Nothing Special   »   [go: up one dir, main page]

WO2019021859A1 - Application device, application method, and computer storage medium - Google Patents

Application device, application method, and computer storage medium Download PDF

Info

Publication number
WO2019021859A1
WO2019021859A1 PCT/JP2018/026496 JP2018026496W WO2019021859A1 WO 2019021859 A1 WO2019021859 A1 WO 2019021859A1 JP 2018026496 W JP2018026496 W JP 2018026496W WO 2019021859 A1 WO2019021859 A1 WO 2019021859A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
liquid
nozzle
substrate
glass substrate
Prior art date
Application number
PCT/JP2018/026496
Other languages
French (fr)
Japanese (ja)
Inventor
徳彦 西村
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020207004602A priority Critical patent/KR102492389B1/en
Priority to JP2019532511A priority patent/JP6909854B2/en
Priority to CN201880047157.6A priority patent/CN110891697B/en
Publication of WO2019021859A1 publication Critical patent/WO2019021859A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C13/00Means for manipulating or holding work, e.g. for separate articles
    • B05C13/02Means for manipulating or holding work, e.g. for separate articles for particular articles
    • B05C13/025Means for manipulating or holding work, e.g. for separate articles for particular articles relatively small cylindrical objects, e.g. cans, bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a coating treatment apparatus for applying a coating liquid containing an optical material to a substrate, a coating treatment method using the coating treatment apparatus, and a computer storage medium.
  • a circularly polarizing plate is used to prevent reflection of external light.
  • the circularly polarizing plate is manufactured by laminating a linear polarizing plate and a wavelength plate (retardation plate) so that their polarization axes intersect at 45 degrees.
  • wavelength plate retardation plate
  • these linear polarizing plates and wavelength plates are used.
  • the wave plate may be formed such that its polarization axis is inclined at 15 degrees or 75 degrees. Therefore, it is necessary to form a polarizing plate or a wavelength plate at an arbitrary angle. Furthermore, in order to make the polarization axes of the polarizing plate and the wave plate intersect at an arbitrary angle, it is also necessary to form the polarizing plate and the wave plate separately.
  • such a polarizing plate or a wavelength plate is produced using, for example, a stretched film.
  • the stretched film is obtained by orienting molecules in the material in one direction by stretching the film in one direction and attaching it.
  • a thin film is realized by applying a coating solution having a predetermined material on a substrate to form a polarizing plate or a wave plate having a required film thickness.
  • a coating liquid having liquid crystallinity is applied to a substrate as a predetermined material, and cast and oriented.
  • the liquid crystal compound forms a supramolecular association in the coating solution, and when the coating solution is caused to flow while applying shear stress, the long axis direction of the supramolecular association is aligned in the flowing direction.
  • a polarizing film printing apparatus described in Patent Document 1 includes a table for holding a substrate and a slot die for discharging an ink liquid onto the substrate.
  • the table has a configuration in which the surface plate is fitted into a frame plate in which a portion of the surface plate has been cut out, so that the height of the peripheral portion of the surface plate is made the same height as the surface of the substrate fixed to the surface plate.
  • the slot die extends at least to cover the platen. Then, the substrate is fixed with the platen arranged in the printing direction, and the platen is further rotated to tilt the substrate at a predetermined angle with respect to the printing direction, and then the slot die is moved in the printing direction. Apply the ink solution to the
  • the platen on which the substrate is fixed is rotated, but the rotation of the platen causes the substrate to be at a predetermined position (a position parallel to the printing direction). It is for receiving, not controlling the application direction. In other words, the application direction of the ink liquid to the substrate is fixed, and the application direction can not be freely controlled.
  • the present invention has been made in view of such points, and it is an object of the present invention to apply a coating liquid containing an optical material appropriately and efficiently at an arbitrary angle with respect to a substrate.
  • One aspect of the present invention which solves the above-mentioned subject is a coating treatment device which applies a coating liquid containing an optical material to a substrate, and the holding part which holds a substrate, and the coating liquid to the substrate held by the holding part And a moving mechanism for moving the holding unit and the coating nozzle relative to each other in a direction perpendicular to each other, and a discharge mechanism provided on both sides of the substrate held by the holding unit in plan view. And a liquid receiver for receiving the coating liquid.
  • the substrate is coated on the substrate by controlling the relative moving speed of the holding unit and the coating nozzle.
  • the application direction of the coating solution can be arbitrarily controlled.
  • the coating liquid can be applied to the substrate at any angle with such a simple configuration and simple control. Further, since the coating liquid is received by the liquid receiving part on both sides outside the plan view of the substrate held by the holding part, the coating liquid can be prevented from dripping and adhering to the holding part, and the sheet can be prevented as in the prior art. There is no need to wash the holding part with leaves. Therefore, the coating liquid can be applied to the substrate appropriately and efficiently.
  • One embodiment of the present invention is a coating treatment method of coating a substrate with a coating solution containing an optical material, and while relatively moving a holding unit holding a substrate and a coating nozzle in the orthogonal direction, The coating liquid is discharged from the coating nozzle, and the liquid receiving portion receives the coating liquid on both sides outside the substrate in a plan view, and applies the coating liquid to the substrate.
