Nothing Special   »   [go: up one dir, main page]

WO2019030815A1 - 超音波検査方法および超音波検査装置 - Google Patents

超音波検査方法および超音波検査装置 Download PDF

Info

Publication number
WO2019030815A1
WO2019030815A1 PCT/JP2017/028718 JP2017028718W WO2019030815A1 WO 2019030815 A1 WO2019030815 A1 WO 2019030815A1 JP 2017028718 W JP2017028718 W JP 2017028718W WO 2019030815 A1 WO2019030815 A1 WO 2019030815A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform signal
analysis
still image
propagation
ultrasonic
Prior art date
Application number
PCT/JP2017/028718
Other languages
English (en)
French (fr)
Inventor
裕久 溝田
永島 良昭
和之 中畑
Original Assignee
株式会社日立製作所
国立大学法人愛媛大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 国立大学法人愛媛大学 filed Critical 株式会社日立製作所
Priority to JP2019535468A priority Critical patent/JP6782934B2/ja
Priority to PCT/JP2017/028718 priority patent/WO2019030815A1/ja
Publication of WO2019030815A1 publication Critical patent/WO2019030815A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/52Processing the detected response signal, e.g. electronic circuits specially adapted therefor using inversion methods other that spectral analysis, e.g. conjugated gradient inversion

