mL of methanol, and the precipitated yellow oily substance was recovered and dried under reduced pressure to obtain an n-butyl methacrylate polymer.
- the reaction solvent was diluted with acetone, poured into 500 mL of hexane, and the precipitated pale yellow solid was recovered and dried under reduced pressure to obtain a diblock copolymer of N-isopropylacrylamide and n-butyl methacrylate.
- the block copolymer was dissolved in ethanol to make a 0.5 wt% solution. 50 ⁇ L of this solution was dropped to a 3.5 cm diameter dish (manufactured by Corning Incorporated, material: polystyrene), and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour.
- the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
- [Response temperature measurement of block copolymer] It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
- the water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3.
- the contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 20 to 45 ° C., and the response temperature was determined by the midpoint method, the response temperature was 33 ° C.
- the culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
- Example 8 [Synthesis of block copolymer]
- 0.40 g (0.1 mmol) of 4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, 7.11 g (50 mmol) of n-butyl methacrylate, azobis (isobutyronitrile) 33 mg (0.2 mmol) was added and dissolved in 50 mL of 1,4-dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 70 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 250 mL of methanol, and the precipitated yellow oily substance was recovered and dried under reduced pressure to obtain an n-butyl methacrylate polymer.
- the water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3.
- the contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 20 to 45 ° C., and the response temperature was determined by the midpoint method, the response temperature was 33 ° C.
- An AFM image in water at 37 ° C. of the substrate surface coated with the block copolymer is shown in FIG.
- the layer of the block copolymer forms a phase separation structure, and a region with a large amount of block copolymer coverage and a small region are present.
- the culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
- Example 9 [Synthesis of block copolymer]
- 95 mg of propargyl ester of 4-cyanopentanoic acid dithiobenzoate, 6.8 g of N-isopropylacrylamide and 8 mg of AIBN were added and dissolved in 20 ml of 1,4-dioxane. After bubbling nitrogen for 30 minutes, the mixture was stirred at 70 ° C. for 24 hours for polymerization. After completion of the polymerization, the reaction solution was poured into 500 mL of hexane, and the precipitated pink solid was collected by filtration and dried to obtain an N-isopropylacrylamide polymer having a terminal alkyne.
- the water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3.
- the contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that.
- [Pluripotent stem cell culture evaluation and exfoliation evaluation] The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
- Example 10 [Synthesis of block copolymer]
- 0.40 g (0.1 mmol) of 4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, 7.11 g (50 mmol) of n-butyl methacrylate, azobis (isobutyronitrile) 33 mg (0.2 mmol) was added and dissolved in 50 mL of 1,4-dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 70 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 250 mL of methanol, and the precipitated yellow oily substance was recovered and dried under reduced pressure to obtain an n-butyl methacrylate polymer.
- the concentrate was poured into 250 mL of hexane, and the precipitated white solid was collected and dried under reduced pressure to obtain an N-n-propyl acrylamide polymer.
- the N-n-propyl acrylamide polymer was dissolved in pure water to form a 0.6 wt% aqueous solution. This solution was placed in a quartz cell with a light path length of 1 cm, and while raising the temperature at a rate of 1 ° C./min, the transmittance of light with a wavelength of 500 nm was measured with a spectrophotometer (UH-5300 manufactured by Hitachi High-Technologies Corporation). When LCST was calculated
- Response temperature measurement of block copolymer It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
- the water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3.
- the contact angle to water at 10 ° C is lower than the contact angle to water at 20 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 10 to 20 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 5 to 30 ° C. and the response temperature was determined by the midpoint method, the response temperature was 18 ° C.
- the culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
- Example 11 [Pluripotent stem cell culture evaluation and exfoliation evaluation] 0.05 mL / cm 2 of Matrigel solution (manufactured by Corning Incorporated) was added to the block copolymer-coated substrate prepared in Example 8 and allowed to stand at 37 ° C., 5% CO 2 environment for 1 hour did. Thereafter, the Matrigel solution was removed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. in an environment of 5% CO 2 concentration. As the medium, 0.2 mL / cm 2 of StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added. In addition, until 24 hours after cell seeding, culture was performed using a medium to which Y-27632 (manufactured by Wako Pure Chemical Industries, Ltd.) (concentration 10 ⁇ M) was added to the above-mentioned medium.
- Y-27632 manufactured by Wa
- Example 12 [Pluripotent stem cell culture evaluation and exfoliation evaluation] 0.63 mL / well of Vitronectin (VTN-N) solution (manufactured by Thermo Fisher Scientific) (diluted to about 50 ⁇ g / mL with PBS (-)) was added to the block copolymer-coated substrate prepared in Example 8 It was allowed to stand at 37 ° C. in a 5% CO 2 environment for 1 hour. Thereafter, the iMatrix-511 solution was removed, and the human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. in a 5% CO 2 environment.
- VTN-N Vitronectin
- 0.2 mL / cm 2 of StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added.
- culture was performed using a medium to which Y-27632 (manufactured by Wako Pure Chemical Industries, Ltd.) (concentration 10 ⁇ M) was added to the above-mentioned medium.
- Example 13 [Preparation of Base Material Coated with Block Copolymer]
- the block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution.
- This solution was a porous membrane with a pore size of 0.4 ⁇ m and a porosity of 0.2% and a pore density of 1.8 ⁇ 10 6 / cm 2 (manufactured by Corning Incorporated, trade name Falcon® culture insert, Material: 50 ⁇ L was dropped to polyethylene terephthalate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
- Example 14 Preparation of Base Material Coated with Block Copolymer
- the block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution.
- This solution is a 13.8% porous film having a pore diameter of 0.4 ⁇ m and a pore density of 1.1 ⁇ 10 8 / cm 2 (manufactured by Corning Incorporated, trade name Falcon® culture insert, Material: 50 ⁇ L was dropped to polyethylene terephthalate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
- [Pluripotent stem cell culture evaluation and exfoliation evaluation] The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
- Example 15 Preparation of Base Material Coated with Block Copolymer
- the block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution.
- This solution is a porous film having a pore diameter of 0.4 ⁇ m and a porosity of 12.6% and a porosity of 1 ⁇ 10 8 pores / cm 2 (Corning Incorporated, trade name Falcon® culture insert, Material: 50 ⁇ L was dropped to polycarbonate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
- [Pluripotent stem cell culture evaluation and exfoliation evaluation] The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
- Example 16 Preparation of Base Material Coated with Block Copolymer
- the block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution.
- This solution is a porous membrane with a pore diameter of 1 ⁇ m and a porosity of 1.4% having pores with a pore density of 1.8 ⁇ 10 6 / cm 2 (manufactured by Corning Incorporated, trade name Falcon® culture insert, material: 50 ⁇ L was dropped to polyethylene terephthalate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
- [Pluripotent stem cell culture evaluation and exfoliation evaluation] The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
- Example 17 [Preparation of Base Material Coated with Block Copolymer]
- the block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution.
- This solution is a porous membrane having a pore size of 3 ⁇ m and a porosity of 4.1 ⁇ 10 5 / cm 2 and a porosity of 4.1% (manufactured by Corning Incorporated, trade name Falcon® culture insert, material: 50 ⁇ L was dropped to polyethylene terephthalate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
- [Pluripotent stem cell culture evaluation and exfoliation evaluation] The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
- Example 18 Preparation of Base Material Coated with Block Copolymer
- the block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution.
- This solution is a porous membrane having a pore diameter of 3 ⁇ m and a porosity of 12.0% having pores with a pore density of 1.7 ⁇ 10 6 / cm 2 (manufactured by Greiner, trade name: ThinCert (trade name) Cell Culture Inserts, material: 50 ⁇ L was dropped to polyethylene terephthalate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
- [Pluripotent stem cell culture evaluation and exfoliation evaluation] The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
- Example 19 [Preparation of Base Material Coated with Block Copolymer]
- the block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution.
- This solution is a porous membrane with a pore size of 8 ⁇ m and a pore density of 6.2 ⁇ 10 4 / cm 2 and a porosity of 3.1% (manufactured by Corning Incorporated, trade name Falcon® culture insert, material: 50 ⁇ L was dropped to polyethylene terephthalate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
- [Pluripotent stem cell culture evaluation and exfoliation evaluation] The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
- Example 20 [Preparation of Base Material Coated with Block Copolymer]
- the block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution. 50 ⁇ L of this solution was added dropwise to a porous membrane (made by Teijin Ltd., trade name Milim, material: polyethylene) having a pore size of 0.2 ⁇ m, and spin-coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
- [Pluripotent stem cell culture evaluation and exfoliation evaluation] The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
- Example 21 [Preparation of Base Material Coated with Block Copolymer]
- the block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution.
- a porous membrane having a pore size of 0.05 ⁇ m and a porosity of 1.2% having pores with a pore density of 6.0 ⁇ 10 8 / cm 2 (it 4 ip, product name: ipPORE, material: polycarbonate) having a diameter of 3.2 cm, It fixed by pinching with a ring of internal diameter 1.6 cm.
- Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 ⁇ L of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer. [Pluripotent stem cell culture evaluation and exfoliation evaluation] The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C.
- Example 22 [Preparation of Base Material Coated with Block Copolymer]
- the block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution.
- Porous membrane made by it4ip, trade name: ipPORE, material: polyethylene terephthalate
- Porous membrane made by it4ip, trade name: ipPORE, material: polyethylene terephthalate
- Porous membrane made by it4ip, trade name: ipPORE, material: polyethylene terephthalate
- Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 ⁇ L of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer. [Pluripotent stem cell culture evaluation and exfoliation evaluation] The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C.
- Example 23 [Preparation of Base Material Coated with Block Copolymer]
- the block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution.
- a porous film (product made by it4ip, trade name: ipPORE, material: polyethylene terephthalate) having a pore diameter of 0.2 ⁇ m and a pore density of 5.0 ⁇ 10 8 pores / cm 2 and having a diameter of 3.2 cm It was fixed by being pinched by a ring with an inner diameter of 1.6 cm.
- Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 ⁇ L of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer. [Pluripotent stem cell culture evaluation and exfoliation evaluation] The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C.
- Example 24 [Preparation of Base Material Coated with Block Copolymer]
- the block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution.
- Porous membrane product made by it4ip, trade name: ipPORE, material: polyethylene terephthalate
- ipPORE material: polyethylene terephthalate
- Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 ⁇ L of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer. [Pluripotent stem cell culture evaluation and exfoliation evaluation] The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C.
- Example 25 [Preparation of Base Material Coated with Block Copolymer]
- the block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution.
- Porous membrane product made by it4ip, trade name: ipPORE, material: polyethylene terephthalate
- Porous membrane having a pore diameter of 0.45 ⁇ m and a pore density of 4.0 ⁇ 10 6 / cm 2 and a pore diameter of 3.2 cm It was fixed by being pinched by a ring with an inner diameter of 1.6 cm.
- Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 ⁇ L of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer. [Pluripotent stem cell culture evaluation and exfoliation evaluation] The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C.
- Example 26 [Preparation of Base Material Coated with Block Copolymer]
- the block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution.
- a porous membrane (made by it4ip, trade name: ipPORE, material: polycarbonate) having a pore diameter of 0.6 ⁇ m and a porosity of 11.3% having pores with a pore density of 4.0 ⁇ 10 7 / cm 2 and a diameter of 3.2 cm, It fixed by pinching with a ring of internal diameter 1.6 cm.
- Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 ⁇ L of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer. [Pluripotent stem cell culture evaluation and exfoliation evaluation] The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C.
- Example 27 [Preparation of Base Material Coated with Block Copolymer]
- the block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution.
- Porous membrane product made by it4ip, trade name: ipPORE, material: polyethylene terephthalate
- Porous membrane having a pore size of 0.8 ⁇ m and a pore density of 4.0 ⁇ 10 7 / cm 2 and a pore diameter of 3.2 cm It was fixed by being pinched by a ring with an inner diameter of 1.6 cm.
- Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 ⁇ L of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer. [Pluripotent stem cell culture evaluation and exfoliation evaluation] The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C.
- Example 28 [Preparation of Base Material Coated with Block Copolymer]
- the block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution.
- Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 ⁇ L of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer. [Pluripotent stem cell culture evaluation and exfoliation evaluation] The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C.
- Example 29 [Preparation of Base Material Coated with Block Copolymer]
- the block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution.
- Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 ⁇ L of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer. [Pluripotent stem cell culture evaluation and exfoliation evaluation] The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C.
- Example 30 [Preparation of Base Material Coated with Block Copolymer]
- the block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution.
- Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 ⁇ L of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer. [Pluripotent stem cell culture evaluation and exfoliation evaluation] The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C.
- Example 31 [Passage culture and undifferentiated maintenance rate evaluation] Medium StemFitAK02N the substrate block copolymer prepared was coated in Example 8 (manufactured by Ajinomoto (Ltd.)) 0.2mL / cm 2 was added, further 260 human iPS cells 201B7 strain / cm 2, iMatrix- A 511 solution (manufactured by Nippi Co., Ltd.) was added at a concentration of 2.5 ⁇ L / mL. The cells were cultured at 37 ° C. in a 5% CO 2 environment. In addition, Y-27632 (manufactured by Wako Pure Chemical Industries, Ltd.) (concentration 10 ⁇ M) was added to the medium until 24 hours after cell seeding.
- the cells were detached from the substrate according to to prepare a cell suspension.
- the cell suspension was used to perform passage by seeding cells on the block copolymer-coated substrate. Five passages were performed by repeating the same operation.
- Example 32 [Passage culture and undifferentiated maintenance rate evaluation] Medium StemFitAK02N the substrate block copolymer prepared was coated with Example 13 (manufactured by Ajinomoto (Ltd.)) 0.2mL / cm 2 was added, further 260 human iPS cells 201B7 strain / cm 2, iMatrix- A 511 solution (manufactured by Nippi Co., Ltd.) was added at a concentration of 2.5 ⁇ L / mL. The cells were cultured at 37 ° C. in a 5% CO 2 environment. In addition, Y-27632 (manufactured by Wako Pure Chemical Industries, Ltd.) (concentration 10 ⁇ M) was added to the medium until 24 hours after cell seeding.
- Example 13 manufactured by Ajinomoto (Ltd.)
- iMatrix- A 511 solution manufactured by Nippi Co., Ltd.
- the cells were detached from the substrate according to to prepare a cell suspension.
- the cell suspension was used to perform passage by seeding cells on the block copolymer-coated substrate. Five passages were performed by repeating the same operation.
- Comparative example 3 The substrate was not coated with the block copolymer, and a 6-well plate for Corning Incorporated cell culture was used as it was, and the others were evaluated in the same manner as in Example 1.
- [Pluripotent stem cell culture evaluation and exfoliation evaluation] The culture was performed in the same manner as in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the 6-well plate for cell culture manufactured by Corning Incorporated was used as it was.
- Comparative example 5 The base material was not coated with the block copolymer, and a dish with a diameter of 3.5 cm (manufactured by Corning Incorporated, material: polystyrene) was used as it was.
- [Passage culture and undifferentiated maintenance rate evaluation] 0.2 mL / cm 2 of medium StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added to the block copolymer-coated substrate, and further, human iPS cell 201 B7 strain was 1300 cells / cm 2 , iMatrix-511 solution Nippi) was added at a concentration of 2.5 ⁇ L / mL. The cells were cultured at 37 ° C. in a 5% CO 2 environment. In addition, Y-27632 (manufactured by Wako Pure Chemical Industries, Ltd.) (concentration 10 ⁇ M) was added to the medium until 24 hours after cell seeding.
- the constitution of the culture substrate used in Examples 1 to 12 is shown in Table 1.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Sustainable Development (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Provided is a culture substrate capable of culturing pluripotent stem cells in a feeder-free environment and capable of detaching pluripotent stem cells from the substrate without using a protease by changing the temperature of the substrate. Provided is a culture substrate for pluripotent stem cells, the culture substrate being characterized by having a layer composed of a temperature-responsive polymer having a response temperature to water in the range of 0-50°C on the surface of the substrate, wherein at least one organism-derived material selected from the group consisting of Matrigel, laminin, fibronectin, vitronectin and collagen is immobilized on the layer.
Description
本発明は、基材に温度応答性高分子による層を有することによって、温度変化により多能性幹細胞を剥離させることができる培養基材、並びに、量産性に優れ、細胞にダメージを与えることなく多能性幹細胞を製造可能な多能性幹細胞の製造方法に関するものである。
The present invention is a culture substrate which can exfoliate pluripotent stem cells by temperature change by having a layer of a temperature responsive polymer on the substrate, and is excellent in mass productivity and without damaging the cells. The present invention relates to a method for producing pluripotent stem cells capable of producing pluripotent stem cells.
胚性幹細胞(ES細胞)や人工多能性幹細胞(iPS細胞)などの多能性幹細胞は、生体の様々な組織に分化する能力(分化万能性)を持つ細胞であり、再生医療分野における細胞ソースとして、大きな注目が寄せられている。多能性幹細胞を再生医療に応用するには、まず必要な数の多能性幹細胞を未分化状態で増殖させ、単一細胞又は細胞凝集塊(細胞シートを除く)として回収することが必須である。
Pluripotent stem cells such as embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells) are cells having the ability (differentiation pluripotency) to differentiate into various tissues of the living body, and cells in the field of regenerative medicine Much attention has been drawn as a source. In order to apply pluripotent stem cells to regenerative medicine, it is essential to grow the necessary number of pluripotent stem cells in an undifferentiated state and collect them as single cells or cell aggregates (except for cell sheet). is there.
多能性幹細胞の未分化状態を維持するには、マウス胎仔由来の繊維芽細胞にガンマ線照射や抗生物質投与で作成されたフィーダー細胞を足場として培養する方法がある。しかし、フィーダー細胞を用いた多能性幹細胞の培養方法は、培養のプロセスを複雑化させ、また、異種動物間での内在性ウィルスの感染が起こりうる。特に医療用途においては、異種動物間のフィーダー細胞の使用をできる限り回避した培養方法が求められる。
In order to maintain the undifferentiated state of pluripotent stem cells, there is a method of culturing mouse embryo-derived fibroblasts as a scaffold by feeder cells prepared by gamma irradiation or antibiotic administration. However, the culture method of pluripotent stem cells using feeder cells complicates the process of culture, and infection of endogenous virus between different animals can occur. In particular, in medical applications, a culture method which avoids the use of feeder cells between different species of animals as much as possible is required.
上記問題を解決するために、ラミニンなどの細胞外マトリックスで被覆されたiPS細胞の培養基材(特許文献1)が知られている。このような基材によれば、フィーダー細胞を使用せず、すなわち、フィーダーフリーの環境で、多能性幹細胞の未分化状態を維持したまま培養することができる。しかし、このような基材で増殖した多能性幹細胞を基材から細胞を剥離させる際は、タンパク質分解酵素が用いられている。タンパク質分解酵素は多細胞表面にあるタンパク質を分解し、多能性幹細胞と基材間の結合および多能性幹細胞間の結合を切断する役目を担っている。一方、タンパク質分解酵素は細胞の生存率に悪影響を与えることが知られており、タンパク質分解酵素を用いずに細胞を基材から分離する手法は細胞にダメージを与えない方法として重要である。
In order to solve the above problems, a culture substrate for iPS cells coated with an extracellular matrix such as laminin (Patent Document 1) is known. According to such a substrate, it is possible to culture pluripotent stem cells in an undifferentiated state without using feeder cells, that is, in a feeder-free environment. However, when the pluripotent stem cells grown on such a substrate are detached from the substrate, a proteolytic enzyme is used. Proteolytic enzymes degrade proteins on multicellular surfaces, and play a role in cleaving the bond between pluripotent stem cells and a substrate and the bond between pluripotent stem cells. On the other hand, proteolytic enzymes are known to adversely affect cell viability, and a method of separating cells from a substrate without using proteolytic enzymes is important as a method that does not damage cells.
タンパク質分解酵素を用いることなく細胞を剥離する方法として、温度応答性を有する基材を用いる方法が知られている。例えば、特許文献2では、水に対する上限もしくは下限臨界溶解温度が0~80℃である温度応答性高分子が被覆された細胞培養支持体を用い、温度変化により細胞を剥離せしめ、細胞シートを回収する方法が開示されている。しかしながら特許文献2に記載の方法では、多能性幹細胞に適用することはできないという問題があった。さらには、特許文献2では細胞シートの回収を主目的としており、単一細胞又は細胞の凝集塊を得るものではない。
As a method of detaching cells without using a proteolytic enzyme, a method using a substrate having temperature responsiveness is known. For example, Patent Document 2 uses a cell culture support coated with a thermoresponsive polymer having an upper limit or lower limit critical solution temperature of 0 to 80 ° C. in water, peels cells by temperature change, and recovers a cell sheet Methods are disclosed. However, the method described in Patent Document 2 has a problem that it can not be applied to pluripotent stem cells. Furthermore, Patent Document 2 mainly aims at recovery of a cell sheet, and does not obtain single cells or clumps of cells.
本発明の目的は、フィーダーフリーの環境で多能性幹細胞を培養可能であり、培養基材の温度を変化させることにより、タンパク質分解酵素を用いることなく多能性幹細胞を培養基材から剥離可能であり、多能性幹細胞を単一細胞又は細胞凝集塊として回収可能な培養基材を提供することにある。
An object of the present invention is to culture pluripotent stem cells in a feeder-free environment, and by changing the temperature of the culture substrate, it is possible to detach pluripotent stem cells from the culture substrate without using a proteolytic enzyme. An object of the present invention is to provide a culture substrate capable of recovering pluripotent stem cells as single cells or cell aggregates.
本発明の目的はまた、量産性に優れ、細胞にダメージを与えることなく、単一細胞又は細胞凝集塊として多能性幹細胞を製造可能な多能性幹細胞の製造方法を提供することにある。
Another object of the present invention is to provide a method for producing pluripotent stem cells, which is excellent in mass productivity and can produce pluripotent stem cells as single cells or cell aggregates without damaging the cells.
本発明者らは、以上の点を鑑み、鋭意研究を重ねた結果、温度応答性高分子による層を有する培養基材、並びに、特定の多能性幹細胞の製造方法が上記課題を解決できることを見出し、本発明を完成した。
In view of the above points, the present inventors have conducted intensive studies, and as a result, it is possible that the culture substrate having a layer made of a thermoresponsive polymer and the method for producing a specific pluripotent stem cell can solve the above-mentioned problems. The present invention has been completed.
すなわち本発明は、以下の[1]乃至[11]に存する。
[1] 基材表面に、水に対する応答温度が0℃~50℃の範囲にある温度応答性高分子による層を有し、前記層にマトリゲル、ラミニン、フィブロネクチン、ビトロネクチン及びコラーゲンからなる群から選択される少なくとも1種類の生体由来物質が固定化されていることを特徴とする多能性幹細胞の培養基材。
[2] 前記温度応答性高分子が、少なくとも下記(A)及び(B)のブロックセグメントを含有するブロック共重合体であることを特徴とする、上記[1]に記載の多能性幹細胞の培養基材。
(A)水に対する下限臨界溶解温度(LCST)が0℃~80℃の範囲にある温度応答性重合体ブロックセグメント。
(B)多能性幹細胞接着性を有するブロックセグメント。
[3] 前記温度応答性高分子が、少なくとも下記(A)及び(B)のブロックセグメントを含有するブロック共重合体であることを特徴とする、上記[1]又は[2]に記載の多能性幹細胞の培養基材。
(A)LCSTが0℃~80℃の範囲にある温度応答性重合体ブロックセグメント。
(B)水不溶性ブロックセグメント。
[4] 前記(B)のブロックセグメントが、下記一般式(1)で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含んでなるブロック重合体であることを特徴とする上記[2]又は[3]に記載の多能性幹細胞の培養基材。 That is, the present invention resides in the following [1] to [11].
[1] The substrate surface has a layer of a temperature responsive polymer having a response temperature to water in the range of 0 ° C. to 50 ° C., and the layer is selected from the group consisting of matrigel, laminin, fibronectin, vitronectin and collagen A culture substrate for pluripotent stem cells, characterized in that at least one type of bio-derived substance is immobilized.
[2] The pluripotent stem cell according to the above [1], wherein the thermoresponsive polymer is a block copolymer containing at least the following block segments (A) and (B): Culture substrate.
(A) Temperature-responsive polymer block segment having a lower limit critical solution temperature (LCST) to water in the range of 0 ° C. to 80 ° C.
(B) Block segment having pluripotent stem cell adhesion.
[3] The polymer according to the above [1] or [2], wherein the thermoresponsive polymer is a block copolymer containing at least the following block segments (A) and (B): Culture substrate for functional stem cells.
(A) Temperature-responsive polymer block segment having an LCST in the range of 0 ° C. to 80 ° C.
(B) Water insoluble block segment.
[4] The block segment of the above (B) is a block polymer comprising at least one kind of repeating unit among repeating units represented by the following general formula (1): Or the culture substrate of the pluripotent stem cells as described in [3].
[1] 基材表面に、水に対する応答温度が0℃~50℃の範囲にある温度応答性高分子による層を有し、前記層にマトリゲル、ラミニン、フィブロネクチン、ビトロネクチン及びコラーゲンからなる群から選択される少なくとも1種類の生体由来物質が固定化されていることを特徴とする多能性幹細胞の培養基材。
[2] 前記温度応答性高分子が、少なくとも下記(A)及び(B)のブロックセグメントを含有するブロック共重合体であることを特徴とする、上記[1]に記載の多能性幹細胞の培養基材。
(A)水に対する下限臨界溶解温度(LCST)が0℃~80℃の範囲にある温度応答性重合体ブロックセグメント。
(B)多能性幹細胞接着性を有するブロックセグメント。
[3] 前記温度応答性高分子が、少なくとも下記(A)及び(B)のブロックセグメントを含有するブロック共重合体であることを特徴とする、上記[1]又は[2]に記載の多能性幹細胞の培養基材。
(A)LCSTが0℃~80℃の範囲にある温度応答性重合体ブロックセグメント。
(B)水不溶性ブロックセグメント。
[4] 前記(B)のブロックセグメントが、下記一般式(1)で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含んでなるブロック重合体であることを特徴とする上記[2]又は[3]に記載の多能性幹細胞の培養基材。 That is, the present invention resides in the following [1] to [11].
[1] The substrate surface has a layer of a temperature responsive polymer having a response temperature to water in the range of 0 ° C. to 50 ° C., and the layer is selected from the group consisting of matrigel, laminin, fibronectin, vitronectin and collagen A culture substrate for pluripotent stem cells, characterized in that at least one type of bio-derived substance is immobilized.
[2] The pluripotent stem cell according to the above [1], wherein the thermoresponsive polymer is a block copolymer containing at least the following block segments (A) and (B): Culture substrate.
(A) Temperature-responsive polymer block segment having a lower limit critical solution temperature (LCST) to water in the range of 0 ° C. to 80 ° C.
(B) Block segment having pluripotent stem cell adhesion.
[3] The polymer according to the above [1] or [2], wherein the thermoresponsive polymer is a block copolymer containing at least the following block segments (A) and (B): Culture substrate for functional stem cells.
(A) Temperature-responsive polymer block segment having an LCST in the range of 0 ° C. to 80 ° C.
(B) Water insoluble block segment.
[4] The block segment of the above (B) is a block polymer comprising at least one kind of repeating unit among repeating units represented by the following general formula (1): Or the culture substrate of the pluripotent stem cells as described in [3].
(式中、R1は水素原子又はメチル基であり、Qはエステル結合、アミド結合、ウレタン結合又はエーテル結合から選択される2価の結合であり、R2は下記一般式(2)、(3)、(4)、(5)、(6)、(7)若しくは(8)で表される置換基、炭素数1~30の炭化水素基又は水素原子を示す。)
Wherein R 1 is a hydrogen atom or a methyl group, Q is a divalent bond selected from an ester bond, an amide bond, a urethane bond or an ether bond, and R 2 is a group represented by the following general formula (2), ( And 3) a substituent represented by (4), (5), (6), (7) or (8), a hydrocarbon group having 1 to 30 carbon atoms or a hydrogen atom.
(式中、R3は炭素数1~10の2価の炭化水素基であり、R4およびR5は各々独立して、水素原子又は炭素数1~4の炭化水素基である。)
(Wherein, R 3 is a divalent hydrocarbon group having 1 to 10 carbon atoms, and R 4 and R 5 are each independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.)
(式中、R6は炭素数1~10の2価の炭化水素基であり、R7は炭素数1~4の2価の炭化水素基であり、R8及びR9は各々独立して、水素原子又は炭素数1~4の炭化水素基であり、Xはスルホン酸アニオン基、カルボン酸アニオン基又はリン酸アニオン基である。)
(Wherein, R 6 is a divalent hydrocarbon group having 1 to 10 carbon atoms, R 7 is a divalent hydrocarbon group having 1 to 4 carbon atoms, and R 8 and R 9 are each independently Hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and X is a sulfonate anion group, a carboxylate anion group or a phosphate anion group.
(式中、R10は水素原子又は炭素数1~30のアルキル基であり、iは1~300の整数であり、jは0~60の整数である。)
(Wherein, R 10 is a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, i is an integer of 1 to 300, and j is an integer of 0 to 60).
(式中、R11は水素原子又は炭素数1~5のアルキル基である。)
(Wherein, R 11 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms)
(式中、R12は炭素数1~12の2価の炭化水素基、又は(ポリ)オキシエチレン基であり、R13は、炭素数1~4の2価の炭化水素基であり、R14、R15及びR16は、互いに独立して、水素原子又は炭素数1~2の炭化水素基である。)
(Wherein, R 12 is a divalent hydrocarbon group having 1 to 12 carbon atoms, or a (poly) oxyethylene group, R 13 is a divalent hydrocarbon group having 1 to 4 carbon atoms, R 14 , R 15 and R 16 are each independently a hydrogen atom or a hydrocarbon group having 1 to 2 carbon atoms.
(式中、Aはエーテル結合又はエステル結合であり、R17は炭素数1~5の2価の炭化水素基を表し、R18はフッ素原子を表し、nは0~4の整数を表す。)
(Wherein, A represents an ether bond or an ester bond, R 17 represents a divalent hydrocarbon group having 1 to 5 carbon atoms, R 18 represents a fluorine atom, and n represents an integer of 0 to 4). )
(式中、R19は炭素数1~5の2価の炭化水素基を表すが、存在しなくとも良い。R20、R21、R22、R23及びR24は各々独立して、水素原子、水酸基、カルボキシル基、アミノ基又は炭素数1~4の炭化水素基を表す。)]
[5] (A)及び(B)のブロックセグメントを含有するブロック共重合体が、(A)のブロックセグメントの構成単位比率80~99wt%であるブロック共重合体であることを特徴とする上記[2]~[4]のいずれかに記載の多能性幹細胞の培養基材。
[6] 温度応答性高分子が、1種類のブロック共重合体、又は2種類のブロック共重合体の混合物であることを特徴とする上記[1]~[5]のいずれかに記載の多能性幹細胞の培養基材。
[7] 基材が多孔質基材であり、前記多孔質基材の孔径が0.01~10μmであることを特徴とする、上記[1]~[6]のいずれかに記載の多能性幹細胞の培養基材。
[8] 基材が多孔質基材であり、前記多孔質基材の空隙率が0.01~30%であることを特徴とする、上記[1]~[7]のいずれかに記載の多能性幹細胞の培養基材。
[9] 下記試験によるラミニン吸着率が10%以上であることを特徴とする、上記[1]~[8]のいずれかに記載の多能性幹細胞の培養基材。 (Wherein, R 19 represents a divalent hydrocarbon group of 1 to 5 carbon atoms, which may be absent. R 20 , R 21 , R 22 , R 23 and R 24 are each independently hydrogen) Represents an atom, a hydroxyl group, a carboxyl group, an amino group or a hydrocarbon group having 1 to 4 carbon atoms.
[5] The block copolymer containing the block segment of (A) and (B) is a block copolymer having a constituent unit ratio of 80 to 99 wt% of the block segment of (A) A culture substrate for pluripotent stem cells according to any one of [2] to [4].
[6] The polymer according to any one of the above [1] to [5], wherein the temperature responsive polymer is one block copolymer or a mixture of two block copolymers. Culture substrate for functional stem cells.
[7] The multifunctional according to any one of the above [1] to [6], wherein the substrate is a porous substrate, and the pore diameter of the porous substrate is 0.01 to 10 μm. Stem cell culture substrate.
[8] The substrate according to any one of the above [1] to [7], wherein the substrate is a porous substrate, and the porosity of the porous substrate is 0.01 to 30%. Culture substrate for pluripotent stem cells.
[9] The culture substrate for pluripotent stem cells according to any one of the above [1] to [8], which has a laminin adsorption rate of 10% or more according to the following test.
[5] (A)及び(B)のブロックセグメントを含有するブロック共重合体が、(A)のブロックセグメントの構成単位比率80~99wt%であるブロック共重合体であることを特徴とする上記[2]~[4]のいずれかに記載の多能性幹細胞の培養基材。
[6] 温度応答性高分子が、1種類のブロック共重合体、又は2種類のブロック共重合体の混合物であることを特徴とする上記[1]~[5]のいずれかに記載の多能性幹細胞の培養基材。
[7] 基材が多孔質基材であり、前記多孔質基材の孔径が0.01~10μmであることを特徴とする、上記[1]~[6]のいずれかに記載の多能性幹細胞の培養基材。
[8] 基材が多孔質基材であり、前記多孔質基材の空隙率が0.01~30%であることを特徴とする、上記[1]~[7]のいずれかに記載の多能性幹細胞の培養基材。
[9] 下記試験によるラミニン吸着率が10%以上であることを特徴とする、上記[1]~[8]のいずれかに記載の多能性幹細胞の培養基材。 (Wherein, R 19 represents a divalent hydrocarbon group of 1 to 5 carbon atoms, which may be absent. R 20 , R 21 , R 22 , R 23 and R 24 are each independently hydrogen) Represents an atom, a hydroxyl group, a carboxyl group, an amino group or a hydrocarbon group having 1 to 4 carbon atoms.
[5] The block copolymer containing the block segment of (A) and (B) is a block copolymer having a constituent unit ratio of 80 to 99 wt% of the block segment of (A) A culture substrate for pluripotent stem cells according to any one of [2] to [4].
[6] The polymer according to any one of the above [1] to [5], wherein the temperature responsive polymer is one block copolymer or a mixture of two block copolymers. Culture substrate for functional stem cells.
[7] The multifunctional according to any one of the above [1] to [6], wherein the substrate is a porous substrate, and the pore diameter of the porous substrate is 0.01 to 10 μm. Stem cell culture substrate.
[8] The substrate according to any one of the above [1] to [7], wherein the substrate is a porous substrate, and the porosity of the porous substrate is 0.01 to 30%. Culture substrate for pluripotent stem cells.
[9] The culture substrate for pluripotent stem cells according to any one of the above [1] to [8], which has a laminin adsorption rate of 10% or more according to the following test.
リン酸緩衝生理食塩水1mLに対して0.5mg/mLの濃度のラミニン511-E8フラグメント溶液を2~2.5μL添加した溶液を、基材の基材面積における単位面積当たりの量で0.2mL/cm2基材上に滴下し、37℃で24時間静置した時、下記式より求めたラミニン吸着率。
A solution prepared by adding 2-2.5 μL of a laminin 511-E8 fragment solution at a concentration of 0.5 mg / mL to 1 mL of phosphate buffered saline was added in an amount of 0. When dropped on a 2 mL / cm 2 base material and allowed to stand at 37 ° C. for 24 hours, the laminin adsorption rate determined from the following formula.
[10] 多能性幹細胞が、ヒト人工多能性幹細胞であることを特徴とする上記[1]~[9]のいずれかに記載の多能性幹細胞の培養基材。
[11] 以下の(1)~(3)工程を経て、未分化の多能性幹細胞を製造する、多能性幹細胞の製造方法。
(1)上記[1]~[10]のいずれかに記載の培養基材に多能性幹細胞を播種する工程。
(2)前記培養基材に播種された多能性幹細胞を温度応答性高分子の応答温度以上の温度の液体中で培養する工程。
(3)培養基材を温度応答性高分子の応答温度未満の温度に冷却し、前記液体中で培養された多能性幹細胞を基材から剥離する工程。 [10] The culture substrate for pluripotent stem cells according to any one of the above [1] to [9], wherein the pluripotent stem cells are human induced pluripotent stem cells.
[11] A method for producing pluripotent stem cells, comprising producing undifferentiated pluripotent stem cells through the following steps (1) to (3).
(1) A step of seeding pluripotent stem cells on the culture substrate according to any one of the above [1] to [10].
(2) culturing the pluripotent stem cells seeded on the culture substrate in a liquid at a temperature higher than the response temperature of the temperature responsive polymer.
(3) A step of cooling the culture substrate to a temperature lower than the response temperature of the temperature responsive polymer, and exfoliating pluripotent stem cells cultured in the liquid from the substrate.
[11] 以下の(1)~(3)工程を経て、未分化の多能性幹細胞を製造する、多能性幹細胞の製造方法。
(1)上記[1]~[10]のいずれかに記載の培養基材に多能性幹細胞を播種する工程。
(2)前記培養基材に播種された多能性幹細胞を温度応答性高分子の応答温度以上の温度の液体中で培養する工程。
(3)培養基材を温度応答性高分子の応答温度未満の温度に冷却し、前記液体中で培養された多能性幹細胞を基材から剥離する工程。 [10] The culture substrate for pluripotent stem cells according to any one of the above [1] to [9], wherein the pluripotent stem cells are human induced pluripotent stem cells.
[11] A method for producing pluripotent stem cells, comprising producing undifferentiated pluripotent stem cells through the following steps (1) to (3).
(1) A step of seeding pluripotent stem cells on the culture substrate according to any one of the above [1] to [10].
(2) culturing the pluripotent stem cells seeded on the culture substrate in a liquid at a temperature higher than the response temperature of the temperature responsive polymer.
(3) A step of cooling the culture substrate to a temperature lower than the response temperature of the temperature responsive polymer, and exfoliating pluripotent stem cells cultured in the liquid from the substrate.
本発明によって、フィーダーフリーの環境で多能性幹細胞を培養可能であり、培養基材の温度を変化させることにより、タンパク質分解酵素を用いることなく多能性幹細胞を基材から剥離可能であり、多能性幹細胞を単一細胞又は細胞凝集塊として回収可能な培養基材を提供することができる。また、量産性に優れ、細胞にダメージを与えることなく、単一細胞又は細胞凝集塊として多能性幹細胞を製造可能な多能性幹細胞の製造方法を提供することができる。
According to the present invention, pluripotent stem cells can be cultured in a feeder-free environment, and pluripotent stem cells can be detached from the substrate without using a proteolytic enzyme by changing the temperature of the culture substrate, Pluripotent stem cells can be provided as a culture substrate that can be recovered as single cells or cell aggregates. In addition, it is possible to provide a method for producing pluripotent stem cells which is excellent in mass productivity and can produce pluripotent stem cells as single cells or cell aggregates without damaging the cells.
以下、本発明を実施するための形態(以下、単に「本実施の形態」という。)について詳細に説明する。以下の本実施の形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その趣旨の範囲内で適宜に変形して実施できる。
Hereinafter, modes for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail. The following embodiment is an example for describing the present invention, and is not intended to limit the present invention to the following contents. The present invention can be appropriately modified and implemented within the scope of the spirit of the present invention.
