WO2019031424A1 - 涙液状態評価方法、コンピュータプログラム、装置 - Google Patents
涙液状態評価方法、コンピュータプログラム、装置 Download PDFInfo
- Publication number
- WO2019031424A1 WO2019031424A1 PCT/JP2018/029324 JP2018029324W WO2019031424A1 WO 2019031424 A1 WO2019031424 A1 WO 2019031424A1 JP 2018029324 W JP2018029324 W JP 2018029324W WO 2019031424 A1 WO2019031424 A1 WO 2019031424A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- tear
- meniscus
- luminance
- binarizing
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/101—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for examining the tear film
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0008—Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0016—Operational features thereof
- A61B3/0025—Operational features thereof characterised by electronic signal processing, e.g. eye models
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
- A61B5/004—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30041—Eye; Retina; Ophthalmic
Definitions
- the present invention relates to a method, a computer program and an apparatus for analyzing an image especially on a tear liquid meniscus and evaluating the state of tear liquid and the amount of tear liquid.
- the eyeball and the eyelid are protected by tear fluid from invading foreign matter, drying, damage caused by friction, and the like.
- the tear film is composed of a liquid layer consisting mainly of water and glycoprotein (mucin) and an oil layer covering it, forming a tear layer, and the oil layer is a liquid layer by preventing the liquid layer from being directly exposed to air. Preventing the evaporation of The constituents of the oil reservoir are secreted from the meibomian glands present in the eyelids. When the meibomian gland is damaged due to aging, inflammation, abrasion, etc., a condition called dry eye is caused because the formation of a normal oil layer does not occur and the liquid layer can not be retained.
- Standard test As a method of determining whether or not dry eye, "Silmer test” and “BUT (Breakup time) test” are conventionally known. This "Silmer test” is a method of determining the amount of tear fluid absorbed by the filter paper after 5 minutes, maintaining the condition that the filter paper with a scale is sandwiched between the conjunctiva and the lower eyelid for 5 minutes. It is.
- Non-Patent Document 1 a fluorescent dye such as fluorescein is instilled into the liquid layer of the tear film, the fluorescence is excited by excitation light, and the tear solution The time until the collapse of the layer occurs is measured with a stopwatch or the like.
- the tear meniscus is also called a tear triangle, and is a portion of the tear fluid stored in a side view groove-like portion located between the lower eyelid and the cornea shown in FIG. By measuring the tear fluid amount of the tear fluid meniscus, it is used as an index in the pathological diagnosis regarding dry eye and the like.
- Patent Document 1 an elongated, slit-formed main body made of synthetic resin or synthetic rubber and a water-absorbent member disposed in the slit are disposed, and the tip of the inspection tool It is known to measure the tear fluid amount of the tear fluid meniscus which penetrates the water absorbing member by bringing the part into contact with the lower eyelid of the subject.
- Patent Document 2 proposes an ophthalmologic measurement apparatus for quantitatively measuring the physical quantity of the tear fluid amount of the tear fluid meniscus and using it for diagnosis of a pathological condition of dry eye. That is, a lattice in which a plurality of slit-like openings are formed, means for projecting the openings on the surface of tear fluid that accumulates in the lower eye, means for imaging the projected image of the openings, and an image of the imaged openings And means for calculating the physical quantity of tear based on the relationship between the lattice image of the central portion projected on the surface of the tear and the lattice image of the periphery so that the straight lines of the lattice openings converge at one point. Is an ophthalmic measurement device.
- Patent No. 5138967 gazette Patent No. 3896211 gazette
- Patent Document 2 requires a member such as a grid for projecting a grid image onto the tear liquid meniscus, which leads to high cost.
- the tear liquid meniscus is between the lower eyelid and the cornea, so the angle changes into an arch shape over the corner of the eye, so it is necessary to change the lattice angle accordingly It was troublesome.
- the present invention has been made in view of the above-described conventional problems, and it is possible to non-invasively determine the state of the tear fluid of the tear fluid meniscus and the amount of tear fluid without causing pain and discomfort to the subject. It is something to evaluate.
- the lacrimal fluid state evaluation method, computer program and apparatus include the following steps and means.
- (1) Regarding a teardrop meniscus image obtained by photographing at least a part of the teardrop meniscus of the subject, a binarization step of binarizing the teardrop meniscus image with a predetermined threshold, and the binarized meniscus image And an extraction step of extracting a high brightness area showing a tear liquid meniscus portion from the above and an evaluation step of evaluating tear state based on the high brightness area.
- the binarization step is a predetermined threshold of the luminance image.
- the binarizing step is a step of binarizing each based on thresholds of two different values, and the extraction step is a low threshold.
- a continuous high brightness area corresponding to a high brightness area of the first binarized image is extracted from the high brightness area of the second binarized image based on the first binarized image and the high threshold based on the first binarized image It is characterized in that it is a step.
- the binarizing step is a step of binarizing each on the basis of a predetermined threshold value and a profile shape, and the extracting step is a peak portion of the profile.
- the present invention is characterized in that it is a step of extracting a range which is equal to or more than the predetermined threshold value in the included range as a high luminance region.
- the evaluation step is a step of evaluating the level of the tear fluid amount of the tear fluid meniscus based on the size of the width of the extracted high brightness region. It is characterized by
- the present invention evaluates the tear fluid of the tear fluid meniscus by analysis of a cornea imaging image, it is not necessary for the subject to infiltrate the filter paper, the fluorescent dye and the examination instrument into the eye. Therefore, the tears of the tears meniscus can be evaluated noninvasively, and the subject does not feel pain or discomfort. Further, the device to be used does not require a dedicated part or the like, and does not have to be a complicated configuration, and can be a simple configuration.
- FIG. 1 shows an example of a luminance image
- an image 2 shows an example of an image after binarization
- an image 3 shows an example of an image obtained by extracting a high luminance area showing a tear fluid reservoir of a tear fluid meniscus.
- FIG. It is a figure which shows an example of a process of Example 2 which concerns on this invention, and its flow. It is the schematic of a structure of an image acquisition apparatus.