Definitions

  • the present invention relates to a nondestructive inspection technique, and more particularly to an ultrasonic inspection method for positioning flaws in an object to be inspected using ultrasonic waves, and an ultrasonic inspection apparatus for carrying out the method. .
  • Ultrasonic inspection is one of the flaw inspection methods in such nondestructive inspection systems.
  • a probe (also referred to as an ultrasonic probe) incorporating a transducer is applied to the subject to be irradiated with an ultrasonic wave (for example, 1 to 5 MHz), and the reflected wave (echo) is detected by the probe. It is an inspection method received by the child.
  • an echo is generated on the surface of the inspected object (often the bottom / back side) opposite to the incident surface when there is no flaw in the inspected object. Since an echo occurs first in a flaw, it is possible to check the presence or absence and position of the flaw by analyzing and imaging the reception of the echo.
  • Patent Document 1 Japanese Patent Laid-Open No. 2014-062758 is a nondestructive inspection method for detecting a defect of an object to be inspected having a bent portion using a guide wave, and the inspection range of the object to be inspected is plural.
  • Non-destructive inspection method comprising is disclosed.
  • Patent Document 1 even in the case of inspecting a pipe having a bent portion, by providing a step for compensating for the distortion of the guide wave, all the ranges of the straight pipe portion, the inside of the bend, and the bend and thereafter are collectively. It is said that a defect distribution image can be obtained, and a sensitivity error in the circumferential direction of the pipe hardly occurs in the image.
  • the technique of Patent Document 1 is considered to be able to accurately position flaws in a one-dimensional direction (longitudinal direction).
  • Patent Document 2 it is possible to correct the received A-scope waveform signal to a constant echo intensity without diffusion attenuation by multiplying the A-scope waveform signal obtained by each receiving element by the inverse of a predetermined influence function. Then, by performing the aperture synthesis process using the A scope waveform signal after this correction, even if the distance from the probe is expanded, the decrease in detection sensitivity due to the attenuation of the ultrasonic wave is suppressed, and clear instructions can be obtained. , And is. That is, it is said that even flaws and defects located in the deep position of thick-walled specimens can be detected with the same sensitivity as those in shallow positions.
  • a waveform of an echo is received using a plurality of transducers, a trajectory that can be a reflection source of the received waveform is determined for each waveform, and the waveform of the waveform is obtained on each trajectory. It is a method of imaging the reflection source by superimposing high values.
  • the property of the examination area is uniform in the area other than the flaw (in other words, when the flaw is present in the acoustically homogeneous tissue form)
  • the location of the flaw and the actual flaw determined by the aperture synthesis method It is known to show good agreement with the position of.
  • the region to be inspected includes an area of acoustically inhomogeneous tissue morphology (for example, in the case where the tissue morphology includes a region distinct from others as in a weld), the acoustically inhomogeneous The area has a large influence on the propagation characteristics and the reflection characteristics of ultrasonic waves, and therefore, in the conventional aperture synthesis method, there is a weak point that the position of a flaw obtained by analysis and the position of a real flaw are easily shifted.
  • the conventional aperture synthesis method requires extremely complicated calculation and requires a long calculation time, or There is a problem that calculation is too complicated and it is difficult to calculate a solution.
  • the calculation for obtaining the propagation path and the propagation time is N ⁇ 10 6 respectively. It will need to be done several times.
  • the ultrasonic phased array probe is scanned on the object to be inspected for flaw detection, the calculation is required for each measurement position.
  • Patent Document 3 in an ultrasonic inspection method for inspecting an object to be inspected using ultrasonic waves, a step of creating a first flaw detection image from a recorded ultrasonic waveform, and a waveform obtained by time-reversing the recorded ultrasonic waveform Creating a first propagation analysis model for analyzing the propagation of the ultrasonic wave to the inspection object with the input as a second flaw image from the result of performing the propagation analysis on the first propagation analysis model
  • An ultrasonic inspection method is disclosed, characterized in that it comprises the steps of: In addition, the step of displaying a significant reflected signal from the first flaw detection image, and the step of performing a second propagation analysis for determining the propagation time of each ultrasonic wave from the significant reflected signal to each ultrasonic wave transmission position And a step of obtaining
  • Patent Document 3 even when the inspection object / inspection area includes an acoustically inhomogeneous region, it is possible to carry out the defect position with high accuracy and shortening the inspection time. ing.
  • the technique of Patent Document 3 creates a first propagation analysis model for analyzing the propagation of ultrasonic waves to a test object, using a waveform obtained by inverting the time of the recorded ultrasonic waveform in the process of analyzing the position of flaws. (It is time-reversal of the ultrasonic measurement waveform and numerical analysis on the object model, it is called back propagation analysis) is an important point, and it is an excellent technology to solve the problems of the prior art. It is considered one.
  • the method of determining the position and size of a still image group without reproducing and observing it as a moving image has a weakness that it always takes time for moving image observation in locating the position of a flaw.
  • each flaw is displayed on a still image of a different page. It becomes difficult to display together in the image.
  • the method of judging that a moving image has not been reproduced or observed has a weak point of uncertainty that the observer's subjectivity is likely to affect the position determination of a flaw.
  • the object of the present invention is to overcome the conventional weakness while taking advantage of the conventional back propagation analysis in ultrasonic inspection for performing localization of flaws in the inside of a subject to be examined.
  • An ultrasonic inspection method capable of simultaneously displaying a plurality of flaws different in position in one still image, and an ultrasonic inspection apparatus for performing the method.
  • One aspect of the present invention is an ultrasonic inspection method which uses ultrasonic waves to position flaws inside a subject to be inspected, A test object model preparation step of preparing a model of the test object; A measurement condition input step of setting and inputting the measurement condition of the ultrasonic wave; An ultrasonic measurement step of controlling a probe in accordance with the measurement conditions, transmitting an incident wave of the ultrasonic wave to the inside of the subject, and receiving a reflected wave of the incident wave by the probe; Back propagation analysis step of performing back propagation analysis on the model using the waveform signal of the reflected wave to create a back propagation still image group arranged in a reverse time series; A forward propagation analysis step of performing forward propagation analysis on the model using the waveform signal of the incident wave to create a forward propagation still image group arranged in time series; Performing forward propagation / back propagation combined operation processing step of performing arithmetic processing combining the forward propagation still image group and the back propagation still image group to create a single still image
  • the present invention can add the following improvements and changes in the above-mentioned ultrasonic inspection method (I).
  • the forward-propagation / back-propagation combining operation processing step obtains a Hadamard product by aligning time origins of each still image of the forward-propagating still image group and each still image of the back-propagating still image group
  • the operation processing still image group creation substep which creates operation processing still image group by this, and the uniting processing substep which creates the single still image by summing the operation processing still image group.
  • the back propagation analysis step includes a time inverted waveform signal creation substep of time inverting the waveform signal of the reflected wave to create a time inverted waveform signal, and the back propagation analysis based on the time inverted waveform signal
  • the forward propagation analysis step includes an incident waveform signal creation sub-step of creating a waveform signal of the incident wave of the ultrasonic wave, and the forward propagation analysis is performed based on the created incident waveform signal.
  • Another aspect of the present invention is an ultrasonic inspection apparatus that uses ultrasonic waves to position flaws in an object to be inspected,
  • An input / output unit that inputs measurement conditions and analysis conditions of the ultrasonic wave and outputs an analysis result;
  • a measurement control unit configured to control a probe in accordance with the measurement condition, transmit an incident wave of the ultrasonic wave to the inside of the inspection object, and receive a reflected wave of the incident wave;
  • a data storage unit storing a model of the inspection object, the measurement condition, the analysis condition, a waveform signal of the reflected wave, a waveform signal of the incident wave, and an image based on the analysis;
  • a waveform signal analysis processing unit that analyzes and processes the waveform signal of the incident wave and the waveform signal of the reflected wave according to the analysis condition on the model of the inspection object,
  • the waveform signal analysis processing unit Back propagation analysis of creating a backward propagation still image group aligned in reverse time series using the waveform signal of the reflected wave, and
  • the present invention can make the following improvements and modifications in the above-mentioned ultrasonic inspection apparatus (II).
  • the forward-propagation / back-propagation combining operation processing is performed by taking a Hadamard product by aligning time origins of each still image of the forward-propagating still image group and each still image of the back-propagating still image group An algorithm for creating a still image group of operation processing and an algorithm for creating the single still image by summing up the group of operation processing still images are included.
  • the data storage unit time-reverses the waveform signal of the reflected wave and the waveform signal of the reflected wave, and the measurement analysis condition storage mechanism that stores the model of the inspection object, the measurement condition, and the analysis condition.
  • the waveform signal analysis processing unit further includes a test object model creating mechanism that creates a model of the test subject.
  • the measurement control unit controls a probe control mechanism for controlling transmission and reception of the ultrasonic wave of the probe, a waveform signal generation mechanism for converting the received reflected wave into a waveform signal, and the probe And a probe drive mechanism responsible for position detection and scanning operations.
  • the conventional weak point is overcome while taking advantage of the conventional back propagation analysis, and a single still image is obtained. It is possible to provide an ultrasonic inspection method capable of simultaneously displaying a plurality of flaws of different positions, and an ultrasonic inspection apparatus for carrying out the method.
  • FIG. 1 It is a schematic diagram which shows schematic structure of the ultrasonic inspection apparatus which concerns on this invention. It is a flowchart which shows an example of the process in the ultrasonic inspection of this invention. It is a schematic diagram which shows an example of a to-be-tested object model. It is a schematic diagram which shows an example of a reflected wave measurement step. It is a schematic diagram which shows the relationship between the measured reflected waveform signal and its time inversion waveform signal. It is a schematic diagram which shows an example of the back propagation still image group obtained as a result of back propagation analysis. It is a schematic diagram which shows an example of the produced incident waveform signal. It is a schematic diagram which shows an example of the forward propagation still image group obtained as a result of forward propagation analysis. FIG.
  • FIG. 7 is a schematic view in which each still image of a forward propagation still image group and each still image of a back propagation still image group are arranged with their time starting points aligned. It is a schematic diagram which shows an example of the arithmetic processing still image group obtained as a result of arithmetic processing still image group creation substep. It is a schematic diagram which shows an example of the single still image obtained as a result of a union process substep. The figure which shows an example of the result of having performed the waveform signal analysis process of the ultrasonic inspection which concerns on this invention with respect to the to-be-tested object model which has two flaws which mutually differ in position (tested object model figure, analysis result output figure) It is.
  • FIG. 1 is a schematic view showing a schematic configuration of an ultrasonic inspection apparatus according to the present invention.
  • the ultrasonic inspection apparatus 100 according to the present invention is an apparatus for locating a flaw in an object to be inspected using ultrasonic waves, and is roughly divided into ultrasonic measurement conditions and An input / output unit 40 which inputs an analysis condition and outputs an analysis result, and controls the probe 1 in accordance with the input measurement condition to transmit an incident wave of ultrasonic waves to the inside of the object to be inspected.
  • a measurement control unit 10 for receiving a reflected wave, a waveform signal of an incident wave, a waveform signal of a reflected wave, a model of an inspection object, a data storage unit 20 for storing an analysis algorithm and a result of analysis processing, an incident waveform signal and a reflection And a waveform signal analysis processing unit 30 for analyzing and processing the waveform signal according to a predetermined analysis algorithm on the test object model.
  • the internal configuration of each part will be described in detail in the following description of the flaw detection method.
  • FIG. 2 is a flow chart showing an example of the process in the ultrasonic inspection of the present invention.
  • the test object model preparation step (S101) to the reflected wave measurement step (S103) is an ultrasonic measurement process
  • the analysis condition input step (S201) to an analysis result output step (S205) is a waveform signal analysis process. is there.
  • test object model preparation step S101 of preparing a model of a test object is performed.
  • the test object model used in the present invention is a model that defines regions and conditions necessary for numerical analysis of the propagation phenomenon of ultrasonic waves. For example, the shape of the test region (analysis region), acoustic characteristics, It is a model that defines boundary conditions based on them, divided meshes used for analysis processing, and the like.
  • the model creation is performed by the inspection object model creation mechanism 31 of the waveform signal analysis processing unit 30 based on the data regarding the inspection region input by the measurement analysis condition input mechanism 41 of the input / output unit 40 It is.
  • the created test object model is stored in the measurement analysis condition storage mechanism 21 of the data storage unit 20 (for example, the test object model storage area of the measurement analysis condition storage mechanism 21).
  • the method of creating an object model and the mechanism for creating an object model are not particularly limited as long as an object model suitable for conventional back propagation analysis and forward propagation analysis of incident waves can be obtained, for example, Patent Document 4
  • the model creation method and apparatus configuration described in (WO 2015/092841 A1) can be suitably used.
  • test object model creation mechanism 31 of the waveform signal analysis processing unit 30 is not an essential configuration
  • a method and apparatus configuration for storing data of a test object model created by a test object model creation device separate from the ultrasonic inspection device 100 in the measurement analysis condition storage mechanism 21 via the measurement analysis condition input mechanism 41 Good.
  • test object model preparation step S101 before the measurement condition input step S102, but the present invention is not limited to that order.
  • the test object model preparation step S101 may be performed at any timing before the waveform signal analysis process.
  • the ultrasonic measurement conditions for example, ultrasonic transmission / reception position, ultrasonic incident direction, total measurement time, sampling interval, probe
