WO2019029559A1 - 轮边/轮毂驱动多轴车辆的转向方法 - Google Patents
轮边/轮毂驱动多轴车辆的转向方法 Download PDFInfo
- Publication number
- WO2019029559A1 WO2019029559A1 PCT/CN2018/099360 CN2018099360W WO2019029559A1 WO 2019029559 A1 WO2019029559 A1 WO 2019029559A1 CN 2018099360 W CN2018099360 W CN 2018099360W WO 2019029559 A1 WO2019029559 A1 WO 2019029559A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steering
- wheel
- vehicle
- mode
- hub
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D11/00—Steering non-deflectable wheels; Steering endless tracks or the like
- B62D11/02—Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/06—Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
Definitions
- the invention relates to the technical field of automobiles, and in particular to a steering method for a wheel/hub driven multi-axis vehicle.
- the front and rear steering axles can be connected in a purely mechanical and hydraulic manner.
- the purely mechanical way connects the front and rear steering bridges together by means of a four-bar linkage or the like, transmitting the motion to the rear steering axle, so that the vehicle has only one steering mode.
- the method of hydraulically connecting the front and rear axles generally has two modes: front axle steering and front and rear axle reverse steering modes.
- the switching timing of the two modes requires special training, which fails to fully reflect the advantages of multi-mode steering.
- the traditional electronic differential torque steering is realized by the planetary gear distribution torque or the gearbox on both sides of the vehicle, and the mechanical structure is complicated, and the tracked vehicle is rarely used.
- electronic differential torque technology can be applied to distributed drive vehicles, becoming the auxiliary steering mode of vehicles, and even replacing the traditional steering mode.
- the present invention aims to solve at least one of the technical problems in the related art described above to some extent.
- a first object of the present invention is to provide a steering method for a wheel/hub driven multi-axle vehicle.
- the wheel/hub driving multi-axle vehicle steering method is in the normal running of the vehicle, and the line-controlled hydraulic steering is assisted by the mode-assisted steering supplemented by the main electronic differential moment steering, which can ensure reliability and driving stability; and at low speed of the vehicle,
- the mode assisted steering of electronic differential torque steering can also improve the steering performance of multi-axle vehicles at low speeds and enhance the maneuverability of the vehicle.
- a second object of the present invention is to provide an apparatus.
- a third object of the present invention is to provide a nonvolatile computer storage medium.
- an embodiment of the first aspect of the present invention provides a steering method for a wheel/hub driven multi-axle vehicle, comprising: detecting a running state of the vehicle; and if the vehicle is running normally, the steering hydraulic steering is mainly the main electronic Mode-assisted steering supplemented by differential torque steering; if the vehicle is traveling at low speed, the steering is assisted by the mode of the electronic differential steering.
- the line-controlled hydraulic steering is assisted by the mode-assisted steering supplemented by the main electronic differential moment steering, which can ensure reliability and driving stability;
- Low-speed driving, assisted steering with electronic differential torque steering can also improve the steering performance of multi-axle vehicles at low speeds and enhance vehicle mobility.
- the steering method of the wheel/hub driven multi-axle vehicle may further have the following additional technical features:
- the mode-assisted steering in which the line-controlled hydraulic steering is supplemented by the main electronic differential moment steering specifically includes: receiving a steering wheel angle signal; and calculating a required wheel angle of each bridge according to the steering wheel angle; according to the bridges The wheel angle is required to obtain the target rotation angle of each wheel; the steering pump motor is controlled to drive the steering pump, and the steering rod system is hydraulically driven to realize the vehicle steering with the target rotation angle.
- the method further includes: receiving an actual corner signal of the wheel; determining whether the actual corner of the wheel is the target corner; if not, using the steering wheel torque signal for improvement.
- the improvement is performed by using a steering wheel torque signal
- the specific step includes: if the steering wheel angle signal is positive, and the steering wheel torque signal is positive, controlling the steering pump motor to increase the steering pump fuel supply amount, The steering angle is increased; if the steering wheel angle signal is positive and the steering wheel torque signal is negative, the steering pump motor is controlled to reduce the steering pump fuel supply amount and pump oil to the other side to assist the wheel to return positive.
- the improvement is performed by using a steering wheel torque signal, and the specific steps include: if the steering wheel angle signal is positive, and the steering wheel angle differential signal is positive, controlling the steering pump motor to increase the steering pump fuel supply amount to achieve steering The angle is increased; if the steering wheel angle signal is positive and the steering wheel angle differential signal is negative, the steering pump motor is controlled to reduce the steering pump fuel supply and pump oil to the other side to assist the wheel to return.
- the method further includes: if the requirement of the running state of the vehicle is that the yaw rate response is greater than the predetermined time or the turning radius is less than the predetermined distance, the mode of the line-controlled hydraulic steering and the electronic differential steering assists the steering.
- the method further includes: detecting whether the line-controlled hydraulic steering is invalid; if it fails, assisting the steering in the mode of the electronic differential steering.
- the steering is assisted by the mode of the electronic differential torque steering, specifically: if the failure occurs, the failure control mode is entered, and the torque distribution algorithm for maintaining the steering capability is obtained according to the failure stability algorithm, and the electronic differential torque is turned The mode assists in steering work.
- the steering is assisted by the mode of the electronic differential torque steering, specifically: if the vehicle runs at a low speed, different driving torques can be given to the wheel/hub motor of the same transaxle, using the drive to rotate The moment difference assists steering in the mode of electronic differential torque steering.