  • a readable computer storage medium storing a program operating on a computer of a control unit that controls the coating processing apparatus to cause the coating processing apparatus to execute the coating processing method. It is.
  • a coating liquid containing an optical material can be applied appropriately and efficiently at any angle with respect to a substrate.
  • FIG. 7 is an explanatory view showing operations of a glass substrate and a coating nozzle when forming a ⁇ / 4 wavelength film in the first embodiment. It is a side view which shows the outline of a structure of the coating processing apparatus which concerns on 2nd Embodiment. It is a side view which shows the outline of a structure of the coating processing apparatus which concerns on 2nd Embodiment. It is explanatory drawing which shows a mode that a coating liquid is received in the liquid receiving part which concerns on 2nd Embodiment.
  • a linear polarizing film (linearly polarizing plate) and a ⁇ / 4 wavelength film ( ⁇ / 4 wavelength plate), which are optical films, have their polarization axes
  • the glass substrate is formed to cross at 45 degrees.
  • a linear polarizing film is formed on a glass substrate.
  • a coating solution (a coating solution for polarizing film) is coated on the entire surface of the glass substrate.
  • molecules are oriented in one direction.
  • the solvent in the film is removed by drying the linearly polarized film under reduced pressure, and the alignment state of the molecules in the film is appropriately maintained.
  • the heat treatment the solvent remaining in the film is completely removed by heating the linear polarizing film to a predetermined temperature.
  • a fixing material is applied to the pixel area of the glass substrate to inactivate (insolubilize) the linearly polarizing film, and the inactivated linear polarizing film is fixed to the glass substrate.
  • the cleaning liquid is supplied to the glass substrate to selectively remove the linearly polarized film not fixed in the film fixing process.
  • a ⁇ / 4 wavelength film is further formed on the glass substrate.
  • a coating solution coating solution for wavelength film
  • a shear stress in a direction (45 ° direction in a 45 ° direction) inclined from one direction in the linearly polarizing film to the coating solution the molecules are oriented in a 45 ° direction in a ⁇ direction.
  • the subsequent reduced-pressure drying treatment, heat treatment, film fixing treatment, and film removal treatment are respectively the same as the respective treatments for forming the linear polarizing film.
  • the linear polarizing film and the ⁇ / 4 wavelength film are formed on the glass substrate such that their polarization axes intersect at 45 degrees.
  • a coating treatment apparatus and a coating treatment method for coating a coating liquid at an arbitrary angle with respect to a glass substrate will be described.
  • FIG. 1 is a plan view showing an outline of the configuration of a coating treatment apparatus 1 according to the first embodiment.
  • FIG.2 and FIG.3 is a side view which shows the outline of a structure of the coating processing apparatus 1 which concerns on 1st Embodiment.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction orthogonal to one another are defined, and the positive Z-axis direction is the vertically upward direction.
  • the coating processing apparatus 1 receives a stage 10 as a holding unit for holding a glass substrate G, a coating nozzle 20 that discharges the coating liquid onto the glass substrate G, and a liquid receiver that receives the coating liquid discharged from the end of the coating nozzle 20 And a unit 30.
  • the stage 10 adsorbs and holds the back surface of the glass substrate G such that the surface on which the coating liquid is applied is directed upward.
  • the stage 10 has a smaller shape than the glass substrate G in plan view, or the same shape as the glass substrate G.
  • the stage 10 is configured to be movable in the Y-axis direction by a movement mechanism (not shown).
  • the movable range of the stage 10 is at least a length of two or more in the Y-axis direction of the glass substrate G, and the glass substrate G when the stage 10 is positioned at the end in the negative Y-axis direction (FIG.
  • the solid line of the substrate position A1) and the glass substrate G (dotted line in FIG. 1, substrate position A2) when the stage 10 is positioned at the end in the positive direction of the Y-axis direction do not overlap in plan view.
  • the coating nozzle 20 is provided above the stage 10 and discharges the coating liquid onto the glass substrate G held by the stage 10.
  • the coating nozzle 20 is a long slit nozzle extending in a direction (X-axis direction) orthogonal to the moving direction (Y-axis direction) of the glass substrate G held by the stage 10.
  • a discharge port 21 for discharging the coating liquid onto the glass substrate G is formed at the lower end surface of the coating nozzle 20, a discharge port 21 for discharging the coating liquid onto the glass substrate G is formed.
  • the discharge port 21 is a slit-like discharge port which extends longer than the length of the glass substrate G in the X-axis direction along the longitudinal direction (X-axis direction) of the coating nozzle 20.
  • the coating nozzle 20 is supported by a support beam 22 extending in the X-axis direction.
  • the coating nozzle 20 is configured to be movable along the support beam 22 by a moving mechanism (not shown).
  • the application nozzle 20 is the X axis direction negative direction side of the glass substrate G (solid line in FIG. 1, nozzle position B1) and the X axis direction positive direction side of the glass substrate G (dotted line in FIG. 1 nozzle position B2) Move between Then, at any position between the nozzle position B1 and the nozzle position B2, the coating nozzle 20 discharges the coating liquid from the discharge port 21 so as to cover the X axis direction of the glass substrate G.