  • a scanning condition input step S102 is performed in which the scanning condition is set and the measurement condition is input by the measurement analysis condition input mechanism 41.
  • the input measurement conditions are stored in the measurement analysis condition storage mechanism 21 (for example, the measurement condition storage area of the measurement analysis condition storage mechanism 21).
  • the transmitting / receiving position and the incident direction of the ultrasonic wave are set to the test object model prepared in step S101, the propagation required for the incident wave to reach the farthest part of the region to be inspected (inspection region)
  • the time (incident wave propagation time) can be determined. Since ultrasonic inspection is an inspection method which measures and analyzes a waveform signal of echo, it is preferable to set twice or more times of incident wave propagation time as a total measurement time. Further, it is preferable to match the sampling interval ⁇ t with the size of the divided mesh (for example, match the time for propagating to the adjacent mesh on the divided mesh with the sampling interval) from the viewpoint of analysis processing.
  • the measurement condition input step S102 When the measurement condition input step S102 is performed by skipping the test object model preparation step S101 (for example, when it is necessary to perform an ultrasonic measurement urgently), the measurement condition input step S102 relates to the test region With reference to data (for example, shape data), provisionally, the length of time in which the ultrasonic wave seems to be able to sufficiently reciprocate the inspection area is set as the total measurement time, and the shortest sampling interval ⁇ t is set as much as possible. It may be a method of setting.
  • data for example, shape data
  • the probe control mechanism 11 of the measurement control unit 10 controls the probe 1 to transmit the incident wave of the ultrasonic wave to the inside of the object to be inspected, and the echo of the incident wave
  • the reflected wave measurement step S103 of receiving the light by the probe 1 is performed.
  • the echo received by the probe 1 is amplified and frequency-filtered and A / D converted by the waveform signal conversion mechanism 12 of the measurement control unit 10 to be a waveform signal.
  • the waveform signalized echo (reflected waveform signal) is stored in the waveform signal storage mechanism 22 of the data storage unit 20 (for example, a reflected waveform signal storage area of the waveform signal storage mechanism 22).
  • the probe 1 used in the present invention is not particularly limited, and may be a probe having a single transducer, or a phased array probe (a linear array probe having a plurality of transducers). , Matrix array probe). From the viewpoint of inspection efficiency, it is desirable to use a phased array probe.
  • the phased array probe may or may not be of a type that can select a transducer to transmit and a transducer to receive.
  • the probe drive mechanism 13 of the measurement control unit 10 is responsible for position detection of the probe 1 and a scan operation. When scanning the probe 1 on a to-be-inspected object, after moving the probe 1, reflected wave measurement step S103 is repeated.
  • FIG. 3 is a schematic view showing an example of a test object model
  • FIG. 4 is a schematic view showing an example of a reflected wave measurement step.
  • FIGS. 3 to 4 from the viewpoint of simplifying the drawings and facilitating the technical understanding, there is only one point in the two-dimensional plane of the inspected object, and one incident wave of one pulse is transmitted and its reflected wave An example of receiving
  • a test object model (see FIG. 3) and set the measurement conditions of ultrasonic waves.
  • a quadrangle is selected as the mesh shape, and the test object is obtained by dividing the length direction (x direction in FIG. 3) of the area to be inspected (x direction in FIG. 3) into 16 and the width direction (y direction in FIG. I prepared a model.
  • the transmission / reception position (the installation position of the probe) of the ultrasonic wave is set to three nodes (0, 1) to (0, 3) at the left end of the test object model (for example, a linear array probe including three transducers)
  • the incident direction of the ultrasonic wave is the x direction (without the delay time of oscillation between the transducers) and the size of the mesh and the sampling interval ⁇ t are combined
  • ultrasonic measurement is performed according to the set measurement conditions.
  • FIG. 4 it is assumed that there is a flaw extending over three nodes (5, 1) to (5, 3).
  • the incident wave is reflected by the flaw and received by the probe 1 as an echo.
  • the received echo is waveform-signaled by the waveform signal conversion mechanism 12 and stored in the waveform signal storage mechanism 22 as a reflected waveform signal as shown in FIG.
  • the echo from the flaw is measured at a time of “10 ⁇ ⁇ t”, and the measurement end time is “40 ⁇ ⁇ t ”.
  • the reflected waveform signal data to be stored is defined in such a manner that the transducer number used for measurement and the measurement time can be distinguished.
  • the time t total measurement
  • the nth vibrator (1 ⁇ n ⁇ N where the number of vibrators in the probe 1 is N).
  • the peak value of the ultrasonic wave measured at 0 ⁇ t ⁇ T) with respect to time T is represented.
  • an analysis condition input step S201 is performed to set and input analysis conditions such as an algorithm for performing back propagation analysis, forward propagation analysis, and forward propagation / back propagation combined operation and measurement time used for analysis.
  • the input analysis conditions are stored in the measurement analysis condition storage mechanism 21 (for example, the analysis condition storage area of the measurement analysis condition storage mechanism 21). Note that this step S201 may be performed at the beginning of the analysis process, or may be performed simultaneously with the previous measurement condition input step S102.
  • the back propagation analysis and forward propagation analysis algorithms are not particularly limited as long as the analysis can be appropriately performed, and conventional analysis algorithms (for example, finite element method, finite integration method) can be suitably used.
  • conventional analysis algorithms for example, finite element method, finite integration method
  • As an algorithm of forward propagation / back propagation merging operation Hadamard product (also called Schur product, product per element) and summation are performed.
  • all the time data for each sampling interval ⁇ t set in the previous measurement condition input step S102 may be used with the intention of improving analysis accuracy, or shortening of the analysis time Intentionally, time data for each integral multiple of the sampling interval ⁇ t may be selectively used.
  • Step S202 is performed. More specifically, the present step S202 includes a time-reversal waveform signal creation sub-step S202a for time-reversing the reflection waveform signal to create a time-reversal waveform signal, and performing the back propagation analysis based on the time-reversal waveform signal. It is a thing.
  • the reflected waveform signal data “ ⁇ Ech (n, t)” stored in the previous reflected wave measurement step S 103 is read out from the waveform signal storage mechanism 22, and the time is calculated by the propagation analysis mechanism 32 of the waveform signal analysis processing unit 30.
  • Create an inverted waveform signal The created time-reversal waveform signal is stored in the waveform signal storage mechanism 22 (for example, the time-reversal waveform signal storage area of the waveform signal storage mechanism 22).
  • time-inverted waveform signal data is stored as “ ⁇ Inv (n, T ⁇ t)” (where 1 ⁇ n ⁇ N, 0 ⁇ t ⁇ T).
  • the time inversion waveform signal data “ ⁇ Inv (n, T ⁇ t)”, the test object model and the back propagation analysis algorithm are read out from the waveform signal storage mechanism 22 and the measurement analysis condition storage mechanism 21 respectively,
  • the back propagation analysis is carried out in to create back propagation still image groups “ ⁇ M Rev (n, T ⁇ t) ⁇ ” arranged in reverse time series.
  • the generated back propagation still image group is stored in the image data storage mechanism 23 of the data storage unit 20 (for example, the back propagation still image storage area of the image data storage mechanism 23).
  • the still image / still image group expressed in the present invention is expressed by the line of sight of the measurer / observer in order to make the technology easy to understand, and shows the state in the case of display output or print output. It is a thing.
  • image data in the computer is calculated as matrix data consisting of position data of each pixel constituting the image and pixel value data (brightness and color data, corresponding to peak value in the present invention). It is necessary to understand what is stored.
  • FIG. 5 is a schematic view showing the relationship between the measured reflected waveform signal and its time-reversal waveform signal.
  • the back propagation analysis in the present invention is basically the same as that of Patent Document 3 (WO 2014/167698 A1), and is an analysis for obtaining the propagation locus of ultrasonic waves from which the created time-reversal waveform signal can be obtained. .
  • Patent Document 3 WO 2014/167698 A1
  • it is an analysis to determine how the wave front of the ultrasonic wave travels.
  • FIG. 6 is a schematic view showing an example of a back propagation still image group obtained as a result of back propagation analysis.
  • the position of the wave front of the propagating ultrasonic wave is indicated by “ ⁇ ” on the nodal point of the test object model in order to facilitate technical understanding.
  • the data of “ ⁇ ” includes not only the position of the wavefront but also the Mises stress and displacement amount corresponding to the amplitude (peak value) of the wavefront.
  • the relationship between the time-reversal waveform signal and the back-propagating still image group will be described with reference to FIGS.
  • the back propagation still image group “ ⁇ M Rev (n, T ⁇ t) ⁇ ” created as described above is stored in the image data storage mechanism 23 as described above.
  • (2-2) Forward propagation analysis process Forward propagation analysis is performed on the object model.
  • the forward propagation analysis process is not limited to the process performed after the back propagation analysis process, and after the above-described analysis condition input step S201, the forward propagation / back propagation combined operation process S204 described later If it is before, you may go at any timing. For example, it may be performed simultaneously with the analysis condition input step S201 and the measurement condition input step S102.
  • forward propagation analysis step S203 of performing forward propagation analysis on an object model using a waveform signal (incident waveform signal) of an incident wave to create a forward propagation still image group arranged in time series is performed.
  • the present step S203 includes an incident waveform signal creation sub-step S203a for creating an incident waveform signal using the waveform signaling mechanism 12 of the measurement control unit 10, and forward propagation based on the created incident waveform signal It is an analysis.
  • the incident waveform signal may be a signal of a simulated waveform defined by a function (for example, Mexican hat function, French hat function) representing the center frequency band of the probe 1 to be used, or used
  • the ultrasonic wave actually transmitted by the probe 1 may be separately measured and converted into a waveform signal.
  • the created incident waveform signal “ ⁇ Inc (n, t)” is stored in the waveform signal storage mechanism 22 (for example, the incident waveform signal storage area of the waveform signal storage mechanism 22).
  • the forward propagation analysis in the present invention is performed on the assumption that there is no flaw inside the object to be inspected. In other words, the generation of echo due to flaws is not considered. Even when the probe 1 is scanned on the inspection subject, the incident waveform signal generation step S203 need not be repeated since the incident waveform signal is the same.
  • the incident waveform signal data “ ⁇ Inc (n, t)”, the test object model and the forward propagation analysis algorithm are read out from the waveform signal storage mechanism 22 and the measurement analysis condition storage mechanism 21 respectively.
  • Forward propagation analysis is performed to create a forward propagation still image group “ ⁇ M For (n, t) ⁇ ” arranged in time series.
  • the created forward propagation still image group " ⁇ M For (n, t) ⁇ ” is stored in the image data storage mechanism 23 (for example, the forward propagation still image storage area of the image data storage mechanism 23).
  • FIG. 7 is a schematic view showing an example of the created incident waveform signal
  • FIG. 8 is a schematic view showing an example of a forward propagation still image group obtained as a result of forward propagation analysis.
  • FIG. 8 as in FIG. 6, the position of the wavefront of the propagating ultrasonic wave is indicated by “ ⁇ ” on the nodal point of the object model.
  • the relationship between the incident waveform signal and the forward propagation still image group will be described with reference to FIGS. 7-8.
  • the forward propagation still image group “ ⁇ M For (n, t) ⁇ ” created as described above is stored in the image data storage mechanism 23 as described above.
  • a forward propagation still image group “ ⁇ M For (n, t) ⁇ ” and a back propagation still image group “ ⁇ A forward propagation / back propagation combined arithmetic processing step S204 is performed to create a single still image displaying a position where the arithmetic processing combining M Rev (n, T ⁇ t) ⁇ is not performed. More specifically, the present step S 204 aligns the time origins of each still image of “ ⁇ M For (n, t) ⁇ ” and each still image of “ ⁇ M Rev (n, T ⁇ t) ⁇ ”.
  • the Hadamard product is an operation for obtaining a matrix which is determined by taking a product for each component with respect to a matrix of the same size. Further, as described above, since the image data is matrix data, a matrix representing a still image of "M For (n, t)" and a matrix representing a still image of "M Rev (n, T-t)" It is possible to take the Hadamard product of and the resulting matrix will represent the still image “M Ope (n, t)” subjected to arithmetic processing. It will become like a formula (1) when it expresses with a formula.
  • the arithmetic processing still image group “ ⁇ M Ope (n, t) ⁇ ” and the arithmetic algorithm are read from the image data storage mechanism 23 and the measurement analysis condition storage mechanism 21 respectively, and the arithmetic processing still image group “ ⁇ M Ope (n , t) ⁇ ”to create a single still image“ M Sum (n) ”.
  • the single still image “M Sum (n)” created is stored in the image data storage unit 23 (for example, an analysis result image storage area of the image data storage unit 23).
  • the arithmetic processing here is represented by numerical formula, it will become like Formula (2).
  • an analysis result output step S205 of outputting the obtained single still image "M Sum (n)" by the output mechanism 42 of the input / output unit 40 is performed.
  • the output format of the analysis result may be display output, print output, or any other output format.
  • FIG. 9 is a schematic diagram in which each still image of a forward propagation still image group and each still image of a back propagation still image group are arranged with their time starting points aligned.
  • the ultrasound examination begins with the transmission of the incident wave as shown in FIG. 7 and ends after confirming receipt of the echo as shown in FIG.
  • the total measurement time T has a certain degree of discretion because it is limited only that twice or more of the incident wave propagation time is preferable.
  • the time-reversal waveform signal is obtained by reversing the time axis of the measured reflected waveform signal. Therefore, the time origin in the time inversion waveform signal is the total measurement time T.
  • the left column in FIG. 9 is a forward propagation still image group arranged in time series
  • the right column is a back propagation still image group arranged so as to align time starting points.
  • the same measurement time "t" is arranged in pairs. Since the time start points are aligned, the back propagation still image group in the right row is obtained by reversing the back propagation still image group shown in FIG.
  • FIG. 10 is a schematic view showing an example of the operation processing still image group obtained as a result of the operation processing still image group creation sub-step.
  • FIG. 11 is a schematic view showing an example of a single still image obtained as a result of the uniting processing sub-step.
  • the single static image of FIG. 11 is the same as the object model having the flaw shown in FIG. 4 and according to the forward propagation / back propagation merging operation process of the present invention, the ultrasound of the region other than the flaw position is It can be seen that the propagation trajectory can be canceled.
  • FIG. 12 is a diagram showing an example of a result of performing a waveform signal analysis process of ultrasonic inspection according to the present invention on a test object model having two flaws different in position from each other (test object model diagram, analysis It is a result output figure).
  • the waveform signal analysis process of the present invention in particular, forward order
  • the propagation locus of the ultrasonic wave in the area other than the flaw position can be canceled, and the plurality of flaws can be simultaneously displayed in one still image. .