本明細書において、「温度応答性高分子」とは、温度変化によって親水性/疎水性の程度が変化する高分子を示す。また、水分子の存在下で高分子の温度を低温から高温へ昇温していく場合に、ある温度を境に高分子の親水性/疎水性の程度がより疎水性に変化し、水溶性から水不溶性に変化する温度応答性高分子が存在し、この境界温度を「下限臨界溶解温度(LCST;Lower Critical Solution Temperature)」という。一般に、温度応答性高分子がLCST未満の温度において水に溶解する場合、LCST以上の温度では水に不溶となる。温度応答性高分子が水不溶性である場合には、LCSTを有しないが、温度変化によって親水性/疎水性の程度が変化する応答温度を有する。
As used herein, “temperature responsive polymer” refers to a polymer whose degree of hydrophilicity / hydrophobicity changes with temperature change. In addition, when raising the temperature of the polymer from low temperature to high temperature in the presence of water molecules, the degree of hydrophilicity / hydrophobicity of the polymer changes to be more hydrophobic at a certain temperature, and it becomes water soluble There exists a temperature responsive polymer which changes from water to water insoluble, and this boundary temperature is referred to as “lower critical solution temperature (LCST)”. Generally, when a temperature responsive polymer dissolves in water at a temperature lower than LCST, it becomes insoluble in water at a temperature higher than LCST. When the temperature responsive polymer is water insoluble, it does not have LCST, but has a response temperature in which the degree of hydrophilicity / hydrophobicity changes with temperature change.
また、本明細書において、「生体由来物質」とは、生物の体内に存在する物質であるが、天然物であってもよく、遺伝子組み換え技術等で人工的に合成したものであってもよく、また、前記生体由来物質をベースとして化学的に合成した物質であっても良い。生体由来物質に特に限定はないが、例えば、生体を構成する基本材料である核酸、タンパク質、多糖や、これらの構成要素であるヌクレオチドやヌクレオシド、アミノ酸、各種の糖、あるいは脂質やビタミン、ホルモンである。
Further, in the present specification, the “biologically-derived substance” is a substance present in the body of an organism, but may be a natural product, or may be artificially synthesized by genetic engineering or the like. In addition, it may be a substance chemically synthesized based on the aforementioned biological substance. There are no particular limitations on the substance derived from a living organism, but for example, nucleic acids, proteins, polysaccharides which are basic materials constituting the living body, nucleotides and nucleosides which are components thereof, amino acids, various sugars, lipids, vitamins and hormones is there.
また、本明細書において、「多能性幹細胞接着性」とは、多能性幹細胞を培養する温度において、多能性幹細胞が培養基材に接着することである。
Moreover, in the present specification, "pluripotent stem cell adhesion" refers to adhesion of pluripotent stem cells to a culture substrate at a temperature at which pluripotent stem cells are cultured.
また、本明細書において、ブロックセグメントが「水不溶性を有する」とは、該ブロックセグメントを構成する単量体単位のみからなるホモポリマーの少なくとも一部が水に不溶であることを示す。
Further, in the present specification, “water-insoluble” in the block segment indicates that at least a part of the homopolymer consisting only of monomer units constituting the block segment is insoluble in water.
また、本明細書において、「多能性幹細胞増殖性」とは、培養温度における多能性幹細胞の増殖しやすさを示し、増殖性を有するとは、多能性幹細胞が培養温度において培養基材に接着し、増殖可能であることを示す。さらに、増殖性が高いとは、同一の培養期間で比較した際に、より多くの多能性幹細胞へと増殖することを示す。
Furthermore, in the present specification, “pluripotent stem cell proliferative” refers to the pliability of pluripotent stem cells at culture temperature, and having proliferative refers to culture of pluripotent stem cells at culture temperature. It adheres to the material and shows that it can grow. Furthermore, high proliferative means that the cells proliferate to more pluripotent stem cells when compared in the same culture period.
また、本明細書において、「多能性幹細胞剥離性」とは、培養基材上で増殖した多能性幹細胞の培養基材からの剥離しやすさを示し、「剥離性を有する」とは、培養基材上で増殖した多能性幹細胞が外部刺激によって培養基材から剥離可能であることを示す。さらに、「剥離性が高い」とは、短時間の冷却や弱い応力等の、より弱い外部刺激によって多能性幹細胞が培養基材から剥離することを示す。また、「冷却剥離性を有する」とは、剥離性を有し、さらに培養基材を冷却することによって、冷却しない場合と比較して剥離性が高まることを示す。ここで、本明細書において「外部刺激」とは、超音波や振動、対流等の力学的刺激、光や電気、磁気等の電磁気学的刺激、加温や冷却等の熱力学的刺激を示し、酵素反応等の生物反応によるものを除く。
Moreover, in the present specification, “pluripotent stem cell releasability” indicates the removability of pluripotent stem cells grown on the culture substrate from the culture substrate, and “with releasability” Fig. 6 shows that pluripotent stem cells grown on a culture substrate can be detached from the culture substrate by an external stimulus. Furthermore, "high releasability" indicates that pluripotent stem cells are detached from the culture substrate by a weaker external stimulus such as short-time cooling or weak stress. Further, "having a cold peelability" indicates that it has peelability, and further cooling the culture substrate increases peelability as compared to the case without cooling. Here, in the present specification, the term "external stimulation" refers to mechanical stimulation such as ultrasound, vibration and convection, electromagnetic stimulation such as light, electricity and magnetism, and thermodynamic stimulation such as heating and cooling. , Excluding those due to biological reactions such as enzyme reactions.
また、本明細書において、多能性幹細胞の「未分化維持率」とは、培養した細胞に含まれる未分化の多能性幹細胞の割合を示し、多能性幹細胞の未分化マーカーを染色し、フローサイトメーターにより測定することができる。未分化維持率が高い場合、多能性幹細胞の純度が高いことを意味し、好ましいものである。 本発明の培養基材は、基材表面に水に対する応答温度が0℃~50℃の範囲にある温度応答性高分子による層を有する。温度応答性高分子による層を有することにより、本発明の培養基材は多能性幹細胞の冷却剥離性を有する。また、温度応答性高分子による層を有することにより、多能性幹細胞を基材から剥離する際の細胞へのダメージを抑制することが可能で、多能性幹細胞の継代培養において未分化維持率が高い。温度応答性高分子による層を有しない場合、多能性幹細胞の冷却剥離性を有しない。ここで、本発明において「培養基材」とは、多能性幹細胞の培養を行う物品全体(例えば、図1の符号10で示される部分。)を示し、基材と温度応答性高分子による層を含む。また、本発明において「基材」とは、温度応答性高分子による層で被覆されるベース基材(例えば、図1の符号1で示される部分。)を示す。
Furthermore, in the present specification, the “undifferentiated maintenance rate” of pluripotent stem cells indicates the proportion of undifferentiated pluripotent stem cells contained in cultured cells, and it is possible to stain undifferentiated markers of pluripotent stem cells. , Can be measured by a flow cytometer. When the undifferentiated maintenance rate is high, it means that the purity of pluripotent stem cells is high, which is preferable. The culture substrate of the present invention has a layer of a temperature responsive polymer having a response temperature to water in the range of 0 ° C. to 50 ° C. on the surface of the substrate. By having a layer of a temperature responsive polymer, the culture substrate of the present invention has the ability to cool off pluripotent stem cells. In addition, by having a layer with a temperature responsive polymer, it is possible to suppress damage to cells when detaching pluripotent stem cells from a substrate, and maintain undifferentiated maintenance in pluripotent stem cell passaging The rate is high. When it does not have a layer by a temperature responsive polymer, it does not have the cooling peelability of pluripotent stem cells. Here, in the present invention, the "culture substrate" refers to the entire article (for example, the portion shown by reference numeral 10 in FIG. 1) for culturing pluripotent stem cells, and is based on the substrate and the temperature responsive polymer Including layers. Further, in the present invention, “base material” indicates a base material (for example, a portion shown by reference numeral 1 in FIG. 1) coated with a layer of a temperature responsive polymer.
本発明において、前記温度応答性高分子は、応答温度が0℃~50℃の範囲にある。応答温度が0℃~50℃の範囲にあることにより、本発明の培養基材は体温(37℃)付近で多能性幹細胞接着性及び増殖性を有すると共に、細胞にダメージを与えない温度域において冷却剥離性を有する。応答温度を有しない場合、冷却剥離性を有しない。体温付近で多能性幹細胞接着性及び増殖性を付与すると共に、細胞にダメージを与えない温度域における冷却剥離性を付与するのに好適であることから、応答温度が10℃~40℃の範囲にあることが好ましく、15℃~35℃の範囲にあることがさらに好ましく、15℃~30℃が特に好ましく、15℃~25℃が最も好ましい。応答温度以上の温度では、温度応答性高分子は疎水性を有することから、タンパク質が吸着しやすく、吸着されたタンパク質を足場にして、細胞の接着培養が可能となる。一方で、温度を低下させた場合、親水性に変化することで、細胞の剥離が促進される。応答温度が0℃未満であれば細胞にダメージを与えない温度域において冷却剥離性を付与することが困難となり、50℃を超えれば体温付近で多能性幹細胞接着性及び増殖性を有さず、細胞培養が困難となる。また、培養操作における培地交換の際に室温の培地を用いる場合においては、培地交換の際に細胞が剥離することを抑制するのに好適のため、応答温度が0℃~30℃の範囲にあることが好ましく、5℃~25℃の範囲にあることがさらに好ましく、5℃~20℃が特に好ましく、10℃~20℃が最も好ましい。
In the present invention, the temperature responsive polymer has a response temperature in the range of 0 ° C. to 50 ° C. When the response temperature is in the range of 0 ° C. to 50 ° C., the culture substrate of the present invention has pluripotent stem cell adhesion and proliferation near body temperature (37 ° C.) and a temperature range which does not damage cells. Have a cold peelability. If it does not have a response temperature, it does not have cold peelability. The response temperature is in the range of 10 ° C to 40 ° C because it is suitable for imparting pluripotent stem cell adhesiveness and proliferation near the body temperature and for imparting cooling peelability in a temperature range that does not damage cells. Is more preferably in the range of 15 ° C. to 35 ° C., particularly preferably 15 ° C. to 30 ° C., and most preferably 15 ° C. to 25 ° C. At a temperature higher than the response temperature, the temperature-responsive polymer has hydrophobicity, so that proteins are easily adsorbed, and the adsorbed proteins can be used as a scaffold to allow adhesion culture of cells. On the other hand, when the temperature is lowered, the change to hydrophilicity promotes cell detachment. If the response temperature is less than 0 ° C., it becomes difficult to impart cooling peelability in a temperature range that does not damage the cells, and if it exceeds 50 ° C., there is no pluripotent stem cell adhesiveness and proliferation near body temperature. , Cell culture becomes difficult. In the case of using a room temperature medium at the time of medium exchange in culture operation, the response temperature is in the range of 0 ° C. to 30 ° C. because it is suitable for suppressing cell detachment at the time of medium exchange. Is more preferably in the range of 5 ° C. to 25 ° C., particularly preferably 5 ° C. to 20 ° C., and most preferably 10 ° C. to 20 ° C.
本発明において、前記温度応答性高分子の種類としては特に限定はないが、基材に被覆されたブロック共重合体、アジド基等の反応性基を介して基材に固定化された共重合体、モノマーを基材に塗布して基材上で電子線重合又はラジカル重合を行うことにより基材上に固定化された重合体等を好適に用いることができる。
In the present invention, the type of the thermoresponsive polymer is not particularly limited, but a block copolymer coated on a base material, a copolymer weight immobilized on a base material via a reactive group such as an azide group, etc. A polymer etc. which were fix | immobilized on the base material can be used suitably by apply | coating a monomer to a base material and performing electron beam polymerization or radical polymerization on a base material.
本発明において、前記温度応答性高分子は、少なくとも下記(A)及び(B)のブロックセグメントを含有するブロック共重合体であることが好ましい。
(A)LCSTが0℃~80℃の範囲にある温度応答性重合体ブロックセグメント。
(B)水不溶性を有するブロックセグメント、又は多能性幹細胞接着性を有するブロックセグメント。 In the present invention, the temperature responsive polymer is preferably a block copolymer containing at least the following block segments (A) and (B).
(A) Temperature-responsive polymer block segment having an LCST in the range of 0 ° C. to 80 ° C.
(B) Block segments having water insolubility, or block segments having pluripotent stem cell adhesiveness.
(A)LCSTが0℃~80℃の範囲にある温度応答性重合体ブロックセグメント。
(B)水不溶性を有するブロックセグメント、又は多能性幹細胞接着性を有するブロックセグメント。 In the present invention, the temperature responsive polymer is preferably a block copolymer containing at least the following block segments (A) and (B).
(A) Temperature-responsive polymer block segment having an LCST in the range of 0 ° C. to 80 ° C.
(B) Block segments having water insolubility, or block segments having pluripotent stem cell adhesiveness.
ブロック共重合体がブロックセグメント(A)を含有することにより、本発明の培養基材に体温付近で多能性幹細胞接着性及び増殖性を付与しやすく、また、細胞にダメージを与えない温度域に冷却剥離性を付与しやすい。
Since the block copolymer contains the block segment (A), it is easy to impart pluripotent stem cell adhesiveness and proliferation to the culture substrate of the present invention at around body temperature, and a temperature range which does not damage the cells. It is easy to give cold
ここで、本発明において「ブロックセグメント(A)のLCST」と表記した場合は、ブロックセグメント(A)を構成する繰り返し単位のみからなるホモポリマーのLCSTを示す。ブロックセグメント(A)のLCSTは前記ホモポリマーが水に不溶化する温度であり、例えば、前記ホモポリマーを0.6wt%溶解させた水溶液において、1℃/分の速度で水溶液を昇温しながら、波長500nmの光の透過率を測定することで求めることができる。低温からLCSTに到達するまでは概ね一定の透過率を示すが、LCST付近で白濁するため透過率が急激に低下し、その後は透過率が再び概ね一定となる曲線が得られる(例えば、図2)。この曲線において、LCST未満の温度における透過率と、LCST以上の温度における透過率の平均値の透過率となる温度を求めることにより(中点法)、LCSTを求めることができる。測定する温度範囲はLCST未満の温度で透過率が概ね一定となる5℃以上の温度域を含み、さらにLCST以上の温度で透過率が一定となる5℃以上の温度域を含む範囲である。
Here, when it is described as "LCST of block segment (A)" in the present invention, LCST of a homopolymer consisting only of repeating units constituting the block segment (A) is shown. The LCST of the block segment (A) is a temperature at which the homopolymer is insolubilized in water, for example, while heating the aqueous solution at a rate of 1 ° C./min in an aqueous solution in which 0.6 wt% of the homopolymer is dissolved. It can obtain | require by measuring the transmittance | permeability of the light of wavelength 500nm. From the low temperature to reaching the LCST, the transmittance is approximately constant, but the transmittance is sharply reduced due to the white turbidity near the LCST, and thereafter, the transmittance becomes substantially constant again (for example, FIG. 2) ). In this curve, the LCST can be determined by determining the transmittance at a temperature lower than the LCST and the temperature at which the transmittance of the average value of the transmittances at a temperature higher than the LCST is obtained (midpoint method). The temperature range to be measured is a range including a temperature range of 5 ° C. or more in which the transmittance is substantially constant at a temperature less than LCST, and further includes a temperature range of 5 ° C. or more in which the transmittance is constant at a temperature of LCST or more.
また、本発明のブロック共重合体が水不溶性ブロックセグメントを有する場合は、水に不溶であるが、温度変化によって親水性/疎水性の程度が変化する温度を求めることにより、応答温度を測定することができる。例えば、ブロック共重合体が被覆された基材を水に浸漬し、水中における気泡の接触角を測定することにより、ブロック共重合体の親水性/疎水性の程度を測定する。次に、水の温度を変化させることにより、ブロック共重合体の温度を変化させ、温度が安定化するまで待った後に、再度気泡の接触角を測定することで、種々の温度における接触角を求める。応答温度未満では気泡の接触角が大きな値(対水接触角が小さな値)で概ね一定であるが、応答温度を境に気泡の接触角が小さな値(対水接触角が大きな値)となり、応答温度以上では概ね一定となる曲線が得られる(例えば、図3)。この曲線において、応答温度未満の温度における接触角と、応答温度以上の温度における接触角の平均値の接触角となる温度を求めることにより(中点法)、応答温度を求めることができる。測定する温度範囲は応答温度未満の温度で接触角が概ね一定となる10℃以上の温度域を含み、さらに応答温度以上の温度で接触角が概ね一定となる10℃以上の温度域を含む範囲である。
In addition, when the block copolymer of the present invention has a water-insoluble block segment, the response temperature is measured by finding a temperature which is insoluble in water but the degree of hydrophilicity / hydrophobicity changes due to temperature change. be able to. For example, the degree of hydrophilicity / hydrophobicity of the block copolymer is measured by immersing the block copolymer-coated substrate in water and measuring the contact angle of air bubbles in water. Next, the temperature of the block copolymer is changed by changing the temperature of water, and after waiting for the temperature to stabilize, the contact angle at various temperatures is determined by measuring the contact angle of the bubble again. . Below the response temperature, the bubble contact angle is generally constant at a large value (small water contact angle), but the bubble contact angle becomes a small value (large water contact angle) at the response temperature. A curve that is approximately constant above the response temperature is obtained (eg, FIG. 3). In this curve, the response temperature can be determined by determining the contact angle at a temperature lower than the response temperature and the contact angle at an average value of the contact angles at a temperature higher than the response temperature (midpoint method). The temperature range to be measured includes a temperature range of 10 ° C. or more at which the contact angle becomes substantially constant at a temperature lower than the response temperature, and further includes a temperature range at 10 ° C. or more at which the contact angle becomes substantially constant at a temperature higher than the response temperature. It is.
温度応答性高分子の応答温度の制御法として代表的なものに、共重合するモノマーの性質と、その共重合率を調整するものがある。温度応答性高分子に親水性のモノマーを共重合したものは、その組成の増加とともに応答温度は高温側にシフトする。一方、温度応答性高分子に疎水性のモノマーを共重合したものは、その組成の増加とともに応答温度は低温側にシフトする。このような観点から、ブロックセグメント(A)の好適なLCSTは共重合させるブロックセグメント(B)のモノマーの性質によって変化するが、温度応答性高分子の応答温度を0~50℃とするのに好適であることから、ブロックセグメント(A)のLCSTとしては、好ましくは10~75℃、さらに好ましくは10~60℃、特に好ましくは20~50℃である。
As a typical control method of the response temperature of the temperature responsive polymer, there are those which adjust the property of the copolymerizable monomer and the copolymerization rate. The temperature responsive polymer copolymerized with a hydrophilic monomer shifts the response temperature to the high temperature side as the composition increases. On the other hand, in the case of a temperature responsive polymer copolymerized with a hydrophobic monomer, the response temperature shifts to the low temperature side as the composition increases. From such a point of view, although the suitable LCST of the block segment (A) changes depending on the nature of the monomer of the block segment (B) to be copolymerized, the response temperature of the temperature responsive polymer is 0 to 50 ° C. As being suitable, the LCST of the block segment (A) is preferably 10 to 75 ° C., more preferably 10 to 60 ° C., particularly preferably 20 to 50 ° C.
前記ブロックセグメント(A)を構成する単量体単位としては特に制限はないが、例えば、アクリルアミド、メタクリルアミド等の(メタ)アクリルアミド化合物;N,N-ジエチルアクリルアミド、N-エチルアクリルアミド、N-n-プロピルアクリルアミド、N-n-プロピルメタクリルアミド、N-イソプロピルアクリルアミド、N-イソプロピルメタクリルアミド、N-シクロプロピルアクリルアミド、N-シクロプロピルメタクリルアミド、N-エトキシエチルアクリルアミド、N-エトキシエチルメタクリルアミド、N-テトラヒドロフルフリルアクリルアミド、N-テトラヒドロフルフリルメタクリルアミド等のN-アルキル置換(メタ)アクリルアミド誘導体;N,N-ジメチル(メタ)アクリルアミド、N,N-エチルメチルアクリルアミド、N,N-ジエチルアクリルアミド等のN,N-ジアルキル置換(メタ)アクリルアミド誘導体;1-(1-オキソ-2-プロペニル)-ピロリジン、1-(1-オキソ-2-プロペニル)-ピペリジン、4-(1-オキソ-2-プロペニル)-モルホリン、1-(1-オキソ-2-メチル-2-プロペニル)-ピロリジン、1-(1-オキソ-2-メチル-2-プロペニル)-ピペリジン、4-(1-オキソ-2-メチル-2-プロペニル)-モルホリン等の環状基を有する(メタ)アクリルアミド誘導体;メチルビニルエーテル等のビニルエーテル;N-プロリンメチルエステルアクリルアミド等のプロリン誘導体を挙げることができ、ブロック共重合体の応答温度を0~50℃とするのに好適であることから、N,N-ジエチルアクリルアミド、N-n-プロピルアクリルアミド、N-イソプロピルアクリルアミド、N-n-プロピルメタクリルアミド、N-エトキシエチルアクリルアミド、N-テトラヒドロフルフリルアクリルアミド、N-テトラヒドロフルフリルメタクリルアミドが好ましく、N-n-プロピルアクリルアミド、N-イソプロピルアクリルアミドがさらに好ましく、N-イソプロピルアクリルアミドが特に好ましい。また、培養操作における培地交換の際に室温の培地を用いる場合においては、ブロック共重合体の応答温度を室温よりも低い温度とするのに好適であることから、N-イソプロピルアクリルアミド、N-プロリンメチルエステルアクリルアミドが好ましい。
The monomer unit constituting the block segment (A) is not particularly limited. For example, (meth) acrylamide compounds such as acrylamide and methacrylamide; N, N-diethylacrylamide, N-ethylacrylamide, Nn -Propyl Acrylamide, Nn-Propyl Methacrylamide, N-Isopropyl Acrylamide, N-Isopropyl Methacrylamide, N-Cyclopropyl Acrylamide, N-Cyclopropyl Methacrylamide, N-Ethoxyethyl Acrylamide, N-Ethoxyethyl Methacrylamide, N N-alkyl substituted (meth) acrylamide derivatives such as -tetrahydrofurfuryl acrylamide, N-tetrahydrofurfuryl methacrylamide; N, N-dimethyl (meth) acrylamide, N, N-ethy N, N-dialkyl-substituted (meth) acrylamide derivatives such as methyl acrylamide, N, N-diethyl acrylamide; 1- (1-oxo-2-propenyl) -pyrrolidine, 1- (1-oxo-2-propenyl) -piperidine 4- (1-Oxo-2-propenyl) -morpholine, 1- (1-oxo-2-methyl-2-propenyl) -pyrrolidine, 1- (1-oxo-2-methyl-2-propenyl) -piperidine (Meth) acrylamide derivatives having a cyclic group such as 4- (1-oxo-2-methyl-2-propenyl) -morpholine; vinyl ethers such as methyl vinyl ether; proline derivatives such as N-proline methyl ester acrylamide And is suitable for setting the response temperature of the block copolymer to 0 to 50 ° C. , N-diethyl acrylamide, N-n-propyl acrylamide, N-isopropyl acrylamide, N-n-propyl methacrylamide, N-ethoxyethyl acrylamide, N-tetrahydrofurfuryl acrylamide, N-tetrahydrofurfuryl methacrylamide, N More preferred are n-propyl acrylamide and N-isopropyl acrylamide, and particularly preferred is N-isopropyl acrylamide. In addition, when a medium at room temperature is used at the time of medium exchange in the culture operation, it is suitable for setting the response temperature of the block copolymer to a temperature lower than room temperature, so N-isopropylacrylamide, N-proline Methyl ester acrylamide is preferred.
本発明において、ブロック共重合体が水不溶性を有するブロックセグメント(B)を含有することにより、培養液への温度応答性高分子の混入を抑制しやすく、好ましい。
In the present invention, when the block copolymer contains the water-insoluble block segment (B), mixing of the temperature-responsive polymer into the culture solution can be easily suppressed, which is preferable.
本発明におけるブロックセグメント(B)はまた、培養基材の多能性幹細胞接着性を高めるのに好適であることから、ブロックセグメント(B)の単量体単位からなるホモポリマーが多能性幹細胞接着性を有することが好ましい。多能性幹細胞接着性を有するものとしては、特に限定されるものではないが、例えば、イオン性基、親水性基、疎水性基等を有するもの、また、それらを基材表面に被覆後、ガンマ線照射、プラズマ処理、コロナ処理等などで表面処理を施したものが挙げられる。
Since the block segment (B) in the present invention is also suitable for enhancing the pluripotent stem cell adhesion of the culture substrate, the homopolymer comprising the monomer unit of the block segment (B) is a pluripotent stem cell It is preferable to have adhesiveness. There are no particular limitations on those having pluripotent stem cell adhesiveness, but for example, those having an ionic group, a hydrophilic group, a hydrophobic group, etc., and after covering them on the substrate surface, What surface-treated by gamma irradiation, plasma treatment, corona treatment etc. is mentioned.
本発明におけるブロックセグメント(B)はまた、ブロック共重合体の応答温度を0~50℃の範囲とするのに好適であることから、ブロック共重合体の応答温度制御に寄与するブロックであることが好ましい。ブロック共重合体がブロックセグメント(B)を有することにより、ブロックセグメント(A)の応答温度を高温側あるいは低温側にシフトさせ、ブロック共重合体の応答温度を0~50℃の範囲に制御することができる。ブロック共重合体がブロックセグメント(B)を有することにより、ブロック共重合体の応答温度の制御が可能であり、ブロックセグメント(B)を構成する単量体単位として様々なモノマーの使用が可能である。ブロック共重合体の応答温度制御のために、ブロックセグメント(B)には例えば、親水性のモノマー、疎水性のモノマー、さらにはその両方を使用してもよい。
The block segment (B) in the present invention is also a block that contributes to controlling the response temperature of the block copolymer because it is suitable for setting the response temperature of the block copolymer to the range of 0 to 50 ° C. Is preferred. Since the block copolymer (B) has the block segment (B), the response temperature of the block segment (A) is shifted to the high temperature side or the low temperature side, and the response temperature of the block copolymer is controlled in the range of 0 to 50 ° C. be able to. When the block copolymer has the block segment (B), the response temperature of the block copolymer can be controlled, and various monomers can be used as monomer units constituting the block segment (B). is there. For controlling the response temperature of the block copolymer, for example, hydrophilic monomers, hydrophobic monomers, or both may be used for the block segment (B).
また、本発明におけるブロックセグメント(B)は、多能性幹細胞の剥離性を高めるのに好適であることから、多能性幹細胞の剥離に必要な冷却時間の短縮に寄与するブロックであることが好ましい。ブロック共重合体がブロックセグメント(B)を有することにより、培養基材をブロック共重合体の応答温度よりも低温にした場合、ブロック共重合体に水が入り込みやすくなり、細胞とブロック共重合体の接着力が弱まりやすくなり、多能性幹細胞の剥離に必要な時間が短縮できる。このために、ブロック共重合体がブロックセグメント(B)を有することで、多能性幹細胞の剥離に必要な時間が短縮できるものである。多能性幹細胞の剥離に必要な冷却時間の短縮のために、ブロックセグメント(B)には例えば、親水性のモノマーを使用することが好ましい。
In addition, since the block segment (B) in the present invention is suitable for enhancing the releasability of pluripotent stem cells, it is a block that contributes to shortening the cooling time necessary for the exfoliation of pluripotent stem cells. preferable. Since the block copolymer has the block segment (B), when the culture substrate is at a temperature lower than the response temperature of the block copolymer, water easily enters the block copolymer, and the cell and the block copolymer The adhesion of the cells is apt to weaken, and the time required for detachment of pluripotent stem cells can be shortened. For this reason, when the block copolymer has the block segment (B), the time required for detachment of pluripotent stem cells can be shortened. It is preferable to use, for example, a hydrophilic monomer for the block segment (B) in order to shorten the cooling time required for the detachment of pluripotent stem cells.
さらに、本発明におけるブロックセグメント(B)は、ブロック共重合体を基材へ強固に固定化するのに好適であることから、基材への接着に寄与するブロックであることが好ましい。ブロックセグメント(B)が基材への接着に寄与するブロックであることにより、培養基材をブロック共重合体の応答温度よりも低温にした場合も基材へブロック共重合体を安定に被覆させ続けることができる。このために、ブロックセグメント(B)が基材への接着に寄与するブロックであることにより、ブロック共重合体の基材への固定化は、化学的な被覆に限定されず、物理的に被覆させることも出来る。ブロック共重合体と基材への接着性を高めるために、ブロックセグメント(B)にはたとえば、疎水性のモノマー、反応性官能基を有するモノマーを使用することが好ましい。
Furthermore, the block segment (B) in the present invention is preferably a block that contributes to adhesion to a substrate because it is suitable for firmly fixing the block copolymer to the substrate. Since the block segment (B) is a block that contributes to adhesion to the substrate, the block copolymer can be stably coated on the substrate even when the culture substrate is at a temperature lower than the response temperature of the block copolymer You can continue. For this reason, since the block segment (B) is a block that contributes to adhesion to the substrate, the immobilization of the block copolymer on the substrate is not limited to chemical coating, but is physically covered. You can also In order to enhance the adhesion between the block copolymer and the substrate, it is preferable to use, for example, a hydrophobic monomer or a monomer having a reactive functional group as the block segment (B).
本発明において、水不溶性を高めるのに好適であることから、ブロックセグメント(B)は、下記一般式(1)で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含んでなるブロック重合体であることが好ましい。
In the present invention, the block segment (B) is a block weight comprising at least one repeating unit of repeating units represented by the following general formula (1) since it is suitable for enhancing water insolubility. It is preferable to be combined.
(式中、R1は水素原子又はメチル基であり、Qはエステル結合、アミド結合、ウレタン結合又はエーテル結合から選択される2価の結合であり、R2は下記一般式(2)、(3)、(4)、(5)、(6)、(7)若しくは(8)で表される置換基、炭素数1~30の炭化水素基又は水素原子を示す。)
Wherein R 1 is a hydrogen atom or a methyl group, Q is a divalent bond selected from an ester bond, an amide bond, a urethane bond or an ether bond, and R 2 is a group represented by the following general formula (2), ( And 3) a substituent represented by (4), (5), (6), (7) or (8), a hydrocarbon group having 1 to 30 carbon atoms or a hydrogen atom.
(式中、R3は炭素数1~10の2価の炭化水素基であり、R4およびR5は各々独立して、水素原子又は炭素数1~4の炭化水素基である。)
(Wherein, R 3 is a divalent hydrocarbon group having 1 to 10 carbon atoms, and R 4 and R 5 are each independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.)
(式中、R6は炭素数1~10の2価の炭化水素基であり、R7は炭素数1~4の2価の炭化水素基であり、R8及びR9は各々独立して、水素原子又は炭素数1~4の炭化水素基であり、Xはスルホン酸アニオン基、カルボン酸アニオン基又はリン酸アニオン基である。)
(Wherein, R 6 is a divalent hydrocarbon group having 1 to 10 carbon atoms, R 7 is a divalent hydrocarbon group having 1 to 4 carbon atoms, and R 8 and R 9 are each independently Hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and X is a sulfonate anion group, a carboxylate anion group or a phosphate anion group.
(式中、R10は水素原子又は炭素数1~30のアルキル基であり、iは1~300の整数であり、jは0~60の整数である。)
(Wherein, R 10 is a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, i is an integer of 1 to 300, and j is an integer of 0 to 60).
(式中、R11は水素原子又は炭素数1~5のアルキル基である。)
(Wherein, R 11 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms)
(式中、R12は炭素数1~12の2価の炭化水素基、又は(ポリ)オキシエチレン基であり、R13は、炭素数1~4の2価の炭化水素基であり、R14、R15及びR16は、互いに独立して、水素原子又は炭素数1~2の炭化水素基である。)
(Wherein, R 12 is a divalent hydrocarbon group having 1 to 12 carbon atoms, or a (poly) oxyethylene group, R 13 is a divalent hydrocarbon group having 1 to 4 carbon atoms, R 14 , R 15 and R 16 are each independently a hydrogen atom or a hydrocarbon group having 1 to 2 carbon atoms.
(式中、Aはエーテル結合又はメチレン基であり、R17は炭素数3~5の2価の炭化水素基を表し、R18はフッ素原子を表し、nは0~4の整数を表す。)
(Wherein, A represents an ether bond or a methylene group, R 17 represents a C 3 -C 5 divalent hydrocarbon group, R 18 represents a fluorine atom, and n represents an integer of 0 to 4). )
(式中、R19は炭素数1~5の2価の炭化水素基を表すが、存在しなくとも良い。R20、R21、R22、R23及びR24は各々独立して、水素原子、水酸基、カルボキシル基、アミノ基又は炭素数1~4の炭化水素基を表す。)
本発明における一般式(1)において、R1は水素原子又はメチル基である。Qはエステル結合、アミド結合、ウレタン結合又はエーテル結合から選択される2価の結合であり、エステル結合またはアミド結合が好ましく、エステル結合が特に好ましい。一般式(1)において、R2は一般式(2)、(3)、(4)、(5)、(6)、(7)若しくは(8)で表される置換基、炭素数1~30の炭化水素基又は水素原子を示す。 (Wherein, R 19 represents a divalent hydrocarbon group of 1 to 5 carbon atoms, which may be absent. R 20 , R 21 , R 22 , R 23 and R 24 are each independently hydrogen) Represents an atom, a hydroxyl group, a carboxyl group, an amino group or a hydrocarbon group having 1 to 4 carbon atoms.
In the general formula (1) in the present invention, R 1 is a hydrogen atom or a methyl group. Q is a divalent bond selected from an ester bond, an amide bond, a urethane bond or an ether bond, preferably an ester bond or an amide bond, particularly preferably an ester bond. In the general formula (1), R 2 represents a substituent represented by the general formula (2), (3), (4), (5), (6), (7) or (8), having 1 tocarbon atoms 30 indicates a hydrocarbon group or a hydrogen atom.
本発明における一般式(1)において、R1は水素原子又はメチル基である。Qはエステル結合、アミド結合、ウレタン結合又はエーテル結合から選択される2価の結合であり、エステル結合またはアミド結合が好ましく、エステル結合が特に好ましい。一般式(1)において、R2は一般式(2)、(3)、(4)、(5)、(6)、(7)若しくは(8)で表される置換基、炭素数1~30の炭化水素基又は水素原子を示す。 (Wherein, R 19 represents a divalent hydrocarbon group of 1 to 5 carbon atoms, which may be absent. R 20 , R 21 , R 22 , R 23 and R 24 are each independently hydrogen) Represents an atom, a hydroxyl group, a carboxyl group, an amino group or a hydrocarbon group having 1 to 4 carbon atoms.
In the general formula (1) in the present invention, R 1 is a hydrogen atom or a methyl group. Q is a divalent bond selected from an ester bond, an amide bond, a urethane bond or an ether bond, preferably an ester bond or an amide bond, particularly preferably an ester bond. In the general formula (1), R 2 represents a substituent represented by the general formula (2), (3), (4), (5), (6), (7) or (8), having 1 to
一般式(1)において、R2は水不溶性を高めるため、多能性幹細胞接着性及び増殖性を高めるため、ブロック共重合体の応答温度を高温側にシフトさせるため、あるいは、多能性幹細胞の剥離性を高めるために好適であることから、一般式(2)で表される置換基を用いることが好ましい。一般式(2)において、R3は炭素数1~10の2価の炭化水素基であり、多能性幹細胞の剥離性を高めるために好適であることから、好ましくは炭素数1~6の2価の炭化水素基、特にアルキレン基を用いる。このようなアルキレン基として、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基、ヘキサメチレン基などが例示され、好ましくはエチレン基である。R4およびR5は各々独立して、水素原子又は炭素数1~4の炭化水素基であり、多能性幹細胞の剥離性を高めるために好適であることから、R4及びR5が同時にメチル基またはエチル基であることが好ましく、特にメチル基であることが好ましい。
In the general formula (1), R 2 enhances water insolubility, enhances pluripotent stem cell adhesion and proliferation, shifts the response temperature of the block copolymer to the high temperature side, or alternatively, pluripotent stem cells It is preferable to use a substituent represented by the general formula (2) because it is suitable for enhancing the removability of In the general formula (2), R 3 is a divalent hydrocarbon group having 1 to 10 carbon atoms, which is suitable for enhancing the releasability of pluripotent stem cells, and preferably has 1 to 6 carbon atoms. A divalent hydrocarbon group, in particular an alkylene group, is used. A methylene group, ethylene group, a propylene group, a butylene group, a pentamethylene group, a hexamethylene group etc. are illustrated as such an alkylene group, Preferably it is an ethylene group. R 4 and R 5 are each independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and since R 4 and R 5 are simultaneously suitable for enhancing the peelability of pluripotent stem cells, R 4 and R 5 are simultaneously It is preferably a methyl group or an ethyl group, and particularly preferably a methyl group.
本発明における一般式(2)で表される置換基としては、アミノメチル基、N,N-ジメチルアミノメチル基、N,N-ジエチルアミノメチル基、アミノエチル基、N,N-ジメチルアミノエチル基、N,N-ジエチルアミノエチル基、3-アミノプロピル基、3-(N,N-ジメチルアミノ)-プロピル基、3-(N,N-ジエチルアミノ)-プロピル基等を例示できるが、多能性幹細胞の剥離性を高めるために好適であることから、好ましくはN,N-ジメチルアミノメチル基、N,N-ジメチルアミノエチル基、N,N-ジエチルアミノエチル基である。
As the substituent represented by the general formula (2) in the present invention, an aminomethyl group, an N, N-dimethylaminomethyl group, an N, N-diethylaminomethyl group, an aminoethyl group, an N, N-dimethylaminoethyl group And N, N-diethylaminoethyl group, 3-aminopropyl group, 3- (N, N-dimethylamino) -propyl group, 3- (N, N-diethylamino) -propyl group, etc. Among them, preferred are N, N-dimethylaminomethyl group, N, N-dimethylaminoethyl group and N, N-diethylaminoethyl group since they are suitable for enhancing the exfoliation of stem cells.
一般式(1)においてR2が一般式(2)で表される単量体単位としては、特に制限はないが、例えば、2-ジメチルアミノエチルアクリレート、2-ジメチルアミノエチルメタクリレート、2-ジエチルアミノエチルアクリレート、2-ジエチルアミノエチルメタクリレート、N-[3-(ジメチルアミノ)プロピル]アクリルアミド等を挙げることができる。
As the monomer units in the general formula (1) R 2 is represented by the general formula (2) is not particularly limited, for example, 2-dimethylaminoethyl acrylate, 2-dimethylaminoethyl methacrylate, 2-diethylamino Ethyl acrylate, 2-diethylaminoethyl methacrylate, N- [3- (dimethylamino) propyl] acrylamide and the like can be mentioned.