- the method further includes: if the vehicle running state is the in-situ steering, selecting the steering bridge according to the driver's input, calculating the respective wheel torques of the steering bridge, and assisting the steering in the mode of the electronic differential torque steering.
- an embodiment of the second aspect of the present invention further provides an apparatus comprising: one or more processors; a memory; one or more programs, the one or more programs being stored in the memory
- the steering method of the wheel/hub driven multi-axle vehicle of the above-described embodiment of the present invention when executed by the one or more processors.
- an embodiment of a third aspect of the present invention further provides a nonvolatile computer storage medium storing one or more programs when the one or more programs are used by a device When executed, the apparatus is caused to perform the steering method of the wheel/hub driven multi-axle vehicle of the above-described embodiment of the present invention.
- FIG. 1 is a flow chart of a method of turning a wheel/hub driven multi-axle vehicle in accordance with one embodiment of the present invention
- FIG. 2 is a flow chart of a method of turning a wheel/hub driven multi-axle vehicle according to another embodiment of the present invention
- FIG. 3 is a schematic diagram of a low speed electronic differential torque steering principle
- Figure 5 is a schematic diagram of the principle of combined hydraulic steering and electronic differential torque steering
- Fig. 6 is a schematic diagram showing the principle of in-situ steering using an electronic difference moment.
- FIG. 1 is a flow chart of a method of turning a wheel/hub driven multi-axis vehicle in accordance with one embodiment of the present invention.
- FIG. 1 a wheel/hub driving method of steering a multi-axle vehicle according to an embodiment of the present invention.
- the first understanding is the steering system of the multi-axle vehicle, wherein the steering system includes: a steering actuator, a line-controlled hydraulic steering system, and an electronic control system.
- the steering actuator includes a steering mechanism, a steering arm, a steering rod, a steering bearing, and the like, and a mechanical structure that constitutes an ordinary steering, and an electronic differential torque steering actuator such as each wheel drive motor and its drive motor controller.
- the line-controlled hydraulic steering system includes a steering pump motor, a steering pump motor controller, a steering pump, a steering wheel angle sensor, a wheel angle sensor, a steering wheel torque sensor, and the like.
- the electronic control system includes a vehicle controller, a steering controller, a vehicle speed sensor, an acceleration sensor, a yaw rate sensor, and the like.
- the method includes:
- the mode-controlled hydraulic steering is assisted by the mode-assisted steering supplemented by the main electronic differential torque steering.
- step S120 specifically includes:
- the driver inputs the steering angle sensor to the steering wheel angle sensor by turning the steering wheel, and the steering wheel angle sensor inputs a signal to the steering controller, and the steering controller receives the steering wheel angle signal.
- S122 Calculate the required wheel angle of each bridge according to the steering wheel angle.
- the steering controller calculates the wheel angle required for each bridge based on the steering wheel angle.
- the target rotation angle of each wheel can be obtained by using the required wheel angles of the bridges according to the Ackerman steering relationship or the steering relationship at the Ackerman correction rate of the applied vehicle model.
- S124 Control the steering pump motor to drive the steering pump, and use hydraulic pressure to push the steering rod system to achieve vehicle steering with the target corner.
- the steering pump motor controller controls the steering pump motor to drive the steering pump according to the control signal given by the steering controller, and uses the hydraulic pressure to push the steering rod system to realize the target angle of the vehicle. Steering at an angle.
- the method further includes:
- S126 Determine whether the actual corner of the wheel is the target corner.
- Steps S125-S127 the wheel angle sensor can feed back the wheel angle sensor signal to the steering controller to form a closed loop control, which is beneficial to improving the operation effect of the line-controlled hydraulic steering mode.
- the wheel angle sensor is used to detect how many angles the wheel actually turns.
- the steering wheel torque signal is used for improvement.
- the specific steps include: if the steering wheel angle signal is positive and the steering wheel torque signal is positive, then controlling the steering pump motor to increase the steering pump fuel supply amount to achieve an increase in the steering angle; When the steering wheel angle signal is positive and the steering wheel torque signal is negative, the steering pump motor is controlled to reduce the steering pump fuel supply and pump oil to the other side to assist the wheel to return positive.
- the method of improving the steering wheel torque signal mainly uses the steering wheel torque sensor to coordinate with the rotation angle sensor, and the judgment logic is as follows: the steering wheel angle signal detected by the rotation angle sensor is positive, and if the steering wheel torque sensor detects the steering wheel If the torque signal is also positive, it means that the driver still needs to continue to increase the steering angle.
- the steering pump motor can be controlled to increase the steering pump fuel supply, which is convenient for the steering angle to increase. If the steering wheel angle signal is positive, the steering wheel torque signal is Negative means that the driver should reduce the steering angle. At this time, the steering pump motor should be controlled to reduce the steering pump oil supply and pump the oil to the other side to help the wheel to return to the positive direction and ensure a faster response time of the steering system.
- the steering wheel torque signal is used for improvement, and the specific steps include:
- the steering pump motor is controlled to increase the steering pump fuel supply amount to achieve an increase in the steering angle
- the steering pump motor is controlled to reduce the steering pump fuel supply and pump oil to the other side to assist the wheel to return.
- electronic differential torque steering can also be used to improve performance at low speeds, such as the use of electronic differential torque steering to assist parking, to achieve in-situ steering and other functions.
- the electronic differential torque steering function at low speed is different from the auxiliary electronic differential torque steering at high speed, which is achieved by driving wheel torque distribution to help the steering wheel rotate.