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

超音波検査の方法・装置において、従来の逆伝搬解析での利点を活かしながら従来の弱点を克服して、1枚の静止画像の中に位置の異なる複数のきずを同時に表示可能にする超音波検査方法およびその装置を提供することを目的とする。本発明に係る超音波検査方法は、超音波を利用して被検査体の内部のきずを位置標定する超音波検査方法であって、前記被検査体のモデルを用意するステップと、前記超音波の計測条件を設定・入力するステップと、前記計測条件に沿って探触子を制御して前記超音波の入射波を前記被検査体の内部に送信し該入射波の反射波を前記探触子で受信するステップと、前記反射波の波形信号を用いて前記モデル上で逆伝搬解析を行って逆時系列に並んだ逆伝搬静止画像群を作成するステップと、前記入射波の波形信号を用いて前記モデル上で順伝搬解析を行って時系列に並んだ順伝搬静止画像群を作成するステップと、前記順伝搬静止画像群と前記逆伝搬静止画像群とを組み合わせる演算処理を行って前記きずの位置を表示した単一の静止画像を作成するステップと、を有することを特徴とする。

Description

超音波検査方法および超音波検査装置
 本発明は、非破壊検査技術に関し、特に、超音波を利用して被検査体の内部のきずを位置標定する超音波検査方法、および該方法を実施するための超音波検査装置に関するものである。
 大型の構造物(例えば、橋梁、電力プラント)の健全性管理を目的として、構造物の部材の内部損傷を広範囲で精度よく検知可能な非破壊検査システムの重要性が高まっている。そのような非破壊検査システムでの探傷検査方法の一つとして、超音波検査(UT)がある。
 超音波検査は、振動子を内蔵する探触子(超音波プローブとも言う)を被検査体に当てて超音波(例えば1~5 MHz)を入射し、その反射波(エコー)を該探触子で受信する検査方法である。このとき、被検査体の内部にきずが無い場合は入射波が入射面と反対側の被検査体表面(しばしば底面/裏面)でエコーが生じ、被検査体の内部にきずが有る場合は当該きずで先にエコーが生じるため、エコーの受信を解析処理・画像化することによってきずの有無や位置を検査することができる。
 例えば、特許文献1(特開2014-062758)には、ガイド波を用いて曲がり部を有する被検査体の欠陥を検出する非破壊検査方法であって、前記被検査体の検査範囲を複数の検査領域に分割する第1のステップと、該第1のステップで分割された前記検査領域へ到達可能な歪みを補償した送信波形を算出する第2のステップと、該第2のステップで算出された前記送信波形を送信して反射波形を受信する第3のステップと、前記検査領域内に解析領域を設定して解析領域に該当する伝搬時間の空間波形を算出する第4のステップと、該第4のステップで算出された前記検査領域内の解析領域の空間波形を合成して検査画像を合成する第5のステップと、該第5のステップで得られた前記検査領域の検査画像を合成して検査画像を得る第6のステップからなる非破壊検査方法が、開示されている。
 特許文献1によると、曲がり部を有する配管を検査する場合であっても、ガイド波の歪みを補償するステップを設けることによって、直管部、曲げ内、曲げ以降の全ての範囲を一括して欠陥分布画像を得ることができ、その画像に配管周方向の感度誤差が生じにくくなる、とされている。特許文献1の技術は、1次元方向(長さ方向)におけるきずの位置標定を精度よく行うことができると考えられる。
 ただし、2次元方向や3次元方向におけるきずの位置標定を特許文献1の技術で行おうとすると極めて複雑な計算が必要になり、長大な計算時間を要するまたは解の算出が不能という問題が生じる場合が考えられる。
 一方、2次元方向や3次元方向における超音波検査の効率向上や精度向上の観点から、近年では、超音波フェーズドアレイを用いた探傷検査方法が注目されている。例えば、特許文献2(特開2010-266414)には、フェーズドアレイを用いた超音波探傷法において、前記フェーズドアレイの各受信素子で得られたAスコープ波形信号に対し、所定の数式で表される影響関数の逆数を乗じて各信号の振幅を補正し、補正後の前記Aスコープ波形信号に開口合成処理を行うことによりBスコープ画像を構築することを特徴とするフェーズドアレイ開口合成処理方法が、開示されている。
 特許文献2によると、各受信素子で得られたAスコープ波形信号に対して所定の影響関数の逆数を乗じることにより、受信したAスコープ波形信号を拡散減衰のない一定エコー強度に補正できる。そして、この補正後のAスコープ波形信号を用いて開口合成処理することにより、探触子からの距離が拡大しても超音波の減衰による検出感度の低下が抑制され、明瞭な指示がえられる、とされている。すなわち、厚肉試験体の深い位置にあるきずや欠陥であっても、浅い位置のそれらと同等の感度で検出できる、とされている。
 ここで、開口合成(AS)法とは、複数の振動子を利用してエコーの波形を受信し、受信した波形の反射源となり得る軌道を波形毎に求め、各軌道上に当該波形の波高値を重ね合わせることで、反射源を画像化する手法である。被検査領域の性状がきず以外の領域で一様である場合(言い換えると、音響的に均質な組織形態の中にきずが存在する場合)、開口合成法によって求めたきずの位置と実際のきずの位置とは良い一致を示すことが知られている。
 ただし、被検査領域の中に音響的に不均質な組織形態の領域を含む場合(例えば、溶接部のように組織形態が明確に他と異なる領域を含む場合)、当該音響的に不均質な領域は超音波の伝搬特性や反射特性に対する影響が大きいため、従来の開口合成法では、解析で求めたきずの位置と実際のきずの位置とがずれ易いという弱点を有する。
 また、音響的不均質領域における超音波の伝搬特性・反射特性を考慮した上で解析を行おうとすると、従来の開口合成法では、極めて複雑な計算が必要になり長大な計算時間を要する、または計算が複雑過ぎて解の算出が困難という問題が生じる。例えば、N個の振動子を含む超音波フェーズドアレイ探触子を用いて被検査領域を1000×1000のメッシュで画像化しようとした場合、伝搬経路および伝搬時間を求める計算がそれぞれN×106回必要になる。さらに、当該超音波フェーズドアレイ探触子を被検査体上でスキャンさせて探傷検査する場合、計測位置毎にその計算が必要になる。
 上記のような音響的不均質領域を含む場合の問題の対策として、例えば、特許文献3(WO 2014/167698 A1)の技術が報告されている。特許文献3には、超音波を用いて被検査体を検査する超音波検査方法において、収録した超音波波形から第一の探傷画像を作成するステップと、収録した超音波波形を時間反転した波形を入力として、前記被検査体への超音波の伝搬を解析する第一の伝搬解析モデルを作成するステップと、前記第一の伝搬解析モデル上で伝搬解析を実施した結果から第二の探傷画像を作成するステップを有することを特徴とする超音波検査方法が、開示されている。また、前記第一の探傷画像から有意な反射信号を掲出するステップと、前記有意な反射信号から各超音波送信位置までのそれぞれの超音波の伝搬時間を求める第二の伝搬解析を実施するステップと、前記伝搬時間より各超音波送信位置における遅延時間情報を求めるステップとを更に有する超音波検査方法が、開示されている。
特開2014-062758号公報 特開2010-266414号公報 国際公開第2014/167698号 国際公開第2015/092841号
 特許文献3によると、被検査体/被検査領域が音響的不均質領域を含む場合であっても、欠陥位置を高精度にかつ検査時間を短縮して実施することが可能になる、とされている。特許文献3の技術は、きずの位置標定の解析プロセスにおいて、収録した超音波波形を時間反転した波形を入力として、被検査体への超音波の伝搬を解析する第一の伝搬解析モデルを作成すること(超音波計測波形を時間反転して被検査体モデル上で数値解析すること、逆伝搬解析と称す)が重要なポイントとなっており、従来技術の問題点を解決する優れた技術の一つと考えられる。
 特許文献3の技術では、解析結果として、超音波の伝搬の様子が時系列に並んだ複数枚の静止画像(静止画像群)が得られる。そして、該静止画像群をアニメーション(動画)として再生し、きずに起因するエコーが伝搬していく様子を観察することにより、きずの位置や大きさを標定することができる。
 しかしながら、静止画像群を動画として再生・観察してきずの位置や大きさを判断する方法は、きずの位置標定にあたって必ず動画観察の時間を要するという弱点があった。言い換えると、きずの位置標定の解析結果を直接的に1枚の静止画像で表示することが困難という弱点があった。例えば、探触子からの距離が異なる複数のきずが存在する場合(すなわち、伝搬時間の異なるきずが複数ある場合)、それぞれのきずが異なるページの静止画像に表示されるため、1枚の静止画像の中に一緒に表示することが困難となる。
 加えて、動画を再生・観察してきずを判断する方法は、きずの位置標定に観察者の主観が影響し易いという不確実性の弱点があった。
 なお、解析結果として得られた静止画像群を全て重ね合わせて1枚の静止画像を合成した場合、超音波の伝搬軌跡(入射波の軌跡およびエコーの軌跡)が帯状に描画されることになるため、きずの位置が不明瞭になり易いという問題が生じる。特に、複数のきずが存在する場合、探触子に近い側の位置にあるきずは、探触子に遠い側の位置にあるきずへの伝搬軌跡に埋もれ易く判別困難になるという別の問題が生じる。
 上記のような事情から、本発明の目的は、被検査体の内部のきずの位置標定を行う超音波検査において、従来の逆伝搬解析での利点を活かしながら従来の弱点を克服して、1枚の静止画像の中に位置の異なる複数のきずを同時に表示可能にする超音波検査方法、および該方法を実施するための超音波検査装置を提供することにある。
 (I)本発明の一態様は、超音波を利用して被検査体の内部のきずを位置標定する超音波検査方法であって、
前記被検査体のモデルを用意する被検査体モデル用意ステップと、
前記超音波の計測条件を設定・入力する計測条件入力ステップと、
前記計測条件に沿って探触子を制御して前記超音波の入射波を前記被検査体の内部に送信し該入射波の反射波を前記探触子で受信する超音波計測ステップと、
前記反射波の波形信号を用いて前記モデル上で逆伝搬解析を行って逆時系列に並んだ逆伝搬静止画像群を作成する逆伝搬解析ステップと、
