Nothing Special   »   [go: up one dir, main page]

WO2019030253A1 - Flammhemmende polyamidzusammensetzungen mit hoher wärmeformbeständigkeit und deren verwendung - Google Patents

Flammhemmende polyamidzusammensetzungen mit hoher wärmeformbeständigkeit und deren verwendung Download PDF

Info

Publication number
WO2019030253A1
WO2019030253A1 PCT/EP2018/071447 EP2018071447W WO2019030253A1 WO 2019030253 A1 WO2019030253 A1 WO 2019030253A1 EP 2018071447 W EP2018071447 W EP 2018071447W WO 2019030253 A1 WO2019030253 A1 WO 2019030253A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
flame
polyamide compositions
compositions according
retardant polyamide
Prior art date
Application number
PCT/EP2018/071447
Other languages
English (en)
French (fr)
Inventor
Harald Bauer
Sebastian HÖROLD
Martin Sicken
Original Assignee
Clariant Plastics & Coatings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Plastics & Coatings Ltd filed Critical Clariant Plastics & Coatings Ltd
Priority to KR1020207007094A priority Critical patent/KR102560804B1/ko
Priority to US16/637,818 priority patent/US20200239665A1/en
Priority to JP2020506715A priority patent/JP7252201B2/ja
Priority to SG11201912914UA priority patent/SG11201912914UA/en
Priority to BR112020000547-9A priority patent/BR112020000547B1/pt
Priority to EP18752742.9A priority patent/EP3665221A1/de
Publication of WO2019030253A1 publication Critical patent/WO2019030253A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34922Melamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the present invention relates to flame-retardant polyamide compositions and moldings produced therefrom, which are characterized by a high
  • Flammable plastics generally have to be equipped with flame retardants in order to achieve the high flame retardance requirements demanded by plastics processors and in part by the legislation. Preference - also for ecological reasons - are non-halogenated
  • phosphinates the salts of phosphinic acids (phosphinates) have proven to be particularly effective for thermoplastic polymers (DE 2 252 258 A and DE 2 447 727 A).
  • dialkylphosphinates containing a small amount of selected telomers are suitable as flame retardants for polymers, the polymer only undergoing very little degradation upon incorporation of the flame retardant into the polymer matrix.
  • Flame retardants must often be added in high dosages in order to ensure a sufficient flame retardancy of the plastic according to international standards. Due to their chemical reactivity, which for the Flame retardancy at high temperatures is required
  • Flame retardants especially at higher dosages, affect the processing stability of plastics. It can lead to increased polymer degradation, crosslinking reactions, outgassing or discoloration.
  • Flame retardant characterized by the shortest possible afterburning times (UL-94, time).
  • the invention provides flame retardant polyamide compositions having a heat distortion temperature HDT-A of at least 280 ° C containing
  • Ri and R2 are ethyl
  • M is Al, Fe, TiOp or Zn
  • n 2 to 3, preferably 2 or 3
  • R 3 is ethyl
  • Met is Al, Fe, TiOq or Zn
  • n 2 to 3, preferably 2 or 3
  • the proportion of component A is usually 25 to 95 wt .-%, preferably 25 to 75 wt .-%.
  • the proportion of component B is usually 1 to 45 wt .-%, preferably 20 to 40 wt .-%.
  • the proportion of component C is usually 1 to 35 wt .-%, preferably 5 to 20 wt .-%.
  • the proportion of component D is usually 0.01 to 3% by weight, preferably 0.05 to
  • the proportion of component E is usually 0.001 to 1 wt .-%, preferably 0.01 to
  • the proportion of component B is from 1 to 45% by weight
  • the proportion of component E is 0.001 to 1% by weight
  • the proportion of component A is from 25 to 75% by weight
  • the proportion of component B is from 20 to 40% by weight
  • the proportion of component E is from 0.01 to 0.6% by weight.
  • Preferred salts of component C are those in which M m + Zn 2+ , Fe 3+ or in particular Al 3+ .
  • Preferred salts of component D are zinc, iron or in particular aluminum salts.
  • Preferably used salts of component E are those in which Met n + Zn 2+ , Fe 3+ or in particular Al 3+ .
  • the above-described flame-retardant polyamide compositions contain inorganic phosphonate as further component F.
  • the inorganic phosphonate (component F) preferably corresponds to the general formulas (IV) or (V) [(HO) PO 2 ] 2 -p / 2 cat P + (IV)
  • the inorganic phosphonate (component F) is preferably aluminum phosphite [Al (H2PO3) 3], secondary aluminum phosphite [Al2 (HPO3) 3], basic aluminum phosphite [Al (OH) (H2PO3) 2 * 2aq],
  • the inorganic phosphonate (component F) is preferably also aluminum phosphites of the formulas (VI), (VII) and / or (VIII)
  • Aluminum phosphite tetrahydrate [Al 2 (HPO 3) 3 * 4aq] to give aluminum phosphonate, Al 7 (HPO 3 ) 9 (OH) 6 (1,6-hexanediamine) i, 5 * 12H 2 O, by ⁇ 2 ( ⁇ 3 ) 3 * ⁇ 2 ⁇ 3 * ⁇ 2 ⁇ with x 2,27 - 1 and / or AUHePieOis.
  • Preferred inorganic phosphonates are water-insoluble or sparingly soluble salts.
  • Particularly preferred inorganic phosphonates are aluminum, calcium and zinc salts.
  • component F is a
  • Reaction product of phosphorous acid and an aluminum compound Reaction product of phosphorous acid and an aluminum compound.
  • Particularly preferred components F are aluminum phosphites with the
  • the preparation of the preferably used aluminum phosphites is carried out by reacting an aluminum source with a phosphorus source and optionally a template in a solvent at 20-200 ° C for a period of up to 4 days.
  • the aluminum source and the phosphorus source are mixed for 1 to 4 hours, heated under hydrothermal conditions or at reflux, filtered off, washed and z. B. at 1 10 ° C dried.
  • Preferred aluminum sources are aluminum isopropoxide, aluminum nitrate, aluminum chloride, aluminum hydroxide (eg pseudoboehmite).
  • Preferred sources of phosphorus are phosphorous acid, (acidic)
  • Preferred alkali metal phosphites are disodium phosphite, disodium phosphite hydrate, trisodium phosphite, potassium hydrogen phosphite
  • Preferred Dinatriumphosphithydrat is Brüggolen ® H10 of the company. Brüggemann.
  • Preferred templates are 1, 6-hexanediamine, guanidine carbonate or ammonia.
  • Preferred alkaline earth metal phosphite is calcium phosphite.
  • the preferred ratio of aluminum to phosphorus to solvent is 1: 1: 3.7 to 1: 2.2: 100 mol.
  • the ratio of aluminum to template is 1: 0 to 1: 17 mol.
  • the preferred pH of the reaction solution is 3 to 9.
  • Preferred solvent is water.
  • the same salt of phosphinic acid as the phosphorous acid is used in the application, so z.
  • phosphinic acid aluminum diethylphosphinate together with aluminum phosphite or Zinkdiethylphosphinat together with zinc phosphite.
  • the flame retardant polyester compositions described above contain a component F
  • Me is Fe, TiOr, Zn or in particular Al,
  • o is 2 to 3, preferably 2 or 3
  • Preferred compounds of the formula (III) are those in which Me is O 2 Zn 2+ , Fe 3+ or in particular Al 3+ .
  • Component F is preferably in an amount of 0.005 to 10 wt .-%, in particular in an amount of 0.02 to 5 wt .-%, based on the
  • the flame-retardant polyamide compositions according to the invention have a high heat distortion temperature (HDT-A) according to DIN EN ISO 75-3 of at least 280 ° C., preferably of at least 290 ° C. and more preferably of at least 300 ° C.
  • HDT-A high heat distortion temperature
  • Polyamide compositions achieve a rating of V0 according to UL-94, in particular measured on moldings of 3.2 mm to 0.4 mm thickness.
  • Polyamide compositions have a Glow Wire Flammability Index according to IEC-60695-2-12 of at least 960 ° C, in particular measured
  • the polyamide compositions according to the invention contain as component A one or more thermoplastic polyamides having a melting point greater than or equal to 290 ° C.
  • the melting point is determined by means of differential scanning calorimetry (DSC) at a heating rate of 10 K / second.
  • thermoplastic polyamides are based on Hans
  • inventively preferred polyamides can according to various aspects
  • Processes are prepared and synthesized from very different building blocks and in a particular application alone or in combination with
  • Monomerbausteine various chain regulators for setting a desired molecular weight or monomers with reactive groups for later intended post-treatments can be used.
  • the technically relevant processes for the preparation of polyamides usually run via the polycondensation in the melt.
  • the hydrolytic polymerization of lactams is understood as a polycondensation.
  • Preferred polyamides to be used as component A are partially crystalline and aromatic or partially aromatic polyamides which can be prepared starting from diamines and dicarboxylic acids and / or lactams with at least 5 ring members or corresponding amino acids.
  • educts are mainly aromatic dicarboxylic acids, preferably isophthalic acid and / or terephthalic acid or their polyamide-forming derivatives, such as salts, into consideration, alone or in combination with aliphatic
  • Dicarboxylic acids or their polyamide-forming derivatives preferably adipic acid, 2,2,4- and 2,4,4-trimethyladipic acid, azelaic acid and / or sebacic acid, together with aliphatic and / or aromatic diamines, are preferred
  • Tetramethylenediamine Tetramethylenediamine, hexamethylenediamine, 1, 9-nonanediamine, 2,2,4- and
  • Copolyamides of several of the monomers mentioned are
  • aromatic and partially aromatic polyamides ie compounds in which at least some of the repeat units are composed of aromatic structural units.
  • aromatic polyamides starting from xylylenediamine and adipic acid; or polyamides prepared from hexamethylenediamine and isophthalic and / or terephthalic acid and optionally an elastomer as
  • Modifier e.g. As poly-2,4,4-trimethylhexamethyleneterephthalamide or poly-m-phenylene isophthalamide, block copolymers of the aforementioned polyamides with polyolefins, olefin copolymers, ionomers or chemically bonded or grafted elastomers, or with polyethers, such as. B. with
  • Polyethylene glycol polypropylene glycol or polytetramethylene glycol. Further modified with EPDM or ABS polyamides or copolyamides; and during processing condensed polyamides ("RIM polyamide systems").
  • component A is an aromatic or partially aromatic polyamide or a mixture of a plurality of aromatic or partially aromatic polyamides or a mixture of polyamide 6.6 and one or more aromatic or partially aromatic polyamides.
  • thermoplastic polyamide in addition to the thermoplastic polyamide in a preferred embodiment
  • Embodiment additionally to be used polymers conventional additives, in particular mold release agents, stabilizers and / or flow aids can be added in the melt or applied to the surface.
  • thermoplastic polyamides of component A may be synthetically z. B. from petrochemical raw materials and / or chemical or biochemical processes resulting from renewable resources
  • component B fillers and / or preferably reinforcing materials are used, preferably glass fibers. It is also possible to use mixtures of two or more different fillers and / or reinforcing materials.
  • Preferred fillers are mineral particulate fillers based on talc, mica, silicate, quartz, titanium dioxide, wollastonite, kaolin, amorphous silicas, nanoscale minerals, particularly preferably montmorillonites or nano-boehmites, magnesium carbonate, chalk, feldspar, glass beads and / or barium sulfate. Particular preference is given to mineral particulate fillers based on talc, wollastonite and / or kaolin.
  • needle-shaped mineral fillers are also particularly preferably used. Under needle-shaped mineral fillers is understood according to the invention a mineral filler with pronounced needle-like character. Preferred are needle-shaped wollastonites.