一般式(1)において、R2は水不溶性を高めるため、多能性幹細胞接着性及び増殖性を高めるため、ブロック共重合体の応答温度を高温側にシフトさせるため、あるいは、多能性幹細胞の剥離性を高めるために好適であることから、一般式(3)で表される置換基を用いることができる。一般式(3)において、R6は炭素数1~10の2価の炭化水素基であり、多能性幹細胞の剥離性を高めるために好適であることから、好ましくは、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基、ヘキサメチレン基等の炭素数1~6の2価のアルキレン基であり、更に好ましくはエチレン基である。R7は炭素数1~4の2価の炭化水素基であり、多能性幹細胞の剥離性を高めるために、好ましくは、メチレン基、エチレン基、プロピレン基、ブチレン基等のアルキレン基であり、更に好ましくはエチレン基である。R8およびR9は各々独立して、水素原子又は炭素数1~4の炭化水素基であり、多能性幹細胞の剥離性を高めるために好適であることから、好ましくはR8及び9が同時に水素原子またはメチル基であり、更に好ましくは同時にメチル基である。Xはスルホン酸アニオン基、カルボン酸アニオン基又はリン酸アニオン基である。
In the general formula (1), R 2 enhances water insolubility, enhances pluripotent stem cell adhesion and proliferation, shifts the response temperature of the block copolymer to the high temperature side, or alternatively, pluripotent stem cells The substituent represented by the general formula (3) can be used because it is suitable for enhancing the removability of In the general formula (3), since R 6 is a divalent hydrocarbon group having 1 to 10 carbon atoms and is suitable for enhancing the releasability of pluripotent stem cells, it is preferably a methylene group or an ethylene group. And a divalent alkylene group having 1 to 6 carbon atoms such as a propylene group, a butylene group, a pentamethylene group or a hexamethylene group, and more preferably an ethylene group. R 7 is a divalent hydrocarbon group having 1 to 4 carbon atoms, and is preferably an alkylene group such as a methylene group, an ethylene group, a propylene group or a butylene group in order to enhance the peelability of the pluripotent stem cells. More preferably, it is an ethylene group. R 8 and R 9 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and since R 8 and R 9 are each suitable for enhancing the peelability of pluripotent stem cells, R 8 and 9 are preferably At the same time, it is a hydrogen atom or a methyl group, more preferably a methyl group. X is a sulfonate anion group, a carboxylate anion group or a phosphate anion group.
本発明における一般式(3)で表される置換基としては、ジメチル(エチル)(カルボキシラトメチル)アミニウム基、ジメチル(エチル)(2-カルボキシラトエチル)アミニウム基、ジメチル(エチル)(3-カルボキシラトプロピル)アミニウム基、ジメチル(プロピル)(3-スルホナトプロピル)アミニウム基、ジメチル(プロピル)(4-スルホナトブチル)アミニウム基、ジメチル(エチル)(2-スルホナトエチル)アミニウム基、ジメチル(エチル)(3-スルホナトプロピル)アミニウム基、ジメチル(エチル)(2-ホスホナトエチル)アミニウム基、ジメチル(エチル)(3-ホスホナトプロピル)アミニウム基等を例示できるが、多能性幹細胞の剥離性を高めるために好適であることから、好ましくはジメチル(エチル)(カルボキシラトメチル)アミニウム基、ジメチル(エチル)(2-カルボキシラトエチル)アミニウム基、ジメチル(プロピル)(3-スルホナトプロピル)アミニウム基、ジメチル(プロピル)(4-スルホナトブチル)アミニウム基、ジメチル(エチル)(2-スルホナトエチル)アミニウム基である。
As the substituent represented by the general formula (3) in the present invention, dimethyl (ethyl) (carboxylatomethyl) aminium group, dimethyl (ethyl) (2-carboxylatoethyl) aminium group, dimethyl (ethyl) (3-) Carboxylatopropyl) aminium group, dimethyl (propyl) (3-sulfonatopropyl) aminium group, dimethyl (propyl) (4-sulfonatobutyl) aminium group, dimethyl (ethyl) (2-sulfonatoethyl) aminium group, dimethyl (ethyl) ) (3-sulfonatopropyl) aminium group, dimethyl (ethyl) (2-phosphonatoethyl) aminium group, dimethyl (ethyl) (3-phosphonatopropyl) aminium group, etc. Preferably it is dimethyl because it is suitable for Ethyl) (carboxylatomethyl) aminium group, dimethyl (ethyl) (2-carboxylatoethyl) aminium group, dimethyl (propyl) (3-sulfonatopropyl) aminium group, dimethyl (propyl) (4-sulfonatobutyl) aminium group, It is a dimethyl (ethyl) (2-sulfonatoethyl) aminium group.
一般式(1)において、R2が一般式(3)で表される単量体単位としては、特に制限はないが、例えば、N-(3-スルホプロピル)-N-メタクロイルオキシエチル-N,N-ジメチルアンモニウムベタイン、N-メタクリロイルオキシエチル-N、N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン等を挙げることができる。
In the general formula (1), the monomer unit in which R 2 is represented by the general formula (3) is not particularly limited. For example, N- (3-sulfopropyl) -N-methacroyloxyethyl- N, N-dimethylammonium betaine, N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine and the like can be mentioned.
一般式(1)において、R2は水不溶性を高めるため、多能性幹細胞接着性及び増殖性を高めるため、ブロック共重合体の応答温度を高温側または低温側にシフトさせるため、あるいは、剥離性を高めるために好適であることから、一般式(4)で表される置換基を用いることが好ましい。一般式(4)において、R10は水素原子又は炭素数1~30のアルキル基であり、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、tert.-ブチル基、n-ヘキシル基、イソヘキシル基等を例示できるが、多能性幹細胞の剥離性を高めるために好適であることから、好ましくはメチル基、エチル基、n-プロピル基、イソプロピル基である。ただし、一般式(4)においてiは1~300の整数であり、jは0~60の整数である。
In the general formula (1), R 2 enhances water insolubility, enhances pluripotent stem cell adhesion and proliferation, shifts the response temperature of the block copolymer to high temperature side or low temperature side, or exfoliates It is preferable to use the substituent represented by General formula (4) from being suitable in order to improve property. In the general formula (4), R 10 is a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, and is methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, isobutyl, tert. -Butyl group, n-hexyl group, isohexyl group etc. can be exemplified, but methyl group, ethyl group, n-propyl group, isopropyl group is preferable because it is suitable for enhancing the releasability of pluripotent stem cells. is there. However, in the general formula (4), i is an integer of 1 to 300, and j is an integer of 0 to 60.
本発明における一般式(4)で表される置換基としては、ポリエチレングリコール基、2-ヒドロキシエチル基、2-ヒドロキシエチル基、ヒドロキシメチル基、2-メトキシエチル基、フルフリル基、テトラヒドロフルフリル基等を例示できるが、多能性幹細胞の剥離性を高めるために好適であることから、好ましくはポリエチレングリコール基、2-メトキシエチル基またはテトラヒドロフルフリル基である。
As a substituent represented by General formula (4) in this invention, a polyethylene glycol group, 2-hydroxyethyl group, 2-hydroxyethyl group, a hydroxymethyl group, 2-methoxyethyl group, a furfuryl group, tetrahydrofurfuryl group And the like, but is preferably a polyethylene glycol group, a 2-methoxyethyl group or a tetrahydrofurfuryl group because it is suitable for enhancing the releasability of pluripotent stem cells.
一般式(1)において、R2が一般式(4)で表される単量体単位としては、特に制限はないが、例えば、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート、N-(2-ヒドロキシエチル)アクリルアミド、ポリエチレングリコールモノアクリレート、ポリエチレングリコールモノメタクリレート、ポリプロピレングリコールモノアクリレート、ポリプロピレングリコールモノメタクリレート、メトキシポリエチレングリコールモノアクリレート、メトキシポリエチレングリコールモノメタクリレート、ジエチレングリコールモノメチルエーテルアクリレート、ジエチレングリコールモノメチルエーテルメタクリレート、ジエチレングリコールモノエチルエーテルアクリレート、ジエチレングリコールモノエチルエーテルメタクリレート、2-メトキシエチルアクリレート、2-メトキシエチルメタクリレート、2-エトキシエチルアクリレート、2-エトキシエチルメタクリレート、3-ブトキシエチルアクリレート、3-ブトキシエチルメタクリレート、3-ブトキシエチルアクリルアミド、フルフリルアクリレート、フルフリルメタクリレート、テトラヒドロフルフリルアクリレート、テトラヒドロフルフリルメタクリレート等を挙げることができる。
In the general formula (1), the monomer unit in which R 2 is represented by the general formula (4) is not particularly limited. For example, hydroxyethyl acrylate, hydroxyethyl methacrylate, N- (2-hydroxyethyl) Acrylamide, polyethylene glycol monoacrylate, polyethylene glycol monomethacrylate, polypropylene glycol monoacrylate, polypropylene glycol monomethacrylate, methoxypolyethylene glycol monoacrylate, methoxypolyethylene glycol monomethacrylate, diethylene glycol monomethyl ether acrylate, diethylene glycol monomethyl ether methacrylate, diethylene glycol monoethyl ether acrylate Diethylene glycol monoethyl ether Tacrylate, 2-methoxyethyl acrylate, 2-methoxyethyl methacrylate, 2-ethoxyethyl acrylate, 2-ethoxyethyl methacrylate, 3-butoxyethyl acrylate, 3-butoxyethyl methacrylate, 3-butoxyethyl acrylamide, furfuryl acrylate, furfuryl Methacrylate, tetrahydrofurfuryl acrylate, tetrahydrofurfuryl methacrylate and the like can be mentioned.
一般式(1)において、水不溶性を高めるため、多能性幹細胞接着性及び増殖性を高めるため、R2はブロック共重合体の応答温度を高温側または低温側にシフトさせるため、あるいは、多能性幹細胞の剥離性を高めるために好適であることから、一般式(5)で表される置換基を用いることができる。一般式(5)において、R11は水素原子又は炭素数1~5のアルキル基である。
In the general formula (1), in order to enhance water insolubility, to enhance pluripotent stem cell adhesiveness and proliferation, R 2 shifts the response temperature of the block copolymer to the high temperature side or the low temperature side, or The substituent represented by the general formula (5) can be used because it is suitable for enhancing the releasability of functional stem cells. In the general formula (5), R 11 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
一般式(1)において、R2が一般式(5)で表される単量体単位としては、特に制限はないが、例えば、メトキシメチルアクリレート、メトキシメチルメタクリレート、2-エトキシメチルアクリレート、2-エトキシメチルメタクリレート、3-ブトキシメチルアクリレート、3-ブトキシメチルメタクリレート、3-ブトキシメチルアクリルアミド等を挙げることができる。
In the general formula (1), the monomer unit in which R 2 is represented by the general formula (5) is not particularly limited. For example, methoxymethyl acrylate, methoxymethyl methacrylate, 2-ethoxymethyl acrylate, 2- Ethoxymethyl methacrylate, 3-butoxymethyl acrylate, 3-butoxymethyl methacrylate, 3-butoxymethyl acrylamide and the like can be mentioned.
一般式(1)において、R2は水不溶性を高めるため、多能性幹細胞接着性及び増殖性を高めるため、ブロック共重合体の応答温度を高温側にシフトさせるため、あるいは、多能性幹細胞の剥離性を高めるために好適であることから、一般式(6)で表される置換基を用いることができる。一般式(6)において、R12は炭素数1~12の2価の炭化水素基、又は(ポリ)オキシエチレン基であり、多能性幹細胞の剥離に必要な冷却時間を短縮させるために好適であることから、好ましくは炭素数1~6の2価の炭化水素基、特にアルキレン基である。このようなアルキレン基として、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基、ヘキサメチレン基等が例示され、好ましくはエチレン基である。R13は、炭素数1~4の2価の炭化水素基であり、多能性幹細胞の剥離に必要な冷却時間を短縮させるために好適であることから、好ましくは炭素数1~4のアルキレン基、例えばメチレン基、エチレン基、プロピレン基、ブチレン基などが例示され、エチレン基が特に好ましい。
In the general formula (1), R 2 enhances water insolubility, enhances pluripotent stem cell adhesion and proliferation, shifts the response temperature of the block copolymer to the high temperature side, or alternatively, pluripotent stem cells The substituent represented by the general formula (6) can be used because it is suitable for enhancing the removability of In the general formula (6), R 12 is a divalent hydrocarbon group having 1 to 12 carbon atoms, or a (poly) oxyethylene group, which is suitable for shortening the cooling time required to detach pluripotent stem cells It is preferably a divalent hydrocarbon group having 1 to 6 carbon atoms, particularly an alkylene group. A methylene group, ethylene group, a propylene group, a butylene group, a pentamethylene group, a hexamethylene group etc. are illustrated as such an alkylene group, Preferably it is an ethylene group. R 13 is a divalent hydrocarbon group having 1 to 4 carbon atoms, which is suitable for shortening the cooling time required for exfoliation of pluripotent stem cells, and is preferably an alkylene having 1 to 4 carbon atoms Examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group and the like, and an ethylene group is particularly preferable.
R14、R15及びR16は、互いに独立して、水素原子又は炭素数1~2の炭化水素基、例えばメチル基又はエチル基であり、多能性幹細胞の剥離性を高めるために好適であることから、特にR14、R15、及びR16が同時に水素原子又はメチル基、特にメチル基であることが好ましい。
R 14 , R 15 and R 16 are, independently of each other, a hydrogen atom or a hydrocarbon group having 1 to 2 carbon atoms, such as a methyl group or an ethyl group, which is suitable for enhancing the releasability of pluripotent stem cells In particular, it is preferred that R 14 , R 15 and R 16 be simultaneously a hydrogen atom or a methyl group, especially a methyl group.
本発明における一般式(6)で表される置換基としては、2-エチルホスホリルコリン基、3-プロピルホスホリルコリン基、4-ブチルホスホリルコリン基、6-ヘキシルホスホリルコリン基、10-デシルホスホリルコリン基、ω-(ポリ)オキシエチレンホスホリルコリン基等を例示できるが、多能性幹細胞の剥離性を高めるために好適であることから、好ましくは2-エチルホスホリルコリン基を用いる。
As a substituent represented by General formula (6) in this invention, 2-ethyl phosphoryl choline group, 3-propyl phosphoryl choline group, 4-butyl phosphoryl choline group, 6-hexyl phosphoryl choline group, 10-decyl phosphoryl choline group, omega- ( Although a poly) oxyethylene phosphoryl choline group etc. can be illustrated, since it is suitable in order to raise the exfoliation nature of pluripotent stem cells, preferably a 2-ethyl phosphoryl choline group is used.
一般式(1)において、R2が一般式(6)で表される単量体単位としては、特に制限はないが、例えば、2-メタクリロイルオキシエチルホスホリルコリン、2-アクリロイルオキシエチルホスホリルコリン、3-(メタ)アクリロイルオキシプロピルホスホリルコリン、4-(メタ)アクリロイルオキシブチルホスホリルコリン、6-(メタ)アクリロイルオキシヘキシルホスホリルコリン、10-(メタ)アクリロイルオキシデシルホスホリルコリン、ω-(メタ)アクリロイル(ポリ)オキシエチレンホスホリルコリン、2-アクリルアミドエチルホスホリルコリン、3-アクリルアミドプロピルホスホリルコリン、4-アクリルアミドブチルホスホリルコリン、6-アクリルアミドヘキシルホスホリルコリン、10-アクリルアミドデシルホスホリルコリン、ω-(メタ)アクリルアミド(ポリ)オキシエチレンホスホリルコリン等を挙げることができる。
In the general formula (1), the monomer unit in which R 2 is represented by the general formula (6) is not particularly limited. For example, 2-methacryloyloxyethyl phosphorylcholine, 2-acryloyloxyethyl phosphorylcholine, 3- (Meth) acryloyloxypropyl phosphorylcholine, 4- (meth) acryloyloxybutyl phosphorylcholine, 6- (meth) acryloyloxyhexyl phosphorylcholine, 10- (meth) acryloyloxydecyl phosphorylcholine, ω- (meth) acryloyl (poly) oxyethylene phosphorylcholine , 2-acrylamidoethyl phosphoryl choline, 3-acrylamido propyl phosphoryl choline, 4-acrylamido butyl phosphoryl choline, 6-acrylamido hexyl phosphoryl choline, 10-acryl amide Decyl phosphorylcholine, .omega. (meth) can be mentioned acrylamide (poly) oxyethylene phosphoryl choline.
一般式(1)において、R2は水不溶性を高めるため、多能性幹細胞接着性及び増殖性を高めるため、ブロック共重合体の応答温度を低温側にシフトさせるため、あるいは基材にブロック共重合体を化学的な結合によって被覆させるために好適であることから、一般式(7)で表されるフェニルアジド基を有する置換基を用いることができる。一般式(7)において、Aはエーテル結合又はエステル結合である。R17は炭素数1~5の2価の炭化水素基を表し、プロピレン基、ブチレン基、ペンタメチレン基、フェニレン基が挙げられる。R18はフッ素原子を表し、nは0~4の整数を表す。
In the general formula (1), R 2 enhances water insolubility, enhances pluripotent stem cell adhesion and proliferation, shifts the response temperature of the block copolymer to the low temperature side, or blocks Since it is suitable for covering a polymer by a chemical bond, the substituent which has a phenyl azide group represented by General formula (7) can be used. In the general formula (7), A is an ether bond or an ester bond. R 17 represents a divalent hydrocarbon group having 1 to 5 carbon atoms, and examples thereof include a propylene group, a butylene group, a pentamethylene group and a phenylene group. R 18 represents a fluorine atom, and n represents an integer of 0 to 4.
一般式(1)において、R2が一般式(7)で表される単量体単位としては、特に制限はないが、例えば、4-アジドフェニルアクリレート、4-アジドフェニルメタクリレート、2-((4-アジドベンゾイル)オキシ)エチルアクリレート、2-((4-アジドベンゾイル)オキシ)エチルメタクリレート等を挙げることができる。
In the general formula (1), the monomer unit in which R 2 is represented by the general formula (7) is not particularly limited. For example, 4-azidophenyl acrylate, 4-azidophenyl methacrylate, 2-(( 4-azidobenzoyl) oxy) ethyl acrylate, 2-((4-azidobenzoyl) oxy) ethyl methacrylate and the like can be mentioned.
一般式(1)において、R2は水不溶性を高めるため、多能性幹細胞接着性及び増殖性を高めるため、ブロック共重合体の応答温度を高温側または低温側にシフトさせるため、基材にブロック共重合体を物理的な相互作用によって被覆させるために、あるいは、基材にブロック共重合体を化学的な結合によって被覆させるために好適であることから、一般式(8)で表される、芳香環を有する置換基を用いることが好ましい。一般式(8)において、R19は炭素数1~5の2価の炭化水素基を表すが、存在しなくとも良い。R20、R21、R22、R23及びR24は各々独立して、水素原子、水酸基、カルボキシル基、アミノ基又は炭素数1~4の炭化水素基を表す。一般式(1)において、R2が一般式(8)で表される単量体単位としては、特に制限はないが、例えば、2-ヒドロキシフェニルアクリレート、2-ヒドロキシフェニルメタクリレート、3-ヒドロキシフェニルアクリレート、3-ヒドロキシフェニルメタクリレート、4-ヒドロキシフェニルアクリレート、4-ヒドロキシフェニルメタクリレート、N-(2-ヒドロキシフェニル)アクリルアミド、N-(2-ヒドロキシフェニル)メタクリルアミド、N-(3-ヒドロキシフェニル)アクリルアミド、N-(3-ヒドロキシフェニル)メタクリルアミド、N-(4-ヒドロキシフェニル)アクリルアミド、N-(4-ヒドロキシフェニル)メタクリルアミド等を挙げることができる。
In the general formula (1), R 2 is used as a substrate to shift the response temperature of the block copolymer to the high temperature side or the low temperature side in order to enhance water insolubility and to enhance pluripotent stem cell adhesion and proliferation. It is represented by the general formula (8) because it is suitable for covering a block copolymer by physical interaction or for covering a block copolymer on a substrate by chemical bonding. It is preferable to use a substituent having an aromatic ring. In the general formula (8), R 19 represents a divalent hydrocarbon group having 1 to 5 carbon atoms, which may not be present. R 20 , R 21 , R 22 , R 23 and R 24 each independently represent a hydrogen atom, a hydroxyl group, a carboxyl group, an amino group or a hydrocarbon group having 1 to 4 carbon atoms. In the general formula (1), the monomer unit in which R 2 is represented by the general formula (8) is not particularly limited. For example, 2-hydroxyphenyl acrylate, 2-hydroxyphenyl methacrylate, 3-hydroxyphenyl Acrylate, 3-hydroxyphenyl methacrylate, 4-hydroxyphenyl acrylate, 4-hydroxyphenyl methacrylate, N- (2-hydroxyphenyl) acrylamide, N- (2-hydroxyphenyl) methacrylamide, N- (3-hydroxyphenyl) acrylamide And N- (3-hydroxyphenyl) methacrylamide, N- (4-hydroxyphenyl) acrylamide, N- (4-hydroxyphenyl) methacrylamide and the like.
一般式(1)において、R2は水不溶性を高めるため、多能性幹細胞接着性及び増殖性を高めるため、ブロック共重合体の応答温度を低温側にシフトさせるため、あるいは基材にブロック共重合体を物理的な相互作用によって被覆させるために好適であることから、炭素数1~30の炭化水素基を用いることが好ましく、基材にブロック共重合体を安定に被覆させるため、好ましくは炭素数4~15の炭化水素基である。R2が炭素数1~30の炭化水素基で表される単量体単位としては、特に制限はないが、例えば、n-ブチルアクリレート、n-ブチルメタクリレート、イソブチルアクリレート、イソブチルメタクリレート、t-ブチルアクリレート、t-ブチルメタクリレート、n-ヘキシルアクリレート、n-ヘキシルメタクリレート、n-オクチルアクリレート、n-オクチルメタクリレート、n-デシルアクリレート、n-デシルメタクリレート、n-ドデシルアクリレート、n-ドデシルメタクリレート、n-テトラデシルアクリレート、n-テトラデシルメタクリレート等を挙げることができる。
In the general formula (1), R 2 enhances water insolubility, enhances pluripotent stem cell adhesion and proliferation, shifts the response temperature of the block copolymer to the low temperature side, or blocks It is preferable to use a hydrocarbon group having 1 to 30 carbon atoms because it is suitable for covering the polymer by physical interaction, and in order to stably coat the block copolymer on the substrate, it is preferable. It is a hydrocarbon group having 4 to 15 carbon atoms. The monomer unit represented by hydrocarbon group having 1 to 30 carbon atoms as R 2 is not particularly limited, and examples thereof include n-butyl acrylate, n-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, and t-butyl. Acrylate, t-butyl methacrylate, n-hexyl acrylate, n-hexyl methacrylate, n-octyl acrylate, n-octyl methacrylate, n-decyl acrylate, n-decyl methacrylate, n-dodecyl acrylate, n-dodecyl methacrylate, n-tetra Examples include decyl acrylate, n-tetradecyl methacrylate and the like.
本発明における(A)及び(B)のブロックセグメントを含有するブロック共重合体の構造は特に限定されるものではないが、少なくとも(A)及び(B)のブロックセグメントを含有するジブロック共重合体であることが好ましい。また、ブロックセグメント(A)とブロックセグメント(B)は直接結合していてもよいし、スペーサーを介して結合していてもよい。なお、ブロックセグメント(B)を構成する繰り返し単位が2種類以上の場合、それらの配列はブロック配列であってもよいし、ランダム配列、交互配列であってもよい。
The structure of the block copolymer containing the block segments of (A) and (B) in the present invention is not particularly limited, but a diblock copolymer having at least the block segments of (A) and (B) It is preferable to be combined. Also, the block segment (A) and the block segment (B) may be directly bonded or may be bonded via a spacer. In addition, when the repeating unit which comprises a block segment (B) is 2 or more types, those arrangement | sequences may be block arrangement, and random arrangement and alternate arrangement may be sufficient.
本発明における(A)及び(B)のブロックセグメントを含有するブロック共重合体中のブロックセグメント(A)の構成単位比率は、多能性幹細胞の冷却剥離性を高める観点から、好ましくは40~99wt%であり、さらに好ましくは60~99wt%であり、特に好ましくは80~99wt%であり、最も好ましくは90wt%を超えるものである。また、ブロックセグメント(A)の構成単位比率が前記範囲にあることにより、未分化の多能性幹細胞を選択的に剥離することができ、多能性幹細胞の継代培養において剥離回収した細胞の未分化維持率を高めることができる。一方で、ブロック共重合体の水不溶性を高める観点から、ブロックセグメント(B)の構成単位比率は、好ましくは1~50wt%であり、好ましくは1~25wt%であり、さらに好ましくは3~15wt%であり、最も好ましくは5~15wt%である。
The constituent unit ratio of the block segment (A) in the block copolymer containing the block segments of (A) and (B) in the present invention is preferably from 40 to 40 from the viewpoint of enhancing the cold peelability of pluripotent stem cells. It is 99 wt%, more preferably 60 to 99 wt%, particularly preferably 80 to 99 wt%, and most preferably more than 90 wt%. In addition, when the constituent unit ratio of the block segment (A) is within the above range, undifferentiated pluripotent stem cells can be selectively exfoliated, and the cells exfoliated and recovered in the passage culture of pluripotent stem cells Undifferentiated maintenance rate can be increased. On the other hand, from the viewpoint of enhancing the water insolubility of the block copolymer, the constituent unit ratio of the block segment (B) is preferably 1 to 50 wt%, preferably 1 to 25 wt%, and more preferably 3 to 15 wt %, Most preferably 5 to 15 wt%.
本発明における温度応答性高分子の分子量としては特に制限はないが、ブロック共重合体の強度を高めるのに好適のため、数平均分子量で1000~100万であることが好ましく、2000~50万であることがさらに好ましく、5000~30万であることが特に好ましく、1万~20万であることが最も好ましい。
The molecular weight of the thermoresponsive polymer in the present invention is not particularly limited, but is preferably 1000 to 1,000,000 in number average molecular weight, and preferably 2000 to 500,000 because it is suitable for increasing the strength of the block copolymer. Is more preferably, 5,000 to 300,000 is particularly preferable, and 10,000 to 200,000 is most preferable.
本発明における温度応答性高分子は、必要に応じて連鎖移動剤や重合開始剤、重合禁止剤等を含んでいてもよい。連鎖移動剤としては特に制限はなく、一般に使用されるものを好適に用いることができるが、例えば、ジチオベンゾエート、トリチオカルボナート、4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド、2-シアノプロパン-2-イル N-メチル-N-(ピリジン-4-イル)カルバモジチオアート、2-プロピオン酸メチルメチル(4-ピリジニル)カルバモジチオアートを挙げることができる。また、重合開始剤としては特に制限はなく、一般に使用されるものを好適に用いることができるが、例えば、アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサンカルボニトリル)、ジ-tert-ブチルペルオキシド、tert-ブチルヒドロペルオキシド、過酸化水素、ペルオキソ二硫酸カリウム、過酸化ベンゾイル、トリエチルボラン、ジエチル亜鉛等を挙げることができる。さらに、重合禁止剤としては特に制限はなく、一般に使用されるものを好適に用いることができるが、ヒドロキノン、p-メトキシフェノール、トリフェニルフェルダジル、2,2,6,6-テトラメチルピペリジニル-1-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジニル-1-オキシル等を挙げることができる。
The temperature-responsive polymer in the present invention may contain a chain transfer agent, a polymerization initiator, a polymerization inhibitor and the like as necessary. The chain transfer agent is not particularly limited, and commonly used ones can be suitably used. For example, dithiobenzoate, trithiocarbonate, 4-cyano-4-[(dodecylsulfonylthiocarbonyl) sulfonyl] pentan Noic acid, 2-cyanopropan-2-yl N-methyl-N- (pyridin-4-yl) carbamodithioate, methyl methyl 2-propionate (4-pyridinyl) carbamodithioate can be mentioned . The polymerization initiator is not particularly limited, and commonly used ones can be suitably used. For example, azobisisobutyronitrile, 1,1'-azobis (cyclohexanecarbonitrile), di-tert And butyl peroxide, tert-butyl hydroperoxide, hydrogen peroxide, potassium peroxodisulfate, benzoyl peroxide, triethyl borane, diethyl zinc and the like. Further, the polymerization inhibitor is not particularly limited, and commonly used ones can be suitably used, but hydroquinone, p-methoxyphenol, triphenylferdadil, 2,2,6,6-tetramethyl piperidine Examples include nyl-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxyl and the like.
本発明における温度応答性高分子の合成方法としては、特に限定はないが、(株)エヌ・ティー・エス発行、“ラジカル重合ハンドブック”、p.161~225(2010)に記載のリビングラジカル重合技術を用いることができる。
There is no particular limitation on the method of synthesizing the temperature responsive polymer in the present invention, but there may be provided a "radical polymerization handbook", p. The living radical polymerization techniques described in 161-225 (2010) can be used.
本発明において、多能性幹細胞接着性及び増殖性、剥離性を高めるのに好適であることから、温度応答性高分子による層が、層厚5~1000nmを有することが好ましく、5~200nmがさらに好ましく、20~100nmが特に好ましく、35~80nmが最も好ましい。
In the present invention, the layer of the thermoresponsive polymer preferably has a layer thickness of 5 to 1000 nm, preferably 5 to 200 nm, because it is suitable for enhancing pluripotent stem cell adhesion and proliferation and exfoliation. 20 to 100 nm is particularly preferable, and 35 to 80 nm is most preferable.
本発明において、温度応答性高分子の種類に特に限定はないが、被覆にばらつきを生じず、培養される多能性幹細胞の状態を均一にするのに好適であることから、1種類のブロック共重合体、又は2種類のブロック共重合体の混合物であることが好ましく、1種類のブロック共重合体であることがさらに好ましい。ここで、本発明において「温度応答性高分子の種類」については、ブロック共重合体を構成する全てのブロックが同一の場合に同一種類のブロック共重合体と見なす。ここで、ブロックが同一であるとは、ブロックが主に1種類の単量体単位で構成される場合には、wt%比で最も多く含まれる単量体単位が同一の場合を示し、また、ブロックが2種類以上の単量体単位によって構成される場合には、wt%比が多い上位2つの単量体単位が同一の場合を示す。培養される多能性幹細胞の状態を均一にするのにより好適であることから、各ブロックの多分散度(重量平均分子量Mw/数平均分子量Mn)が1~20であることが好ましく、1~10であることがさらに好ましく、1~5であることが特に好ましく、1~2であることが最も好ましい。
In the present invention, although the type of the thermoresponsive polymer is not particularly limited, it is suitable for uniforming the state of pluripotent stem cells to be cultured without causing any variation in the coating, and thus one type of block It is preferable that it is a copolymer or a mixture of 2 types of block copolymers, and it is more preferable that it is 1 type of block copolymer. Here, in the present invention, “type of temperature responsive polymer” is regarded as the same type of block copolymer when all the blocks constituting the block copolymer are the same. Here, that the blocks are the same means that, when the blocks are mainly composed of one kind of monomer unit, the case in which the monomer units contained most in wt% ratio are the same, and When the block is composed of two or more types of monomer units, the case is shown where the upper two monomer units having a large wt% ratio are the same. It is preferable that the polydispersity (weight-average molecular weight M w / number-average molecular weight M n ) of each block is 1 to 20, since it is more preferable to make the state of pluripotent stem cells to be cultured uniform. It is more preferably 1 to 10, particularly preferably 1 to 5, and most preferably 1 to 2.
本発明において、前記温度応答性高分子による層は、前記層上に固定化された生体由来物質を有し、前記生体由来物質は、マトリゲル、ラミニン、フィブロネクチン、ビトロネクチン及びコラーゲンからなる群から選択される少なくとも1種類である。
In the present invention, the layer of the thermoresponsive polymer has a biological substance immobilized on the layer, and the biological substance is selected from the group consisting of matrigel, laminin, fibronectin, vitronectin and collagen. At least one type of
温度応答性高分子よりなる層に固定化された生体由来物質を有することにより、本発明の培養基材は多能性幹細胞を培養することができる。温度応答性高分子による層に生体由来物質を有しない場合、培養基材への多能性幹細胞の接着力が弱く、多能性幹細胞を培養することができない。
The culture substrate of the present invention can culture pluripotent stem cells by having a bioderived substance immobilized in a layer composed of a temperature responsive polymer. When the layer of the thermoresponsive polymer does not have a bio-derived substance, the adhesion of pluripotent stem cells to the culture substrate is weak, and pluripotent stem cells can not be cultured.
また、生体由来物質の変性を抑制することができ、多能性幹細胞の増殖性を高めることができるため、生体由来物質は共有結合ではなく非共有結合により固定化されていることが好ましい。ここで、本発明において「非共有結合」とは、静電相互作用、疎水性相互作用、水素結合、π-π相互作用、双極子-双極子相互作用、ロンドン分散力、その他のファンデルワールス相互作用等、分子間力に由来する共有結合以外の結合力を示す。生体由来物質のブロック共重合体への固定化は、単一の結合力によるものであっても、複数の組み合わせであってもよい。
In addition, since it is possible to suppress degeneration of a biological substance and to enhance the proliferation of pluripotent stem cells, it is preferable that the biological substance be immobilized not by covalent bond but by noncovalent bond. Here, in the present invention, “non-covalent bond” means electrostatic interaction, hydrophobic interaction, hydrogen bond, π-π interaction, dipole-dipole interaction, London dispersion force, other van der Waals. It shows a bonding force other than covalent bond derived from intermolecular force such as interaction. Immobilization of the bioderived substance to the block copolymer may be by a single bond or by a combination of two or more.
本発明において、生体由来物質の固定化方法は特に限定されるものではないが、例えば、温度応答性高分子による層を有する基材に生体由来物質の溶液を所定時間塗布することで固定化させる方法や、多能性幹細胞を培養する培養液中に生体由来物質を添加することで固定化する方法を好適に用いることができる。
In the present invention, the method for immobilizing the bio-derived substance is not particularly limited. For example, the solution of the bio-derived substance is applied for a predetermined time to the substrate having the layer of temperature responsive polymer. A method or a method of immobilizing by adding a biologically-derived substance to a culture solution for culturing pluripotent stem cells can be suitably used.
本発明において、前記生体由来物質は、マトリゲル、ラミニン、ビトロネクチン、フィブロネクチン及びコラーゲンからなる群から選択される少なくとも1種類である。生体由来物質がマトリゲル、ラミニン、フィブロネクチン、ビトロネクチン、コラーゲンのいずれか、又はこれらの組み合わせであることにより、本発明の培養基材は多能性幹細胞接着性及び増殖性を有する。生体由来物質がマトリゲル、ラミニン、ビトロネクチン、フィブロネクチン、コラーゲンのいずれでもない場合、多能性幹細胞接着性及び増殖性を有しない。多能性幹細胞接着性及び増殖性を付与するのに好適であることから、少なくともラミニンを含む4種類の組み合わせであることがさらに好ましく、ラミニンとマトリゲル、ラミニンとフィブロネクチン、又はラミニンとコラーゲンのいずれかの組み合わせであることが特に好ましく、ラミニン単独であることが最も好ましい。
In the present invention, the biological material is at least one selected from the group consisting of matrigel, laminin, vitronectin, fibronectin and collagen. The culture substrate of the present invention has pluripotent stem cell adhesiveness and proliferation since the bio-derived substance is Matrigel, laminin, fibronectin, vitronectin, collagen or a combination thereof. When the biomaterial is not Matrigel, laminin, vitronectin, fibronectin, or collagen, it does not have pluripotent stem cell adhesion and proliferation. More preferably, it is a combination of at least four laminins, because it is suitable for imparting pluripotent stem cell adhesion and proliferation, either laminin and matrigel, laminin and fibronectin, or laminin and collagen. It is particularly preferred that it is a combination of and most preferably only laminin.
これら生体由来物質は、天然物であってもよく、遺伝子組み換え技術等で人工的に合成したものであってもよく、制限酵素等で切断した断片や、これら生体由来物質をベースとした合成タンパク質あるいは合成ペプチドであっても良い。
These biological substances may be natural products, or may be artificially synthesized by genetic recombination technology etc., fragments cleaved with restriction enzymes etc., and synthetic proteins based on these biological substances Alternatively, it may be a synthetic peptide.
本発明において、前記マトリゲルとしては、入手容易性から、市販品としては例えば、Matrigel(Corning Incorporated製)やGeltrex(Thermo Fisher Scientific製)を好適に用いることができる。
In the present invention, Matrigel (manufactured by Corning Incorporated) or Geltrex (manufactured by Thermo Fisher Scientific) can be suitably used as a commercially available product, for example, as the Matrigel as the matrigel.
前記ラミニンの種類は特に限定されるものではないが、例えば、ヒトiPS細胞の表面に発現しているα6β1インテグリンに対して高活性を示すことが報告されているラミニン511、ラミニン521又はラミニン511-E8フラグメントを用いることができる。前記ラミニンは、天然物であってもよく、遺伝子組み換え技術等で人工的に合成したものであってもよく、また、前記ラミニンをベースとした合成タンパク質あるいは合成ペプチドであっても良い。入手容易性から、市販品としては例えば、iMatrix-511((株)ニッピ製)を好適に用いることができる。
The type of laminin is not particularly limited. For example, laminin 511, laminin 521 or laminin 511 which has been reported to exhibit high activity against α6β1 integrin expressed on the surface of human iPS cells E8 fragments can be used. The laminin may be a natural product, or may be artificially synthesized by genetic engineering or the like, or may be a synthetic protein or a synthetic peptide based on the laminin. From the viewpoint of availability, for example, iMatrix-511 (manufactured by Nippi Co., Ltd.) can be suitably used as a commercial product.
前記ビトロネクチンは、天然物であってもよく、遺伝子組み換え技術等で人工的に合成したものであってもよく、また、前記ビトロネクチンをベースとした合成タンパク質あるいは合成ペプチドであっても良い。入手容易性から、市販品としては例えば、ビトロネクチン,ヒト血漿由来(和光純薬工業(株)製)やsynthemax(Corning Incorporated製)、Vitronectin(VTN-N)(Thermo Fisher Scientific製)を好適に用いることができる。
The vitronectin may be a natural product, may be artificially synthesized by genetic recombination technology or the like, and may be a synthetic protein or a synthetic peptide based on the vitronectin. From the viewpoint of availability, commercially available products such as vitronectin, derived from human plasma (manufactured by Wako Pure Chemical Industries, Ltd.), synthemax (manufactured by Corning Incorporated), Vitronectin (VTN-N) (manufactured by Thermo Fisher Scientific) are preferably used. be able to.
前記フィブロネクチンは、天然物であってもよく、遺伝子組み換え技術等で人工的に合成したものであってもよく、また、前記フィブロネクチンをベースとした合成タンパク質あるいは合成ペプチドであっても良い。入手容易性から、市販品としては例えば、フィブロネクチン溶液、ヒト血漿由来(和光純薬工業(株)製)やRetronectin(タカラバイオ(株)製)を好適に用いることができる。
The fibronectin may be a natural product, may be artificially synthesized by genetic recombination technology or the like, or may be a synthetic protein or a synthetic peptide based on the fibronectin. From the viewpoint of easy availability, for example, fibronectin solution, human plasma derived (manufactured by Wako Pure Chemical Industries, Ltd.) and Retronectin (manufactured by Takara Bio Inc.) can be suitably used as commercial products.