  • the stage 10 and the coating nozzle 20 move in the orthogonal direction. Then, the coating nozzle 20 can apply the coating liquid to the glass substrate G held by the stage 10. Further, by controlling the moving speed of the stage 10 and the moving speed of the coating nozzle 20, it is possible to arbitrarily control the coating direction of the coating liquid to be coated on the glass substrate G.
  • the coating liquid discharged from the coating nozzle 20 is a coating liquid containing an optical material.
  • a coating solution for a polarizing film for forming a linear polarizing film and a coating solution for a wavelength film for forming a ⁇ / 4 wavelength film and for example, a lyotropic liquid crystal compound or a thermotropic liquid crystal as an optical material, respectively Included are any liquid crystal compounds, such as compounds.
  • Each liquid receiving unit 30 includes a roller 31 as a winding material for winding the coating liquid discharged from the end of the coating nozzle 20, a collection tank 32 for collecting the coating liquid wound around the roller 31, and a roller 31. And a support frame 33 as a support structure for supporting the recovery tank 32.
  • the roller 31 is provided so as to extend in the X-axis direction.
  • the end portion of the roller 31 on the glass substrate G side is positioned close to the glass substrate G so as not to contact the glass substrate G.
  • the end of the roller 31 opposite to the glass substrate G is located outside the coating nozzle 20 at each of the nozzle positions B1 and B2. Then, when the coating liquid P is discharged from the coating nozzle 20 to the glass substrate G as shown in FIG. 5, the coating liquid P discharged from the end of the coating nozzle 20 rotates in the same direction as the moving direction of the glass substrate G. It is taken up by a roller 31 and collected.
  • the roller 31 rolls up the coating solution P in a state where a predetermined gap from the discharge port 21 of the coating nozzle 20 is formed. Then, the bead of the coating liquid P discharged from the coating nozzle 20 when the coating liquid P is applied to the glass substrate G is not disturbed. Furthermore, in the present embodiment, the roller 31 is disposed such that the upper surface of the roller 31 and the upper surface of the glass substrate G held by the stage 10 have the same height. In other words, the roller 31 plays the role of extending the glass substrate G (simulated substrate).
  • the distance between the roller 31 and the application nozzle 20 is the same as the distance between the glass substrate G and the application nozzle 20, and the state of the application liquid P in these gaps, for example, the amount of the application liquid P is Since the same, the bead of the coating liquid P from the coating nozzle 20 can be stabilized more appropriately.
  • the surface tension of the coating fluid P does not cause the coating fluid P to drop from this gap.
  • the gap may be wide, but when the viscosity of the coating liquid P is low, it is preferable that the gap be narrow.
  • the size of the gap between the roller 31 and the glass substrate G is made different between the left and right of the glass substrate G (both sides in the moving direction of the coating nozzle 20). It is also good.
  • the recovery tank 32 is provided below the roller 31 so as to cover the roller 31.
  • the upper surface of the recovery tank 32 is open, and the coating liquid P taken up by the roller 31 is recovered and temporarily stored.
  • the lower part of the roller 31 in the recovery tank 32 is immersed in the coating solution P.
  • Water may be supplied to the application liquid P temporarily stored in the recovery tank 32, and the application liquid P may be dissolved in water.
  • the bottom surface of the recovery tank 32 is inclined downward toward the central portion, and a drain pipe 34 of the coating liquid P is connected to the central portion. Further, an overflow pipe (not shown) for preventing an overflow of the coating liquid P is connected to the side surface of the recovery tank 32. Then, the coating liquid P stored in the recovery tank 32 is drained from the drain pipe 34 and the overflow pipe. The coating liquid P discharged from the drainage pipe 34 in this manner may be reused for the glass substrate G to be processed subsequently.
  • the support frame 33 supports the roller 31 and the recovery tank 32 from below.
  • the roller 31 and the collection tank 32 can be easily replaced together with the support frame 33.
  • the support frame 33 does not interfere with the coating nozzle 20, the coating nozzle 20 can be easily replaced at the time of maintenance of the coating nozzle 20.
  • a control unit 40 is provided in the coating treatment apparatus 1 described above.
  • the control unit 40 is, for example, a computer and has a program storage unit (not shown).
  • the program storage unit stores a program for controlling the coating process in the coating treatment apparatus 1.
  • This program is recorded on a computer readable storage medium H such as a computer readable hard disk (HD), flexible disk (FD), compact disk (CD), magnet optical desk (MO), memory card, etc. It may be one that is installed in the control unit 40 from the storage medium H.
  • a linear polarization film is formed on a glass substrate G.
  • the coating solution P1 is applied to the entire surface of the glass substrate G in the coating treatment apparatus 1.
  • the coating liquid P1 in this case is a coating liquid for polarizing film for forming a linear polarizing film.
  • the glass substrate G is moved from the substrate position A1 to the substrate position A2 without moving the coating nozzle 20 from the nozzle position B1.