  • the mineral has a length to diameter ratio of 2: 1 to 35: 1, more preferably from 3: 1 to 19: 1, particularly preferably from 4: 1 to 12: 1.
  • the average particle size of the acicular mineral fillers used according to the invention as component B is preferably less than 20 ⁇ m, more preferably less than 15 ⁇ m, particularly preferably less than 10 ⁇ m, determined using a CILAS granulometer.
  • the components B preferably used according to the invention are reinforcing materials. This may, for example, to
  • Reinforcement based on carbon fibers and / or glass fibers act.
  • the filler and / or reinforcing material may in a preferred
  • Be surface-modified embodiment preferably with a
  • Adhesive or a primer system particularly preferably on
  • Silane when using glass fibers in addition to Silanes and polymer dispersions, film formers, branching and / or
  • Fiberglass tools are used.
  • the glass fibers preferably used according to the invention as component B may be short glass fibers and / or long glass fibers. As short or long glass fibers, cut fibers can be used. Short glass fibers can also be used in the form of ground glass fibers.
  • glass fibers can also be used in the form of continuous fibers, for example in the form of rovings, monofilaments,
  • Filament yarns or twines or glass fibers can be used in the form of textile fabrics, for example as glass fabrics, as
  • Glass braid or as a glass mat Glass braid or as a glass mat.
  • Polyamide matrix range from 0.05 to 10 mm, preferably from 0.1 to 5 mm. After incorporation into the polyamide matrix, the length of the glass fibers has decreased. Typical fiber lengths for short glass fibers after the
  • Incorporation into the polyamide matrix ranges from 0.01 to 2 mm, preferably from 0.02 to 1 mm.
  • the diameters of the individual fibers can vary within wide ranges. Typical diameters of the individual fibers range from 5 to 20 ⁇ m.
  • the glass fibers can have any cross-sectional shapes, for example round, elliptical, n-cornered or irregular cross-sections. Glass fibers with mono- or multilobal cross-sections can be used.
  • Glass fibers can be used as continuous fibers or as cut or ground glass fibers.
  • the glass fibers themselves can be selected, for example, from the group of E-glass fibers, A glass fibers, C glass fibers, D glass fibers, M glass fibers, S glass fibers,
  • the glass fibers are preferably provided with a size which preferably contains polyurethane as film former and aminosilane as adhesion promoter.
  • E glass fibers have the following chemical composition: S1O2 50-56%; AI2O3 12-16%; CaO 16-25%; MgO ⁇ 6%; B2O3 6-13%; F ⁇ 0.7%; Na 2 O 0.3-2%; K2O 0.2-0.5%; Fe 2 Os 0.3%.
  • R glass fibers have the following chemical composition: S1O2 50-65%; AI2O3 20-30%; CaO 6-16%; MgO 5-20%; Na 2 O 0.3-0.5%; K2O 0.05-0.2%; Fe 2 Os 0.2-0.4%, ⁇ 2 0.1 -0.3%.
  • Particularly preferably used ECR glass fibers have the following chemical composition: S1O2 57.5-58.5%; AI2O3 17.5-19.0%; CaO 11, 5-13.0%; MgO 9.5-1 1, 5.
  • Salts of diethylphosphinic acid with fractions of the phosphinic and phosphonic acid salts used according to the invention as components D and E are known flame retardants.
  • the preparation of this combination of substances is z. B. in US 7,420,007 B2 described.
  • Component C may contain small amounts of salts of component D and salts of component E, for example up to 10 wt .-% of
  • Component D preferably 0.01 to 6 wt.%, And in particular 0.2 to 2.5 wt .-% thereof, and up to 10 wt .-% of component E, preferably 0.01 to 6% by weight, and in particular 0.2 to 2.5% by weight thereof, based on the amount of components C, D and E.
  • Ethylphosphonic acid are as additives to diethylphosphinates in
  • Flame retardants for polymeric molding compositions also known, for example from WO 2016/065971 A1.
  • components C, D and E are in particulate form, the average particle size (dso) being 1 to 100 ⁇ m.
  • the polyamide compositions according to the invention may contain as component G further additives.
  • Preferred components G for the purposes of the present invention are antioxidants, UV stabilizers,
  • Gamma ray stabilizers for antioxidants, antistatic agents, emulsifiers, nucleating agents, plasticizers, processing aids, impact modifiers, dyes, pigments and / or other flame retardants derived from components C, D, E and F
  • the further additives are known per se as additives to polyamide compositions and can be used alone or mixed or in the form of masterbatches.
  • the abovementioned components A, B, C, D, E and optionally F and / or G can be processed in a wide variety of combinations with the flame-retardant polyamide composition according to the invention. It is thus possible to mix the components into the polyamide melt at the beginning or at the end of the polycondensation or in a subsequent compounding process. Furthermore, there are processing processes in which individual
  • Drying process possibly warm up warm polymer granules.
  • two or more of the components of the polyamide compositions of the present invention may be combined by mixing prior to incorporation into the polyamide matrix.
  • conventional mixing units can be used, in which the components in a suitable mixer, for. B. 0.01 to 10 hours at 0 to 300 ° C mixed. From two or more of the components of the invention
  • Polyamide compositions can also be prepared granules, which can then be introduced into the polyamide matrix.
  • Polyamide composition with granulation and / or binder in a suitable mixer or a granulating are processed into granules.
  • the initially formed crude product can be dried in a suitable dryer or tempered for further grain buildup.
  • the polyamide composition of the present invention or two or more components thereof may be prepared by roll compaction in one embodiment.
  • the polyamide composition of the present invention or two or more components thereof may be prepared by roll compaction in one embodiment.
  • the polyamide composition of the present invention or two or more components thereof may be prepared by roll compaction in one embodiment.
  • components thereof may be prepared by mixing, extruding, chopping (or breaking) the ingredients.
  • the polyamide composition of the present invention or two or more components thereof may be prepared by spray granulation in one embodiment.
  • the flame-retardant polymer composition according to the invention is preferably in granular form, eg. B. as an extrudate or as a compound before.
  • the granules preferably have a cylindrical shape with a circular, elliptical or irregular base, spherical shape, pillow shape, cube shape, cuboid shape, prism shape.
  • Typical length to diameter ratio of the granules are 1 to 50 to 50 to 1, preferably 1 to 5 to 5 to 1.
  • the granules preferably have a diameter of 0.5 to 15 mm, more preferably of 2 to 3 mm and preferably a length of 0.5 to 15 mm, particularly preferably 2 to 5 mm.
  • the invention also relates to moldings produced from the above-described flame-retardant polyamide composition comprising the components A, B, C, D and E and optionally components F and / or G.
  • the molded parts according to the invention may be any desired formations. Examples thereof are fibers, films or moldings obtainable from the flame-retardant polyamide molding compositions according to the invention by any desired molding processes, in particular by injection molding or extrusion.
  • the preparation of the flame-retardant polyamide molded body according to the invention can be carried out by any desired molding process. Examples include injection molding, pressing, foam injection, gas injection molding, blow molding,
  • the molded parts are preferably injection-molded parts or extruded parts.
  • the flame-retardant polyanid compositions according to the invention are suitable for the production of fibers, films and moldings, in particular for applications in the electrical and electronics sector.
  • the invention preferably relates to the use of the flame-retardant polyamide compositions according to the invention in or for connectors, current-carrying parts in power distributors (Fl protection), circuit boards, potting compounds, power connectors, circuit breakers, lamp housings, LED housings,
  • Capacitor housings bobbins and fans, protective contacts, plugs, in / on boards, housings for plugs, cables, flexible printed circuit boards, charging cables for mobile phones, engine covers or textile coatings.
  • the invention likewise preferably relates to the use of the flame-retardant polyamide compositions according to the invention for the production of
  • the wall thickness of the shaped bodies according to the invention can typically be up to 10 mm. Particularly suitable are moldings with less than 1.5 mm wall thickness, more preferably less than 1 mm wall thickness and particularly preferably less than 0.5 mm wall thickness.
  • Polyamide 6T / 6.6 (melting range 310-320 ° C): Vestamid ® HAT plus 1000 (Evonik) Polyamide 6T / 6I (amorphous): Grivory ® G21, (EMS) glass fibers (component B):
  • the flame retardant components were mixed together in the proportions shown in the tables and fed through the side feeder
  • Twin-screw extruder (type Leistritz ZSE 27 / 44D) incorporated at temperatures of 310 to 330 ° C. The glass fibers were over a second
  • Injection molding machine type Arburg 320 C Allrounder
  • mass temperatures 300 to 320 ° C to test specimens processed and based on the UL 94 test
  • the Comparative Tracking Index of the molded parts was determined according to the International Electrotechnical Commission Standard IEC-601 12/3.
  • the Glow Wire Flammability Index (GWIT Index) was standardized
  • the heat deflection temperature (HDT) was determined according to DIN EN ISO 75-3.
  • the Polyannidzusannnneneren invention of Examples 1 to 5 are molding compositions which reach the fire class UL 94 V-0 at 0.4 mm, while having CTI 600 volts, GWFI 960 ° C and HDT-A 295 ° C.
  • the addition of component F in Example 5 leads to a further improvement of the flame retardancy expressed by a reduced afterburning time.
  • the Polyannidzusannnneneren of Examples 6 to 10 according to the invention are molding compositions which reach the fire classification UL 94 V-0 at 0.4 mm, while having CTI 600 volts, GWFI 960 ° C and HDT-A 305 ° C.
  • the addition of component F in Example 10 leads to a further improvement of the flame retardancy expressed by a reduced afterburning time.
  • Comparative Example C4 The omission of component D in Comparative Example C4 resulted in reduced HDT-A, GWFI and CTI values in addition to an extended afterburn time compared to Examples 6-9.
  • Comparative Example C5 was by increasing the concentration of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die Erfindung betrifft flammhemmende Polyamidzusammensetzungen mit einer Wärmeformbeständigkeitstemperatur HDT-A von mindestens 280 °C enthaltend - Polyamid mit einem Schmelzpunkt von größer gleich 290 °C als Komponente A, - Füllstoffe und/oder Verstärkungsstoffe als Komponente B, - Phosphinsäuresalz der Formel (I) als Komponente C, worin R1 und R2 Ethyl bedeuten, M AI, Fe, TiOp oder Zn ist, m 2 bis 3 bedeutet, und p = (4 - m) / 2 ist, - Verbindung ausgewählt aus der Gruppe der AI-, Fe-, TiOp- oder Zn-Salze der Ethylbutylphosphinsäure, der Dibutylphosphinsäure, der Ethylhexylphosphinsäure, der Butylhexylphosphinsäure und/oder der Dihexylphosphinsäure als Komponente D, und - Phosphonsäuresalz der Formel (II) als Komponente E, worin R3 Ethyl bedeutet, Met AI, Fe, TiOq oder Zn ist, n 2 bis 3 bedeutet, und q = (4 - n) / 2 ist. Die Polyamidzusannnnensetzungen lassen sich zur Herstellung von Fasern, Folien und Formkörpern, insbesondere für Anwendungen im Elektro- und Elektronikbereich einsetzen.