- the steering rod is subjected to the steering driving force, and the steering driving force has a force arm at the intersection of the main pin axis and the ground, so that the wheel has a rotating tendency, resulting in the tire Sideways, the ground gives the tire lateral force.
- the lateral force of the tire acts on the rear side of the center of the tire grounding mark (forming the tire tow), and due to the presence of the caster angle, the intersection of the kingpin axis and the ground is before the center of the tire grounding mark (forming a mechanical tow).
- the lateral force of the tire forms a moment that helps the tire to return positively with respect to the intersection of the kingpin axis and the ground, opposite to the direction of the moment formed by the steering drive force.
- the torque of the tire lateral force tends to be large, the corresponding steering driving force needs to be large, and the steering is relatively difficult.
- the driving force is generated by the wheel/hub driving motor. Since the driving force acts on the center of the wheel grounding mark, a torque equal to the direction of the torque of the steering driving force is formed with respect to the intersection of the kingpin axis and the ground, which can help the wheel to turn. .
- the method further includes assisting steering in a mode in which the steered hydraulic steering and the electronic differential steered together if the vehicular angular response is greater than a predetermined time or the turning radius is less than a predetermined distance.
- the vehicle controller when the driver's steering wheel angular velocity is greater than the steering wheel rotational speed threshold, the vehicle controller according to the current vehicle traveling speed, longitudinal and lateral acceleration, yaw angular velocity, and various axle loads, etc.
- the input of its control distribution algorithm distributes the torque to each wheel of each bridge, controls each drive motor to output different torques, and achieves a faster yaw rate response through the combination of electronic differential torque steering and line-controlled hydraulic steering; likewise, when the driver's steering wheel angle is greater than the steering wheel angle threshold, the vehicle controller assigns torque to each according to the current vehicle travel speed, longitudinal, lateral acceleration, yaw rate and each axle load.
- Each wheel of the bridge controls the output torque of each driving motor, and realizes a small turning radius through the combination of electronic differential torque steering and line-controlled hydraulic steering.
- the method further comprises: detecting whether the steered hydraulic steering is inactive; and if it fails, assisting steering in a mode of electronic differential steering.
- the steering function is simply realized by the electronic differential-assisted steering, which improves the reliability of the multi-axle steering system.
- the failure of the line-controlled hydraulic steering system includes, but is not limited to, hydraulic cylinder oil leakage, steering pump motor failure, steering pump motor controller failure, and the like. In order to ensure that the steering system failure can be detected, there will be corresponding sensors and fault diagnosis circuits in the steering system.
- the mode assisted steering with the electronic differential torque steering specifically includes: if it fails, enters the failure control mode, and obtains a torque distribution algorithm that maintains the steering capability according to the failure stability algorithm, and assists the mode of the electronic differential torque steering. Turn to work.
- the vehicle controller has a failure stabilization algorithm.
- the vehicle controller enters the failure control mode after receiving the steering failure signal, according to the current vehicle traveling speed, longitudinal, lateral acceleration, yaw angular velocity,
- the failure stability algorithm the torque distribution algorithm for maintaining the steering ability is obtained according to the failure stability algorithm, and the vehicle is fully steered according to the driver's driving intention to ensure the vehicle's ability. Steering stability.
- the method further includes: if the vehicle running state is in-situ steering, selecting a steering bridge according to the driver's input, calculating respective wheel torques of the steering bridge, and assisting steering in a mode of electronic differential torque steering.
- the first, second, fourth and fifth bridges can be selected as the steering axle.
- the first and second bridges are forwardly turned, and the fourth and fifth bridges are reversely turned.
- the motor output is driven on the left and right sides of each bridge.
- the torques are in the same direction and opposite directions.
- the longitudinal force and the lateral resultant force of the longitudinal force formed by all the driving torques are zero, and the yaw moment is not zero.
- the vehicle controller is required to judge which bridges are required as the steering bridge according to the input of the driver, the total yaw moment required, and the distribution of the driving torque is realized accordingly.
- the electronic differential steering assist method can be applied to multi-axis vehicles, but is not limited to 5-axis vehicles.
- the line-controlled hydraulic steering is assisted by the mode-assisted steering supplemented by the main electronic differential moment steering, which can ensure reliability and driving stability;
- Low-speed driving, assisted steering with electronic differential torque steering can also improve the steering performance of multi-axle vehicles at low speeds and enhance vehicle mobility.
- first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
- features defining “first” and “second” may include at least one of the features, either explicitly or implicitly.