- any device capable of recording the captured image as digital data may be used, and a conventionally known one may be used appropriately.
- the image acquisition device emits light from the light source 11 and the light beam passing through the diaphragm passes through the lens 12, the splitter 13 and the objective lens 14 in order and in front of the subject's eye The light is condensed on the tear liquid meniscus 15 of the eye.
- Reflected light from the tear liquid meniscus 15 in the anterior segment passes through the objective lens 14 and the splitter 13, passes through the imaging lens 16, and is imaged on the imaging device 17.
- the imaging data formed on the imaging element 17 is subjected to predetermined processing by an image processing engine and converted into image data and moving image data.
- the image acquisition device is physically or logically connected to the tear fluid evaluation device according to the present invention.
- the lacrimal fluid evaluation apparatus includes processing means for calculating and processing data, and storage means for storing image data, moving image data and other data acquired by the image acquisition device, and the storage means includes: A computer program for carrying out the present invention and predetermined data are respectively stored, and the processing means performs data processing in accordance with a predetermined instruction from the computer program or the like.
- FIG. 2 is a view showing a state of acquisition of a tear liquid meniscus image acquired by the image acquisition device and a tendency of light reception luminance in the positional relationship.
- the upper cornea portion near the tear liquid meniscus and the lower eyelid below have a shape that rises from the tear liquid meniscus toward the image acquisition device side, so the reflected light intensity of the light at that portion is low. Therefore, the corresponding part in the teardrop meniscus image is acquired as a dark part with low luminance.
- the luminance is obtained according to the reflected light intensity due to the curvature of that portion.
- ⁇ Luminance image> When the teardrop meniscus image is acquired as a color image, this is converted into a gray scale image to obtain a luminance image of the teardrop meniscus image.
- a conventionally known method may be appropriately used. For example, there are the following methods.
- the method of using the maximum value of the luminance of the R, G, and B color elements is usually preferable because an image obtained by photographing tears on the cornea exhibits interference fringes due to tears. Large variations in color intensity depending on the part. Therefore, for example, with the method of using the luminance of red (R) as the luminance of the corresponding pixel of the gray scale image among the three color elements of R, G, B (red, green, blue), other green (G) And even if it is an originally bright part showing high intensity, the brightness of red (R) is low, so that it will be converted as a dark part in a grayscale image, etc. This is to prevent inconvenience.
- the above-mentioned processing relating to creation of a luminance image is processing performed when the teardrop meniscus image photographed and recorded by the image acquisition device is in color, and the teardrop meniscus image acquired by the image acquisition device is originally grayscale. It is not necessary for an image in which the luminance at each pixel is fixed, such as an image.
- a binarized image is obtained by binarizing the above-mentioned luminance image by comparing a predetermined threshold value and the pixels of the luminance image. For example, each pixel in the luminance image obtained as described above may be determined as a pixel having a luminance equal to or higher than a predetermined threshold (high luminance pixel) and a pixel having a luminance smaller than the threshold (low luminance pixel).
- the tear liquid meniscus image is classified into two types, a high luminance pixel and a low luminance pixel.
- the high brightness pixels may be divided by coloring, such as white, and the low brightness pixels may be black.
- the brightness image can be completely expressed in two colors if classified in this way along with the coloring.
- a pixel showing white means that a portion having high reflected light intensity and high luminance, that is, a portion including a tear liquid meniscus is extracted.
- the binarization optimum as the dynamic value is It is preferable to set so that it can be performed.
- the threshold value may be an average value or a median value of all pixels in the luminance image, or may be an intermediate value of maximum and minimum luminance, etc.
- Other known methods can be used as appropriate without being limited to
- image (2) An example of the image after binarization processing obtained in this manner is shown in FIG. 3 "image (2)".
- the tear meniscus portion generally appears linearly as its shape.
- high luminance region high luminance region
- the high-brightness area present above and below is not the tear liquid meniscus part, so the part is removed.
- An image obtained in this way is an extraction image of the tear liquid meniscus portion, and an example of the extraction image is shown in FIG. 3 “image (3)”.
- the binarization method in this invention and the extraction method of a tear liquid meniscus part are not limited to the above-mentioned method, Various methods are available. For example, in the profile of the reflected light luminance photographed as shown in the right part of FIG. 2, that is, the luminance of the image, the corresponding area and the non-corresponding area according to the profile shape and a predetermined threshold (“ ⁇ ” in the right part profile in FIG. 2) This is a method of performing a binarization process of dividing into two, and extracting the corresponding region (between “ ⁇ ” and “ ⁇ ” in the right part profile in FIG. 2) as a meniscus portion where tears are present.
- the predetermined threshold is not connected to the upper and lower portions outside the bright line as shown in the profile in the right part of FIG. 2, and the height of the meniscus is maximized (dynamic threshold) Good.
- the brightness of the image may be normalized by the maximum value and the minimum value, and a unique threshold (fixed threshold) may be used.
- the dynamic threshold may be set from the brightness of the image without standardizing the brightness of the image.
- different fixed thresholds or dynamic thresholds may be set on the upper side and the lower side outside the bright line. In this way, it is possible to extract the bright line portion and the slightly bright portions above and below it as a meniscus portion where tear fluid is present.
- the size of the width of the high brightness area can be calculated from the number of pixels of the high brightness area in the vertical direction of the image. Although there are large and small sizes depending on the portion of the high luminance region, it is possible to freely decide which portion of the width is to be evaluated.
- the accumulation of data indicating the correlation between the size of the width of the high brightness area showing the tear liquid meniscus portion and the amount of tear liquid of the tear liquid meniscus makes it possible to see tears from the width of the high brightness area by referring to the correlation data. It is possible to estimate the tear fluid volume of the liquid meniscus by estimation.
- binarization processing is performed on the luminance image with threshold 1 (“60” in the example shown in FIG. 4) to acquire a first binarized image.