Description

Flamnnhennnnende Polyamidzusammensetzungen mit hoher
Wärmeformbeständigkeit und deren Verwendung
Beschreibung
Die vorliegende Erfindung betrifft flammhemmende Polyamidzusammensetzungen sowie daraus hergestellte Formteile, die sich durch eine hohe
Wärmeformbeständigkeitstemperatur (HDT) auszeichnen. Brennbare Kunststoffe müssen in der Regel mit Flammschutzmitteln ausgerüstet werden, um die von den Kunststoffverarbeitern und teilweise vom Gesetzgeber geforderten hohen Flammschutzanforderungen erreichen zu können. Bevorzugt - auch aus ökologischen Gründen - werden nicht-halogenierte
Flammschutzmittelsysteme eingesetzt, die nur geringe oder keine Rauchgase bilden
Unter diesen Flammschutzmitteln haben sich die Salze von Phosphinsäuren (Phosphinate) als besonders für thermoplastische Polymere wirksam erwiesen (DE 2 252 258 A und DE 2 447 727 A).
Darüber hinaus sind synergistische Kombinationen von Phosphinaten mit bestimmten stickstoffhaltigen Verbindungen bekannt, die in einer ganzen Reihe von Polymeren als Flammschutzmittel effektiver wirken, als die Phosphinate allein (WO-2002/28953 A1 sowie DE 197 34 437 A1 und DE 197 37 727 A1 ).
Aus der US 7,420,007 B2 ist bekannt, dass Dialkylphosphinate enthaltend eine geringe Menge an ausgewählten Telomeren als Flammschutzmittel für Polymere geeignet sind, wobei das Polymere bei der Einarbeitung des Flammschutzmittels in die Polymermatrix nur einem recht geringen Abbau unterliegt.
Flammschutzmittel müssen häufig in hohen Dosierungen zugesetzt werden, um eine ausreichende Flammwidrigkeit des Kunststoffs nach internationalen Normen sicherzustellen. Aufgrund ihrer chemischen Reaktivität, die für die Flammschutzwirkung bei hohen Temperaturen erforderlich ist, können
Flammschutzmittel, vor allem bei höheren Dosierungen, die Verarbeitungsstabilität von Kunststoffen beeinträchtigen. Es kann zu verstärktem Polymerabbau, zu Vernetzungsreaktionen, zu Ausgasungen oder Verfärbungen kommen.
Aus der WO 2014/135256 A1 sind Polyamid-Formmassen bekannt, die eine deutlich verbesserte die thermische Stabilität, eine verringerte Migrationsneigung sowie gute elektrische und mechanische Eigenschaften aufweisen. Bislang fehlt es jedoch an flammgeschützten phosphinathaltigen
Polyamidzusammensetzungen die alle geforderten Eigenschaften gleichzeitig erreichen, wie gute elektrische Werte, ausgezeichnete Wärmeformbeständigkeit sowie einen effektiven Flammschutz. Es war daher Aufgabe der vorliegenden Erfindung, flammgeschützte
Polyamidzusammensetzungen auf Basis phosphinathaltiger Flammschutzsysteme zur Verfügung zu stellen, die alle vorgenannten Eigenschaften gleichzeitig aufweisen und die insbesondere gute elektrische Werte (GWFI, CTI),
ausgezeichnete Wärmeformbeständigkeit (HDT-A) sowie einen effektiven
Flammschutz, gekennzeichnet durch möglichst kurze Nachbrennzeiten (UL-94, Zeit), besitzen.
Gegenstand der Erfindung sind flammhemmende Polyamidzusammensetzungen mit einer Wärmeformbeständigkeitstemperatur HDT-A von mindestens 280 °C enthaltend
Polyamid mit einem Schmelzpunkt von größer gleich 290 °C, vorzugsweise von größer gleich 290 °C und ganz besonders bevorzugt von größer gleich 300 °C, als Komponente A, - Füllstoffe und/oder Verstärkungsstoffe, vorzugsweise Glasfasern, als
Komponente B,
Phosphinsäuresalz der Formel (I) als Komponente C O
[ ] M - ,
m
worin Ri und R2 Ethyl bedeuten,
M AI, Fe, TiOp oder Zn ist,
m 2 bis 3, vorzugsweise 2 oder 3, bedeutet, und
p = (4 - m) / 2 ist
Verbindung ausgewählt aus der Gruppe der AI-, Fe-, TiOp- oder Zn-Salze der Ethylbutylphosphinsäure, der Dibutylphosphinsäure, der
Ethylhexylphosphinsäure, der Butylhexylphosphinsäure und/oder der
Dihexylphosphinsäure als Komponente D, und
Phosphonsäuresalz der Formel (II) als Komponente E
Figure imgf000005_0001
worin R3 Ethyl bedeutet,
Met AI, Fe, TiOq oder Zn ist,
n 2 bis 3, vorzugsweise 2 oder 3, bedeutet, und
q = (4 - n) / 2 ist.
In der erfindungsgemäßen Polyamidzusammensetzung beträgt der Anteil an Komponente A üblicherweise 25 bis 95 Gew.-%, vorzugsweise 25 bis 75 Gew.-%.
In der erfindungsgemäßen Polyamidzusammensetzung beträgt der Anteil an Komponente B üblicherweise 1 bis 45 Gew.-%, vorzugsweise 20 bis 40 Gew.-%.
In der erfindungsgemäßen Polyamidzusammensetzung beträgt der Anteil an Komponente C üblicherweise 1 bis 35 Gew.-%, vorzugsweise 5 bis 20 Gew.-%. In der erfindungsgemäßen Polyamidzusamnnensetzung beträgt der Anteil an Komponente D üblicherweise 0,01 bis 3 Gew.-%, vorzugsweise 0,05 bis
1 ,5 Gew.-%.
In der erfindungsgemäßen Polyamidzusammensetzung beträgt der Anteil an Komponente E üblicherweise 0,001 bis 1 Gew.-%, vorzugsweise 0,01 bis
0,6 Gew.-%. Dabei beziehen sich die Prozentangaben für die Anteile der Komponenten A bis F auf die Gesamtmenge der Polyamidzusammensetzung.
Bevorzugt werden flammhemmende Polyamidzusammensetzungen, bei denen der Anteil von Komponente A 25 bis 95 Gew.-%,
- der Anteil von Komponente B 1 bis 45 Gew.-%,
der Anteil von Komponente C 1 bis 35 Gew.-%,
der Anteil von Komponente D 0,01 bis 3 Gew.-%, und
der Anteil von Komponente E 0,001 bis 1 Gew.-% beträgt,
wobei die Prozentangaben sich auf die Gesamtmenge der
Polyamidzusammensetzung beziehen.
Besonders bevorzugt werden flammhemmende Polyamidzusammensetzungen bei denen
der Anteil von Komponente A 25 bis 75 Gew.-%,
- der Anteil von Komponente B 20 bis 40 Gew.-%,
der Anteil von Komponente C 5 bis 20 Gew.-%,
der Anteil von Komponente D 0,05 bis 1 ,5 Gew.-%, und
der Anteil von Komponente E 0,01 bis 0,6 Gew.-% beträgt. Bevorzugt eingesetzte Salze der Komponente C sind solche, worin Mm+ Zn2+, Fe3+ oder insbesondere Al3+ bedeuten. Bevorzugt eingesetzte Salze der Komponente D sind Zink-, Eisen- oder insbesondere Aluminiumsalze.
Bevorzugt eingesetzte Salze der Komponente E sind solche, worin Metn+ Zn2+, Fe3+ oder insbesondere Al3+ bedeuten.
Ganz besonders bevorzugt werden flammhemmende
Polyamidzusammensetzungen, in denen M und Met AI bedeuten, m und n 3 sind und in denen die Verbindungen der Komponente D als Aluminiumsalze vorliegen.
In einer bevorzugten Ausführungsform enthalten die oben beschriebenen flammhemmenden Polyamidzusammensetzungen anorganisches Phosphonat als weitere Komponente F. Die Verwendung der erfindungsgemäß als Komponente F eingesetzten
anorganischen Phosphonate oder auch Salze der phosphorigen Säure
(Phosphite) sind als Flammschutzmittel ist bekannt. So offenbart
WO 2012/045414 A1 Flammschutzmittelkombinationen, die neben
Phosphinsäuresalzen auch Salze der phosphorigen Säure (= Phosphite) enthalten.
Bevorzugt entspricht das anorganische Phosphonat (Komponente F) den allgemeinen Formeln (IV) oder (V) [(HO)PO2]2-p/2 KatP+ (IV)
[(HO)2PO]-P KatP+ (V) worin Kat ein p-wertiges Kation, insbesondere ein Kation eines Alkalimetalls, Erdalkalimetalls, ein Ammoniumkation und/oder ein Kation von Fe, Zn oder insbesondere von AI einschließlich der Kationen AI(OH) oder AI(OH)2 ist, und p 1 , 2, 3 oder 4 bedeutet. Bevorzugt handelt es sich bei dem anorganischen Phosphonat (Komponente F) um Aluminiumphosphit [AI(H2PO3)3] , sekundäres Aluminiumphosphit [Al2(HPO3)3] , basisches Aluminiumphosphit [AI(OH)(H2PO3)2*2aq],
Aluminiumphosphittetrahydrat [Al2(HPO3)3*4aq], Aluminiumphosphonat,
AI7(HPO3)9(OH)6(1 ,6-Hexandiamin)i,5*12H2O, ΑΙ2(ΗΡθ3)3*χΑΐ2θ3*ηΗ2Ο mit x = 2,27 - 1 und/oder AUHePieOie.
Bei dem anorganischen Phosphonat (Komponente F) handelt es sich bevorzugt auch um Aluminiumphosphite der Formeln (VI), (VII) und/oder (VIII)
Al2(HPO3)3 X (H2O)q (VI) wobei q 0 bis 4 bedeutet,
Al2,ooMz(HPO3)y(OH)v x (H2O)w (VII) wobei M Alkalimetallkationen, z 0,01 bis 1 ,5 und y 2,63 bis 3,5 und v 0 bis 2 und w 0 bis 4 bedeutet;
AI2,oo(HPO3)u(H2PO3)t x (H2O)s (VIII) wobei u 2 bis 2,99 und 1 2 bis 0,01 und s 0 bis 4 bedeutet,
und/oder um Aluminiumphosphit [AI(H2PO3)3] , um sekundäres Aluminiumphosphit
[AI2(HPO3)3] , um basisches Aluminiumphosphit [AI(OH)(H2PO3)2*2aq], um
Aluminiumphosphittetrahydrat [Al2(HPO3)3*4aq], um Aluminiumphosphonat, um AI7(HPO3)9(OH)6(1 ,6-Hexandiamin)i,5 *12H2O, um ΑΙ2(ΗΡθ3)3*χΑΐ2θ3*ηΗ2Ο mit x = 2,27 - 1 und/oder AUHePieOis.
Bevorzugte anorganische Phosphonate (Komponente F) sind in Wasser unlösliche bzw. schwerlösliche Salze.
Besonders bevorzugte anorganische Phosphonate sind Aluminium-, Calcium- und Zinksalze. Besonders bevorzugt handelt es sich bei Komponente F um ein
Umsetzungsprodukt aus phosphoriger Säure und einer Aluminiumverbindung.
Besonders bevorzugte Komponenten F sind Aluminiumphosphite mit den
CAS-Nummern 15099-32-8, 1 19103-85-4, 220689-59-8, 56287-23-1 ,
156024-71 -4, 71449-76-8 und 15099-32-8.
Die Herstellung der bevorzugt eingesetzten Aluminiumphosphite erfolgt durch Umsetzung einer Aluminiumquelle mit einer Phosphorquelle und wahlweise einem Templat in einem Lösungsmittel bei 20 - 200 °C während einer Zeitspanne bis zu 4 Tagen. Aluminiumquelle und Phosphorquelle werden dazu 1 - 4 h vermischt, unter hydrothermalen Bedingungen oder am Rückfluss erhitzt, abfiltriert, gewaschen und z. B. bei 1 10 °C getrocknet. Bevorzugte Aluminiumquellen sind Aluminiumisopropoxid, Aluminiumnitrat, Aluminiumchlorid, Aluminiumhydroxid (z. B. Pseudoböhmit).
