WO2019026809A1 - 蛍光剤を含むジルコニア焼結体 - Google Patents
蛍光剤を含むジルコニア焼結体 Download PDFInfo
- Publication number
- WO2019026809A1 WO2019026809A1 PCT/JP2018/028323 JP2018028323W WO2019026809A1 WO 2019026809 A1 WO2019026809 A1 WO 2019026809A1 JP 2018028323 W JP2018028323 W JP 2018028323W WO 2019026809 A1 WO2019026809 A1 WO 2019026809A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zirconia
- fluorescent agent
- sintered body
- mass
- less
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/486—Fine ceramics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/08—Artificial teeth; Making same
- A61C13/082—Cosmetic aspects, e.g. inlays; Determination of the colour
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/08—Artificial teeth; Making same
- A61C13/083—Porcelain or ceramic teeth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/08—Artificial teeth; Making same
- A61C13/087—Artificial resin teeth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/70—Preparations for dentistry comprising inorganic additives
- A61K6/71—Fillers
- A61K6/76—Fillers comprising silicon-containing compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/802—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
- A61K6/818—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising zirconium oxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/802—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
- A61K6/822—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising rare earth metal oxides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/884—Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
- A61K6/887—Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/001—Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
- C01G25/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/486—Fine ceramics
- C04B35/488—Composites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/624—Sol-gel processing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62655—Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6269—Curing of mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62805—Oxide ceramics
- C04B35/62807—Silica or silicates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62805—Oxide ceramics
- C04B35/62813—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62805—Oxide ceramics
- C04B35/62815—Rare earth metal oxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62886—Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63416—Polyvinylalcohols [PVA]; Polyvinylacetates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63424—Polyacrylates; Polymethacrylates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/67—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
- C09K11/671—Chalcogenides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
- C01P2004/52—Particles with a specific particle size distribution highly monodisperse size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/21—Attrition-index or crushing strength of granulates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
- C04B2235/3246—Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3279—Nickel oxides, nickalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3298—Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/443—Nitrates or nitrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/444—Halide containing anions, e.g. bromide, iodate, chlorite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/449—Organic acids, e.g. EDTA, citrate, acetate, oxalate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/549—Particle size related information the particle size being expressed by crystallite size or primary particle size
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6022—Injection moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6023—Gel casting
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6026—Computer aided shaping, e.g. rapid prototyping
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6027—Slip casting
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/612—Machining
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/762—Cubic symmetry, e.g. beta-SiC
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/765—Tetragonal symmetry
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/785—Submicron sized grains, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
- C04B2235/9653—Translucent or transparent ceramics other than alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
- C04B2235/9661—Colour
Definitions
- the present invention relates to a zirconia sintered body containing a fluorescent agent.
- Zirconia sintered bodies containing yttria have recently been used in applications of dental materials such as dental prostheses.
- these dental prostheses have a desired shape such as a disk shape or a prismatic shape by pressing zirconia particles or molding them using a slurry or composition containing zirconia particles. It is manufactured by forming it as a molded body, then calcining it into a calcined body (mill blank), cutting it into the shape of the dental prosthesis for which it is intended (milling) and then sintering it. .
- the present inventors further include a fluorescent agent in a zirconia sintered body having excellent transparency and strength and containing 4.5 to 9.0 mol% of yttria and having a crystal grain size of 180 nm or less.
- a fluorescent agent in a zirconia sintered body having excellent transparency and strength and containing 4.5 to 9.0 mol% of yttria and having a crystal grain size of 180 nm or less.
- the present invention includes a fluorescent agent, it is a zirconia sintered body excellent in both light transmittance and strength, a zirconia molded body and a zirconia calcined body capable of providing such a zirconia sintered body, and It is an object of the present invention to provide a manufacturing method that can easily manufacture them.
- the present inventors have achieved excellent transparency and strength despite the inclusion of the fluorescent agent by adjusting the way of blending the fluorescent agent, etc. It has been found that a novel and novel zirconia sintered body can be obtained. And such a zirconia sintered body is particularly suitable as a dental material such as a dental prosthesis etc. Among them, it is used not only for a dental prosthesis used for the tooth neck, but also for the occlusal surface of the molar and the anterior incisal end It has also been found to be extremely useful as a dental prosthesis. The present inventors have made further studies based on these findings to complete the present invention.
- the present invention relates to the following [1] to [29].
- [1] A zirconia sintered body containing a fluorescent agent, containing 4.5 to 9.0 mol% of yttria, having a crystal grain size of 180 nm or less, and a three-point bending strength of 500 MPa or more Body.
- [2] The zirconia sintered body according to [1], wherein the fluorescent agent contains a metal element, and the content of the fluorescent agent is 0.001 to 1% by mass in terms of the oxide of the metal element with respect to the mass of zirconia. .
- a calcined zirconia body containing a fluorescent agent which contains 4.5 to 9.0 mol% of yttria, and has a three-point bending strength of 500 MPa or more after sintering for 2 hours at 1100 ° C. under normal pressure.
- the zirconia calcined body according to [12] which is obtained by calcining a zirconia molded body formed from zirconia particles.
- the manufacturing method containing 0 mol% and having an average primary particle size of 20 nm or less.
- the production method according to [16] further including the step of mixing a slurry containing zirconia particles and a fluorescent agent in a liquid state.
- the forming step is a step of slip casting a slurry containing zirconia particles and a fluorescent agent.
- a zirconia sintered body excellent in both light transmittance and strength despite containing a fluorescent agent, a zirconia compact and a zirconia calcined body capable of providing such a zirconia sintered body Also, a production method is provided that can easily produce them.
- the zirconia sintered body of the present invention contains a fluorescent agent.
- a fluorescent agent When the zirconia sintered body contains a fluorescent agent, it has fluorescence.
- 1 type, or 2 or more types can be used among fluorescent substances which can emit light with the light of any wavelength.
- a fluorescent agent one containing a metal element can be mentioned. Examples of the metal element include Ga, Bi, Ce, Nd, Sm, Eu, Gd, Tb, Dy and Tm.
- the fluorescent agent may contain one of these metal elements alone, or may contain two or more.
- the oxide of the said metallic element a hydroxide, acetate, nitrate etc. are mentioned, for example.
- the fluorescent agent is Y 2 SiO 5 : Ce, Y 2 SiO 5 : Tb, (Y, Gd, Eu) BO 3 , Y 2 O 3 : Eu, YAG: Ce, ZnGa 2 O 4 : Zn, BaMgAl 10 O 17 : Eu, etc. may be used.
- the content of the fluorescent agent in the zirconia sintered body is not particularly limited, and can be appropriately adjusted according to the type of the fluorescent agent, the application of the zirconia sintered body, etc. However, it can be preferably used as a dental prosthesis Therefore, it is preferable that it is 0.001 mass% or more, and is 0.005 mass% or more in conversion of the oxide of the metal element contained in a fluorescent agent with respect to the mass of the zirconia contained in a zirconia sintered compact. Is more preferably 0.01% by mass or more and 1% by mass or less is preferably 0.5% by mass or less is more preferably 0.1% by mass or less Is more preferred. When the content is at least the above lower limit, the fluorescence is not inferior even when compared to human natural teeth, and when the content is at most the above upper limit, the light transmittance and the strength decrease. Can be suppressed.
- the zirconia sintered body of the present invention may contain a colorant.
- the zirconia sintered body becomes a zirconia sintered body colored by containing a coloring agent.
- the type of colorant is not particularly limited, and known pigments generally used for coloring ceramics, known dental liquid colorants, and the like can be used.
- the colorant include those containing a metal element, and specific examples include oxides, composite oxides, and salts containing metal elements such as iron, vanadium, praseodymium, erbium, chromium, nickel, manganese and the like. .
- commercially available coloring agents can also be used, and for example, Prettau Color Liquid made by Zirkon leopard can be used.
- the zirconia sintered body may contain one kind of colorant or may contain two or more kinds of colorants.
- the content of the colorant in the zirconia sintered body is not particularly limited, and can be appropriately adjusted according to the type of the colorant, the application of the zirconia sintered body, etc. However, it can be preferably used as a dental prosthesis Therefore, it is preferable that it is 0.001 mass% or more, and is 0.005 mass% or more in conversion of the oxide of the metal element contained in a coloring agent with respect to the mass of the zirconia contained in a zirconia sintered compact. Is more preferably 0.01% by mass or more, and preferably 5% by mass or less, more preferably 1% by mass or less, and 0.5% by mass or less More preferably, it may be 0.1 mass% or less, or even 0.05 mass% or less.
- the zirconia sintered body of the present invention may contain a light transmittance adjusting agent in order to adjust the light transmittance of the zirconia sintered body.
- a light transmittance adjusting agent aluminum oxide, titanium oxide, silicon dioxide, zircon, lithium silicate, lithium disilicate etc. are mentioned, for example.
- the zirconia sintered body may contain one kind of light transmission adjusting agent, or may contain two or more kinds of light transmission adjusting agent.
- the zirconia sintered body of the present invention contains 4.5 to 9.0 mol% of yttria.
- the content of yttria in the zirconia sintered body is preferably 5.0 mol% or more, and 5.5 mol% or more, since a zirconia sintered body excellent in light transmittance and strength can be obtained. Is more preferably 8.0 mol% or less, and more preferably 7.0 mol% or less.
- the content of yttria in the zirconia sintered body means the ratio (mol%) of the number of moles of yttria to the total number of moles of zirconia and yttria.
- the crystal grain size in the zirconia sintered body of the present invention is 180 nm or less. When the crystal grain size exceeds 180 nm, sufficient translucency can not be obtained.
- the crystal grain size is preferably 140 nm or less, more preferably 120 nm or less, still more preferably 115 nm or less, and so on because a zirconia sintered body excellent in light transmittance can be obtained. It may be.
- the lower limit of the crystal grain size is not particularly limited, but the crystal grain size can be, for example, 50 nm or more, and further 100 nm or more.
- the grain size of the zirconia sintered body is determined by photographing a field emission scanning electron microscope (FE-SEM) photograph of the cross section of the zirconia sintered body, selecting 10 arbitrary particles in the photographed image, It can be determined as the average value of the equivalent circle diameter (diameter of a perfect circle of the same area).
- FE-SEM field emission scanning electron microscope
- the zirconia sintered body of the present invention is excellent in strength despite containing a fluorescent agent.
- the three-point bending strength of the zirconia sintered body of the present invention is 500 MPa or more, preferably 600 MPa or more, more preferably 650 MPa or more, still more preferably 700 MPa or more, and 800 MPa or more Is particularly preferred.
- the upper limit of the three-point bending strength is not particularly limited, but the three-point bending strength can be, for example, 1,500 MPa or less, and further, 1,000 MPa or less.
- the three-point bending strength of the zirconia sintered body can be measured in accordance with JIS R 1601: 2008.
- the zirconia sintered body of the present invention contains a fluorescent agent, it has excellent transparency.
- the transmittance of light with a wavelength of 700 nm at a thickness of 0.5 mm is preferably 40% or more, more preferably 45% or more, and 46% or more, 48% or more, It may be 50% or more, or 52% or more.
- the upper limit of the transmittance is not particularly limited, but the transmittance can be, for example, 60% or less, and further 57% or less.
- the transmittance of light having a wavelength of 700 nm at a thickness of 0.5 mm of the zirconia sintered body may be measured using a spectrophotometer.
- a spectrophotometer manufactured by Hitachi High-Technologies Corporation, "Hitachi spectrophotometer"
- the light generated from the light source can be transmitted and scattered to the sample and measured using an integrating sphere, using a total of U-3900H ").
- the transmittance for light having a wavelength of 700 nm may be determined.
- the disk-shaped zirconia sintered compact of diameter 15 mm x thickness 0.5 mm which mirror-polished both surfaces can be used.
- the main crystal phase of the zirconia sintered body of the present invention may be either tetragonal or cubic, but the main crystal phase is preferably cubic.
- 50% or more is preferably cubic, and 70% or more is more preferably cubic.
- the proportion of cubic crystals in the zirconia sintered body can be determined by analysis of the crystal phase. Specifically, X-ray diffraction (XRD; X-Ray Diffraction) measurement is performed on a portion of the zirconia sintered body whose surface is mirror-finished, and the value can be obtained by the following equation.
- XRD X-ray diffraction
- f c 100 ⁇ I c / (I m + I t + I c )
- a peak around 2 ⁇ 30 degrees appears as a peak based on a mixed phase of a tetragonal (111) face and a cubic (111) face, and a peak based on the tetragonal (111) face and a cubic (111) face. If it is difficult to separate from the peak based on the surface), the ratio of tetragonal crystal to cubic crystal is determined by employing Rietveld method, etc., and then this is used to determine the height of the peak based on the mixed phase (I t + c by multiplying the), it can be determined I t and I c.
- the ratio of monoclinic crystals to tetragonal crystals and cubic crystals after immersion in 180 ° C. hot water for 5 hours is preferably 5% or less, and 3% or less More preferably, it is more preferably 1% or less.
- the said ratio mirror-finishes the surface of a zirconia sintered compact, after making this immersed in 180 degreeC hot water for 5 hours, X-ray-diffraction (XRD; X-Ray Diffraction) measurement is performed about the said part, It can be determined by the following equation.
- f m 100 ⁇ I m / (I t + c )
- I m the ratio (%) of tetraclinic crystal to cubic crystal after immersion in 180 ° C. hot water for 5 hours in the zirconia sintered body
- I m the ratio (%) of tetraclinic crystal to cubic crystal after immersion in 180 ° C. hot water for 5 hours in the zirconia sintered body
- I m the ratio (%) of tetraclinic crystal to cubic crystal after immersion in 180 ° C. hot water for 5 hours in the zirconia sintered body
- I m 28 degrees Represents the height of the peak (peak based on the monoclinic (11-1) plane)
- the peak near 2 ⁇ 30 degrees appears separately in the peak based on the (111) face of tetragonal and the peak based on the (111) face of cubic crystal, and it is difficult to specify the above I t + c
- the sum of the height (I t ) of the peak based on the (111) face of tetragonal crystal and the height (I c ) of the peak based on the (111) face of cubic crystal can be set as the above I t + c. .
- the method for producing the zirconia sintered body of the present invention is produced by sintering a zirconia compact containing a fluorescent agent and containing 4.5 to 9.0 mol% of yttria under normal pressure.
- a zirconia compact containing a fluorescent agent and containing 4.5 to 9.0 mol% of yttria under normal pressure can.
- it is manufactured by sintering a zirconia calcined body containing a fluorescent agent and containing 4.5 to 9.0 mol% of yttria under normal pressure, which is obtained by calcining the above-mentioned zirconia molded body, etc.
- the present invention is a zirconia molded body containing a fluorescent agent, which contains 4.5 to 9.0 mol% of yttria, and has a three-point bending strength of 500 MPa or more after sintering for 2 hours at 1100 ° C. under normal pressure.
- the zirconia sintered body of the present invention which is excellent in both the light transmittance and the strength, can be easily manufactured despite the presence of the fluorescent agent.
- the zirconia molded body of the present invention contains a fluorescent agent, contains 4.5 to 9.0 mol% of yttria, and has a three-point bending strength of 500 MPa or more after sintering at 1100 ° C. for 2 hours under normal pressure.
- the crystal grain size after sintering for 2 hours at 1100 ° C. under normal pressure is 180 nm or less.
- the zirconia molded body of the present invention can be formed from zirconia particles.
- the fluorescent agent contained in the zirconia molded body of the present invention may be the same as the fluorescent agent contained in the obtained zirconia sintered body.
- the content of the fluorescent agent in the zirconia molded body can be appropriately adjusted in accordance with the content of the fluorescent agent and the like in the obtained zirconia sintered body.
- the specific content of the fluorescent agent contained in the zirconia molded body is 0.001% by mass or more in terms of the oxide of the metal element contained in the fluorescent agent with respect to the mass of zirconia contained in the zirconia molded body Is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, and preferably 1% by mass or less. More preferably, it is 0.1 mass% or less.
- the zirconia sintered body contains a colorant
- the content of the colorant in the zirconia molded body can be appropriately adjusted according to the content of the colorant in the obtained zirconia sintered body, and the like.
- the specific content of the coloring agent contained in the zirconia molded body is 0.001% by mass or more in terms of the oxide of the metal element contained in the coloring agent with respect to the mass of zirconia contained in the zirconia molded body Is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, and preferably 5% by mass or less, and 1% by mass or less. It is more preferable that it is 0.5 mass% or less, and 0.1 mass% or less may be 0.05 mass% or less.
- the zirconia sintered body contains a light transmission adjusting agent
- a light transmission adjusting agent is preferably contained in the zirconia molded body.
- the content of the light transmission adjusting agent in the zirconia molded body can be appropriately adjusted according to the content of the light transmission adjusting agent in the obtained zirconia sintered body, and the like.
- the specific content of the light transmittance adjusting agent contained in the zirconia molded body is preferably 0.1% by mass or less based on the mass of zirconia contained in the zirconia molded body.
- the content of yttria contained in the zirconia molded body of the present invention may be the same as the content of yttria in the obtained zirconia sintered body, and the specific content of yttria in the zirconia molded body is 4.5 It is more than mol%, preferably more than 5.0 mol%, more preferably more than 5.5 mol%, and less than 9.0 mol%, less than 8.0 mol% Is preferable, and 7.0 mol% or less is more preferable.
- the content of yttria in the zirconia molded body means the ratio (mol%) of the number of moles of yttria to the total number of moles of zirconia and yttria.
- the density of the zirconia molded body which varies depending on the manufacturing method of the zirconia molded body, but the density is 3.0 g / cm 3 or more because a dense zirconia sintered body can be obtained. Is preferably 3.2 g / cm 3 or more, and more preferably 3.4 g / cm 3 or more.
- the upper limit of the density is not particularly limited, but may be, for example, 6.0 g / cm 3 or less, or further 5.8 g / cm 3 or less.
- the shape of the zirconia molded body there is no particular limitation on the shape of the zirconia molded body, and the desired shape can be made according to the application, but when obtaining a zirconia calcined body used as a mill blank for producing a dental material such as a dental prosthesis In view of the handleability and the like in the above, it is preferable to use a disk shape, a prismatic shape (e.g. a rectangular shape, etc.) and the like. In addition, as described later, in the manufacture of a zirconia molded body, a shape corresponding to a desired shape in a finally obtained zirconia sintered body can be imparted to the zirconia molded body by adopting an optical shaping method or the like.
- the present invention also encompasses a zirconia shaped body having such a desired shape.
- the zirconia molded body may have a single layer structure or a multilayer structure.
- the finally obtained zirconia sintered body can be made into a multilayer structure, and physical properties such as light transmission can be locally changed.
- the zirconia molded body preferably has a biaxial bending strength in the range of 2 to 10 MPa, and more preferably in the range of 5 to 8 MPa, from the viewpoint of handleability and the like.
- the biaxial bending strength of the zirconia molded body can be measured in accordance with JIS T 6526: 2012.
- the zirconia compact of the present invention is sintered at 1100 ° C. for 2 hours under normal pressure (after being made into a zirconia sintered body; in addition, it is calcined once at 700 ° C. for 2 hours under normal pressure and then fired under the above conditions
- the crystal grain size of (optionally) may be 180 nm or less.
- the crystal grain size is preferably 140 nm or less, more preferably 120 nm or less, still more preferably 115 nm or less, and the like because a zirconia sintered body excellent in light transmittance can be obtained.