前記コラーゲンの種類は特に限定されるものではないが、例えば、typeIコラーゲンやtypeIVコラーゲンを用いることができる。前記コラーゲンは、天然物であってもよく、遺伝子組み換え技術等で人工的に合成したものであってもよく、また、前記コラーゲンをベースとした合成ペプチドであっても良い。入手容易性から、市販品としては例えば、コラーゲンI,ヒト(Corning Incorporated製)やコラーゲンIV,ヒト(Corning Incorporated製)を好適に用いることができる。
The type of collagen is not particularly limited, and, for example, type I collagen or type IV collagen can be used. The collagen may be a natural product, may be artificially synthesized by genetic engineering or the like, or may be a synthetic peptide based on the collagen. From the viewpoint of availability, commercially available products such as collagen I, human (manufactured by Corning Incorporated) and collagen IV, human (manufactured by Corning Incorporated) can be suitably used.
本発明において、多能性幹細胞の増殖性及び剥離性を高めるのに好適であることから、下記試験によるラミニン吸着率が10%以上であることが好ましく、20%以上であることがさらに好ましく、20%~80%であることが特に好ましく、30%~60%であることが最も好ましい。
[ラミニン吸着率試験]
リン酸緩衝生理食塩水1mLに対して0.5mg/mLの濃度のラミニン511-E8フラグメント溶液を2~2.5μL添加した溶液を、培養基材の単位面積当たりの量で0.2mL/cm2基材上に滴下し、37℃で24時間静置した時、下記式より求めたラミニン吸着率。 In the present invention, the laminin adsorption rate according to the following test is preferably 10% or more, more preferably 20% or more, because it is suitable for enhancing the proliferation and exfoliation of pluripotent stem cells. It is particularly preferably 20% to 80%, most preferably 30% to 60%.
[Laminin adsorption rate test]
A solution containing 2 to 2.5 μL of a laminin 511-E8 fragment solution at a concentration of 0.5 mg / mL per 1 mL of phosphate buffered saline is 0.2 mL / cm in an amount per unit area of culture substrate 2 Laminin adsorption rate determined from the following formula when dropped on a substrate and allowed to stand at 37 ° C. for 24 hours.
[ラミニン吸着率試験]
リン酸緩衝生理食塩水1mLに対して0.5mg/mLの濃度のラミニン511-E8フラグメント溶液を2~2.5μL添加した溶液を、培養基材の単位面積当たりの量で0.2mL/cm2基材上に滴下し、37℃で24時間静置した時、下記式より求めたラミニン吸着率。 In the present invention, the laminin adsorption rate according to the following test is preferably 10% or more, more preferably 20% or more, because it is suitable for enhancing the proliferation and exfoliation of pluripotent stem cells. It is particularly preferably 20% to 80%, most preferably 30% to 60%.
[Laminin adsorption rate test]
A solution containing 2 to 2.5 μL of a laminin 511-E8 fragment solution at a concentration of 0.5 mg / mL per 1 mL of phosphate buffered saline is 0.2 mL / cm in an amount per unit area of culture substrate 2 Laminin adsorption rate determined from the following formula when dropped on a substrate and allowed to stand at 37 ° C. for 24 hours.
ここで、培養基材に吸着したラミニン511-E8フラグメントの重量、及び、培養基材上に滴下した溶液に含まれるラミニン511-E8フラグメントの重量の測定方法については特に制限はないが、例えば、HiLyte FluorTM 647 Labeling Kit-NH2(同仁化学研究所製)を用いて蛍光標識したラミニン511-E8フラグメントを用い、ラミニン吸着率を蛍光測定によって求める方法を挙げることができる。
Here, the method for measuring the weight of the laminin 511-E8 fragment adsorbed to the culture substrate and the weight of the laminin 511-E8 fragment contained in the solution dropped onto the culture substrate is not particularly limited. using a fluorescence-labeled laminin 511-E8 fragment with HiLyte Fluor TM 647 labeling Kit-NH 2 ( manufactured by Dojin chemical Laboratory), there may be employed a method for obtaining the laminin adsorption ratio by fluorescence measurement.
本発明において、多能性幹細胞の増殖性及び剥離性を高めるのに好適であることから、培養基材のラミニン511-E8フラグメントの吸着量が、5~5000ng/cm2であることが好ましく、10~1000ng/cm2であることがさらに好ましく、15~500ng/cm2であることが特に好ましく、20~100ng/cm2であることが最も好ましい。ラミニン511-E8フラグメントは、市販品としては例えばiMatrix-511((株)ニッピ製)等を用いることができる。
In the present invention, the adsorption amount of the laminin 511-E8 fragment in the culture substrate is preferably 5 to 5000 ng / cm 2 because it is suitable for enhancing the proliferation and exfoliation of pluripotent stem cells. It is more preferably 10 to 1000 ng / cm 2 , particularly preferably 15 to 500 ng / cm 2 , and most preferably 20 to 100 ng / cm 2 . As a laminin 511-E8 fragment, for example, iMatrix-511 (manufactured by Nippi Co., Ltd.) can be used as a commercial product.
本発明において温度応答性高分子による層が被覆される基材の材質は、特に限定されるものではないが、通常細胞培養に用いられるガラス、ポリスチレン等の物質のみならず、一般に形態付与が可能である物質、例えば、ポリカーボネート、ポリエチレンテレフタラート、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート等の高分子化合物や、セラミックス、金属類などを用いることができる。培養操作の容易性から、基材の材質がガラス、ポリスチレン、ポリカーボネート、ポリエチレンテレフタラート、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレンの内少なくとも1種類を含むことが好ましく、ガラス、ポリスチレン、ポリカーボネート、ポリエチレンテレフタラート、ポリエチレンの内少なくとも1種類を含むことがさらに好ましく、可撓性を高めるのに好適であることからポリスチレン、ポリカーボネート、ポリエチレンテレフタラート、ポリエチレンが特に好ましい。
The material of the substrate on which the layer of the thermoresponsive polymer is coated in the present invention is not particularly limited. However, not only substances such as glass and polystyrene which are usually used for cell culture but also form can generally be applied. For example, high molecular compounds such as polycarbonate, polyethylene terephthalate, polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, and polymethyl methacrylate, ceramics, metals, and the like can be used. From the viewpoint of ease of culture operation, the material of the substrate preferably contains at least one of glass, polystyrene, polycarbonate, polyethylene terephthalate, polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, and polypropylene, and glass, polystyrene, polycarbonate It is further preferable to include at least one of polyethylene terephthalate and polyethylene, and polystyrene, polycarbonate, polyethylene terephthalate, and polyethylene are particularly preferable because they are suitable for enhancing flexibility.
また、基材は多能性幹細胞接着性を有することが好ましい。基材が多能性幹細胞接着性を有するものとしては、例えば、基材にプラズマ処理、コロナ処理、UV処理等を施したものを挙げることができる。
Moreover, it is preferable that a base material has pluripotent stem cell adhesiveness. Examples of the base material having pluripotent stem cell adhesiveness include those obtained by subjecting the base material to plasma treatment, corona treatment, UV treatment and the like.
基材の形状としては特に制限はなく、板、フィルムのような平面形状であってもよいし、ファイバー、多孔質粒子、多孔質膜、中空糸であってもよい。また、一般に細胞培養等に用いられる容器(ペトリ皿等の細胞培養皿、フラスコ、プレート等)であっても差し支えない。培養操作の容易性から、板、フィルムのような平面形状、又は平膜の多孔質膜であることが好ましい。
There is no restriction | limiting in particular as a shape of a base material, A planar shape like a board | plate and a film may be sufficient, A fiber, porous particle, a porous membrane, and a hollow fiber may be sufficient. Moreover, it may be a container (cell culture dish such as petri dish, flask, plate etc.) generally used for cell culture etc. From the viewpoint of easiness of culture operation, it is preferable to use a plate, a flat shape such as a film, or a flat porous membrane.
本発明において、多能性幹細胞の剥離性を高めるのに好適であることから、基材が多孔質基材であり、多孔質基材の孔径が培養する多能性幹細胞よりも小さなものであることが好ましい。基材が多孔質基材であることにより、多能性幹細胞の剥離性を高めることができる。また、多孔質基材の孔径が多能性幹細胞よりも小さなものであることにより、多能性幹細胞接着性及び増殖性を高めることができる。さらに、基材が多孔質基材であることにより、培養中に細胞へ栄養が行き渡りやすく、継代培養において多能性幹細胞の未分化維持率を高めることができる。また、多能性幹細胞接着性及び増殖性を高めるのに好適であることから、前記孔径が8μm以下であることがさらに好ましく、3μm以下であることが特に好ましく、1μm以下であることが最も好ましい。さらに、多能性幹細胞の剥離性を高めるのに好適であることから、前記孔径が0.01μm以上であることが好ましく、0.05μm以上であることがさらに好ましく、0.1μm以上であることが特に好ましく、0.2μm以上であることが最も好ましい。ここで、本発明において多孔質基材の「孔径」とは、多孔質基材が有する細孔の、多孔質基材の面内方向に沿った直径の平均値を示し、多孔質基材のレーザー顕微鏡像や走査型電子顕微鏡像、透過型電子顕微鏡像において20点以上の細孔について該直径を測定し、平均値を求めることによって算出することができる。
In the present invention, the base material is a porous base material, which is suitable for enhancing the releasability of pluripotent stem cells, and the pore diameter of the porous base material is smaller than that of pluripotent stem cells to be cultured. Is preferred. When the substrate is a porous substrate, the releasability of pluripotent stem cells can be enhanced. In addition, when the pore diameter of the porous substrate is smaller than that of pluripotent stem cells, pluripotent stem cell adhesion and proliferation can be enhanced. Furthermore, when the base material is a porous base material, nutrients can easily spread to cells during culture, and the undifferentiated maintenance rate of pluripotent stem cells can be increased in subculture. In addition, the pore diameter is more preferably 8 μm or less, particularly preferably 3 μm or less, and most preferably 1 μm or less because it is suitable for enhancing pluripotent stem cell adhesion and proliferation. . Furthermore, the pore diameter is preferably 0.01 μm or more, more preferably 0.05 μm or more, and more preferably 0.1 μm or more, because it is suitable for enhancing the releasability of pluripotent stem cells. Are particularly preferred, and most preferably 0.2 μm or more. Here, in the present invention, the “pore diameter” of the porous substrate means an average value of the diameters of the pores of the porous substrate along the in-plane direction of the porous substrate, and It can be calculated by measuring the diameters of pores of 20 or more points in a laser microscope image, a scanning electron microscope image, and a transmission electron microscope image, and determining an average value.
本発明において、多能性幹細胞接着性及び増殖性及び剥離性を高めるのに好適であることから、多孔質基材の細孔の孔密度が、10~1010個/cm2であることが好ましく、103~109個/cm2がさらに好ましく、105~109個/cm2が特に好ましく、105~107個/cm2が最も好ましい。また、多孔質基材の透明性を高め、顕微鏡による細胞の観察を容易とするのに好適であることから、多孔質基材の細孔の孔密度が、107個/cm2以下であることが好ましく、106個/cm2以下であることがさらに好ましく、105個/cm2以下であることが特に好ましく、104個/cm2以下であることが最も好ましい。ここで、本発明において多孔質基材の細孔の「孔密度」とは、多孔質基材の基材面積当たりに存在する細孔の数を示し、多孔質基材のレーザー顕微鏡像や走査型電子顕微鏡像、透過型電子顕微鏡像において、多孔質基材の細孔の孔径の200倍以上の長さを一辺とする正方形の領域において細孔の数を求めることで算出することができる。なお、本発明において多孔質基材の「基材面積」とは、多孔質基材に細孔が存在しないと仮定した場合の、多孔質基材の一主面の表面積を示す。
In the present invention, the pore density of the pores of the porous substrate is 10 to 10 10 cells / cm 2 because it is suitable for enhancing pluripotent stem cell adhesion and proliferation and exfoliation. Preferably, 10 3 to 10 9 particles / cm 2 are more preferable, 10 5 to 10 9 particles / cm 2 are particularly preferable, and 10 5 to 10 7 particles / cm 2 are most preferable. In addition, the pore density of the pores of the porous substrate is 10 7 cells / cm 2 or less because it is suitable for enhancing the transparency of the porous substrate and facilitating observation of cells with a microscope. it is preferable, more preferably 10 6 / cm 2 or less, particularly preferably 10 5 / cm 2 or less, and most preferably 10 4 / cm 2 or less. Here, in the present invention, the “pore density” of the pores of the porous substrate indicates the number of pores present per substrate area of the porous substrate, and a laser microscope image or scanning of the porous substrate In a type electron microscope image and a transmission electron microscope image, it can be calculated by finding the number of pores in a square region having a side of 200 times or more the pore diameter of the pores of the porous substrate. In the present invention, the “substrate area” of the porous substrate means the surface area of one principal surface of the porous substrate when it is assumed that no pores are present in the porous substrate.
本発明において、多能性幹細胞の剥離性を高めるのに好適であることから、多孔質基材の空隙率が0.01~30%であることが好ましく、0.01~20%がさらに好ましく、0.01~5%が特に好ましく、0.01~1.5%が最も好ましい。ここで、本発明において多孔質基材の「空隙率」とは、多孔質基材の表面の一主面について、細孔部分の合計面積を基材面積で割った値で、面積割合で基材面にどの程度の空隙が存在するのかを示し、多孔質基材のレーザー顕微鏡像や走査型電子顕微鏡像、透過型電子顕微鏡像において、多孔質基材の細孔の孔径の200倍以上の長さを一辺とする正方形の領域を観察することによって測定することができる。
In the present invention, the porosity of the porous substrate is preferably 0.01 to 30%, and more preferably 0.01 to 20%, because it is suitable for enhancing the releasability of pluripotent stem cells. 0.01 to 5% is particularly preferable, and 0.01 to 1.5% is most preferable. Here, in the present invention, the "porosity" of the porous substrate is a value obtained by dividing the total area of the pore portion by the substrate area for one main surface of the surface of the porous substrate, and the area ratio is It indicates how much void space exists in the surface of the material, and in a laser microscope image, a scanning electron microscope image, and a transmission electron microscope image of the porous substrate, at least 200 times the pore diameter of the pores of the porous substrate It can measure by observing the square area which makes length one side.
前記空隙率としてはまた、位相差顕微鏡による多能性幹細胞の観察を可能とするのに好適であることから、80%以下が好ましく、50%以下がさらに好ましく、20%以下が特に好ましく、10%以下が最も好ましい。
The porosity is also preferably 80% or less, more preferably 50% or less, and particularly preferably 20% or less, because it is suitable for enabling observation of pluripotent stem cells by phase contrast microscopy. % Or less is most preferable.
さらに、前記空隙率としては、培地中に含まれる成分を迅速に透過させ、細胞へ万遍なく栄養を行き渡らせるのに好適であることから、空隙率が0.1%以上であることが好ましく、1%以上がさらに好ましく、5%以上が特に好ましく、10%以上が最も好ましい。
Furthermore, the porosity is preferably 0.1% or more because it is suitable for rapidly permeating the components contained in the culture medium and evenly distributing nutrition to the cells. 1% or more is more preferable, 5% or more is particularly preferable, and 10% or more is most preferable.
本発明において、多孔質基材が有する細孔の形状に特に制限はないが、多能性幹細胞接着性及び増殖性及び剥離性を高めるのに好適であることから、平坦部及び細孔を有する平膜であることが好ましい。また、位相差顕微鏡による多能性幹細胞の観察を可能とするのに好適であることから、多孔質基材が有する細孔が、円柱状の形状であることが好ましく、独立した円柱状の形状であることがさらに好ましい。細孔の形状が円柱状の形状であるこの面の細胞の形状を観察するのに好適である。
In the present invention, the shape of the pores possessed by the porous substrate is not particularly limited, but it has flat portions and pores because it is suitable for enhancing pluripotent stem cell adhesion and proliferation and exfoliation. It is preferable that it is a flat membrane. Moreover, since it is suitable to enable observation of pluripotent stem cells by phase contrast microscopy, it is preferable that the pore which a porous base material has is a cylindrical shape, and the independent cylindrical shape It is further preferred that It is suitable for observing the shape of the cells of this surface in which the shape of the pore is a cylindrical shape.
本発明の基材表面に温度応答性高分子による層を形成させる方法としては、基材に温度応答性高分子を、(1)化学的な結合によって被覆させ層を形成させる方法、(2)物理的な相互作用によって被覆させ層を形成させる方法、を単独または併用して行うことができる。すなわち、(1)化学的な結合による方法としては、紫外線照射、電子線照射、ガンマ線照射、プラズマ処理、コロナ処理等を用いることができる。さらに、温度応答性高分子と基材が適当な反応性官能基を有する場合は、ラジカル反応、アニオン反応、カチオン反応等の一般に用いられる有機反応を利用することができる。(2)物理的な相互作用による方法としては、温度応答性高分子との相溶性が良く、塗工性のよいマトリックスを媒体とし、塗布、はけ塗り、ディップコーティング、スピンコーティング、バーコーディング、流し塗り、スプレー塗装、ロール塗装、エアーナイフコーティング、ブレードコーティング、グラビアコーティング、マイクログラビアコーティング、スロットダイコーティングなど通常知られている各種の方法を用いることが可能である。
As a method of forming a layer of a temperature responsive polymer on the surface of a substrate according to the present invention, a method of forming a layer by coating a temperature responsive polymer on a substrate by (1) chemical bonding, (2) A method of forming a layer by physical interaction can be performed alone or in combination. That is, (1) UV irradiation, electron beam irradiation, gamma ray irradiation, plasma treatment, corona treatment etc. can be used as a method by chemical bonding. Furthermore, when the temperature responsive polymer and the base material have appropriate reactive functional groups, generally used organic reactions such as radical reaction, anion reaction and cation reaction can be utilized. (2) As a method by physical interaction, a matrix having a good compatibility with a temperature responsive polymer and a good coatability is used as a medium, and coating, brushing, dip coating, spin coating, bar coating, It is possible to use various methods commonly known such as flow coating, spray coating, roll coating, air knife coating, blade coating, gravure coating, microgravure coating, slot die coating and the like.
本発明において、多能性幹細胞の種類は特に限定されるものではないが、例えば、胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)、体細胞由来胚性幹細胞(核移植ES細胞又はntES細胞)を用いることができ、特に好ましくは人工多能性幹細胞である。また、多能性幹細胞の由来動物は特に限定されるものではないが、例えば、哺乳動物由来であることができる。哺乳動物の例には、げっ歯類(マウス、ラット等)、霊長類(サル、ヒト等)が含まれ、また実験動物であってもよく、コンパニオンアニマルであってもよい。本発明において、好ましくは霊長類由来であり、特に好ましくはヒト由来である。
In the present invention, the type of pluripotent stem cells is not particularly limited. For example, embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), somatic cell-derived embryonic stem cells (nuclear transfer ES) Cells or nt ES cells) can be used, particularly preferably induced pluripotent stem cells. Also, the animal from which pluripotent stem cells are derived is not particularly limited, but may be, for example, a mammal. Examples of mammals include rodents (mouse, rat, etc.), primates (monkey, human, etc.), and may be laboratory animals or companion animals. In the present invention, it is preferably of primate origin, particularly preferably of human origin.
本発明は、前記培養基材を用い、未分化の多能性幹細胞を製造する方法にも関する。前記手法は、以下の(1)~(3)工程を経て、未分化の多能性幹細胞を製造する、多能性幹細胞の製造方法である。
(1)前記培養基材に多能性幹細胞を播種する工程。
(2)前記培養基材に播種された多能性幹細胞を温度応答高分子の応答温度以上の温度の液体中で培養する工程。
(3)培養基材を温度応答高分子の応答温度未満の温度に冷却し、前記液体中で培養された多能性幹細胞を基材から剥離する工程。 The present invention also relates to a method of producing undifferentiated pluripotent stem cells using the culture substrate. The method is a method for producing pluripotent stem cells, which comprises producing undifferentiated pluripotent stem cells through the following steps (1) to (3).
(1) A step of seeding pluripotent stem cells on the culture substrate.
(2) culturing the pluripotent stem cells seeded on the culture substrate in a liquid at a temperature higher than the response temperature of the temperature responsive polymer.
(3) A step of cooling the culture substrate to a temperature lower than the response temperature of the temperature responsive polymer and detaching the pluripotent stem cells cultured in the liquid from the substrate.
(1)前記培養基材に多能性幹細胞を播種する工程。
(2)前記培養基材に播種された多能性幹細胞を温度応答高分子の応答温度以上の温度の液体中で培養する工程。
(3)培養基材を温度応答高分子の応答温度未満の温度に冷却し、前記液体中で培養された多能性幹細胞を基材から剥離する工程。 The present invention also relates to a method of producing undifferentiated pluripotent stem cells using the culture substrate. The method is a method for producing pluripotent stem cells, which comprises producing undifferentiated pluripotent stem cells through the following steps (1) to (3).
(1) A step of seeding pluripotent stem cells on the culture substrate.
(2) culturing the pluripotent stem cells seeded on the culture substrate in a liquid at a temperature higher than the response temperature of the temperature responsive polymer.
(3) A step of cooling the culture substrate to a temperature lower than the response temperature of the temperature responsive polymer and detaching the pluripotent stem cells cultured in the liquid from the substrate.
以下、本発明の製造方法における(1)~(3)工程について詳細に述べる。
Hereinafter, the steps (1) to (3) in the production method of the present invention will be described in detail.
本発明の多能性幹細胞の製造方法における(1)工程は、前記培養基材を用い、前記培養基材に多能性幹細胞を播種する工程である。本発明において「細胞を播種する」とは、細胞が分散した培地(以下、「細胞懸濁液」と表記する。)を培養基材上に塗布、又は、培養基材に注入する等により、細胞懸濁液と培養基材とを接触させることを示す。応答温度が0℃~50℃の範囲にある温度応答性高分子による層を有する基材を用いることにより、後述する(3)工程において温度変化により多能性幹細胞を培養基材から剥離することができる。培養基材が温度応答性高分子による層を有していない場合、(3)工程において温度変化により多能性幹細胞を基材から剥離することができない。また、培養基材が温度応答性高分子による層に固定化された生体由来物質を有することにより、後述する(2)工程で多能性幹細胞を培養することができる。培養基材が温度応答性高分子による層に固定化された生体由来物質を有していない場合、(2)工程で多能性幹細胞を培養することができない。
The step (1) in the method for producing pluripotent stem cells of the present invention is a step of seeding pluripotent stem cells on the culture substrate using the culture substrate. In the present invention, "seeding cells" means that a medium in which the cells are dispersed (hereinafter referred to as "cell suspension") is applied onto the culture substrate, or injected into the culture substrate, etc. 7 shows contacting a cell suspension with a culture substrate. By using a substrate having a layer of a temperature responsive polymer having a response temperature in the range of 0 ° C. to 50 ° C., exfoliating pluripotent stem cells from the culture substrate by temperature change in step (3) described later Can. When the culture substrate does not have a layer of a temperature responsive polymer, it is not possible to detach pluripotent stem cells from the substrate due to temperature change in step (3). In addition, when the culture substrate has a bio-based substance immobilized in a layer of a temperature responsive polymer, pluripotent stem cells can be cultured in the step (2) described later. When the culture substrate does not have the bio-derived substance immobilized in the layer of the thermoresponsive polymer, the pluripotent stem cells can not be cultured in the step (2).
前記(1)~(3)工程においては、多能性幹細胞の未分化性を維持させるのに有効な条件で、培養が実施される。未分化性を維持させるのに有効な条件としては、特に制限はないが、例えば、培養開始時の多能性幹細胞の密度を上記播種の際の細胞密度として記載した好ましい範囲とすること、適切な液体培地の存在下で行うことなどが挙げられる。多能性幹細胞の未分化性を維持させるのに有効な培地としては、例えば、多能性幹細胞の未分化性を維持するための因子として知られている、インスリン、トランスフェリン、セレニウム、アスコルビン酸、炭酸水素ナトリウム、塩基性線維芽細胞増殖因子、トランスフォーミング増殖因子β(TGFβ)、CCL2、アクチビン、2-メルカプトメタノールのうち1つ以上を添加した培地を好適に用いることができる。多能性幹細胞の未分化性を維持するのに特に好適であることから、インスリン、トランスフェリン、セレニウム、アスコルビン酸、炭酸水素ナトリウム、塩基性線維芽細胞増殖因子、トランスフォーミング増殖因子β(TGFβ)を含有する培地を用いることがさらに好ましく、塩基性線維芽細胞増殖因子を添加した培地を用いることが最も好ましい。
In the steps (1) to (3), the culture is carried out under conditions effective to maintain the undifferentiated nature of the pluripotent stem cells. Conditions effective for maintaining the undifferentiated nature are not particularly limited, but for example, it is preferable to set the density of pluripotent stem cells at the start of culture to the preferable range described as the cell density at the time of seeding, And the like in the presence of a liquid medium. As an effective culture medium for maintaining the undifferentiated nature of pluripotent stem cells, for example, insulin, transferrin, selenium, ascorbic acid, which is known as a factor for maintaining the undifferentiated nature of pluripotent stem cells A medium to which one or more of sodium bicarbonate, basic fibroblast growth factor, transforming growth factor β (TGFβ), CCL2, activin, and 2-mercaptomethanol is added can be suitably used. Insulin, transferrin, selenium, ascorbic acid, sodium bicarbonate, basic fibroblast growth factor, transforming growth factor beta (TGF beta), as it is particularly suitable for maintaining the undifferentiated nature of pluripotent stem cells It is more preferable to use a medium containing it, and it is most preferable to use a medium to which a basic fibroblast growth factor has been added.
前記塩基性線維芽細胞増殖因子を添加した培地の種類に特に制限はないが、例えば、市販品としては、DMEM(Sigma-Aldrich Co. LLC製)、Ham’s F12(Sigma-Aldrich Co. LLC製)、D-MEM/Ham’s F12(Sigma-Aldrich Co. LLC製)、Primate ES Cell Medium((株)REPROCELL製)、StemFit AK02N(味の素(株)製)、StemFit AK03(味の素(株)製)、mTeSR1(STEMCELL TECHNOLOGIES製)、TeSR-E8(STEMCELL TECHNOLOGIES製)、ReproNaive((株)REPROCELL製)、ReproXF((株)REPROCELL製)、ReproFF((株)REPROCELL製)、ReproFF2((株)REPROCELL製)、NutriStem(バイオロジカルインタストリーズ社製)、iSTEM(タカラバイオ(株)製)、GS2-M(タカラバイオ(株)製)、hPSC Growth Medium DXF(PromoCell(株)製)等を挙げることができる。多能性幹細胞の未分化状態を維持するのに好適であることから、Primate ES Cell Medium((株)REPROCELL製)、StemFit AK02N(味の素(株)製)又はStemFit AK03(味の素(株)製)が好ましく、StemFit AK02N(味の素(株)製)又はStemFit AK03(味の素(株)製)がさらに好ましく、StemFit AK02N(味の素(株)製)が特に好ましい。
The type of medium to which the basic fibroblast growth factor has been added is not particularly limited. For example, as a commercial product, DMEM (manufactured by Sigma-Aldrich Co. LLC), Ham's F12 (Sigma-Aldrich Co. LLC) D-MEM / Ham's F12 (Sigma-Aldrich Co. LLC), Primate ES Cell Medium (Reprocell Inc.), StemFit AK02N (Ajinomoto Co.), StemFit AK03 (Ajinomoto Co.) Made), mTeSR1 (made by STEMCELL TECHNOLOGIES), TeSR-E8 (made by STEMCELL TECHNOLOGIES), ReproNaive (made by REPROCELL), ReproXF (made) Made by EPROCELL, ReproFF (made by REPROCELL Co., Ltd.), ReproFF2 (made by REPROCELL Co., Ltd.), NutriStem (made by Biological Instries, Inc.), iSTEM (made by Takara Bio Inc.), GS2-M (Takara Bio (Takara Bio) And hPSC Growth Medium DXF (PromoCell Co., Ltd.) and the like. Primate ES Cell Medium (manufactured by REPROCELL Co., Ltd.), StemFit AK02N (manufactured by Ajinomoto Co.) or StemFit AK03 (manufactured by Ajinomoto Co., Ltd.) because it is suitable for maintaining the undifferentiated state of pluripotent stem cells. StemFit AK02N (manufactured by Ajinomoto Co., Ltd.) or StemFit AK03 (manufactured by Ajinomoto Co., Ltd.) is more preferable, and StemFit AK02N (manufactured by Ajinomoto Co., Ltd.) is particularly preferable.
前記(1)工程において、多能性幹細胞の播種方法に特に制限はないが、例えば、前記基材に細胞懸濁液を注入することで行うことが出来る。播種の際の細胞密度は特に制限はないが、細胞を維持することができ、かつ増殖させることができるように、1.0×102~1.0×106cells/cm2が好ましく、5.0×102~5.0×105cells/cm2がさらに好ましく、1.0×103~2.0×105cells/cm2が特に好ましく、1.2×103~1.0×105cells/cm2が最も好ましい。
Although there is no restriction | limiting in particular in the said (1) process in the seeding method of a pluripotent stem cell, For example, it can carry out by inject | pouring cell suspension into the said base material. The cell density at the time of seeding is not particularly limited, but preferably 1.0 × 10 2 to 1.0 × 10 6 cells / cm 2 so that the cells can be maintained and proliferated. 5.0 × 10 2 to 5.0 × 10 5 cells / cm 2 are more preferable, 1.0 × 10 3 to 2.0 × 10 5 cells / cm 2 are particularly preferable, and 1.2 × 10 3 to 1 The most preferable is .0 × 10 5 cells / cm 2 .
前記(1)工程で用いる培地としてはまた、多能性幹細胞の生存を維持するのに好適であることから、前記塩基性線維芽細胞増殖因子を添加した培地にさらにRho結合キナーゼ阻害剤を添加した培地を用いることが好ましい。特にヒトの多能性幹細胞を用いる場合であって、ヒトの多能性幹細胞の細胞密度が低い状態において、Rho結合キナーゼ阻害剤が添加されていると、ヒトの多能性幹細胞の生存維持に効果的な場合がある。Rho結合キナーゼ阻害剤としては、例えば、(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide・2HCl・H2O(和光純薬工業(株)製Y-27632)、1-(5-Isoquinolinesulfonyl)homopiperazine Hydrochloride(和光純薬工業(株)製HA1077)を用いることができる。培地に添加されるRho結合キナーゼ阻害剤の濃度としては、ヒトの多能性幹細胞の生存維持に有効な範囲であってヒトの多能性幹細胞の未分化状態に影響を与えない範囲であり、好ましくは1μM~50μMであり、より好ましくは3μM~20μMであり、さらに好ましくは5μM~15μMであり、最も好ましくは8μM~12μMである。
The medium used in the above step (1) is also suitable for maintaining the survival of pluripotent stem cells, so that the medium supplemented with the basic fibroblast growth factor is further added with a Rho-linked kinase inhibitor. It is preferable to use a culture medium. In particular, when human pluripotent stem cells are used and the cell density of human pluripotent stem cells is low, when a Rho-linked kinase inhibitor is added, survival of human pluripotent stem cells can be maintained. It may be effective. As a Rho binding kinase inhibitor, for example, (R)-(+)-trans-N- (4-pyridine) -4- (1-aminoethyl) -cyclohexanecarboxamide · 2HCl · H2O (manufactured by Wako Pure Chemical Industries, Ltd.) Y-27632), 1- (5-Isoquinolinessulfonyl) homopiperazine Hydrochloride (HA1077 manufactured by Wako Pure Chemical Industries, Ltd.) can be used. The concentration of the Rho-binding kinase inhibitor added to the culture medium is a range effective for maintaining the survival of human pluripotent stem cells and not affecting the undifferentiated state of human pluripotent stem cells, Preferably, it is 1 μM to 50 μM, more preferably 3 μM to 20 μM, still more preferably 5 μM to 15 μM, and most preferably 8 μM to 12 μM.
前記(1)工程を開始するとまもなく、多能性幹細胞は培養基材に接着し始める。
Shortly after starting the step (1), pluripotent stem cells begin to adhere to the culture substrate.
本発明の多能性幹細胞の製造方法における(2)工程では、前記播種された多能性幹細胞を温度応答性高分子の応答温度以上の温度で培養する。培養温度が温度応答性高分子の応答温度以上であることにより、多能性幹細胞を増殖させることができる。培養温度が温度応答性高分子の応答温度未満の場合、多能性幹細胞を増殖させることができない。細胞の増殖能や生理活性,機能維持に好適であることから、培養温度としては、好ましくは30~42℃、さらに好ましくは32~40℃、特に好ましくは36~38℃、最も好ましくは37℃である。
In the step (2) of the method for producing pluripotent stem cells of the present invention, the seeded pluripotent stem cells are cultured at a temperature higher than the response temperature of the temperature responsive polymer. When the culture temperature is equal to or higher than the response temperature of the thermoresponsive polymer, pluripotent stem cells can be proliferated. When the culture temperature is lower than the response temperature of the thermoresponsive polymer, pluripotent stem cells can not be grown. The culture temperature is preferably 30 to 42 ° C., more preferably 32 to 40 ° C., particularly preferably 36 to 38 ° C., and most preferably 37 ° C. because the culture temperature is suitable for maintaining the cell proliferation ability, physiological activity and function. It is.
前記(2)工程を開始して22~26時間後に、最初の培地交換を行うことが好ましい。その48~72時間後に2度目の培地交換を行い、その後、24~48時間毎に培地交換を行うことが好ましい。この間、多能性幹細胞は増殖し、コロニーと呼ばれる細胞塊を形成する。コロニーの大きさが1mm前後になるまで培養を継続させ、その後(3)工程に移行する。
It is preferable to perform the first medium replacement 22 to 26 hours after the start of the step (2). It is preferable to carry out a second medium exchange 48 to 72 hours later, and then exchange the medium every 24 to 48 hours. During this time, pluripotent stem cells proliferate and form a cell mass called a colony. The culture is continued until the size of the colonies is about 1 mm, and then the process proceeds to step (3).
本発明の多能性幹細胞の製造方法における(3)工程では、多能性幹細胞が培養された培養基材を温度応答性高分子の応答温度未満の温度に冷却し、前記培養された多能性幹細胞を培養基材から剥離する。多能性幹細胞を短時間で剥離させ、冷却によるダメージを低減するために、冷却する際の温度として好ましくは0~30℃であり、より好ましくは3~25℃であり、さらに好ましくは5~20℃である。また、細胞へのダメージを低減するために、冷却時間としては120分以下が好ましく、90分以下がさらに好ましく、75分以下が特に好ましく、60分以下が最も好ましい。
In the step (3) of the method for producing pluripotent stem cells of the present invention, the culture substrate on which the pluripotent stem cells are cultured is cooled to a temperature lower than the response temperature of the temperature responsive polymer, Stem cells are detached from the culture substrate. The temperature at the time of cooling is preferably 0 to 30 ° C., more preferably 3 to 25 ° C., and still more preferably 5 to 50 ° C. in order to detach pluripotent stem cells in a short time and reduce damage by cooling. It is 20 ° C. In order to reduce damage to cells, the cooling time is preferably 120 minutes or less, more preferably 90 minutes or less, particularly preferably 75 minutes or less, and most preferably 60 minutes or less.
前記(3)工程における培養基材の冷却方法としては特に制限はないが、例えば、培養基材を保冷庫に入れて冷却する方法、培養基材をクールプレートの上に載せて冷却する方法、冷却した培地あるいは緩衝液に交換して所定時間静置する方法等を用いることができる。
The method for cooling the culture substrate in the step (3) is not particularly limited, but for example, a method of cooling the culture substrate by placing it in a refrigerator, a method of placing the culture substrate on a cool plate and cooling it, It is possible to use a method in which the medium is replaced with a cooled medium or buffer solution and left for a predetermined time.
また、前記(3)工程においては、多能性幹細胞を短時間で剥離させ、冷却によるダメージをより低減するために、冷却時に、培養された多能性幹細胞を含む液体に対流を生じさせる工程を含んでも良い。対流を生じさせる方法としては特に限定はないが、例えば、培養液をピペッティングさせることやポンプ、撹拌翼を用いる等の方法により、機械的に液体内部に強制対流を発生させる方法の他、培養基材に物理的な振動を加える方法、温度差を与えることによりマランゴニ対流等の自然対流を発生させる方法を挙げることが出来る。
In the step (3), a step of causing convection in the liquid containing the cultured pluripotent stem cells at the time of cooling in order to detach the pluripotent stem cells in a short time and further reduce the damage caused by the cooling. May be included. The method of generating convection is not particularly limited. For example, other than the method of mechanically generating forced convection inside the liquid by a method such as pipetting the culture solution, using a pump, or a stirring blade, the culture There can be mentioned a method of applying physical vibration to the substrate and a method of generating natural convection such as Marangoni convection by giving a temperature difference.
本発明の培養基材は、大量の細胞を培養する際に、細胞を剥離する工程を簡略化し細胞の量産性を高めるのに好適であることから、弱い外部刺激で細胞が剥離することが好ましく、冷却及びピペッティング、冷却及びタッピングで剥離することがさらに好ましく、冷却及びタッピングで剥離することが特に好ましい。冷却のみで剥離することが最も好ましい。ここで、本発明において「ピペッティング」とは、ピペットマン等の器具を用いて培養液の吸引及び吐出を繰り返すことにより、培養環境に対流を生じさせる操作を示す。また、「タッピング」とは、培養容器を叩く等により培養環境に振動を与える操作を示す。
Since the culture substrate of the present invention is suitable for simplifying the process of exfoliating cells and enhancing the mass productivity of cells when culturing a large amount of cells, it is preferable to exfoliate the cells by a weak external stimulus. It is further preferable to peel by cooling and pipetting, cooling and tapping, and it is particularly preferable to peel by cooling and tapping. It is most preferable to peel off only by cooling. Here, in the present invention, “pipetting” indicates an operation of causing convection in the culture environment by repeating suction and discharge of the culture solution using an instrument such as a pipetman. Moreover, "tapping" shows the operation which gives vibration to culture environment by tapping a culture container.
本発明の培養基材は、培養した多能性幹細胞から作製した細胞懸濁液を未分化維持培養又は分化誘導用のスフェロイドの作製に用いるのに好適であることから、継代培養した多能性幹細胞の未分化維持率が70%以上であることが好ましく、80%以上がさらに好ましく、90%以上が特に好ましく、95%以上が最も好ましい。未分化維持率は未分化マーカーを染色した細胞を用いてフローサイトメーターにより測定することができる。
Since the culture substrate of the present invention is suitable for use in cell culture prepared from cultured pluripotent stem cells for preparation of undifferentiated maintenance culture or differentiation induction spheroids, pluripotent pluripotent cells are passaged. The undifferentiated maintenance rate of adult stem cells is preferably 70% or more, more preferably 80% or more, particularly preferably 90% or more, and most preferably 95% or more. The undifferentiated maintenance rate can be measured by a flow cytometer using cells stained with undifferentiated markers.