- binarization processing is performed on the luminance image with threshold 2 (“180” in the example shown in FIG. 3) to obtain a second binarized image.
- the tear liquid meniscus portion is determined from the overlapping area of the high luminance area in the first and second binarized images thus obtained.
- the high luminance indicated by the binary image (second binarized image) by the high threshold (the threshold 2 in the above example)
- the area is necessarily included in the high luminance area in the binarized image (first binarized image) according to the low threshold (in the above example, the threshold 1).
- the tear liquid meniscus portion can be automatically detected by extracting the high luminance area of the first binarized image that is included in and continuous with the high luminance area of the second binarized image.
- the extraction of the high brightness area of the first binarized image including the high brightness area of the second binarized image is, for example, the second binarization corresponding to the pixel indicating the high brightness area of the first binarized image
- a pixel in the image may be identified, and a high luminance region continuous with the identified pixel may be extracted for the second binarized image.
- two different threshold values in the second embodiment may be predetermined fixed values, or may be dynamically calculated and determined.
- a value obtained by dividing a predetermined value from the maximum value of luminance of a pixel in a luminance image, or a value obtained by subtracting a predetermined ratio to the maximum value for example, A value calculated as 80% of the maximum value.
- the low threshold is a value obtained by adding a predetermined value from the minimum value of the luminance of the pixel in the luminance image, or a value obtained by increasing a predetermined ratio from the minimum value (for example, the minimum value). It may be a value calculated as 120%.
- the luminance (or lightness) of the pixel when creating the luminance image, but the invention is not limited to this, and saturation or the like may be used.
- the calculation of the above-mentioned various numerical values may not be limited to the calculation method as described above, and in order to calculate a more suitable value, it is possible to use a value appropriately calculated by a known method. It can.
- the state of the tear liquid meniscus in particular, the tear liquid volume of the tear liquid meniscus can be confirmed noninvasively, and the width and actual width of the high luminance region corresponding to the tear liquid reservoir finally extracted.
- the amount of tear fluid By waiting for accumulation of correlation data with the amount of tear fluid, it is possible to estimate the amount of tear fluid in the tear meniscus without actually measuring the amount of tear fluid invasively. As a result, it contributes to noninvasive dry eye and other diagnoses.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Ophthalmology & Optometry (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- Signal Processing (AREA)
- Eye Examination Apparatus (AREA)
Abstract
非侵襲的に涙液メニスカスの涙液の状態や涙液量を評価する方法、コンピュータプログラム、装置の提供。 被検者の涙液メニスカスの少なくとも一部を撮影した涙液メニスカス画像について、所定の閾値により前記涙液メニスカス画像を二値化する二値化ステップと、二値化した二値化画像から涙液メニスカス部分を示す高輝度領域を抽出する抽出ステップと、前記高輝度領域に基づき涙液状態を評価のする評価ステップと、を含む。