前記入射波の波形信号を用いて前記モデル上で順伝搬解析を行って時系列に並んだ順伝搬静止画像群を作成する順伝搬解析ステップと、
前記順伝搬静止画像群と前記逆伝搬静止画像群とを組み合わせる演算処理を行って前記きずの位置を表示した単一の静止画像を作成する順伝搬/逆伝搬合体演算処理ステップと、を有することを特徴とする超音波検査方法を提供するものである。
 本発明は、上記の超音波検査方法(I)において、以下のような改良や変更を加えることができる。
(i)前記順伝搬/逆伝搬合体演算処理ステップは、前記順伝搬静止画像群の各静止画像と前記逆伝搬静止画像群の各静止画像とを時間起点を揃えたかたちでアダマール積をとることによって演算処理静止画像群を作成する演算処理静止画像群作成サブステップと、前記演算処理静止画像群の総和をとることによって前記単一の静止画像を作成する合体処理サブステップとを有する。
(ii)前記逆伝搬解析ステップは、前記反射波の波形信号を時間反転して時間反転波形信号を作成する時間反転波形信号作成サブステップを含み、該時間反転波形信号に基づいて前記逆伝搬解析を行うものであり、
前記順伝搬解析ステップは、前記超音波の入射波の波形信号を作成する入射波形信号作成サブステップを含み、作成した入射波形信号に基づいて前記順伝搬解析を行うものである。
 (II)本発明の他の一態様は、超音波を利用して被検査体の内部のきずを位置標定する超音波検査装置であって、
前記超音波の計測条件および解析条件を入力すると共に解析結果を出力する入出力部と、
前記計測条件に沿って探触子を制御して前記被検査体の内部に前記超音波の入射波を送信し該入射波の反射波を受信する計測制御部と、
前記被検査体のモデル、前記計測条件、前記解析条件、前記反射波の波形信号、前記入射波の波形信号および解析に基づく画像を記憶するデータ記憶部と、
前記入射波の波形信号および前記反射波の波形信号を前記被検査体のモデル上で前記解析条件に沿って解析処理する波形信号解析処理部と、を具備し、
前記波形信号解析処理部は、
前記反射波の波形信号を用いて逆時系列に並んだ逆伝搬静止画像群を作成する逆伝搬解析および前記入射波の波形信号を用いて時系列に並んだ順伝搬静止画像群を作成する順伝搬解析を行う伝搬解析機構と、
前記順伝搬静止画像群および前記逆伝搬静止画像群を組み合わせて前記きずの位置を表示した単一の静止画像を作成する順伝搬/逆伝搬合体演算処理を行う演算処理機構と、を有することを特徴とする超音波検査装置を提供するものである。
 本発明は、上記の超音波検査装置(II)において、以下のような改良や変更を加えることができる。
(iii)前記順伝搬/逆伝搬合体演算処理は、前記順伝搬静止画像群の各静止画像と前記逆伝搬静止画像群の各静止画像とを時間起点を揃えたかたちでアダマール積をとることによって演算処理静止画像群を作成するアルゴリズムと、前記演算処理静止画像群の総和をとることによって前記単一の静止画像を作成するアルゴリズムとを含む。
(iv)前記データ記憶部は、前記被検査体のモデル、前記計測条件および前記解析条件を記憶する計測解析条件記憶機構と、前記反射波の波形信号、該反射波の波形信号を時間反転して作成した時間反転波形信号および前記入射波の波形信号を記憶する波形信号記憶機構と、前記解析に基づく画像として、前記逆伝搬静止画像群、前記順伝搬静止画像群、前記演算処理静止画像群および前記単一の静止画像を記憶する画像データ記憶機構とを有する。
(v)前記波形信号解析処理部は、前記被検査体のモデルを作成する被検査体モデル作成機構を更に有する。
(vi)前記計測制御部は、前記探触子の前記超音波の送受信を制御する探触子制御機構と、受信した前記反射波を波形信号化する波形信号化機構と、前記探触子の位置検知およびスキャン操作を担う探触子駆動機構とを有する。
 本発明によれば、被検査体の内部のきずの位置標定を行う超音波検査において、従来の逆伝搬解析での利点を活かしながら従来の弱点を克服して、1枚の静止画像の中に位置の異なる複数のきずを同時に表示可能にする超音波検査方法、および該方法を実施するための超音波検査装置を提供することができる。
本発明に係る超音波検査装置の概略構成を示す模式図である。 本発明の超音波検査におけるプロセスの一例を示すフロー図である。 被検査体モデルの一例を示す模式図である。 反射波計測ステップの一例を示す模式図である。 計測した反射波形信号とその時間反転波形信号との関係を示す模式図である。 逆伝搬解析の結果として得られる逆伝搬静止画像群の一例を示す模式図である。 作成した入射波形信号の一例を示す模式図である。 順伝搬解析の結果として得られる順伝搬静止画像群の一例を示す模式図である。 順伝搬静止画像群の各静止画像と逆伝搬静止画像群の各静止画像とを時間起点を揃えたかたちで並べた模式図である。 演算処理静止画像群作成サブステップの結果として得られる演算処理静止画像群の一例を示す模式図である。 合体処理サブステップの結果として得られる単一の静止画像の一例を示す模式図である。 互いに位置の異なる2つのきずを有する被検査体モデルに対して、本発明に係る超音波検査の波形信号解析プロセスを行った結果の一例を示す図(被検査体モデル図、解析結果出力図)である。
 (本発明の基本思想)
 本発明者等は、前述した目的を達成すべく超音波検査における計測・解析プロセスを鋭意研究した。その中で、特許文献3(WO 2014/167698 A1)で提案された逆伝搬解析に加えて、該逆伝搬解析と同じ被検査体モデル上で順伝搬解析を行い、逆伝搬解析で得られた静止画像群と順伝搬解析で得られた静止画像群とを組み合わせて演算処理することによって、被検査体内部のきず位置(エコーの発生源)以外の領域で超音波の伝搬軌跡(入射波の軌跡およびエコーの軌跡)をキャンセルできることを見出した。本発明は当該知見に基づいて完成されたものである。
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、本発明はここで取り上げた実施形態に限定されることはなく、発明の技術的思想を逸脱しない範囲で、公知技術と適宜組み合わせたり公知技術に基づいて改良したりすることが可能である。
 (超音波検査装置)
 図1は、本発明に係る超音波検査装置の概略構成を示す模式図である。図1に示したように、本発明の超音波検査装置100は、超音波を利用して被検査体の内部のきずを位置標定する装置であって、大きく分けて、超音波の計測条件および解析条件を入力すると共に解析結果を出力する入出力部40と、入力した計測条件に沿って探触子1を制御して超音波の入射波を被検査体の内部に送信し該入射波の反射波を受信する計測制御部10と、入射波の波形信号、反射波の波形信号、被検査体のモデル、解析アルゴリズムおよび解析処理の結果を記憶するデータ記憶部20と、入射波形信号および反射波形信号を被検査体モデル上で所定の解析アルゴリズムに沿って解析処理する波形信号解析処理部30と、から構成される。各部の内部構成については、次の探傷検査方法の説明の中で詳述する。
 (超音波検査方法)
 前述したように、本発明の超音波検査方法は、従来の逆伝搬解析に加えて、該逆伝搬解析と同じ被検査体モデル上で入射波の順伝搬解析を行い、順伝搬解析で得られた静止画像群と逆伝搬解析で得られた静止画像群とを組み合わせる演算処理を行うところに最大の特徴がある。以下、本発明の超音波検査装置100を用いた超音波の計測・解析プロセスについて説明する。
 図2は、本発明の超音波検査におけるプロセスの一例を示すフロー図である。図2において、被検査体モデル用意ステップ(S101)~反射波計測ステップ(S103)が超音波計測プロセスであり、解析条件入力ステップ(S201)~解析結果出力ステップ(S205)が波形信号解析プロセスである。
 (1)超音波計測プロセス
 被検査体のモデルを用意する被検査体モデル用意ステップS101を行う。本発明で用いる被検査体モデルは、超音波の伝搬現象を数値解析する際に必要な領域・条件を定義したモデルであり、例えば、被検査領域(被解析領域)の形状、音響的性状、それらに基づく境界条件、解析処理に用いる分割メッシュなどを定義したモデルである。
 本ステップS101は、例えば、入出力部40の計測解析条件入力機構41で入力した被検査領域に関するデータに基づいて、波形信号解析処理部30の被検査体モデル作成機構31でモデル作成を行うステップである。作成した被検査体モデルは、データ記憶部20の計測解析条件記憶機構21(例えば、計測解析条件記憶機構21の被検査体モデル記憶領域)に記憶される。
 被検査体モデルの作成方法や被検査体モデル作成機構は、従来の逆伝搬解析および入射波の順伝搬解析に適切な被検査体モデルが得られるかぎり特段の限定はなく、例えば、特許文献4(WO 2015/092841 A1)に記載されたモデル作成方法および装置構成を好適に利用できる。
 なお、本発明では、被検査体モデルの作成を超音波検査装置100内部で行う必然性はなく(言い換えると、波形信号解析処理部30の被検査体モデル作成機構31は必須の構成ではなく)、超音波検査装置100とは別体の被検査体モデル作成装置で作成した被検査体モデルのデータを、計測解析条件入力機構41を介して計測解析条件記憶機構21に記憶する方法および装置構成でもよい。
 また、技術の理解を容易にするために、以下では、計測条件入力ステップS102の前に被検査体モデル用意ステップS101を行うかたちで説明するが、本発明はその順番に限定されるものではない。言い換えると、被検査体モデル用意ステップS101は、波形信号解析プロセスの前であれば、どのタイミングで行ってもよい。
 次に、用意した被検査体モデルまたは被検査領域に関するデータを参照して超音波の計測条件(例えば、超音波の送受信位置、超音波の入射方向、総計測時間、サンプリング間隔、探触子のスキャン)を設定し、該計測条件を計測解析条件入力機構41で入力する計測条件入力ステップS102を行う。入力した計測条件は、計測解析条件記憶機構21(例えば、計測解析条件記憶機構21の計測条件記憶領域)に記憶される。