- the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
- the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
- the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
一种轮边/轮毂驱动多轴车辆的转向方法,包括:检测车辆行驶状态(S110);如果车辆正常行驶,则以线控液压转向为主电子差矩转向为辅的模式辅助转向(S120);如果车辆低速行驶,则以所述电子差矩转向的模式辅助转向(S130)。在车辆正常行驶时,线控液压转向为主电子差矩转向为辅的模式辅助转向,可以保证可靠性和行驶稳定性;并且在车辆低速行驶,以电子差矩转向的模式辅助转向,还可以改善多轴车辆在低速时的转向性能,增强车辆的机动性。
Description
相关申请的交叉引用
本申请要求清华大学于2017年08月08日提交的、发明名称为“轮边/轮毂驱动多轴车辆的转向方法”的、中国专利申请号为“201710669446.7”的优先权。
本发明涉及汽车技术领域,特别涉及一种轮边/轮毂驱动多轴车辆的转向方法。
传统的转向系统包括机械式、液压助力或电动助力转向等类型,随着汽车电控技术的发展,线控转向技术、多模式转向技术已经产生。但目前的线控转向技术多为单一转向模式,多模式转向技术也常采用传统的转向方式而不采用线控转向,且这些技术多针对四轮车辆,应用于多轴车辆的还不多。
对于多桥转向的多轴车辆,前后转向车桥可采用纯机械方式、液压方式连接。纯机械的方式通过如四连杆机构等的连接方式将前后转向桥连接到一起,将运动传递到后转向桥,这样车辆仅具有一种转向模式。采用液压连接前后桥的方式,一般有前桥转向和前后桥反向转向模式两种,两种模式的切换时机需要专门训练,未能充分体现多模式转向的优点。
另一方面,传统的电子差矩转向,通过行星齿轮分配转矩或车辆两侧分别配备变速箱等方式实现,机械结构复杂,除去履带车辆一般很少应用。随着分布式驱动技术的发展,电子差矩技术可以应用于分布式驱动的车辆,成为车辆的辅助转向方式,甚至代替传统的转向方式。
发明内容
本发明旨在至少在一定程度上解决上述相关技术中的技术问题之一。
为此,本发明的第一个目的在于提出一种轮边/轮毂驱动多轴车辆的转向方法。该轮边/轮毂驱动多轴车辆的转向方法在车辆正常行驶,线控液压转向为主电子差矩转向为辅的模式辅助转向,可以保证可靠性和行驶稳定性;并且在车辆低速行驶,以电子差矩转向的模式辅助转向,还可以改善多轴车辆在低速时的转向性能,增强车辆的机动性。
本发明的第二个目的在于提供一种设备。
本发明的第三个目的在于提供一种非易失性计算机存储介质。
为了实现上述目的,本发明第一方面的实施例提出了一种轮边/轮毂驱动多轴车辆的转向方法,包括:检测车辆行驶状态;如果车辆正常行驶,则以线控液压转向为主电子差矩转向为辅的模式辅助转向;如果车辆低速行驶,则以所述电子差矩转向的模式辅助转向。
根据本发明的轮边/轮毂驱动多轴车辆的转向方法,在车辆正常行驶,线控液压转向为主电子差矩转向为辅的模式辅助转向,可以保证可靠性和行驶稳定性;并且在车辆低速行驶,以电子差矩转向的模式辅助转向,还可以改善多轴车辆在低速时的转向性能,增强车辆的机动性。
另外,根据本发明上述实施例的轮边/轮毂驱动多轴车辆的转向方法还可以具有如下附加的技术特征:
进一步地,所述以线控液压转向为主电子差矩转向为辅的模式辅助转向,具体包括:接收方向盘转角信号;根据所述方向盘转角计算各桥所需车轮转角;根据所述各桥所需车轮转角,得到各个车轮的目标转角;控制转向泵电机带动转向泵,利用液压推动转向杆系,以所述目标转角实现车辆转向。
进一步地,还包括:接收车轮实际转角信号;判断所述车轮实际转角是否为所述目标转角;如果不是,则利用方向盘力矩信号进行改善。
进一步地,所述利用方向盘力矩信号进行改善,具体步骤包括:如果所述方向盘转角信号为正,且所述方向盘力矩信号为正,则控制所述转向泵电机增大转向泵供油量,以实现转向角增大;如果所述方向盘转角信号为正,且方向盘力矩信号为负,则控制所述转向泵电机减小转向泵供油量并向另一侧泵油,以辅助车轮回正。
进一步地,所述利用方向盘力矩信号进行改善,具体步骤包括:如果所述方向盘转角信号为正时,且方向盘转角微分信号为正,则控制转向泵电机增大转向泵供油量,以实现转向角增大;如果所述方向盘转角信号为正,且方向盘转角微分信号为负,则控制转向泵电机减小转向泵供油量并向另一侧泵油,以辅助车轮回正。
进一步地,还包括:如果车辆行驶状态的要求为横摆角速度响应大于预定时间或转弯半径小于预定距离时,则以线控液压转向与电子差矩转向的模式共同辅助转向。
进一步地,还包括:检测线控液压转向是否失效;如果失效,则以所述电子差矩转向的模式辅助转向。
进一步地,如果失效,则以所述电子差矩转向的模式辅助转向,具体包括:如果失效,则进入失效控制模式,根据失效稳定算法得到保持转向能力的转矩分配算法,以电子差矩转向的模式辅助转向工作。
进一步地,如果车辆低速行驶,则以电子差矩转向的模式辅助转向,具体包括:如果车辆低速行驶,则可以对同一驱动桥的轮边/轮毂电机给出不同的驱动转矩,利用驱动转 矩差以电子差矩转向的模式辅助转向。
进一步地,还包括:如果车辆行驶状态为原地转向,则根据驾驶员的输入选择转向桥,计算所述转向桥的各个轮转矩,以电子差矩转向的模式辅助转向。
为了实现上述目的,本发明第二方面的实施例还提供了一种设备,包括:一个或者多个处理器;存储器;一个或者多个程序,所述一个或者多个程序存储在所述存储器中,当被所述一个或者多个处理器执行时,执行本发明上述实施例的轮边/轮毂驱动多轴车辆的转向方法。