Bevorzugte Phosphorquellen sind Phosphorige Säure, (saures)
Ammoniumphosphit, Alkaliphosphite oder Erdalkaliphosphite.
Bevorzugte Alkaliphosphite sind Dinatriumphosphit, Dinatriumphosphithydrat, Trinatriumphosphit, Kaliumhydrogenphosphit
Bevorzugtes Dinatriumphosphithydrat ist Brüggolen® H10 der Fa. Brüggemann.
Bevorzugte Template sind 1 ,6-Hexandiamin, Guanidincarbonat oder Ammoniak.
Bevorzugtes Erdalkaliphosphit ist Calciumphosphit. Das bevorzugte Verhältnis von Aluminium zu Phosphor zu Lösungsmittel ist dabei 1 : 1 : 3,7 bis 1 : 2,2 : 100 mol. Das Verhältnis von Aluminium zu Templat ist 1 : 0 bis 1 : 17 mol. Der bevorzugte pH-Wert der Reaktionslösung ist 3 bis 9.
Bevorzugtes Lösungsmittel ist Wasser. Besonders bevorzugt wird in der Anwendung das gleiche Salz der Phosphinsaure wie der phosphorigen Säure verwendet, also z. B. Aluminiumdiethylphosphinat zusammen mit Aluminiumphosphit oder Zinkdiethylphosphinat zusammen mit Zinkphosphit.
In einer bevorzugten Ausführungsform enthalten die oben beschriebenen flammhemmenden Polyesterzusammensetzungen als Komponente F eine
Verbindung der Formel (III)
Figure imgf000010_0001
worin Me Fe, TiOr, Zn oder insbesondere AI ist,
o 2 bis 3, vorzugsweise 2 oder 3, bedeutet, und
r = (4 - o) / 2 ist.
Bevorzugt eingesetzte Verbindungen der Formel (III) sind solche, worin Me0+ Zn2+, Fe3+ oder insbesondere Al3+ bedeuten.
Komponente F liegt vorzugsweise in einer Menge von 0,005 bis 10 Gew.-%, insbesondere in einer Menge von 0,02 bis 5 Gew.-%, bezogen auf die
Gesamtmenge der Polyamidzusammensetzung, vor.
Die erfindungsgemäßen flammhemmenden Polyamidzusammensetzungen weisen eine hohe Wärmeformbeständigkeitstemperatur (HDT-A) nach DIN EN ISO 75-3 von mindestens 280 °C, vorzugsweise von mindestens 290 °C und besonders bevorzugt von mindestens 300 °C auf.
Bevorzugt sind erfindungsgemäße flammhemmende
Polyamidzusammensetzungen, die einen Comparative Tracking Index, gemessen nach dem International Electrotechnical Commission Standard IEC-601 12/3, von größer gleich 500 Volt aufweisen.
Ebenfalls bevorzugte erfindungsgemäße flammhemmende
Polyamidzusammensetzungen erreichen eine Bewertung von V0 nach UL-94, insbesondere gemessen an Formteilen von 3,2 mm bis 0,4 mm Dicke.
Weitere bevorzugte erfindungsgemäße flammhemmende
Polyamidzusammensetzungen weisen einen Glow Wire Flammability Index nach IEC-60695-2-12 von mindestens 960 °C auf, insbesondere gemessen an
Formteilen von 0,75 - 3 mm Dicke.
Die erfindungsgemäßen Polyamidzusammensetzungen enthalten als Komponente A ein oder mehrere thermoplastische Polyamide mit einem Schmelzpunkt von größer gleich 290 °C. Der Schmelzpunkt wird dabei mittels Diffential-Scanning- Kalorimetrie (DSC) bei einer Aufheizrate von 10 K/Sekunde bestimmt.
Unter thermoplastischen Polyamiden werden in Anlehnung an Hans
Domininghaus in "Die Kunststoffe und ihre Eigenschaften", 5. Auflage (1998), Seite 14, Polyamide verstanden, deren Molekülketten keine oder auch mehr oder weniger lange und in der Anzahl unterschiedliche Seitenverzweigungen
aufweisen, die in der Wärme erweichen und nahezu beliebig formbar sind.
Die erfindungsgemäß bevorzugten Polyamide können nach verschiedenen
Verfahren hergestellt und aus sehr unterschiedlichen Bausteinen synthetisiert werden und im speziellen Anwendungsfall allein oder in Kombination mit
Verarbeitungshilfsmitteln, Stabilisatoren oder auch polymeren Legierungspartnern, bevorzugt Elastomeren, zu Werkstoffen mit speziell eingestellten
Eigenschaftskombinationen ausgerüstet werden. Geeignet sind auch Blends mit Anteilen von anderen Polymeren, bevorzugt von Polyethylen, Polypropylen, ABS, wobei ggf. ein oder mehrere Kompatibilisatoren eingesetzt werden können. Die Eigenschaften der Polyamide lassen sich durch Zusatz von Elastomeren verbessern, z. B. im Hinblick auf die Schlagzähigkeit, insbesondere wenn es verstärkte Polyamide sind. Die Vielzahl der Kombinationsmöglichkeiten ermöglicht eine sehr große Zahl von Produkten mit unterschiedlichsten Eigenschaften.
Zur Herstellung von Polyamiden sind eine Vielzahl von Verfahrensweisen bekannt geworden, wobei je nach gewünschtem Endprodukt unterschiedliche
Monomerbausteine, verschiedene Kettenregler zur Einstellung eines angestrebten Molekulargewichtes oder auch Monomere mit reaktiven Gruppen für später beabsichtigte Nachbehandlungen eingesetzt werden. Die technisch relevanten Verfahren zur Herstellung von Polyamiden laufen meist über die Polykondensation in der Schmelze. In diesem Rahmen wird auch die hydrolytische Polymerisation von Lactamen als Polykondensation verstanden.
Bevorzugt als Komponente A einzusetzende Polyamide sind teilkristalline und aromatische oder teilaromatische Polyamide, die ausgehend von Diaminen und Dicarbonsäuren und/oder Lactamen mit wenigstens 5 Ringgliedern oder entsprechenden Aminosäuren hergestellt werden können.
Als Edukte kommen hauptsächlich aromatische Dicarbonsäuren, bevorzugt Isophthalsäure und/oder Terephthalsäure oder deren polyamidbildende Derivate, wie Salze, in Betracht, die allein oder in Kombination mit aliphatischen
Dicarbonsäuren oder deren polyamidbildenden Derivaten, bevorzugt Adipinsäure, 2,2,4- und 2,4,4-Trimethyladipinsäure, Azelainsäure und/oder Sebazinsäure, zusammen mit aliphatischen und/oder aromatischen Diaminen, bevorzugt
Tetramethylendiamin, Hexamethylendiamin, 1 ,9-Nonandiamin, 2,2,4- und
2,4,4-Trimethylhexamethylendiamin, den isomeren Diaminodicyclohexylmethanen, Diaminodicyclohexylpropanen, Bis-(aminomethyl)cyclohexanen,
Phenylendiaminen und/oder Xylylendiaminen, und/oder mit Aminocarbonsäuren, bevorzugt Aminocapronsäure oder den entsprechenden Lactamen eingesetzt werden. Copolyamide aus mehreren der genannten Monomeren sind
eingeschlossen. Besonders geeignet sind weiterhin aromatische und teilaromatische Polyamide also Verbindungen, bei denen wenigstens ein Teil der Wiederholeinheiten aus aromatischen Struktureinheiten aufgebaut ist. Diese Polymere können
gegebenenfalls in Kombination mit kleineren Mengen wie bis zu 20 Gew.-%, bezogen auf die Menge an Polyamid, an aliphatischen Polyamiden, insbesondere PA6 und/oder PA6.6, eingesetzt werden, wenn damit eine
Wärmeformbeständigkeitstemperatur der Formmasse oder des daraus
hergestellten Formkörpers mindestens 290 °C erreicht. Bevorzugt geeignet sind aromatische Polyamide ausgehend von Xylylendiamin und Adipinsäure; oder Polyamide, hergestellt aus Hexamethylendiamin und Iso- und/oder Terephthalsäure und gegebenenfalls einem Elastomer als
Modifikator, z. B. Poly-2,4,4-trimethylhexamethylenterephthalamid oder Poly-m- phenylenisophthalamid, Blockcopolymere der vorstehend genannten Polyamide mit Polyolefinen, Olefin-Copolymeren, lonomeren oder chemisch gebundenen oder gepfropften Elastomeren, oder mit Polyethern, wie z. B. mit
Polyethylenglykol, Polypropylenglykol oder Polytetramethylenglykol. Ferner mit EPDM oder ABS modifizierte Polyamide oder Copolyamide; sowie während der Verarbeitung kondensierte Polyamide ("RIM-Polyamidsysteme").
In einer bevorzugten Ausführungsform ist Komponente A ein aromatisches oder teilaromatisches Polyamid oder ein Gemisch aus mehreren aromatischen oder teilaromatischen Polyamiden oder ein Gemisch aus Polyamid 6.6 und einem oder mehreren aromatischen oder teilaromatischen Polyamiden.
Den neben dem thermoplastischen Polyamid in einer bevorzugten
Ausführungsform zusätzlich einzusetzenden Polymeren können übliche Additive, insbesondere Entformungsmittel, Stabilisatoren und/oder Fließhilfsmittel in der Schmelze zugemischt oder auf der Oberfläche aufgebracht werden.
Ausgangsstoffe für die thermoplastischen Polyamide der Komponente A können synthetisch z. B. aus petrochemischen Rohstoffen und/oder über chemische oder biochemische Prozesse aus nachwachsenden Rohstoffen hervorgegangen sein Als Komponente B werden Füllstoffe und/oder vorzugsweise Verstärkungsstoffe eingesetzt, bevorzugt Glasfasern. Es können auch Mischungen aus zwei oder mehreren unterschiedlichen Füllstoffen und/oder Verstärkungsstoffen, eingesetzt werden.
Bevorzugte Füllstoffe sind mineralische teilchenförmige Füllstoffe auf der Basis von Talk, Glimmer, Silikat, Quarz, Titandioxid, Wollastonit, Kaolin, amorphe Kieselsäuren, nanoskaligen Mineralien, besonders bevorzugt Montmorilloniten oder Nano-Böhmiten, Magnesiumcarbonat, Kreide, Feldspat, Glaskugeln und/oder Bariumsulfat. Besonders bevorzugt werden mineralische teilchenförmige Füllstoffe auf der Basis von Talk, Wollastonit und/oder Kaolin.
Besonders bevorzugt werden ferner auch nadeiförmige mineralische Füllstoffe eingesetzt. Unter nadeiförmigen mineralischen Füllstoffen wird erfindungsgemäß ein mineralischer Füllstoff mit stark ausgeprägtem nadeiförmigen Charakter verstanden. Bevorzugt sind nadeiförmige Wollastonite. Bevorzugt weist das Mineral ein Länge zu Durchmesser - Verhältnis von 2:1 bis 35:1 , besonders bevorzugt von 3:1 bis 19:1 , insbesondere bevorzugt von 4:1 bis 12:1 auf. Die mittlere Teilchengröße der erfindungsgemäß als Komponente B eingesetzten nadeiförmigen mineralischen Füllstoffe liegt bevorzugt bei kleiner 20 μιτι, besonders bevorzugt bei kleiner 15 μιτι, insbesondere bevorzugt bei kleiner 10 μιτι, bestimmt mit einem CILAS Granulometer.