- the lower limit of the crystal grain size is not particularly limited, but the crystal grain size may be, for example, 50 nm or more, and further 100 nm or more.
- the measuring method of the said crystal grain diameter is as having mentioned above as description of the crystal grain diameter in a zirconia sintered compact.
- the zirconia compact of the present invention is sintered at 1100 ° C. for 2 hours under normal pressure (after being made into a zirconia sintered body; in addition, it is calcined once at 700 ° C. for 2 hours under normal pressure and then fired under the above conditions
- the three-point bending strength of may be 500 MPa or more.
- the three-point bending strength is preferably 600 MPa or more, more preferably 650 MPa or more, and still more preferably 700 MPa or more, since a zirconia sintered body having better strength can be obtained. Is particularly preferred.
- the upper limit of the three-point bending strength is not particularly limited, but the three-point bending strength can be, for example, 1,500 MPa or less, and further, 1,000 MPa or less.
- piece bending strength is as having mentioned above as description of 3 point
- the zirconia compact is sintered under normal pressure at 1100 ° C. for 2 hours (after being made into a zirconia sintered body; once temporarily calcined at 700 ° C. under normal pressure for 2 hours, then sintered under the above conditions
- the transmittance of light with a wavelength of 700 nm at a thickness of 0.5 mm is preferably 40% or more.
- the transmittance is preferably 45% or more, and more preferably 46% or more, 48% or more, 50% or more, or 52% or more because a zirconia sintered body excellent in light transmittance can be obtained. It may be.
- the upper limit of the transmittance is not particularly limited, but the transmittance can be, for example, 60% or less, and further 57% or less.
- permeability is as having mentioned above as description of the transmittance
- the method for producing a zirconia molded body of the present invention is not particularly limited, but it has a molding step of molding zirconia particles because a zirconia sintered body of the present invention excellent in both light transmittance and strength can be easily obtained. It is preferable to manufacture by a method, and it is more preferable to manufacture by a method having a forming step of forming zirconia particles in the presence of a fluorescent agent.
- the content of yttria contained in the zirconia particles to be used is preferably the same as the content of yttria in the obtained zirconia molded body, that is, the zirconia calcined body and the zirconia sintered body, and the specific example of yttria in the zirconia particles
- the content is preferably 4.5 mol% or more, more preferably 5.0 mol% or more, still more preferably 5.5 mol% or more, and 9.0 mol % Or less is preferable, 8.0 mol% or less is more preferable, and 7.0 mol% or less is more preferable.
- the content of yttria in the zirconia particles means the ratio (mol%) of the number of moles of yttria to the total number of moles of zirconia and yttria.
- the zirconia particles to be used preferably have an average primary particle size of 30 nm or less. This makes it possible to easily obtain the zirconia molded body of the present invention, that is, the zirconia calcined body and the zirconia sintered body of the present invention.
- the average primary particle diameter of the zirconia particles is more preferably 20 nm or less, and preferably 15 nm or less, from the viewpoint of easiness of production of the zirconia molded body of the present invention, that is, the calcined zirconia body of the present invention and the zirconia sintered body of the present invention.
- the average primary particle size of the zirconia particles is, for example, a photograph of zirconia particles (primary particles) taken with a transmission electron microscope (TEM), and the particle size of each particle for 100 arbitrary particles on the obtained image. (Maximum diameter) can be measured and determined as their average value.
- the zirconia particles to be used have a content of primary particles of 50 nm or more of 5% by mass from the viewpoint of easily obtaining the zirconia molded body of the present invention, that is, the zirconia calcined body and the zirconia sintered body of the present invention. It is preferable that it is the following, It is more preferable that it is 3 mass% or less, It is more preferable that it is 1 mass% or less.
- the content can be measured, for example, by a zeta potential measuring device.
- zirconia particles there is no particular limitation on the method of preparing the zirconia particles, and, for example, a breakdown process in which coarse particles are pulverized into fine particles, a building-up process in which atoms or ions are synthesized by nucleation and growth processes can be adopted. Among these, in order to obtain highly pure fine zirconia particles, a building-up process is preferable.
- the breakdown process can be performed, for example, by grinding using a ball mill, bead mill, or the like. Under the present circumstances, it is preferable to use the grinding
- a building-up process for example, a vapor phase thermal decomposition method in which an oxide is precipitated by thermal decomposition while vaporizing an oxy acid salt of an metal ion having a high vapor pressure or an organic metal compound; Gas phase reaction method of synthesis by gas phase chemical reaction of gas and reaction gas; Evaporative concentration method in which the raw material is heated and vaporized, and the vapor is condensed into fine particles by quenching in inert gas at a predetermined pressure; Melt process in which the liquid is cooled and solidified as small droplets to form a powder; solvent evaporation in which the solvent concentration is increased to increase the concentration in the solution to cause supersaturation and precipitation; the solute concentration is supersaturated by reaction with the precipitant or hydrolysis And precipitation methods in which poorly soluble compounds such as oxides and hydroxides are precipitated through nucleation-growth processes.
- a chemical reaction produces a precipitant in the solution, and the homogeneous precipitation method which eliminates the local heterogeneity of the precipitant concentration; a coprecipitation in which a plurality of metal ions coexisting in the liquid are simultaneously precipitated by the addition of the precipitant Precipitation method; Hydrolysis method to obtain oxide or hydroxide by hydrolysis from alcohol solution such as metal salt solution, metal alkoxide etc. Subdivision by solvothermal synthesis method etc.
- the solvothermal synthesis method is further subdivided into a hydrothermal synthesis method using water as a solvent, and a supercritical synthesis method using a supercritical fluid such as water or carbon dioxide as a solvent.
- zirconia particles obtained are preferably classified.
- zirconium source in the building up process for example, nitrate, acetate, chloride, alkoxide and the like can be used, and specifically, zirconium oxychloride, zirconium acetate, zirconyl nitrate and the like can be used.
- yttria in order to make content of the yttria contained in a zirconia particle into the said range, yttria can be mix
- the yttrium source for example, nitrate, acetate, chloride, alkoxide and the like can be used, and specifically, yttrium chloride, yttrium acetate, yttrium nitrate and the like can be used.
- Zirconia particles are, if necessary, organic compounds having an acidic group; fatty acid amides such as saturated fatty acid amides, unsaturated fatty acid amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides; silane coupling agents (organosilicon compounds), organic titanium
- the surface may be previously treated with a known surface treatment agent such as a compound, an organic zirconium compound, or an organic metal compound such as an organic aluminum compound.
- a known surface treatment agent such as a compound, an organic zirconium compound, or an organic metal compound such as an organic aluminum compound.
- a zirconia molded body by a method comprising the steps of adjusting the miscibility with water or polymerizing a composition containing a zirconia particle, a fluorescent agent and a polymerizable monomer as described later, etc.
- the miscibility of the particles with the polymerizable monomer can be adjusted.
- a zirconia molded body which is excellent in the miscibility with a liquid having a surface tension of 50 mN / m or less at 25 ° C. and obtained by enhancing the chemical bonding between the zirconia particles and the polymerizable monomer
- the organic compound having an acidic group is preferable because the strength of the organic compound can be improved.
- Examples of the organic compound having an acidic group include organic compounds having at least one acidic group such as a phosphoric acid group, a carboxylic acid group, a pyrophosphoric acid group, a thiophosphoric acid group, a phosphonic acid group, and a sulfonic acid group.
- a phosphoric acid group-containing organic compound having at least one phosphoric acid group and a carboxylic acid group-containing organic compound having at least one carboxylic acid group are preferable, and a phosphoric acid group-containing organic compound is more preferable.
- the zirconia particles may be surface-treated with one surface treatment agent, or may be surface-treated with two or more surface treatment agents.
- the surface treatment layer thereby may be a surface treatment layer of a mixture of two or more surface treatment agents, or a plurality of surface treatment layers. It may be a surface treatment layer of a laminated multi-layer structure.
- Examples of phosphoric acid group-containing organic compounds include 2-ethylhexyl acid phosphate, stearyl acid phosphate, 2- (meth) acryloyloxyethyl dihydrogen phosphate, 3- (meth) acryloyloxypropyl dihydrogen phosphate, 4- ( Meta) acryloyloxybutyl dihydrogen phosphate, 5- (meth) acryloyloxypentyl dihydrogen phosphate, 6- (meth) acryloyl oxyhexyl dihydrogen phosphate, 7- (meth) acryloyl oxyheptyl dihydrogen phosphate, 8 -(Meth) acryloyloxyoctyl dihydrogen phosphate, 9- (Meth) acryloyl oxynonyl dihydrogen phosphate, 10- (meth) Cryloyl oxydecyl dihydrogen phosphate, 11- (meth) acryloyloxyundec
- Hydrogen phosphate bis [10- (meth) acryloyloxydecyl] hydrogen phosphate, 1,3-di (meth) acryloyloxypropyl dihydrogen phosphate, 2- (meth) acryloyloxyethyl phenyl hydrogen phosphate, 2- (Meth) acryloyloxyethyl-2-bromoethyl hydrogen phosphate, bis [2- (meth) acryloyloxy- (1-hydroxymethyl) ethyl] hydrogen phosphate, and their acid chlorides, alkali metal salts, Ammonium salts and the like can be mentioned.
- carboxylic acid group-containing organic compounds examples include succinic acid, oxalic acid, octanoic acid, decanoic acid, stearic acid, polyacrylic acid, 4-methyloctanoic acid, neodecanoic acid, pivalic acid, 2,2-dimethylbutyric acid, 3 , 3-dimethylbutyric acid, 2,2-dimethylvaleric acid, 2,2-diethylbutyric acid, 3,3-diethylbutyric acid, naphthenic acid, cyclohexanedicarboxylic acid, (meth) acrylic acid, N- (meth) acryloylglycine, N -(Meth) acryloyl aspartic acid, O- (meth) acryloyl tyrosine, N- (meth) acryloyl tyrosine, N- (meth) acryloyl- p- aminobenzoic acid, N- (meth) acryloyl
- organic compound which has at least one acidic group other than the above such as a pyrophosphoric acid group, a thio phosphoric acid group, a phosphonic acid group, a sulfonic acid group, the thing as described in international publication 2012/042911 etc. is mentioned, for example. It can be used.
- saturated fatty acid amides include palmitic acid amide, stearic acid amide, behenic acid amide and the like.
- unsaturated fatty acid amide for example, oleic acid amide, erucic acid amide and the like can be mentioned.
- saturated fatty acid bisamides include ethylene bispalmitic acid amide, ethylene bisstearic acid amide, hexamethylene bisstearic acid amide and the like.
- unsaturated fatty acid bisamides include ethylene bis oleic acid amide, hexamethylene bis oleic acid amide, N, N'-dioleyl sebacic acid amide and the like.
- silane coupling agents include compounds represented by R 1 n SiX 4-n (wherein R 1 is a substituted or unsubstituted hydrocarbon having 1 to 12 carbon atoms) And X is an alkoxy group having 1 to 4 carbon atoms, a hydroxy group, a halogen atom or a hydrogen atom, n is an integer of 0 to 3, provided that a plurality of R 1 and X are present, respectively. , May be the same or different).
- silane coupling agent organic silane
- examples of the silane coupling agent include, for example, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, Diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, 3,3,3-trifluoropropyltrimethoxysilane, methyl-3,3,3- Trifluoropropyldimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropy
- silane coupling agents having a functional group are preferable, and ⁇ - (meth) acryloyloxyalkyltrimethoxysilane [carbon number between (meth) acryloyloxy group and silicon atom: 3 to 12], ⁇ - (Meth) acryloyloxyalkyltriethoxysilane [carbon number between (meth) acryloyloxy group and silicon atom: 3 to 12], vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, ⁇ -glycid More preferred is xylpropyltrimethoxysilane.
- organic titanium compound examples include tetramethyl titanate, tetraisopropyl titanate, tetra n-butyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate and the like.
- organic zirconium compound examples include zirconium isopropoxide, zirconium n-butoxide, zirconium acetylacetonate, zirconyl acetate and the like.
- organic aluminum compound aluminum acetylacetonate, an aluminum organic acid salt chelate compound, etc. are mentioned, for example.
- the solvent may be a dispersion medium containing a liquid having a surface tension of 50 mN / m or less at 25 ° C. as described later.
- refluxing or high temperature high pressure treatment (autoclave treatment or the like) may be performed.
- the molding process (I) Slip casting a slurry containing zirconia particles and a fluorescent agent; (Ii) gel casting a slurry containing zirconia particles and a fluorescent agent; (Iii) pressing a powder containing zirconia particles and a fluorescent agent; (Iv) forming a composition containing zirconia particles, a fluorescent agent and a resin; and (v) polymerizing a composition containing the zirconia particles, a fluorescent agent and a polymerizable monomer; It is preferable that it is either of
- Slurry Containing Zirconia Particles and Fluorescent Agent There is no particular limitation on the method of preparing the slurry containing zirconia particles and fluorescent agent, and it can be obtained, for example, by mixing the slurry containing zirconia particles with the fluorescent agent.
- the slurry containing the zirconia particles used may be one obtained through the above-mentioned breakdown process or building up process, or may be commercially available.
- a slurry containing zirconia particles and a fluorescent agent is prepared by mixing a slurry containing zirconia particles and a fluorescent agent in a liquid state, mixing of coarse particles is prevented, and the like, whereby the zirconia molded body of the present invention is formed. It is preferable that a zirconia calcined body can be easily obtained and, in spite of containing a fluorescent agent, the zirconia sintered body of the present invention excellent in both light transmittance and strength can be easily obtained.
- the fluorescent agent in the liquid state for example, a solution or dispersion of the above-mentioned fluorescent agent can be used, and a solution of the fluorescent agent is preferable.
- aqueous solution may be a dilute nitric acid solution, a dilute hydrochloric acid solution or the like, and can be appropriately selected according to the type of the fluorescent agent used and the like.
- the zirconia molded body, and thus the zirconia calcined body and the zirconia sintered body contain a colorant and / or a light transmission modifier, such colorant and / or water transmission to the slurry containing the zirconia particles and the fluorescent agent
- a light control agent may be included.
- Powder containing zirconia particles and fluorescent agent there is no particular limitation on the method of preparing the powder containing zirconia particles and fluorescent agent, and powdery zirconia particles and powdered fluorescent agent can be produced by dry blending (
- the zirconia molded body that is, the zirconia calcined body and the zirconia sintered body contain a colorant and / or a light transmission modifier
- the colorant and / or the light transmission modifier may be further dry blended. It is preferable to obtain by drying a slurry containing the above-mentioned zirconia particles and a fluorescent agent, since it may be possible to obtain a zirconia sintered body which is more uniform and has excellent physical properties.
- the slurry to be dried here may further contain a colorant and / or a light transmission modifier.
- spray drying spray drying
- supercritical drying freeze drying
- hot air drying reduced-pressure drying etc.
- any of spray drying, supercritical drying and lyophilization is preferable because spray aggregation, supercritical drying and freeze drying can be performed because aggregation of particles can be suppressed at the time of drying and a denser zirconia sintered body can be obtained.
- spray drying is more preferred, and spray drying is even more preferred.
- the slurry containing the zirconia particles and the fluorescent agent to be provided for drying may be a slurry in which the dispersion medium is water, but aggregation of the particles can be suppressed during drying and a more compact zirconia sintered body can be obtained. It is preferable that it is a slurry of dispersion media other than water, such as an organic solvent, since it can obtain.
- organic solvent for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butyl alcohol, 2-methoxyethanol, 2-ethoxyethanol, 2- (2-ethoxyethoxy) Alcohols such as ethanol, diethylene glycol monobutyl ether and glycerin; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, diethyl ether, diisopropyl ether, 1,4-dioxane and dimethoxyethane (propylene glycol monomethyl ether acetate (generally called “PGMEA”) etc.
- PGMEA propylene glycol monomethyl ether acetate
- Modified ethers (preferably ether-modified ethers and / or ester-modified ethers, more preferably ether-modified alkylene glycols and / Or ester-modified alkylene glycols) a); hexane, hydrocarbons such as toluene; ethyl acetate, butyl acetate and like esters chloroform, and halogenated hydrocarbons such as carbon tetrachloride.
- One of these organic solvents may be used alone, or two or more thereof may be used in combination.
- the organic solvent is preferably a water-soluble organic solvent in consideration of both the safety to the living body and the ease of removal.
- ethanol 2-propanol, tert-butyl alcohol, 2 -Ethoxyethanol, 2- (2-ethoxyethoxy) ethanol, propylene glycol monomethyl ether acetate, acetone, tetrahydrofuran are more preferred.
- the dispersion medium of the slurry containing the zirconia particles and the fluorescent agent to be dried includes a liquid having a surface tension of 50 mN / m or less at 25 ° C. It is preferable from the viewpoint that it is possible to suppress the above and to obtain a more dense zirconia sintered body. From such a viewpoint, the surface tension of the liquid is preferably 40 mN / m or less, more preferably 30 mN / m or less.
- the surface tension at 25 ° C. can use, for example, the values described in the Handbook of Chemistry and Phisics, and for liquids not described in this document, the values described in WO 2014/126034 can be used. it can.
- the liquid which is not described in any of these can be determined by a known measurement method, and can be measured by, for example, a suspension ring method or a Wilhelmy method.
- the surface tension at 25 ° C. is preferably measured using an automatic surface tension meter “CBVP-Z” manufactured by Kyowa Interface Science Co., Ltd. or “SIGMA 702” manufactured by KSV INSTRUMENTS LTD.
- an organic solvent having the above surface tension can be used as the liquid.
- those having the above-mentioned surface tension can be used as the organic solvent, but since aggregation of particles can be suppressed at the time of drying and a more dense zirconia sintered body can be obtained.
- the content of the liquid in the dispersion medium is preferably 50% by mass or more, since the aggregation of particles can be suppressed at the time of drying, and a more dense zirconia sintered body can be obtained. % Or more, more preferably 95% by mass or more, and particularly preferably 99% by mass or more.
- the slurry of the dispersion medium other than water can be obtained by substituting the dispersion medium for the slurry in which the dispersion medium is water.
- the method of distilling off water can be employ
- part or all of the dispersion medium other than water may be co-distilled.
- the addition of the dispersion medium other than the water and the evaporation of the water may be repeated several times.
- the method of making a dispersoid precipitate can also be employ
- the dispersion medium may be substituted with a specific organic solvent and then substituted with another organic solvent.
- the fluorescent agent may be added after substituting the dispersion medium, but is preferably added before substituting the dispersion medium, since a zirconia sintered body more uniform and excellent in physical properties can be obtained. .
- a colorant and / or a light transmission adjusting agent in the slurry, it may be added after replacing the dispersion medium, but a zirconia sintered body more uniform and excellent in physical properties may be obtained. It is preferable to add it before replacing the dispersion medium, because it can be done.
- the slurry containing the zirconia particles and the fluorescent agent to be provided for drying may be subjected to dispersion treatment by heat or pressure such as reflux treatment or hydrothermal treatment.
- the slurry containing zirconia particles and the fluorescent agent to be dried was subjected to mechanical dispersion treatment using a roll mill, colloid mill, high-pressure jet disperser, ultrasonic disperser, vibration mill, planetary mill, bead mill, etc. It may be one. Only one process may be employed, or two or more processes may be employed.