 例えば、ステップS101で用意した被検査体モデルに対し、超音波の送受信位置および入射方向を設定すると、検査しようとする領域(被検査領域)の最遠方部に入射波が到達するのに要する伝搬時間(入射波伝搬時間)を求めることができる。超音波検査はエコーの波形信号を計測・解析する検査方法であることから、総計測時間としては入射波伝搬時間の2倍以上を設定することが好ましい。また、サンプリング間隔Δtは、解析処理の観点から分割メッシュの大きさと合わせる(例えば、分割メッシュ上で隣のメッシュに伝搬する時間とサンプリング間隔とを合わせる)ことが好ましい。
 なお、被検査体モデル用意ステップS101をスキップして計測条件入力ステップS102を行う場合(例えば、緊急に超音波計測を行う必要があるような場合)、計測条件入力ステップS102は、被検査領域に関するデータ(例えば、形状データ)を参照して、暫定的に、超音波が被検査領域を十分往復できると思われる時間長さを総計測時間として設定し、可能な範囲で最も短いサンプリング間隔Δtを設定する方法でもよい。
 次に、設定した計測条件に沿って、計測制御部10の探触子制御機構11が探触子1を制御して超音波の入射波を被検査体の内部に送信し該入射波のエコーを探触子1で受信する反射波計測ステップS103を行う。探触子1で受信したエコーは、計測制御部10の波形信号化機構12で増幅、周波数フィルタ、A/D変換されて波形信号化される。波形信号化したエコー(反射波形信号)は、データ記憶部20の波形信号記憶機構22(例えば、波形信号記憶機構22の反射波形信号記憶領域)に記憶される。
 本発明で使用する探触子1に特段の限定はなく、単一の振動子を有する探触子であってもよいし、複数の振動子を有するフェーズドアレイ探触子(リニアアレイ探触子、マトリクスアレイ探触子)であってもよい。検査効率の観点からは、フェーズドアレイ探触子を用いる方が望ましい。フェーズドアレイ探触子は、送信する振動子と受信する振動子とを選択できるタイプであってもよいし、選択できないタイプであってもよい。
 また、計測制御部10の探触子駆動機構13は、探触子1の位置検知やスキャン操作を担う。被検査体上で探触子1をスキャンさせる場合、探触子1を移動させた後、反射波計測ステップS103を繰り返す。
 超音波計測プロセスをより具体的に説明する。図3は、被検査体モデルの一例を示す模式図であり、図4は反射波計測ステップの一例を示す模式図である。図3~4においては、図面の簡素化および技術理解の容易化の観点から、被検査体の二次元平面内できずが1箇所のみ存在し、1パルスの入射波を送信してその反射波を受信する例を示した。
 被検査体モデル(図3参照)を用意し、超音波の計測条件を設定する。ここでは、メッシュ形状として四角形を選定し、検査しようとする領域の長さ方向(図3中のx方向)を16分割し、幅方向(図3中のy方向)を4分割した被検査体モデルを用意した。
 超音波の送受信位置(探触子の設置位置)を該被検査体モデルの左端の3節点(0, 1)~(0, 3)とし(例えば、3振動子を含むリニアアレイ探触子を用い)、超音波の入射方向をx方向とし(振動子間で発振の遅延時間なし)、メッシュの大きさとサンプリング間隔Δtとを合わせると、入射波伝搬時間として「16×Δt」が求まる。そこで、総計測時間Tとしては「T≧2×16×Δt」となるように設定する。本例では、総計測時間Tを「T=40×Δt」と設定している。
 次に、設定した計測条件に沿って超音波計測を行う。本例では、図4に示したように(5, 1)~(5, 3)の3節点に亘るきずがあったとする。探触子制御機構11の制御に従って探触子1から被検査体の内部に超音波を入射すると、入射波は当該きずで反射されて、エコーとして探触子1で受信される。
 受信されたエコーは、波形信号化機構12で波形信号化されて、図4に示したような反射波形信号として波形信号記憶機構22に記憶される。本例では、(5, 1)~(5, 3)の3節点に亘るきずがあることから、該きずからのエコーは「10×Δt」の時間に計測され、計測終了時間は「40×Δt」となる。
 なお、記憶する反射波形信号データは、計測に用いた振動子番号と計測時間とが判別できる形で定義することが好ましい。例えば、反射波形信号データ「φEch(n, t)」は、n番の振動子(探触子1中の振動子の数をNとすると、1≦n≦N)で時間t(総計測時間Tに対して、0≦t≦T)に計測した超音波の波高値を表す。
 (2)波形信号解析プロセス
 超音波計測の後、図2に示したように、波形信号解析プロセス(S201~S205)を行う。
 まず、逆伝搬解析、順伝搬解析、および順伝搬/逆伝搬合体演算を行うためのアルゴリズムや解析に利用する計測時間などの解析条件を設定・入力する解析条件入力ステップS201を行う。入力した解析条件は、計測解析条件記憶機構21(例えば、計測解析条件記憶機構21の解析条件記憶領域)に記憶される。なお、本ステップS201は、解析プロセスの最初に行ってもよいし、先の計測条件入力ステップS102と同時に行ってもよい。
 逆伝搬解析および順伝搬解析のアルゴリズムとしては、それらの解析を適切に行える限り特段の限定はなく、従前の解析アルゴリズム(例えば、有限要素法、有限積分法)を好適に利用できる。順伝搬/逆伝搬合体演算のアルゴリズムとしては、アダマール積(シューア積、要素毎の積とも呼ばれる)および総和を行う。また、解析に利用する計測時間としては、解析精度の向上を意図して先の計測条件入力ステップS102で設定したサンプリング間隔Δt毎の時間データ全てを利用してもよいし、解析時間の短縮を意図してサンプリング間隔Δtの整数倍毎の時間データを選択的に利用してもよい。
 (2-1)逆伝搬解析プロセス
 逆伝搬解析プロセスとして、反射波形信号を用いて被検査体モデル上で逆伝搬解析を行って逆時系列に並んだ逆伝搬静止画像群を作成する逆伝搬解析ステップS202を行う。より詳細には、本ステップS202は、反射波形信号を時間反転して時間反転波形信号を作成する時間反転波形信号作成サブステップS202aを含み、該時間反転波形信号に基づいて前記逆伝搬解析を行うものである。
 具体的には、先の反射波計測ステップS103で記憶した反射波形信号データ「φEch(n, t)」を波形信号記憶機構22から読み出し、波形信号解析処理部30の伝搬解析機構32において時間反転波形信号を作成する。作成した時間反転波形信号は、波形信号記憶機構22(例えば、波形信号記憶機構22の時間反転波形信号記憶領域)に記憶される。例えば、時間反転波形信号データを「φInv(n, T-t)」(ただし、1≦n≦N、0≦t≦T)として記憶する。
 次に、時間反転波形信号データ「φInv(n, T-t)」、被検査体モデルおよび逆伝搬解析アルゴリズムをそれぞれ波形信号記憶機構22および計測解析条件記憶機構21から読み出し、伝搬解析機構32において逆伝搬解析を行って逆時系列に並んだ逆伝搬静止画像群「{ MRev(n, T-t) }」を作成する。作成した逆伝搬静止画像群は、データ記憶部20の画像データ記憶機構23(例えば、画像データ記憶機構23の逆伝搬静止画像記憶領域)に記憶される。
 なお、本発明で表現する静止画像/静止画像群とは、技術を理解し易くするために測定者/観察者の目線で表現したものであり、ディスプレイ出力や印刷出力した場合の状態を示したものである。ただし、コンピュータの内部における画像データとは、当該画像を構成する各画素の位置データと画素値データ(輝度や色のデータ、本発明では波高値に対応する)とからなる行列データとして演算処理・記憶されていることを理解しておく必要がある。
 逆伝搬解析プロセスをより具体的に説明する。図5は、計測した反射波形信号とその時間反転波形信号との関係を示す模式図である。図5に示したように、総計測時間「T=40×Δt」で「t=10×Δt」の時間にエコーを受信した反射波形信号を時間反転すると、「T-t=(40×Δt)-(10×Δt)=30×Δt」の反転時間にエコーを受信し、終了時間が「T-t=(40×Δt)-(0×Δt)=40×Δt」となる時間反転波形信号が得られる。
 次に、前述したように、作成した時間反転波形信号(図5参照)を用いて被検査体モデル(図3参照)上で逆伝搬解析を行い、逆時系列に並んだ逆伝搬静止画像群を作成する。本発明での逆伝搬解析とは、基本的に特許文献3(WO 2014/167698 A1)のそれと同様であり、作成した時間反転波形信号が得られるような超音波の伝搬軌跡を求める解析である。言い換えると、作成した時間反転波形信号が得られるようにするには、どのように超音波の波面が進行するのかを求める解析である。
 図6は、逆伝搬解析の結果として得られる逆伝搬静止画像群の一例を示す模式図である。図6では、技術理解の容易化のため、伝搬する超音波の波面の位置を被検査体モデルの節点上の「●印」で示した。ただし、実際の解析においては、「●印」のデータは、波面の位置だけでなく、波面の振幅(波高値)に対応するミーゼス応力や変位量を含むものである。図5~6を参照しながら、時間反転波形信号と逆伝搬静止画像群との関係を説明する。
 時間反転波形信号の反転時間「T-t=0×Δt ~ 29×Δt」においては、図5で示したように超音波が観測されないことから、図6の逆伝搬静止画像群においても被検査体モデルの節点上に「●印」は存在しない。
 時間反転波形信号の次の反転時間「T-t=30×Δt」においては、図5で超音波が観測されるため、図6の逆伝搬静止画像群においても被検査体モデルの節点(0, 1)~(0, 3)上(探触子の設置位置)に「●印」が表示される。
 そして、時間反転波形信号の反転時間「T-t=31×Δt ~ 40×Δt」においては、図5で超音波が観測されないけれど(探触子の設置位置では超音波は観測されないけれど)、図6の逆伝搬静止画像群では被検査体モデルの内部に向かって(図中の右方向に)波面が進行していく様子が確認される。
 上記のように作成された逆伝搬静止画像群「{ MRev(n, T-t) }」は、前述したように、画像データ記憶機構23に記憶される。
 (2-2)順伝搬解析プロセス
 被検査体モデル上で順伝搬解析を行う。なお、本発明において、順伝搬解析プロセスは逆伝搬解析プロセスの後に行うことに限定されるものではなく、前述した解析条件入力ステップS201の後で、かつ後述する順伝搬/逆伝搬合体演算プロセスS204の前であれば、どのタイミングで行ってもよい。例えば、解析条件入力ステップS201と共に計測条件入力ステップS102と同時に行ってもよい。