Bei den erfindungsgemäß vorzugsweise eingesetzten Komponenten B handelt es sich um Verstärkungsstoffe. Dabei kann es sich beispielsweise um
Verstärkungsstoffe auf der Basis von Kohlenstofffasern und/oder von Glasfasern handeln.
Der Füllstoff und/oder Verstärkungsstoff kann in einer bevorzugten
Ausführungsform oberflächenmodifiziert sein, vorzugsweise mit einem
Haftvermittler bzw. einem Haftvermittlersystem, besonders bevorzugt auf
Silanbasis. Insbesondere bei Verwendung von Glasfasern können zusätzlich zu Silanen auch Polymerdispersionen, Filmbildner, Verzweiger und/oder
Glasfaserverarbeitungs-hilfsmittel verwendet werden.
Bei den erfindungsgemäß als Komponente B bevorzugt eingesetzten Glasfasern kann es sich um Kurzglasfasern und/oder um Langglasfasern handeln. Als Kurzoder Langglasfasern können Schnittfasern eingesetzt werden. Kurzglasfasern können auch in Form von gemahlenen Glasfasern zum Einsatz kommen.
Daneben können Glasfasern außerdem in der Form von Endlosfasern eingesetzt werden, beispielsweise in der Form von Rovings, Monofilamenten,
Filamentgarnen oder Zwirnen, oder Glasfasern können in der Form von textilen Flächengebilden eingesetzt werden, beispielsweise als Glasgewebe, als
Glasgeflecht oder als Glasmatte.
Typische Faserlängen für Kurzglasfasern vor dem Einarbeiten in die
Polyamidmatrix bewegen sich im Bereich von 0,05 bis 10 mm, vorzugsweise von 0,1 bis 5 mm. Nach dem Einarbeiten in die Polyamidmatrix hat sich die Länge der Glasfasern verringert. Typische Faserlängen für Kurzglasfasern nach dem
Einarbeiten in die Polyamidmatrix bewegen sich im Bereich von 0,01 bis 2 mm, vorzugsweise von 0,02 bis 1 mm.
Die Durchmesser der einzelnen Fasern kann in weiten Bereichen schwanken. Typische Durchmesser der einzelnen Fasern bewegen sich im Bereich von 5 bis 20 μηη . Die Glasfasern können beliebige Querschnittsformen aufweisen, beispielsweise runde, elliptische, n-eckige oder irreguläre Querschnitte. Es können Glasfasern mit mono- oder multilobalen Querschnitten verwendet werden.
Glasfasern können als Endlosfasern oder als geschnittene oder gemahlene Glasfasern eingesetzt werden.
Die Glasfasern selbst, unabhängig von deren Querschnittfläche und deren Länge, können dabei beispielsweise ausgewählt sein aus der Gruppe der E-Glasfasern, A-Glasfasern, C-Glasfasern, D-Glasfasern, M-Glasfasern, S-Glasfasern,
R-Glasfasern und/oder ECR-Glasfasern, wobei die E-Glasfasern, R-Glasfasern, S-Glasfasern und ECR-Glasfasern besonders bevorzugt sind. Die Glasfasern sind vorzugsweise mit einer Schlichte versehen, welche vorzugsweise Polyurethan als Filmbildner und Aminosilan als Haftvermittler enthält.
Besonders bevorzugt eingesetzte E-Glasfasern weisen folgende chemische Zusammensetzung auf: S1O2 50-56 %; AI2O3 12-16 %; CaO 16-25 %; MgO < 6 %; B2O3 6-13 %; F < 0,7 %; Na2O 0,3-2 %; K2O 0,2-0,5 %; Fe2Os 0,3 %.
Besonders bevorzugt eingesetzte R-Glasfasern weisen folgende chemische Zusammensetzung auf: S1O2 50-65 %; AI2O3 20-30 %; CaO 6-16 %; MgO 5-20 %; Na2O 0,3-0,5 %; K2O 0,05-0,2 %; Fe2Os 0,2-0,4 %, ΤΊΟ2 0,1 -0,3 %. Besonders bevorzugt eingesetzte ECR-Glasfasern weisen folgende chemische Zusammensetzung auf: S1O2 57,5-58,5 %; AI2O3 17,5-19,0 %; CaO 1 1 ,5-13,0 %; MgO 9,5-1 1 ,5.
Die erfindungsgemäß als Komponente C eingesetzten Salze von
Diethylphosphinsäure sind bekannte Flammschutzmittel für polymere
Formmassen.
Auch Salze von Diethylphosphinsäure mit Anteilen der erfindungsgemäß als Komponenten D und E eingesetzten Phosphinsäure- und Phosphonsäuresalze sind bekannte Flammschutzmittel. Die Herstellung dieser Stoffkombinationen wird z. B. in US 7,420,007 B2 beschrieben.
Die erfindungsgemäß eingesetzten Salze von Diethylphosphinsäure der
Komponente C können geringe Mengen an Salzen der Komponente D und an Salzen der Komponente E enthalten, beispielsweise bis zu 10 Gew.-% an
Komponente D, vorzugsweise 0,01 bis 6 Gew. %, und insbesondere 0,2 bis 2,5 Gew.-% davon, und bis zu 10 Gew.-% an Komponente E, vorzugsweise 0,01 bis 6 Gew. %, und insbesondere 0,2 bis 2,5 Gew.-% davon bezogen auf die Menge an Komponenten C, D und E.
Die erfindungsgemäß als Komponente E eingesetzten Salze der
Ethylphosphonsäure sind als Zusätze zu Diethylphospinaten in
Flammschutzmitteln für polymere Formmassen ebenfalls bekannt, beispielsweise aus WO 2016/065971 A1 .
In einer weiteren bevorzugten Ausführungsform liegen Komponenten C, D und E in Teilchenform vor, wobei die mittlere Teilchengröße (dso) 1 bis 100 μιτι beträgt.
Die erfindungsgemäßen Polyamidzusammensetzungen können als Komponente G noch weitere Additive enthalten. Bevorzugte Komponenten G im Sinne der vorliegenden Erfindung sind Antioxidantien, UV-Stabilisatoren,
Gammastrahlenstabilisatoren, Hydrolysestabilisatoren, Co-Stabilisatoren für Antioxidantien, Antistatika, Emulgatoren, Nukleierungsmittel, Weichmacher, Verarbeitungshilfsmittel, Schlagzähmodifikatoren, Farbstoffe, Pigmente und/oder weitere Flammschutzmittel, die sich von Komponenten C, D, E und F
unterscheiden.
Die weiteren Additive sind als Zusätze zu Polyamidzusammensetzungen an sich bekannt und können alleine oder in Mischung oder in Form von Masterbatches eingesetzt werden. Die vorgenannten Komponenten A, B, C, D, E und gegebenenfalls F und/oder G können in den verschiedensten Kombinationen zur erfindungsgemäßen flammgeschützten Polyamidzusammensetzung verarbeitet werden. So ist es möglich, bereits zu Beginn oder am Ende der Polykondensation oder in einem folgenden Compoundierprozess die Komponenten in die Polyamidschmelze einzumischen. Weiterhin gibt es Verarbeitungsprozesse bei denen einzelne
Komponenten erst später zugefügt werden. Dies wird insbesondere beim Einsatz von Pigment- oder Additivmasterbatches praktiziert. Außerdem besteht die Möglichkeit, insbesondere pulverförmige Komponenten auf das durch den
Trocknungsprozess eventuell warme Polymergranulat aufzutrommeln.
Auch können zwei oder mehrere der Komponenten der erfindungsgemäßen Polyamidzusammensetzungen vor dem Einbringen in die Polyamidmatrix durch Vermischen kombiniert werden. Dabei können herkömmliche Mischaggregate eingesetzt werden, in denen die Komponenten in einem geeigneten Mischer, z. B. 0,01 bis 10 Stunden bei 0 bis 300 °C gemischt werden. Aus zwei oder mehreren der Komponenten der erfindungsgemäßen
Polyamidzusammensetzungen können auch Granulate hergestellt werden, die anschließend in die Polyamidmatrix eingebracht werden können.
Dazu können zwei oder mehr Komponenten der erfindungsgemäßen
Polyamidzusammensetzung mit Granulierhilfsmittel und/oder Bindemittel in einem geeigneten Mischer oder einem Granulierteller zu Granulaten verarbeitet werden.
Das zunächst entstehende Rohprodukt kann in einem geeigneten Trockner getrocknet beziehungsweise zum weiteren Kornaufbau getempert werden.
Die erfindungsgemäße Polyamidzusammensetzung oder zwei oder mehrere Komponenten davon kann in einer Ausführungsform durch Rollkompaktierung hergestellt werden. Die erfindungsgemäße Polyamidzusammensetzung oder zwei oder mehrere
Komponenten davon kann in einer Ausführungsform dadurch hergestellt werden, dass die Inhaltsstoffe gemischt, stranggepresst, abgeschlagen (bzw.
gegebenenfalls gebrochen und klassiert) und getrocknet (und gegebenenfalls gecoated) werden.
Die erfindungsgemäße Polyamidzusammensetzung oder zwei oder mehrere Komponenten davon kann in einer Ausführungsform durch Sprühgranulierung hergestellt werden. Die erfindungsgemäße flammgeschützte Polymerfornnnnasse liegt bevorzugt in Granulatform, z. B. als Extrudat oder als Compound, vor. Das Granulat hat bevorzugt Zylinderform mit kreisförmiger, elliptischer oder unregelmäßiger Grundfläche, Kugelform, Kissenform, Würfelform, Quaderform, Prismenform.
Typische Längen-zu-Durchmesser-Verhältnis des Granulates betragen 1 zu 50 bis 50 zu 1 , bevorzugt 1 zu 5 bis 5 zu 1 . Das Granulat hat bevorzugt einen Durchmesser von 0,5 bis 15 mm, besonders bevorzugt von 2 bis 3 mm und bevorzugt eine Länge von 0,5 bis 15 mm, besonders bevorzugt von 2 bis 5 mm.
Gegenstand der Erfindung sind auch Formteile hergestellt aus der oben beschriebenen flammhemmenden Polyamidzusammensetzung enthaltend die Komponenten A, B, C, D und E und gegebenenfalls Komponenten F und/oder G.
Bei den erfindungsgemäßen Formteilen kann es sich um beliebige Ausformungen handeln. Beispiele dafür sind Fasern, Folien oder Formkörper, erhältlich aus den erfindungsgemäßen flammgeschützten Polyamidformmassen durch beliebige Formverfahren, insbesondere durch Spritzguss oder Extrusion.
Die Herstellung der erfindungsgemäßen flammgeschützten Polyamid-Formkörper kann durch beliebige Formverfahren erfolgen. Beispiele dafür sind Spritzgießen, Pressen, Schaumspritzgießen, Gasinnendruck-Spritzgießen, Blasformen,