- the slurry containing the zirconia particles and the fluorescent agent to be dried includes one or more of other components such as a binder, a plasticizer, a dispersant, an emulsifier, an antifoamer, a pH adjuster, and a lubricant. It may further be included. By including such other components (in particular, a binder, a dispersing agent, an antifoamer, etc.), aggregation of particles can be suppressed at the time of drying, and a more dense zirconia sintered body can be obtained. is there.
- binder polyvinyl alcohol, methylcellulose, carboxymethylcellulose, an acryl-type binder, a wax-type binder, polyvinyl butyral, polymethyl methacrylate, an ethyl cellulose etc. are mentioned, for example.
- plasticizer examples include polyethylene glycol, glycerin, propylene glycol, dibutyl phthalic acid and the like.
- the dispersant for example, ammonium polycarboxylate (triammonium ammonium etc.), ammonium polyacrylate, acrylic copolymer resin, acrylic ester copolymer, polyacrylic acid, bentonite, carboxymethyl cellulose, anionic surfactant Agents (for example, polyoxyethylene alkyl ether phosphate ester such as polyoxyethylene lauryl ether phosphate ester etc.), nonionic surfactant, oleic glyceride, amine surfactant, oligosaccharide alcohol etc.
- ammonium polycarboxylate triammonium ammonium etc.
- ammonium polyacrylate for example, ammonium polyacrylate, acrylic copolymer resin, acrylic ester copolymer, polyacrylic acid, bentonite, carboxymethyl cellulose
- anionic surfactant Agents for example, polyoxyethylene alkyl ether phosphate ester such as polyoxyethylene lauryl ether phosphate ester etc.
- an alkyl ether, phenyl ether, sorbitan derivative, ammonium salt etc. are mentioned, for example.
- alcohol polyether, polyethylene glycol, silicone, a wax etc. are mentioned, for example.
- pH adjusters examples include ammonia, ammonium salts (including ammonium hydroxide such as tetramethyl ammonium hydroxide), alkali metal salts, alkaline earth metal salts and the like.
- a lubricant for example, polyoxyethylene alkylate ether, wax and the like can be mentioned.
- the water content of the slurry containing the zirconia particles and the fluorescent agent to be dried is 3% by mass or less because aggregation of the particles can be suppressed at the time of drying and a more dense zirconia sintered body can be obtained. Is preferably, and more preferably 1% by mass or less and still more preferably 0.1% by mass or less.
- the water content can be measured using a Karl Fischer moisture meter.
- the supercritical fluid in the case of supercritical drying is not particularly limited, and, for example, water, carbon dioxide, etc. can be used, but aggregation of particles can be suppressed to obtain a more dense zirconia sintered body.
- the supercritical fluid is carbon dioxide because
- composition containing zirconia particles, fluorescent agent and resin there is no restriction in particular in the preparation method of the composition containing zirconia particles, fluorescent agent and resin, for example, mixing powder and resin containing the above-mentioned zirconia particles and fluorescent agent It can be obtained by
- composition containing a zirconia particle, a fluorescent agent, and a polymerizable monomer there is no restriction in particular in the preparation method of a composition containing a zirconia particle, a fluorescent agent, and a polymerizable monomer,
- said zirconia particle and fluorescent agent It can be obtained by mixing the powder containing and the polymerizable monomer.
- the content of the dispersion medium in the slurry containing the zirconia particles and the fluorescent agent used makes it easy to pour the slurry into the mold and can prevent the drying from taking a long time, and the number of times the mold is used
- the amount is also preferably 80% by mass or less, more preferably 50% by mass or less, and still more preferably 20% by mass or less.
- the pouring of the slurry into the mold may be carried out under normal pressure, but it is preferable to carry out under pressurized conditions from the viewpoint of production efficiency.
- mold used for slip casting For example, the porous type etc. which consist of gypsum, resin, ceramics etc. can be used. A porous mold made of resin or ceramic is excellent in durability.
- the slurry containing the zirconia particles and the fluorescent agent used for slip casting may further contain at least one of a colorant and a light transmittance modifier as described above, as described above, It may further contain one or more of other components such as a binder, a plasticizer, a dispersant, an emulsifier, an antifoamer, a pH adjuster, and a lubricant.
- the content of the dispersion medium in the slurry containing the zirconia particles and the fluorescent agent to be used can prevent that it takes a long time for drying and can also suppress the occurrence of cracks during drying, so that it is 80 mass% or less Is preferably 50% by mass or less, and more preferably 20% by mass or less.
- the gelation may be performed, for example, by the addition of a gelling agent, or may be performed by polymerizing the polymerizable monomer after addition.
- a gelling agent for example, the porous type which consists of gypsum, resin, ceramics etc., the non-porous type etc. which consist of metals, resin etc. can be used.
- gelling agent there is no limitation on the type of gelling agent, and for example, a water-soluble gelling agent can be used, and specifically, agarose, gelatin and the like can be preferably used.
- the gelling agents may be used alone or in combination of two or more.
- the amount of the gelling agent used is preferably 10% by mass or less, based on the mass of the slurry after the gelling agent is blended, from the viewpoint of suppressing the generation of cracks during sintering, etc. % Or less is more preferable, and 1% by mass or less is more preferable.
- polymerizable monomer there are no particular restrictions on the type of polymerizable monomer, and, for example, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) Acrylate, 10-hydroxydecyl (meth) acrylate, propylene glycol mono (meth) acrylate, glycerol mono (meth) acrylate, erythritol mono (meth) acrylate, N-methylol (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N, N- (dihydroxyethyl) (meth) acrylamide and the like can be mentioned.
- a polymerizable monomer may be used individually by 1 type, and may use 2 or more types together.
- the amount of the polymerizable monomer used is 10% by mass or less based on the mass of the slurry after the polymerizable monomer is blended, from the viewpoint of suppressing the generation of cracks during sintering, etc.
- the content is preferably 5% by mass or less, and more preferably 1% by mass or less.
- the polymerization is preferably performed using a polymerization initiator.
- a polymerization initiator there is no restriction
- the photopolymerization initiator can be appropriately selected from photopolymerization initiators used in the general industry, and among them, photopolymerization initiators used for dental use are preferable.
- the photopolymerization initiator examples include (bis) acyl phosphine oxides (including salts), thioxanthones (including salts such as quaternary ammonium salts), ketals, ⁇ -diketones and coumarins. And anthraquinones, benzoin alkyl ether compounds, ⁇ -amino ketone compounds and the like.
- a photoinitiator may be used individually by 1 type, and may use 2 or more types together.
- polymerization can be performed in both the ultraviolet region (including the near ultraviolet region) and the visible light region, and in particular, lasers such as Ar laser and He-Cd laser; halogen lamp, xenon lamp, metal halide
- the polymerization (gelation) can be sufficiently performed using any light source such as a lamp, a light emitting diode (LED), a mercury lamp, a fluorescent lamp and the like.
- examples of the acyl phosphine oxides include 2,4,6-trimethyl benzoyl diphenyl phosphine oxide (generally called “TPO”), 2,6-dimethoxy benzoyl diphenyl phosphine oxide, 6-Dichlorobenzoyl diphenyl phosphine oxide, 2,4,6-trimethyl benzoyl methoxy phenyl phosphine oxide, 2,4,6- trimethyl benzoyl ethoxy phenyl phosphine oxide, 2,3,5,6- tetramethyl benzoyl diphenyl phosphine oxide, benzoyl di -(2,6-Dimethylphenyl) phosphonate, sodium salt of 2,4,6-trimethylbenzoylphenyl phosphine oxide, 2,4,6-trimethylbenzoyldiphenylphos Potassium salt of In'okishido, and ammonium
- bisacyl phosphine oxides for example, bis (2,6-dichlorobenzoyl) phenyl phosphine oxide, bis (2,6-dichlorobenzoyl) -2,5-dimethylphenyl Phosphine oxide, bis (2,6-dichlorobenzoyl) -4-propylphenyl phosphine oxide, bis (2,6-dichlorobenzoyl) -1-naphthyl phosphine oxide, bis (2,6-dimethoxybenzoyl) phenyl phosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,5-dimethylphenyl phosphine oxide, bis (2,4,6-trimethylbenzoyl) Pheny
- ⁇ -diketones include diacetyl, benzyl, camphorquinone, 2,3-pentadione, 2,3-octadione, 9,10-phenanthrenequinone, 4,4′-oxybenzyl, acenaphthenequinone and the like .
- camphor quinone is preferable.
- the slurry containing the zirconia particles and the fluorescent agent used for gel casting also includes at least one of the colorant and the light transmittance modifier as described above, similarly to the slurry used for slip casting. May further contain one or more of other components such as binders, plasticizers, dispersants, emulsifiers, antifoaming agents, pH adjusters, and lubricants as described above. It is also good.
- (Iii) Press Forming In the case of producing a zirconia molded body by a method having a step of press forming a powder containing zirconia particles and a fluorescent agent, the specific method of press forming is not particularly limited, and a known press forming machine It can be done using. As a specific method of press molding, a uniaxial press etc. are mentioned, for example. Moreover, in order to raise the density of the zirconia molded object obtained, it is preferable to further perform a cold isostatic pressing (CIP) treatment after uniaxial pressing.
- CIP cold isostatic pressing
- the powder containing the zirconia particles and the fluorescent agent used for press molding may further contain at least one of a colorant and a light transmittance modifier as described above, as described above, It may further contain one or more of other components such as a binder, a plasticizer, a dispersant, an emulsifier, an antifoamer, a pH adjuster, and a lubricant. These components may be blended in preparing the powder.
- the resin include, for example, paraffin wax, polyvinyl alcohol, polyethylene, polypropylene, ethylene vinyl acetate copolymer, polystyrene, atactic polypropylene, methacrylic resin, fatty acids such as stearic acid, and the like.
- paraffin wax polyvinyl alcohol
- polyethylene polyethylene
- polypropylene polypropylene
- ethylene vinyl acetate copolymer polystyrene
- atactic polypropylene polystyrene
- methacrylic resin methacrylic resin
- methacrylic resin methacrylic resin
- fatty acids such as stearic acid
- composition containing the zirconia particles, the fluorescent agent and the resin may further contain at least one of the colorant and the light transmittance regulator as described above, or the plasticizer as described above, It may further contain one or more of other components such as dispersants, emulsifiers, antifoaming agents, pH adjusters, and lubricants.
- (V) Polymerization of a composition containing a polymerizable monomer By polymerizing a composition containing a zirconia particle, a fluorescent agent and a polymerizable monomer, the polymerizable monomer in the composition is polymerized to form a composition.
- the object can be cured.
- the specific method is not particularly limited.
- a composition containing (a) zirconia particles, a fluorescent agent and a polymerizable monomer is used as a mold (B) Photolithography (stereolithography; SLA) method using a composition containing (b) zirconia particles, a fluorescent agent and a polymerizable monomer can be adopted.
- the photofabrication method (b) is preferable.
- the optical shaping method it is possible to impart a shape corresponding to the desired shape in the finally obtained zirconia sintered body at the time of producing the zirconia molded body. Therefore, in particular, when the zirconia sintered body of the present invention is used as a dental material such as a dental prosthesis, the optical shaping method may be suitable.
- polymerizable monomer in the composition containing the above-mentioned zirconia particles, fluorescent agent and polymerizable monomer, and monofunctional (meth) acrylates, monofunctional (meth) acrylamides, etc.
- Any of multifunctional polymerizable monomers, and polyfunctional polymerizable monomers such as difunctional aromatic compounds, difunctional aliphatic compounds, and trifunctional or higher compounds May be
- a polymerizable monomer may be used individually by 1 type, and may use 2 or more types together. Among these, it is preferable to use a polyfunctional polymerizable monomer, particularly when adopting a stereolithography method.
- Examples of monofunctional (meth) acrylates include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6 (Meth) acrylates having a hydroxyl group such as -hydroxyhexyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, propylene glycol mono (meth) acrylate, glycerol mono (meth) acrylate, erythritol mono (meth) acrylate; Meta) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, t-b Alkyl (meth) acrylates such as decyl (meth) acrylate, is
- Examples of monofunctional (meth) acrylamides include (meth) acrylamide, N- (meth) acryloyl morpholine, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N- Di-n-propyl (meth) acrylamide, N, N-di-n-butyl (meth) acrylamide, N, N-di-n-hexyl (meth) acrylamide, N, N-di-n-octyl (meth) Acrylamide, N, N-di-2-ethylhexyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N, N-di (hydroxyethyl) (meth) acrylamide and the like.
- (meth) acrylamide is preferable in terms of excellent polymerizability, and N- (meth) acryloyl morpholine, N, N-dimethyl (meth) acrylamide, N, N- More preferred is diethyl (meth) acrylamide.
- difunctional aromatic compounds examples include 2,2-bis ((meth) acryloyloxyphenyl) propane and 2,2-bis [4- (3-acryloyloxy-2-hydroxypropoxy) phenyl] propane, 2,2-Bis [4- (3-methacryloyloxy-2-hydroxypropoxy) phenyl] propane (generally called “Bis-GMA”), 2,2-bis (4- (meth) acryloyloxyethoxyphenyl) propane, 2 , 2-Bis (4- (meth) acryloyloxypolyethoxyphenyl) propane, 2,2-bis (4- (meth) acryloyloxydiethoxyphenyl) propane, 2,2-bis (4- (meth) acryloyloxy) Tetraethoxyphenyl) propane, 2,2-bis (4- (meth) acryloyloxypentaethoxy) Phenyl) propane, 2,2-bis (4- (meth) acryloyloxydipropoxyphenyl) propane, 2- (4- (
- 2,2-bis [4- (3-methacryloyloxy-2-hydroxypropoxy) phenyl] propane (generally called “Bis-GMA”)
- 2,2-bis (4- (meth) acryloyloxypolyethoxyphenyl) propane (the average number of moles of ethoxy groups added is 2.6)
- the compound (generally called "D-2.6E”) is preferred.
- difunctional aliphatic compounds include glycerol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate Butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-Hexanediol di (meth) acrylate, 2-ethyl-1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) Acrylate, 1,2-bis (3-methacryloyl
- triethylene glycol dimethacrylate (generally called "TEGDMA"), 2,2,4-trimethylhexamethylene bis (2-carbamoyloxyethyl) dimethacrylate in that the polymerizability and strength of the obtained zirconia molded article are excellent. Is preferred.
- trifunctional or higher compounds examples include trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, trimethylolmethane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra ( Meta) acrylate, dipentaerythritol penta (meth) acrylate, N, N- (2,2,4-trimethylhexamethylene) bis [2- (aminocarboxy) propane-1,3-diol] tetra (meth) acrylate, 1,7-diacryloyloxy-2,2,6,6-tetra (meth) acryloyloxymethyl-4-oxyheptane and the like.
- N N- (2,2,4-trimethylhexamethylene) bis [2- (aminocarboxy) propane-1,3-diol] in that the polymerizability and the strength of the obtained zirconia molded article are excellent.
- Tetramethacrylate and 1,7-diacryloyloxy-2,2,6,6-tetraacryloyloxymethyl-4-oxyheptane are preferred.
- polymerization of the composition is preferably performed using a polymerization initiator, and the composition preferably further includes a polymerization initiator.
- a photoinitiator is especially preferable.
- the photopolymerization initiator can be appropriately selected from photopolymerization initiators used in the general industry, and among them, photopolymerization initiators used for dental use are preferable.
- the specific example of a photoinitiator is the same as that of what was mentioned above in description of gel casting, and it abbreviate
- composition containing the zirconia particle, the fluorescent agent and the polymerizable monomer may further contain at least one of the colorant and the light transmittance regulator as described above, as described above You may further contain 1 type, or 2 or more types of other components, such as a plasticizer, a dispersing agent, an emulsifier, an antifoamer, a pH adjuster, and a lubricant.
- a zirconia molded body by an optical shaping method using a composition containing a zirconia particle, a fluorescent agent and a polymerizable monomer
- a known method is appropriately adopted
- a liquid composition is photopolymerized by ultraviolet light, laser or the like to sequentially form each layer having a desired shape, and a method of obtaining a target zirconia molded body is adopted. be able to.
- the content of the zirconia particles in the composition containing the zirconia particles, the fluorescent agent and the polymerizable monomer is as large as possible from the viewpoint of sinterability later. Specifically, 20 mass% or more is preferable, 30 mass% or more is more preferable, 40 mass% or more is more preferable, and 50 mass% or more is particularly preferable.
- the viscosity of the composition is within a certain range from the principle of lamination molding, so that the content of zirconia particles in the composition is 90% by mass or less
- the content is preferably 80% by mass or less, more preferably 70% by mass or less, and particularly preferably 60% by mass or less.
- the viscosity of the composition is adjusted by irradiating a light from the lower side of the container through the bottom of the container to cure the layer to form a zirconia molded body one by one in a controlled liquid surface method. It may be particularly important to raise the cured layer by one layer and to allow the composition to flow smoothly between the lower surface of the cured layer and the bottom of the container to form the next layer. .
- the specific viscosity of the above composition is preferably 20,000 mPa ⁇ s or less, more preferably 10,000 mPa ⁇ s or less, and 5,000 mPa ⁇ s or less as the viscosity at 25 ° C. It is more preferable that the viscosity is 100 mPa ⁇ s or more.
- the viscosity tends to increase as the content of the zirconia particles increases. Therefore, according to the performance of the optical shaping apparatus used, the balance between the speed at the time of optical shaping and the accuracy of the obtained zirconia molded body It is preferable to appropriately adjust the balance between the content of the zirconia particles and the viscosity in the above composition while taking into consideration etc.
- the viscosity can be measured using an E-type viscometer.
- the zirconia calcined body of the present invention contains a fluorescent agent and contains 4.5 to 9.0 mol% of yttria, and has a three-point bending strength of 500 MPa or more after sintering at 1100 ° C. for 2 hours under normal pressure.
- the crystal grain size after sintering for 2 hours at 1100 ° C. under normal pressure is 180 nm or less.
- the zirconia calcined body of the present invention can be obtained by calcining a zirconia molded body formed from zirconia particles.
- the fluorescent agent contained in the zirconia calcined body of the present invention may be the same as the fluorescent agent contained in the obtained zirconia sintered body.
- the content of the fluorescent agent in the zirconia calcined body can be appropriately adjusted in accordance with the content of the fluorescent agent and the like in the obtained zirconia sintered body.
- the specific content of the fluorescent agent contained in the zirconia calcined body is 0.001% by mass or more in terms of the oxide of the metal element contained in the fluorescent agent with respect to the mass of zirconia contained in the zirconia calcined body Is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, and preferably 1% by mass or less Is more preferably 0.1% by mass or less.
- the zirconia sintered body contains a coloring agent
- the content of the colorant in the zirconia calcined body can be appropriately adjusted according to the content of the colorant in the obtained zirconia sintered body, and the like.
- the specific content of the colorant contained in the zirconia calcined body is 0.001% by mass or more in terms of the oxide of the metal element contained in the colorant with respect to the mass of zirconia contained in the zirconia calcined body Is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, and preferably 5% by mass or less, and 1% by mass or less More preferably, the content is 0.5% by mass or less, further preferably 0.1% by mass or less, and even 0.05% by mass or less.
- the zirconia sintered body contains the light transmission adjusting agent
- a light transmission adjusting agent is contained in the zirconia calcined body.