  • the position of the application nozzle 20 is not limited to the nozzle position B1, and may be any position between the nozzle position B1 and the nozzle position B2.
  • the glass substrate G is held by the stage 10 at the substrate position A1. Subsequently, as shown in FIG. 7B, while the coating liquid P1 is discharged from the coating nozzle 20, the glass substrate G is moved in the Y-axis direction positive direction, and the coating liquid P1 is coated on the glass substrate G. Then, as shown in FIG. 7C, the glass substrate G moves to the substrate position A2, and the coating liquid P1 is applied to the entire surface of the glass substrate G.
  • the coating liquid P1 discharged from the end of the coating nozzle 20, that is, the coating liquid P1 discharged to the outside of the glass substrate G is wound around the roller 31 and collected. Therefore, the coating liquid P1 does not drip down.
  • the coating solution P1 is applied while applying a shear stress (block arrow in FIG. 7). Since the coating nozzle 20 does not move and the glass substrate G moves in the Y-axis direction positive direction, shear stress is applied in the Y-axis direction positive direction.
  • the shear stress is a value obtained by dividing the coating speed (moving speed of the coating nozzle 20 with respect to the glass substrate G) by the distance (gap) between the glass substrate G and the discharge port 21 of the coating nozzle 20. Since a slit nozzle is used for the coating nozzle 20, the coating nozzle 20 can sufficiently approach the glass substrate G without damaging the glass substrate G. Thus, the gap can be reduced. Then, by controlling the moving speed of the coating nozzle 20, a sufficient shear stress can be applied to the coating solution P1. As a result, molecules in the coating liquid P1 can be oriented in one direction (Y-axis direction).
  • a slit nozzle is suitable from a viewpoint that gap can be made as small as mentioned above.
  • coated to the glass substrate G is small, and a slit nozzle is suitable also from this viewpoint.
  • a ⁇ / 4 wavelength film is formed on the glass substrate G.
  • the coating solution P2 is applied to the entire surface of the glass substrate G in the coating treatment apparatus 1.
  • the coating liquid P2 in this case is a coating for a wavelength film for forming a ⁇ / 4 wavelength film.
  • the glass substrate G is moved from the substrate position A1 to the substrate position A2, and the coating nozzle 20 is moved from the nozzle position B1 to the nozzle position B2. At this time, the moving speed of the glass substrate G and the moving speed of the coating nozzle 20 are the same.
  • the glass substrate G is held by the stage 10 at the substrate position A1. Subsequently, as shown in FIG. 8B, the glass substrate G is moved in the positive direction along the Y-axis, and the application nozzle 20 is moved along the positive direction along the X-axis while discharging the coating liquid P2 from the application nozzle 20. The coating liquid P2 is applied to the glass substrate G. Then, as shown in FIG. 8C, the glass substrate G moves to the substrate position A2, and the coating nozzle 20 moves to the nozzle position B2, and the coating liquid P2 is coated on the entire surface of the glass substrate G.
  • the coating liquid P2 discharged from the end of the coating nozzle 20, that is, the coating liquid P2 discharged to the outside of the glass substrate G Is wound around the roller 31 and collected. Therefore, the coating liquid P1 does not drip down.
  • the coating solution P2 is applied while applying a shear stress (block arrow in FIG. 8). That is, since the moving speed of the glass substrate G and the moving speed of the coating nozzle 20 are the same, the shear stress is applied in the oblique direction of 45 degrees in the positive direction along the Y axis and the positive direction along the X axis.
  • the molecules in the coating solution P2 can be oriented in one direction (45-degree oblique direction).
  • the glass substrate G held by the stage 10 and the coating nozzle 20 move in the orthogonal direction, so the moving speed of the glass substrate G and the movement of the coating nozzle 20 By controlling the speed, it is possible to control the application direction of the coating liquid applied to the glass substrate G.
  • the coating liquid can be applied to the glass substrate G at an arbitrary angle with such a simple configuration and simple control. Then, the application direction of the application liquid P1 and the application direction of the application liquid P2 can be crossed at 45 degrees, and a linear polarization film and a ⁇ / 4 wavelength film can be formed so that the polarization axes thereof intersect at 45 degrees.
  • the coating liquid P is wound up and collected by the liquid receiving portion 30 (roller 31) on both sides outside the glass substrate G, it is possible to suppress the coating liquid P from falling down. As a result, the coating liquid P can be prevented from dripping and adhering to the stage 10, and there is no need to wash the single-wafer stage 10 as in the prior art. Furthermore, when the coating liquid P collected in the collection tank 32 is reused, it is possible to reduce the amount of the coating liquid P used.
  • FIG.9 and FIG.10 is a side view which shows the outline of a structure of the coating processing apparatus 1 which concerns on 2nd Embodiment.
  • the second embodiment and the first embodiment are different in the configuration of the liquid receiver in the coating treatment apparatus 1. That is, in the coating treatment apparatus 1 of the second embodiment, the liquid receiving unit 100 is provided instead of the liquid receiving unit 30 of the first embodiment.