为了实现上述目的,本发明第三方面的实施例的还提供一种非易失性计算机存储介质,所述计算机存储介质存储有一个或者多个程序,当所述一个或者多个程序被一个设备执行时,使得所述设备执行本发明上述实施例的轮边/轮毂驱动多轴车辆的转向方法。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的轮边/轮毂驱动多轴车辆的转向方法的流程图;
图2是根据本发明另一个实施例的轮边/轮毂驱动多轴车辆的转向方法的流程图;
图3是低速电子差矩转向原理示意图;
图4是负主销偏距时低速电子差矩转向原理示意图;
图5是液压线控与电子差矩结合转向原理示意图;
图6是利用电子差矩实现原地转向原理示意图。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
以下结合附图描述根据本发明实施例的轮边/轮毂驱动多轴车辆的转向方法。
图1是根据本发明一个实施例的轮边/轮毂驱动多轴车辆的转向方法的流程图。
如图1所示,根据本发明一个实施例的轮边/轮毂驱动多轴车辆的转向方法。
在介绍本方法之前,首先了解的是多轴车辆的转向系统,其中,转向系统包括:转向执行机构、线控液压转向系统、电子控制系统。
转向执行机构包括转向器、转向臂、转向拉杆、转向支座等组成普通转向的机械结构,以及各轮驱动电机及其驱动电机控制器这样的电子差矩转向执行器。线控液压转向系统包括转向泵电机、转向泵电机控制器、转向泵、方向盘转角传感器、车轮转角传感器、方向盘力矩传感器等。电子控制系统包括整车控制器、转向控制器、车速传感器、加速度传感器、横摆角速度传感器等。
本方法包括:
S110:检测车辆行驶状态。
S120:如果车辆正常行驶,则以线控液压转向为主电子差矩转向为辅的模式辅助转向。
具体来说,如果检测到的车辆的行驶状态为正常行驶,那么就以线控液压转向为主电子差矩转向为辅的模式辅助转向。
结合图2所示,步骤S120具体包括:
S121:接收方向盘转角信号。
作为一个示例,驾驶员通过转动方向盘,即将要转向转角输入给方向盘转角传感器,方向盘转角传感器将信号输入到转向控制器,转向控制器接收方向盘转角信号。
S122:根据方向盘转角计算各桥所需车轮转角。
作为一个示例,转向控制器根据方向盘转角计算各桥需求的车轮转角。
S123:根据各桥所需车轮转角,得到各个车轮的目标转角。
在一些实施例中,可以根据阿克曼转向关系或所应用车型的阿克曼校正率下的转向关系,利用各桥所需车轮转角得到各个车轮的目标转角
S124:控制转向泵电机带动转向泵,利用液压推动转向杆系,以目标转角实现车辆转向。
作为一个示例,当得到各个车轮的目标转角后,由转向泵电机控制器根据转向控制器给出的控制信号,控制转向泵电机带动转向泵,利用液压推动转向杆系,实现车辆以目标转角的角度进行转向。
进一步地,结合图2所示,具体还包括:
S125:接收车轮实际转角信号。
S126:判断车轮实际转角是否为目标转角。
S127:如果不是,则利用方向盘力矩信号进行改善。
步骤S125-S127具体来说,车轮转角传感器可以反馈车轮转角传感器信号到转向控制器,形成闭环控制,有利于改善线控液压转向模式的操作效果。其中,车轮转角传感器用于检测车轮实际的转了多少角度。
作为一个示例,利用方向盘力矩信号进行改善,具体步骤包括:如果方向盘转角信号 为正,且方向盘力矩信号为正,则控制转向泵电机增大转向泵供油量,以实现转向角增大;如果方向盘转角信号为正,且方向盘力矩信号为负,则控制转向泵电机减小转向泵供油量并向另一侧泵油,以辅助车轮回正。
具体来说,利用方向盘力矩信号进行改善的方法,主要是利用方向盘力矩传感器与转角传感器协调工作,判断逻辑如下:转角传感器检测到的方向盘转角信号为正时,且如果方向盘力矩传感器检测到的方向盘力矩信号也为正,则说明驾驶员仍要继续增大转向角,可以控制转向泵电机增大转向泵供油量,便于实现转向角增大;若方向盘转角信号为正,但方向盘力矩信号为负,则说明驾驶员要减小转向角,此时应控制转向泵电机减小转向泵供油量并向另一侧泵油,帮助车轮回正,保证转向系统有较快的响应时间。
作为另一个示例,利用方向盘力矩信号进行改善,具体步骤包括:
如果方向盘转角信号为正时,且方向盘转角微分信号为正,则控制转向泵电机增大转向泵供油量,以实现转向角增大;
如果方向盘转角信号为正,且方向盘转角微分信号为负,则控制转向泵电机减小转向泵供油量并向另一侧泵油,以辅助车轮回正。
S130:如果车辆低速行驶,则以电子差矩转向的模式辅助转向。
具体来说,如果车辆低速行驶,则可以对同一驱动桥的轮边/轮毂电机给出不同的驱动转矩,利用驱动转矩差电子差矩转向的模式辅助转向。也就是说,电子差矩转向还可被用于改善低速时的性能,如利用电子差矩转向辅助泊车、实现原地转向等功能。低速时的电子差矩转向功能与高速时的辅助电子差矩转向有所不同,是通过驱动轮力矩分配帮助转向轮转动来实现的。
具体实现过程结合图3所示,在低速转向的过程中,转向拉杆上受到转向驱动力的作用,转向驱动力到主销轴线与地面的交点有一个力臂,使车轮产生转动趋势,导致轮胎侧偏,地面给轮胎侧向力。轮胎侧向力的作用点在轮胎接地印迹中心后侧(形成轮胎拖距),而由于主销后倾角的存在,主销轴线与地面的交点在轮胎接地印迹中心之前(形成机械拖距),这样轮胎侧向力相对主销轴线与地面交点形成一个帮助轮胎回正的力矩,与转向驱动力形成的力矩方向相反。在原地转向过程中,轮胎侧向力的力矩往往较大,相应转向驱动力需要较大,转向相对困难。在本发明中,通过轮边/轮毂驱动电机产生驱动力,由于驱动力作用于车轮接地印迹中心,相对主销轴线与地面交点形成一个与转向驱动力的力矩方向相同的力矩,可以帮助车轮转向。
作为一个示例,结合图4所示,如果设计定的主销偏置距为负,即主销轴线与地面的交点在车轮中心线外侧时,则驱动电机输出的力矩方向应与图2所述的相反。
在一些实施例中,还包括:如果车辆行驶状态的要求为横摆角速度响应大于预定时间 或转弯半径小于预定距离时,则以线控液压转向与电子差矩转向的模式共同辅助转向。