- the content of the light transmission adjusting agent in the zirconia calcined body can be appropriately adjusted in accordance with the content of the light transmission adjusting agent in the obtained zirconia sintered body, and the like.
- the specific content of the light transmittance adjusting agent contained in the zirconia calcined body is preferably 0.1% by mass or less with respect to the mass of zirconia contained in the zirconia calcined body.
- the content of yttria contained in the zirconia calcined body of the present invention may be the same as the content of yttria in the obtained zirconia sintered body, and the specific content of yttria in the zirconia calcined body is 4 .5 mol% or more, preferably 5.0 mol% or more, more preferably 5.5 mol% or more, and 9.0 mol% or less, 8.0 mol% or less Is preferably, and more preferably 7.0 mol% or less.
- the content of yttria in the zirconia calcined body means the ratio (mol%) of the number of moles of yttria to the total number of moles of zirconia and yttria.
- the density of the zirconia calcined body is not particularly limited, and may differ depending on the method of producing the zirconia molded body used for the production, etc., but preferably in the range of 3.0 to 6.0 g / m 3 , 3 More preferably, it is in the range of from 2 to 5.8 g / m 3 .
- the shape of the zirconia calcined body there is no particular limitation on the shape of the zirconia calcined body, and the desired shape can be made according to the application, but the handling property etc. when used as a mill blank for producing a dental material such as a dental prosthesis etc. When considering it, a disk shape, a prismatic shape (rectangular shape etc.) and the like are preferable.
- a disk shape, a prismatic shape (rectangular shape etc.) and the like are preferable.
- zirconia calcined body before making the zirconia calcined body into a zirconia sintered body, it can be made into a desired shape according to the application by cutting (milling), but in the present invention, such cutting (milling) Also included are zirconia calcined bodies having the later desired shape.
- the zirconia calcined body may have a single layer structure or a multilayer structure. By using a multilayer structure, the finally obtained zirconia sin
- the three-point bending strength of the zirconia calcined body is 10 to 70 MPa, from the viewpoint of being able to maintain the shape of the workpiece during processing using a cutting machine and also capable of easily performing cutting itself. It is preferably in the range, and more preferably in the range of 20 to 60 MPa.
- the three-point bending strength of the zirconia calcined body can be measured on a test piece of 5 mm ⁇ 40 mm ⁇ 10 mm using a universal testing machine under conditions of a span length of 30 mm and a crosshead speed of 0.5 mm / min. .
- the calcined zirconia body of the present invention has a crystal grain size of 180 nm or less after sintering (after being made into a zirconia sintered body) under normal pressure at 1100 ° C. for 2 hours. Thereby, the zirconia sintered body of the present invention excellent in light transmittance can be easily manufactured.
- the crystal grain size is preferably 140 nm or less, more preferably 120 nm or less, still more preferably 115 nm or less, and the like because a zirconia sintered body excellent in light transmittance can be obtained. It may be The lower limit of the crystal grain size is not particularly limited, but the crystal grain size may be, for example, 50 nm or more, and further 100 nm or more.
- the measuring method of the said crystal grain diameter is as having mentioned above as description of the crystal grain diameter in a zirconia sintered compact.
- the zirconia calcined body of the present invention has a three-point bending strength of 500 MPa or more after being sintered at 1100 ° C. for 2 hours under normal pressure (after being made into a zirconia sintered body).
- the three-point bending strength is preferably 600 MPa or more, more preferably 650 MPa or more, and still more preferably 700 MPa or more, since a zirconia sintered body having better strength can be obtained. Is particularly preferred.
- the upper limit of the three-point bending strength is not particularly limited, but the three-point bending strength can be, for example, 1,500 MPa or less, and further, 1,000 MPa or less.
- piece bending strength is as having mentioned above as description of 3 point
- the calcined zirconia body preferably has a transmittance of 40% or more of light having a wavelength of 700 nm at a thickness of 0.5 mm after being sintered at 1100 ° C. for 2 hours under normal pressure (after being made into a zirconia sintered body) .
- the transmittance is preferably 45% or more, and more preferably 46% or more, 48% or more, 50% or more, or 52% or more because a zirconia sintered body excellent in light transmittance can be obtained. It may be.
- the upper limit of the transmittance is not particularly limited, but the transmittance can be, for example, 60% or less, and further 57% or less.
- permeability is as having mentioned above as description of the transmittance
- the zirconia calcined body of the present invention can be obtained by calcining the above-mentioned zirconia molded body.
- the calcination temperature is preferably 300 ° C. or higher, more preferably 400 ° C. or higher, and still more preferably 500 ° C. or higher, from the viewpoint that the desired zirconia calcined body is easily obtained. Moreover, it is preferable that it is less than 900 degreeC, It is more preferable that it is 850 degrees C or less, It is more preferable that it is 800 degrees C or less.
- the calcination temperature is equal to or higher than the above lower limit, the generation of organic residue can be effectively suppressed. Moreover, it can suppress that sintering advances excessively and cutting (milling) with a cutting machine becomes difficult because calcination temperature is below the said upper limit.
- the temperature rising rate at the time of calcination is preferably 0.1 ° C./min or more, more preferably 0.2 ° C./min or more, and more preferably 0.5 ° C./min or more. It is more preferably 50 ° C./minute or less, more preferably 30 ° C./minute or less, and still more preferably 20 ° C./minute or less. Productivity is improved by the temperature rising rate being at least the above lower limit.
- the temperature rise rate is less than or equal to the above upper limit
- the volume difference between the inside and the outside of the zirconia molded body or the zirconia calcined body can be suppressed, and when the zirconia molded body contains an organic substance, the organic substance is rapidly decomposed Can be suppressed to suppress cracks and breakage.
- the calcining time for calcining the zirconia compact is not particularly limited, but the calcining time is 0.2. It is preferably 5 hours or more, more preferably 1 hour or more, further preferably 2 hours or more, and preferably 10 hours or less, more preferably 8 hours or less, More preferably, it is 6 hours or less.
- the calcination can be performed using a calcination furnace.
- a calcination furnace There is no restriction
- the zirconia sintered body of the present invention contains a fluorescent agent, it is particularly suitable as a dental material such as a dental prosthesis because it is excellent in both light transmittance and strength.
- a zirconia sintered body to be used it is possible to cut (mill) the zirconia calcined body into a corresponding shape.
- limiting in particular in the method of cutting (milling) For example, it can carry out using a well-known milling apparatus.
- the zirconia sintered body of the present invention can be produced by sintering a zirconia compact containing a fluorescent agent and containing 4.5 to 9.0 mol% of yttria under normal pressure, and It can also be manufactured by sintering a zirconia calcined body containing a fluorescent agent and containing 4.5 to 9.0 mol% of yttria under normal pressure.
- the sintering temperature is 900 ° C. or higher from the viewpoint that the target zirconia sintered body can be easily obtained, etc., in both of the case of sintering the zirconia molded body and the case of sintering the zirconia calcined body Is preferably 1000 ° C. or more, more preferably 1050 ° C. or more, and is preferably 1200 ° C. or less, more preferably 1150 ° C. or less, and 1120 ° C. or less Is more preferred.
- the sintering temperature is at least the above lower limit, sintering can be sufficiently advanced, and a dense sintered body can be easily obtained.
- the sintering temperature is equal to or less than the above upper limit, a zirconia sintered body having a crystal grain diameter within the range of the present invention can be easily obtained, and the deactivation of the fluorescent agent can be suppressed.
- the sintering time is not particularly limited in any of the case of sintering the zirconia molded body and the case of sintering the zirconia calcined body, but the target zirconia sintered body can be efficiently stably stabilized with high productivity
- the sintering time is preferably 5 minutes or more, more preferably 15 minutes or more, still more preferably 30 minutes or more, and it is 6 hours or less, because it can be obtained. Preferably, it is 4 hours or less, more preferably 2 hours or less.
- Sintering can be performed using a sintering furnace.
- a sintering furnace There is no restriction
- a dental porcelain furnace having a relatively low sintering temperature in addition to the conventional sintering furnace for dental zirconia.
- the zirconia sintered body of the present invention can be easily manufactured without hot isostatic pressing (HIP) treatment, but after hot sintering under normal pressure, hot isostatic pressing (HIP) treatment Can further improve the light transmission and the strength.
- HIP hot isostatic pressing
- the use of the zirconia sintered body according to the present invention is not particularly limited, but the zirconia sintered body according to the present invention is excellent in both light transmittance and strength despite containing a fluorescent agent, and therefore, it can be used as a dental prosthesis etc. In particular, they are extremely useful not only as dental prostheses used for the cervix, but also as dental prostheses used for the occlusal surface of the molar and the incisal end of the anterior teeth.
- the zirconia sintered body of the present invention is preferably used as a dental prosthesis particularly used for the front incisal end.
- the grain size of the zirconia sintered body is obtained by taking a field emission scanning electron microscope (FE-SEM) photograph of the cross section of the zirconia sintered body and selecting 10 arbitrary particles in the photographed image. And it calculated
- FE-SEM field emission scanning electron microscope
- f c represents the percentage (%) of cubic crystals in the zirconia sintered body
- Ratio of monoclinic crystal after hydrothermal treatment The ratio of monoclinic crystal to tetragonal crystal and cubic crystal after immersion in 180 ° C. hot water for 5 hours is the same as that of the zirconia sintered body. The surface was mirror-finished, and this was immersed in hot water of 180 ° C. for 5 hours, after which X-ray diffraction (XRD; X-Ray Diffraction) measurement was performed on the above portion, and the value was obtained from the following equation.
- XRD X-ray diffraction
- f m 100 ⁇ I m / (I t + c )
- f m represents the ratio (%) of tetraclinic crystal to cubic crystal after immersion in 180 ° C.
- Example 1 A dilute nitric acid solution of bismuth nitrate is used in an aqueous zirconia slurry “MELOx Nanosize 5Y” (MEL Chemicals, Inc., average primary particle diameter of zirconia particles 13 nm, zirconia concentration 23 mass%) containing 5 mol% of yttria. It was added so that the content in terms of oxide of bismuth (Bi 2 O 3 ) relative to the mass would be 0.02 mass%, to obtain a slurry for molding containing zirconia particles and a fluorescent agent. This was poured into a plaster mold and left at room temperature for 2 weeks to obtain a zirconia molded body.
- MELOx Nanosize 5Y MEL Chemicals, Inc.
- the gypsum type was prepared by mixing water with a plaster ("Noritake Dental Plaster", manufactured by Kurare Noritake Dental Co., Ltd.) at a mixing ratio of 50% by mass.
- the zirconia molded body was calcined at 700 ° C. for 2 hours under normal pressure to obtain a zirconia calcined body. Furthermore, this zirconia calcined body was sintered at 1100 ° C. for 2 hours under normal pressure to obtain a zirconia sintered body.
- the obtained zirconia sintered body was white and had fluorescence. The measurement results are shown in Table 1.
- Example 2 1.0 L of a mixed aqueous solution containing 0.62 mol / L of zirconium oxychloride and 0.066 mol / L of yttrium chloride and 0.5 L of a 1.9 mol / L aqueous solution of sodium hydroxide were respectively prepared. Into a precipitation tank, 1.0 L of pure water was poured, and then the above mixed aqueous solution and sodium hydroxide aqueous solution were simultaneously poured to co-precipitate zirconium oxychloride and yttrium chloride to obtain a slurry.
- a slurry for molding, a zirconia molded body, a zirconia calcined body and a zirconia sintered body were respectively obtained in the same manner as in Example 1 except that the above-obtained one was used as the zirconia slurry.
- the obtained zirconia sintered body was white and had fluorescence. The measurement results are shown in Table 1.
- Example 3 A zirconia slurry was obtained in the same manner as in Example 2 except that a mixed aqueous solution containing 0.62 mol / L of zirconium oxychloride and 0.072 mol / L of yttrium chloride was used as the mixed aqueous solution.
- the average primary particle diameter of the zirconia particles contained in the zirconia slurry was 17 nm.
- a slurry for molding, a zirconia molded body, a zirconia calcined body and a zirconia sintered body were respectively obtained in the same manner as in Example 1 except that the above-obtained one was used as the zirconia slurry.
- the obtained zirconia sintered body was white and had fluorescence. The measurement results are shown in Table 1.
- Example 4 A zirconia slurry was obtained in the same manner as in Example 2, except that a mixed aqueous solution containing 0.62 mol / L of zirconium oxychloride and 0.093 mol / L of yttrium chloride was used as the mixed aqueous solution.
- the average primary particle diameter of the zirconia particles contained in the zirconia slurry was 18 nm.
- a slurry for molding, a zirconia molded body, a zirconia calcined body and a zirconia sintered body were respectively obtained in the same manner as in Example 1 except that the above-obtained one was used as the zirconia slurry.
- the obtained zirconia sintered body was white and had fluorescence. The measurement results are shown in Table 1.
- Example 5 Example 1 and Example 1 except that a water-based zirconia slurry "MELOx Nanosize 8Y" (MEL Chemicals, manufactured by MEL Chemicals, average primary particle diameter of zirconia particles 13 nm, zirconia concentration 23 mass%) containing 8 mol% of yttria was used as a zirconia slurry Similarly, a slurry for molding, a zirconia molded body, a zirconia calcined body and a zirconia sintered body were obtained respectively. The obtained zirconia sintered body was white and had fluorescence. The measurement results are shown in Table 1.
- Example 1 except that an aqueous zirconia slurry "MELox Nanosize 5Y” (MEL Chemicals, Inc., average primary particle diameter of zirconia particles 13 nm, zirconia concentration 23 mass%) containing 5 mol% of yttria was used as it is as a molding slurry
- a zirconia molded body, a zirconia calcined body and a zirconia sintered body were obtained, respectively.
- the obtained zirconia sintered body was white but did not have fluorescence.
- Table 1 The measurement results are shown in Table 1.
- Example 2 A zirconia slurry was obtained in the same manner as in Example 2, except that a mixed aqueous solution containing 0.62 mol / L of zirconium oxychloride and 0.130 mol / L of yttrium chloride was used as the mixed aqueous solution. The average primary particle diameter of the zirconia particles contained in the zirconia slurry was 18 nm.
- a zirconia molded body, a zirconia calcined body and a zirconia sintered body were obtained in the same manner as in Example 1 except that this zirconia slurry was used as it is as a slurry for molding. The obtained zirconia sintered body was white but did not have fluorescence. The measurement results are shown in Table 1.
- Comparative Example 4 A powdery bismuth nitrate is used as a mass of zirconia based on an aqueous zirconia slurry “MELOx Nanosize 5Y” (MEL Chemicals, Inc., average primary particle diameter of zirconia particles 13 nm, zirconia concentration 23 mass%) containing 5 mol% of yttria
- the content of bismuth oxide (Bi 2 O 3 ) conversion with respect to is added so as to be 0.02% by mass, and the resultant is pulverized using a mortar to obtain a forming slurry containing zirconia particles and a fluorescent agent.
- a zirconia molded body, a zirconia calcined body and a zirconia sintered body were obtained in the same manner as in Example 1 except that the slurry obtained above was used as a slurry for molding.
- the obtained zirconia sintered body was white and had fluorescence. The measurement results are shown in Table 1.
- Example 6 An aqueous solution of nickel (II) is added to an aqueous zirconia slurry “MELOx Nanosize 5 Y” (MEL Chemicals, Inc., average primary particle diameter of zirconia particles 13 nm, zirconia concentration 23 mass%) containing 5 mol% of yttria It is added so that the content of oxide (NiO) conversion of nickel (II) to mass becomes 0.02 mass%, furthermore, the nitric acid solution of bismuth nitrate is added to the oxide of bismuth (Bi 2 O to mass of zirconia) 3 ) It was added so that the content in terms of conversion would be 0.02% by mass, to obtain a slurry for molding containing zirconia particles, a fluorescent agent and a colorant.
- MELOx Nanosize 5 Y MEL Chemicals, Inc., average primary particle diameter of zirconia particles 13 nm, zirconia concentration 23 mass%
- a zirconia molded body, a zirconia calcined body and a zirconia sintered body were obtained in the same manner as in Example 1 except that the slurry obtained above was used as a slurry for molding.
- the obtained zirconia sintered body was colored in red and also had fluorescence. The measurement results are shown in Table 2.
- Example 7 A dilute nitric acid solution of bismuth nitrate is used in an aqueous zirconia slurry “MELOx Nanosize 5Y” (MEL Chemicals, Inc., average primary particle diameter of zirconia particles 13 nm, zirconia concentration 23 mass%) containing 5 mol% of yttria. It is added so that the content in terms of oxide (Bi 2 O 3 ) in terms of bismuth with respect to mass is 0.02 mass%, and then tetramethyl ammonium hydroxide is added as a pH adjuster, and citric acid trihydrate is added as a dispersant. Ammonium was added.
- agarose was added as a gelling agent to form a forming slurry containing zirconia particles, a fluorescent agent, a pH adjuster, a dispersant and a gelling agent.
- the molding slurry was poured into a polypropylene mold and dried at room temperature for 16 days to obtain a zirconia molded body.
- the zirconia molded body was calcined at 700 ° C. for 2 hours under normal pressure to obtain a zirconia calcined body.
- this zirconia calcined body was sintered at 1100 ° C. for 2 hours under normal pressure to obtain a zirconia sintered body.
- the obtained zirconia sintered body was white and had fluorescence.
- the measurement results are shown in Table 2.
- Example 8 A dilute nitric acid solution of bismuth nitrate is used with respect to 100 parts by weight of a water-based zirconia slurry "MELOx Nanosize 5Y" (MEL Chemicals, Inc., average primary particle diameter of zirconia particles 13 nm, zirconia concentration 23% by mass) containing 5 mol% of yttria It was added so that the content in terms of oxide of bismuth (Bi 2 O 3 ) relative to the mass of zirconia was 0.02 mass%. Subsequently, 50 parts by mass of 2-ethoxyethanol was added as a dispersion medium replacement operation, and the mixture was concentrated to a total amount of 100 parts by mass using a rotary evaporator.
- MELOx Nanosize 5Y MEL Chemicals, Inc., average primary particle diameter of zirconia particles 13 nm, zirconia concentration 23% by mass
- the above-mentioned dispersion medium substitution operation was repeated four times to obtain a 2-ethoxyethanol-substituted slurry.
- the residual water content of this 2-ethoxyethanol-substituted slurry was measured using a Karl Fischer moisture meter and found to be 0.05% by mass.
- This 2-ethoxyethanol-substituted slurry is dried using a spray dryer (B-290 manufactured by Nippon Buchi) at a feed rate of 5 mL / min, an inlet temperature of 150 ° C., and an outlet temperature of 100 ° C. to obtain zirconia particles and a fluorescent agent A powder containing was obtained.
- the obtained powder is formed into a plate of 80 mm ⁇ 40 mm ⁇ 10 mm and a disk of 15 mm in diameter ⁇ 1.5 mm in thickness by a uniaxial press, respectively, and these are subjected to cold isostatic pressing (CIP) treatment (pressure 170 MPa) ) To increase the density to obtain a zirconia molded body.
- CIP cold isostatic pressing
- These zirconia compacts were calcined at 700 ° C. for 2 hours under normal pressure to obtain zirconia calcined bodies. Furthermore, these zirconia calcined bodies were sintered at 1100 ° C. for 2 hours under normal pressure to obtain a zirconia sintered body.