以下、本発明を実施するための形態を挙げて本発明について詳細に説明するが、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。また本発明の要旨の範囲内で適宜に変更して実施することができる。なお、断りのない限り、試薬は市販品を用いた。
<重合体の組成>
核磁気共鳴測定装置(日本電子(株)製、商品名JNM-GSX400)を用いたプロトン核磁気共鳴分光(1H-NMR)スペクトル分析、又は核磁気共鳴測定装置(ブルカー製、商品名AVANCEIIIHD500)を用いたカーボン核磁気共鳴分光(13C-NMR)スペクトル分析より求めた。
<重合体の分子量、分子量分布>
重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布(Mw/Mn)は、ゲル・パーミエーション・クロマトグラフィー(GPC)によって測定した。GPC装置は東ソー(株)製 HLC-8320GPCを用い、カラムは東ソー(株)製 TSKgel Super AWM-Hを2本用い、カラム温度を40℃に設定し、溶離液は10mMトリフルオロ酢酸ナトリウムを含む1,1,1,3,3,3-ヘキサフルオロー2-イソプロパノールまたは10mM臭化リチウムを含むN,N-ジメチルホルムアミドを用いて測定した。測定試料は1.0mg/mLで調製して測定した。分子量の検量線は、分子量既知のポリメタクリル酸メチル(Polymer Laboratories Ltd.製)を用いた。
<表面構造>
温度応答性高分子が被覆された基材の培養温度における表面構造観察は、水中AFM装置(島津製作所製SPM-9600)によって測定した。カンチレバーはBL-AC40TS-C2(オリンパス(株)製)を用いて測定した。 Hereinafter, the present invention will be described in detail by citing modes for carrying out the present invention, but it is an example for explaining the present invention, and the present invention is not intended to be limited to the following contents. Moreover, it can change suitably and can be implemented within the range of the summary of this invention. In addition, unless otherwise indicated, the reagent used the commercial item.
<Composition of Polymer>
Proton nuclear magnetic resonance spectroscopy ( 1 H-NMR) spectrum analysis using a nuclear magnetic resonance measurement apparatus (manufactured by JEOL Ltd., trade name: JNM-GSX400) or a nuclear magnetic resonance measurement apparatus (trade name: AVANCE III HD 500, manufactured by Bruker) It was determined from carbon nuclear magnetic resonance spectroscopy ( 13 C-NMR) spectral analysis using
<Molecular weight of polymer, molecular weight distribution>
Weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) were measured by gel permeation chromatography (GPC). The GPC apparatus uses HLC-8320GPC manufactured by Tosoh Corp., the column uses two TSKgel Super AWM-H manufactured by Tosoh Corp., the column temperature is set to 40 ° C., and the eluent contains 10 mM sodium trifluoroacetate. It was measured using 1,1,1,3,3,3-hexafluoro-2-isopropanol or N, N-dimethylformamide containing 10 mM lithium bromide. The measurement sample was prepared and measured at 1.0 mg / mL. The calibration curve of molecular weight used polymethyl methacrylate (made by Polymer Laboratories Ltd.) of known molecular weight.
<Surface structure>
The surface structure of the temperature-responsive polymer-coated substrate at the culture temperature was observed with an AFM in water (SPM-9600 manufactured by Shimadzu Corporation). The cantilever was measured using BL-AC40TS-C2 (manufactured by Olympus Corporation).
<重合体の組成>
核磁気共鳴測定装置(日本電子(株)製、商品名JNM-GSX400)を用いたプロトン核磁気共鳴分光(1H-NMR)スペクトル分析、又は核磁気共鳴測定装置(ブルカー製、商品名AVANCEIIIHD500)を用いたカーボン核磁気共鳴分光(13C-NMR)スペクトル分析より求めた。
<重合体の分子量、分子量分布>
重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布(Mw/Mn)は、ゲル・パーミエーション・クロマトグラフィー(GPC)によって測定した。GPC装置は東ソー(株)製 HLC-8320GPCを用い、カラムは東ソー(株)製 TSKgel Super AWM-Hを2本用い、カラム温度を40℃に設定し、溶離液は10mMトリフルオロ酢酸ナトリウムを含む1,1,1,3,3,3-ヘキサフルオロー2-イソプロパノールまたは10mM臭化リチウムを含むN,N-ジメチルホルムアミドを用いて測定した。測定試料は1.0mg/mLで調製して測定した。分子量の検量線は、分子量既知のポリメタクリル酸メチル(Polymer Laboratories Ltd.製)を用いた。
<表面構造>
温度応答性高分子が被覆された基材の培養温度における表面構造観察は、水中AFM装置(島津製作所製SPM-9600)によって測定した。カンチレバーはBL-AC40TS-C2(オリンパス(株)製)を用いて測定した。 Hereinafter, the present invention will be described in detail by citing modes for carrying out the present invention, but it is an example for explaining the present invention, and the present invention is not intended to be limited to the following contents. Moreover, it can change suitably and can be implemented within the range of the summary of this invention. In addition, unless otherwise indicated, the reagent used the commercial item.
<Composition of Polymer>
Proton nuclear magnetic resonance spectroscopy ( 1 H-NMR) spectrum analysis using a nuclear magnetic resonance measurement apparatus (manufactured by JEOL Ltd., trade name: JNM-GSX400) or a nuclear magnetic resonance measurement apparatus (trade name: AVANCE III HD 500, manufactured by Bruker) It was determined from carbon nuclear magnetic resonance spectroscopy ( 13 C-NMR) spectral analysis using
<Molecular weight of polymer, molecular weight distribution>
Weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) were measured by gel permeation chromatography (GPC). The GPC apparatus uses HLC-8320GPC manufactured by Tosoh Corp., the column uses two TSKgel Super AWM-H manufactured by Tosoh Corp., the column temperature is set to 40 ° C., and the eluent contains 10 mM sodium trifluoroacetate. It was measured using 1,1,1,3,3,3-hexafluoro-2-isopropanol or N, N-dimethylformamide containing 10 mM lithium bromide. The measurement sample was prepared and measured at 1.0 mg / mL. The calibration curve of molecular weight used polymethyl methacrylate (made by Polymer Laboratories Ltd.) of known molecular weight.
<Surface structure>
The surface structure of the temperature-responsive polymer-coated substrate at the culture temperature was observed with an AFM in water (SPM-9600 manufactured by Shimadzu Corporation). The cantilever was measured using BL-AC40TS-C2 (manufactured by Olympus Corporation).
実施例1
[ブロック共重合体の合成]
試験管に2-メタクリロイルオキシエチルホスホリルコリン1.50g(5.1mmol)、RAFT剤として4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド43mg(106μmol、開始剤としてアゾビスイソブチロニトリル1.7mg(10μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液10.2mLに溶解した。窒素バブリングにより30分脱気を行った後、65℃で18時間反応させた。反応後、反応溶液をアセトン:メタノール=20:1混合溶液200mLに注ぎ込み、析出した黄色固体をろ過し、1日減圧乾燥し、2-メタクリロイルオキシエチルホスホリルコリンの重合体を得た。 Example 1
[Synthesis of block copolymer]
1.50 g (5.1 mmol) of 2-methacryloyloxyethyl phosphoryl choline in a test tube, 43 mg (106 μmol, 4-cyano-4-[(dodecylsulfonylthiocarbonyl) sulfonyl] pentanoic acid as an RAFT agent, azobisiso as an initiator 1.7 mg (10 μmol) of butyronitrile was added and dissolved in 10.2 mL of 1,4-dioxane / ethanol = 1: 1 mixed solution After degassing by nitrogen bubbling for 30 minutes, reaction was carried out at 65 ° C. for 18 hours After the reaction, the reaction solution was poured into 200 mL of a mixed solution of acetone: methanol = 20: 1, and the precipitated yellow solid was filtered and dried under reduced pressure for 1 day to obtain a polymer of 2-methacryloyloxyethyl phosphorylcholine.
[ブロック共重合体の合成]
試験管に2-メタクリロイルオキシエチルホスホリルコリン1.50g(5.1mmol)、RAFT剤として4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド43mg(106μmol、開始剤としてアゾビスイソブチロニトリル1.7mg(10μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液10.2mLに溶解した。窒素バブリングにより30分脱気を行った後、65℃で18時間反応させた。反応後、反応溶液をアセトン:メタノール=20:1混合溶液200mLに注ぎ込み、析出した黄色固体をろ過し、1日減圧乾燥し、2-メタクリロイルオキシエチルホスホリルコリンの重合体を得た。 Example 1
[Synthesis of block copolymer]
1.50 g (5.1 mmol) of 2-methacryloyloxyethyl phosphoryl choline in a test tube, 43 mg (106 μmol, 4-cyano-4-[(dodecylsulfonylthiocarbonyl) sulfonyl] pentanoic acid as an RAFT agent, azobisiso as an initiator 1.7 mg (10 μmol) of butyronitrile was added and dissolved in 10.2 mL of 1,4-dioxane / ethanol = 1: 1 mixed solution After degassing by nitrogen bubbling for 30 minutes, reaction was carried out at 65 ° C. for 18 hours After the reaction, the reaction solution was poured into 200 mL of a mixed solution of acetone: methanol = 20: 1, and the precipitated yellow solid was filtered and dried under reduced pressure for 1 day to obtain a polymer of 2-methacryloyloxyethyl phosphorylcholine.
試験管に上記2-メタクリロイルオキシエチルホスホリルコリン重合体1.0g、n-ブチルメタクリレート2.40g(16.9mmol)、アゾビスイソブチロニトリル2.5mg(15μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液17mLに溶解した。窒素バブリングにより30分脱気を行った後、65℃で24時間反応させた。反応後、反応溶液をヘキサン300mLに注ぎ込み、析出した淡黄色固体をろ過し、1日減圧乾燥して、2-メタクリロイルオキシエチルホスホリルコリンとn-ブチルメタクリレートの重合体(2-メタクリロイルオキシエチルホスホリルコリン/n-ブチルメタクリレートジブロック重合体)を得た。
Into a test tube, 1.0 g of the above-mentioned 2-methacryloyloxyethyl phosphorylcholine polymer, 2.40 g (16.9 mmol) of n-butyl methacrylate and 2.5 mg (15 μmol) of azobisisobutyronitrile are added, and 1,4-dioxane / It was dissolved in 17 mL of an ethanol = 1: 1 mixed solution. After degassing by nitrogen bubbling for 30 minutes, reaction was carried out at 65 ° C. for 24 hours. After the reaction, the reaction solution is poured into 300 mL of hexane, and the precipitated pale yellow solid is filtered and dried under reduced pressure for 1 day to obtain a polymer of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate (2-methacryloyloxyethyl phosphorylcholine / n Butyl methacrylate diblock polymer) was obtained.
試験管に上記2-メタクリロイルオキシエチルホスホリルコリン/n-ブチルメタクリレートジブロック重合体0.5g、N-イソプロピルアクリルアミド0.62g(5.5mmol)、アゾビスイソブチロニトリル0.2mg(1μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液5.5mLに溶解した。窒素バブリングにより30分脱気を行った後、65℃で24時間反応させた。反応後、反応溶液をヘキサン200mLに注ぎ込み、析出した白色固体をろ過し、1日減圧乾燥して、トリブロック共重合体を得た。
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体0.01gをエタノール4.99gに溶解し、ブロック共重合体の0.2wt%エタノール溶液を調製した。さらに、0.2wt%エタノール溶液1mLとエタノール3mLを混合し、0.05wt%のエタノール溶液を調製した。この溶液を細胞培養用6ウェルプレート(Corning Incorporated製、材質:ポリスチレン)の各ウェルに0.42mLずつ加え、2時間減圧乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[ブロックセグメント(A)のLCST測定]
4-シアノ-4-[(ドデシルスルファニルチオカルボニル)スルファニル]ペンタノイックアシッド0.40g(0.1mmol)、N-イソプロピルアクリルアミド2.26g(20mmol)及びアゾビス(イソブチロニトリル)33mg(0.2mmol)をジオキサン20mLに溶解させた。窒素バブリングにより30分脱気を行った後、70℃で24時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応溶液を濃縮した。濃縮液をヘキサン250mLに注ぎ、析出した白色固体を回収して減圧乾燥し、N-イソプロピルアクリルアミド重合体を得た。N-イソプロピルアクリルアミド重合体を純水に溶解させ、0.6wt%水溶液とした。この溶液を光路長1cmの石英セルに入れ、1℃/分の速度で昇温しながら、分光光度計((株)日立ハイテクノロジーズ製、UH-5300)で波長500nmの光の透過率を測定した。中点法によりLCSTを求めたところ、LCSTは32℃であった。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材の水中、37℃、20℃及び10℃での気泡接触角(θ)(°)を測定し、37℃、20℃及び10℃の対水接触角(180-θ)(°)を算出した。θは協和界面科学(株)製接触角計DM300を用いて、水中、3μLの気泡の接触角を測定した。 Add 0.5 g of the above-mentioned 2-methacryloyloxyethyl phosphorylcholine / n-butyl methacrylate diblock polymer, 0.62 g (5.5 mmol) of N-isopropylacrylamide, 0.2 mg (1 μmol) of azobisisobutyronitrile to a test tube The solution was dissolved in 5.5 mL of a mixed solution of 1,4-dioxane / ethanol = 1: 1. After degassing by nitrogen bubbling for 30 minutes, reaction was carried out at 65 ° C. for 24 hours. After the reaction, the reaction solution was poured into 200 mL of hexane, and the precipitated white solid was filtered and dried under reduced pressure for 1 day to obtain a triblock copolymer.
[Preparation of Base Material Coated with Block Copolymer]
0.01 g of the block copolymer was dissolved in 4.99 g of ethanol to prepare a 0.2 wt% ethanol solution of the block copolymer. Furthermore, 1 mL of a 0.2 wt% ethanol solution and 3 mL of ethanol were mixed to prepare a 0.05 wt% ethanol solution. This solution was added to each well of a cell culture 6-well plate (manufactured by Corning Incorporated, material: polystyrene) 0.42 mL each, and dried under reduced pressure for 2 hours. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[LCST measurement of block segment (A)]
0.40 g (0.1 mmol) of 4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, 2.26 g (20 mmol) of N-isopropylacrylamide and 33 mg of azobis (isobutyronitrile). 2 mmol) were dissolved in 20 mL dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 70 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 250 mL of hexane, and the precipitated white solid was recovered and dried under reduced pressure to obtain an N-isopropylacrylamide polymer. The N-isopropylacrylamide polymer was dissolved in pure water to form a 0.6 wt% aqueous solution. This solution is placed in a quartz cell of 1 cm in optical path length, and the temperature is raised at a rate of 1 ° C./min while the transmittance of light with a wavelength of 500 nm is measured with a spectrophotometer (UH-5300, manufactured by Hitachi High-Technologies Corp.) did. When LCST was calculated | required by the middle point method, LCST was 32 degreeC.
[Response temperature measurement of block copolymer]
The cell contact angles (θ) (°) at 37 ° C., 20 ° C. and 10 ° C. in water of the block copolymer-coated substrate are measured, and the water contact angles to 37 ° C., 20 ° C. and 10 ° C. (180-θ) (°) was calculated. The contact angle of 3 μl of bubbles in water was measured using a contact angle meter DM300 manufactured by Kyowa Interface Science Co., Ltd., for θ.
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体0.01gをエタノール4.99gに溶解し、ブロック共重合体の0.2wt%エタノール溶液を調製した。さらに、0.2wt%エタノール溶液1mLとエタノール3mLを混合し、0.05wt%のエタノール溶液を調製した。この溶液を細胞培養用6ウェルプレート(Corning Incorporated製、材質:ポリスチレン)の各ウェルに0.42mLずつ加え、2時間減圧乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[ブロックセグメント(A)のLCST測定]
4-シアノ-4-[(ドデシルスルファニルチオカルボニル)スルファニル]ペンタノイックアシッド0.40g(0.1mmol)、N-イソプロピルアクリルアミド2.26g(20mmol)及びアゾビス(イソブチロニトリル)33mg(0.2mmol)をジオキサン20mLに溶解させた。窒素バブリングにより30分脱気を行った後、70℃で24時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応溶液を濃縮した。濃縮液をヘキサン250mLに注ぎ、析出した白色固体を回収して減圧乾燥し、N-イソプロピルアクリルアミド重合体を得た。N-イソプロピルアクリルアミド重合体を純水に溶解させ、0.6wt%水溶液とした。この溶液を光路長1cmの石英セルに入れ、1℃/分の速度で昇温しながら、分光光度計((株)日立ハイテクノロジーズ製、UH-5300)で波長500nmの光の透過率を測定した。中点法によりLCSTを求めたところ、LCSTは32℃であった。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材の水中、37℃、20℃及び10℃での気泡接触角(θ)(°)を測定し、37℃、20℃及び10℃の対水接触角(180-θ)(°)を算出した。θは協和界面科学(株)製接触角計DM300を用いて、水中、3μLの気泡の接触角を測定した。 Add 0.5 g of the above-mentioned 2-methacryloyloxyethyl phosphorylcholine / n-butyl methacrylate diblock polymer, 0.62 g (5.5 mmol) of N-isopropylacrylamide, 0.2 mg (1 μmol) of azobisisobutyronitrile to a test tube The solution was dissolved in 5.5 mL of a mixed solution of 1,4-dioxane / ethanol = 1: 1. After degassing by nitrogen bubbling for 30 minutes, reaction was carried out at 65 ° C. for 24 hours. After the reaction, the reaction solution was poured into 200 mL of hexane, and the precipitated white solid was filtered and dried under reduced pressure for 1 day to obtain a triblock copolymer.
[Preparation of Base Material Coated with Block Copolymer]
0.01 g of the block copolymer was dissolved in 4.99 g of ethanol to prepare a 0.2 wt% ethanol solution of the block copolymer. Furthermore, 1 mL of a 0.2 wt% ethanol solution and 3 mL of ethanol were mixed to prepare a 0.05 wt% ethanol solution. This solution was added to each well of a cell culture 6-well plate (manufactured by Corning Incorporated, material: polystyrene) 0.42 mL each, and dried under reduced pressure for 2 hours. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[LCST measurement of block segment (A)]
0.40 g (0.1 mmol) of 4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, 2.26 g (20 mmol) of N-isopropylacrylamide and 33 mg of azobis (isobutyronitrile). 2 mmol) were dissolved in 20 mL dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 70 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 250 mL of hexane, and the precipitated white solid was recovered and dried under reduced pressure to obtain an N-isopropylacrylamide polymer. The N-isopropylacrylamide polymer was dissolved in pure water to form a 0.6 wt% aqueous solution. This solution is placed in a quartz cell of 1 cm in optical path length, and the temperature is raised at a rate of 1 ° C./min while the transmittance of light with a wavelength of 500 nm is measured with a spectrophotometer (UH-5300, manufactured by Hitachi High-Technologies Corp.) did. When LCST was calculated | required by the middle point method, LCST was 32 degreeC.
[Response temperature measurement of block copolymer]
The cell contact angles (θ) (°) at 37 ° C., 20 ° C. and 10 ° C. in water of the block copolymer-coated substrate are measured, and the water contact angles to 37 ° C., 20 ° C. and 10 ° C. (180-θ) (°) was calculated. The contact angle of 3 μl of bubbles in water was measured using a contact angle meter DM300 manufactured by Kyowa Interface Science Co., Ltd., for θ.
37℃、20℃及び10℃での対水接触角を表3に示す。20℃での対水接触角は37℃での対水接触角よりも低く、前記ブロック共重合体が被覆された基材は温度応答性を示し、応答温度は20~37℃の範囲にあることが分かった。また、20~45℃の範囲において同様に5℃間隔で対水接触角測定を行い、中点法によって応答温度を求めたところ、応答温度は34℃であった。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材にヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を0.2mL/cm2加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 20 to 45 ° C., and the response temperature was determined by the midpoint method, the response temperature was 34 ° C.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
Human iPS cells 201B7 were seeded at a density of 1300 cells / cm 2 on the block copolymer-coated substrate and cultured at 37 ° C. in an environment of 5% CO 2 concentration. As the medium, 0.2 mL / cm 2 of StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added. In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (concentration 10 μM) and iMatrix-511 solution (Nippi Co., Ltd.) (2.5 μL / mL) were added to the above medium. Was cultured using a medium supplemented with
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材にヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を0.2mL/cm2加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 20 to 45 ° C., and the response temperature was determined by the midpoint method, the response temperature was 34 ° C.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
Human iPS cells 201B7 were seeded at a density of 1300 cells / cm 2 on the block copolymer-coated substrate and cultured at 37 ° C. in an environment of 5% CO 2 concentration. As the medium, 0.2 mL / cm 2 of StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added. In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all the cells were detached under the condition (3) and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy.
実施例2
[ブロック共重合体の合成]
試験管に2-メタクリロイルオキシエチルホスホリルコリン1.50g(5.1mmol)、RAFT剤として4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド25.3mg(63μmol)、開始剤としてアゾビスイソブチロニトリル1mg(3μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液10.2mLに溶解した。窒素バブリングにより30分脱気を行った後、65℃で18時間反応させた。反応後、反応溶液をアセトン:メタノール=20:1混合溶液200mLに注ぎ込み、析出した黄色固体をろ過し、1日減圧乾燥し、2-メタクリロイルオキシエチルホスホリルコリンの重合体を得た。 Example 2
[Synthesis of block copolymer]
1.50 g (5.1 mmol) of 2-methacryloyloxyethyl phosphorylcholine in a test tube, 25.3 mg (63 μmol) of 4-cyano-4-[(dodecylsulfonylthiocarbonyl) sulfonyl] pentanoic acid as an RAFT agent, as aninitiator 1 mg (3 μmol) of azobisisobutyronitrile was added and dissolved in 10.2 mL of a 1,4-dioxane / ethanol = 1: 1 mixed solution. After degassing by nitrogen bubbling for 30 minutes, reaction was carried out at 65 ° C. for 18 hours. After the reaction, the reaction solution was poured into 200 mL of an acetone: methanol = 20: 1 mixed solution, and the precipitated yellow solid was filtered and dried under reduced pressure for 1 day to obtain a polymer of 2-methacryloyloxyethyl phosphorylcholine.
[ブロック共重合体の合成]
試験管に2-メタクリロイルオキシエチルホスホリルコリン1.50g(5.1mmol)、RAFT剤として4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド25.3mg(63μmol)、開始剤としてアゾビスイソブチロニトリル1mg(3μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液10.2mLに溶解した。窒素バブリングにより30分脱気を行った後、65℃で18時間反応させた。反応後、反応溶液をアセトン:メタノール=20:1混合溶液200mLに注ぎ込み、析出した黄色固体をろ過し、1日減圧乾燥し、2-メタクリロイルオキシエチルホスホリルコリンの重合体を得た。 Example 2
[Synthesis of block copolymer]
1.50 g (5.1 mmol) of 2-methacryloyloxyethyl phosphorylcholine in a test tube, 25.3 mg (63 μmol) of 4-cyano-4-[(dodecylsulfonylthiocarbonyl) sulfonyl] pentanoic acid as an RAFT agent, as an
試験管に上記2-メタクリロイルオキシエチルホスホリルコリン重合体1.50g、n-ブチルメタクリレート1.71g(12.0mmol)、アゾビスイソブチロニトリル2mg(13μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液12mLに溶解した。窒素バブリングにより30分脱気を行った後、65℃で24時間反応させた。反応後、反応溶液をヘキサン300mLに注ぎ込み、析出した淡黄色固体をろ過し、1日減圧乾燥して、2-メタクリロイルオキシエチルホスホリルコリン/n-ブチルメタクリレートジブロック重合体を得た。
In a test tube, 1.50 g of the above-mentioned 2-methacryloyloxyethyl phosphorylcholine polymer, 1.71 g (12.0 mmol) of n-butyl methacrylate and 2 mg (13 μmol) of azobisisobutyronitrile are added, and 1,4-dioxane / ethanol = It was dissolved in 12 mL of a 1: 1 mixed solution. After degassing by nitrogen bubbling for 30 minutes, reaction was carried out at 65 ° C. for 24 hours. After the reaction, the reaction solution was poured into 300 mL of hexane, and the precipitated pale yellow solid was filtered and dried under reduced pressure for 1 day to obtain 2-methacryloyloxyethyl phosphorylcholine / n-butyl methacrylate diblock polymer.
試験管に上記2-メタクリロイルオキシエチルホスホリルコリン/n-ブチルメタクリレートジブロック共重合体0.75g、N-イソプロピルアクリルアミド0.93g(8.2mmol)、アゾビスイソブチロニトリル0.3mg(2μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液8.2mLに溶解した。窒素バブリングにより30分脱気を行った後、65℃で24時間反応させた。反応後、反応溶液をヘキサン200mLに注ぎ込み、析出した白色固体をろ過し、1日減圧乾燥して、トリブロック共重合体を得た。
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の作製]と同じ方法で作製した。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の濡れ性]と同じ方法で測定した。 In a test tube, 0.75 g of the above-mentioned 2-methacryloyloxyethyl phosphorylcholine / n-butyl methacrylate diblock copolymer, 0.93 g (8.2 mmol) of N-isopropylacrylamide, 0.3 mg (2 μmol) of azobisisobutyronitrile In addition, it was dissolved in 8.2 mL of a 1,4-dioxane / ethanol = 1: 1 mixed solution. After degassing by nitrogen bubbling for 30 minutes, reaction was carried out at 65 ° C. for 24 hours. After the reaction, the reaction solution was poured into 200 mL of hexane, and the precipitated white solid was filtered and dried under reduced pressure for 1 day to obtain a triblock copolymer.
[Preparation of Base Material Coated with Block Copolymer]
It produced by the same method as Example 1 [preparation of the base material with which the block copolymer was covered] except having used the said block copolymer.
[Response temperature measurement of block copolymer]
It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の作製]と同じ方法で作製した。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の濡れ性]と同じ方法で測定した。 In a test tube, 0.75 g of the above-mentioned 2-methacryloyloxyethyl phosphorylcholine / n-butyl methacrylate diblock copolymer, 0.93 g (8.2 mmol) of N-isopropylacrylamide, 0.3 mg (2 μmol) of azobisisobutyronitrile In addition, it was dissolved in 8.2 mL of a 1,4-dioxane / ethanol = 1: 1 mixed solution. After degassing by nitrogen bubbling for 30 minutes, reaction was carried out at 65 ° C. for 24 hours. After the reaction, the reaction solution was poured into 200 mL of hexane, and the precipitated white solid was filtered and dried under reduced pressure for 1 day to obtain a triblock copolymer.
[Preparation of Base Material Coated with Block Copolymer]
It produced by the same method as Example 1 [preparation of the base material with which the block copolymer was covered] except having used the said block copolymer.
[Response temperature measurement of block copolymer]
It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
37℃、20℃及び10℃での対水接触角を表3に示す。20℃での対水接触角は37℃での対水接触角よりも低く、前記ブロック共重合体が被覆された基材は温度応答性を示し、応答温度は20~37℃の範囲にあることが分かった。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]で培養を行った。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]で培養を行った。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all the cells were detached under the condition (3) and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy.
実施例3
[ブロック共重合体の合成]
試験管に2-メタクリロイルオキシエチルホスホリルコリンを3.00g(10.2mmol)、n-ブチルメタクリレート3.37g(23.7mmol)、RAFT剤として4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド46mg(113μmol)、アゾビスイソブチロニトリル4mg(23μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液30mLに溶解させた。窒素バブリングにより30分脱気を行った後、65℃で21時間反応させた。反応後、反応溶液をアセトン:メタノール=20:1混合溶液500mLに注ぎ込み、析出した淡黄色固体をろ過し、1日減圧乾燥して、2-メタクリロイルオキシエチルホスホリルコリン/n-ブチルメタクリレートランダム共重合体を得た。 Example 3
[Synthesis of block copolymer]
3.00 g (10.2 mmol) of 2-methacryloyloxyethyl phosphorylcholine, 3.37 g (23.7 mmol) of n-butyl methacrylate in a test tube, 4-cyano-4-[(dodecylsulfonylthiocarbonyl) sulfonyl] as an RAFT agent 46 mg (113 μmol) of pentanoic acid and 4 mg (23 μmol) of azobisisobutyronitrile were added, and dissolved in 30 mL of a 1,4-dioxane / ethanol = 1: 1 mixed solution. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 65 ° C. for 21 hours. After the reaction, the reaction solution is poured into 500 mL of a mixed solution of acetone: methanol = 20: 1, and the precipitated pale yellow solid is filtered and dried under reduced pressure for 1 day to give 2-methacryloyloxyethyl phosphorylcholine / n-butyl methacrylate random copolymer I got
[ブロック共重合体の合成]
試験管に2-メタクリロイルオキシエチルホスホリルコリンを3.00g(10.2mmol)、n-ブチルメタクリレート3.37g(23.7mmol)、RAFT剤として4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド46mg(113μmol)、アゾビスイソブチロニトリル4mg(23μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液30mLに溶解させた。窒素バブリングにより30分脱気を行った後、65℃で21時間反応させた。反応後、反応溶液をアセトン:メタノール=20:1混合溶液500mLに注ぎ込み、析出した淡黄色固体をろ過し、1日減圧乾燥して、2-メタクリロイルオキシエチルホスホリルコリン/n-ブチルメタクリレートランダム共重合体を得た。 Example 3
[Synthesis of block copolymer]
3.00 g (10.2 mmol) of 2-methacryloyloxyethyl phosphorylcholine, 3.37 g (23.7 mmol) of n-butyl methacrylate in a test tube, 4-cyano-4-[(dodecylsulfonylthiocarbonyl) sulfonyl] as an RAFT agent 46 mg (113 μmol) of pentanoic acid and 4 mg (23 μmol) of azobisisobutyronitrile were added, and dissolved in 30 mL of a 1,4-dioxane / ethanol = 1: 1 mixed solution. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 65 ° C. for 21 hours. After the reaction, the reaction solution is poured into 500 mL of a mixed solution of acetone: methanol = 20: 1, and the precipitated pale yellow solid is filtered and dried under reduced pressure for 1 day to give 2-methacryloyloxyethyl phosphorylcholine / n-butyl methacrylate random copolymer I got
試験管に上記2-メタクリロイルオキシエチルホスホリルコリン/n-ブチルメタクリレートランダム共重合体1.50g、N-イソプロピルアクリルアミド1.85g(16.4mmol)、アゾビスイソブチロニトリル0.5mg(3μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液12.6mLに溶解した。窒素バブリングにより30分脱気を行った後、65℃で24時間反応させた。反応後、反応溶液をヘキサン500mLに注ぎ込み、析出した白色固体をろ過し、1日減圧乾燥して、ジブロック共重合体を得た。
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の作製]と同じ方法で作製した。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の濡れ性]と同じ方法で測定した。 Add 1.50 g of the above 2-methacryloyloxyethyl phosphorylcholine / n-butyl methacrylate random copolymer, 1.85 g (16.4 mmol) of N-isopropylacrylamide, and 0.5 mg (3 μmol) of azobisisobutyronitrile to a test tube The mixture was dissolved in 12.6 mL of a 1,4-dioxane / ethanol = 1: 1 mixed solution. After degassing by nitrogen bubbling for 30 minutes, reaction was carried out at 65 ° C. for 24 hours. After the reaction, the reaction solution was poured into 500 mL of hexane, and the precipitated white solid was filtered and dried under reduced pressure for 1 day to obtain a diblock copolymer.
[Preparation of Base Material Coated with Block Copolymer]
It produced by the same method as Example 1 [preparation of the base material with which the block copolymer was covered] except having used the said block copolymer.
[Response temperature measurement of block copolymer]
It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の作製]と同じ方法で作製した。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の濡れ性]と同じ方法で測定した。 Add 1.50 g of the above 2-methacryloyloxyethyl phosphorylcholine / n-butyl methacrylate random copolymer, 1.85 g (16.4 mmol) of N-isopropylacrylamide, and 0.5 mg (3 μmol) of azobisisobutyronitrile to a test tube The mixture was dissolved in 12.6 mL of a 1,4-dioxane / ethanol = 1: 1 mixed solution. After degassing by nitrogen bubbling for 30 minutes, reaction was carried out at 65 ° C. for 24 hours. After the reaction, the reaction solution was poured into 500 mL of hexane, and the precipitated white solid was filtered and dried under reduced pressure for 1 day to obtain a diblock copolymer.
[Preparation of Base Material Coated with Block Copolymer]
It produced by the same method as Example 1 [preparation of the base material with which the block copolymer was covered] except having used the said block copolymer.
[Response temperature measurement of block copolymer]
It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
37℃、20℃及び10℃での対水接触角を表3に示す。20℃での対水接触角は37℃での対水接触角よりも低く、前記ブロック共重合体が被覆された基材は温度応答性を示し、応答温度は20~37℃の範囲にあることが分かった。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]で培養を行った。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]で培養を行った。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。 実施例4
[ブロック共重合体の合成]
三方コックを備えた試験管に、4-シアノペンタン酸ジチオベンゾエートのプロパーギルエステル体0.57g(1.8mmol)、n-ブチルメタクリレート12.80g(90mmol)、アゾビス(イソブチロニトリル)60mg(0.36mmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液90mLに溶解した。試験管を液体窒素に浸して凍結し、真空ポンプで減圧脱気を行い、室温に戻した。この操作を3回繰り返し、試験管内の溶存酸素を除去した後、65℃で24時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応溶液を濃縮した。濃縮液をメタノール300mLに注ぎ、析出した赤色油状物質を回収して減圧乾燥し、末端アルキンを有するn-ブチルメタクリレート重合体を得た。 After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all the cells were detached under the condition (3) and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy. Example 4
[Synthesis of block copolymer]
In a test tube equipped with a three-way cock, 0.57 g (1.8 mmol) of propargyl ester of 4-cyanopentanoic acid dithiobenzoate, 12.80 g (90 mmol) of n-butyl methacrylate, 60 mg of azobis (isobutyronitrile) 0.36 mmol) was added and dissolved in 90 mL of a 1,4-dioxane / ethanol = 1: 1 mixed solution. The test tubes were frozen by immersion in liquid nitrogen and vacuum degassed with a vacuum pump and allowed to return to room temperature. This operation was repeated three times to remove dissolved oxygen in the test tube, and then reacted at 65 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 300 mL of methanol, and the precipitated red oily substance was recovered and dried under reduced pressure to obtain an n-butyl methacrylate polymer having a terminal alkyne.
[ブロック共重合体の合成]
三方コックを備えた試験管に、4-シアノペンタン酸ジチオベンゾエートのプロパーギルエステル体0.57g(1.8mmol)、n-ブチルメタクリレート12.80g(90mmol)、アゾビス(イソブチロニトリル)60mg(0.36mmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液90mLに溶解した。試験管を液体窒素に浸して凍結し、真空ポンプで減圧脱気を行い、室温に戻した。この操作を3回繰り返し、試験管内の溶存酸素を除去した後、65℃で24時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応溶液を濃縮した。濃縮液をメタノール300mLに注ぎ、析出した赤色油状物質を回収して減圧乾燥し、末端アルキンを有するn-ブチルメタクリレート重合体を得た。 After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all the cells were detached under the condition (3) and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy. Example 4
[Synthesis of block copolymer]
In a test tube equipped with a three-way cock, 0.57 g (1.8 mmol) of propargyl ester of 4-cyanopentanoic acid dithiobenzoate, 12.80 g (90 mmol) of n-butyl methacrylate, 60 mg of azobis (isobutyronitrile) 0.36 mmol) was added and dissolved in 90 mL of a 1,4-dioxane / ethanol = 1: 1 mixed solution. The test tubes were frozen by immersion in liquid nitrogen and vacuum degassed with a vacuum pump and allowed to return to room temperature. This operation was repeated three times to remove dissolved oxygen in the test tube, and then reacted at 65 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 300 mL of methanol, and the precipitated red oily substance was recovered and dried under reduced pressure to obtain an n-butyl methacrylate polymer having a terminal alkyne.
三方コックを備えた試験管に、上記末端アルキンを有するn-ブチルメタクリレート重合体5.95g(0.7mmol)、N-イソプロピルアクリルアミド15.84g(140mmol)、アゾビスイソブチロニトリル11.5mg(0.07mmol)を加え、1,4-ジオキサン140mLに溶解させた。試験管を液体窒素に浸して凍結し、真空ポンプで減圧脱気を行い、室温に戻した。この操作を3回繰り返し、試験管内の溶存酸素を除去した後、65℃で43時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応液を濃縮した。濃縮液をヘキサン1000mLに注ぎ、析出した淡赤色固体を回収して減圧乾燥し、末端アルキンを有するN-イソプロピルアクリルアミド/n-ブチルメタクリレートジブロック共重合体を得た。
In a test tube equipped with a three-way cock, 5.95 g (0.7 mmol) of the n-butyl methacrylate polymer having the above-mentioned terminal alkyne, 15.84 g (140 mmol) of N-isopropylacrylamide, 11.5 mg of azobisisobutyronitrile 0.07 mmol) was added and dissolved in 140 mL of 1,4-dioxane. The test tubes were frozen by immersion in liquid nitrogen and vacuum degassed with a vacuum pump and allowed to return to room temperature. This operation was repeated three times to remove dissolved oxygen in the test tube, and then reacted at 65 ° C. for 43 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure using a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 1000 mL of hexane, and the precipitated pale red solid was recovered and dried under reduced pressure to obtain an N-isopropylacrylamide / n-butyl methacrylate diblock copolymer having a terminal alkyne.
一方、三方コックを備えた試験管に4-シアノペンタン酸ジチオベンゾエートの3-アジドプロピルエステル体0.20g(0.57mmol)、ポリエチレングリコールメタクリレート(Aldrich製、Mn=300)12.01g(40mmol)、AIBN18.8mg(0.11mmol)を加え、1,4-ジオキサン28mLを加えて溶解させた。試験管を液体窒素に浸して凍結し、真空ポンプで減圧脱気を行い、室温に戻した。この操作を3回繰り返し、試験管内の溶存酸素を除去した。試験管を65℃に昇温し、65℃で2.5時間重合した。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応液を濃縮した。濃縮液をヘキサン500mlに注ぎ、底に付着した赤色油状物を回収した。ヘキサン300mLで2回洗浄し、得られた赤色油状物を真空乾燥し、末端アジドを有するポリエチレングリコールメタクリレート重合体ブロックを得た。
On the other hand, 0.20 g (0.57 mmol) of 3-azidopropyl ester of 4-cyanopentanoic acid dithiobenzoate, 12.01 g (40 mmol) of polyethylene glycol methacrylate (manufactured by Aldrich, Mn = 300) in a test tube equipped with a three-way cock Then, 18.8 mg (0.11 mmol) of AIBN was added, and 28 mL of 1,4-dioxane was added and dissolved. The test tubes were frozen by immersion in liquid nitrogen and vacuum degassed with a vacuum pump and allowed to return to room temperature. This operation was repeated three times to remove the dissolved oxygen in the test tube. The test tube was heated to 65 ° C. and polymerized at 65 ° C. for 2.5 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure using a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 500 ml of hexane and the red oil adhering to the bottom was recovered. The red oil obtained was washed twice with 300 mL of hexane and dried under vacuum to obtain a polyethylene glycol methacrylate polymer block having a terminal azide.