  • the liquid receiving portions 100 are provided on both sides of the glass substrate G held by the stage 10 on the outer side in the X-axis direction.
  • Each liquid receiving portion 100 has a deckle 101 as a sealing material for sealing the discharge port at the end of the coating nozzle 20, and a support frame 102 as a support structure for supporting the deckle 101 from below. There is.
  • the deckle 101 is provided so as to extend in the X-axis direction.
  • the end portion of the glass substrate G side of the deckle 101 is positioned close to the glass substrate G so as not to contact the glass substrate G.
  • the end of the deckle 101 opposite to the glass substrate G is located outside the coating nozzle 20 at each of the nozzle positions B1 and B2. Then, as shown in FIG. 11, the end of the application nozzle 20 (discharge port 21) is sealed by bringing the deckle 101 into close contact with the end of the application nozzle 20. As a result, the coating liquid P at the end of the coating nozzle 20 is also sealed and is not discharged.
  • the cross-sectional shape of the deckle 101 is not limited as long as it can be sealed in close contact with the end of the coating nozzle 20.
  • the upper surface may be a flat rectangular shape, or may be a V shape described in, for example, Japanese Patent Application Laid-Open No. 2013-165137.
  • a material that suppresses the generation of particles when in close contact with the coating nozzle 20 such as silicone rubber and fluororubber.
  • the end of the coating nozzle 20 is sealed with the deckle 101 and the coating liquid P is not discharged from the end of the coating nozzle 20, it is possible to suppress the amount of the coating liquid P used. Further, since the deckle 101 is in close contact with the coating nozzle 20, the coating liquid P adhering to the discharge port 21 can be wiped off, and the discharge port 21 can be always kept clean.
  • FIG. 12 is an explanatory view showing a state in which the coating liquid P is received by the liquid receiver 110 according to the third embodiment.
  • the third embodiment and the first embodiment differ in the configuration of the liquid receiving portion in the coating treatment apparatus 1. That is, in the coating treatment apparatus 1 of the third embodiment, the liquid receiving unit 110 is provided instead of the liquid receiving unit 30 of the first embodiment.
  • the liquid receiving portions 110 are provided on both sides of the glass substrate G held by the stage 10 on the outer side in the X-axis direction.
  • Each liquid receiving unit 110 includes a pan 111 as a collection container for collecting the coating liquid P discharged from the end of the coating nozzle 20, and a support frame (not shown) as a support structure for supporting the pan 111 from below.
  • the structure of a support frame is the same as that of the structure of the support frame 33 of 1st Embodiment, for example.
  • the pan 111 is provided so as to extend in the X-axis direction. An end portion of the pan 111 on the glass substrate G side is positioned close to the glass substrate G so as not to contact the glass substrate G. The end of the pan 111 opposite to the glass substrate G is located outside the coating nozzle 20 at each of the nozzle positions B1 and B2. Further, the upper surface of the pan 111 is open, and the coating liquid P discharged from the end of the coating nozzle 20 is collected and temporarily stored. Then, the coating liquid P stored in the pan 111 is drained from a drain pipe (not shown) connected to the pan 111.
  • the pan 111 of the present embodiment directly recovers the coating liquid P discharged from the end of the application nozzle 20.
  • FIG. 13 is an explanatory view showing a state in which the coating liquid P is received by the liquid receiver 120 according to the fourth embodiment.
  • the fourth embodiment and the first embodiment are different in the configuration of the liquid receiving portion in the coating treatment apparatus 1. That is, in the coating treatment apparatus 1 of the fourth embodiment, the liquid receiving unit 120 is provided instead of the liquid receiving unit 30 of the first embodiment.
  • the liquid receiving portions 120 are provided on both sides of the glass substrate G held by the stage 10 on the outer side in the X-axis direction.
  • Each liquid receiving section 120 includes an absorbent 121 for absorbing the coating liquid P discharged from the end of the coating nozzle 20, and a support frame (not shown) as a support structure for supporting the absorbent 121 from below.
  • a support frame is the same as that of the structure of the support frame 33 of 1st Embodiment, for example.
  • the absorbent material 121 is provided so as to extend in the X-axis direction. An end portion of the absorbing material 121 on the glass substrate G side is positioned close to the glass substrate G so as not to be in contact with the glass substrate G. The end of the absorbing material 121 opposite to the glass substrate G is located outside the coating nozzle 20 at each of the nozzle positions B1 and B2. Then, in a state where the absorbing material 121 is disposed with a predetermined gap from the end of the application nozzle 20, the absorbing liquid 121 absorbs the application liquid P discharged from the end of the application nozzle 20 (ejection port 21). Be done. Further, the coating solution P absorbed by the absorbing material 121 is recovered by a recovery mechanism (not shown). The absorbing material 121 may be in close contact with the end of the coating nozzle 20.
  • the absorbent material 121 is not particularly limited as long as it can absorb the coating liquid P.
  • a porous body in which a plurality of holes are formed is used.
  • the absorbent material 121 it is preferable to use a material that suppresses generation of particles when in close contact with the coating nozzle 20, for example, polyethylene.