结合图5所示,具体来说,当驾驶员的方向盘转角速度大于方向盘转速门限值时,整车控制器根据目前的车辆行驶速度、纵向、横向加速度、横摆角速度及各轴载荷等情况的输入其控制分配算法将转矩分配到各桥各个车轮,控制各驱动电机输出不同转矩,通过电子差矩转向与线控液压转向的结合实现较快的横摆角速度响应;同样的,当驾驶员的方向盘转角大于方向盘转角门限值时,整车控制器根据目前的车辆行驶速度、纵向、横向加速度、横摆角速度及各轴载荷等情况的输入其控制分配算法将转矩分配到各桥各个车轮,控制各驱动电机输出不同转矩,通过电子差矩转向与线控液压转向的结合实现较小的转弯半径。
在一些实施例中,还包括:检测线控液压转向是否失效;如果失效,则以电子差矩转向的模式辅助转向。
具体来说,在正常行驶时,若线控液压转向系统失效,则单纯利用电子差矩辅助转向实现转向功能,这种功能提高了多轴车辆转向系统的可靠性。其中,线控液压转向系统失效包括但不限于液压缸漏油、转向泵电机失效、转向泵电机控制器失效等。为保证转向系统失效可以被检测到,转向系统中还会有相应的传感器及故障诊断电路。
进一步地,如果失效,则以电子差矩转向的模式辅助转向具体包括:如果失效,则进入失效控制模式,根据失效稳定算法得到保持转向能力的转矩分配算法,以电子差矩转向的模式辅助转向工作。
具体来说,整车控制器具有失效稳定算法,在失效突然发生时,整车控制器收到转向失效信号后进入失效控制模式,根据当前的车辆行驶速度、纵向、横向加速度、横摆角速度、车身俯仰角、车身侧倾角及各轴载荷等情况,按照失效稳定算法得到此时保持转向能力的转矩分配算法,完全按照电子差矩转向维持车辆按照驾驶员行驶意图转向的能力,保证车辆的操纵稳定性。
在一些实施例中,还包括:如果车辆行驶状态为原地转向,则根据驾驶员的输入选择转向桥,计算转向桥的各个轮转矩,以电子差矩转向的模式辅助转向。
结合图6所示,具体来说,图6所示的情形中,不希望车辆横向或纵向运动,只希望其产生绕质心的横摆运动,为此需协调控制各车轮转矩,以图4所示的5轴车辆为例,可选择第一、二、四、五桥作为转向桥,第一、二桥正向转向,第四、五桥反向转向,每桥左右两侧驱动电机输出转矩大小相同方向相反,所有驱动转矩形成的纵向力对质心的纵向合力与横向合力均为零,而横摆力矩不为零。为实现这一过程,需要整车控制器根据驾驶员的输入判断需要哪些桥作为转向桥,需要的总横摆力矩大小,并据此实现驱动力矩的分配。值得注意的是,电子差矩转向辅助方法可应用于多轴车辆,但不局限于5轴车辆。
根据本发明的轮边/轮毂驱动多轴车辆的转向方法,在车辆正常行驶,线控液压转向为主电子差矩转向为辅的模式辅助转向,可以保证可靠性和行驶稳定性;并且在车辆低速行驶,以电子差矩转向的模式辅助转向,还可以改善多轴车辆在低速时的转向性能,增强车辆的机动性。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (12)
- 一种轮边/轮毂驱动多轴车辆的转向方法,其特征在于,包括:检测车辆行驶状态;如果车辆正常行驶,则以线控液压转向为主电子差矩转向为辅的模式辅助转向;如果车辆低速行驶,则以所述电子差矩转向的模式辅助转向。
- 根据权利要求1所述的轮边/轮毂驱动多轴车辆的转向方法,其特征在于,所述以线控液压转向为主电子差矩转向为辅的模式辅助转向,具体包括:接收方向盘转角信号;根据所述方向盘转角计算各桥所需车轮转角;根据所述各桥所需车轮转角,得到各个车轮的目标转角;控制转向泵电机带动转向泵,利用液压推动转向杆系,以所述目标转角实现车辆转向。
- 根据权利要求2所述的轮边/轮毂驱动多轴车辆的转向方法,其特征在于,还包括:接收车轮实际转角信号;判断所述车轮实际转角是否为所述目标转角;如果不是,则利用方向盘力矩信号进行改善。
- 根据权利要求3所述的轮边/轮毂驱动多轴车辆的转向方法,其特征在于,所述利用方向盘力矩信号进行改善,具体步骤包括:如果所述方向盘转角信号为正,且所述方向盘力矩信号为正,则控制所述转向泵电机增大转向泵供油量,以实现转向角增大;如果所述方向盘转角信号为正,且方向盘力矩信号为负,则控制所述转向泵电机减小转向泵供油量并向另一侧泵油,以辅助车轮回正。
- 根据权利要求3所述的轮边/轮毂驱动多轴车辆的转向方法,其特征在于,所述利用方向盘力矩信号进行改善,具体步骤包括:如果所述方向盘转角信号为正时,且方向盘转角微分信号为正,则控制转向泵电机增大转向泵供油量,以实现转向角增大;如果所述方向盘转角信号为正,且方向盘转角微分信号为负,则控制转向泵电机减小转向泵供油量并向另一侧泵油,以辅助车轮回正。
- 根据权利要求1所述的轮边/轮毂驱动多轴车辆的转向方法,其特征在于,还包括:如果车辆行驶状态的要求为横摆角速度响应大于预定时间或转弯半径小于预定距离时,则以线控液压转向与电子差矩转向的模式共同辅助转向。
- 根据权利要求1或6所述的轮边/轮毂驱动多轴车辆的转向方法,其特征在于,还 包括:检测线控液压转向是否失效;如果失效,则以所述电子差矩转向的模式辅助转向。
- 根据权利要求7所述的轮边/轮毂驱动多轴车辆的转向方法,其特征在于,如果失效,则以所述电子差矩转向的模式辅助转向,具体包括:如果失效,则进入失效控制模式,根据失效稳定算法得到保持转向能力的转矩分配算法,以电子差矩转向的模式辅助转向工作。
- 根据权利要求1所述的轮边/轮毂驱动多轴车辆的转向方法,其特征在于,如果车辆低速行驶,则以电子差矩转向的模式辅助转向,具体包括:如果车辆低速行驶,则可以对同一驱动桥的轮边/轮毂电机给出不同的驱动转矩,利用驱动转矩差以电子差矩转向的模式辅助转向。
- 根据权利要求1所述的轮边/轮毂驱动多轴车辆的转向方法,其特征在于,还包括:如果车辆行驶状态为原地转向,则根据驾驶员的输入选择转向桥,计算所述转向桥的各个轮转矩,以电子差矩转向的模式辅助转向。
- 一种设备,其特征在于,包括:一个或者多个处理器;存储器;一个或者多个程序,所述一个或者多个程序存储在所述存储器中,当被所述一个或者多个处理器执行时,执行如权利要求1-10任一项所述的轮边/轮毂驱动多轴车辆的转向方法。