続いて三方コックを備えた試験管に、前記末端アルキンを有するN-イソプロピルアクリルアミド/n-ブチルメタクリレートジブロック共重合体0.50g、上記末端アジドを有するポリエチレングリコールメタクリレート重合体0.94gを加え、窒素置換を行った。窒素バブリングを行ったDMF9mLを加え溶解させた。臭化銅(I)38mg、2,2’-ビピリジル84mg、DMF1mLで別途調製した溶液を窒素気流下で試験管に加え、室温で48時間反応させた。反応終了後、三方コックを取り外し、空気に触れさせて銅触媒を失活させた。反応液を活性アルミナを詰めたカラムに通して銅触媒を取り除き、その溶液をロータリーエバポレーターで濃縮した。濃縮液を純水50mLにゆっくり注ぎ、析出した固形分を遠心分離(3000rpm×3分)により回収した。得られた固形分をメタノール2mlL溶解させ、再度純水50mlにゆっくり注ぎ、析出した固形分を遠心分離(3000rpm×3分)により回収した。真空乾燥により、ポリエチレングリコールメタクリレート重合体とn-ブチルメタクリレート重合体とN-イソプロピルアクリルアミド重合体ブロックからなるトリブロック共重合体を得た。
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の作製]と同じ方法で作製した。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の濡れ性]と同じ方法で測定した。 Subsequently, 0.50 g of the N-isopropyl acrylamide / n-butyl methacrylate diblock copolymer having the terminal alkyne and 0.94 g of a polyethylene glycol methacrylate polymer having the terminal azide are added to a test tube equipped with a three-way cock, Nitrogen substitution was performed. 9 mL of DMF subjected to nitrogen bubbling was added and dissolved. A separately prepared solution of 38 mg of copper (I) bromide, 84 mg of 2,2'-bipyridyl and 1 mL of DMF was added to a test tube under nitrogen flow and reacted at room temperature for 48 hours. After completion of the reaction, the three-way cock was removed and exposed to air to deactivate the copper catalyst. The reaction solution was passed through a column packed with activated alumina to remove the copper catalyst, and the solution was concentrated by a rotary evaporator. The concentrate was slowly poured into 50 mL of pure water, and the precipitated solid content was collected by centrifugation (3000 rpm × 3 minutes). The obtained solid content was dissolved in 2 ml of methanol and poured again slowly into 50 ml of pure water, and the precipitated solid content was recovered by centrifugation (3000 rpm × 3 minutes). Vacuum drying was carried out to obtain a triblock copolymer consisting of a polyethylene glycol methacrylate polymer, an n-butyl methacrylate polymer and an N-isopropylacrylamide polymer block.
[Preparation of Base Material Coated with Block Copolymer]
It produced by the same method as Example 1 [preparation of the base material with which the block copolymer was covered] except having used the said block copolymer.
[Response temperature measurement of block copolymer]
It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の作製]と同じ方法で作製した。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の濡れ性]と同じ方法で測定した。 Subsequently, 0.50 g of the N-isopropyl acrylamide / n-butyl methacrylate diblock copolymer having the terminal alkyne and 0.94 g of a polyethylene glycol methacrylate polymer having the terminal azide are added to a test tube equipped with a three-way cock, Nitrogen substitution was performed. 9 mL of DMF subjected to nitrogen bubbling was added and dissolved. A separately prepared solution of 38 mg of copper (I) bromide, 84 mg of 2,2'-bipyridyl and 1 mL of DMF was added to a test tube under nitrogen flow and reacted at room temperature for 48 hours. After completion of the reaction, the three-way cock was removed and exposed to air to deactivate the copper catalyst. The reaction solution was passed through a column packed with activated alumina to remove the copper catalyst, and the solution was concentrated by a rotary evaporator. The concentrate was slowly poured into 50 mL of pure water, and the precipitated solid content was collected by centrifugation (3000 rpm × 3 minutes). The obtained solid content was dissolved in 2 ml of methanol and poured again slowly into 50 ml of pure water, and the precipitated solid content was recovered by centrifugation (3000 rpm × 3 minutes). Vacuum drying was carried out to obtain a triblock copolymer consisting of a polyethylene glycol methacrylate polymer, an n-butyl methacrylate polymer and an N-isopropylacrylamide polymer block.
[Preparation of Base Material Coated with Block Copolymer]
It produced by the same method as Example 1 [preparation of the base material with which the block copolymer was covered] except having used the said block copolymer.
[Response temperature measurement of block copolymer]
It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
37℃、20℃及び10℃での対水接触角を表3に示す。20℃での対水接触角は37℃での対水接触角よりも低く、前記ブロック共重合体が被覆された基材は温度応答性を示し、応答温度は20~37℃の範囲にあることが分かった。また、20~45℃の範囲において同様に5℃間隔で対水接触角測定を行い、中点法によって応答温度を求めたところ、応答温度は34℃であった。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]で培養を行った。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 20 to 45 ° C., and the response temperature was determined by the midpoint method, the response temperature was 34 ° C.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]で培養を行った。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 20 to 45 ° C., and the response temperature was determined by the midpoint method, the response temperature was 34 ° C.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、0.25mMのエチレンジアミン四酢酸溶液を加え、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、単一細胞として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After medium change 144 hours after cell seeding, 0.25 mM ethylenediaminetetraacetic acid solution is added and (1) substrate is cooled to 4 ° C, (2) substrate is cooled to 4 ° C and 20 times When tapping was performed, (3) the substrate was cooled to 4 ° C., and peeling of cells was confirmed in each case of pipetting 10 times. Almost all cells were detached under the condition of (3) and recovered as single cells. The detachment of the cells was confirmed by phase contrast microscopy.
実施例5
[ブロック共重合体の合成]
ポリエチレングリコールメタクリレート12.01gの代わりに2-メトキシエチルアクリレート5.20g(40mmol)を用い、65℃で9時間重合したこと以外は実施例4[ブロック共重合体の合成]と同様の方法で合成を行い、ジブロック共重合体を合成した。
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の作製]と同様の方法で作製した。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の濡れ性]と同じ方法で測定した。 Example 5
[Synthesis of block copolymer]
Synthesis was carried out in the same manner as Example 4 [Synthesis of block copolymer] except that polymerization was carried out at 65 ° C. for 9 hours using 5.20 g (40 mmol) of 2-methoxyethyl acrylate instead of 12.01 g of polyethylene glycol methacrylate. To synthesize a diblock copolymer.
[Preparation of Base Material Coated with Block Copolymer]
It produced by the method similar to Example 1 [preparation of the base material with which the block copolymer was coated] except having used the said block copolymer.
[Response temperature measurement of block copolymer]
It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
[ブロック共重合体の合成]
ポリエチレングリコールメタクリレート12.01gの代わりに2-メトキシエチルアクリレート5.20g(40mmol)を用い、65℃で9時間重合したこと以外は実施例4[ブロック共重合体の合成]と同様の方法で合成を行い、ジブロック共重合体を合成した。
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の作製]と同様の方法で作製した。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の濡れ性]と同じ方法で測定した。 Example 5
[Synthesis of block copolymer]
Synthesis was carried out in the same manner as Example 4 [Synthesis of block copolymer] except that polymerization was carried out at 65 ° C. for 9 hours using 5.20 g (40 mmol) of 2-methoxyethyl acrylate instead of 12.01 g of polyethylene glycol methacrylate. To synthesize a diblock copolymer.
[Preparation of Base Material Coated with Block Copolymer]
It produced by the method similar to Example 1 [preparation of the base material with which the block copolymer was coated] except having used the said block copolymer.
[Response temperature measurement of block copolymer]
It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
37℃、20℃及び10℃での対水接触角を表3に示す。20℃での対水接触角は37℃での対水接触角よりも低く、前記ブロック共重合体が被覆された基材は温度応答性を示し、応答温度は20~37℃の範囲にあることが分かった。また、20~45℃の範囲において同様に5℃間隔で対水接触角測定を行い、中点法によって応答温度を求めたところ、応答温度は33℃であった。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]で培養を行った。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 20 to 45 ° C., and the response temperature was determined by the midpoint method, the response temperature was 33 ° C.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]で培養を行った。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 20 to 45 ° C., and the response temperature was determined by the midpoint method, the response temperature was 33 ° C.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、0.25mMのエチレンジアミン四酢酸溶液を加え、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、単一細胞として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After medium change 144 hours after cell seeding, 0.25 mM ethylenediaminetetraacetic acid solution is added and (1) substrate is cooled to 4 ° C, (2) substrate is cooled to 4 ° C and 20 times When tapping was performed, (3) the substrate was cooled to 4 ° C., and peeling of cells was confirmed in each case of pipetting 10 times. Almost all cells were detached under the condition of (3) and recovered as single cells. The detachment of the cells was confirmed by phase contrast microscopy.
実施例6
[ブロック共重合体の合成]
試験管に、4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド36mg(90μmol)、n-ブチルメタクリレート1.28g(9mmol)、アゾビス(イソブチロニトリル)3mg(18μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液9mLに溶解した。窒素バブリングにより30分脱気を行った後、65℃で24時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応溶液を濃縮した。濃縮液をメタノール250mLに注ぎ、析出した黄色油状物質を回収して減圧乾燥し、n-ブチルメタクリレート重合体を得た。 Example 6
[Synthesis of block copolymer]
In a test tube, 36 mg (90 μmol) of 4-cyano-4-[(dodecylsulfonylthiocarbonyl) sulfonyl] pentanoic acid, 1.28 g (9 mmol) of n-butyl methacrylate, 3 mg (18 μmol) of azobis (isobutyronitrile) Were dissolved in 9 mL of a 1,4-dioxane / ethanol = 1: 1 mixed solution. After degassing by nitrogen bubbling for 30 minutes, reaction was carried out at 65 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 250 mL of methanol, and the precipitated yellow oily substance was recovered and dried under reduced pressure to obtain an n-butyl methacrylate polymer.
[ブロック共重合体の合成]
試験管に、4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド36mg(90μmol)、n-ブチルメタクリレート1.28g(9mmol)、アゾビス(イソブチロニトリル)3mg(18μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液9mLに溶解した。窒素バブリングにより30分脱気を行った後、65℃で24時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応溶液を濃縮した。濃縮液をメタノール250mLに注ぎ、析出した黄色油状物質を回収して減圧乾燥し、n-ブチルメタクリレート重合体を得た。 Example 6
[Synthesis of block copolymer]
In a test tube, 36 mg (90 μmol) of 4-cyano-4-[(dodecylsulfonylthiocarbonyl) sulfonyl] pentanoic acid, 1.28 g (9 mmol) of n-butyl methacrylate, 3 mg (18 μmol) of azobis (isobutyronitrile) Were dissolved in 9 mL of a 1,4-dioxane / ethanol = 1: 1 mixed solution. After degassing by nitrogen bubbling for 30 minutes, reaction was carried out at 65 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 250 mL of methanol, and the precipitated yellow oily substance was recovered and dried under reduced pressure to obtain an n-butyl methacrylate polymer.
試験管に、前記n-ブチルメタクリレート重合体0.8g(1.0mmol)、N-イソプロピルアクリルアミド1.0g(8.8mmol)、アゾビスイソブチロニトリル1.6mg(9.9μmol)を加え、1,4-ジオキサン9mLに溶解させた。窒素バブリングにより30分脱気を行った後、65℃で15時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応液を濃縮した。濃縮液をヘキサン200mLに注ぎ、析出した淡黄色固体を回収して減圧乾燥し、N-イソプロピルアクリルアミドとn-ブチルメタクリレートのジブロック共重合体を得た。
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の作製]と同様の方法で作製した。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の濡れ性]と同じ方法で測定した。 In a test tube, 0.8 g (1.0 mmol) of the n-butyl methacrylate polymer, 1.0 g (8.8 mmol) of N-isopropylacrylamide, and 1.6 mg (9.9 μmol) of azobisisobutyronitrile are added. It was dissolved in 9 mL of 1,4-dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was carried out at 65 ° C. for 15 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure using a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 200 mL of hexane, and the precipitated pale yellow solid was collected and dried under reduced pressure to obtain a diblock copolymer of N-isopropylacrylamide and n-butyl methacrylate.
[Preparation of Base Material Coated with Block Copolymer]
It produced by the method similar to Example 1 [preparation of the base material with which the block copolymer was coated] except having used the said block copolymer.
[Response temperature measurement of block copolymer]
It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の作製]と同様の方法で作製した。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の濡れ性]と同じ方法で測定した。 In a test tube, 0.8 g (1.0 mmol) of the n-butyl methacrylate polymer, 1.0 g (8.8 mmol) of N-isopropylacrylamide, and 1.6 mg (9.9 μmol) of azobisisobutyronitrile are added. It was dissolved in 9 mL of 1,4-dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was carried out at 65 ° C. for 15 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure using a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 200 mL of hexane, and the precipitated pale yellow solid was collected and dried under reduced pressure to obtain a diblock copolymer of N-isopropylacrylamide and n-butyl methacrylate.
[Preparation of Base Material Coated with Block Copolymer]
It produced by the method similar to Example 1 [preparation of the base material with which the block copolymer was coated] except having used the said block copolymer.
[Response temperature measurement of block copolymer]
It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
37℃、20℃及び10℃での対水接触角を表3に示す。20℃での対水接触角は37℃での対水接触角よりも低く、前記ブロック共重合体が被覆された基材は温度応答性を示し、応答温度は20~37℃の範囲にあることが分かった。また、20~45℃の範囲において同様に5℃間隔で対水接触角測定を行い、中点法によって応答温度を求めたところ、応答温度は32℃であった。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材にiMatrix-511溶液((株)ニッピ製)(PBS(-)で約4.2μg/mLに希釈)を0.12mL/cm2添加し、37℃、CO2濃度5%の環境下で1時間静置した。その後iMatrix-511溶液を除去し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を0.2mL/cm2加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)を添加し培養した。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 20 to 45 ° C., and the response temperature was determined by the midpoint method, the response temperature was 32 ° C.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
0.12 mL / cm 2 of iMatrix-511 solution (manufactured by Nippi Co., Ltd.) (diluted to about 4.2 μg / mL with PBS (-)) was added to the block copolymer-coated substrate at 37 ° C. It was allowed to stand for 1 hour in an environment of 5% CO 2 concentration. Thereafter, the iMatrix-511 solution was removed, and the human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. in a 5% CO 2 environment. As the medium, 0.2 mL / cm 2 of StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added. In addition, until 24 hours after cell seeding, Y-27632 (manufactured by Wako Pure Chemical Industries, Ltd.) (concentration 10 μM) was added to the above-mentioned medium and cultured.
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材にiMatrix-511溶液((株)ニッピ製)(PBS(-)で約4.2μg/mLに希釈)を0.12mL/cm2添加し、37℃、CO2濃度5%の環境下で1時間静置した。その後iMatrix-511溶液を除去し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を0.2mL/cm2加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)を添加し培養した。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 20 to 45 ° C., and the response temperature was determined by the midpoint method, the response temperature was 32 ° C.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
0.12 mL / cm 2 of iMatrix-511 solution (manufactured by Nippi Co., Ltd.) (diluted to about 4.2 μg / mL with PBS (-)) was added to the block copolymer-coated substrate at 37 ° C. It was allowed to stand for 1 hour in an environment of 5% CO 2 concentration. Thereafter, the iMatrix-511 solution was removed, and the human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. in a 5% CO 2 environment. As the medium, 0.2 mL / cm 2 of StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added. In addition, until 24 hours after cell seeding, Y-27632 (manufactured by Wako Pure Chemical Industries, Ltd.) (
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]で培養を行った。
The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、0.25mMのエチレンジアミン四酢酸溶液を加え、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、単一細胞として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After medium change 144 hours after cell seeding, 0.25 mM ethylenediaminetetraacetic acid solution is added and (1) substrate is cooled to 4 ° C, (2) substrate is cooled to 4 ° C and 20 times When tapping was performed, (3) the substrate was cooled to 4 ° C., and peeling of cells was confirmed in each case of pipetting 10 times. Almost all cells were detached under the condition of (3) and recovered as single cells. The detachment of the cells was confirmed by phase contrast microscopy.
実施例7
[ブロック共重合体の合成]
試験管に、4-シアノ-4-[(ドデシルスルファニルチオカルボニル)スルファニル]ペンタノイックアシッド0.40g(0.1mmol)、n-ブチルメタクリレート7.11g(50mmol)、アゾビス(イソブチロニトリル)33mg(0.2mmol)を加え、1,4-ジオキサン50mLに溶解した。窒素バブリングにより30分脱気を行った後、70℃で24時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応溶液を濃縮した。濃縮液をメタノール250mLに注ぎ、析出した黄色油状物質を回収して減圧乾燥し、n-ブチルメタクリレート重合体を得た。 Example 7
[Synthesis of block copolymer]
In a test tube, 0.40 g (0.1 mmol) of 4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, 7.11 g (50 mmol) of n-butyl methacrylate, azobis (isobutyronitrile) 33 mg (0.2 mmol) was added and dissolved in 50 mL of 1,4-dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 70 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 250 mL of methanol, and the precipitated yellow oily substance was recovered and dried under reduced pressure to obtain an n-butyl methacrylate polymer.
[ブロック共重合体の合成]
試験管に、4-シアノ-4-[(ドデシルスルファニルチオカルボニル)スルファニル]ペンタノイックアシッド0.40g(0.1mmol)、n-ブチルメタクリレート7.11g(50mmol)、アゾビス(イソブチロニトリル)33mg(0.2mmol)を加え、1,4-ジオキサン50mLに溶解した。窒素バブリングにより30分脱気を行った後、70℃で24時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応溶液を濃縮した。濃縮液をメタノール250mLに注ぎ、析出した黄色油状物質を回収して減圧乾燥し、n-ブチルメタクリレート重合体を得た。 Example 7
[Synthesis of block copolymer]
In a test tube, 0.40 g (0.1 mmol) of 4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, 7.11 g (50 mmol) of n-butyl methacrylate, azobis (isobutyronitrile) 33 mg (0.2 mmol) was added and dissolved in 50 mL of 1,4-dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 70 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 250 mL of methanol, and the precipitated yellow oily substance was recovered and dried under reduced pressure to obtain an n-butyl methacrylate polymer.
試験管に、前記n-ブチルメタクリレート重合体0.9g(0.3mmol)、N-イソプロピルアクリルアミド2.65g(23.5mmol)、アゾビスイソブチロニトリル5mg(0.03mmol)を加え、1,4-ジオキサン15mLに溶解させた。窒素バブリングにより30分脱気を行った後、65℃で17時間反応させた。反応終了後、反応溶媒をアセトンで希釈し、ヘキサン500mLに注ぎ、析出した淡黄色固体を回収して減圧乾燥し、N-イソプロピルアクリルアミドとn-ブチルメタクリレートのジブロック共重合体を得た。
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体をエタノールに溶解させ、0.5wt%溶液とした。この溶液を直径3.5cmのディッシュ(Corning Incorporated製、材質:ポリスチレン)に50μL滴下し、1000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の濡れ性]と同じ方法で測定した。 In a test tube, 0.9 g (0.3 mmol) of the n-butyl methacrylate polymer, 2.65 g (23.5 mmol) of N-isopropylacrylamide, and 5 mg (0.03 mmol) of azobisisobutyronitrile are added. It was dissolved in 15 mL of 4-dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 65 ° C. for 17 hours. After completion of the reaction, the reaction solvent was diluted with acetone, poured into 500 mL of hexane, and the precipitated pale yellow solid was recovered and dried under reduced pressure to obtain a diblock copolymer of N-isopropylacrylamide and n-butyl methacrylate.
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer was dissolved in ethanol to make a 0.5 wt% solution. 50 μL of this solution was dropped to a 3.5 cm diameter dish (manufactured by Corning Incorporated, material: polystyrene), and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Response temperature measurement of block copolymer]
It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体をエタノールに溶解させ、0.5wt%溶液とした。この溶液を直径3.5cmのディッシュ(Corning Incorporated製、材質:ポリスチレン)に50μL滴下し、1000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の濡れ性]と同じ方法で測定した。 In a test tube, 0.9 g (0.3 mmol) of the n-butyl methacrylate polymer, 2.65 g (23.5 mmol) of N-isopropylacrylamide, and 5 mg (0.03 mmol) of azobisisobutyronitrile are added. It was dissolved in 15 mL of 4-dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 65 ° C. for 17 hours. After completion of the reaction, the reaction solvent was diluted with acetone, poured into 500 mL of hexane, and the precipitated pale yellow solid was recovered and dried under reduced pressure to obtain a diblock copolymer of N-isopropylacrylamide and n-butyl methacrylate.
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer was dissolved in ethanol to make a 0.5 wt% solution. 50 μL of this solution was dropped to a 3.5 cm diameter dish (manufactured by Corning Incorporated, material: polystyrene), and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Response temperature measurement of block copolymer]
It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
37℃、20℃及び10℃での対水接触角を表3に示す。20℃での対水接触角は37℃での対水接触角よりも低く、前記ブロック共重合体が被覆された基材は温度応答性を示し、応答温度は20~37℃の範囲にあることが分かった。また、20~45℃の範囲において同様に5℃間隔で対水接触角測定を行い、中点法によって応答温度を求めたところ、応答温度は33℃であった。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]で培養を行った。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 20 to 45 ° C., and the response temperature was determined by the midpoint method, the response temperature was 33 ° C.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]で培養を行った。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 20 to 45 ° C., and the response temperature was determined by the midpoint method, the response temperature was 33 ° C.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、0.25mMのエチレンジアミン四酢酸溶液を加え、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、単一細胞として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After medium change 144 hours after cell seeding, 0.25 mM ethylenediaminetetraacetic acid solution is added and (1) substrate is cooled to 4 ° C, (2) substrate is cooled to 4 ° C and 20 times When tapping was performed, (3) the substrate was cooled to 4 ° C., and peeling of cells was confirmed in each case of pipetting 10 times. Almost all cells were detached under the condition of (3) and recovered as single cells. The detachment of the cells was confirmed by phase contrast microscopy.
実施例8
[ブロック共重合体の合成]
試験管に、4-シアノ-4-[(ドデシルスルファニルチオカルボニル)スルファニル]ペンタノイックアシッド0.40g(0.1mmol)、n-ブチルメタクリレート7.11g(50mmol)、アゾビス(イソブチロニトリル)33mg(0.2mmol)を加え、1,4-ジオキサン50mLに溶解した。窒素バブリングにより30分脱気を行った後、70℃で24時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応溶液を濃縮した。濃縮液をメタノール250mLに注ぎ、析出した黄色油状物質を回収して減圧乾燥し、n-ブチルメタクリレート重合体を得た。 Example 8
[Synthesis of block copolymer]
In a test tube, 0.40 g (0.1 mmol) of 4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, 7.11 g (50 mmol) of n-butyl methacrylate, azobis (isobutyronitrile) 33 mg (0.2 mmol) was added and dissolved in 50 mL of 1,4-dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 70 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 250 mL of methanol, and the precipitated yellow oily substance was recovered and dried under reduced pressure to obtain an n-butyl methacrylate polymer.
[ブロック共重合体の合成]
試験管に、4-シアノ-4-[(ドデシルスルファニルチオカルボニル)スルファニル]ペンタノイックアシッド0.40g(0.1mmol)、n-ブチルメタクリレート7.11g(50mmol)、アゾビス(イソブチロニトリル)33mg(0.2mmol)を加え、1,4-ジオキサン50mLに溶解した。窒素バブリングにより30分脱気を行った後、70℃で24時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応溶液を濃縮した。濃縮液をメタノール250mLに注ぎ、析出した黄色油状物質を回収して減圧乾燥し、n-ブチルメタクリレート重合体を得た。 Example 8
[Synthesis of block copolymer]
In a test tube, 0.40 g (0.1 mmol) of 4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, 7.11 g (50 mmol) of n-butyl methacrylate, azobis (isobutyronitrile) 33 mg (0.2 mmol) was added and dissolved in 50 mL of 1,4-dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 70 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 250 mL of methanol, and the precipitated yellow oily substance was recovered and dried under reduced pressure to obtain an n-butyl methacrylate polymer.
試験管に、前記n-ブチルメタクリレート重合体0.9g(0.3mmol)、N-イソプロピルアクリルアミド8.14g(72mmol)、アゾビスイソブチロニトリル5mg(0.03mmol)を加え、1,4-ジオキサン15mLに溶解させた。窒素バブリングにより30分脱気を行った後、65℃で17時間反応させた。反応終了後、反応溶媒をアセトンで希釈し、ヘキサン500mLに注ぎ、析出した淡黄色固体を回収して減圧乾燥し、N-イソプロピルアクリルアミドとn-ブチルメタクリレートのジブロック共重合体を得た。
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体を用いたこと以外は、実施例7[ブロック共重合体が被覆された基材の作製]と同様の方法で作製した。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例7[ブロック共重合体が被覆された基材の濡れ性]と同じ方法で測定した。 In a test tube, 0.9 g (0.3 mmol) of the n-butyl methacrylate polymer, 8.14 g (72 mmol) of N-isopropyl acrylamide, 5 mg (0.03 mmol) of azobisisobutyronitrile are added, and 1,4- It was dissolved in 15 mL of dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 65 ° C. for 17 hours. After completion of the reaction, the reaction solvent was diluted with acetone, poured into 500 mL of hexane, and the precipitated pale yellow solid was recovered and dried under reduced pressure to obtain a diblock copolymer of N-isopropylacrylamide and n-butyl methacrylate.
[Preparation of Base Material Coated with Block Copolymer]
It produced by the method similar to Example 7 [preparation of the base material with which the block copolymer was coated] except having used the said block copolymer.
[Response temperature measurement of block copolymer]
It measured by the same method as Example 7 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体を用いたこと以外は、実施例7[ブロック共重合体が被覆された基材の作製]と同様の方法で作製した。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例7[ブロック共重合体が被覆された基材の濡れ性]と同じ方法で測定した。 In a test tube, 0.9 g (0.3 mmol) of the n-butyl methacrylate polymer, 8.14 g (72 mmol) of N-isopropyl acrylamide, 5 mg (0.03 mmol) of azobisisobutyronitrile are added, and 1,4- It was dissolved in 15 mL of dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 65 ° C. for 17 hours. After completion of the reaction, the reaction solvent was diluted with acetone, poured into 500 mL of hexane, and the precipitated pale yellow solid was recovered and dried under reduced pressure to obtain a diblock copolymer of N-isopropylacrylamide and n-butyl methacrylate.
[Preparation of Base Material Coated with Block Copolymer]
It produced by the method similar to Example 7 [preparation of the base material with which the block copolymer was coated] except having used the said block copolymer.
[Response temperature measurement of block copolymer]
It measured by the same method as Example 7 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
37℃、20℃及び10℃での対水接触角を表3に示す。20℃での対水接触角は37℃での対水接触角よりも低く、前記ブロック共重合体が被覆された基材は温度応答性を示し、応答温度は20~37℃の範囲にあることが分かった。また、20~45℃の範囲において同様に5℃間隔で対水接触角測定を行い、中点法によって応答温度を求めたところ、応答温度は33℃であった。
[ブロック共重合体が被覆された基材表面の構造]
前記ブロック共重合体が被覆された基材表面の37℃における水中AFM像を図4に示した。前記ブロック共重合体による層は相分離構造を形成し、ブロック共重合体の被覆量の多い領域と少ない領域が存在していた。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]で培養を行った。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 20 to 45 ° C., and the response temperature was determined by the midpoint method, the response temperature was 33 ° C.
[Structure of substrate surface coated with block copolymer]
An AFM image in water at 37 ° C. of the substrate surface coated with the block copolymer is shown in FIG. The layer of the block copolymer forms a phase separation structure, and a region with a large amount of block copolymer coverage and a small region are present.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
[ブロック共重合体が被覆された基材表面の構造]
前記ブロック共重合体が被覆された基材表面の37℃における水中AFM像を図4に示した。前記ブロック共重合体による層は相分離構造を形成し、ブロック共重合体の被覆量の多い領域と少ない領域が存在していた。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]で培養を行った。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 20 to 45 ° C., and the response temperature was determined by the midpoint method, the response temperature was 33 ° C.
[Structure of substrate surface coated with block copolymer]
An AFM image in water at 37 ° C. of the substrate surface coated with the block copolymer is shown in FIG. The layer of the block copolymer forms a phase separation structure, and a region with a large amount of block copolymer coverage and a small region are present.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(2)及び(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Under the conditions of (2) and (3), almost all the cells were exfoliated and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy.
実施例9
[ブロック共重合体の合成]
三方コックを備えた試験管に、4-シアノペンタン酸ジチオベンゾエートのプロパーギルエステル体95mg、N-イソプロピルアクリルアミド6.8g、AIBN8mgを加え、1,4-ジオキサン20mlに溶解した。窒素バブリングを30分行った後、70℃で24時間攪拌し重合した。重合終了後、反応液をヘキサン500mLに注ぎ、析出した桃色固体をろ過により回収し、乾燥して、末端アルキンを有するN-イソプロピルアクリルアミド重合体を得た。 Example 9
[Synthesis of block copolymer]
In a test tube equipped with a three-way cock, 95 mg of propargyl ester of 4-cyanopentanoic acid dithiobenzoate, 6.8 g of N-isopropylacrylamide and 8 mg of AIBN were added and dissolved in 20 ml of 1,4-dioxane. After bubbling nitrogen for 30 minutes, the mixture was stirred at 70 ° C. for 24 hours for polymerization. After completion of the polymerization, the reaction solution was poured into 500 mL of hexane, and the precipitated pink solid was collected by filtration and dried to obtain an N-isopropylacrylamide polymer having a terminal alkyne.
[ブロック共重合体の合成]
三方コックを備えた試験管に、4-シアノペンタン酸ジチオベンゾエートのプロパーギルエステル体95mg、N-イソプロピルアクリルアミド6.8g、AIBN8mgを加え、1,4-ジオキサン20mlに溶解した。窒素バブリングを30分行った後、70℃で24時間攪拌し重合した。重合終了後、反応液をヘキサン500mLに注ぎ、析出した桃色固体をろ過により回収し、乾燥して、末端アルキンを有するN-イソプロピルアクリルアミド重合体を得た。 Example 9
[Synthesis of block copolymer]
In a test tube equipped with a three-way cock, 95 mg of propargyl ester of 4-cyanopentanoic acid dithiobenzoate, 6.8 g of N-isopropylacrylamide and 8 mg of AIBN were added and dissolved in 20 ml of 1,4-dioxane. After bubbling nitrogen for 30 minutes, the mixture was stirred at 70 ° C. for 24 hours for polymerization. After completion of the polymerization, the reaction solution was poured into 500 mL of hexane, and the precipitated pink solid was collected by filtration and dried to obtain an N-isopropylacrylamide polymer having a terminal alkyne.
一方、三方コックを備えた試験管に、4-シアノペンタン酸ジチオベンゾエートの3-アジドプロピルエステル体0.18g、N-(4-ヒドロキシフェニル)メタクリルアミド5.3g、AIBN26mgを加え、DMF20mLに溶解した。窒素バブリングを30分行った後、70℃で24時間攪拌し重合した。重合終了後、反応液を純水500mLに注ぎ、析出した桃色固体をろ過により回収し、乾燥して、末端アジドを有するN-(4-ヒドロキシフェニル)メタクリルアミド重合体を得た。
On the other hand, 0.18 g of 3-azidopropyl ester of 4-cyanopentanoic acid dithiobenzoate, 5.3 g of N- (4-hydroxyphenyl) methacrylamide, and 26 mg of AIBN were added to a test tube equipped with a three-way cock and dissolved in 20 mL of DMF did. After bubbling nitrogen for 30 minutes, the mixture was stirred at 70 ° C. for 24 hours for polymerization. After completion of the polymerization, the reaction solution was poured into 500 mL of pure water, and the precipitated pink solid was collected by filtration and dried to obtain an N- (4-hydroxyphenyl) methacrylamide polymer having a terminal azide.
続いて、三方コックを備えた試験管に、前記末端アルキンを有するN-イソプロピルアクリルアミド重合体0.65g、上記末端アジドを有するN-(4-ヒドロキシフェニル)メタクリルアミド重合体0.30gを加え、窒素置換を行った。窒素バブリングを行ったDMF9mLを加え溶解させた。臭化銅(I)14mg、2,2’-ビピリジル31mg、DMF1mLで別途調製した溶液を窒素気流下で試験管に加え、室温で48時間反応させた。反応終了後、三方コックを取り外し、空気を触れさせて銅触媒を失活させた。反応液を活性アルミナを詰めたカラムに通して銅触媒を取り除き、その溶液をロータリーエバポレーターで濃縮した。濃縮液をメタノール/アセトン混合溶媒へ溶解させて、ヘキサンを少しずつ加え、析出する重合体を回収した。再沈殿精製を3回繰り返し、N-イソプロピルアクリルアミドとN-(4-ヒドロキシフェニル)メタクリルアミドのジブロック共重合体を得た。
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体を用いたこと以外は、実施例7[ブロック共重合体が被覆された基材の作製]と同様の方法で作製した。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の濡れ性]と同じ方法で測定した。 Subsequently, 0.65 g of the N-isopropylacrylamide polymer having the terminal alkyne and 0.30 g of the N- (4-hydroxyphenyl) methacrylamide polymer having the terminal azide are added to a test tube equipped with a three-way cock, Nitrogen substitution was performed. 9 mL of DMF subjected to nitrogen bubbling was added and dissolved. A solution separately prepared of 14 mg of copper (I) bromide, 31 mg of 2,2'-bipyridyl and 1 mL of DMF was added to a test tube under nitrogen flow and reacted at room temperature for 48 hours. After completion of the reaction, the three-way cock was removed, and the air was made to touch to inactivate the copper catalyst. The reaction solution was passed through a column packed with activated alumina to remove the copper catalyst, and the solution was concentrated by a rotary evaporator. The concentrate was dissolved in a mixed solvent of methanol and acetone, hexane was added little by little, and the precipitated polymer was recovered. The reprecipitation purification was repeated three times to obtain a diblock copolymer of N-isopropylacrylamide and N- (4-hydroxyphenyl) methacrylamide.
[Preparation of Base Material Coated with Block Copolymer]
It produced by the method similar to Example 7 [preparation of the base material with which the block copolymer was coated] except having used the said block copolymer.
[Response temperature measurement of block copolymer]
It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体を用いたこと以外は、実施例7[ブロック共重合体が被覆された基材の作製]と同様の方法で作製した。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の濡れ性]と同じ方法で測定した。 Subsequently, 0.65 g of the N-isopropylacrylamide polymer having the terminal alkyne and 0.30 g of the N- (4-hydroxyphenyl) methacrylamide polymer having the terminal azide are added to a test tube equipped with a three-way cock, Nitrogen substitution was performed. 9 mL of DMF subjected to nitrogen bubbling was added and dissolved. A solution separately prepared of 14 mg of copper (I) bromide, 31 mg of 2,2'-bipyridyl and 1 mL of DMF was added to a test tube under nitrogen flow and reacted at room temperature for 48 hours. After completion of the reaction, the three-way cock was removed, and the air was made to touch to inactivate the copper catalyst. The reaction solution was passed through a column packed with activated alumina to remove the copper catalyst, and the solution was concentrated by a rotary evaporator. The concentrate was dissolved in a mixed solvent of methanol and acetone, hexane was added little by little, and the precipitated polymer was recovered. The reprecipitation purification was repeated three times to obtain a diblock copolymer of N-isopropylacrylamide and N- (4-hydroxyphenyl) methacrylamide.
[Preparation of Base Material Coated with Block Copolymer]
It produced by the method similar to Example 7 [preparation of the base material with which the block copolymer was coated] except having used the said block copolymer.
[Response temperature measurement of block copolymer]
It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
37℃、20℃及び10℃での対水接触角を表3に示す。20℃での対水接触角は37℃での対水接触角よりも低く、前記ブロック共重合体が被覆された基材は温度応答性を示し、応答温度は20~37℃の範囲にあることが分かった。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]で培養を行った。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]で培養を行った。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 20 ° C is lower than the contact angle to water at 37 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 20 to 37 ° C. I found that.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、0.25mMのエチレンジアミン四酢酸溶液を加え、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、単一細胞として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After medium change 144 hours after cell seeding, 0.25 mM ethylenediaminetetraacetic acid solution is added and (1) substrate is cooled to 4 ° C, (2) substrate is cooled to 4 ° C and 20 times When tapping was performed, (3) the substrate was cooled to 4 ° C., and peeling of cells was confirmed in each case of pipetting 10 times. Almost all cells were detached under the condition of (3) and recovered as single cells. The detachment of the cells was confirmed by phase contrast microscopy.
実施例10
[ブロック共重合体の合成]
試験管に、4-シアノ-4-[(ドデシルスルファニルチオカルボニル)スルファニル]ペンタノイックアシッド0.40g(0.1mmol)、n-ブチルメタクリレート7.11g(50mmol)、アゾビス(イソブチロニトリル)33mg(0.2mmol)を加え、1,4-ジオキサン50mLに溶解した。窒素バブリングにより30分脱気を行った後、70℃で24時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応溶液を濃縮した。濃縮液をメタノール250mLに注ぎ、析出した黄色油状物質を回収して減圧乾燥し、n-ブチルメタクリレート重合体を得た。 Example 10
[Synthesis of block copolymer]
In a test tube, 0.40 g (0.1 mmol) of 4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, 7.11 g (50 mmol) of n-butyl methacrylate, azobis (isobutyronitrile) 33 mg (0.2 mmol) was added and dissolved in 50 mL of 1,4-dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 70 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 250 mL of methanol, and the precipitated yellow oily substance was recovered and dried under reduced pressure to obtain an n-butyl methacrylate polymer.
[ブロック共重合体の合成]
試験管に、4-シアノ-4-[(ドデシルスルファニルチオカルボニル)スルファニル]ペンタノイックアシッド0.40g(0.1mmol)、n-ブチルメタクリレート7.11g(50mmol)、アゾビス(イソブチロニトリル)33mg(0.2mmol)を加え、1,4-ジオキサン50mLに溶解した。窒素バブリングにより30分脱気を行った後、70℃で24時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応溶液を濃縮した。濃縮液をメタノール250mLに注ぎ、析出した黄色油状物質を回収して減圧乾燥し、n-ブチルメタクリレート重合体を得た。 Example 10
[Synthesis of block copolymer]
In a test tube, 0.40 g (0.1 mmol) of 4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, 7.11 g (50 mmol) of n-butyl methacrylate, azobis (isobutyronitrile) 33 mg (0.2 mmol) was added and dissolved in 50 mL of 1,4-dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 70 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 250 mL of methanol, and the precipitated yellow oily substance was recovered and dried under reduced pressure to obtain an n-butyl methacrylate polymer.
試験管に、前記n-ブチルメタクリレート重合体0.9g(0.3mmol)、N-n-プロピルアクリルアミド8.14g(72mmol)、アゾビスイソブチロニトリル5mg(0.03mmol)を加え、1,4-ジオキサン15mLに溶解させた。窒素バブリングにより30分脱気を行った後、65℃で17時間反応させた。反応終了後、反応溶媒をアセトンで希釈し、ヘキサン500mLに注ぎ、析出した淡黄色固体を回収して減圧乾燥し、N-n-プロピルアクリルアミドとn-ブチルメタクリレートのジブロック共重合体を得た。
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体を用いたこと以外は、実施例7[ブロック共重合体が被覆された基材の作製]と同様の方法で作製した。
[ブロックセグメント(A)のLCST測定]
4-シアノ-4-[(ドデシルスルファニルチオカルボニル)スルファニル]ペンタノイックアシッド0.40g(0.1mmol)、N-n-プロピルアクリルアミド2.26g(20mmol)及びアゾビス(イソブチロニトリル)33mg(0.2mmol)をジオキサン20mLに溶解させた。窒素バブリングにより30分脱気を行った後、70℃で24時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応溶液を濃縮した。濃縮液をヘキサン250mLに注ぎ、析出した白色固体を回収して減圧乾燥し、N-n-プロピルアクリルアミド重合体を得た。N-n-プロピルアクリルアミド重合体を純水に溶解させ、0.6wt%水溶液とした。この溶液を光路長1cmの石英セルに入れ、1℃/分の速度で昇温しながら、分光光度計(日立ハイテクノロジーズ製、UH-5300)で波長500nmの光の透過率を測定した。中点法によりLCSTを求めたところ、LCSTは17℃であった。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の濡れ性]と同じ方法で測定した。 In a test tube, 0.9 g (0.3 mmol) of the n-butyl methacrylate polymer, 8.14 g (72 mmol) of Nn-propyl acrylamide, 5 mg (0.03 mmol) of azobisisobutyronitrile are added, It was dissolved in 15 mL of 4-dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 65 ° C. for 17 hours. After completion of the reaction, the reaction solvent was diluted with acetone, poured into 500 mL of hexane, and the precipitated pale yellow solid was recovered and dried under reduced pressure to obtain a diblock copolymer of Nn-propyl acrylamide and n-butyl methacrylate. .