Foliengießen, Kalandern, Laminieren oder Beschichten bei höheren Temperaturen mit der flammgeschützten Polyamid-Formmasse.
Bei den Formteilen handelt es sich vorzugsweise sich um Spritzgussteile oder um Extrusionsteile. Die erfindungsgemäßen flammgeschützten Polyannidzusannnnensetzungen eignen sich zur Herstellung von Fasern, Folien und Formkörpern, insbesondere für Anwendungen im Elektro- und Elektronikbereich. Die Erfindung betrifft bevorzugt die Verwendung der erfindungsgemäßen flammgeschützten Polyamidzusammensetzungen in oder für Steckverbinder, stromberührten Teilen in Stromverteilern (Fl-Schutz), Platinen, Vergussmassen, Stromsteckern, Schutzschaltern, Lampengehäusen, LED Gehäusen,
Kondensatorgehäusen, Spulenkörpern und Ventilatoren, Schutzkontakten, Steckern, in/auf Platinen, Gehäusen für Stecker, Kabeln, flexiblen Leiterplatten, Ladekabeln für Handys, Motorabdeckungen oder Textilbeschichtungen.
Die Erfindung betrifft ebenfalls bevorzugt die Verwendung der erfindungsgemäßen flammgeschützten Polyamidzusammensetzungen zur Herstellung von
Formkörpern in Form von Bauteilen für den Elektro/Elektronikbereich,
insbesondere für Teile von Leiterplatten, Gehäusen, Folien, Leitungen, Schaltern, Verteilern, Relais, Widerständen, Kondensatoren, Spulen, Lampen, Dioden, LED, Transistoren, Konnektoren, Reglern, Speichern und Sensoren, in Form von großflächigen Bauteilen, insbesondere von Gehäuseteilen für Schaltschränke und in Form aufwendig gestalteter Bauteile mit anspruchsvoller Geometrie.
Die Wandstärke der erfindungsgemäßen Formkörper kann typischerweise bis zu 10 mm betragen. Besonders geeignet sind Formkörper mit weniger als 1 ,5 mm Wandstärke, mehr bevorzugt von weniger als 1 mm Wandstärke und besonders bevorzugt von weniger als 0,5 mm Wandstärke.
Die nachfolgenden Beispiele erläutern die Erfindung ohne diese zu begrenzen.
1 . Eingesetzte Komponenten
Handelsübliche Polyamide (Komponente A):
Polyamid 6T/6.6 (Schmelzbereich von 310-320 °C): Vestamid® HAT plus 1000 (Evonik) Polyamid 6T/6I (amorph): Grivory® G21 , (EMS) Glasfasern (Komponente B):
Glasfasern PPG HP 3610 10μηη Durchmesser, 4,5 mm Länge (Fa. PPG, NL),
Flammschutzmittel FM 1 (Komponenten C, D und E):
Aluminiumsalz der Diethylphosphinsaure enthaltend 0,9 mol-% an Aluminium- Ethylbutylphospinat und 0,5 mol-% an Aluminium-Ethylphosphonat hergestellt nach Beispiel 3 der US 7,420,007 B2
Flammschutzmittel FM 2 (Komponenten C, D und E):
Aluminiumsalz der Diethylphosphinsaure enthaltend 2,7 mol-% an Aluminium- Ethylbutylphospinat und 0,8 mol-% an Aluminium-Ethylphosphonat hergestellt nach Beispiel 4 der US 7,420,007 B2
Flammschutzmittel FM 3 (Komponenten C, D und E):
Aluminiumsalz der Diethylphosphinsaure enthaltend 0,5 mol-% an Aluminium- Ethylbutylphospinat und 0,05 mol-% an Aluminium-Ethylphosphonat hergestellt nach dem Verfahren gemäß US 7,420,007 B2
Flammschutzmittel FM 4 (Komponenten C, D und E):
Aluminiumsalz der Diethylphosphinsäure enthaltend 10 mol-% an Aluminium- Ethylbutylphospinat und 5 mol-% an Aluminium-Ethylphosphonat hergestellt nach dem Verfahren gemäß US 7,420,007 B2
Flammschutzmittel FM 5 (Komponente C):
Aluminiumsalz der Diethylphosphinsäure hergestellt in Analogie zu Beispiel 1 der DE 196 07 635 A1 Flammschutzmittel FM 6 (Komponenten C und E):
Aluminiumsalz der Diethylphosphinsäure enthaltend 8,8 mol-% an Aluminium- Ethylphosphonat Flammschutzmittel FM 7 (Komponente F):
Aluminiumsalz der Phosphonsäure hergestellt nach Beispiel 1 der DE
10201 1 120218 A1
2. Herstellung, Verarbeitung und Prüfung von flammhemmenden Polyamid- Formmassen
Die Flammschutzmittelkomponenten wurden in dem in den Tabellen angegebenen Verhältnissen miteinander vermischt und über den Seiteneinzug eines
Doppelschnecken-Extruders (Typ Leistritz ZSE 27/44D) bei Temperaturen von 310 bis 330 °C eingearbeitet. Die Glasfasern wurden über einen zweiten
Seiteneinzug zugegeben. Der homogenisierte Polymerstrang wurde abgezogen, im Wasserbad gekühlt und anschließend granuliert.
Nach ausreichender Trocknung wurden die Formmassen auf einer
Spritzgießmaschine (Typ Arburg 320 C Allrounder) bei Massetemperaturen von 300 bis 320 °C zu Prüfkörpern verarbeitet und anhand des UL 94-Tests
(Underwriter Laboratories) auf Flammwidrigkeit geprüft und klassifiziert. Neben der Klassifikation wurde auch die Nachbrennzeit angegeben.
Der Comparative Tracking Index der Formteile wurde gemäß dem International Electrotechnical Commission Standard IEC-601 12/3 ermittelt. Der Glow Wire Flammability Index (GWIT-Index) wurde nach der Norm
IEC-60695-2-12 ermittelt.
Die Wärmeformbeständigkeitstemperatur (HDT) wurde nach DIN EN ISO 75-3 ermittelt.
Bei der Ermittlung der HDT wird ein Standardprobekörper mit rechteckigem
Querschnitt einer Dreipunktbiegung bei konstanter Last ausgesetzt. Je nach Probekörperhöhe wird dabei zur Erzielung einer sogenannten Randfaserspannung ΟΪ von 1 ,80 (Methode A), 0,45 (Methode B) oder 8,00 N/mm2 (Methode C) durch Gewichtsstücke und/oder Federn einer Kraft aufgebracht. Anschließend werden die belasteten Proben einer Erwärmung mit konstanter Heizrate von 120 K/h (oder 50 K/h) ausgesetzt. Erreicht dabei die Durchbiegung der Probe eine
Randfaserdehnung von 0,2 %, so entspricht die zugehörige Temperatur dem HDT-Wert.
Sämtliche Versuche der jeweiligen Serie wurden, falls keine anderen Angaben gemacht wurden, aufgrund der Vergleichbarkeit unter identischen Bedingungen (wie Temperaturprogramme, Schneckengeometrien und Spritzgießparameter) durchgeführt.
Beispiele 1 -5 und Vergleichsbeispiele V1 -V3 mit PA 6.6
Die Ergebnisse der Versuche mit PA 6T/6.6-Formmassen sind in den in der nachfolgenden Tabelle aufgeführten Beispielen aufgelistet. Alle Mengen sind als Gew.-% angegeben und beziehen sich auf die Polyamid-Formmasse
einschließlich der Flammschutzmittel und Verstärkungsstoffe.
Tabelle 1 PA 6T/6.6 GF 30 Versuchsergebnisse (1 -5 erfindungsgemäß;
V1 -V3 Vergleiche)
Beispiel Nr. 1 2 3 4 5 V1 V2 V3
A: PA 6T/6.6 55 55 55 55 55 55 50 55
B: Glasfasern 30 30 30 30 30 30 30 30 HP3610
C+D+E: FM 1 15 - - - - - - -
C+D+E: FM 2 - 15 - - 13 - - -
C+D+E: FM 3 - - 15 - - - - -
C+D+E: FM 4 - - - 15 - - - -
C: FM 5 - - - - - - - 15
C+E: FM 6 - - - - - 15 20 - F: FM 7 - - - - 2 - - -
HDT-A [ °C] 295 295 295 295 295 285 295 285
UL 94 0,4 mm / V-0/23 V-0/17 V-0/37 V-0/23 V-0/08 V-0/41 V-0/35 V-0/47 Zeit [sek.]
GWFI [ °C] 960 960 960 960 960 900 900 900
CTI [Volt] 600 600 600 600 600 500 600 500
Die erfindungsgemäßen Polyannidzusannnnensetzungen der Beispiele 1 bis 5 sind Formmassen, welche die Brandklasse UL 94 V-0 bei 0,4 mm erreichen, gleichzeitig CTI 600 Volt, GWFI 960 °C und HDT-A 295 °C aufweisen. Der Zusatz von Komponente F in Beispiel 5 führt zu einer nochmaligen Verbesserung des Flammschutzes ausgedrückt durch eine verringerte Nachbrennzeit.
Das Weglassen von Komponente D in Vergleichsbeispiel V1 hatte neben einer verlängerten Nachbrennzeit im Vergleich zu den Beispielen 1 -4 verringerte CTI-, GWFI- und HDT/A-Werte zur Folge.
In Vergleichsbeispiel V2 wurde durch Erhöhung der Konzentration an
Komponenten C und E im Vergleich zu Beispiel V2 zwar eine Verbesserung der Nachbrennzeit erreicht. Allerdings zeigte diese Polyamidzusammensetzung immer noch einen im Vergleich zu Beispiel 2 geringeren GWFI-Wert.
Das Weglassen von Komponenten D und E in Vergleichsbeispiel V3 hatte neben einer verlängerten Nachbrennzeit im Vergleich zu den Beispielen 1 -4 verringerte CTI-, GWFI- und HDT/A-Werte zur Folge.
Beispiele 6-107-1 1 und Vergleichsbeispiele V4-V6 mit PA 6T/6I
Die Ergebnisse der Versuche mit PA 6T/6l-Formmassen sind in den in der nachfolgenden Tabelle aufgeführten Beispielen aufgelistet. Alle Mengen sind als Gew.-% angegeben und beziehen sich auf die Polyamid-Formmasse
einschließlich der Flammschutzmittel und Verstärkungsstoffe. Tabelle 2: PA 6T/6I GF 30 Versuchsergebnisse (6-10 erfindungsgemäß;
V4-V6 Vergleiche)
Figure imgf000025_0001
Die erfindungsgemäßen Polyannidzusannnnensetzungen der Beispiele 6 bis 10 sind Formmassen, welche die Brandklasse UL 94 V-0 bei 0,4 mm erreichen, gleichzeitig CTI 600 Volt, GWFI 960 °C und HDT-A 305 °C aufweisen. Der Zusatz von Komponente F in Beispiel 10 führt zu einer nochmaligen Verbesserung des Flammschutzes ausgedrückt durch eine verringerte Nachbrennzeit.
Das Weglassen von Komponente D in Vergleichsbeispiel V4 hatte neben einer verlängerten Nachbrennzeit im Vergleich zu den Beispielen 6-9 verringerte HDT-A-, GWFI- und CTI-Werte zur Folge. In Vergleichsbeispiel V5 wurde durch Erhöhung der Konzentration an
Komponenten C und E im Vergleich zu Beispiel V4 zwar eine Verbesserung der Nachbrennzeit erreicht. Allerdings zeigte diese Polyannidzusannnnensetzung innnner noch im Vergleich zu Beispiel 7 verringerte HDT-A- und GWFI-Werte.
Das Weglassen von Komponenten D und E in Vergleichsbeispiel V6 hatte neben einer verlängerten Nachbrennzeit im Vergleich zu den Beispielen 6-9 verringerte HDT-A-, GWFI- und CTI-Werte zur Folge.