  • FIG. 14 is an explanatory view showing a state in which the coating liquid P is received by the liquid receiver 130 according to the fifth embodiment.
  • the configuration of the liquid receiving portion in the coating treatment apparatus 1 is different. That is, in the coating treatment apparatus 1 of the fifth embodiment, a liquid receiving unit 130 is provided instead of the liquid receiving unit 30 of the first embodiment.
  • the liquid receiving portions 130 are provided on both sides of the glass substrate G held by the stage 10 on the outer side in the X-axis direction.
  • Each liquid receiving portion 130 includes a composite material 131 in which a roller 131a as a winding-up material and a deckle 131b as a sealing material are integrally connected, and a support frame as a support structure for supporting the composite material 131 from below. Not shown).
  • the structure of a support frame is the same as that of the structure of the support frame 33 of 1st Embodiment, for example.
  • the roller 131a is provided on the side close to the glass substrate G in the X-axis direction, and the end of the roller 131a on the glass substrate G side approaches the glass substrate G so as not to contact the glass substrate G. Is located.
  • the roller 131 a takes up the coating liquid P discharged from the end of the coating nozzle 20.
  • the configuration of the roller 131a is the same as the configuration of the roller 31 of the first embodiment.
  • a recovery tank (not shown) for recovering the coating liquid P wound around the roller 131a is provided as in the recovery tank 32 of the first embodiment.
  • the deckel 131b is provided on the side far from the glass substrate G in the X-axis direction, and the end of the deckle 131b opposite to the glass substrate G is at the nozzle position B1 or B2 of the application nozzle 20. It is located outside.
  • the deckle 131 b seals the end of the application nozzle 20 (discharge port 21).
  • the configuration of the deckle 131 b is the same as the configuration of the deckle 101 of the second embodiment.
  • the application liquid P can be suppressed from dropping to the outside of the glass substrate G by the roller 131a and the deckle 131b.
  • the bead of the coating liquid P from the coating nozzle 20 can be stabilized further appropriately by the roller 131a.
  • the amount of use of the coating solution P can be suppressed by the deckle 131 b.
  • FIG. 15 is an explanatory view showing a state in which the coating liquid P is received by the liquid receiver 140 according to the sixth embodiment.
  • the sixth embodiment and the first embodiment are different in the configuration of the liquid receiving portion in the coating treatment apparatus 1. That is, in the coating treatment apparatus 1 of the sixth embodiment, a liquid receiving unit 140 is provided instead of the liquid receiving unit 30 of the first embodiment.
  • the liquid receiving portions 140 are provided on both sides of the glass substrate G held by the stage 10 on the outer side in the X-axis direction.
  • Each liquid receiving portion 140 is a support structure that supports the pair of rollers 141 and 141 extending in the Y-axis direction, the belt 142 wound around the pair of rollers 141 and 141, and the roller 141 and the belt 142 from below.
  • a support frame (not shown).
  • the structure of a support frame is the same as that of the structure of the support frame 33 of 1st Embodiment, for example.
  • the end portion of the belt 142 on the glass substrate G side is positioned close to the glass substrate G so as not to contact the glass substrate G.
  • the end of the belt 142 opposite to the glass substrate G is located outside the coating nozzle 20 at each of the nozzle positions B1 and B2. Then, the coating liquid P discharged from the end of the coating nozzle 20 is wound around the belt 142 and collected. Further, the coating liquid P wound up on the belt 142 is collected by a collection tank (not shown).
  • FIG. 16 is a side view showing the outline of the configuration of the coating treatment apparatus 1 according to the seventh embodiment.
  • the seventh embodiment is different from the above embodiment in the configuration of the liquid receiver in the coating treatment apparatus 1. That is, in the coating treatment apparatus 1 of the seventh embodiment, the liquid receiving unit 30 in the first embodiment and the liquid receiving unit 100 in the second embodiment are provided.
  • the liquid receiver 30 is provided on the negative side of the glass substrate G held by the stage 10 in the negative X-axis direction, and rolls up and collects the coating liquid P discharged from the end of the coating nozzle 20.
  • the liquid receiving portion 100 is provided on the positive direction side in the X-axis direction of the glass substrate G, and seals the end portion of the application nozzle 20 (discharge port 21).
  • the application liquid P can be suppressed from dripping to the outside of the glass substrate G by the roller 31 of the liquid receiving unit 30 and the deckle 101 of the liquid receiving unit 110. Further, the bead of the coating liquid P from the coating nozzle 20 can be stabilized more appropriately by the roller 31. Furthermore, the amount of use of the coating solution P can be suppressed by the deckle 101.
  • the roller 31 and the collection tank 32 are supported by the support frame 33, and the deckle 101 is supported by the support frame 102. Therefore, the liquid receiver 30 and the liquid receiver 100 The exchange of can be easily done.
  • liquid receiving unit 30 and the liquid receiving unit 110 are used in combination, but the liquid receiving units 30, 110, 120, 130, and 140 of the above embodiments may be combined arbitrarily. Moreover, when each liquid receiving part 30, 110, 120, 130, 140 has a support frame, these combinations can also be changed easily.