- the obtained zirconia sintered body was white and had fluorescence.
- Example 9 To a water-based zirconia slurry “MELOx Nanosize 5Y” (MEL Chemicals, Inc., average primary particle diameter of zirconia particles 13 nm, zirconia concentration 23 mass%) containing 5 mol% of yttria, 9 volumes of isopropanol of the zirconia slurry is added, This was placed in a centrifuge tube, mixed well, and centrifuged at 4000 rpm for 10 minutes. After confirming the precipitation of the white matter, the supernatant was removed, isopropanol was again added to this, mixed well, and centrifuged at 4000 rpm for 10 minutes.
- MELOx Nanosize 5Y MEL Chemicals, Inc.
- the supernatant was removed, and methanol was added thereto to make it have the same volume as the zirconia slurry used, and the mixture was sufficiently mixed to obtain a methanol-substituted slurry.
- the residual water content of this methanol-substituted slurry was measured using a Karl Fischer moisture meter and found to be 0.08 mass%.
- a dilute nitric acid solution of bismuth nitrate is added to the obtained methanol-substituted slurry so that the content in terms of bismuth oxide (Bi 2 O 3 ) relative to the mass of zirconia becomes 0.02 mass%, A slurry containing particles and a fluorescent agent was obtained.
- a zirconia molded body, a zirconia calcined body and a zirconia sintered body were obtained in the same manner as in Example 8 except that the powder obtained above was used as a powder.
- the obtained zirconia sintered body was white and had fluorescence. The measurement results are shown in Table 2.
- Example 10 An aqueous solution of bismuth hydroxide is added to 100 parts by mass of a water-based zirconia slurry "MELOx Nanosize 8Y” (MEL Chemicals, Inc., average primary particle diameter of zirconia particles 13 nm, zirconia concentration 23% by mass) containing 8 mol% of yttria It was added so that the content in terms of oxide of bismuth (Bi 2 O 3 ) was 0.02% by mass with respect to the mass of zirconia. Subsequently, 50 parts by mass of 2-ethoxyethanol was added as a dispersion medium replacement operation, and the mixture was concentrated to a total amount of 100 parts by mass using a rotary evaporator.
- MELOx Nanosize 8Y MEL Chemicals, Inc., average primary particle diameter of zirconia particles 13 nm, zirconia concentration 23% by mass
- the above-mentioned dispersion medium substitution operation was repeated four times to obtain a 2-ethoxyethanol-substituted slurry.
- the residual water content of this 2-ethoxyethanol-substituted slurry was measured using a Karl Fischer moisture meter and found to be 0.04 mass%.
- This 2-ethoxyethanol-substituted slurry is dried using a spray dryer (B-290 manufactured by Nippon Buchi) at a feed rate of 5 mL / min, an inlet temperature of 150 ° C., and an outlet temperature of 100 ° C. to obtain zirconia particles and a fluorescent agent A powder containing was obtained.
- a zirconia molded body, a zirconia calcined body and a zirconia sintered body were obtained in the same manner as in Example 8 except that the powder obtained above was used as a powder.
- the obtained zirconia sintered body was white and had fluorescence. The measurement results are shown in Table 2.
- Example 11 A dilute nitric acid solution of bismuth nitrate is used in an aqueous zirconia slurry “MELOx Nanosize 5Y” (MEL Chemicals, Inc., average primary particle diameter of zirconia particles 13 nm, zirconia concentration 23 mass%) containing 5 mol% of yttria. It was added so that the content in terms of oxide of bismuth (Bi 2 O 3 ) relative to mass was 0.02 mass%. Then, 9 volumes of isopropanol of the used zirconia slurry were added, this was put into a centrifuge tube, mixed well, and centrifuged at 4000 rpm for 10 minutes.
- MELOx Nanosize 5Y MEL Chemicals, Inc.
- the obtained tert-butyl alcohol substituted slurry was transferred to an aluminum vat, and immersed in liquid nitrogen in a dewar to freeze the tert-butyl alcohol substituted slurry.
- the frozen tert-butyl alcohol substituted slurry is allowed to stand in a lyophilizer precooled to -40 ° C, the pressure in the lyophilizer is reduced to 130 Pa or less by a vacuum pump, and the temperature in the lyophilizer is changed to -10 ° C. did.
- the internal temperature was checked by inserting a temperature sensor into and out of the aluminum bat.
- Example 12 A dilute nitric acid solution of bismuth nitrate is used in an aqueous zirconia slurry “MELOx Nanosize 5Y” (MEL Chemicals, Inc., average primary particle diameter of zirconia particles 13 nm, zirconia concentration 23 mass%) containing 5 mol% of yttria. It was added so that the content in terms of oxide of bismuth (Bi 2 O 3 ) relative to mass was 0.02 mass%. Then, 9 volumes of isopropanol of the used zirconia slurry were added, this was put into a centrifuge tube, mixed well, and centrifuged at 4000 rpm for 10 minutes.
- MELOx Nanosize 5Y MEL Chemicals, Inc.
- the resulting methanol-substituted slurry was supercritically dried using a supercritical drying apparatus according to the following procedure. That is, the methanol-substituted slurry was placed in a pressure vessel, and the pressure vessel was connected to a supercritical carbon dioxide extractor to confirm that there was no pressure leakage. Thereafter, the pressure vessel and the preheating pipe were immersed in a water bath heated to 60 ° C., and the temperature was raised to 80 ° C., and then pressurized to 25 MPa, and left for 10 minutes for stabilization.
- carbon dioxide and methanol as an entrainer are introduced under predetermined conditions (temperature: 80 ° C., pressure: 25 MPa, carbon dioxide flow rate: 10 mL / min, entrainer (methanol) flow rate: 1.5 mL / min)
- entrainer (methanol) flow rate 1.5 mL / min
- the introduction of methanol was stopped, and the introduction of only carbon dioxide was continued.
- the carbon dioxide feed was stopped, and while maintaining the temperature at 80 ° C., the pressure was gradually lowered from 25 MPa over about 20 minutes to return to normal pressure.
- the pressure vessel was removed from the water bath, cooled to room temperature, opened, and the treated sample was recovered to obtain a powder containing zirconia particles and a fluorescent agent.
- a zirconia molded body, a zirconia calcined body and a zirconia sintered body were obtained in the same manner as in Example 8 except that the powder obtained above was used as a powder.
- the obtained zirconia sintered body was white and had fluorescence. The measurement results are shown in Table 3.
- Example 13 1.0 L of mixed aqueous solution containing 0.62 mol / L of zirconium oxychloride and 0.065 mol / L of yttrium chloride, and 0.5 L of 1.9 mol / L of sodium hydroxide aqueous solution were respectively prepared.
- a precipitation tank 1.0 L of pure water was poured, and then the above mixed aqueous solution and sodium hydroxide aqueous solution were simultaneously poured to co-precipitate zirconium oxychloride and yttrium chloride to obtain a slurry.
- a dilute nitric acid solution of bismuth nitrate was added to 100 parts by mass of the obtained zirconia slurry such that the content in terms of oxide of bismuth (Bi 2 O 3 ) relative to the mass of zirconia was 0.02 mass% .
- 50 parts by mass of 2-ethoxyethanol was added as a dispersion medium replacement operation, and the mixture was concentrated to a total amount of 100 parts by mass using a rotary evaporator.
- the above-mentioned dispersion medium substitution operation was repeated four times to obtain a 2-ethoxyethanol-substituted slurry.
- the residual water content of this 2-ethoxyethanol-substituted slurry was measured using a Karl Fischer moisture meter, and was 0.06 mass%.
- a powder comprising a zirconia particle and a fluorescent agent, a zirconia compact, a zirconia calcined body and a zirconia in the same manner as in Example 12 except that the 2-ethoxyethanol-substituted slurry obtained above was used instead of the methanol-substituted slurry.
- Each sintered body was obtained.
- the obtained zirconia sintered body was white and had fluorescence.
- the measurement results are shown in Table 3.
- Example 14 An aqueous solution of nickel (II) nitrate is added to 100 parts by mass of a water-based zirconia slurry "MELOx Nanosize 5Y” (MEL Chemicals, Inc., average primary particle diameter of zirconia particles 13 nm, zirconia concentration 23% by mass) containing 5 mol% of yttria , The content of nickel (II) oxide (NiO) conversion relative to the mass of zirconia is 0.02 mass%, and further, a dilute nitric acid solution of bismuth nitrate is added to the oxide of bismuth (based on the mass of zirconia It was added so that the content in terms of Bi 2 O 3 ) would be 0.02 mass%.
- MELOx Nanosize 5Y MEL Chemicals, Inc., average primary particle diameter of zirconia particles 13 nm, zirconia concentration 23% by mass
- a body and a zirconia sintered body were obtained respectively.
- the obtained zirconia sintered body was colored in red and also had fluorescence. The measurement results are shown in Table 3.
- Example 15 An aqueous solution of europium acetate relative to the mass of zirconia, based on an aqueous zirconia slurry “MELOx Nanosize 5 Y” (MEL Chemicals, Inc., average primary particle diameter of zirconia particles 13 nm, zirconia concentration 23 mass%) containing 5 mol% of yttria the content of the oxide (Eu 2 O 3) in terms were added to a 0.02 mass%. Then, 9 volumes of isopropanol of the used zirconia slurry were added, this was put into a centrifuge tube, mixed well, and centrifuged at 4000 rpm for 10 minutes.
- MELOx Nanosize 5 Y MEL Chemicals, Inc.
- a powder containing a zirconia particle and a fluorescent agent, a zirconia molded body, a zirconia calcined body and a zirconia sintered body were respectively obtained in the same manner as in Example 12 except that the above obtained slurry was used as a methanol-substituted slurry. .
- the obtained zirconia sintered body was white and had fluorescence. The measurement results are shown in Table 3.
- Example 16 30 parts by mass of polyvinyl alcohol is added to 50 parts by mass of the powder containing the zirconia particles and the fluorescent agent obtained in the same manner as in Example 12 and kneaded to obtain a composition containing the zirconia particles, the fluorescent agent and the resin.
- the composition was injection molded using an injection molding machine to obtain a zirconia molded body.
- the zirconia molded body was calcined at 700 ° C. for 2 hours under normal pressure to obtain a zirconia calcined body.
- this zirconia calcined body was sintered at 1100 ° C. for 2 hours under normal pressure to obtain a zirconia sintered body.
- the obtained zirconia sintered body was white and had fluorescence.
- Table 3 The measurement results are shown in Table 3.
- Example 17 30 parts by mass of 2-hydroxyethyl methacrylate, 5 parts by mass of 10-methacryloyloxydecyl dihydrogen phosphate, and 50 parts by mass of a powder containing a zirconia particle and a fluorescent agent obtained in the same manner as in Example 12;
- a composition containing zirconia particles, a fluorescent agent, a polymerizable monomer and a photopolymerization initiator is obtained by adding 1 part by mass of 2,4,6-trimethyl benzoyl diphenyl phosphine oxide as an agent in the dark and kneading. Obtained.
- the composition was placed in a mold and polymerized using a UV irradiator to obtain a zirconia molded body.
- the zirconia molded body was calcined at 700 ° C. for 2 hours under normal pressure to obtain a zirconia calcined body. Furthermore, this zirconia calcined body was sintered at 1100 ° C. for 2 hours under normal pressure to obtain a luconia sintered body. The obtained zirconia sintered body was white and had fluorescence. The measurement results are shown in Table 3.
- Example 18 Propylene as an organic solvent with respect to 100 parts by mass of a water-based zirconia slurry "MELOx Nanosize 5Y” (MEL Chemicals, Inc., average primary particle diameter of zirconia particles 13 nm, zirconia concentration 23% by mass) containing 5 mol% of yttria 80 parts by mass of glycol monomethyl ether acetate (generally called “PGMEA”) and 6 parts by mass of 2- (2- (2-methoxyethoxy) ethoxy) acetic acid (generally called “MEEAA”) as a surface treatment agent to form a mixture
- PGMEA glycol monomethyl ether acetate
- MEEAA 2- (2- (2-methoxyethoxy) ethoxy
- Toluene was added to the residue, followed by vacuum distillation in the same manner as described above to distill water, PGMEA and toluene as an azeotropic mixture.
- the operation of adding toluene to the residue and distilling off the azeotropic mixture was repeated several times to remove water sufficiently to obtain a flowable clear slurry containing 45% by mass of zirconia particles.
- the main component of the dispersion medium in this slurry is PGMEA.
- TEGDMA triethylene glycol dimethacrylate
- 2,2,4-trimethylhexamethylene bis (2-carbamoyloxyethyl) dimethacrylate [2 based on 20 parts by mass of the obtained slurry
- TPO trimethyl benzoyl diphenyl phosphine oxide
- a dilute hydrochloric acid solution of bismuth acetate acetic acid as a fluorescent agent is further added and mixed so that the content in terms of bismuth oxide (Bi 2 O 3 ) relative to the mass of zirconia becomes 0.01 mass%, and zirconia particles are mixed.
- the viscosity (measured with an E-type viscometer) at 25 ° C. of this composition was 2,500 mPa ⁇ s.
- the obtained zirconia molded body was calcined under normal pressure using an electric furnace ("Katana F" manufactured by Kuraray Noritake Dental Co., Ltd.) to obtain a zirconia calcined body.
- the calcination is performed by raising the temperature from room temperature to 200 ° C. at a rate of 0.3 ° C./min, and then increasing the temperature from 200 ° C. to 260 ° C. at a rate of 0.1 ° C./min. This was done by raising the temperature from 260 ° C. to 400 ° C. at a rate of 1 / minute.
- the zirconia calcined body was put again into an electric furnace, and was sintered under normal pressure by raising the temperature to 1050 ° C. at a rate of 60 ° C./hour to obtain a dense zirconia sintered body.
- the obtained zirconia sintered body was white and had fluorescence.