[Preparation of Base Material Coated with Block Copolymer]
It produced by the method similar to Example 7 [preparation of the base material with which the block copolymer was coated] except having used the said block copolymer.
[LCST measurement of block segment (A)]
0.40 g (0.1 mmol) of 4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, 2.26 g (20 mmol) of N-n-propylacrylamide and 33 mg of azobis (isobutyronitrile) 0.2 mmol) was dissolved in 20 mL dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 70 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 250 mL of hexane, and the precipitated white solid was collected and dried under reduced pressure to obtain an N-n-propyl acrylamide polymer. The N-n-propyl acrylamide polymer was dissolved in pure water to form a 0.6 wt% aqueous solution. This solution was placed in a quartz cell with a light path length of 1 cm, and while raising the temperature at a rate of 1 ° C./min, the transmittance of light with a wavelength of 500 nm was measured with a spectrophotometer (UH-5300 manufactured by Hitachi High-Technologies Corporation). When LCST was calculated | required by the middle point method, LCST was 17 degreeC.
[Response temperature measurement of block copolymer]
It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
[ブロック共重合体が被覆された基材の作製]
前記ブロック共重合体を用いたこと以外は、実施例7[ブロック共重合体が被覆された基材の作製]と同様の方法で作製した。
[ブロックセグメント(A)のLCST測定]
4-シアノ-4-[(ドデシルスルファニルチオカルボニル)スルファニル]ペンタノイックアシッド0.40g(0.1mmol)、N-n-プロピルアクリルアミド2.26g(20mmol)及びアゾビス(イソブチロニトリル)33mg(0.2mmol)をジオキサン20mLに溶解させた。窒素バブリングにより30分脱気を行った後、70℃で24時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応溶液を濃縮した。濃縮液をヘキサン250mLに注ぎ、析出した白色固体を回収して減圧乾燥し、N-n-プロピルアクリルアミド重合体を得た。N-n-プロピルアクリルアミド重合体を純水に溶解させ、0.6wt%水溶液とした。この溶液を光路長1cmの石英セルに入れ、1℃/分の速度で昇温しながら、分光光度計(日立ハイテクノロジーズ製、UH-5300)で波長500nmの光の透過率を測定した。中点法によりLCSTを求めたところ、LCSTは17℃であった。
[ブロック共重合体の応答温度測定]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の濡れ性]と同じ方法で測定した。 In a test tube, 0.9 g (0.3 mmol) of the n-butyl methacrylate polymer, 8.14 g (72 mmol) of Nn-propyl acrylamide, 5 mg (0.03 mmol) of azobisisobutyronitrile are added, It was dissolved in 15 mL of 4-dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 65 ° C. for 17 hours. After completion of the reaction, the reaction solvent was diluted with acetone, poured into 500 mL of hexane, and the precipitated pale yellow solid was recovered and dried under reduced pressure to obtain a diblock copolymer of Nn-propyl acrylamide and n-butyl methacrylate. .
[Preparation of Base Material Coated with Block Copolymer]
It produced by the method similar to Example 7 [preparation of the base material with which the block copolymer was coated] except having used the said block copolymer.
[LCST measurement of block segment (A)]
0.40 g (0.1 mmol) of 4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, 2.26 g (20 mmol) of N-n-propylacrylamide and 33 mg of azobis (isobutyronitrile) 0.2 mmol) was dissolved in 20 mL dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 70 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 250 mL of hexane, and the precipitated white solid was collected and dried under reduced pressure to obtain an N-n-propyl acrylamide polymer. The N-n-propyl acrylamide polymer was dissolved in pure water to form a 0.6 wt% aqueous solution. This solution was placed in a quartz cell with a light path length of 1 cm, and while raising the temperature at a rate of 1 ° C./min, the transmittance of light with a wavelength of 500 nm was measured with a spectrophotometer (UH-5300 manufactured by Hitachi High-Technologies Corporation). When LCST was calculated | required by the middle point method, LCST was 17 degreeC.
[Response temperature measurement of block copolymer]
It measured by the same method as Example 1 [Wettability of the base material with which the block copolymer was covered] except having used the base material with which the said block copolymer was covered.
37℃、20℃、及び10℃での対水接触角を表3に示す。10℃での対水接触角は20℃での対水接触角よりも低く、前記ブロック共重合体が被覆された基材は温度応答性を示し、応答温度は10~20℃の範囲にあることが分かった。また、5~30℃の範囲において同様に5℃間隔で対水接触角測定を行い、中点法によって応答温度を求めたところ、応答温度は18℃であった。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]で培養を行った。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 10 ° C is lower than the contact angle to water at 20 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 10 to 20 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 5 to 30 ° C. and the response temperature was determined by the midpoint method, the response temperature was 18 ° C.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]で培養を行った。 The water contact angles at 37 ° C., 20 ° C. and 10 ° C. are shown in Table 3. The contact angle to water at 10 ° C is lower than the contact angle to water at 20 ° C, the block copolymer-coated substrate exhibits temperature responsiveness, and the response temperature is in the range of 10 to 20 ° C. I found that. Further, when the contact angle to water was similarly measured at 5 ° C. intervals in the range of 5 to 30 ° C. and the response temperature was determined by the midpoint method, the response temperature was 18 ° C.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the base material coated with the block copolymer was used.
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(2)及び(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Under the conditions of (2) and (3), almost all the cells were exfoliated and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy.
実施例11
[多能性幹細胞培養評価および剥離評価]
実施例8で作製したブロック共重合体が被覆された基材にMatrigel溶液(Corning Incorporated製)を0.05mL/cm2添加し、37℃、CO2濃度5%の環境下で1時間静置した。その後Matrigel溶液を除去し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を0.2mL/cm2加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)を添加した培地を使用して培養した。 Example 11
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
0.05 mL / cm 2 of Matrigel solution (manufactured by Corning Incorporated) was added to the block copolymer-coated substrate prepared in Example 8 and allowed to stand at 37 ° C., 5% CO 2 environment for 1 hour did. Thereafter, the Matrigel solution was removed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. in an environment of 5% CO 2 concentration. As the medium, 0.2 mL / cm 2 of StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added. In addition, until 24 hours after cell seeding, culture was performed using a medium to which Y-27632 (manufactured by Wako Pure Chemical Industries, Ltd.) (concentration 10 μM) was added to the above-mentioned medium.
[多能性幹細胞培養評価および剥離評価]
実施例8で作製したブロック共重合体が被覆された基材にMatrigel溶液(Corning Incorporated製)を0.05mL/cm2添加し、37℃、CO2濃度5%の環境下で1時間静置した。その後Matrigel溶液を除去し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を0.2mL/cm2加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)を添加した培地を使用して培養した。 Example 11
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
0.05 mL / cm 2 of Matrigel solution (manufactured by Corning Incorporated) was added to the block copolymer-coated substrate prepared in Example 8 and allowed to stand at 37 ° C., 5% CO 2 environment for 1 hour did. Thereafter, the Matrigel solution was removed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. in an environment of 5% CO 2 concentration. As the medium, 0.2 mL / cm 2 of StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added. In addition, until 24 hours after cell seeding, culture was performed using a medium to which Y-27632 (manufactured by Wako Pure Chemical Industries, Ltd.) (
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(2)及び(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Under the conditions of (2) and (3), almost all the cells were exfoliated and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy.
実施例12
[多能性幹細胞培養評価および剥離評価]
実施例8で作製したブロック共重合体が被覆された基材にVitronectin(VTN-N)溶液(Thermo Fisher Scientific製)(PBS(-)で約50μg/mLに希釈)を0.63mL/ウェル添加し、37℃、CO2濃度5%の環境下で1時間静置した。その後iMatrix-511溶液を除去し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を0.2mL/cm2加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)を添加した培地を使用して培養した。 Example 12
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
0.63 mL / well of Vitronectin (VTN-N) solution (manufactured by Thermo Fisher Scientific) (diluted to about 50 μg / mL with PBS (-)) was added to the block copolymer-coated substrate prepared in Example 8 It was allowed to stand at 37 ° C. in a 5% CO 2 environment for 1 hour. Thereafter, the iMatrix-511 solution was removed, and the human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. in a 5% CO 2 environment. As the medium, 0.2 mL / cm 2 of StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added. In addition, until 24 hours after cell seeding, culture was performed using a medium to which Y-27632 (manufactured by Wako Pure Chemical Industries, Ltd.) (concentration 10 μM) was added to the above-mentioned medium.
[多能性幹細胞培養評価および剥離評価]
実施例8で作製したブロック共重合体が被覆された基材にVitronectin(VTN-N)溶液(Thermo Fisher Scientific製)(PBS(-)で約50μg/mLに希釈)を0.63mL/ウェル添加し、37℃、CO2濃度5%の環境下で1時間静置した。その後iMatrix-511溶液を除去し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を0.2mL/cm2加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)を添加した培地を使用して培養した。 Example 12
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
0.63 mL / well of Vitronectin (VTN-N) solution (manufactured by Thermo Fisher Scientific) (diluted to about 50 μg / mL with PBS (-)) was added to the block copolymer-coated substrate prepared in Example 8 It was allowed to stand at 37 ° C. in a 5% CO 2 environment for 1 hour. Thereafter, the iMatrix-511 solution was removed, and the human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. in a 5% CO 2 environment. As the medium, 0.2 mL / cm 2 of StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added. In addition, until 24 hours after cell seeding, culture was performed using a medium to which Y-27632 (manufactured by Wako Pure Chemical Industries, Ltd.) (
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(2)及び(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Under the conditions of (2) and (3), almost all the cells were exfoliated and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy.
実施例13
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.5wt%溶液とした。この溶液を孔径0.4μm、孔密度1.8×106個/cm2の細孔を有する空隙率0.2%の多孔質膜(Corning Incorporated製、商品名Falcon(登録商標)カルチャーインサート、材質:ポリエチレンテレフタレート)に50μL滴下し、1000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を0.2mL/cm2加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 13
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution. This solution was a porous membrane with a pore size of 0.4 μm and a porosity of 0.2% and a pore density of 1.8 × 10 6 / cm 2 (manufactured by Corning Incorporated, trade name Falcon® culture insert, Material: 50 μL was dropped to polyethylene terephthalate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, 0.2 mL / cm 2 of StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added. In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (concentration 10 μM) and iMatrix-511 solution (Nippi Co., Ltd.) (2.5 μL / mL) were added to the above medium. Was cultured using a medium supplemented with
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.5wt%溶液とした。この溶液を孔径0.4μm、孔密度1.8×106個/cm2の細孔を有する空隙率0.2%の多孔質膜(Corning Incorporated製、商品名Falcon(登録商標)カルチャーインサート、材質:ポリエチレンテレフタレート)に50μL滴下し、1000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を0.2mL/cm2加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 13
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution. This solution was a porous membrane with a pore size of 0.4 μm and a porosity of 0.2% and a pore density of 1.8 × 10 6 / cm 2 (manufactured by Corning Incorporated, trade name Falcon® culture insert, Material: 50 μL was dropped to polyethylene terephthalate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, 0.2 mL / cm 2 of StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added. In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(1)~(3)の全ての条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all cells were exfoliated under all the conditions (1) to (3) and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy.
実施例14
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.5wt%溶液とした。この溶液を孔径0.4μm、孔密度1.1×108個/cm2の細孔を有する空隙率13.8%の多孔質膜(Corning Incorporated製、商品名Falcon(登録商標)カルチャーインサート、材質:ポリエチレンテレフタレート)に50μL滴下し、1000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例13[多能性幹細胞培養評価および剥離評価]で培養を行った。 Example 14
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution. This solution is a 13.8% porous film having a pore diameter of 0.4 μm and a pore density of 1.1 × 10 8 / cm 2 (manufactured by Corning Incorporated, trade name Falcon® culture insert, Material: 50 μL was dropped to polyethylene terephthalate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.5wt%溶液とした。この溶液を孔径0.4μm、孔密度1.1×108個/cm2の細孔を有する空隙率13.8%の多孔質膜(Corning Incorporated製、商品名Falcon(登録商標)カルチャーインサート、材質:ポリエチレンテレフタレート)に50μL滴下し、1000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例13[多能性幹細胞培養評価および剥離評価]で培養を行った。 Example 14
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution. This solution is a 13.8% porous film having a pore diameter of 0.4 μm and a pore density of 1.1 × 10 8 / cm 2 (manufactured by Corning Incorporated, trade name Falcon® culture insert, Material: 50 μL was dropped to polyethylene terephthalate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
細胞播種から24時間後、96時間後、144時間後に、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は培養基材に光を当てて目視により観察することに加え、剥離操作の前後で培地中の細胞数を計測することにより確認した。
24 hours after cell seeding, 96 hours and 144 hours after, fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all the cells were detached under the condition (3) and recovered as aggregates. The cell detachment was confirmed by measuring the number of cells in the culture medium before and after the detachment operation, in addition to visual observation by applying light to the culture substrate.
実施例15
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.5wt%溶液とした。この溶液を孔径0.4μm、孔密度1.0×108個/cm2の細孔を有する空隙率12.6%の多孔質膜(Corning Incorporated製、商品名Falcon(登録商標)カルチャーインサート、材質:ポリカーボネート)に50μL滴下し、1000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例13[多能性幹細胞培養評価および剥離評価]で培養を行った。 Example 15
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution. This solution is a porous film having a pore diameter of 0.4 μm and a porosity of 12.6% and a porosity of 1 × 10 8 pores / cm 2 (Corning Incorporated, trade name Falcon® culture insert, Material: 50 μL was dropped to polycarbonate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.5wt%溶液とした。この溶液を孔径0.4μm、孔密度1.0×108個/cm2の細孔を有する空隙率12.6%の多孔質膜(Corning Incorporated製、商品名Falcon(登録商標)カルチャーインサート、材質:ポリカーボネート)に50μL滴下し、1000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例13[多能性幹細胞培養評価および剥離評価]で培養を行った。 Example 15
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution. This solution is a porous film having a pore diameter of 0.4 μm and a porosity of 12.6% and a porosity of 1 × 10 8 pores / cm 2 (Corning Incorporated, trade name Falcon® culture insert, Material: 50 μL was dropped to polycarbonate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
細胞播種から24時間後、96時間後、144時間後に、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は培養基材に光を当てて目視により観察することに加え、剥離操作の前後で培地中の細胞数を計測することにより確認した。
24 hours after cell seeding, 96 hours and 144 hours after, fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all the cells were detached under the condition (3) and recovered as aggregates. The cell detachment was confirmed by measuring the number of cells in the culture medium before and after the detachment operation, in addition to visual observation by applying light to the culture substrate.
実施例16
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.5wt%溶液とした。この溶液を孔径1μm、孔密度1.8×106個/cm2の細孔を有する空隙率1.4%の多孔質膜(Corning Incorporated製、商品名Falcon(登録商標)カルチャーインサート、材質:ポリエチレンテレフタレート)に50μL滴下し、1000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例13[多能性幹細胞培養評価および剥離評価]で培養を行った。 Example 16
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution. This solution is a porous membrane with a pore diameter of 1 μm and a porosity of 1.4% having pores with a pore density of 1.8 × 10 6 / cm 2 (manufactured by Corning Incorporated, trade name Falcon® culture insert, material: 50 μL was dropped to polyethylene terephthalate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.5wt%溶液とした。この溶液を孔径1μm、孔密度1.8×106個/cm2の細孔を有する空隙率1.4%の多孔質膜(Corning Incorporated製、商品名Falcon(登録商標)カルチャーインサート、材質:ポリエチレンテレフタレート)に50μL滴下し、1000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例13[多能性幹細胞培養評価および剥離評価]で培養を行った。 Example 16
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution. This solution is a porous membrane with a pore diameter of 1 μm and a porosity of 1.4% having pores with a pore density of 1.8 × 10 6 / cm 2 (manufactured by Corning Incorporated, trade name Falcon® culture insert, material: 50 μL was dropped to polyethylene terephthalate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all the cells were detached under the condition (3) and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy.
実施例17
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.5wt%溶液とした。この溶液を孔径3μm、孔密度5.8×105個/cm2の細孔を有する空隙率4.1%の多孔質膜(Corning Incorporated製、商品名Falcon(登録商標)カルチャーインサート、材質:ポリエチレンテレフタレート)に50μL滴下し、1000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例13[多能性幹細胞培養評価および剥離評価]で培養を行った。 Example 17
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution. This solution is a porous membrane having a pore size of 3 μm and a porosity of 4.1 × 10 5 / cm 2 and a porosity of 4.1% (manufactured by Corning Incorporated, trade name Falcon® culture insert, material: 50 μL was dropped to polyethylene terephthalate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.5wt%溶液とした。この溶液を孔径3μm、孔密度5.8×105個/cm2の細孔を有する空隙率4.1%の多孔質膜(Corning Incorporated製、商品名Falcon(登録商標)カルチャーインサート、材質:ポリエチレンテレフタレート)に50μL滴下し、1000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例13[多能性幹細胞培養評価および剥離評価]で培養を行った。 Example 17
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution. This solution is a porous membrane having a pore size of 3 μm and a porosity of 4.1 × 10 5 / cm 2 and a porosity of 4.1% (manufactured by Corning Incorporated, trade name Falcon® culture insert, material: 50 μL was dropped to polyethylene terephthalate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all the cells were detached under the condition (3) and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy.
実施例18
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.5wt%溶液とした。この溶液を孔径3μm、孔密度1.7×106個/cm2の細孔を有する空隙率12.0%の多孔質膜(グライナー社製、商品名ThinCert(商標) Cell Culture Inserts、材質:ポリエチレンテレフタレート)に50μL滴下し、1000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例13[多能性幹細胞培養評価および剥離評価]で培養を行った。 Example 18
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution. This solution is a porous membrane having a pore diameter of 3 μm and a porosity of 12.0% having pores with a pore density of 1.7 × 10 6 / cm 2 (manufactured by Greiner, trade name: ThinCert (trade name) Cell Culture Inserts, material: 50 μL was dropped to polyethylene terephthalate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.5wt%溶液とした。この溶液を孔径3μm、孔密度1.7×106個/cm2の細孔を有する空隙率12.0%の多孔質膜(グライナー社製、商品名ThinCert(商標) Cell Culture Inserts、材質:ポリエチレンテレフタレート)に50μL滴下し、1000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例13[多能性幹細胞培養評価および剥離評価]で培養を行った。 Example 18
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution. This solution is a porous membrane having a pore diameter of 3 μm and a porosity of 12.0% having pores with a pore density of 1.7 × 10 6 / cm 2 (manufactured by Greiner, trade name: ThinCert (trade name) Cell Culture Inserts, material: 50 μL was dropped to polyethylene terephthalate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(2)及び(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Under the conditions of (2) and (3), almost all the cells were exfoliated and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy.
実施例19
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.5wt%溶液とした。この溶液を孔径8μm、孔密度6.2×104個/cm2の細孔を有する空隙率3.1%の多孔質膜(Corning Incorporated製、商品名Falcon(登録商標)カルチャーインサート、材質:ポリエチレンテレフタレート)に50μL滴下し、1000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例13[多能性幹細胞培養評価および剥離評価]で培養を行った。 Example 19
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution. This solution is a porous membrane with a pore size of 8 μm and a pore density of 6.2 × 10 4 / cm 2 and a porosity of 3.1% (manufactured by Corning Incorporated, trade name Falcon® culture insert, material: 50 μL was dropped to polyethylene terephthalate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.5wt%溶液とした。この溶液を孔径8μm、孔密度6.2×104個/cm2の細孔を有する空隙率3.1%の多孔質膜(Corning Incorporated製、商品名Falcon(登録商標)カルチャーインサート、材質:ポリエチレンテレフタレート)に50μL滴下し、1000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例13[多能性幹細胞培養評価および剥離評価]で培養を行った。 Example 19
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution. This solution is a porous membrane with a pore size of 8 μm and a pore density of 6.2 × 10 4 / cm 2 and a porosity of 3.1% (manufactured by Corning Incorporated, trade name Falcon® culture insert, material: 50 μL was dropped to polyethylene terephthalate) and spin coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all the cells were detached under the condition (3) and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy.
実施例20
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.5wt%溶液とした。この溶液を孔径0.2μmの細孔を有する多孔質膜(帝人(株)製、商品名ミライム、材質:ポリエチレン)に50μL滴下し、1000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例13[多能性幹細胞培養評価および剥離評価]で培養を行った。 Example 20
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution. 50 μL of this solution was added dropwise to a porous membrane (made by Teijin Ltd., trade name Milim, material: polyethylene) having a pore size of 0.2 μm, and spin-coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.5wt%溶液とした。この溶液を孔径0.2μmの細孔を有する多孔質膜(帝人(株)製、商品名ミライム、材質:ポリエチレン)に50μL滴下し、1000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を用いたこと以外は、実施例13[多能性幹細胞培養評価および剥離評価]で培養を行った。 Example 20
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.5 wt% solution. 50 μL of this solution was added dropwise to a porous membrane (made by Teijin Ltd., trade name Milim, material: polyethylene) having a pore size of 0.2 μm, and spin-coated at 1000 rpm for 60 seconds. Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in Example 13 [multipotent stem cell culture evaluation and exfoliation evaluation] except that the base material coated with the block copolymer was used.
細胞播種から24時間後、96時間後、144時間後に、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(2)及び(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は培養基材に光を当てて目視により観察することに加え、剥離操作の前後で培地中の細胞数を計測することにより確認した。
24 hours after cell seeding, 96 hours and 144 hours after, fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Under the conditions of (2) and (3), almost all the cells were exfoliated and recovered as aggregates. The cell detachment was confirmed by measuring the number of cells in the culture medium before and after the detachment operation, in addition to visual observation by applying light to the culture substrate.
実施例21
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径0.05μm、孔密度6.0×108個/cm2の細孔を有する空隙率1.2%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリカーボネート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 21
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. A porous membrane having a pore size of 0.05 μm and a porosity of 1.2% having pores with a pore density of 6.0 × 10 8 / cm 2 (it 4 ip, product name: ipPORE, material: polycarbonate) having a diameter of 3.2 cm, It fixed by pinching with a ring of internal diameter 1.6 cm. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (concentration 10 μM) and iMatrix-511 solution (Nippi Co., Ltd.) (2.5 μL / mL) were added to the above medium. Was cultured using a medium supplemented with
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径0.05μm、孔密度6.0×108個/cm2の細孔を有する空隙率1.2%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリカーボネート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 21
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. A porous membrane having a pore size of 0.05 μm and a porosity of 1.2% having pores with a pore density of 6.0 × 10 8 / cm 2 (it 4 ip, product name: ipPORE, material: polycarbonate) having a diameter of 3.2 cm, It fixed by pinching with a ring of internal diameter 1.6 cm. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(1)~(3)の全ての条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all cells were exfoliated under all the conditions (1) to (3) and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy.
実施例22
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径0.1μm、孔密度6.0×108個/cm2の細孔を有する空隙率4.7%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリエチレンテレフタレート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 22
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. Porous membrane (made by it4ip, trade name: ipPORE, material: polyethylene terephthalate) having a pore diameter of 0.1 μm and a porosity of 4.7% having pores with a pore density of 6.0 × 10 8 / cm 2 and a diameter of 3.2 cm It was fixed by being pinched by a ring with an inner diameter of 1.6 cm. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (concentration 10 μM) and iMatrix-511 solution (Nippi Co., Ltd.) (2.5 μL / mL) were added to the above medium. Was cultured using a medium supplemented with
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径0.1μm、孔密度6.0×108個/cm2の細孔を有する空隙率4.7%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリエチレンテレフタレート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 22
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. Porous membrane (made by it4ip, trade name: ipPORE, material: polyethylene terephthalate) having a pore diameter of 0.1 μm and a porosity of 4.7% having pores with a pore density of 6.0 × 10 8 / cm 2 and a diameter of 3.2 cm It was fixed by being pinched by a ring with an inner diameter of 1.6 cm. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all the cells were detached under the condition (3) and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy.
実施例23
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径0.2μm、孔密度5.0×108個/cm2の細孔を有する空隙率15.7%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリエチレンテレフタレート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 23
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. A porous film (product made by it4ip, trade name: ipPORE, material: polyethylene terephthalate) having a pore diameter of 0.2 μm and a pore density of 5.0 × 10 8 pores / cm 2 and having a diameter of 3.2 cm It was fixed by being pinched by a ring with an inner diameter of 1.6 cm. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (concentration 10 μM) and iMatrix-511 solution (Nippi Co., Ltd.) (2.5 μL / mL) were added to the above medium. Was cultured using a medium supplemented with
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径0.2μm、孔密度5.0×108個/cm2の細孔を有する空隙率15.7%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリエチレンテレフタレート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 23
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. A porous film (product made by it4ip, trade name: ipPORE, material: polyethylene terephthalate) having a pore diameter of 0.2 μm and a pore density of 5.0 × 10 8 pores / cm 2 and having a diameter of 3.2 cm It was fixed by being pinched by a ring with an inner diameter of 1.6 cm. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (
細胞播種から24時間後、96時間後、144時間後に、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は培養基材に光を当てて目視により観察することに加え、剥離操作の前後で培地中の細胞数を計測することにより確認した。
24 hours after cell seeding, 96 hours and 144 hours after, fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all the cells were detached under the condition (3) and recovered as aggregates. The cell detachment was confirmed by measuring the number of cells in the culture medium before and after the detachment operation, in addition to visual observation by applying light to the culture substrate.
実施例24
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径0.4μm、孔密度1.5×108個/cm2の細孔を有する空隙率18.8%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリエチレンテレフタレート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 24
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. Porous membrane (product made by it4ip, trade name: ipPORE, material: polyethylene terephthalate) having a pore size of 0.4 μm and a pore density of 1.5 × 10 8 pores / cm 2 and having a diameter of 3.2 cm It was fixed by being pinched by a ring with an inner diameter of 1.6 cm. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (concentration 10 μM) and iMatrix-511 solution (Nippi Co., Ltd.) (2.5 μL / mL) were added to the above medium. Was cultured using a medium supplemented with
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径0.4μm、孔密度1.5×108個/cm2の細孔を有する空隙率18.8%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリエチレンテレフタレート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 24
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. Porous membrane (product made by it4ip, trade name: ipPORE, material: polyethylene terephthalate) having a pore size of 0.4 μm and a pore density of 1.5 × 10 8 pores / cm 2 and having a diameter of 3.2 cm It was fixed by being pinched by a ring with an inner diameter of 1.6 cm. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (
細胞播種から24時間後、96時間後、144時間後に、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は培養基材に光を当てて目視により観察することに加え、剥離操作の前後で培地中の細胞数を計測することにより確認した。
24 hours after cell seeding, 96 hours and 144 hours after, fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all the cells were detached under the condition (3) and recovered as aggregates. The cell detachment was confirmed by measuring the number of cells in the culture medium before and after the detachment operation, in addition to visual observation by applying light to the culture substrate.
実施例25
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径0.45μm、孔密度4.0×106個/cm2の細孔を有する空隙率0.6%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリエチレンテレフタレート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 25
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. Porous membrane (product made by it4ip, trade name: ipPORE, material: polyethylene terephthalate) having a pore diameter of 0.45 μm and a pore density of 4.0 × 10 6 / cm 2 and a pore diameter of 3.2 cm It was fixed by being pinched by a ring with an inner diameter of 1.6 cm. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (concentration 10 μM) and iMatrix-511 solution (Nippi Co., Ltd.) (2.5 μL / mL) were added to the above medium. Was cultured using a medium supplemented with
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径0.45μm、孔密度4.0×106個/cm2の細孔を有する空隙率0.6%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリエチレンテレフタレート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 25
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. Porous membrane (product made by it4ip, trade name: ipPORE, material: polyethylene terephthalate) having a pore diameter of 0.45 μm and a pore density of 4.0 × 10 6 / cm 2 and a pore diameter of 3.2 cm It was fixed by being pinched by a ring with an inner diameter of 1.6 cm. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(1)~(3)の全ての条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all cells were exfoliated under all the conditions (1) to (3) and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy.
実施例26
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径0.6μm、孔密度4.0×107個/cm2の細孔を有する空隙率11.3%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリカーボネート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 26
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. A porous membrane (made by it4ip, trade name: ipPORE, material: polycarbonate) having a pore diameter of 0.6 μm and a porosity of 11.3% having pores with a pore density of 4.0 × 10 7 / cm 2 and a diameter of 3.2 cm, It fixed by pinching with a ring of internal diameter 1.6 cm. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (concentration 10 μM) and iMatrix-511 solution (Nippi Co., Ltd.) (2.5 μL / mL) were added to the above medium. Was cultured using a medium supplemented with
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径0.6μm、孔密度4.0×107個/cm2の細孔を有する空隙率11.3%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリカーボネート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 26
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. A porous membrane (made by it4ip, trade name: ipPORE, material: polycarbonate) having a pore diameter of 0.6 μm and a porosity of 11.3% having pores with a pore density of 4.0 × 10 7 / cm 2 and a diameter of 3.2 cm, It fixed by pinching with a ring of internal diameter 1.6 cm. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (
細胞播種から24時間後、96時間後、144時間後に、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は培養基材に光を当てて目視により観察することに加え、剥離操作の前後で培地中の細胞数を計測することにより確認した。
24 hours after cell seeding, 96 hours and 144 hours after, fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all the cells were detached under the condition (3) and recovered as aggregates. The cell detachment was confirmed by measuring the number of cells in the culture medium before and after the detachment operation, in addition to visual observation by applying light to the culture substrate.
実施例27
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径0.8μm、孔密度4.0×107個/cm2の細孔を有する空隙率20.1%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリエチレンテレフタレート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 27
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. Porous membrane (product made by it4ip, trade name: ipPORE, material: polyethylene terephthalate) having a pore size of 0.8 μm and a pore density of 4.0 × 10 7 / cm 2 and a pore diameter of 3.2 cm It was fixed by being pinched by a ring with an inner diameter of 1.6 cm. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (concentration 10 μM) and iMatrix-511 solution (Nippi Co., Ltd.) (2.5 μL / mL) were added to the above medium. Was cultured using a medium supplemented with
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径0.8μm、孔密度4.0×107個/cm2の細孔を有する空隙率20.1%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリエチレンテレフタレート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 27
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. Porous membrane (product made by it4ip, trade name: ipPORE, material: polyethylene terephthalate) having a pore size of 0.8 μm and a pore density of 4.0 × 10 7 / cm 2 and a pore diameter of 3.2 cm It was fixed by being pinched by a ring with an inner diameter of 1.6 cm. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (
細胞播種から24時間後、96時間後、144時間後に、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は培養基材に光を当てて目視により観察することに加え、剥離操作の前後で培地中の細胞数を計測することにより確認した。
24 hours after cell seeding, 96 hours and 144 hours after, fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all the cells were detached under the condition (3) and recovered as aggregates. The cell detachment was confirmed by measuring the number of cells in the culture medium before and after the detachment operation, in addition to visual observation by applying light to the culture substrate.
実施例28
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径2μm、孔密度3.0×106個/cm2の細孔を有する空隙率9.4%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリエチレンテレフタレート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 28
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. Porous membrane with a pore size of 2 μm and a porosity of 9.4% having pores with a pore density of 3.0 × 10 6 / cm 2 (it 4 ip product, trade name ipPORE, material: polyethylene terephthalate), diameter 3.2 cm, inner diameter It fixed by pinching with a 1.6 cm ring. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (concentration 10 μM) and iMatrix-511 solution (Nippi Co., Ltd.) (2.5 μL / mL) were added to the above medium. Was cultured using a medium supplemented with
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径2μm、孔密度3.0×106個/cm2の細孔を有する空隙率9.4%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリエチレンテレフタレート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 28
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. Porous membrane with a pore size of 2 μm and a porosity of 9.4% having pores with a pore density of 3.0 × 10 6 / cm 2 (it 4 ip product, trade name ipPORE, material: polyethylene terephthalate), diameter 3.2 cm, inner diameter It fixed by pinching with a 1.6 cm ring. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all the cells were detached under the condition (3) and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy.
実施例29
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径5μm、孔密度4.0×105個/cm2の細孔を有する空隙率7.9%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリカーボネート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 29
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. Porous membrane with a pore size of 5 μm and a porosity of 7.9% having pores with a pore density of 4.0 × 10 5 / cm 2 (it4ip product, trade name ipPORE, material: polycarbonate), diameter 3.2 cm,inner diameter 1 It was immobilized by pinching with a .6 cm ring. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (concentration 10 μM) and iMatrix-511 solution (Nippi Co., Ltd.) (2.5 μL / mL) were added to the above medium. Was cultured using a medium supplemented with
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径5μm、孔密度4.0×105個/cm2の細孔を有する空隙率7.9%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリカーボネート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 29
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. Porous membrane with a pore size of 5 μm and a porosity of 7.9% having pores with a pore density of 4.0 × 10 5 / cm 2 (it4ip product, trade name ipPORE, material: polycarbonate), diameter 3.2 cm,
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all the cells were detached under the condition (3) and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy.
実施例30
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径10μm、孔密度1.0×105個/cm2の細孔を有する空隙率7.9%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリエチレンテレフタレート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 30
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. Porous membrane with a pore size of 10 μm and a porosity of 7.9% having pores with a pore density of 1.0 × 10 5 / cm 2 (it4ip product, trade name ipPORE, material: polyethylene terephthalate), diameter 3.2 cm, inner diameter It fixed by pinching with a 1.6 cm ring. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (concentration 10 μM) and iMatrix-511 solution (Nippi Co., Ltd.) (2.5 μL / mL) were added to the above medium. Was cultured using a medium supplemented with
[ブロック共重合体が被覆された基材の作製]
実施例8で合成したブロック共重合体をエタノールに溶解させ、0.6wt%溶液とした。孔径10μm、孔密度1.0×105個/cm2の細孔を有する空隙率7.9%の多孔質膜(it4ip製、商品名ipPORE、材質:ポリエチレンテレフタレート)を直径3.2cm、内径1.6cmのリングで挟むことにより固定化した。多孔質膜にプラズマ照射(流入ガスは空気、20Paガス圧下、導電電流20mA、1分間照射)を行い、さらにブロック共重合体を溶解させたエタノール溶液を30μL滴下し、2000rpmで60秒間スピンコートした。室温で1時間乾燥した。さらに、純水中に24時間浸漬させて洗浄し、ブロック共重合体が被覆された基材を作製した。
[多能性幹細胞培養評価および剥離評価]
前記ブロック共重合体が被覆された基材を培地に浸漬して固定し、ヒトiPS細胞201B7株を1300cells/cm2の密度で播種し、37℃、CO2濃度5%の環境下で培養した。培地はStemFitAK02N(味の素(株)製)を多孔質膜上の液面高さが2mmとなる量(=多孔質膜の面積に対して0.2mL/cm2)加えた。また、細胞播種から24時間後までは、前記培地にY-27632(和光純薬工業(株)製)(濃度10μM)とiMatrix-511溶液((株)ニッピ製)(2.5μL/mL)を添加した培地を使用して培養した。 Example 30
[Preparation of Base Material Coated with Block Copolymer]
The block copolymer synthesized in Example 8 was dissolved in ethanol to form a 0.6 wt% solution. Porous membrane with a pore size of 10 μm and a porosity of 7.9% having pores with a pore density of 1.0 × 10 5 / cm 2 (it4ip product, trade name ipPORE, material: polyethylene terephthalate), diameter 3.2 cm, inner diameter It fixed by pinching with a 1.6 cm ring. Plasma irradiation (flowing gas: air, 20 Pa gas pressure, conductive current 20 mA, irradiation for 1 minute) was applied to the porous film, and 30 μL of an ethanol solution in which the block copolymer was dissolved was dropped and spin coated at 2000 rpm for 60 seconds . Dried at room temperature for 1 hour. Furthermore, the substrate was immersed in pure water for 24 hours and washed to prepare a substrate coated with the block copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The substrate coated with the block copolymer was immersed in a medium and fixed, and human iPS cell 201B7 strain was seeded at a density of 1300 cells / cm 2 and cultured at 37 ° C. under an environment of 5% CO 2 concentration. . As the medium, StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added in such an amount that the liquid level on the porous membrane was 2 mm (= 0.2 mL / cm 2 with respect to the area of the porous membrane). In addition, until 24 hours after cell seeding, Y-27632 (Wako Pure Chemical Industries, Ltd.) (
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(3)の条件においてほぼ全ての細胞が剥離し、凝集塊として回収出来た。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. Almost all the cells were detached under the condition (3) and recovered as aggregates. The detachment of the cells was confirmed by phase contrast microscopy.
実施例31
[継代培養及び未分化維持率評価]
実施例8で作製したブロック共重合体が被覆された基材に培地StemFitAK02N(味の素(株)製)を0.2mL/cm2加え、さらにヒトiPS細胞201B7株を260個/cm2、iMatrix-511溶液((株)ニッピ製)を2.5μL/mLの濃度で加えた。37℃、CO2濃度5%の環境下で培養した。また、細胞播種から24時間後までは、培地にY-27632(和光純薬工業(株)製)(濃度10μM)を添加した。 Example 31
[Passage culture and undifferentiated maintenance rate evaluation]
Medium StemFitAK02N the substrate block copolymer prepared was coated in Example 8 (manufactured by Ajinomoto (Ltd.)) 0.2mL / cm 2 was added, further 260 human iPS cells 201B7 strain / cm 2, iMatrix- A 511 solution (manufactured by Nippi Co., Ltd.) was added at a concentration of 2.5 μL / mL. The cells were cultured at 37 ° C. in a 5% CO 2 environment. In addition, Y-27632 (manufactured by Wako Pure Chemical Industries, Ltd.) (concentration 10 μM) was added to the medium until 24 hours after cell seeding.