- 一种非易失性计算机存储介质,其特征在于,所述计算机存储介质存储有一个或者多个程序,当所述一个或者多个程序被一个设备执行时,使得所述设备执行如权利要求1-10任一项所述的轮边/轮毂驱动多轴车辆的转向方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710669446.7 | 2017-08-08 | ||
CN201710669446.7A CN107600171B (zh) | 2017-08-08 | 2017-08-08 | 轮边/轮毂驱动多轴车辆的转向方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019029559A1 true WO2019029559A1 (zh) | 2019-02-14 |
Family
ID=61064467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/099360 WO2019029559A1 (zh) | 2017-08-08 | 2018-08-08 | 轮边/轮毂驱动多轴车辆的转向方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107600171B (zh) |
WO (1) | WO2019029559A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107600171B (zh) * | 2017-08-08 | 2020-12-01 | 清华大学 | 轮边/轮毂驱动多轴车辆的转向方法 |
CN109159817B (zh) * | 2018-08-28 | 2019-09-27 | 重庆理工大学 | 四驱电动汽车的转向控制器、系统、转向与运行控制方法 |
CN109466622B (zh) * | 2018-11-14 | 2020-06-16 | 北汽福田汽车股份有限公司 | 车辆转向系统、控制方法及车辆 |
CN111232051B (zh) * | 2020-02-25 | 2021-05-14 | 东南大学 | 一种轮式移动机器人转向控制方法 |
CN112498475B (zh) * | 2020-12-11 | 2022-03-25 | 湖北航天技术研究院特种车辆技术中心 | 底盘转向系统、安全保护方法及装置 |
CN113715906B (zh) * | 2021-09-01 | 2022-05-27 | 三一汽车起重机械有限公司 | 一种多轴转向起重机的转向监控方法、系统及起重机 |
CN116215656B (zh) * | 2023-03-10 | 2024-09-20 | 浙江吉利控股集团有限公司 | 车辆及其控制方法、控制装置和存储介质 |
CN118372882B (zh) * | 2024-06-24 | 2024-09-24 | 质子汽车科技有限公司 | 一种双前轴协同控制的车辆多轴转向控制方法和装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3134374A1 (de) * | 1981-08-31 | 1983-03-10 | Franz Xaver Meiller Fahrzeug- und Maschinenfabrik - GmbH & Co KG, 8000 München | Vorrichtung zur verriegelung einer um eine obere schwenkachse schwenkbaren wand eines kippbaren fahrzeug-wagenaufbaus |
CN1118590A (zh) * | 1993-03-01 | 1996-03-13 | 魁北克水电公司 | 助力式转向装置 |
CN105857393A (zh) * | 2016-04-11 | 2016-08-17 | 北京科技大学 | 全轮独立电驱动铰接车的差动辅助线控液压转向方法 |
CN106741138A (zh) * | 2016-12-16 | 2017-05-31 | 吉林大学 | 一种电动轮驱动汽车的多模式转向系统及控制方法 |
CN107600171A (zh) * | 2017-08-08 | 2018-01-19 | 清华大学 | 轮边/轮毂驱动多轴车辆的转向方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102372029A (zh) * | 2011-07-23 | 2012-03-14 | 青岛理工大学 | 多轴汽车电控全轮转向系统 |
KR101382288B1 (ko) * | 2012-09-10 | 2014-04-08 | 현대자동차(주) | 하이브리드 스티어링시스템 및 그 제어방법 |
CN103935354B (zh) * | 2014-04-11 | 2016-05-25 | 武汉理工大学 | 多轴独立电动轮车辆的驱动力协调控制系统及控制方法 |
CN104443025B (zh) * | 2014-11-08 | 2017-04-12 | 福州大学 | 一种面向多轴车辆纯滚动的电液伺服转向系统及控制方法 |
CN104724113B (zh) * | 2015-03-17 | 2017-07-14 | 北京理工大学 | 一种用于多轴分布式机电驱动车辆的操纵稳定性控制系统 |
CN104773201A (zh) * | 2015-03-17 | 2015-07-15 | 北京理工大学 | 一种用于多轴分布式机电驱动车辆的复合转向辅助系统 |