Claims

Patentansprüche
1 . Flammhemmende Polyamidzusammensetzungen mit einer
Wärmeformbeständigkeitstemperatur HDT-A von mindestens 280 °C enthaltend - Polyamid mit einem Schmelzpunkt von größer gleich 290 °C als
Komponente A,
Füllstoffe und/oder Verstärkungsstoffe als Komponente B,
Phosphinsäuresalz der Formel (I) als Komponente C
Figure imgf000027_0001
worin Ri und R2 Ethyl bedeuten,
M AI, Fe, TiOp oder Zn ist,
m 2 bis 3 bedeutet, und
p = (4 - m) / 2 ist
Verbindung ausgewählt aus der Gruppe der AI-, Fe-, TiOp- oder Zn-Salze der Ethylbutylphosphinsäure, der Dibutylphosphinsäure, der
Ethylhexylphosphinsäure, der Butylhexylphosphinsäure und/oder der Dihexylphosphinsäure als Komponente D, und
Phosphonsäuresalz der Formel (II) als Komponente E
Figure imgf000027_0002
worin R3 Ethyl bedeutet,
Met AI, Fe, TiOq oder Zn ist,
n 2 bis 3 bedeutet, und
q = (4 - n) / 2 ist.
2. Flamnnhennnnende Polyamidzusammensetzungen nach Anspruch 1 , dadurch gekennzeichnet, dass M und Met AI bedeuten, m und n 3 sind und dass Komponente D ein Aluminiumsalz ist.
3. Flammhemmende Polyamidzusammensetzungen nach mindestens einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass
der Anteil von Komponente A 25 bis 95 Gew.-%,
der Anteil von Komponente B 1 bis 45 Gew.-%,
der Anteil von Komponente C 1 bis 35 Gew.-%,
- der Anteil von Komponente D 0,01 bis 3 Gew.-%, und
der Anteil von Komponente E 0,001 bis 1 Gew.-% beträgt,
wobei die Prozentangaben sich auf die Gesamtmenge der
Polyamidzusammensetzung beziehen.
4. Flammhemmende Polyamidzusammensetzungen nach Anspruch 3, dadurch gekennzeichnet, dass
der Anteil von Komponente A 25 bis 75 Gew.-%,
der Anteil von Komponente B 20 bis 40 Gew.-%,
der Anteil von Komponente C 5 bis 20 Gew.-%,
- der Anteil von Komponente D 0,05 bis 1 ,5 Gew.-%, und
der Anteil von Komponente E 0,01 bis 0,6 Gew.-% beträgt.
5. Flammhemmende Polyamidzusammensetzungen nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die
Polyamidzusammensetzungen anorganisches Phosphonat als weitere
Komponente F enthalten.
6. Flammhemmende Polyamidzusammensetzungen nach Anspruch 5, dadurch gekennzeichnet, dass das anorganische Phosphonat eine Verbindung der Formel (III) ist
Figure imgf000029_0001
worin Me Fe, TiOr, Zn oder insbesondere AI ist,
o 2 bis 3 bedeutet, und
r = (4 - o) / 2 ist, wobei
die Menge von der Verbindung der Formel (III) 0,005 bis 10 Gew.-%,
insbesondere 0,02 bis 5 Gew.-%, bezogen auf die Gesamtmenge der
Polyamidzusammensetzung, beträgt.
7. Flammhemmende Polyamidzusammensetzungen nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass diese einen Comparative Tracking Index aufweist gemessen nach der International Electrotechnical Commission Standard IEC-601 12/3 von größer gleich 500 Volt aufweisen.
8. Flammhemmende Polyamidzusammensetzungen nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass diese eine Bewertung von V0 nach UL-94 von 3.2 mm bis 0,4 mm Dicke erreichen.
9. Flammhemmende Polyamidzusammensetzungen nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass diese einen Glow Wire
Flammability Index nach IEC-60695-2-12 von mindestens 960 °C bei 0,75 - 3 mm Dicke aufweisen.
10. Flammhemmende Polyamidzusammensetzungen nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass diese eine HDT-A nach
DIN EN ISO 75-3 von mindestens 300 °C aufweisen.
1 1 . Flammhemmende Polyamidzusammensetzungen nach mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass es sich bei Komponente A um ein aromatisches oder teilaromatisches Polyamid oder ein Gemisch aus mehreren aromatischen oder teilaromatischen Polyamiden oder um ein Gemisch aus Polyamid 6.6 und einem oder mehreren aromatischen oder teilaromatischen Polyamiden handelt.
12. Flammhemmende Polyamidzusammensetzungen nach Anspruch 1 1 , dadurch gekennzeichnet, dass es sich bei Komponente A um ein aromatisches oder teilaromatisches Polyamid oder ein Gemisch aus mehreren aromatischen oder teilaromatischen Polyamiden handelt.
13. Flammhemmende Polyamidzusammensetzungen nach mindestens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass als Komponente B
Glasfasern eingesetzt werden.
14. Flammhemmende Polyamidzusammensetzungen nach mindestens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass Komponenten C, D, E und gegebenenfalls F in Teilchenform vorliegen, wobei die mittlere Teilchengröße dso dieser Komponenten 1 bis 100 μιτι beträgt.
15. Flammhemmende Polyamidzusammensetzungen nach mindestens einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass diese weitere Additive als
Komponente G enthält, wobei die weiteren Additive ausgewählt sind aus der Gruppe bestehend aus Antioxidantien, UV-Stabilisatoren,
Gammastrahlenstabilisatoren, Hydrolysestabilisatoren, Co-Stabilisatoren für Antioxidantien, Antistatika, Emulgatoren, Nukleierungsmitteln, Weichmachern, Verarbeitungs-hilfsmitteln, Schlagzähmodifikatoren, Farbstoffen, Pigmenten und/oder weiteren Flammschutzmitteln, die sich von Komponenten C, D, E und F unterscheiden .
16. Verwendung der Polyamidzusammensetzungen nach einem der Ansprüche 1 bis 15 zur Herstellung von Fasern, Folien und Formkörpern, insbesondere für
Anwendungen im Elektro- und Elektronikbereich.
PCT/EP2018/071447 2017-08-11 2018-08-08 Flammhemmende polyamidzusammensetzungen mit hoher wärmeformbeständigkeit und deren verwendung WO2019030253A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207007094A KR102560804B1 (ko) 2017-08-11 2018-08-08 높은 열변형 온도를 갖는 난연성 폴리아미드 조성물 및 이의 용도
US16/637,818 US20200239665A1 (en) 2017-08-11 2018-08-08 Flame-retardant polyamide compositions having high heat dimensional resistance and use thereof
JP2020506715A JP7252201B2 (ja) 2017-08-11 2018-08-08 高い熱たわみ温度を有する難燃性ポリアミド組成物およびそれの使用
SG11201912914UA SG11201912914UA (en) 2017-08-11 2018-08-08 Flame-retardant polyamide compositions with a high heat deflection temperature, and use thereof
BR112020000547-9A BR112020000547B1 (pt) 2017-08-11 2018-08-08 Composições de poliamida retardadoras de chama com uma alta temperatura de deflexão térmica e seu uso
EP18752742.9A EP3665221A1 (de) 2017-08-11 2018-08-08 Flammhemmende polyamidzusammensetzungen mit hoher wärmeformbeständigkeit und deren verwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017214051.8 2017-08-11
DE102017214051.8A DE102017214051B4 (de) 2017-08-11 2017-08-11 Flammhemmende Polyamidzusammensetzungen mit hoher Wärmeformbeständigkeit und deren Verwendung