  • FIG.17 and FIG.18 is a side view which shows the outline of a structure of the coating processing apparatus 1 which concerns on 8th Embodiment.
  • the configuration of the liquid receiving portion in the coating treatment apparatus 1 is different, and more specifically, a member for receiving the coating liquid P discharged from the end of the glass substrate G (for example, roller 31) And the configuration for supporting the deckel 101 etc. is different.
  • liquid receiving parts 150 and 160 are provided.
  • the liquid receiving portion 150 is provided on the X axis direction negative direction side of the glass substrate G held by the stage 10.
  • the liquid receiving unit 150 includes a roller 151 for winding the application liquid P discharged from the end of the application nozzle 20, a recovery tank 152 for recovering the application liquid P wound around the roller 151, a roller 151, and a recovery tank 152.
  • a support bracket 153 for supporting the The roller 151 and the recovery tank 152 respectively have the same configuration as the roller 31 and the recovery tank 32 of the first embodiment. Further, the roller 151 and the recovery tank 152 are suspended and supported by the support beam 22 via the support bracket 153.
  • the liquid receiver 160 is provided on the positive side in the X-axis direction of the glass substrate G held by the stage 10.
  • the liquid receiver 160 has a deckle 161 for sealing the discharge port at the end of the application nozzle 20 and a support bracket 162 for supporting the deckle 161.
  • the deckle 161 has the same configuration as the deckle 101 of the second embodiment. Further, the deckle 161 is suspended and supported by the support beam 22 via the support bracket 162.
  • the roller 151 and the recovery tank 152 are suspended and supported by the support beam 22 via the support bracket 153 in the liquid receiving portion 150, the space S is formed below the roller 151 and the recovery tank 152. . Maintenance of the roller 151 and the collection tank 152 can be easily performed by the space S. Further, since the space S is also formed below the deckle 161 in the liquid receiving portion 160, maintenance of the deckle 161 can be easily performed.
  • the same roller 151 as the roller 31 of the first embodiment and the same deckle 161 as the second embodiment of the second embodiment 101 are used in combination, but the combination is arbitrary.
  • the pan 111 of the third embodiment, the absorbent material 121 of the fourth embodiment, the composite material 131 of the fifth embodiment, the roller 141 and the belt 142 of the sixth embodiment may be used.
  • FIG. 19 is a plan view showing an outline of a configuration of a coating treatment apparatus 1 according to a ninth embodiment.
  • the coating treatment apparatus 1 of the ninth embodiment further includes an end removing unit 170 for removing the coating liquid P at the end of the glass substrate G in the coating treatment apparatus 1 of the above embodiment.
  • the edge removing portions 170 are provided on both sides of the glass substrate G in the X axis direction at the substrate position A2.
  • the edge removing unit 170 has a solvent nozzle (not shown) that supplies the solvent of the coating solution P. Then, a solvent is supplied to the coating solution P applied to the end of the glass substrate G in the X-axis direction, and the coating solution P is removed.
  • a known configuration can be used for the end removing unit 170, and for example, a solvent supply unit described in Japanese Patent Laid-Open No. 2013-58567 can be used.
  • the optical film may not be required at the end of the glass substrate G.
  • the coating liquid P after the coating liquid P is applied to the entire surface of the glass substrate G by the coating nozzle 20, the coating liquid P on the edge of the glass substrate G can be removed by the edge removing portion 170.
  • the film thickness of the coating liquid P at the end of the glass substrate G is different from the film thickness of the coating liquid P at the portion other than the end. Film thickness may become uneven.
  • the film thickness of the coating solution P is adjusted by removing the coating solution P at the edge of the glass substrate G by the desired film thickness using the edge removal unit 170 of the present embodiment.
  • the film thickness can also be made uniform within the substrate surface. In order to make the film thickness uniform in the substrate plane, the temperature of the end portion of the glass substrate G may be adjusted.
  • FIG. 20 is a plan view showing an outline of a configuration of a coating treatment apparatus 1 according to a tenth embodiment.
  • the coating treatment apparatus 1 of the tenth embodiment further includes a priming roller 180 in the coating treatment apparatus 1 of the above embodiment.
  • the priming roller 180 is provided at the tip of the stage 10 on the positive side in the Y-axis direction.
  • the priming roller 180 Prior to discharging the application liquid P from the application nozzle 20 to the glass substrate G, the priming roller 180 performs a priming process to make the application liquid P attached to the tip of the application nozzle 20 uniform. Specifically, the discharge port 21 of the coating nozzle 20 is made to face directly above the priming roller 180, and the coating liquid P is discharged from the discharge port 21 to the priming roller 180. Then, the priming roller 180 is rotated to wind up the coating liquid P, whereby the adhesion state of the coating liquid P at the ejection port 21 is adjusted, and the ejection state of the coating liquid P at the ejection port 21 can be stabilized.
  • the glass substrate G is moved by moving the stage 10 holding the glass substrate G in the Y-axis direction, but the method of moving the glass substrate G is not limited to this.