CN105083373B (zh) * | 2015-06-15 | 2017-11-28 | 南京航空航天大学 | 一种基于参数估计的线控转向路感装置及其控制方法 |
-
2017
- 2017-08-08 CN CN201710669446.7A patent/CN107600171B/zh active Active
-
2018
- 2018-08-08 WO PCT/CN2018/099360 patent/WO2019029559A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3134374A1 (de) * | 1981-08-31 | 1983-03-10 | Franz Xaver Meiller Fahrzeug- und Maschinenfabrik - GmbH & Co KG, 8000 München | Vorrichtung zur verriegelung einer um eine obere schwenkachse schwenkbaren wand eines kippbaren fahrzeug-wagenaufbaus |
CN1118590A (zh) * | 1993-03-01 | 1996-03-13 | 魁北克水电公司 | 助力式转向装置 |
CN105857393A (zh) * | 2016-04-11 | 2016-08-17 | 北京科技大学 | 全轮独立电驱动铰接车的差动辅助线控液压转向方法 |
CN106741138A (zh) * | 2016-12-16 | 2017-05-31 | 吉林大学 | 一种电动轮驱动汽车的多模式转向系统及控制方法 |
CN107600171A (zh) * | 2017-08-08 | 2018-01-19 | 清华大学 | 轮边/轮毂驱动多轴车辆的转向方法 |
Non-Patent Citations (1)
Title |
---|
HE, GANG ET AL.: "Research on Characteristics of Steering System of Heavy Duty Multi-axle Wheel Drive Vehicle", AUTOMOTIVE RESEARCH, vol. 2016, no. 05, 15 October 2016 (2016-10-15), pages 5 - 8, ISSN: 1007-211X * |
Also Published As
Publication number | Publication date |
---|---|
CN107600171B (zh) | 2020-12-01 |
CN107600171A (zh) | 2018-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019029559A1 (zh) | 轮边/轮毂驱动多轴车辆的转向方法 | |
JP6476235B2 (ja) | 三輪自動車のための操舵および制御システム | |
CN107685767B (zh) | 多轴轮毂电机驱动车辆后轮线控转向驱动装置及转向方法 | |
CN100534847C (zh) | 动力转向装置 | |
CN106080753B (zh) | 一种融合主动转向、助力转向和直接横摆力矩控制功能的电动轮转向控制系统及其控制方法 | |
US20200290588A1 (en) | Method for controlling a steering system of a vehicle | |
KR101734277B1 (ko) | 인휠 시스템을 이용한 차량 제어 방법 | |
CN103978972A (zh) | 四轮转向车辆及用于它的扭矩分配控制方法 | |
CN109263717B (zh) | 一种多模式线控转向汽车及其转向控制方法 | |
US20110224872A1 (en) | System And Method To Control Vehicle Steering | |
CN112026777B (zh) | 一种车辆复合转向系统及其模式切换控制方法 | |
CN101704382A (zh) | 驱动转向轮的车辆用电动转向装置的控制装置 | |
CN104097688B (zh) | 一种后轮主动转向装置及其控制系统 | |
JP2023540180A (ja) | 車両装置の操舵を制御する方法 | |
CN110901753A (zh) | 一种带中位自锁功能的后轮线控转向器及其控制方法 | |
JP2007015473A (ja) | 車両用操舵装置 | |
WO2021008241A1 (zh) | 车用转向方法、系统、行驶机构的转向方法及行驶机构 | |
JP2008030610A (ja) | 車両前進判定装置 | |
CN111114344B (zh) | 分布式驱动车辆扭矩的控制方法及系统 | |
JP2005193779A (ja) | 車両用操舵装置 | |
CN114274947B (zh) | 一种车辆行驶稳定性智能控制装置、方法和汽车 | |
WO2023223513A1 (ja) | 4輪駆動車両 | |
JP5228937B2 (ja) | 挙動制御装置 | |
CN107554603A (zh) | 四轮汽车闭环控制智能转向系统以及汽车 | |
JP2021195096A (ja) | 転舵制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18845287 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18845287 Country of ref document: EP Kind code of ref document: A1 |