Publications (1)

Publication Number Publication Date
WO2019030253A1 true WO2019030253A1 (de) 2019-02-14

Family

ID=63165365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/071447 WO2019030253A1 (de) 2017-08-11 2018-08-08 Flammhemmende polyamidzusammensetzungen mit hoher wärmeformbeständigkeit und deren verwendung

Country Status (9)

Country Link
US (1) US20200239665A1 (de)
EP (1) EP3665221A1 (de)
JP (1) JP7252201B2 (de)
KR (1) KR102560804B1 (de)
CN (1) CN109385081B (de)
DE (1) DE102017214051B4 (de)
SG (1) SG11201912914UA (de)
TW (1) TWI752248B (de)
WO (1) WO2019030253A1 (de)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2252258A1 (de) 1972-10-25 1974-05-09 Hoechst Ag Schwerentflammbare thermoplastische polyester
DE2447727A1 (de) 1974-10-07 1976-04-08 Hoechst Ag Schwerentflammbare polyamidformmassen
DE19607635A1 (de) 1996-02-29 1997-09-04 Hoechst Ag Schwerentflammbare Polyamidformmassen
DE19734437A1 (de) 1997-08-08 1999-02-11 Clariant Gmbh Synergistische Flammschutzmittel-Kombination für Polymere
DE19737727A1 (de) 1997-08-29 1999-07-08 Clariant Gmbh Synergistische Flammschutzmittel-Kombination für Kunststoffe
WO2002028953A1 (en) 2000-10-05 2002-04-11 Ciba Specialty Chemicals Holding Inc. Halogen-free flame retarder composition and flame retardant polyamide composition
EP1544206A1 (de) * 2003-12-19 2005-06-22 Clariant GmbH Dialkylphosphinsäure-Salze
WO2012045414A1 (de) 2010-10-09 2012-04-12 Clariant International Ltd Flammschutzmittel- stabilisator-kombination für thermoplastische polymere
DE102011120218A1 (de) 2011-12-05 2013-06-06 Clariant International Ltd. Alkali-Aliminium-Mischphosphite, Verfahren zur ihrer Herstellung sowie deren Verwendung
WO2014135256A1 (de) 2013-03-08 2014-09-12 Clariant International Ltd Flammhemmende polyamidzusammensetzung
DE102014001222A1 (de) * 2014-01-29 2015-07-30 Clariant lnternational Ltd Halogenfreie feste Flammschutzmittelmischung und ihre Verwendung
WO2016065971A1 (zh) 2014-10-29 2016-05-06 广州金凯新材料有限公司 一种用于聚合物的添加剂组合物和其制备方法及由其组成的阻燃热塑性聚合物模塑材料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2311675C (en) * 1997-11-28 2009-03-17 Clariant Gmbh Method for producing salts of dialkylphosphinic acids
DE10316873A1 (de) * 2003-04-11 2004-11-11 Ems-Chemie Ag Flammgeschützte Polyamidformmassen
JP5560185B2 (ja) 2008-03-03 2014-07-23 旭化成ケミカルズ株式会社 難燃性樹脂組成物
TWI563034B (en) * 2011-05-13 2016-12-21 Dsm Ip Assets Bv Flame retardant semi-aromatic polyamide composition and moulded products made therefrom
EP3127911B1 (de) * 2014-04-01 2019-06-05 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Verfahren zur herstellung von dialkylphosphinat
JP6788967B2 (ja) * 2015-12-25 2020-11-25 太平化学産業株式会社 難燃性樹脂組成物
DE102017212098A1 (de) * 2017-07-14 2019-01-17 Clariant Plastics & Coatings Ltd Flammhemmende Polyamidzusammensetzungen mit hoher Wärmeformbeständigkeit und deren Verwendung

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2252258A1 (de) 1972-10-25 1974-05-09 Hoechst Ag Schwerentflammbare thermoplastische polyester
DE2447727A1 (de) 1974-10-07 1976-04-08 Hoechst Ag Schwerentflammbare polyamidformmassen
DE19607635A1 (de) 1996-02-29 1997-09-04 Hoechst Ag Schwerentflammbare Polyamidformmassen
DE19734437A1 (de) 1997-08-08 1999-02-11 Clariant Gmbh Synergistische Flammschutzmittel-Kombination für Polymere
DE19737727A1 (de) 1997-08-29 1999-07-08 Clariant Gmbh Synergistische Flammschutzmittel-Kombination für Kunststoffe
WO2002028953A1 (en) 2000-10-05 2002-04-11 Ciba Specialty Chemicals Holding Inc. Halogen-free flame retarder composition and flame retardant polyamide composition
EP1544206A1 (de) * 2003-12-19 2005-06-22 Clariant GmbH Dialkylphosphinsäure-Salze
US7420007B2 (en) 2003-12-19 2008-09-02 Clariant Produkte (Deutschland) Gmbh Dialkylphosphinic salts
WO2012045414A1 (de) 2010-10-09 2012-04-12 Clariant International Ltd Flammschutzmittel- stabilisator-kombination für thermoplastische polymere
DE102011120218A1 (de) 2011-12-05 2013-06-06 Clariant International Ltd. Alkali-Aliminium-Mischphosphite, Verfahren zur ihrer Herstellung sowie deren Verwendung
WO2014135256A1 (de) 2013-03-08 2014-09-12 Clariant International Ltd Flammhemmende polyamidzusammensetzung
DE102014001222A1 (de) * 2014-01-29 2015-07-30 Clariant lnternational Ltd Halogenfreie feste Flammschutzmittelmischung und ihre Verwendung
WO2016065971A1 (zh) 2014-10-29 2016-05-06 广州金凯新材料有限公司 一种用于聚合物的添加剂组合物和其制备方法及由其组成的阻燃热塑性聚合物模塑材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANLEHNUNG AN HANS DOMININGHAUS: "Die Kunststoffe und ihre Eigenschaften", 1998
See also references of EP3665221A1

Also Published As

Publication number Publication date
DE102017214051B4 (de) 2020-07-23
CN109385081A (zh) 2019-02-26
TW201920471A (zh) 2019-06-01
JP2020529506A (ja) 2020-10-08
KR102560804B1 (ko) 2023-07-31
JP7252201B2 (ja) 2023-04-04
US20200239665A1 (en) 2020-07-30
EP3665221A1 (de) 2020-06-17
SG11201912914UA (en) 2020-01-30
CN109385081B (zh) 2021-09-03
DE102017214051A1 (de) 2019-02-14
TWI752248B (zh) 2022-01-11
BR112020000547A8 (pt) 2022-12-27
KR20200036019A (ko) 2020-04-06
BR112020000547A2 (pt) 2020-11-24

Similar Documents

Publication Publication Date Title
WO2004090036A1 (de) Flammgeschützte polyamidformmassen
WO2019030252A1 (de) Flammhemmende polyamidzusammensetzungen mit hoher glühdrahtentzündungstemperatur und deren verwendung
WO2019030251A1 (de) Flammhemmende polyamidzusammensetzungen und deren verwendung
WO2019011788A1 (de) Flammhemmende schwarze polyamidzusammensetzungen und deren verwendung
EP3679095A1 (de) Synergistische flammschutzmittelkombinationen für polymerzusammensetzungen und deren verwendung
WO2019011789A1 (de) Flammhemmende graue polyamidzusammensetzungen und deren verwendung
EP3679091A1 (de) Flammhemmende polyesterzusammensetzungen und deren verwendung
DE102017215773A1 (de) Flammhemmende Polyesterzusammensetzungen und deren Verwendung
EP3546511A1 (de) Polyamidzusammensetzungen
EP3652242B1 (de) Flammhemmende polyamidzusammensetzungen mit hoher wärmeformbeständigkeit und deren verwendung
EP3679094A1 (de) Flammschutzmittelkombinationen für polymerzusammensetzungen und deren verwendung
WO2019030250A1 (de) Flammhemmende polyamidzusammensetzungen und deren verwendung
EP3679092A1 (de) Flammhemmende polyamidzusammensetzungen mit hoher wärmeformbeständigkeit und deren verwendung
EP3679093A1 (de) Flammschutzmittelkombinationen für polymerzusammensetzungen und deren verwendung
DE102017214051B4 (de) Flammhemmende Polyamidzusammensetzungen mit hoher Wärmeformbeständigkeit und deren Verwendung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18752742

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020000547

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020506715

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207007094

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018752742

Country of ref document: EP

Effective date: 20200311

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112020000547

Country of ref document: BR

Free format text: APRESENTAR, EM ATE 60 (SESSENTA) DIAS, DOCUMENTOS COMPROBATORIOS QUE EXPLIQUEM E REGULARIZEM A DIVERGENCIA NO NOME DO INVENTOR CONSTANTE NA PUBLICACAO INTERNACIONAL WO/2019/030253 DE 14/02/2019 COMO SEBASTIAN HOEROLD E O CONSTANTE NO FORMULARIO DA PETICAO INICIAL COMO SEBASTIAN HOEROLD UMA VEZ QUE NAO HOUVE ENVIO DE DOCUMENTO COMPROVANDO QUE OS NOME CORRETO DO INVENTOR E O DECLARADO NA ENTRADA DA FASE NACIONAL.

ENP Entry into the national phase

Ref document number: 112020000547

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200109