- the measurement results are shown in Table 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Dentistry (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Plastic & Reconstructive Surgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Dental Prosthetics (AREA)
Abstract
Description
そこで本発明は、蛍光剤を含むにもかかわらず、透光性および強度が共に優れたジルコニア焼結体、このようなジルコニア焼結体を与えることのできるジルコニア成形体およびジルコニア仮焼体、ならびに、これらを簡便に製造することのできる製造方法を提供することを目的とする。
〔1〕 蛍光剤を含むジルコニア焼結体であって、イットリアを4.5~9.0モル%含み、結晶粒径が180nm以下であり、3点曲げ強さが500MPa以上である、ジルコニア焼結体。
〔2〕 蛍光剤が金属元素を含み、蛍光剤の含有量がジルコニアの質量に対して金属元素の酸化物換算で0.001~1質量%である、〔1〕に記載のジルコニア焼結体。
〔3〕 厚さ0.5mmにおける波長700nmの光の透過率が40%以上である、〔1〕または〔2〕に記載のジルコニア焼結体。
〔4〕 主結晶相が立方晶である、〔1〕~〔3〕のいずれかに記載のジルコニア焼結体。
〔5〕 180℃熱水中に5時間浸漬させた後の正方晶および立方晶に対する単斜晶の割合が5%以下である、〔1〕~〔4〕のいずれかに記載のジルコニア焼結体。
〔6〕 歯科材料である、〔1〕~〔5〕のいずれかに記載のジルコニア焼結体。
〔7〕 臼歯咬合面用補綴物または前歯切端部用補綴物である、〔6〕に記載のジルコニア焼結体。
〔8〕 蛍光剤を含むジルコニア成形体であって、イットリアを4.5~9.0モル%含み、常圧下、1100℃で2時間焼結した後の3点曲げ強さが500MPa以上であり、常圧下、1100℃で2時間焼結した後の結晶粒径が180nm以下である、ジルコニア成形体。
〔9〕 ジルコニア粒子から形成されたものである、〔8〕に記載のジルコニア成形体。
〔10〕 蛍光剤が金属元素を含み、蛍光剤の含有量がジルコニアの質量に対して金属元素の酸化物換算で0.001~1質量%である、〔8〕または〔9〕に記載のジルコニア成形体。
〔11〕 常圧下、1100℃で2時間焼結した後の厚さ0.5mmにおける波長700nmの光の透過率が40%以上である、〔8〕~〔10〕のいずれかに記載のジルコニア成形体。
〔12〕 蛍光剤を含むジルコニア仮焼体であって、イットリアを4.5~9.0モル%含み、常圧下、1100℃で2時間焼結した後の3点曲げ強さが500MPa以上であり、常圧下、1100℃で2時間焼結した後の結晶粒径が180nm以下である、ジルコニア仮焼体。
〔13〕 ジルコニア粒子から形成されたジルコニア成形体が仮焼されてなるものである、〔12〕に記載のジルコニア仮焼体。
〔14〕 蛍光剤が金属元素を含み、蛍光剤の含有量がジルコニアの質量に対して金属元素の酸化物換算で0.001~1質量%である、〔12〕または〔13〕に記載のジルコニア仮焼体。
〔15〕 常圧下、1100℃で2時間焼結した後の厚さ0.5mmにおける波長700nmの光の透過率が40%以上である、〔12〕~〔14〕のいずれかに記載のジルコニア仮焼体。
〔16〕 〔8〕~〔11〕のいずれかに記載のジルコニア成形体の製造方法であって、ジルコニア粒子を成形する成形工程を有し、当該ジルコニア粒子は、イットリアを4.5~9.0モル%含み、平均一次粒子径が20nm以下である、製造方法。
〔17〕 ジルコニア粒子を含むスラリーと液体状態の蛍光剤とを混合する工程をさらに有する、〔16〕に記載の製造方法。
〔18〕 成形工程が、ジルコニア粒子および蛍光剤を含むスラリーをスリップキャスティングする工程である、〔16〕または〔17〕に記載の製造方法。
〔19〕 成形工程が、ジルコニア粒子および蛍光剤を含むスラリーをゲルキャスティングする工程である、〔16〕または〔17〕に記載の製造方法。
〔20〕 成形工程が、ジルコニア粒子および蛍光剤を含む粉末をプレス成形する工程である、〔16〕または〔17〕に記載の製造方法。
〔21〕 成形工程が、ジルコニア粒子、蛍光剤および樹脂を含む組成物を成形する工程である、〔16〕または〔17〕に記載の製造方法。
〔22〕 成形工程が、ジルコニア粒子、蛍光剤および重合性単量体を含む組成物を重合させる工程である、〔16〕または〔17〕に記載の製造方法。
〔23〕 成形工程が光造形工程である、〔22〕に記載の製造方法。
〔24〕 〔12〕~〔15〕のいずれかに記載のジルコニア仮焼体の製造方法であって、〔8〕~〔11〕のいずれかに記載のジルコニア成形体、または、〔16〕~〔23〕のいずれかに記載の製造方法により得られるジルコニア成形体を仮焼する工程を有する、製造方法。
〔25〕 300℃以上900℃未満で仮焼する、〔24〕に記載の製造方法。
〔26〕 〔1〕~〔7〕のいずれかに記載のジルコニア焼結体の製造方法であって、〔8〕~〔11〕のいずれかに記載のジルコニア成形体、または、〔16〕~〔23〕のいずれかに記載の製造方法により得られるジルコニア成形体を常圧下で焼結する工程を有する、製造方法。
〔27〕 900℃以上1200℃以下で焼結する、〔26〕に記載の製造方法。
〔28〕 〔1〕~〔7〕のいずれかに記載のジルコニア焼結体の製造方法であって、〔12〕~〔15〕のいずれかに記載のジルコニア仮焼体、または、〔24〕または〔25〕に記載の製造方法により得られるジルコニア仮焼体を常圧下で焼結する工程を有する、製造方法。
〔29〕 900℃以上1200℃以下で焼結する、〔28〕に記載の製造方法。
本発明のジルコニア焼結体は蛍光剤を含む。ジルコニア焼結体が蛍光剤を含むことにより蛍光性を有する。蛍光剤の種類に特に制限はなく、いずれかの波長の光で蛍光を発することのできるもののうちの1種または2種以上を用いることができる。このような蛍光剤としては金属元素を含むものが挙げられる。当該金属元素としては、例えば、Ga、Bi、Ce、Nd、Sm、Eu、Gd、Tb、Dy、Tmなどが挙げられる。蛍光剤はこれらの金属元素のうちの1種を単独で含んでいてもよく、2種以上を含んでいてもよい。これらの金属元素の中でも、本発明の効果がより顕著に奏されることなどから、Ga、Bi、Eu、Gd、Tmが好ましく、Bi、Euがより好ましい。本発明のジルコニア焼結体を製造する際に使用される蛍光剤としては、例えば、上記金属元素の酸化物、水酸化物、酢酸塩、硝酸塩などが挙げられる。また蛍光剤は、Y2SiO5:Ce、Y2SiO5:Tb、(Y,Gd,Eu)BO3、Y2O3:Eu、YAG:Ce、ZnGa2O4:Zn、BaMgAl10O17:Euなどであってもよい。
fc = 100 × Ic/(Im+It+Ic)
ここで、fcはジルコニア焼結体における立方晶の割合(%)を表し、Imは2θ=28度付近のピーク(単斜晶の(11-1)面に基づくピーク)の高さを表し、Itは2θ=30度付近のピーク(正方晶の(111)面に基づくピーク)の高さを表し、Icは2θ=30度付近のピーク(立方晶の(111)面に基づくピーク)の高さを表す。なお、2θ=30度付近のピークが、正方晶の(111)面および立方晶の(111)面の混相に基づくピークとして現れ、正方晶の(111)面に基づくピークと立方晶の(111)面に基づくピークとの分離が困難な場合には、リートベルト法を採用するなどして正方晶と立方晶の比を求めた上で、これを当該混相に基づくピークの高さ(It+c)に乗じることにより、ItおよびIcを求めることができる。
fm = 100 × Im/(It+c)
ここで、fmはジルコニア焼結体における、180℃熱水中に5時間浸漬させた後の正方晶および立方晶に対する単斜晶の割合(%)を表し、Imは2θ=28度付近のピーク(単斜晶の(11-1)面に基づくピーク)の高さを表し、It+cは2θ=30度付近のピーク(正方晶の(111)面および立方晶の(111)面の混相に基づくピーク)の高さを表す。なお、2θ=30度付近のピークが、正方晶の(111)面に基づくピークと立方晶の(111)面に基づくピークとに分離して現れ、上記It+cを特定するのが困難な場合には、正方晶の(111)面に基づくピークの高さ(It)と立方晶の(111)面に基づくピークの高さ(Ic)との和を上記It+cとすることができる。
本発明のジルコニア成形体は、蛍光剤を含むと共に、イットリアを4.5~9.0モル%含み、常圧下、1100℃で2時間焼結した後の3点曲げ強さが500MPa以上であり、常圧下、1100℃で2時間焼結した後の結晶粒径が180nm以下である。本発明のジルコニア成形体は、ジルコニア粒子から形成することができる。
本発明のジルコニア成形体の製造方法に特に制限はないが、透光性および強度が共に優れた本発明のジルコニア焼結体を容易に得ることができることから、ジルコニア粒子を成形する成形工程を有する方法により製造することが好ましく、蛍光剤の存在下にジルコニア粒子を成形する成形工程を有する方法により製造することがより好ましい。
(i)ジルコニア粒子および蛍光剤を含むスラリーをスリップキャスティングする工程;
(ii)ジルコニア粒子および蛍光剤を含むスラリーをゲルキャスティングする工程;
(iii)ジルコニア粒子および蛍光剤を含む粉末をプレス成形する工程;
(iv)ジルコニア粒子、蛍光剤および樹脂を含む組成物を成形する工程;および
(v)ジルコニア粒子、蛍光剤および重合性単量体を含む組成物を重合させる工程;
のうちのいずれかであることが好ましい。
ジルコニア粒子および蛍光剤を含むスラリーの調製方法に特に制限はなく、例えば、ジルコニア粒子を含むスラリーと蛍光剤とを混合することにより得ることができる。使用されるジルコニア粒子を含むスラリーは、上記したブレークダウンプロセスやビルディングアッププロセスを経て得られるものであってもよいし、市販のものであってもよい。
ジルコニア粒子および蛍光剤を含む粉末の調製方法に特に制限はなく、粉末状のジルコニア粒子と粉末状の蛍光剤とをドライブレンドして製造することもできるが(ここで、ジルコニア成形体、ひいてはジルコニア仮焼体およびジルコニア焼結体に着色剤および/または透光性調整剤を含ませる場合には、着色剤および/または透光性調整剤をさらにドライブレンドしてもよい)、より均一で物性に優れたジルコニア焼結体を得ることができることなどから、上記したジルコニア粒子および蛍光剤を含むスラリーを乾燥させることによって得ることが好ましい。ここで乾燥に供される当該スラリーは、着色剤および/または透光性調整剤をさらに含んでいてもよい。
なお、蛍光剤は、分散媒を置換した後に添加してもよいが、より均一で物性に優れたジルコニア焼結体を得ることができることなどから、分散媒を置換する前に添加することが好ましい。同様に、スラリーに着色剤および/または透光性調整剤を含ませる場合には、分散媒を置換した後に添加してもよいが、より均一で物性に優れたジルコニア焼結体を得ることができることなどから、分散媒を置換する前に添加することが好ましい。
ジルコニア粒子、蛍光剤および樹脂を含む組成物の調製方法に特に制限はなく、例えば、上記のジルコニア粒子および蛍光剤を含む粉末と樹脂とを混合することにより得ることができる。
ジルコニア粒子、蛍光剤および重合性単量体を含む組成物の調製方法に特に制限はなく、例えば、上記のジルコニア粒子および蛍光剤を含む粉末と重合性単量体とを混合することにより得ることができる。
ジルコニア粒子および蛍光剤を含むスラリーをスリップキャスティングする工程を有する方法によりジルコニア成形体を製造する場合において、スリップキャスティングの具体的な方法に特に制限はなく、例えば、ジルコニア粒子および蛍光剤を含むスラリーを型に流し込んだ後に乾燥させる方法を採用することができる。
ジルコニア粒子および蛍光剤を含むスラリーをゲルキャスティングする工程を有する方法によりジルコニア成形体を製造する場合において、ゲルキャスティングの具体的な方法に特に制限はなく、例えば、ジルコニア粒子および蛍光剤を含むスラリーを型内でゲル化させるなどして賦形された湿潤体を得た後に、これを乾燥させる方法を採用することができる。
ジルコニア粒子および蛍光剤を含む粉末をプレス成形する工程を有する方法によりジルコニア成形体を製造する場合において、プレス成形の具体的な方法に特に制限はなく、公知のプレス成形機を用いて行うことができる。プレス成形の具体的な方法としては、例えば、一軸プレスなどが挙げられる。また、得られるジルコニア成形体の密度を上げるため、一軸プレスした後に冷間等方圧加圧(CIP)処理をさらに施すことが好ましい。
ジルコニア粒子、蛍光剤および樹脂を含む組成物を成形する工程を有する方法によりジルコニア成形体を製造する場合において、当該組成物を成形するための具体的な方法に特に制限はなく、例えば、射出成形、注型成形、押出成形などを採用することができる。また、当該組成物を熱溶解法(FDM)で造形する方法、インクジェット法、粉末/バインダー積層法等の積層造形法(3Dプリンティング等)を採用してもよい。これらの成形方法の中でも、射出成形および注型成形が好ましく、射出成形がより好ましい。
ジルコニア粒子、蛍光剤および重合性単量体を含む組成物を重合させることにより、当該組成物中の重合性単量体が重合して組成物を硬化させることができる。当該重合させる工程を有する方法によりジルコニア成形体を製造する場合において、その具体的な方法に特に制限はなく、例えば、(a)ジルコニア粒子、蛍光剤および重合性単量体を含む組成物を型内で重合させる方法;(b)ジルコニア粒子、蛍光剤および重合性単量体を含む組成物を用いる光造形(ステレオリソグラフィー;SLA)法などを採用することができる。これらの中でも、(b)の光造形法が好ましい。光造形法によれば、最終的に得られるジルコニア焼結体における所望の形状に対応した形状をジルコニア成形体を製造する時点で付与することができる。そのため、特に本発明のジルコニア焼結体を歯科用補綴物等の歯科材料として用いる場合などにおいて、当該光造形法が好適な場合がある。
本発明のジルコニア仮焼体は、蛍光剤を含むと共に、イットリアを4.5~9.0モル%含み、常圧下、1100℃で2時間焼結した後の3点曲げ強さが500MPa以上であり、常圧下、1100℃で2時間焼結した後の結晶粒径が180nm以下である。本発明のジルコニア仮焼体は、ジルコニア粒子から形成されたジルコニア成形体が仮焼されてなるものとすることができる。
本発明のジルコニア仮焼体は、上記したジルコニア成形体を仮焼することにより得ることができる。仮焼温度は、目的とするジルコニア仮焼体が容易に得られるなどの観点から、300℃以上であることが好ましく、400℃以上であることがより好ましく、500℃以上であることがさらに好ましく、また、900℃未満であることが好ましく、850℃以下であることがより好ましく、800℃以下であることがさらに好ましい。仮焼温度が上記下限以上であることにより、有機物の残渣の発生を効果的に抑制することができる。また、仮焼温度が上記上限以下であることにより、焼結が過剰に進行して切削加工機での切削(ミリング)が困難になるのを抑制することができる。
上記のとおり、本発明のジルコニア焼結体は、蛍光剤を含むと共にイットリアを4.5~9.0モル%含むジルコニア成形体を常圧下で焼結することにより製造することができ、また、蛍光剤を含むと共にイットリアを4.5~9.0モル%含むジルコニア仮焼体を常圧下で焼結することにより製造することもできる。
本発明のジルコニア焼結体の用途に特に制限はないが、本発明のジルコニア焼結体は、蛍光剤を含むにもかかわらず、透光性および強度が共に優れることから、歯科用補綴物等の歯科材料などとして特に好適であり、中でも、歯頸部に使用される歯科用補綴物のみならず、臼歯咬合面や前歯切端部に使用される歯科用補綴物としても極めて有用である。本発明のジルコニア焼結体は、特に前歯切端部に使用される歯科用補綴物として使用することが好ましい。
ジルコニア粒子を透過型電子顕微鏡(TEM)にて写真撮影し、得られた画像上で任意の粒子100個について各粒子の粒子径(最大径)を測定し、それらの平均値をジルコニア粒子の平均一次粒子径とした。
ジルコニア焼結体における結晶粒径は、ジルコニア焼結体断面の電界放出型走査電子顕微鏡(FE-SEM)写真を撮影し、その撮影画像にある任意の粒子を10個選択し、各々の円相当径(同一面積の真円の直径)の平均値として求めた。
ジルコニア焼結体の3点曲げ強さは、JIS R 1601:2008に準拠して測定した。
ジルコニア焼結体の厚さ0.5mmにおける波長700nmの光の透過率は、分光光度計(株式会社日立ハイテクノロジーズ製、「日立分光光度計 U-3900H形」)を用い、光源より発生した光を試料に透過および散乱させ、積分球を利用して測定した。当該測定においては、一旦、300~750nmの波長領域で透過率を測定した上で、波長700nmの光についての透過率を求めた。測定には、両面を鏡面研磨加工した直径15mm×厚さ0.5mmの円盤形状のジルコニア焼結体を試料として用いた。
ジルコニア焼結体における立方晶の割合は結晶相の解析によって求めた。具体的には、ジルコニア焼結体の表面を鏡面加工した部分について、X線回折(XRD;X-Ray Diffraction)測定を行い、以下の式から求めた。
fc = 100 × Ic/(Im+It+Ic)
ここで、fcはジルコニア焼結体における立方晶の割合(%)を表し、Imは2θ=28度付近のピーク(単斜晶の(11-1)面に基づくピーク)の高さを表し、Itは2θ=30度付近のピーク(正方晶の(111)面に基づくピーク)の高さを表し、Icは2θ=30度付近のピーク(立方晶の(111)面に基づくピーク)の高さを表す。
ジルコニア焼結体の、180℃熱水中に5時間浸漬させた後の正方晶および立方晶に対する単斜晶の割合は、ジルコニア焼結体の表面を鏡面加工し、これを180℃の熱水中に5時間浸漬させた後、上記部分について、X線回折(XRD;X-Ray Diffraction)測定を行い、以下の式から求めた。
fm = 100 × Im/(It+c)
ここで、fmはジルコニア焼結体における、180℃熱水中に5時間浸漬させた後の正方晶および立方晶に対する単斜晶の割合(%)を表し、Imは2θ=28度付近のピーク(単斜晶の(11-1)面に基づくピーク)の高さを表し、It+cは2θ=30度付近のピーク(正方晶の(111)面および立方晶の(111)面の混相に基づくピーク)の高さを表す。
ジルコニア焼結体の外観(色)は目視にて評価した。
ジルコニア焼結体の蛍光性はUV光下における蛍光の有無を目視にて評価した。
イットリアを5モル%含む水系のジルコニアスラリー「MELox Nanosize 5Y」(MEL Chemicals社製、ジルコニア粒子の平均一次粒子径13nm、ジルコニア濃度23質量%)に対して、硝酸ビスマスの希硝酸溶液を、ジルコニアの質量に対するビスマスの酸化物(Bi2O3)換算の含有量が0.02質量%となるように添加して、ジルコニア粒子および蛍光剤を含む成形用スラリーとした。
これを石膏型に流し込み、2週間室温にて放置し、ジルコニア成形体を得た。なお石膏型は、石膏(「ノリタケデンタルプラスター」、クラレノリタケデンタル株式会社製)に混水率50質量%で水を混和して作製した。このジルコニア成形体を常圧下、700℃で2時間仮焼してジルコニア仮焼体を得た。さらに、このジルコニア仮焼体を常圧下、1100℃で2時間焼結してジルコニア焼結体を得た。得られたジルコニア焼結体は白色であり、また蛍光性を有していた。各測定結果を表1に示した。
また、上記と同様にして作製したジルコニア仮焼体に対して、ミリング装置(「カタナH-18」、クラレノリタケデンタル株式会社製)を用いて、上顎中切歯単冠形状および下顎第一大臼歯単冠形状のジルコニア仮焼体をそれぞれ切削し、これらを常圧下、1100℃で2時間焼結して、蛍光性を有する歯冠形状の歯科用補綴物をそれぞれ得た。
0.62モル/Lのオキシ塩化ジルコニウムおよび0.066モル/Lの塩化イットリウムを含む混合水溶液1.0Lと、1.9モル/Lの水酸化ナトリウム水溶液0.5Lをそれぞれ準備した。
沈殿槽内に純水1.0Lを注ぎ、さらに上記混合水溶液と水酸化ナトリウム水溶液とを同時に注ぎ、オキシ塩化ジルコニウムと塩化イットリウムを共沈させてスラリーを得た。これを濾過および洗浄し、固形分濃度(ジルコニアとイットリアの濃度)が5.0質量%となるように純水を加えてスラリー1.0Lを得た。その後、酢酸22.2gを上記スラリーに加え、200℃で3時間水熱処理し、ジルコニアスラリーを得た。このジルコニアスラリーに含まれるジルコニア粒子の平均一次粒子径は17nmであった。
また、上記と同様にして作製したジルコニア仮焼体に対して、ミリング装置(「カタナH-18」、クラレノリタケデンタル株式会社製)を用いて、上顎中切歯単冠形状および下顎第一大臼歯単冠形状のジルコニア仮焼体をそれぞれ切削し、これらを常圧下、1100℃で2時間で焼結して、蛍光性を有する歯冠形状の歯科用補綴物をそれぞれ得た。
混合水溶液として、0.62モル/Lのオキシ塩化ジルコニウムおよび0.072モル/Lの塩化イットリウムを含む混合水溶液を用いたこと以外は実施例2と同様にしてジルコニアスラリーを得た。このジルコニアスラリーに含まれるジルコニア粒子の平均一次粒子径は17nmであった。
ジルコニアスラリーとして上記で得られたものを用いたこと以外は実施例1と同様にして、成形用スラリー、ジルコニア成形体、ジルコニア仮焼体およびジルコニア焼結体をそれぞれ得た。得られたジルコニア焼結体は白色であり、また蛍光性を有していた。各測定結果を表1に示した。
混合水溶液として、0.62モル/Lのオキシ塩化ジルコニウムおよび0.093モル/Lの塩化イットリウムを含む混合水溶液を用いたこと以外は実施例2と同様にしてジルコニアスラリーを得た。このジルコニアスラリーに含まれるジルコニア粒子の平均一次粒子径は18nmであった。
ジルコニアスラリーとして上記で得られたものを用いたこと以外は実施例1と同様にして、成形用スラリー、ジルコニア成形体、ジルコニア仮焼体およびジルコニア焼結体をそれぞれ得た。得られたジルコニア焼結体は白色であり、また蛍光性を有していた。各測定結果を表1に示した。
ジルコニアスラリーとして、イットリアを8モル%含む水系のジルコニアスラリー「MELox Nanosize 8Y」(MEL Chemicals社製、ジルコニア粒子の平均一次粒子径13nm、ジルコニア濃度23質量%)を用いたこと以外は実施例1と同様にして、成形用スラリー、ジルコニア成形体、ジルコニア仮焼体およびジルコニア焼結体をそれぞれ得た。得られたジルコニア焼結体は白色であり、また蛍光性を有していた。各測定結果を表1に示した。