[継代培養及び未分化維持率評価]
実施例8で作製したブロック共重合体が被覆された基材に培地StemFitAK02N(味の素(株)製)を0.2mL/cm2加え、さらにヒトiPS細胞201B7株を260個/cm2、iMatrix-511溶液((株)ニッピ製)を2.5μL/mLの濃度で加えた。37℃、CO2濃度5%の環境下で培養した。また、細胞播種から24時間後までは、培地にY-27632(和光純薬工業(株)製)(濃度10μM)を添加した。 Example 31
[Passage culture and undifferentiated maintenance rate evaluation]
Medium StemFitAK02N the substrate block copolymer prepared was coated in Example 8 (manufactured by Ajinomoto (Ltd.)) 0.2mL / cm 2 was added, further 260 human iPS cells 201B7 strain / cm 2, iMatrix- A 511 solution (manufactured by Nippi Co., Ltd.) was added at a concentration of 2.5 μL / mL. The cells were cultured at 37 ° C. in a 5% CO 2 environment. In addition, Y-27632 (manufactured by Wako Pure Chemical Industries, Ltd.) (
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から168時間後、培地を全て除去した後にPBS緩衝液を加え、PBS緩衝液を吸引除去することで細胞を洗浄した。0.25mMのエチレンジアミン四酢酸を含有するPBS緩衝液を加え、37℃で5分間インキュベートした。Y-27632(和光純薬工業(株)製)(濃度10μM)を含有する培地を加えた後、基材を4℃に冷却し、基材側面を叩いて振動を与え、ピペッティングを行うことにより細胞を基材から剥離して、細胞懸濁液を作製した。この細胞懸濁液を用いて、前記ブロック共重合体が被覆された基材に細胞を播種することで、継代を行った。同様の操作を繰り返すことにより、5回の継代を行った。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After 168 hours of cell seeding, the cells were washed by removing all the media and then adding PBS buffer and aspirating off the PBS buffer. PBS buffer containing 0.25 mM ethylenediaminetetraacetic acid was added and incubated for 5 minutes at 37 ° C. After adding a culture medium containing Y-27632 (Wako Pure Chemical Industries, Ltd.) (concentration 10 μM), cool the substrate to 4 ° C, strike the side of the substrate to give vibration, and perform pipetting The cells were detached from the substrate according to to prepare a cell suspension. The cell suspension was used to perform passage by seeding cells on the block copolymer-coated substrate. Five passages were performed by repeating the same operation.
5回の継代を行った細胞を剥離して回収し、4%パラホルムアルデヒドを含有するPBS緩衝液で処理した後、Alexa Fluor(商標) 647 anti-human SSEA-4 Antibodyで細胞を染色し、フローサイトメーターにより細胞の未分化維持率を測定した。未分化維持率は96%であった。
Five passaged cells are detached and collected, treated with PBS buffer containing 4% paraformaldehyde, and then stained with Alexa FluorTM 647 anti-human SSEA-4 Antibody. The undifferentiated maintenance rate of cells was measured by a flow cytometer. The undifferentiated maintenance rate was 96%.
実施例32
[継代培養及び未分化維持率評価]
実施例13で作製したブロック共重合体が被覆された基材に培地StemFitAK02N(味の素(株)製)を0.2mL/cm2加え、さらにヒトiPS細胞201B7株を260個/cm2、iMatrix-511溶液((株)ニッピ製)を2.5μL/mLの濃度で加えた。37℃、CO2濃度5%の環境下で培養した。また、細胞播種から24時間後までは、培地にY-27632(和光純薬工業(株)製)(濃度10μM)を添加した。 Example 32
[Passage culture and undifferentiated maintenance rate evaluation]
Medium StemFitAK02N the substrate block copolymer prepared was coated with Example 13 (manufactured by Ajinomoto (Ltd.)) 0.2mL / cm 2 was added, further 260 human iPS cells 201B7 strain / cm 2, iMatrix- A 511 solution (manufactured by Nippi Co., Ltd.) was added at a concentration of 2.5 μL / mL. The cells were cultured at 37 ° C. in a 5% CO 2 environment. In addition, Y-27632 (manufactured by Wako Pure Chemical Industries, Ltd.) (concentration 10 μM) was added to the medium until 24 hours after cell seeding.
[継代培養及び未分化維持率評価]
実施例13で作製したブロック共重合体が被覆された基材に培地StemFitAK02N(味の素(株)製)を0.2mL/cm2加え、さらにヒトiPS細胞201B7株を260個/cm2、iMatrix-511溶液((株)ニッピ製)を2.5μL/mLの濃度で加えた。37℃、CO2濃度5%の環境下で培養した。また、細胞播種から24時間後までは、培地にY-27632(和光純薬工業(株)製)(濃度10μM)を添加した。 Example 32
[Passage culture and undifferentiated maintenance rate evaluation]
Medium StemFitAK02N the substrate block copolymer prepared was coated with Example 13 (manufactured by Ajinomoto (Ltd.)) 0.2mL / cm 2 was added, further 260 human iPS cells 201B7 strain / cm 2, iMatrix- A 511 solution (manufactured by Nippi Co., Ltd.) was added at a concentration of 2.5 μL / mL. The cells were cultured at 37 ° C. in a 5% CO 2 environment. In addition, Y-27632 (manufactured by Wako Pure Chemical Industries, Ltd.) (
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から168時間後、培地を全て除去した後にPBS緩衝液を加え、PBS緩衝液を吸引除去することで細胞を洗浄した。0.25mMのエチレンジアミン四酢酸を含有するPBS緩衝液を加え、37℃で5分間インキュベートした。Y-27632(和光純薬工業(株)製)(濃度10μM)を含有する培地を加えた後、基材を4℃に冷却し、基材側面を叩いて振動を与え、ピペッティングを行うことにより細胞を基材から剥離して、細胞懸濁液を作製した。この細胞懸濁液を用いて、前記ブロック共重合体が被覆された基材に細胞を播種することで、継代を行った。同様の操作を繰り返すことにより、5回の継代を行った。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After 168 hours of cell seeding, the cells were washed by removing all the media and then adding PBS buffer and aspirating off the PBS buffer. PBS buffer containing 0.25 mM ethylenediaminetetraacetic acid was added and incubated for 5 minutes at 37 ° C. After adding a culture medium containing Y-27632 (Wako Pure Chemical Industries, Ltd.) (concentration 10 μM), cool the substrate to 4 ° C, strike the side of the substrate to give vibration, and perform pipetting The cells were detached from the substrate according to to prepare a cell suspension. The cell suspension was used to perform passage by seeding cells on the block copolymer-coated substrate. Five passages were performed by repeating the same operation.
5回の継代を行った細胞を剥離して回収し、4%パラホルムアルデヒドを含有するPBS緩衝液で処理した後、Alexa Fluor(商標) 647 anti-human SSEA-4 Antibodyで細胞を染色し、フローサイトメーターにより細胞の未分化維持率を測定した。未分化維持率は98%であった。 比較例1
[多能性幹細胞培養評価および剥離評価]においてiMatrix-511溶液を添加せず、その他は実施例1と同様にして多能性幹細胞の培養を行った。細胞は接着せず死滅し、多能性幹細胞は培養できなかった。 Five passaged cells are detached and collected, treated with PBS buffer containing 4% paraformaldehyde, and then stained with Alexa FluorTM 647 anti-human SSEA-4 Antibody. The undifferentiated maintenance rate of cells was measured by a flow cytometer. The undifferentiated maintenance rate was 98%. Comparative Example 1
In [Pluripotent stem cell culture evaluation and exfoliation evaluation], pluripotent stem cells were cultured in the same manner as in Example 1 except that the iMatrix-511 solution was not added. The cells did not adhere and died and pluripotent stem cells could not be cultured.
[多能性幹細胞培養評価および剥離評価]においてiMatrix-511溶液を添加せず、その他は実施例1と同様にして多能性幹細胞の培養を行った。細胞は接着せず死滅し、多能性幹細胞は培養できなかった。 Five passaged cells are detached and collected, treated with PBS buffer containing 4% paraformaldehyde, and then stained with Alexa FluorTM 647 anti-human SSEA-4 Antibody. The undifferentiated maintenance rate of cells was measured by a flow cytometer. The undifferentiated maintenance rate was 98%. Comparative Example 1
In [Pluripotent stem cell culture evaluation and exfoliation evaluation], pluripotent stem cells were cultured in the same manner as in Example 1 except that the iMatrix-511 solution was not added. The cells did not adhere and died and pluripotent stem cells could not be cultured.
比較例2
[共重合体の合成]
試験管にN-(4-ヒドロキシフェニル)メタクリルアミド4.78g(27mmol)、4-アジド安息香酸とヒドロキシエチルメタクリレートの縮合体0.83g(3mmol)、アゾビスイソブチロニトリル49mg(0.3mmol)を加え、N,N’-ジメチルホルムアミド18mLに溶解させた。窒素バブリングにより30分脱気を行った後、70℃で69時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応溶液を濃縮した。濃縮液をメタノール250mLに注ぎ、析出した黄色油状物質を回収して減圧乾燥し、N-(4-ヒドロキシフェニル)メタクリルアミド/アジドランダム共重合体を得た。
[共重合体が被覆された基材の作製]
前記共重合体を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の作製]と同様の方法で作製した。
[多能性幹細胞培養評価および剥離評価]
前記共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]と同様の方法で培養を行った。 Comparative example 2
[Synthesis of copolymer]
In a test tube, 4.78 g (27 mmol) of N- (4-hydroxyphenyl) methacrylamide, 0.83 g (3 mmol) of a condensation product of 4-azidobenzoic acid and hydroxyethyl methacrylate, 49 mg (0.3 mmol) of azobisisobutyronitrile Was added and dissolved in 18 mL of N, N'-dimethylformamide. After degassing for 30 minutes by nitrogen bubbling, the reaction was carried out at 70 ° C. for 69 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 250 mL of methanol, and the precipitated yellow oily substance was recovered and dried under reduced pressure to obtain N- (4-hydroxyphenyl) methacrylamide / azido random copolymer.
[Preparation of base material coated with copolymer]
It produced by the method similar to Example 1 [preparation of the base material with which the block copolymer was coated] except having used the said copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
Culture was performed in the same manner as in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the above-described base material coated with the copolymer was used.
[共重合体の合成]
試験管にN-(4-ヒドロキシフェニル)メタクリルアミド4.78g(27mmol)、4-アジド安息香酸とヒドロキシエチルメタクリレートの縮合体0.83g(3mmol)、アゾビスイソブチロニトリル49mg(0.3mmol)を加え、N,N’-ジメチルホルムアミド18mLに溶解させた。窒素バブリングにより30分脱気を行った後、70℃で69時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応溶液を濃縮した。濃縮液をメタノール250mLに注ぎ、析出した黄色油状物質を回収して減圧乾燥し、N-(4-ヒドロキシフェニル)メタクリルアミド/アジドランダム共重合体を得た。
[共重合体が被覆された基材の作製]
前記共重合体を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の作製]と同様の方法で作製した。
[多能性幹細胞培養評価および剥離評価]
前記共重合体が被覆された基材を用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]と同様の方法で培養を行った。 Comparative example 2
[Synthesis of copolymer]
In a test tube, 4.78 g (27 mmol) of N- (4-hydroxyphenyl) methacrylamide, 0.83 g (3 mmol) of a condensation product of 4-azidobenzoic acid and hydroxyethyl methacrylate, 49 mg (0.3 mmol) of azobisisobutyronitrile Was added and dissolved in 18 mL of N, N'-dimethylformamide. After degassing for 30 minutes by nitrogen bubbling, the reaction was carried out at 70 ° C. for 69 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 250 mL of methanol, and the precipitated yellow oily substance was recovered and dried under reduced pressure to obtain N- (4-hydroxyphenyl) methacrylamide / azido random copolymer.
[Preparation of base material coated with copolymer]
It produced by the method similar to Example 1 [preparation of the base material with which the block copolymer was coated] except having used the said copolymer.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
Culture was performed in the same manner as in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the above-described base material coated with the copolymer was used.
細胞播種から24時間後、96時間後、144時間後に位相差顕微鏡で細胞の様子を観察した。いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(1)~(3)のいずれにおいても細胞は剥離せず、温度応答性高分子による層の非存在では温度低下による多能性幹細胞の回収は出来なかった。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase contrast microscope. In each case, cell adhesion and proliferation were confirmed, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. The cells were not detached in any of (1) to (3), and the pluripotent stem cells could not be recovered due to the temperature decrease in the absence of the layer of the thermoresponsive polymer. The detachment of the cells was confirmed by phase contrast microscopy.
比較例3
基材にブロック共重合体を被覆せず、Corning Incorporated細胞培養用6ウェルプレートをそのまま用い、その他は実施例1と同様にして評価した。
[多能性幹細胞培養評価および剥離評価]
Corning Incorporated製細胞培養用6ウェルプレートをそのまま用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]と同様の方法で培養を行った。 Comparative example 3
The substrate was not coated with the block copolymer, and a 6-well plate for Corning Incorporated cell culture was used as it was, and the others were evaluated in the same manner as in Example 1.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in the same manner as in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the 6-well plate for cell culture manufactured by Corning Incorporated was used as it was.
基材にブロック共重合体を被覆せず、Corning Incorporated細胞培養用6ウェルプレートをそのまま用い、その他は実施例1と同様にして評価した。
[多能性幹細胞培養評価および剥離評価]
Corning Incorporated製細胞培養用6ウェルプレートをそのまま用いたこと以外は、実施例1[多能性幹細胞培養評価および剥離評価]と同様の方法で培養を行った。 Comparative example 3
The substrate was not coated with the block copolymer, and a 6-well plate for Corning Incorporated cell culture was used as it was, and the others were evaluated in the same manner as in Example 1.
[Pluripotent stem cell culture evaluation and exfoliation evaluation]
The culture was performed in the same manner as in Example 1 [Pluripotent Stem Cell Culture Evaluation and Detachment Evaluation] except that the 6-well plate for cell culture manufactured by Corning Incorporated was used as it was.
細胞播種から24時間後、96時間後、144時間後に位相差顕微鏡で細胞の様子を観察した。いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から144時間後の培地交換の後、(1)基材を4℃に冷却した場合、(2)基材を4℃に冷却して20回タッピングを行った場合、(3)基材を4℃に冷却して10回ピペッティングを行った場合のそれぞれで細胞の剥離を確認した。(1)~(3)のいずれにおいても細胞は剥離せず、ブロック共重合体非存在では温度低下による多能性幹細胞の回収は出来なかった。なお、細胞の剥離は位相差顕微鏡観察により確認した。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase contrast microscope. In each case, cell adhesion and proliferation were confirmed, and the fresh medium was replaced. After culture medium exchange 144 hours after cell seeding, (1) when the substrate is cooled to 4 ° C, (2) when the substrate is cooled to 4 ° C and tapping is performed 20 times, (3) substrate Were cooled to 4 ° C. and pipetting was performed 10 times, and cell detachment was confirmed in each case. In any of (1) to (3), the cells were not detached, and in the absence of the block copolymer, it was not possible to recover pluripotent stem cells due to the temperature decrease. The detachment of the cells was confirmed by phase contrast microscopy.
比較例4
[重合体の合成]
試験管に、N-イソプロピルアクリルアミド5.65g(50mmol)、アゾビス(イソブチロニトリル)33mg(0.2mmol)を加え、1,4-ジオキサン50mLに溶解した。窒素バブリングにより30分脱気を行った後、70℃で24時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応溶液を濃縮した。濃縮液をヘキサン500mLに注ぎ、析出した固体を回収して減圧乾燥し、N-イソプロピルアクリルアミド重合体を得た。
[重合体が被覆された基材の作製]
前記重合体を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の作製]と同様の方法で作製した。しかし、純水中に24時間浸漬させて洗浄したところ、重合体の大部分は溶解してしまった。重合体が水に溶解する場合、培養液へ重合体が溶出し、細胞を汚染してしまうため、N-イソプロピルアクリルアミド重合体は培養で使用できないことがわかった。 Comparative example 4
[Synthesis of polymer]
In a test tube, 5.65 g (50 mmol) of N-isopropylacrylamide and 33 mg (0.2 mmol) of azobis (isobutyronitrile) were added and dissolved in 50 mL of 1,4-dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 70 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 500 mL of hexane, and the precipitated solid was collected and dried under reduced pressure to obtain an N-isopropylacrylamide polymer.
[Preparation of polymer-coated substrate]
It produced by the method similar to Example 1 [preparation of the base material with which the block copolymer was coated] except having used the said polymer. However, when immersed and washed in pure water for 24 hours, most of the polymer was dissolved. When the polymer was dissolved in water, it was found that the N-isopropylacrylamide polymer can not be used for culture because the polymer is eluted into the culture solution and contaminates the cells.
[重合体の合成]
試験管に、N-イソプロピルアクリルアミド5.65g(50mmol)、アゾビス(イソブチロニトリル)33mg(0.2mmol)を加え、1,4-ジオキサン50mLに溶解した。窒素バブリングにより30分脱気を行った後、70℃で24時間反応させた。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応溶液を濃縮した。濃縮液をヘキサン500mLに注ぎ、析出した固体を回収して減圧乾燥し、N-イソプロピルアクリルアミド重合体を得た。
[重合体が被覆された基材の作製]
前記重合体を用いたこと以外は、実施例1[ブロック共重合体が被覆された基材の作製]と同様の方法で作製した。しかし、純水中に24時間浸漬させて洗浄したところ、重合体の大部分は溶解してしまった。重合体が水に溶解する場合、培養液へ重合体が溶出し、細胞を汚染してしまうため、N-イソプロピルアクリルアミド重合体は培養で使用できないことがわかった。 Comparative example 4
[Synthesis of polymer]
In a test tube, 5.65 g (50 mmol) of N-isopropylacrylamide and 33 mg (0.2 mmol) of azobis (isobutyronitrile) were added and dissolved in 50 mL of 1,4-dioxane. After degassing by nitrogen bubbling for 30 minutes, reaction was performed at 70 ° C. for 24 hours. After completion of the reaction, the reaction solvent was evaporated under reduced pressure with a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 500 mL of hexane, and the precipitated solid was collected and dried under reduced pressure to obtain an N-isopropylacrylamide polymer.
[Preparation of polymer-coated substrate]
It produced by the method similar to Example 1 [preparation of the base material with which the block copolymer was coated] except having used the said polymer. However, when immersed and washed in pure water for 24 hours, most of the polymer was dissolved. When the polymer was dissolved in water, it was found that the N-isopropylacrylamide polymer can not be used for culture because the polymer is eluted into the culture solution and contaminates the cells.
比較例5
基材にブロック共重合体を被覆せず、直径3.5cmのディッシュ(Corning Incorporated製、材質:ポリスチレン)をそのまま用いた。
[継代培養及び未分化維持率評価]
前記ブロック共重合体が被覆された基材に培地StemFitAK02N(味の素(株)製)を0.2mL/cm2加え、さらにヒトiPS細胞201B7株を1300個/cm2、iMatrix-511溶液((株)ニッピ製)を2.5μL/mLの濃度で加えた。37℃、CO2濃度5%の環境下で培養した。また、細胞播種から24時間後までは、培地にY-27632(和光純薬工業(株)製)(濃度10μM)を添加した。 Comparative example 5
The base material was not coated with the block copolymer, and a dish with a diameter of 3.5 cm (manufactured by Corning Incorporated, material: polystyrene) was used as it was.
[Passage culture and undifferentiated maintenance rate evaluation]
0.2 mL / cm 2 of medium StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added to the block copolymer-coated substrate, and further, human iPS cell 201 B7 strain was 1300 cells / cm 2 , iMatrix-511 solution Nippi) was added at a concentration of 2.5 μL / mL. The cells were cultured at 37 ° C. in a 5% CO 2 environment. In addition, Y-27632 (manufactured by Wako Pure Chemical Industries, Ltd.) (concentration 10 μM) was added to the medium until 24 hours after cell seeding.
基材にブロック共重合体を被覆せず、直径3.5cmのディッシュ(Corning Incorporated製、材質:ポリスチレン)をそのまま用いた。
[継代培養及び未分化維持率評価]
前記ブロック共重合体が被覆された基材に培地StemFitAK02N(味の素(株)製)を0.2mL/cm2加え、さらにヒトiPS細胞201B7株を1300個/cm2、iMatrix-511溶液((株)ニッピ製)を2.5μL/mLの濃度で加えた。37℃、CO2濃度5%の環境下で培養した。また、細胞播種から24時間後までは、培地にY-27632(和光純薬工業(株)製)(濃度10μM)を添加した。 Comparative example 5
The base material was not coated with the block copolymer, and a dish with a diameter of 3.5 cm (manufactured by Corning Incorporated, material: polystyrene) was used as it was.
[Passage culture and undifferentiated maintenance rate evaluation]
0.2 mL / cm 2 of medium StemFitAK02N (manufactured by Ajinomoto Co., Ltd.) was added to the block copolymer-coated substrate, and further, human iPS cell 201 B7 strain was 1300 cells / cm 2 , iMatrix-511 solution Nippi) was added at a concentration of 2.5 μL / mL. The cells were cultured at 37 ° C. in a 5% CO 2 environment. In addition, Y-27632 (manufactured by Wako Pure Chemical Industries, Ltd.) (
細胞播種から24時間後、96時間後、144時間後に、位相差顕微鏡で細胞の様子を観察し、いずれの場合においても細胞接着ならびに増殖を確認し、新しい前記培地に交換を行った。細胞播種から168時間後、培地を全て除去した後にPBS緩衝液を加え、PBS緩衝液を吸引除去することで細胞を洗浄した。0.25mMのエチレンジアミン四酢酸を含有するPBS緩衝液を加え、37℃で5分間インキュベートした。Y-27632(和光純薬工業(株)製)(濃度10μM)を含有する培地を加えた後、基材表面をセルスクレーパーで擦ることにより全ての細胞を基材から剥離して、細胞懸濁液を作製した。この細胞懸濁液を用いて、前記ブロック共重合体が被覆された基材に細胞を播種することで、継代を行った。同様の操作を繰り返すことにより、20回の継代を行った。
After 24 hours, 96 hours and 144 hours after cell seeding, the appearance of the cells was observed with a phase-contrast microscope to confirm cell adhesion and proliferation in each case, and the fresh medium was replaced. After 168 hours of cell seeding, the cells were washed by removing all the media and then adding PBS buffer and aspirating off the PBS buffer. PBS buffer containing 0.25 mM ethylenediaminetetraacetic acid was added and incubated for 5 minutes at 37 ° C. After adding a medium containing Y-27632 (manufactured by Wako Pure Chemical Industries, Ltd.) (concentration 10 μM), all cells are detached from the substrate by rubbing the substrate surface with a cell scraper to obtain a cell suspension. The solution was made. The cell suspension was used to perform passage by seeding cells on the block copolymer-coated substrate. Twenty passages were performed by repeating the same operation.
20回の継代を行った細胞を剥離して回収し、4%パラホルムアルデヒドを含有するPBS緩衝液で処理した後、Alexa Fluor(商標) 647 anti-human SSEA-4 Antibodyで細胞を染色し、フローサイトメーターにより細胞の未分化維持率を測定した。未分化維持率は36%であった。
20 passaged cells are detached and collected, treated with 4% paraformaldehyde in PBS buffer, and then stained with Alexa FluorTM 647 anti-human SSEA-4 Antibody; The undifferentiated maintenance rate of cells was measured by a flow cytometer. The undifferentiated maintenance rate was 36%.
実施例1~12で用いた培養基材の構成を表1に示す。
The constitution of the culture substrate used in Examples 1 to 12 is shown in Table 1.
実施例13~30、比較例1~4で用いた培養基材の構成を表2に示す。
The constitutions of culture substrates used in Examples 13 to 30 and Comparative Examples 1 to 4 are shown in Table 2.
実施例1~12の培養基材の評価結果を表3に示す。
The evaluation results of the culture substrates of Examples 1 to 12 are shown in Table 3.
実施例13~30、比較例1~4の培養基材の評価結果を表3に示す。
The evaluation results of the culture substrates of Examples 13 to 30 and Comparative Examples 1 to 4 are shown in Table 3.
本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく、様々な変更や修正を加えることができることは当業者にとって明らかである。
While the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
なお、2017年8月16日に出願された日本特許出願2017-157193号及び2018年7月30日に出願された日本特許出願2018-142306号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
In addition, the specification, claims, drawings and abstracts of Japanese Patent Application Nos. 2017-157193 filed on August 16, 2017 and Japanese Patent Application No. 2018-142306 filed on July 30, 2018. The entire contents of which are incorporated herein by reference and incorporated as disclosure of the specification of the present invention.
1 基材
2 ブロック共重合体
3 生体由来物質
10 培養基材 1substrate 2 block copolymer 3 biological substance 10 culture substrate
2 ブロック共重合体
3 生体由来物質
10 培養基材 1
Claims (11)
- 基材表面に、水に対する応答温度が0℃~50℃の範囲にある温度応答性高分子による層を有し、前記層にマトリゲル、ラミニン、フィブロネクチン、ビトロネクチン及びコラーゲンからなる群から選択される少なくとも1種類の生体由来物質が固定化されていることを特徴とする多能性幹細胞の培養基材。 The substrate surface has a layer of a temperature responsive polymer having a response temperature to water in the range of 0 ° C. to 50 ° C., and the layer includes at least one selected from the group consisting of matrigel, laminin, fibronectin, vitronectin and collagen. A culture substrate for pluripotent stem cells, characterized in that one type of biologically derived substance is immobilized.
- 前記温度応答性高分子が、少なくとも下記(A)及び(B)のブロックセグメントを含有するブロック共重合体であることを特徴とする、請求項1に記載の多能性幹細胞の培養基材。
(A)水に対する下限臨界溶解温度(LCST)が0℃~80℃の範囲にある温度応答性重合体ブロックセグメント。
(B)多能性幹細胞接着性を有するブロックセグメント。 The culture substrate for pluripotent stem cells according to claim 1, wherein the thermoresponsive polymer is a block copolymer containing at least the following block segments (A) and (B):
(A) Temperature-responsive polymer block segment having a lower limit critical solution temperature (LCST) to water in the range of 0 ° C. to 80 ° C.
(B) Block segment having pluripotent stem cell adhesion. - 前記温度応答性高分子が、少なくとも下記(A)及び(B)のブロックセグメントを含有するブロック共重合体であることを特徴とする、請求項1又は2に記載の多能性幹細胞の培養基材。
(A)LCSTが0℃~80℃の範囲にある温度応答性重合体ブロックセグメント。
(B)水不溶性ブロックセグメント。 The culture medium for pluripotent stem cells according to claim 1 or 2, characterized in that the thermoresponsive polymer is a block copolymer containing at least the following block segments (A) and (B): Material.
(A) Temperature-responsive polymer block segment having an LCST in the range of 0 ° C. to 80 ° C.
(B) Water insoluble block segment. - 前記(B)のブロックセグメントが、下記一般式(1)で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含んでなるブロック重合体であることを特徴とする請求項2又は3に記載の多能性幹細胞の培養基材。
- (A)及び(B)のブロックセグメントを含有するブロック共重合体が、(A)のブロックセグメントの構成単位比率80~99wt%であるブロック共重合体であることを特徴とする請求項2~4のいずれかに記載の多能性幹細胞の培養基材。 The block copolymer containing the block segments of (A) and (B) is a block copolymer having a constituent unit ratio of 80 to 99 wt% of the block segments of (A). A culture substrate for pluripotent stem cells according to any one of 4.
- 温度応答性高分子が、1種類のブロック共重合体、又は2種類のブロック共重合体の混合物であることを特徴とする請求項1~5のいずれかに記載の多能性幹細胞の培養基材。 The culture medium for pluripotent stem cells according to any one of claims 1 to 5, wherein the temperature responsive polymer is one type of block copolymer or a mixture of two type of block copolymers. Material.
- 基材が多孔質基材であり、前記多孔質基材の孔径が0.01~10μmであることを特徴とする、請求項1~6のいずれかに記載の多能性幹細胞の培養基材。 The culture substrate for pluripotent stem cells according to any one of claims 1 to 6, wherein the substrate is a porous substrate, and the pore diameter of the porous substrate is 0.01 to 10 μm. .
- 基材が多孔質基材であり、前記多孔質基材の空隙率が0.01~30%であることを特徴とする、請求項1~7のいずれかに記載の多能性幹細胞の培養基材。 The culture of pluripotent stem cells according to any one of claims 1 to 7, wherein the base material is a porous base material, and the porosity of the porous base material is 0.01 to 30%. Base material.
- 下記試験によるラミニン吸着率が10%以上であることを特徴とする、請求項1~8のいずれかに記載の多能性幹細胞の培養基材。
リン酸緩衝生理食塩水1mLに対して0.5mg/mLの濃度のラミニン511-E8フラグメント溶液を2~2.5μL添加した溶液を、基材の基材面積における単位面積当たりの量で0.2mL/cm2基材上に滴下し、37℃で24時間静置した時、下記式より求めたラミニン吸着率。
A solution prepared by adding 2-2.5 μL of a laminin 511-E8 fragment solution at a concentration of 0.5 mg / mL to 1 mL of phosphate buffered saline was added in an amount of 0. When dropped on a 2 mL / cm 2 base material and allowed to stand at 37 ° C. for 24 hours, the laminin adsorption rate determined from the following formula.
- 多能性幹細胞が、ヒト人工多能性幹細胞であることを特徴とする請求項1~9のいずれかに記載の多能性幹細胞の培養基材。 The culture substrate of pluripotent stem cells according to any one of claims 1 to 9, wherein the pluripotent stem cells are human induced pluripotent stem cells.
- 以下の(1)~(3)工程を経て、未分化の多能性幹細胞を製造する、多能性幹細胞の製造方法。
(1)請求項1~10のいずれかに記載の培養基材に多能性幹細胞を播種する工程。
(2)前記培養基材に播種された多能性幹細胞を温度応答性高分子の応答温度以上の温度の液体中で培養する工程。
(3)培養基材を温度応答性高分子の応答温度未満の温度に冷却し、前記液体中で培養された多能性幹細胞を基材から剥離する工程。 A method for producing pluripotent stem cells, which comprises producing undifferentiated pluripotent stem cells through the following steps (1) to (3).
(1) A step of seeding pluripotent stem cells on the culture substrate according to any one of claims 1 to 10.
(2) culturing the pluripotent stem cells seeded on the culture substrate in a liquid at a temperature higher than the response temperature of the temperature responsive polymer.
(3) A step of cooling the culture substrate to a temperature lower than the response temperature of the temperature responsive polymer, and exfoliating pluripotent stem cells cultured in the liquid from the substrate.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017157193 | 2017-08-16 | ||
JP2017-157193 | 2017-08-16 | ||
JP2018-142306 | 2018-07-30 | ||
JP2018142306A JP7271870B2 (en) | 2017-08-16 | 2018-07-30 | Substrate for culture of pluripotent stem cells and method for producing pluripotent stem cells |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019035436A1 true WO2019035436A1 (en) | 2019-02-21 |
Family
ID=65362294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/030175 WO2019035436A1 (en) | 2017-08-16 | 2018-08-13 | Culture substrate for pluripotent stem cell and method for producing pluripotent stem cell |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019035436A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020014453A (en) * | 2018-07-13 | 2020-01-30 | 東ソー株式会社 | Stem cell culture substrate and stem cell production method |
WO2020036096A1 (en) * | 2018-08-17 | 2020-02-20 | 東ソー株式会社 | Method for producing cell suspension |
JP2021045117A (en) * | 2019-09-11 | 2021-03-25 | 東洋インキScホールディングス株式会社 | Cell culture member and production method thereof |
US20220073862A1 (en) * | 2018-12-13 | 2022-03-10 | National Institute Of Advanced Industrial Science And Technology | Cell culture instrument and cell processing method |
WO2024195789A1 (en) * | 2023-03-20 | 2024-09-26 | 国立大学法人京都大学 | Method for producing neural organoids and use of same |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010065082A (en) * | 2008-09-08 | 2010-03-25 | Tokyo Univ Of Science | Spheroid-containing hydrogel, manufacturing method thereof and spheroid-containing hydrogel laminate |
WO2013100080A1 (en) * | 2011-12-27 | 2013-07-04 | 国立大学法人大阪大学 | Method for inducing differentiation enabling tumorigenesis of ips cells to be suppressed |
JP2014108093A (en) * | 2012-12-04 | 2014-06-12 | Dainippon Printing Co Ltd | Production method of porous film substrate containing functional polymer layer |
US20140186945A1 (en) * | 2011-06-14 | 2014-07-03 | The University Court Of The University Of Edinburg | Growth of cells |
JP2015519902A (en) * | 2012-06-07 | 2015-07-16 | ザ ユニバーシティー オブ クイーンズランド | Release medium |
JP2015211665A (en) * | 2014-01-29 | 2015-11-26 | ダイキン工業株式会社 | Temperature responsive substrate, manufacturing method of the same, and evaluation method of the same |
JP2016192957A (en) * | 2015-03-31 | 2016-11-17 | 東ソー株式会社 | Cell culture substrate, method for producing the same, and cell culture method using the same |
JP2016194054A (en) * | 2015-03-31 | 2016-11-17 | 東ソー株式会社 | Block copolymer |
JP2016193976A (en) * | 2015-03-31 | 2016-11-17 | 東ソー株式会社 | Block copolymer, surface preparation agent, film thereof, and cell culture substrate coated therewith |
WO2017006694A1 (en) * | 2015-07-06 | 2017-01-12 | 株式会社日立製作所 | Cell culture vessel, cell culture apparatus, and separation/collection method |
WO2018047634A1 (en) * | 2016-09-09 | 2018-03-15 | 日立化成株式会社 | Stimulus-responsive polymer |
WO2018116904A1 (en) * | 2016-12-22 | 2018-06-28 | Dic株式会社 | Cell culture substrate |
WO2018116905A1 (en) * | 2016-12-22 | 2018-06-28 | Dic株式会社 | Cell culture scaffold material |
-
2018
- 2018-08-13 WO PCT/JP2018/030175 patent/WO2019035436A1/en active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010065082A (en) * | 2008-09-08 | 2010-03-25 | Tokyo Univ Of Science | Spheroid-containing hydrogel, manufacturing method thereof and spheroid-containing hydrogel laminate |
US20140186945A1 (en) * | 2011-06-14 | 2014-07-03 | The University Court Of The University Of Edinburg | Growth of cells |
WO2013100080A1 (en) * | 2011-12-27 | 2013-07-04 | 国立大学法人大阪大学 | Method for inducing differentiation enabling tumorigenesis of ips cells to be suppressed |
JP2015519902A (en) * | 2012-06-07 | 2015-07-16 | ザ ユニバーシティー オブ クイーンズランド | Release medium |
JP2014108093A (en) * | 2012-12-04 | 2014-06-12 | Dainippon Printing Co Ltd | Production method of porous film substrate containing functional polymer layer |
JP2015211665A (en) * | 2014-01-29 | 2015-11-26 | ダイキン工業株式会社 | Temperature responsive substrate, manufacturing method of the same, and evaluation method of the same |
JP2016192957A (en) * | 2015-03-31 | 2016-11-17 | 東ソー株式会社 | Cell culture substrate, method for producing the same, and cell culture method using the same |
JP2016194054A (en) * | 2015-03-31 | 2016-11-17 | 東ソー株式会社 | Block copolymer |
JP2016193976A (en) * | 2015-03-31 | 2016-11-17 | 東ソー株式会社 | Block copolymer, surface preparation agent, film thereof, and cell culture substrate coated therewith |
WO2017006694A1 (en) * | 2015-07-06 | 2017-01-12 | 株式会社日立製作所 | Cell culture vessel, cell culture apparatus, and separation/collection method |
WO2018047634A1 (en) * | 2016-09-09 | 2018-03-15 | 日立化成株式会社 | Stimulus-responsive polymer |
WO2018116904A1 (en) * | 2016-12-22 | 2018-06-28 | Dic株式会社 | Cell culture substrate |
WO2018116905A1 (en) * | 2016-12-22 | 2018-06-28 | Dic株式会社 | Cell culture scaffold material |
Non-Patent Citations (4)
Title |
---|
CHEN X ET AL.: "Thermoresponsive Worms for Expansion and Release of Human Embryonic Stem Cells", BIOMACROMOLECULES, vol. 15, 2014, pages 844 - 855, XP055254932 * |
DEY S ET AL.: "Enzyme-passage free culture of mouse embryonic stem cells on thermo-responsive polymer surfaces", J. MATER. CHEM., vol. 21, 2011, pages 6883 - 6890, XP055571589 * |
HIRAI, CHIZURU ET AL.: "Polypropylene glycol-based new stimuli responsive cultivation container", REGENERATIVE MEDICINE, vol. 16, 1 February 2017 (2017-02-01), pages 317 * |
ZHANG R ET AL.: "A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells", NATURE COMMUNICATIONS, vol. 4, 8 January 2013 (2013-01-08), pages 1335, XP055571593, Retrieved from the Internet <URL:https://www.nature.com/articles/ncomms2341.pdf> * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020014453A (en) * | 2018-07-13 | 2020-01-30 | 東ソー株式会社 | Stem cell culture substrate and stem cell production method |
WO2020036096A1 (en) * | 2018-08-17 | 2020-02-20 | 東ソー株式会社 | Method for producing cell suspension |
US20220073862A1 (en) * | 2018-12-13 | 2022-03-10 | National Institute Of Advanced Industrial Science And Technology | Cell culture instrument and cell processing method |
JP2021045117A (en) * | 2019-09-11 | 2021-03-25 | 東洋インキScホールディングス株式会社 | Cell culture member and production method thereof |
WO2024195789A1 (en) * | 2023-03-20 | 2024-09-26 | 国立大学法人京都大学 | Method for producing neural organoids and use of same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6638706B2 (en) | Block copolymer and surface treatment agent using the same | |
US11441120B2 (en) | Cell culture substrate | |
WO2019035436A1 (en) | Culture substrate for pluripotent stem cell and method for producing pluripotent stem cell | |
JP7127330B2 (en) | Block copolymer and surface treatment agent using the same | |
JP2016192957A (en) | Cell culture substrate, method for producing the same, and cell culture method using the same | |
JP6497677B2 (en) | Block copolymer, surface treatment agent, membrane thereof, and cell culture substrate coated with the same | |
Nagase et al. | Thermoresponsive anionic copolymer brush-grafted surfaces for cell separation | |
JP2024100854A (en) | Cell culture substrate, method for producing cell culture substrate, and method for producing spheroids | |
JP2016194054A (en) | Block copolymer | |
US11499136B2 (en) | Cell culture substrate | |
Darge et al. | Preparation of thermosensitive PNIPAm‐based copolymer coated cytodex 3 microcarriers for efficient nonenzymatic cell harvesting during 3D culturing | |
JP2018012811A (en) | Block copolymer | |
US11427803B2 (en) | Cell culture substrate | |
JP7271870B2 (en) | Substrate for culture of pluripotent stem cells and method for producing pluripotent stem cells | |
JP7293683B2 (en) | Block copolymer, culture substrate, and method for producing stem cells | |
JP2020014453A (en) | Stem cell culture substrate and stem cell production method | |
JP7250248B2 (en) | BLOCK COPOLYMER, SURFACE TREATMENT AGENT AND MEMBRANE CONTAINING THE SAME, AND CELL CULTURE EQUIPMENT AND CELL CULTURE METHOD USING THE SAME | |
JP7183612B2 (en) | Substrate for culture of pluripotent stem cells and method for producing pluripotent stem cells | |
JP2006271252A (en) | Substrate for cell culture and method for cell culture | |
EP4317407A1 (en) | Cell culture substrate and method for producing same, method for inducing differentiation of pluripotent stem cell, and cell culture kit | |
JP2020028287A (en) | Production method of cell suspension liquid | |
JP2019080561A (en) | Porous substrate for culturing pluripotent stem cells and method for culturing pluripotent stem cells while maintaining undifferentiation | |
JP7018175B2 (en) | Copolymers, surface treatment agents for substrates and cell culture substrates | |
JP2006280206A (en) | Substrate for cell culture and method for cell culture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18846522 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18846522 Country of ref document: EP Kind code of ref document: A1 |