Description
本発明は、特に涙液メニスカスについての画像を解析し、涙液の状態、涙液量について評価する方法、コンピュータプログラム、装置に関する。
眼球、ならびに、瞼は、涙液によって異物の侵入、乾燥、摩擦による損傷などから保護されている。涙液層はその大半を占める水と糖たんぱく質(ムチン)からなる液層とそれを覆う油層の二層によって涙液層をなし、油層は液層が直接空気に触れることを防ぐことにより液層の蒸発を防いでいる。油層の成分はまぶたに存在するマイボーム腺から分泌される。加齢や炎症、ならびに、擦傷などによりマイボーム腺が損傷すると正常な油層の形成が起こらなくなって液層が保持できなくなることなどを理由にドライアイといわれる症状を引き起こす。
ドライアイか否かの判断の手法としては、従来から「シルマーテスト」及び「BUT(Breakup time)テスト」が知られている。この「シルマーテスト」とは、目盛がついた濾紙を結膜と下瞼の間に5分間挟んだままにした状態を維持し、5分経過後における濾紙に吸収された涙液量を定量する方法である。
一方、「BUTテスト」は、非特許文献1に示すように、涙液層の液層に融解するフルオレセイン等の蛍光色素を点眼し、励起光で蛍光を励起し、開瞼から涙液の液層の崩壊が起こるまでの時間をストップウォッチ等で計測するものである。
さらに、涙液メニスカスに存在する涙液量は、ドライアイ診断における重要な指標として認識されてきている。涙液メニスカスは涙三角ともよばれ、図1に示す下瞼と角膜との間に位置する側面視溝状部分に貯留する涙液による部分である。当該涙液メニスカスの涙液量を測定することで、ドライアイ等に関する病理診断における指標とするものである。
この涙液メニスカスの涙液量の測定に関しては、従来から各種手段が提案されている。例えば特許文献1に示すように、細長で、スリットが形成された合成樹脂又は合成ゴムから成る本体部と、そのスリット内に配置される吸水性部材を配置したものであり、当該検査用具の先端部を被検者の下瞼に接触させることで、吸水性部材に浸透する涙液メニスカスの涙液量を測定するものが知られている。
また、特許文献2には、涙液メニスカスの涙液量の物理量を定量的に測定し、ドライアイの病態の診断に利用するための眼科測定装置が提案されている。すなわち、複数のスリット状開口を形成した格子と、当該開口を下瞼に溜まる涙液表面に投影する手段と、その投影された前記開口の像を撮像する手段と、撮像された前記開口の像に基づいて涙液の物理量演算をする手段と備え、当該涙液表面に投影される中央部の格子像と周辺の格子像とでその向きを格子開口の直交する直線が一点に集まるように変化させる眼科測定装置である。
「ドライアイ診療PPP(41項乃至45項)」(第1版第1刷発行:2002年5月1日、編集:ドライアイ研究会、発行者:中尾俊治、発行所:株式会社メジカルビュー社)
しかしながら、上述の「シルマーテスト」や「BUTテスト」は、基本的に、濾紙等の侵入若しくは蛍光色素の点眼を必要とするものである侵襲的手法であるため、被検者に痛みや不快感を与える可能性が高い。同様に、特許文献1に係る検査用具も、その使用方法は、先端を被検者の涙液メニスカスに接触させるものであり、侵襲的な手段及び方法である。
また、特許文献2に示される手段では、涙液メニスカスに対する格子像の投影するための格子等の部材が必要となりコスト高につながる。また、涙液メニスカスに格子像を投影する際に、涙液メニスカスは下瞼と角膜との間であるため目尻にかけて弓形に角度が変わるため、それにあわせて格子の角度も変える必要があるなど、手間であった。
本発明は以上のような従来の問題点に鑑みてなされたものであり、被検者に痛みや不快感を与えることない、非侵襲的に涙液メニスカスの涙液の状態や涙液量を評価するものである。
本発明に係る涙液状態評価方法、コンピュータプログラム、装置は、以下に示すステップおよび手段を含むものである。
(1)被検者の涙液メニスカスの少なくとも一部を撮影した涙液メニスカス画像について、所定の閾値により前記涙液メニスカス画像を二値化する二値化ステップと、二値化した前記メニスカス画像から涙液メニスカス部分を示す高輝度領域を抽出する抽出ステップと、前記高輝度領域に基づき涙液状態を評価のする評価ステップとを含む。
(2)上記(1)において、前記涙液メニスカス画像がカラー画像の場合、前記涙液メニスカス画像について輝度画像を作成するステップを含み、前記二値化ステップとは、前記輝度画像を所定の閾値により二値化するステップであることを特徴とする。
(3)上記(1)又は(2)のいずれかにおいて、前記二値化ステップとは、異なる2つの値の閾値に基づきそれぞれ二値化するステップであり、前記抽出ステップとは、低閾値に基づく第1二値化画像と高閾値に基づく第2二値化画像における高輝度領域から、前記第1二値化画像の高輝度領域に対応する領域であって連続する高輝度領域を抽出するステップであることを特徴とする。
(4)上記(1)又は(2)において、前記二値化ステップとは、所定の閾値とプロファイル形状に基づきそれぞれ二値化するステップであり、前記抽出ステップとは、前記プロファイルのピーク部分を含んだ範囲で前記所定閾値以上となる範囲を高輝度領域として抽出するステップであることを特徴とする。
(5)上記(1)乃至(4)のいずれかにおいて、前記評価ステップとは、抽出された前記高輝度領域の幅の大きさに基づき涙液メニスカスの涙液量の多少を評価するステップであることを特徴とする。
(1)被検者の涙液メニスカスの少なくとも一部を撮影した涙液メニスカス画像について、所定の閾値により前記涙液メニスカス画像を二値化する二値化ステップと、二値化した前記メニスカス画像から涙液メニスカス部分を示す高輝度領域を抽出する抽出ステップと、前記高輝度領域に基づき涙液状態を評価のする評価ステップとを含む。
(2)上記(1)において、前記涙液メニスカス画像がカラー画像の場合、前記涙液メニスカス画像について輝度画像を作成するステップを含み、前記二値化ステップとは、前記輝度画像を所定の閾値により二値化するステップであることを特徴とする。
(3)上記(1)又は(2)のいずれかにおいて、前記二値化ステップとは、異なる2つの値の閾値に基づきそれぞれ二値化するステップであり、前記抽出ステップとは、低閾値に基づく第1二値化画像と高閾値に基づく第2二値化画像における高輝度領域から、前記第1二値化画像の高輝度領域に対応する領域であって連続する高輝度領域を抽出するステップであることを特徴とする。
(4)上記(1)又は(2)において、前記二値化ステップとは、所定の閾値とプロファイル形状に基づきそれぞれ二値化するステップであり、前記抽出ステップとは、前記プロファイルのピーク部分を含んだ範囲で前記所定閾値以上となる範囲を高輝度領域として抽出するステップであることを特徴とする。
(5)上記(1)乃至(4)のいずれかにおいて、前記評価ステップとは、抽出された前記高輝度領域の幅の大きさに基づき涙液メニスカスの涙液量の多少を評価するステップであることを特徴とする。
本発明は、角膜撮影画像の解析により涙液メニスカスの涙液を評価するものであるため、被検者に目に対して濾紙の侵入、蛍光色素および検査器具を侵入させる必要がない。そのため、非侵襲的に涙液メニスカスの涙液に関して評価できるものであり、被検者に苦痛や不快感を与えることがない。また、使用する装置は、専用部品等を必要とせず、また、複雑な構成にする必要がなく、簡易な構成で済む。
<涙液メニスカス画像の取得>