イットリアを5モル%含む水系のジルコニアスラリー「MELox Nanosize 5Y」(MEL Chemicals社製、ジルコニア粒子の平均一次粒子径13nm、ジルコニア濃度23質量%)をそのまま成形用スラリーとして用いたこと以外は実施例1と同様にして、ジルコニア成形体、ジルコニア仮焼体およびジルコニア焼結体をそれぞれ得た。得られたジルコニア焼結体は白色であったが蛍光性を有していなかった。各測定結果を表1に示した。
混合水溶液として、0.62モル/Lのオキシ塩化ジルコニウムおよび0.130モル/Lの塩化イットリウムを含む混合水溶液を用いたこと以外は実施例2と同様にしてジルコニアスラリーを得た。このジルコニアスラリーに含まれるジルコニア粒子の平均一次粒子径は18nmであった。
このジルコニアスラリーをそのまま成形用スラリーとして用いたこと以外は実施例1と同様にして、ジルコニア成形体、ジルコニア仮焼体およびジルコニア焼結体をそれぞれ得た。得られたジルコニア焼結体は白色であったが蛍光性を有していなかった。各測定結果を表1に示した。
ジルコニア粒子の粉末「TZ-8YS」(東ソー株式会社製、平均一次粒子径300nm)を一軸プレスにて80mm×40mm×10mmの板状および直径15mm×厚さ1.5mmの円盤状にそれぞれ成形し、これらを冷間等方圧加圧(CIP)処理(圧力170MPa)して密度を上げてジルコニア成形体を得た。これらのジルコニア成形体を常圧下、700℃で2時間仮焼してジルコニア仮焼体を得た。さらに、これらのジルコニア仮焼体を常圧下、1500℃で2時間焼結してジルコニア焼結体を得た。得られたジルコニア焼結体は白色であったが蛍光性を有していなかった。各測定結果を表1に示した。
イットリアを5モル%含む水系のジルコニアスラリー「MELox Nanosize 5Y」(MEL Chemicals社製、ジルコニア粒子の平均一次粒子径13nm、ジルコニア濃度23質量%)に対して、粉末状の硝酸ビスマスを、ジルコニアの質量に対するビスマスの酸化物(Bi2O3)換算の含有量が0.02質量%となるように添加し、乳鉢を用いて粉砕して、ジルコニア粒子および蛍光剤を含む成形用スラリーとした。
成形用スラリーとして上記で得られたものを用いたこと以外は実施例1と同様にして、ジルコニア成形体、ジルコニア仮焼体およびジルコニア焼結体をそれぞれ得た。得られたジルコニア焼結体は白色であり、また蛍光性を有していた。各測定結果を表1に示した。
イットリアを5モル%含む水系のジルコニアスラリー「MELox Nanosize 5Y」(MEL Chemicals社製、ジルコニア粒子の平均一次粒子径13nm、ジルコニア濃度23質量%)に対して、硝酸ニッケル(II)水溶液を、ジルコニアの質量に対するニッケル(II)の酸化物(NiO)換算の含有量が0.02質量%となるように添加し、さらに硝酸ビスマスの希硝酸溶液を、ジルコニアの質量に対するビスマスの酸化物(Bi2O3)換算の含有量が0.02質量%となるように添加して、ジルコニア粒子、蛍光剤および着色剤を含む成形用スラリーとした。
成形用スラリーとして上記で得られたものを用いたこと以外は実施例1と同様にして、ジルコニア成形体、ジルコニア仮焼体およびジルコニア焼結体をそれぞれ得た。得られたジルコニア焼結体は赤色に着色しており、また蛍光性を有していた。各測定結果を表2に示した。
イットリアを5モル%含む水系のジルコニアスラリー「MELox Nanosize 5Y」(MEL Chemicals社製、ジルコニア粒子の平均一次粒子径13nm、ジルコニア濃度23質量%)に対して、硝酸ビスマスの希硝酸溶液を、ジルコニアの質量に対するビスマスの酸化物(Bi2O3)換算の含有量が0.02質量%となるように添加し、次いで、pH調整剤として水酸化テトラメチルアンモニウムを添加し、分散剤としてクエン酸三アンモニウムを添加した。この混合物を加熱撹拌しながら、ゲル化剤としてアガロースを添加して、ジルコニア粒子、蛍光剤、pH調整剤、分散剤およびゲル化剤を含む成形用スラリーとした。
この成形用スラリーをポリプロピレン製の型に流し込み、室温で16日間乾燥させてジルコニア成形体を得た。このジルコニア成形体を常圧下、700℃で2時間仮焼してジルコニア仮焼体を得た。さらに、このジルコニア仮焼体を常圧下、1100℃で2時間焼結してジルコニア焼結体を得た。得られたジルコニア焼結体は白色であり、また蛍光性を有していた。各測定結果を表2に示した。
イットリアを5モル%含む水系のジルコニアスラリー「MELox Nanosize 5Y」(MEL Chemicals社製、ジルコニア粒子の平均一次粒子径13nm、ジルコニア濃度23質量%)100質量部に対して、硝酸ビスマスの希硝酸溶液を、ジルコニアの質量に対するビスマスの酸化物(Bi2O3)換算の含有量が0.02質量%となるように添加した。続いて分散媒置換操作として、2-エトキシエタノール50質量部を加え、ロータリーエバポレーターを用いて総量100質量部になるように濃縮した。上記分散媒置換操作を4回繰り返して2-エトキシエタノール置換スラリーを得た。この2-エトキシエタノール置換スラリーの残存水分量をカールフィッシャー水分量計を用いて測定したところ0.05質量%であった。
この2-エトキシエタノール置換スラリーを送り量5mL/分、入口温度150℃、出口温度100℃の条件でスプレードライヤー(日本ビュッヒ社製、B-290)を用いて乾燥して、ジルコニア粒子および蛍光剤を含む粉末を得た。
また、上記と同様にして作製したジルコニア仮焼体に対して、ミリング装置(「カタナH-18」、クラレノリタケデンタル株式会社製)を用いて、上顎中切歯単冠形状および下顎第一大臼歯単冠形状のジルコニア仮焼体をそれぞれ切削し、これらを常圧下、1100℃で2時間焼結して、蛍光性を有する歯冠形状の歯科用補綴物をそれぞれ得た。
イットリアを5モル%含む水系のジルコニアスラリー「MELox Nanosize 5Y」(MEL Chemicals社製、ジルコニア粒子の平均一次粒子径13nm、ジルコニア濃度23質量%)に、当該ジルコニアスラリーの9体積倍のイソプロパノールを加え、これを遠沈管に入れて十分に混合し、4000rpmで10分間遠心した。白色物の沈降を確認した上で上清を取り除き、これに再度イソプロパノールを加えて十分に混合し、4000rpmで10分間遠心した。白色物の沈降を確認した上で上清を取り除き、これにメタノールを加えることによって使用したジルコニアスラリーと同体積となるようにし、さらに十分に混合してメタノール置換スラリーを得た。このメタノール置換スラリーの残存水分量をカールフィッシャー水分量計を用いて測定したところ0.08質量%であった。
得られたメタノール置換スラリーに対して、硝酸ビスマスの希硝酸溶液を、ジルコニアの質量に対するビスマスの酸化物(Bi2O3)換算の含有量が0.02質量%となるように添加し、ジルコニア粒子および蛍光剤を含むスラリーを得た。これを送り量5mL/分、入口温度150℃、出口温度100℃の条件でスプレードライヤー(日本ビュッヒ社製、B-290)を用いて乾燥して、ジルコニア粒子および蛍光剤を含む粉末を得た。
イットリアを8モル%含む水系のジルコニアスラリー「MELox Nanosize 8Y」(MEL Chemicals社製、ジルコニア粒子の平均一次粒子径13nm、ジルコニア濃度23質量%)100質量部に対して、水酸化ビスマスの水溶液を、ジルコニアの質量に対するビスマスの酸化物(Bi2O3)換算の含有量が0.02質量%となるように添加した。続いて分散媒置換操作として、2-エトキシエタノール50質量部を加え、ロータリーエバポレーターを用いて総量100質量部になるように濃縮した。上記分散媒置換操作を4回繰り返して2-エトキシエタノール置換スラリーを得た。この2-エトキシエタノール置換スラリーの残存水分量をカールフィッシャー水分量計を用いて測定したところ0.04質量%であった。
この2-エトキシエタノール置換スラリーを送り量5mL/分、入口温度150℃、出口温度100℃の条件でスプレードライヤー(日本ビュッヒ社製、B-290)を用いて乾燥して、ジルコニア粒子および蛍光剤を含む粉末を得た。
粉末として上記で得られたものを用いたこと以外は実施例8と同様にして、ジルコニア成形体、ジルコニア仮焼体およびジルコニア焼結体をそれぞれ得た。得られたジルコニア焼結体は白色であり、また蛍光性を有していた。各測定結果を表2に示した。
イットリアを5モル%含む水系のジルコニアスラリー「MELox Nanosize 5Y」(MEL Chemicals社製、ジルコニア粒子の平均一次粒子径13nm、ジルコニア濃度23質量%)に対して、硝酸ビスマスの希硝酸溶液を、ジルコニアの質量に対するビスマスの酸化物(Bi2O3)換算の含有量が0.02質量%となるように添加した。続いて、使用したジルコニアスラリーの9体積倍のイソプロパノールを加え、これを遠沈管に入れて十分に混合し、4000rpmで10分間遠心した。白色物の沈降を確認した上で上清を取り除き、これに再度イソプロパノールを加えて十分に混合し、4000rpmで10分間遠心した。白色物の沈降を確認した上で上清を取り除き、これにtert-ブチルアルコールを加えることによって使用したジルコニアスラリーと同体積となるようにし、さらに十分に混合してtert-ブチルアルコール置換スラリーを得た。このtert-ブチルアルコール置換スラリーの残存水分量をカールフィッシャー水分量計を用いて測定したところ0.05質量%であった。
粉末として上記で得られたものを用いたこと以外は実施例8と同様にして、ジルコニア成形体、ジルコニア仮焼体およびジルコニア焼結体をそれぞれ得た。得られたジルコニア焼結体は白色であり、また蛍光性を有していた。各測定結果を表2に示した。
イットリアを5モル%含む水系のジルコニアスラリー「MELox Nanosize 5Y」(MEL Chemicals社製、ジルコニア粒子の平均一次粒子径13nm、ジルコニア濃度23質量%)に対して、硝酸ビスマスの希硝酸溶液を、ジルコニアの質量に対するビスマスの酸化物(Bi2O3)換算の含有量が0.02質量%となるように添加した。続いて、使用したジルコニアスラリーの9体積倍のイソプロパノールを加え、これを遠沈管に入れて十分に混合し、4000rpmで10分間遠心した。白色物の沈降を確認した上で上清を取り除き、これに再度イソプロパノールを加えて十分に混合し、4000rpmで10分間遠心した。白色物の沈降を確認した上で上清を取り除き、これにメタノールを加えることによって使用したジルコニアスラリーと同体積となるようにし、さらに十分に混合してメタノール置換スラリーを得た。
粉末として上記で得られたものを用いたこと以外は実施例8と同様にして、ジルコニア成形体、ジルコニア仮焼体およびジルコニア焼結体をそれぞれ得た。得られたジルコニア焼結体は白色であり、また蛍光性を有していた。各測定結果を表3に示した。
0.62モル/Lのオキシ塩化ジルコニウムおよび0.065モル/Lの塩化イットリウムを含む混合水溶液1.0Lと、1.9モル/Lの水酸化ナトリウム水溶液0.5Lをそれぞれ準備した。
沈殿槽内に純水1.0Lを注ぎ、さらに上記混合水溶液と水酸化ナトリウム水溶液とを同時に注ぎ、オキシ塩化ジルコニウムと塩化イットリウムを共沈させてスラリーを得た。これを濾過および洗浄し、固形分濃度(ジルコニアとイットリアの濃度)が5.0質量%となるように純水を加えてスラリー1.0Lを得た。その後、酢酸22.2gを上記スラリーに加え、200℃で3時間水熱処理し、ジルコニアスラリーを得た。このジルコニアスラリーに含まれるジルコニア粒子の平均一次粒子径は18nmであった。
メタノール置換スラリーの代わりに上記で得られた2-エトキシエタノール置換スラリーを用いたこと以外は実施例12と同様にして、ジルコニア粒子および蛍光剤を含む粉末、ジルコニア成形体、ジルコニア仮焼体およびジルコニア焼結体をそれぞれ得た。得られたジルコニア焼結体は白色であり、また蛍光性を有していた。各測定結果を表3に示した。
イットリアを5モル%含む水系のジルコニアスラリー「MELox Nanosize 5Y」(MEL Chemicals社製、ジルコニア粒子の平均一次粒子径13nm、ジルコニア濃度23質量%)100質量部に対して、硝酸ニッケル(II)水溶液を、ジルコニアの質量に対するニッケル(II)の酸化物(NiO)換算の含有量が0.02質量%となるように添加し、さらに硝酸ビスマスの希硝酸溶液を、ジルコニアの質量に対するビスマスの酸化物(Bi2O3)換算の含有量が0.02質量%となるように添加した。続いて分散媒置換操作として、2-エトキシエタノール50質量部を加え、ロータリーエバポレーターを用いて総量100質量部になるように濃縮した。上記分散媒置換操作を4回繰り返して2-エトキシエタノール置換スラリーを得た。この2-エトキシエタノール置換スラリーの残存水分量をカールフィッシャー水分量計を用いて測定したところ0.02質量%であった。
メタノール置換スラリーの代わりに上記で得られた2-エトキシエタノール置換スラリーを用いたこと以外は実施例12と同様にして、ジルコニア粒子、蛍光剤および着色剤を含む粉末、ジルコニア成形体、ジルコニア仮焼体およびジルコニア焼結体をそれぞれ得た。得られたジルコニア焼結体は赤色に着色しており、また蛍光性を有していた。各測定結果を表3に示した。
イットリアを5モル%含む水系のジルコニアスラリー「MELox Nanosize 5Y」(MEL Chemicals社製、ジルコニア粒子の平均一次粒子径13nm、ジルコニア濃度23質量%)に対して、酢酸ユーロピウム水溶液を、ジルコニアの質量に対するユーロピウムの酸化物(Eu2O3)換算の含有量が0.02質量%となるように添加した。続いて、使用したジルコニアスラリーの9体積倍のイソプロパノールを加え、これを遠沈管に入れて十分に混合し、4000rpmで10分間遠心した。白色物の沈降を確認した上で上清を取り除き、これに再度イソプロパノールを加えて十分に混合し、4000rpmで10分間遠心した。白色物の沈降を確認した上で上清を取り除き、これにメタノールを加えることによって使用したジルコニアスラリーと同体積となるようにし、さらに十分に混合してメタノール置換スラリーを得た。このメタノール置換スラリーの残存水分量をカールフィッシャー水分量計を用いて測定したところ0.08質量%であった。
また、上記と同様にして作製したジルコニア仮焼体に対して、ミリング装置(「カタナH-18」、クラレノリタケデンタル株式会社製)を用いて、上顎中切歯単冠形状および下顎第一大臼歯単冠形状のジルコニア仮焼体をそれぞれ切削し、これらを常圧下、1100℃で2時間焼結して、蛍光性を有する歯冠形状の歯科用補綴物をそれぞれ得た。
実施例12と同様にして得られたジルコニア粒子および蛍光剤を含む粉末50質量部にポリビニルアルコールを30質量部添加して練和することで、ジルコニア粒子、蛍光剤および樹脂を含む組成物を得た。
この組成物を射出成形機を用いて射出成形してジルコニア成形体を得た。このジルコニア成形体を常圧下、700℃で2時間仮焼してジルコニア仮焼体を得た。さらに、このジルコニア仮焼体を常圧下、1100℃で2時間焼結してジルコニア焼結体を得た。得られたジルコニア焼結体は白色であり、また蛍光性を有していた。各測定結果を表3に示した。
実施例12と同様にして得られたジルコニア粒子および蛍光剤を含む粉末50質量部に、2-ヒドロキシエチルメタクリレート30質量部、10-メタクリロイルオキシデシルジハイドロジェンホスフェート5質量部、および、光重合開始剤として2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド1質量部を暗室下で添加して練和することで、ジルコニア粒子、蛍光剤、重合性単量体および光重合開始剤を含む組成物を得た。
この組成物を型に入れ、UV照射器を用いて重合させて、ジルコニア成形体を得た。このジルコニア成形体を常圧下、700℃で2時間仮焼してジルコニア仮焼体を得た。さらに、このジルコニア仮焼体を常圧下、1100℃で2時間焼結してルコニア焼結体を得た。得られたジルコニア焼結体は白色であり、また蛍光性を有していた。各測定結果を表3に示した。
(1)イットリアを5モル%含む水系のジルコニアスラリー「MELox Nanosize 5Y」(MEL Chemicals社製、ジルコニア粒子の平均一次粒子径13nm、ジルコニア濃度23質量%)100質量部に対して、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート(通称「PGMEA」)80質量部、および、表面処理剤として2-(2-(2-メトキシエトキシ)エトキシ)酢酸(通称「MEEAA」)6質量部を加えて混合物とし、これを丸底フラスコに移してロータリーエバポレーターを用いて減圧留去を行い、水およびPGMEAを約60質量部留出させた。残渣にトルエンを加えて、引き続き、上記と同様に減圧留去を行って、水とPGMEAとトルエンを共沸混合物として留出させた。残渣にトルエンを加えて共沸混合物を留出させる操作を数回繰り返すことで水を十分に取り除き、ジルコニア粒子を45質量%含む流動性のある透明なスラリーを得た。このスラリーにおける分散媒の主成分はPGMEAである。
Claims (29)
- 蛍光剤を含むジルコニア焼結体であって、イットリアを4.5~9.0モル%含み、結晶粒径が180nm以下であり、3点曲げ強さが500MPa以上である、ジルコニア焼結体。
- 蛍光剤が金属元素を含み、蛍光剤の含有量がジルコニアの質量に対して金属元素の酸化物換算で0.001~1質量%である、請求項1に記載のジルコニア焼結体。
- 厚さ0.5mmにおける波長700nmの光の透過率が40%以上である、請求項1または2に記載のジルコニア焼結体。
- 主結晶相が立方晶である、請求項1~3のいずれかに記載のジルコニア焼結体。
- 180℃熱水中に5時間浸漬させた後の正方晶および立方晶に対する単斜晶の割合が5%以下である、請求項1~4のいずれかに記載のジルコニア焼結体。
- 歯科材料である、請求項1~5のいずれかに記載のジルコニア焼結体。
- 臼歯咬合面用補綴物または前歯切端部用補綴物である、請求項6に記載のジルコニア焼結体。
- 蛍光剤を含むジルコニア成形体であって、イットリアを4.5~9.0モル%含み、常圧下、1100℃で2時間焼結した後の3点曲げ強さが500MPa以上であり、常圧下、1100℃で2時間焼結した後の結晶粒径が180nm以下である、ジルコニア成形体。
- ジルコニア粒子から形成されたものである、請求項8に記載のジルコニア成形体。
- 蛍光剤が金属元素を含み、蛍光剤の含有量がジルコニアの質量に対して金属元素の酸化物換算で0.001~1質量%である、請求項8または9に記載のジルコニア成形体。
- 常圧下、1100℃で2時間焼結した後の厚さ0.5mmにおける波長700nmの光の透過率が40%以上である、請求項8~10のいずれかに記載のジルコニア成形体。
- 蛍光剤を含むジルコニア仮焼体であって、イットリアを4.5~9.0モル%含み、常圧下、1100℃で2時間焼結した後の3点曲げ強さが500MPa以上であり、常圧下、1100℃で2時間焼結した後の結晶粒径が180nm以下である、ジルコニア仮焼体。
- ジルコニア粒子から形成されたジルコニア成形体が仮焼されてなるものである、請求項12に記載のジルコニア仮焼体。
- 蛍光剤が金属元素を含み、蛍光剤の含有量がジルコニアの質量に対して金属元素の酸化物換算で0.001~1質量%である、請求項12または13に記載のジルコニア仮焼体。
- 常圧下、1100℃で2時間焼結した後の厚さ0.5mmにおける波長700nmの光の透過率が40%以上である、請求項12~14のいずれかに記載のジルコニア仮焼体。
- 請求項8~11のいずれかに記載のジルコニア成形体の製造方法であって、ジルコニア粒子を成形する成形工程を有し、当該ジルコニア粒子は、イットリアを4.5~9.0モル%含み、平均一次粒子径が20nm以下である、製造方法。
- ジルコニア粒子を含むスラリーと液体状態の蛍光剤とを混合する工程をさらに有する、請求項16に記載の製造方法。
- 成形工程が、ジルコニア粒子および蛍光剤を含むスラリーをスリップキャスティングする工程である、請求項16または17に記載の製造方法。
- 成形工程が、ジルコニア粒子および蛍光剤を含むスラリーをゲルキャスティングする工程である、請求項16または17に記載の製造方法。
- 成形工程が、ジルコニア粒子および蛍光剤を含む粉末をプレス成形する工程である、請求項16または17に記載の製造方法。
- 成形工程が、ジルコニア粒子、蛍光剤および樹脂を含む組成物を成形する工程である、請求項16または17に記載の製造方法。
- 成形工程が、ジルコニア粒子、蛍光剤および重合性単量体を含む組成物を重合させる工程である、請求項16または17に記載の製造方法。
- 成形工程が光造形工程である、請求項22に記載の製造方法。
- 請求項12~15のいずれかに記載のジルコニア仮焼体の製造方法であって、請求項8~11のいずれかに記載のジルコニア成形体、または、請求項16~23のいずれかに記載の製造方法により得られるジルコニア成形体を仮焼する工程を有する、製造方法。
- 300℃以上900℃未満で仮焼する、請求項24に記載の製造方法。
- 請求項1~7のいずれかに記載のジルコニア焼結体の製造方法であって、請求項8~11のいずれかに記載のジルコニア成形体、または、請求項16~23のいずれかに記載の製造方法により得られるジルコニア成形体を常圧下で焼結する工程を有する、製造方法。
- 900℃以上1200℃以下で焼結する、請求項26に記載の製造方法。
- 請求項1~7のいずれかに記載のジルコニア焼結体の製造方法であって、請求項12~15のいずれかに記載のジルコニア仮焼体、または、請求項24または25に記載の製造方法により得られるジルコニア仮焼体を常圧下で焼結する工程を有する、製造方法。
- 900℃以上1200℃以下で焼結する、請求項28に記載の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/635,424 US11401461B2 (en) | 2017-07-31 | 2018-07-27 | Zirconia sintered body containing fluorescent agent |
CN201880050557.2A CN110891921A (zh) | 2017-07-31 | 2018-07-27 | 包含荧光剂的氧化锆烧结体 |
JP2019534476A JP7138107B2 (ja) | 2017-07-31 | 2018-07-27 | 蛍光剤を含むジルコニア焼結体 |
KR1020207005159A KR102657206B1 (ko) | 2017-07-31 | 2018-07-27 | 형광제를 포함하는 지르코니아 소결체 |
EP18840387.7A EP3663272A4 (en) | 2017-07-31 | 2018-07-27 | ZIRCONIA SINTERED BODY CONTAINING A FLUORESCENT AGENT |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-147544 | 2017-07-31 | ||