 順伝搬解析プロセスとして、入射波の波形信号(入射波形信号)を用いて被検査体モデル上で順伝搬解析を行って時系列に並んだ順伝搬静止画像群を作成する順伝搬解析ステップS203を行う。より詳細には、本ステップS203は、計測制御部10の波形信号化機構12を利用して入射波形信号を作成する入射波形信号作成サブステップS203aを含み、作成した入射波形信号に基づいて順伝搬解析を行うものである。
 なお、入射波形信号としては、使用する探触子1の中心周波数帯を表すような関数(例えば、メキシカンハット関数、フレンチハット関数)で定義される模擬波形の信号であってもよいし、使用する探触子1が実際に発信する超音波を別途計測して波形信号化したものであってもよい。作成した入射波形信号「φInc(n, t)」は、波形信号記憶機構22(例えば、波形信号記憶機構22の入射波形信号記憶領域)に記憶される。
 また、本発明における順伝搬解析は、被検査体の内部にきずがない状態を想定して行う。言い換えると、きずによるエコーの発生を考慮しないものとする。被検査体上で探触子1をスキャンさせる場合であっても、入射波形信号は同じなので入射波形信号作成ステップS203を繰り返す必要はない。
 具体的には、入射波形信号データ「φInc(n, t)」、被検査体モデルおよび順伝搬解析アルゴリズムをそれぞれ波形信号記憶機構22および計測解析条件記憶機構21から読み出し、伝搬解析機構32において順伝搬解析を行って時系列に並んだ順伝搬静止画像群「{ MFor(n, t) }」を作成する。作成した順伝搬静止画像群「{ MFor(n, t) }」は、画像データ記憶機構23(例えば、画像データ記憶機構23の順伝搬静止画像記憶領域)に記憶される。
 順伝搬解析プロセスをより具体的に説明する。図7は、作成した入射波形信号の一例を示す模式図であり、図8は、順伝搬解析の結果として得られる順伝搬静止画像群の一例を示す模式図である。図8では、図6と同様に、伝搬する超音波の波面の位置を被検査体モデルの節点上の「●印」で示した。図7~8を参照しながら、入射波形信号と順伝搬静止画像群との関係を説明する。
 順伝搬解析においては、被検査領域の最遠方部に入射波が到達するのに要する伝搬時間分を解析すればよい。すなわち、ここでは「t=0×Δt ~ 16×Δt」を解析すればよい。
 まず、入射波形信号の時間「t=0×Δt」においては、探触子が超音波を発振することから、図7で超音波が観測され、かつ図8の順伝搬静止画像群においても被検査体モデルの節点(0, 1)~(0, 3)上(探触子の設置位置)に「●印」が表示される。
 そして、入射波形信号の時間「t=1×Δt ~ 16×Δt」においては、図7で超音波が観測されないけれど(探触子の設置位置では超音波は観測されないけれど)、図8の順伝搬静止画像群では被検査体モデルの内部に向かって(図中の右方向に)波面が進行していく様子が確認される。
 上記のように作成された順伝搬静止画像群「{ MFor(n, t) }」は、前述したように、画像データ記憶機構23に記憶される。
 (2-3)順伝搬/逆伝搬合体演算プロセス
 次に、順伝搬/逆伝搬合体演算プロセスとして、順伝搬静止画像群「{ MFor(n, t) }」と逆伝搬静止画像群「{ MRev(n, T-t) }」とを組み合わせる演算処理を行ってきずの位置を表示した単一の静止画像を作成する順伝搬/逆伝搬合体演算処理ステップS204を行う。より詳細には、本ステップS204は、「{ MFor(n, t) }」の各静止画像と「{ MRev(n, T-t) }」の各静止画像とを時間起点を揃えたかたちでアダマール積をとることによって演算処理静止画像群「{ MOpe(n, t) }」を作成する演算処理静止画像群作成サブステップS204aと、作成した演算処理静止画像群「{ MOpe(n, t) }」の総和をとることによって単一の静止画像「MSum(n)」を作成する合体処理サブステップS204bとを含む。
 具体的には、順伝搬解析ステップS203で記憶した「{ MFor(n, t) }」、逆伝搬解析ステップS202で記憶した「{ MRev(n, T-t) }」および演算アルゴリズムを、それぞれ画像データ記憶機構23および計測解析条件記憶機構21から読み出す。波形信号解析処理部30の演算処理機構34において「{ MFor(n, t) }」の各静止画像と「{ MRev(n, T-t) }」の各静止画像とを時間起点「t=0×Δt」を揃えたかたちでアダマール積をとることによって演算処理静止画像群「{ MOpe(n, t) }」を作成する。作成した演算処理静止画像群「{ MOpe(n, t) }」は、画像データ記憶機構23(例えば、画像データ記憶機構23の演算処理静止画像記憶領域)に記憶される。
 なお、アダマール積とは、同じサイズの行列に対して成分毎に積をとることによって定まる行列を得る演算のことである。また、前述したように、画像データは行列データであることから、「MFor(n, t)」の静止画像を表す行列と「MRev(n, T-t)」の静止画像を表す行列とのアダマール積をとることが可能であり、得られる行列は演算処理された静止画像「MOpe(n, t)」を表すことになる。数式で表すと式(1)のようになる。
Figure JPOXMLDOC01-appb-M000001
 次に、演算処理静止画像群「{ MOpe(n, t) }」および演算アルゴリズムをそれぞれ画像データ記憶機構23および計測解析条件記憶機構21から読み出し、演算処理静止画像群「{ MOpe(n, t) }」の総和をとることによって単一の静止画像「MSum(n)」を作成する。作成した単一の静止画像「MSum(n)」は、画像データ記憶機構23(例えば、画像データ記憶機構23の解析結果画像記憶領域)に記憶される。なお、ここでの演算処理を数式で表すと式(2)のようになる。
Figure JPOXMLDOC01-appb-M000002
 最後に、得られた単一の静止画像「MSum(n)」を入出力部40の出力機構42で出力する解析結果出力ステップS205を行う。解析結果の出力形式に特段の限定はなく、ディスプレイ出力であってもよいし、印刷出力であってもよいし、他の出力形式であってもよい。
 順伝搬/逆伝搬合体演算プロセスをより具体的に説明する。図9は、順伝搬静止画像群の各静止画像と逆伝搬静止画像群の各静止画像とを時間起点を揃えたかたちで並べた模式図である。
 ここで、時間起点について簡単に説明する。超音波検査は、図7に示したような入射波の送信で始まり、図4に示したようなエコーの受信を確認した後に終わる。総計測時間Tは、入射波伝搬時間の2倍以上が好ましいという制約があるだけなので、ある程度の任意性がある。また、時間反転波形信号は、図5に示したように、計測した反射波形信号の時間軸を反転したものである。そのため、時間反転波形信号における時間原点は、総計測時間Tである。一方、時間反転波形信号における時間終点は、超音波計測の時間始点(すなわち、入射波の発振時間「t=0×Δt」)であり、一点に定まる時間である。これらのことから、本発明では、超音波計測の時間始点(入射波の発振時間)「t=0×Δt」を順伝搬/逆伝搬合体演算プロセスの時間起点と定義する。
 図9中の左列は、時系列に並べた順伝搬静止画像群であり、右列は、時間起点を揃えるように並べた逆伝搬静止画像群である。言い換えると、同じ計測時間「t」同士が対になるように並べたものである。時間起点を揃えたことから、右列の逆伝搬静止画像群は、図6に示した逆伝搬静止画像群を逆順にしたものとなる。
 図9において、同じ計測時間「t」における(図中の左右で隣り合う)順伝搬静止画像と逆伝搬静止画像とを見比べると、「t=5×Δt」以外の「t=0×Δt ~ 4×Δt」および「t=6×Δt ~ 16×Δt」で超音波の波面位置(被検査体モデルの節点上の「●印」の位置)が互いに異なっていることが判る。波面でない位置(節点上に「●印」が無い位置)とは、当該位置での画素値データ(波高値に対応する行列の要素)がゼロであることを意味する。
 そして、左右の静止画像対の間でアダマール積をとると(順伝搬静止画像を表す行列と逆伝搬静止画像を表す行列とのアダマール積をとると)、波面位置が合致していないもの同士の演算結果(演算処理静止画像)は、全ての節点での画素値データ(波高値に対応する行列の要素)がゼロになる。すなわち、図10に示すような演算処理静止画像群が作成される。図10は、演算処理静止画像群作成サブステップの結果として得られる演算処理静止画像群の一例を示す模式図である。
 次に、得られた演算処理静止画像群の総和をとると、図11に示すような単一の静止画像が作成される。図11は、合体処理サブステップの結果として得られる単一の静止画像の一例を示す模式図である。図11の単一の静止画像は、図4に示したきずを有する被検査体モデルと同じであり、本発明の順伝搬/逆伝搬合体演算プロセスによって、きず位置以外の領域での超音波の伝搬軌跡をキャンセルできることが判る。
 (他の実施例)
 図12は、互いに位置の異なる2つのきずを有する被検査体モデルに対して、本発明に係る超音波検査の波形信号解析プロセスを行った結果の一例を示す図(被検査体モデル図、解析結果出力図)である。図12に示したように、被検査体モデルにおいて探触子からの距離が異なる複数のきず(きずA、きずB)を有する場合であっても、本発明の波形信号解析プロセス(特に、順伝搬/逆伝搬合体演算プロセス)を行った結果、きず位置以外の領域での超音波の伝搬軌跡をキャンセルでき、かつ1枚の静止画像の中に当該複数のきずを同時に表示できることが確認される。
 上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、実施形態の構成の一部を当業者の技術常識の構成に置き換えることが可能であり、また、実施形態の構成に当業者の技術常識の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、発明の技術的思想を逸脱しない範囲で、削除・他の構成に置換・他の構成の追加をすることが可能である。
 100…超音波検査装置、1…探触子、10…計測制御部、11…探触子制御機構、12…波形信号化機構、13…探触子駆動機構、20…データ記憶部、21…計測解析条件記憶機構、22…波形信号記憶機構、23…画像データ記憶機構、30…波形信号解析処理部、31…被検査体モデル作成機構、32…伝搬解析機構、33…演算処理機構、40…入出力部、41…計測解析条件入力機構、42…出力機構。