被検者の涙液メニスカスを撮影し画像を取得するための装置(画像取得装置)については、撮影した画像をデジタルデータとして記録できるものであればよく、従来既知のものを適宜用いればよい。例えば、図5に概略を示すように、画像取得装置は、光源11から発せられ、絞りを通過した光線は、順にレンズ12、スプリッタ13、対物レンズ14を経て、被検者の被検眼の前眼部の涙液メニスカス15に集光される。前眼部の涙液メニスカス15からの反射光は、対物レンズ14およびスプリッタ13を通過し、結像レンズ16を経て撮像素子17上に結像される。撮像素子17に結像された撮影データは、画像処理エンジンによる所定の処理が施され、画像データ、動画像データに変換される。
被検者の涙液メニスカスを撮影し画像を取得するための装置(画像取得装置)については、撮影した画像をデジタルデータとして記録できるものであればよく、従来既知のものを適宜用いればよい。例えば、図5に概略を示すように、画像取得装置は、光源11から発せられ、絞りを通過した光線は、順にレンズ12、スプリッタ13、対物レンズ14を経て、被検者の被検眼の前眼部の涙液メニスカス15に集光される。前眼部の涙液メニスカス15からの反射光は、対物レンズ14およびスプリッタ13を通過し、結像レンズ16を経て撮像素子17上に結像される。撮像素子17に結像された撮影データは、画像処理エンジンによる所定の処理が施され、画像データ、動画像データに変換される。
画像取得装置は、本発明に係る涙液評価装置と物理的又は論理的に接続される。当該涙液評価装置は、データを演算および処理する処理手段、画像取得装置により取得された画像データ、動画像データおよびその他のデータを記憶する記憶手段を備えるものであり、当該記憶手段には、本発明を実施するためのコンピュータプログラムや所定のデータがそれぞれ記憶されており、処理手段は、当該コンピュータプログラム等による所定の命令に従ってデータの処理を行うものである。
図2は、当該画像取得装置によって取得される涙液メニスカス画像の取得の様子およびその位置関係における受光輝度の傾向を示す図である。涙液メニスカスを焦点に涙液メニスカス画像を撮影した場合、涙液メニスカスの涙液表面により光が正反射される結果、涙液メニスカス画像においても当該涙液貯留部分については高い輝度が取得される。
一方、涙液メニスカス近傍の上方の角膜部分や下方の下瞼は、涙液メニスカスから画像取得装置側に向かってせり上がるような形状をとるため、その部分の光の反射光強度は低くなる。そのため、涙液メニスカス画像における該当箇所は輝度が低い暗部として取得される。他の角膜や下瞼部分については、その部分の曲率による反射光強度に従い輝度が得られる。
このようにして得られた、涙液メニスカス画像について対する処理について以下説明する。
<輝度画像>
涙液メニスカス画像がカラー画像で取得されている場合、これをグレースケール画像へ変換し、涙液メニスカス画像の輝度画像を取得する処理である。変換後のグレースケール画像の各画素の輝度を決定する手法としては、従来既知の手法を適宜用いればよいが、例えば、以下のような手法がある。
涙液メニスカス画像がカラー画像で取得されている場合、これをグレースケール画像へ変換し、涙液メニスカス画像の輝度画像を取得する処理である。変換後のグレースケール画像の各画素の輝度を決定する手法としては、従来既知の手法を適宜用いればよいが、例えば、以下のような手法がある。
まず、「(a)涙液メニスカス画像の各画素のR,G,B(赤,緑,青)の3色要素のうち、いずれかの輝度をグレースケール画像の対応画素の輝度として用いる方法」がある。また、「(b)R,G,Bの色要素の輝度の最大値を用いる方法」、「(c)R,G,Bの色要素の輝度の最小値を用いる方法」、「(d)少なくとも2つ以上の色要素の輝度の平均を用いる方法」、「(e)3色要素の輝度の中央値を用いる方法」、その他、「(f)2つ以上の色要素の輝度について加減乗除いずれかを施し算出される値を用いる方法」、などがある。
グレースケール画像の各画素の輝度を決定するにあたっては、これらの方法を適宜用いることができるが、上述した方法のうち、特に、「(2)R,G,Bの色要素の輝度の最大値を用いる方法」が好適である。
R,G,Bの色要素の輝度の最大値を用いる方法が好適であるのは、通常、角膜上の涙液を撮影した画像は、涙液による干渉縞が表われているため、画像の部分によって色の強度のバラつきが大きい。そのため、たとえば、R,G,B(赤,緑,青)の3色要素のうち、赤(R)の輝度をグレースケール画像の対応画素の輝度として用いる方法だと、他の緑(G)や青(B)が高強度を示している本来鮮やかな部分であっても赤(R)の輝度が低いため、グレースケール画像においては暗部として変換されてしまう、等といった不都合が生ずるため、こうした不都合を防止するためである。
このようにして得られた輝度画像の一例を図3の「画像(1)」として示す。
なお、前述の輝度画像の作成に関する処理は、画像取得装置により撮影、記録された涙液メニスカス画像がカラーの場合に行う処理であり、画像取得装置により取得される涙液メニスカス画像がもともとグレースケール画像のように各画素における輝度が一に定まっている画像については不要である。
<二値化>
前述の輝度画像に対し所定の閾値と輝度画像の画素との比較により二値化し二値化画像を得る。例えば、前述のとおり得た輝度画像における各画素について、所定の閾値以上の輝度を持つ画素(高輝度画素)と、当該閾値より小さい輝度の画素(低輝度画素)として、判別すればよい。
前述の輝度画像に対し所定の閾値と輝度画像の画素との比較により二値化し二値化画像を得る。例えば、前述のとおり得た輝度画像における各画素について、所定の閾値以上の輝度を持つ画素(高輝度画素)と、当該閾値より小さい輝度の画素(低輝度画素)として、判別すればよい。
この二値化処理により、涙液メニスカス画像は、高輝度画素と低輝度画素の二種類に分類される。見た目に分かり易いように、高輝度画素を白色、低輝度画素を黒色といったように、着色により分けてもよい。
二値化により高輝度画素と低輝度画素とに分けられるため、このように着色と共に分類すれば、輝度画像は完全に二色で表現される。この場合、白色を示す画素は、反射光強度が高く高輝度を示す部分、すなわち、涙液メニスカスを含む部分が抽出されていることを意味する。
ここで、二値化に用いる閾値は、所定の固定値を用いてもよいが、輝度画像は個々に照明の状況や合焦の状況によって異なるため、動的な値として最適な二値化が行えるように設定するのが好適である。
動的な閾値の算出の手法については、例えば、閾値は、輝度画像中の全画素の輝度平均値や中央値としてもよいし、最大および最小の輝度の中間値などすることができるが、これらに限定されることなく、既知の他の手法を適宜用いることができる。
このようにして得られた二値化処理後の画像の一例を図3「画像(2)」に示す。
<涙液メニスカス部分抽出>
二値化後の画像における涙液メニスカス部分の抽出について以下説明する。第1の方法として、涙液メニスカス部分は、一般的には、その形状のとおり線状に表れる。例えば、図2の画像2に示すような二値化後の画像によれば、白色で表現される高輝度画素の領域(高輝度領域)として、涙液メニスカス部分にあたる線状部分と、その上方および下方部分に点在した領域とが存在する。この上下に存在する高輝度領域は、涙液メニスカス部分ではないため、当該部分を除去する。
二値化後の画像における涙液メニスカス部分の抽出について以下説明する。第1の方法として、涙液メニスカス部分は、一般的には、その形状のとおり線状に表れる。例えば、図2の画像2に示すような二値化後の画像によれば、白色で表現される高輝度画素の領域(高輝度領域)として、涙液メニスカス部分にあたる線状部分と、その上方および下方部分に点在した領域とが存在する。この上下に存在する高輝度領域は、涙液メニスカス部分ではないため、当該部分を除去する。
こうして得られる画像が、涙液メニスカス部分の抽出画像であり、当該抽出画像の一例を図3「画像(3)」に示す。