JP2017147544 | 2017-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019026809A1 true WO2019026809A1 (ja) | 2019-02-07 |
Family
ID=65233952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/028323 WO2019026809A1 (ja) | 2017-07-31 | 2018-07-27 | 蛍光剤を含むジルコニア焼結体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11401461B2 (ja) |
EP (1) | EP3663272A4 (ja) |
JP (1) | JP7138107B2 (ja) |
KR (1) | KR102657206B1 (ja) |
CN (1) | CN110891921A (ja) |
WO (1) | WO2019026809A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020179876A1 (ja) * | 2019-03-06 | 2020-09-10 | クラレノリタケデンタル株式会社 | 高い直線光透過率を有するジルコニア焼結体 |
JPWO2021153211A1 (ja) * | 2020-01-27 | 2021-08-05 | ||
CN113490468A (zh) * | 2019-03-06 | 2021-10-08 | 可乐丽则武齿科株式会社 | 能够在短时间内进行烧成的氧化锆成形体和预烧体 |
JP2021175698A (ja) * | 2020-05-01 | 2021-11-04 | クラレノリタケデンタル株式会社 | 蛍光性ジルコニア焼結体を作製可能なジルコニア仮焼体 |
WO2023127794A1 (ja) | 2021-12-27 | 2023-07-06 | クラレノリタケデンタル株式会社 | 歯科用硬化性組成物及び基材と樹脂層を含む歯科用補綴物 |
JP7517913B2 (ja) | 2020-08-31 | 2024-07-17 | クラレノリタケデンタル株式会社 | ジルコニア仮焼体の製造方法 |
US12145888B2 (en) * | 2019-03-06 | 2024-11-19 | Kuraray Noritake Dental Inc. | Zirconia molded body and pre-sintered body capable of being sintered in short time |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11161789B2 (en) * | 2018-08-22 | 2021-11-02 | James R. Glidewell Dental Ceramics, Inc. | Highly translucent zirconia material, device, methods of making the same, and use thereof |
EP3977959B1 (de) * | 2020-09-30 | 2024-07-31 | Ivoclar Vivadent AG | Verfahren zur herstellung eines dentalen formkörpers |
CN113105232A (zh) * | 2020-10-10 | 2021-07-13 | 深圳爱尔创口腔技术有限公司 | 氧化锆组合物、氧化锆预烧体及制备方法、氧化锆烧结体及制备方法和氧化锆牙科制品 |
CN113101230A (zh) * | 2021-03-03 | 2021-07-13 | 深圳爱尔创口腔技术有限公司 | 氧化锆组合物、荧光氧化锆及制备方法和氧化锆牙科制品 |
CN113087524B (zh) * | 2021-04-14 | 2022-06-07 | 上海交通大学 | 一种纳米氧化锆球形粉体及其制备方法 |
CN117858856A (zh) * | 2021-08-25 | 2024-04-09 | 义获嘉伟瓦登特公司 | 用于制备氧化锆颗粒的方法 |
CN114436650B (zh) * | 2022-02-23 | 2023-03-17 | 山东国瓷功能材料股份有限公司 | 氧化锆组合物、氧化锆烧结体、牙科修复体及制备方法 |
CN115231919A (zh) * | 2022-06-29 | 2022-10-25 | 辽宁爱尔创生物材料有限公司 | 一种牙科用荧光氧化锆瓷块及其制备方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000159621A (ja) | 1998-12-02 | 2000-06-13 | Kuraray Co Ltd | 歯科用光重合性組成物 |
WO2008013099A1 (fr) * | 2006-07-25 | 2008-01-31 | Tosoh Corporation | Zircone frittée ayant une transmission de lumière élevée et une résistance élevée, son utilisation et son procédé de fabrication |
WO2010110156A1 (ja) * | 2009-03-23 | 2010-09-30 | 株式会社ノリタケカンパニーリミテド | 蛍光性ジルコニア材料 |
WO2012042911A1 (ja) | 2010-09-30 | 2012-04-05 | クラレメディカル株式会社 | 歯科用ミルブランク |
WO2013094669A1 (ja) * | 2011-12-22 | 2013-06-27 | 株式会社ジーシー | セラミックス用蛍光付与材 |
WO2014126034A1 (ja) | 2013-02-14 | 2014-08-21 | 富士フイルム株式会社 | インクジェット塗布用感光性樹脂組成物、熱処理物及びその製造方法、樹脂パターン製造方法、液晶表示装置、有機el表示装置、タッチパネル及びその製造方法、並びに、タッチパネル表示装置 |
WO2015098765A1 (ja) | 2013-12-24 | 2015-07-02 | 東ソー株式会社 | 透光性ジルコニア焼結体及びジルコニア粉末、並びにその用途 |
JP2016117618A (ja) * | 2014-12-22 | 2016-06-30 | クラレノリタケデンタル株式会社 | ジルコニア組成物、ジルコニア仮焼体、ジルコニア焼結体及びジルコニア焼結体の製造方法、並びに歯科用製品 |
WO2016124758A1 (en) * | 2015-02-05 | 2016-08-11 | Straumann Holding Ag | Process for providing fluorescence to a dental ceramic body |
JP2016540772A (ja) | 2013-12-04 | 2016-12-28 | スリーエム イノベイティブ プロパティズ カンパニー | 歯科用ミルブランク、その製造方法及び使用 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0833650A (ja) * | 1994-07-21 | 1996-02-06 | Shinagawa Refract Co Ltd | 歯列矯正用ブラケット及びその製造方法 |
EP2191809A1 (en) * | 2008-11-27 | 2010-06-02 | 3M Innovative Properties Company | Dental ceramic article, process for production and use thereof |
JP2011073907A (ja) * | 2009-09-29 | 2011-04-14 | World Lab:Kk | ジルコニア焼結体及びその製造方法 |
KR20110109104A (ko) * | 2010-03-30 | 2011-10-06 | 삼성전기주식회사 | 금속 산화물-이트리아 안정화 지르코니아 복합체 및 이를 포함하는 고체산화물 연료전지 |
JP6221698B2 (ja) * | 2012-12-28 | 2017-11-01 | 東ソー株式会社 | ピンク色ジルコニア焼結体 |
JP6357145B2 (ja) * | 2013-03-11 | 2018-07-11 | クラレノリタケデンタル株式会社 | ジルコニア焼結体、並びにジルコニアの組成物及び仮焼体 |
CN105164084B (zh) * | 2013-05-10 | 2017-05-03 | 可乐丽则武齿科株式会社 | 氧化锆烧结体、氧化锆组合物和氧化锆煅烧体、以及牙科用修复物 |
CN103641472B (zh) * | 2013-11-14 | 2015-04-15 | 厦门惠方生物科技有限公司 | 一种制备着色半透性氧化锆预烧结体的方法 |
WO2015199018A1 (ja) * | 2014-06-23 | 2015-12-30 | 東ソー株式会社 | 着色透光性ジルコニア焼結体と粉末、及びその用途 |
US10709529B2 (en) * | 2014-07-31 | 2020-07-14 | 3M Innovative Properties Company | Kit of parts containing dental mill blank colouring solution |
CN104529439B (zh) * | 2014-12-10 | 2016-08-31 | 成都科宁达材料有限公司 | 一种牙科用高透荧光型氧化锆陶瓷及其制备方法 |
CN104990412B (zh) * | 2015-08-10 | 2017-03-22 | 南宁越洋科技有限公司 | 用于牙科氧化锆陶瓷后期烧结的微波热等静压烧结炉 |
CN106431395A (zh) * | 2016-08-31 | 2017-02-22 | 山东国瓷功能材料股份有限公司 | 高透光性氧化锆烧结体及其制备方法与应用 |
CN106431394A (zh) * | 2016-08-31 | 2017-02-22 | 山东国瓷功能材料股份有限公司 | 黑色氧化锆烧结体及其制备方法与应用 |
-
2018
- 2018-07-27 WO PCT/JP2018/028323 patent/WO2019026809A1/ja unknown
- 2018-07-27 US US16/635,424 patent/US11401461B2/en active Active
- 2018-07-27 JP JP2019534476A patent/JP7138107B2/ja active Active
- 2018-07-27 KR KR1020207005159A patent/KR102657206B1/ko active IP Right Grant
- 2018-07-27 EP EP18840387.7A patent/EP3663272A4/en active Pending
- 2018-07-27 CN CN201880050557.2A patent/CN110891921A/zh active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000159621A (ja) | 1998-12-02 | 2000-06-13 | Kuraray Co Ltd | 歯科用光重合性組成物 |
WO2008013099A1 (fr) * | 2006-07-25 | 2008-01-31 | Tosoh Corporation | Zircone frittée ayant une transmission de lumière élevée et une résistance élevée, son utilisation et son procédé de fabrication |
WO2010110156A1 (ja) * | 2009-03-23 | 2010-09-30 | 株式会社ノリタケカンパニーリミテド | 蛍光性ジルコニア材料 |
WO2012042911A1 (ja) | 2010-09-30 | 2012-04-05 | クラレメディカル株式会社 | 歯科用ミルブランク |
WO2013094669A1 (ja) * | 2011-12-22 | 2013-06-27 | 株式会社ジーシー | セラミックス用蛍光付与材 |
WO2014126034A1 (ja) | 2013-02-14 | 2014-08-21 | 富士フイルム株式会社 | インクジェット塗布用感光性樹脂組成物、熱処理物及びその製造方法、樹脂パターン製造方法、液晶表示装置、有機el表示装置、タッチパネル及びその製造方法、並びに、タッチパネル表示装置 |
JP2016540772A (ja) | 2013-12-04 | 2016-12-28 | スリーエム イノベイティブ プロパティズ カンパニー | 歯科用ミルブランク、その製造方法及び使用 |
WO2015098765A1 (ja) | 2013-12-24 | 2015-07-02 | 東ソー株式会社 | 透光性ジルコニア焼結体及びジルコニア粉末、並びにその用途 |
JP2016117618A (ja) * | 2014-12-22 | 2016-06-30 | クラレノリタケデンタル株式会社 | ジルコニア組成物、ジルコニア仮焼体、ジルコニア焼結体及びジルコニア焼結体の製造方法、並びに歯科用製品 |
WO2016124758A1 (en) * | 2015-02-05 | 2016-08-11 | Straumann Holding Ag | Process for providing fluorescence to a dental ceramic body |
Non-Patent Citations (1)
Title |
---|
See also references of EP3663272A4 |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7336507B2 (ja) | 2019-03-06 | 2023-08-31 | クラレノリタケデンタル株式会社 | 短時間で焼成可能なジルコニア成形体および仮焼体 |
JP7575441B2 (ja) | 2019-03-06 | 2024-10-29 | クラレノリタケデンタル株式会社 | 高い直線光透過率を有するジルコニア焼結体 |
JPWO2020179877A1 (ja) * | 2019-03-06 | 2021-12-23 | クラレノリタケデンタル株式会社 | 短時間で焼成可能なジルコニア成形体および仮焼体 |
CN113490468A (zh) * | 2019-03-06 | 2021-10-08 | 可乐丽则武齿科株式会社 | 能够在短时间内进行烧成的氧化锆成形体和预烧体 |
CN113490653A (zh) * | 2019-03-06 | 2021-10-08 | 可乐丽则武齿科株式会社 | 具有高直线光透射率的氧化锆烧结体 |
KR20210129198A (ko) * | 2019-03-06 | 2021-10-27 | 쿠라레 노리타케 덴탈 가부시키가이샤 | 높은 직선광 투과율을 갖는 지르코니아 소결체 |
WO2020179876A1 (ja) * | 2019-03-06 | 2020-09-10 | クラレノリタケデンタル株式会社 | 高い直線光透過率を有するジルコニア焼結体 |
KR102692692B1 (ko) * | 2019-03-06 | 2024-08-06 | 쿠라레 노리타케 덴탈 가부시키가이샤 | 높은 직선광 투과율을 갖는 지르코니아 소결체 |
US12116320B2 (en) | 2019-03-06 | 2024-10-15 | Kuraray Noritake Dental Inc. | Zirconia sintered body having high linear light transmittance |
US20220135486A1 (en) * | 2019-03-06 | 2022-05-05 | Kuraray Noritake Dental Inc. | Zirconia molded body and pre-sintered body capable of being sintered in short time |
JPWO2020179876A1 (ja) * | 2019-03-06 | 2021-12-23 | クラレノリタケデンタル株式会社 | 高い直線光透過率を有するジルコニア焼結体 |
EP3936081A4 (en) * | 2019-03-06 | 2022-11-30 | Kuraray Noritake Dental Inc. | BODY MOLDED IN ZIRCONIA ALLOWING SHORT TIME COOKING, AND CALCINED BODY |
EP3936490A4 (en) * | 2019-03-06 | 2022-11-30 | Kuraray Noritake Dental Inc. | ZIRCONIA SINTERED BODY WITH HIGH LINEAR LIGHT TRANSMITTANCE |
CN113490468B (zh) * | 2019-03-06 | 2023-09-05 | 可乐丽则武齿科株式会社 | 能够在短时间内进行烧成的氧化锆成形体和预烧体 |
US12145888B2 (en) * | 2019-03-06 | 2024-11-19 | Kuraray Noritake Dental Inc. | Zirconia molded body and pre-sintered body capable of being sintered in short time |
CN114599765B (zh) * | 2020-01-27 | 2024-03-08 | 第一稀元素化学工业株式会社 | 稳定氧化锆烧结体及氧化锆粉末 |
JP7220309B2 (ja) | 2020-01-27 | 2023-02-09 | 第一稀元素化学工業株式会社 | 安定化ジルコニア焼結体、及び、ジルコニア粉末 |
JPWO2021153211A1 (ja) * | 2020-01-27 | 2021-08-05 | ||
CN114599765A (zh) * | 2020-01-27 | 2022-06-07 | 第一稀元素化学工业株式会社 | 稳定氧化锆烧结体及氧化锆粉末 |
WO2021153211A1 (ja) | 2020-01-27 | 2021-08-05 | 第一稀元素化学工業株式会社 | 安定化ジルコニア焼結体、及び、ジルコニア粉末 |
JP2021175698A (ja) * | 2020-05-01 | 2021-11-04 | クラレノリタケデンタル株式会社 | 蛍光性ジルコニア焼結体を作製可能なジルコニア仮焼体 |
JP7513420B2 (ja) | 2020-05-01 | 2024-07-09 | クラレノリタケデンタル株式会社 | 蛍光性ジルコニア焼結体を作製可能なジルコニア仮焼体 |
JP7517913B2 (ja) | 2020-08-31 | 2024-07-17 | クラレノリタケデンタル株式会社 | ジルコニア仮焼体の製造方法 |
KR20240113806A (ko) | 2021-12-27 | 2024-07-23 | 쿠라레 노리타케 덴탈 가부시키가이샤 | 치과용 경화성 조성물 및 기재와 수지층을 포함하는 치과용 보철물 |
WO2023127794A1 (ja) | 2021-12-27 | 2023-07-06 | クラレノリタケデンタル株式会社 | 歯科用硬化性組成物及び基材と樹脂層を含む歯科用補綴物 |
Also Published As
Publication number | Publication date |
---|---|
KR20200035277A (ko) | 2020-04-02 |
KR102657206B1 (ko) | 2024-04-12 |
JP7138107B2 (ja) | 2022-09-15 |
EP3663272A1 (en) | 2020-06-10 |
US11401461B2 (en) | 2022-08-02 |
US20210102116A1 (en) | 2021-04-08 |
EP3663272A4 (en) | 2021-04-14 |
JPWO2019026809A1 (ja) | 2020-07-30 |
CN110891921A (zh) | 2020-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7138107B2 (ja) | 蛍光剤を含むジルコニア焼結体 | |
JP7447194B2 (ja) | ジルコニア粒子を含む粉末の製造方法 | |
JP7061827B2 (ja) | ジルコニア成形体の製造方法 | |
JP7336507B2 (ja) | 短時間で焼成可能なジルコニア成形体および仮焼体 | |
JP7575441B2 (ja) | 高い直線光透過率を有するジルコニア焼結体 | |
JP7125402B2 (ja) | ジルコニア粒子および蛍光剤を含む粉末の製造方法 | |
JP7517913B2 (ja) | ジルコニア仮焼体の製造方法 | |
US12145888B2 (en) | Zirconia molded body and pre-sintered body capable of being sintered in short time | |
WO2022220301A1 (ja) | ジルコニア成形体、ジルコニア仮焼体及びジルコニア焼結体並びにこれらの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18840387 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019534476 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20207005159 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018840387 Country of ref document: EP Effective date: 20200302 |