Claims (8)

  1.  超音波を利用して被検査体の内部のきずを位置標定する超音波検査方法であって、
    前記被検査体のモデルを用意する被検査体モデル用意ステップと、
    前記超音波の計測条件を設定・入力する計測条件入力ステップと、
    前記計測条件に沿って探触子を制御して前記超音波の入射波を前記被検査体の内部に送信し該入射波の反射波を前記探触子で受信する超音波計測ステップと、
    前記反射波の波形信号を用いて前記モデル上で逆伝搬解析を行って逆時系列に並んだ逆伝搬静止画像群を作成する逆伝搬解析ステップと、
    前記入射波の波形信号を用いて前記モデル上で順伝搬解析を行って時系列に並んだ順伝搬静止画像群を作成する順伝搬解析ステップと、
    前記順伝搬静止画像群と前記逆伝搬静止画像群とを組み合わせる演算処理を行って前記きずの位置を表示した単一の静止画像を作成する順伝搬/逆伝搬合体演算処理ステップと、を有することを特徴とする超音波検査方法。
  2.  請求項1に記載の超音波検査方法において、
    前記順伝搬/逆伝搬合体演算処理ステップは、
    前記順伝搬静止画像群の各静止画像と前記逆伝搬静止画像群の各静止画像とを時間起点を揃えたかたちでアダマール積をとることによって演算処理静止画像群を作成する演算処理静止画像群作成サブステップと、
    前記演算処理静止画像群の総和をとることによって前記単一の静止画像を作成する合体処理サブステップと、を含むことを特徴とする超音波検査方法。
  3.  請求項1又は請求項2に記載の超音波検査方法において、
    前記逆伝搬解析ステップは、前記反射波の波形信号を時間反転して時間反転波形信号を作成する時間反転波形信号作成サブステップを含み、該時間反転波形信号に基づいて前記逆伝搬解析を行うものであり、
    前記順伝搬解析ステップは、前記超音波の入射波の波形信号を作成する入射波形信号作成サブステップを含み、作成した入射波形信号に基づいて前記順伝搬解析を行うものであることを特徴とする超音波検査方法。
  4.  超音波を利用して被検査体の内部のきずを位置標定する超音波検査装置であって、
    前記超音波の計測条件および解析条件を入力すると共に解析結果を出力する入出力部と、
    前記計測条件に沿って探触子を制御して前記被検査体の内部に前記超音波の入射波を送信し該入射波の反射波を受信する計測制御部と、
    前記被検査体のモデル、前記計測条件、前記解析条件、前記反射波の波形信号、前記入射波の波形信号および解析に基づく画像を記憶するデータ記憶部と、
    前記入射波の波形信号および前記反射波の波形信号を前記被検査体のモデル上で前記解析条件に沿って解析処理する波形信号解析処理部と、を具備し、
    前記波形信号解析処理部は、
    前記反射波の波形信号を用いて逆時系列に並んだ逆伝搬静止画像群を作成する逆伝搬解析および前記入射波の波形信号を用いて時系列に並んだ順伝搬静止画像群を作成する順伝搬解析を行う伝搬解析機構と、
    前記順伝搬静止画像群および前記逆伝搬静止画像群を組み合わせて前記きずの位置を表示した単一の静止画像を作成する順伝搬/逆伝搬合体演算処理を行う演算処理機構と、を有することを特徴とする超音波検査装置。
  5.  請求項4に記載の超音波検査装置において、
    前記順伝搬/逆伝搬合体演算処理は、前記順伝搬静止画像群の各静止画像と前記逆伝搬静止画像群の各静止画像とを時間起点を揃えたかたちでアダマール積をとることによって演算処理静止画像群を作成するアルゴリズムと、前記演算処理静止画像群の総和をとることによって前記単一の静止画像を作成するアルゴリズムと、を含むことを特徴とする超音波検査装置。
  6.  請求項5に記載の超音波検査装置において、
    前記データ記憶部は、前記被検査体のモデル、前記計測条件および前記解析条件を記憶する計測解析条件記憶機構と、
    前記反射波の波形信号、該反射波の波形信号を時間反転して作成した時間反転波形信号および前記入射波の波形信号を記憶する波形信号記憶機構と、
    前記解析に基づく画像として、前記逆伝搬静止画像群、前記順伝搬静止画像群、前記演算処理静止画像群および前記単一の静止画像を記憶する画像データ記憶機構と、を有することを特徴とする超音波検査装置。
  7.  請求項4乃至請求項6のいずれか一項に記載の超音波検査装置において、
    前記波形信号解析処理部は、前記被検査体のモデルを作成する被検査体モデル作成機構を更に有することを特徴とする超音波検査装置。
  8.  請求項4乃至請求項7のいずれか一項に記載の超音波検査装置において、
    前記計測制御部は、前記探触子の前記超音波の送受信を制御する探触子制御機構と、受信した前記反射波を波形信号化する波形信号化機構と、前記探触子の位置検知およびスキャン操作を担う探触子駆動機構と、を有することを特徴とする超音波検査装置。
PCT/JP2017/028718 2017-08-08 2017-08-08 超音波検査方法および超音波検査装置 WO2019030815A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019535468A JP6782934B2 (ja) 2017-08-08 2017-08-08 超音波検査方法および超音波検査装置
PCT/JP2017/028718 WO2019030815A1 (ja) 2017-08-08 2017-08-08 超音波検査方法および超音波検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/028718 WO2019030815A1 (ja) 2017-08-08 2017-08-08 超音波検査方法および超音波検査装置

Publications (1)

Publication Number Publication Date
WO2019030815A1 true WO2019030815A1 (ja) 2019-02-14

Family

ID=65272015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028718 WO2019030815A1 (ja) 2017-08-08 2017-08-08 超音波検査方法および超音波検査装置

Country Status (2)

Country Link
JP (1) JP6782934B2 (ja)
WO (1) WO2019030815A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530983A (zh) * 2019-09-20 2019-12-03 济源职业技术学院 用于石油钻具抽油杆的超声波检测系统及方法
WO2022054448A1 (ja) * 2020-09-10 2022-03-17 三菱重工業株式会社 超音波検査方法、超音波検査装置およびプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100256928A1 (en) * 2009-01-30 2010-10-07 Centre National De La Recherche Scientifque-Crns- Method for Locating the Appearance of a Defect in a Medium Using a Wave
WO2014167698A1 (ja) * 2013-04-12 2014-10-16 株式会社 日立製作所 超音波検査方法および装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100256928A1 (en) * 2009-01-30 2010-10-07 Centre National De La Recherche Scientifque-Crns- Method for Locating the Appearance of a Defect in a Medium Using a Wave
WO2014167698A1 (ja) * 2013-04-12 2014-10-16 株式会社 日立製作所 超音波検査方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAZUYUKI NAKAHATA: "Flaw reconstruction using ultrasonic time reversal approach", THE 63RD NATIONAL CONGRESS OF THEORETICAL AND APPLIED MECHANICS, September 2014 (2014-09-01) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530983A (zh) * 2019-09-20 2019-12-03 济源职业技术学院 用于石油钻具抽油杆的超声波检测系统及方法
WO2022054448A1 (ja) * 2020-09-10 2022-03-17 三菱重工業株式会社 超音波検査方法、超音波検査装置およびプログラム
JP2022046212A (ja) * 2020-09-10 2022-03-23 三菱重工業株式会社 超音波検査方法、超音波検査装置およびプログラム
JP7433172B2 (ja) 2020-09-10 2024-02-19 三菱重工業株式会社 超音波検査方法、超音波検査装置およびプログラム

Also Published As

Publication number Publication date
JP6782934B2 (ja) 2020-11-11
JPWO2019030815A1 (ja) 2020-04-16

Similar Documents

Publication Publication Date Title
US8020445B2 (en) Three-dimensional ultrasonic imaging device
TWI254130B (en) Nondestructive inspection apparatus and nondestructive inspection method using elastic guided wave
JP5402046B2 (ja) 超音波計測装置及び超音波計測方法
KR101915281B1 (ko) 곡률배관용 위상배열 초음파 검사시스템 및 검사방법
TWI503542B (zh) 超音波檢查方法及裝置
Harvey et al. Finite element analysis of ultrasonic phased array inspections on anisotropic welds
US20210048413A1 (en) Fast pattern recognition using ultrasound
JP2016217722A (ja) 計測装置
CN112305080A (zh) 一种反t型叶根槽裂纹的相控阵超声检测方法
Hampson et al. Modelling and characterisation ultrasonic phased array transducers for pipe inspections
JP6906767B2 (ja) 超音波検査方法および超音波検査装置
JP5910641B2 (ja) 超音波映像化方法及び超音波映像化装置
KR101131994B1 (ko) 원자력 발전소 자동 초음파 신호를 평가하기 위한 실시간 비쥬얼 시스템
WO2019030815A1 (ja) 超音波検査方法および超音波検査装置
RU108627U1 (ru) Система ультразвуковой дефектоскопии трубопровода
Verkooijen et al. Sampling phased array-a new technique for ultrasonic signal processing and imaging
CN110609083A (zh) 基于超声相控阵的薄板三维机织层合板复合材料试件内部缺陷检测方法
JP5535680B2 (ja) 超音波検査方法
Anoni et al. Image reconstruction in concrete ultrasound tomography: A systematic review
JP5575157B2 (ja) 超音波探傷装置、方法及びプログラム
Bulavinov et al. Real-time quantitative ultrasonic inspection
JP2004101422A (ja) 超音波検査装置
JP3739368B2 (ja) 超音波タンデムマルチアレイ探傷装置
Boller et al. Quantitative ultrasonic testing of acoustically anisotropic materials with verification on austenitic and dissimilar weld joints
Gantala et al. Arbitrary Virtual Array Source Aperture (AVASA) Ultrasound Imaging Technique Using Phased Array Excitation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535468

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921412

Country of ref document: EP

Kind code of ref document: A1