なお、本発明における二値化方法および涙液メニスカス部分の抽出方法は上述の方法に限定されるものではなく様々な方法が利用可能である。例えば図2の右部に示すように撮影した反射光輝度、すなわち画像の輝度のプロファイルにおいて、当該プロファイル形状と所定の閾値(図2右部プロファイルにおける「◎」印)により該当領域と非該当領域の2つに分けるという二値化処理を行い、該当領域(図2右部プロファイルにおける「▼」と「▲」の間)を涙液が存在するメニスカス部分として抽出する方法である。このとき、所定閾値は、図2右部のプロファイルに示すような輝線の外側の上下の部分に連結せず、且つ、メニスカスの高さが最大になるような閾値(動的閾値)とすればよい。あるいは、画像によって明るさが異なるので、画像の輝度を最大値と最小値で規格化し、固有の閾値(固定閾値)を用いてもよい。あるいは、画像の輝度を規格化せず、画像の輝度から動的閾値を設定してもよい。さらには、輝線の外側の上側と下側で異なる固定閾値、あるいは、動的閾値を設定しても良い。このようにして、輝線部分と、その上下にある若干明るい部分までが涙液が存在するメニスカス部分として、抽出することができる。
<涙液メニスカス部分抽出画像に対する評価>
前述のとおり得られた涙液メニスカス部分抽出画像には、涙液メニスカス部分を示す線状の高輝度領域が表れているが、当該線状高輝度領域の幅の大きさにより涙液量の多少を判断することができる。通常、この高輝度領域の幅が大きくなる程、実際の涙液量は多いと判断でき、一方で、幅が狭いほど涙液量は少ないと判断できる。
前述のとおり得られた涙液メニスカス部分抽出画像には、涙液メニスカス部分を示す線状の高輝度領域が表れているが、当該線状高輝度領域の幅の大きさにより涙液量の多少を判断することができる。通常、この高輝度領域の幅が大きくなる程、実際の涙液量は多いと判断でき、一方で、幅が狭いほど涙液量は少ないと判断できる。
この高輝度領域の幅の大きさは、具体的には、画像の垂直方向における当該高輝度領域の画素数から算出できる。高輝度領域の部分によって大きさの大小があるが、どの部分の幅の大きさを評価の対象とするかは適宜自由に決定できる。
また、涙液メニスカス部分を示す高輝度領域の幅の大きさと、涙液メニスカスの涙液量との相関を示すデータの蓄積により、その相関データを参照することで、高輝度領域の幅から涙液メニスカスの涙液量を推定的に算出することが可能となる。
また、線状に表れる高輝度領域に途切れや間隙がある場合、その付近の涙液の状態が悪いと判断することができる。
実施例1において説明した二値化および涙液メニスカス部分抽出の処理について、他の方法について以下説明する。特に、二値化後の画像において、自動で涙液メニスカス部分の抽出を行う方法についてである。なお、以下特に言及しない処理については、実施例1と同様である。
本実施例では、実施例1と同様にして得られた輝度画像について、二値化を行うにあたり、閾値として異なる2値を設定し、それぞれの閾値について二値化の処理を施し二値化画像を得るようにする。
図4に示すように、輝度画像に対して、閾値1(図4に示す例では、「60」)により二値化処理を行い、第1二値化画像を取得する。同様に、輝度画像に対して、閾値2(図3に示す例では、「180」)により二値化処理を行い、第2二値化画像を得る。こうして得られた第1および第2二値化画像における高輝度領域の重複領域から涙液メニスカス部分を判断する。
輝度画像に対して、異なる2値の閾値により2の二値化画像を得る場合、高閾値(前述の例では、閾値2)による二値化画像(第2二値化画像)が示す高輝度領域は、低閾値(前述の例では、閾値1)による二値化画像(第1二値化画像)における高輝度領域に必ず含まれることとなる。
このため、第2二値化画像の高輝度領域を含み、かつ、これと連続する第1二値化画像の高輝度領域を抽出することにより、涙液メニスカス部分を自動検出することができる。第2二値化画像の高輝度領域を包含する第1二値化画像の高輝度領域の抽出は、たとえば、第1二値化画像の高輝度領域を示す画素に対応する第2二値化画像における画素を特定し、この特定された画素と連続する高輝度領域を第2二値化画像について抽出するようにすればよい。
なお、本実施例2における異なる2つの閾値については、実施例1と同様に、所定の固定値としてもよいし、動的に算出決定するようにしてもよい。動的に決定する方法として、前述の他、輝度画像中の画素の輝度の最大値から所定の値を除算した値、もしくは、その最大値に対する所定の割合を差し引くことにより得られる値(例えば、最大値の80%として算出される値。)にしてもよい。逆に、低閾値は、輝度画像中の画素の輝度の最小値から所定の値を加算した値、もしくは、当該最小値から所定の割合を増加させることで得られた値(例えば、最小値の120%として算出される値)とするなどしてもよい。
以上本発明について説明してきたが、本発明は上述の実施の例に限定されず種々の変形した形での応用が可能なものである。
これまでに説明のとおり、輝度画像の作成にあたっては画素の輝度(あるいは明度)を利用するのが好適であるが、これに限らず、彩度等を利用してもよい。また、前述の各種数値の算出については、前述の説明のとおりの算出方法に限定しなくてもよく、より適した値を算出するため、既知の手法による演算を適宜施した値を用いることが出来る。
本発明は、非侵襲的に涙液メニスカスの状態、特に、涙液メニスカスの涙液量の多少を確認でき、また、最終的に抽出される涙液貯留部にあたる高輝度領域の幅と実際の涙液量との相関データの蓄積を待つことで、実際に侵襲的に涙液量を測定することなく、涙液メニスカスの涙液量が推量することが可能となる。その結果、非侵襲的なドライアイその他の診断等に資するものとなる。
Claims (7)
- 被検者の涙液メニスカスの少なくとも一部を撮影した涙液メニスカス画像について、
所定の閾値により前記涙液メニスカス画像を二値化する二値化ステップと、
二値化した二値化画像から涙液メニスカス部分を示す高輝度領域を抽出する抽出ステップと、
前記高輝度領域に基づき涙液状態を評価のする評価ステップと、
を含む涙液状態評価方法。 - 前記涙液メニスカス画像がカラー画像の場合、
前記涙液メニスカス画像について輝度画像を作成するステップを含み、
前記二値化ステップとは、前記輝度画像を所定の閾値により二値化するステップである、
ことを特徴とする請求項1に記載の涙液状態評価方法。 - 前記二値化ステップとは、異なる2つの値の閾値に基づきそれぞれ二値化するステップであり、
前記抽出ステップとは、低閾値に基づく第1二値化画像と高閾値に基づく第2二値化画像における高輝度領域から、前記第1二値化画像の高輝度領域に対応する領域であってこれと連続する高輝度領域を抽出するステップである、
ことを特徴とする請求項1又は2に記載の涙液状態評価方法。 - 前記二値化ステップとは、所定の閾値とプロファイル形状に基づきそれぞれ二値化するステップであり、
前記抽出ステップとは、前記プロファイルのピーク部分を含んだ範囲で前記所定の閾値以上となる範囲を高輝度領域として抽出するステップである、
ことを特徴とする請求項1又は2に記載の涙液状態評価方法。 - 前記評価ステップとは、抽出された前記高輝度領域の幅の大きさに基づき涙液メニスカスの涙液量の多少を評価するステップである、
ことを特徴とする請求項1乃至4のいずれか1項に記載の涙液状態評価方法。 - コンピュータに、請求項1乃至5のいずれか1項に記載の各ステップを実行させるためのコンピュータプログラム。
- 請求項1乃至5のいずれか一項に記載の方法を実行する涙液状態評価装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/637,216 US11514570B2 (en) | 2017-08-07 | 2018-08-06 | Tear fluid state evaluation method, computer program, and device |
CN201880051230.7A CN110996759B (zh) | 2017-08-07 | 2018-08-06 | 泪液状态评价方法、计算机程序、装置 |
JP2019535632A JP7165660B2 (ja) | 2017-08-07 | 2018-08-06 | 涙液状態評価方法、コンピュータプログラム、装置 |
EP18843382.5A EP3666167A4 (en) | 2017-08-07 | 2018-08-06 | WEAR STATUS ASSESSMENT PROCESS, COMPUTER PROGRAM AND DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017152409 | 2017-08-07 | ||
JP2017-152409 | 2017-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019031424A1 true WO2019031424A1 (ja) | 2019-02-14 |
Family
ID=65272426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/029324 WO2019031424A1 (ja) | 2017-08-07 | 2018-08-06 | 涙液状態評価方法、コンピュータプログラム、装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11514570B2 (ja) |
EP (1) | EP3666167A4 (ja) |
JP (1) | JP7165660B2 (ja) |
CN (1) | CN110996759B (ja) |
WO (1) | WO2019031424A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200154995A1 (en) * | 2017-07-04 | 2020-05-21 | Kowa Company, Ltd. | Tear fluid layer evaluation method, computer program, and device |
JP2020130527A (ja) * | 2019-02-18 | 2020-08-31 | 株式会社トーメーコーポレーション | 眼科装置 |
KR20220052197A (ko) * | 2020-10-20 | 2022-04-27 | 강신구 | 안과 기구용 조명장치, 안과 기구 및 그 조명 방법 |
WO2022092134A1 (ja) * | 2020-10-28 | 2022-05-05 | ライオン株式会社 | 検査方法、機械学習実行方法、検査装置及び機械学習実行方法 |
JP7094468B1 (ja) | 2020-12-25 | 2022-07-01 | ライオン株式会社 | 検査方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112450873A (zh) * | 2020-11-20 | 2021-03-09 | 爱博图湃(北京)医疗科技有限公司 | 用于角膜塑形镜验配的光学相干层析系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5138967B1 (ja) | 1970-12-30 | 1976-10-25 | ||
JP3896211B2 (ja) | 1998-03-20 | 2007-03-22 | 興和株式会社 | 眼科測定装置 |
US20070237715A1 (en) * | 2006-04-11 | 2007-10-11 | Luce David A | Method And Apparatus For Tear Film Measurement |
JP2011156030A (ja) * | 2010-01-29 | 2011-08-18 | Kyoto Prefectural Public Univ Corp | 眼科装置及び画像分類方法 |
JP2013212363A (ja) * | 2012-03-06 | 2013-10-17 | Kitasato Institute | 眼科測定方法、眼科測定装置および被検物質の評価方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4766919B2 (ja) | 2005-05-16 | 2011-09-07 | 則彦 横井 | 眼科測定方法および眼科測定装置 |
US7654669B2 (en) | 2005-07-01 | 2010-02-02 | Kowa Kabushiki Kaisha | Ophthalmic photography apparatus |
US7520609B2 (en) | 2006-01-18 | 2009-04-21 | Amo Manufacturing Llc | Non-invasive measurement of tear volume systems and methods |
JP5138967B2 (ja) | 2007-04-10 | 2013-02-06 | 克史 石田 | 涙液メニスカス検査用具製造方法 |
JP4636146B2 (ja) | 2008-09-05 | 2011-02-23 | ソニー株式会社 | 画像処理方法、画像処理装置、プログラム及び画像処理システム |
JP5529660B2 (ja) | 2010-07-20 | 2014-06-25 | パナソニック株式会社 | 瞳孔検出装置及び瞳孔検出方法 |
US9339177B2 (en) * | 2012-12-21 | 2016-05-17 | Tearscience, Inc. | Full-eye illumination ocular surface imaging of an ocular tear film for determining tear film thickness and/or providing ocular topography |
CN106725282A (zh) | 2016-12-12 | 2017-05-31 | 南京理工大学 | 一种小型的干眼检测设备 |
CN106510615B (zh) | 2016-12-14 | 2019-05-28 | 中国科学院苏州生物医学工程技术研究所 | 干眼症综合分析系统 |
-
2018
- 2018-08-06 WO PCT/JP2018/029324 patent/WO2019031424A1/ja active Application Filing
- 2018-08-06 JP JP2019535632A patent/JP7165660B2/ja active Active
- 2018-08-06 EP EP18843382.5A patent/EP3666167A4/en active Pending
- 2018-08-06 US US16/637,216 patent/US11514570B2/en active Active
- 2018-08-06 CN CN201880051230.7A patent/CN110996759B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5138967B1 (ja) | 1970-12-30 | 1976-10-25 | ||
JP3896211B2 (ja) | 1998-03-20 | 2007-03-22 | 興和株式会社 | 眼科測定装置 |
US20070237715A1 (en) * | 2006-04-11 | 2007-10-11 | Luce David A | Method And Apparatus For Tear Film Measurement |
JP2011156030A (ja) * | 2010-01-29 | 2011-08-18 | Kyoto Prefectural Public Univ Corp | 眼科装置及び画像分類方法 |
JP2013212363A (ja) * | 2012-03-06 | 2013-10-17 | Kitasato Institute | 眼科測定方法、眼科測定装置および被検物質の評価方法 |
Non-Patent Citations (2)
Title |
---|
"Dry Eye Diagnosis PPP", 1 May 2002, SHUNJI NAKAO, pages: 41 - 45 |
See also references of EP3666167A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200154995A1 (en) * | 2017-07-04 | 2020-05-21 | Kowa Company, Ltd. | Tear fluid layer evaluation method, computer program, and device |
US11717152B2 (en) * | 2017-07-04 | 2023-08-08 | Kowa Company, Ltd. | Tear fluid layer evaluation method, computer program, and device |
JP2020130527A (ja) * | 2019-02-18 | 2020-08-31 | 株式会社トーメーコーポレーション | 眼科装置 |
JP7370557B2 (ja) | 2019-02-18 | 2023-10-30 | 株式会社トーメーコーポレーション | 眼科装置 |
KR20220052197A (ko) * | 2020-10-20 | 2022-04-27 | 강신구 | 안과 기구용 조명장치, 안과 기구 및 그 조명 방법 |
KR102418347B1 (ko) * | 2020-10-20 | 2022-07-07 | 강신구 | 안과 기구용 조명장치, 안과 기구 및 그 조명 방법 |
WO2022092134A1 (ja) * | 2020-10-28 | 2022-05-05 | ライオン株式会社 | 検査方法、機械学習実行方法、検査装置及び機械学習実行方法 |
JP7094468B1 (ja) | 2020-12-25 | 2022-07-01 | ライオン株式会社 | 検査方法 |
JP2022104840A (ja) * | 2020-12-25 | 2022-07-11 | ライオン株式会社 | 検査方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110996759B (zh) | 2022-09-09 |
EP3666167A1 (en) | 2020-06-17 |
JP7165660B2 (ja) | 2022-11-04 |
US20200167915A1 (en) | 2020-05-28 |
CN110996759A (zh) | 2020-04-10 |
JPWO2019031424A1 (ja) | 2020-08-20 |
US11514570B2 (en) | 2022-11-29 |
EP3666167A4 (en) | 2021-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7165660B2 (ja) | 涙液状態評価方法、コンピュータプログラム、装置 | |
JP7448470B2 (ja) | 画像分類装置の作動方法、装置及びプログラム | |
US9028065B2 (en) | Ophthalmologic apparatus and image classification method | |
JP5628839B2 (ja) | 眼球表面疾患を検出するシステムおよび眼球表面検査装置 | |
JP5955163B2 (ja) | 画像処理装置および画像処理方法 | |
JP7084001B2 (ja) | 涙液層の動態評価方法およびその装置 | |
US9241622B2 (en) | Method for ocular surface imaging | |
US11717152B2 (en) | Tear fluid layer evaluation method, computer program, and device | |
JP6814799B2 (ja) | 涙液状態評価方法およびその装置 | |
Arthur et al. | Distances from capillaries to arterioles or venules measured using OCTA and AOSLO | |
JP2017136212A (ja) | 眼科装置 | |
JP7104941B2 (ja) | 涙液層の動態評価方法およびその装置 | |
KR20210048077A (ko) | 전방 안구 이미지의 세포수 정량화 장치 및 방법 | |
Moult et al. | Swept source OCT angiography reveals choriocapillaris alterations in eyes with nascent geographic atrophy and drusen-associated atrophy | |
US20230060385A1 (en) | Method for measuring a tear meniscus | |
Li et al. | 4. OCTA of the normal anterior eye circulations | |
EP3755994A1 (en) | Image-processing apparatus and image-processing method for detection of irregularities in tissue | |
CN116491892A (zh) | 近视眼底改变评估方法、装置和电子设备 | |
DUKER et al. | ERIC M. MOULT, BSC,* NADIA K. WAHEED, MD, MPH,† EDUARDO A. NOVAIS, MD,†‡ WOOJHON CHOI, PHD,* BYUNGKUN LEE, MENG,* STEFAN B. PLONER, BSC,* § EMILY D. COLE, BSC,† RICARDO N. LOUZADA, MD,†¶ CHEN D. LU, MSC,* PHILIP J. ROSENFELD, MD, PHD |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18843382 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019535632 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018843382 Country of ref document: EP Effective date: 20200309 |