  • the glass substrate G may be moved by a so-called floating conveyance method. Specifically, for example, a floating stage (not shown) extending in the Y-axis direction from the substrate position A1 to the substrate position A2 is provided, and a high pressure gas (usually air) is jetted vertically upward from the upper surface of the floating stage The substrate is floated horizontally by the pressure of high pressure air. Then, the glass substrate G can be moved in a state where the glass substrate G is floated in the air on the floating stage.
  • a floating conveyance method Specifically, for example, a floating stage (not shown) extending in the Y-axis direction from the substrate position A1 to the substrate position A2 is provided, and a high pressure gas (usually air) is jetted vertically upward from the upper surface of the floating stage The substrate is floated horizontally by the pressure of high pressure air.
  • maintained at the stage 10 was moved to Y-axis direction
  • the coating nozzle 20 was moved to X-axis direction
  • the glass substrate G and the coating nozzle 20 Relative to each other in the orthogonal direction.
  • the glass substrate G may move in the Y axis direction and the X axis direction
  • the coating nozzle 20 may move in the Y axis direction and the X axis direction.
  • a linear polarizing film (linearly polarizing plate) and a ⁇ / 4 wavelength film ( ⁇ / 4 wavelength plate) are formed as an optical film on a glass substrate
  • the present invention can be applied to others.
  • the present invention can be applied to a polarizing plate or a wave plate used in an LCD.
  • the wavelength plate is not limited to the ⁇ / 4 wavelength film, and the present invention can be applied to other wavelength plates such as, for example, a ⁇ / 2 wavelength film.

Landscapes

  • Coating Apparatus (AREA)
  • Physics & Mathematics (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

This application device applies an application liquid to a substrate, said application liquid containing an optical material. The application device has: a holding section that holds the substrate; an application nozzle for discharging the application liquid to the substrate held by the holding section; a moving mechanism that relatively moves the holding section and the application nozzle in the orthogonal directions; and a liquid receiving section, which is provided, in a plan view, on both outer sides of the substrate held by the holding section, and which receives the application liquid discharged from the application nozzle.

Description

塗布処理装置、塗布処理方法及びコンピュータ記憶媒体Coating treatment apparatus, coating treatment method and computer storage medium
(関連出願の相互参照)
 本願は、2017年7月27日に日本国に出願された特願2017-145753号に基づき、優先権を主張し、その内容をここに援用する。
(Cross-reference to related applications)
Priority is claimed on Japanese Patent Application No. 201-145,575, filed July 27, 2017, the content of which is incorporated herein by reference.
 本発明は、基板に光学材料を含む塗布液を塗布する塗布処理装置、当該塗布処理装置を用いた塗布処理方法及びコンピュータ記憶媒体に関する。 The present invention relates to a coating treatment apparatus for applying a coating liquid containing an optical material to a substrate, a coating treatment method using the coating treatment apparatus, and a computer storage medium.
 例えば有機発光ダイオード(OLED:Organic Light Emitting Diode)には、外光の反射防止のために円偏光板が用いられている。円偏光板は、直線偏光板と波長板(位相差板)を、その偏光軸が45度で交差するように積層して作製される。また、液晶ディスプレイ(LCD:Liquid Crystal Display)にも、表示における旋光性や複屈折性を制御するために、これら直線偏光板と波長板が用いられている。 For example, in organic light emitting diodes (OLED: Organic Light Emitting Diode), a circularly polarizing plate is used to prevent reflection of external light. The circularly polarizing plate is manufactured by laminating a linear polarizing plate and a wavelength plate (retardation plate) so that their polarization axes intersect at 45 degrees. In addition, also in liquid crystal displays (LCD: Liquid Crystal Display), in order to control optical rotation and birefringence in display, these linear polarizing plates and wavelength plates are used.
 また、例えば波長板のみを、その偏光軸が15度や75度に傾くように形成する場合がある。したがって、偏光板や波長板を任意の角度で形成する必要がある。さらに、偏光板や波長板の偏光軸を任意の角度で交差させるため、これら偏光板や波長板を個別に形成する必要もある。 Also, for example, only the wave plate may be formed such that its polarization axis is inclined at 15 degrees or 75 degrees. Therefore, it is necessary to form a polarizing plate or a wavelength plate at an arbitrary angle. Furthermore, in order to make the polarization axes of the polarizing plate and the wave plate intersect at an arbitrary angle, it is also necessary to form the polarizing plate and the wave plate separately.
 従来、このような偏光板や波長板は、例えば延伸フィルムを用いて作製されている。延伸フィルムは、フィルムを一方向に延伸させて貼り付けることで、その材料中の分子を一方向に配向させたものである。 Conventionally, such a polarizing plate or a wavelength plate is produced using, for example, a stretched film. The stretched film is obtained by orienting molecules in the material in one direction by stretching the film in one direction and attaching it.
 ところで、近年、OLEDやLCDの薄型化に伴い、偏光板や波長板の薄膜化も求められている。しかしながら、偏光板や波長板を作製するにあたり、従来のように延伸フィルムを用いた場合、当該延伸フィルム自体の膜厚を小さくするのに限界があり、十分な薄膜を得ることができない。 In recent years, with the thinning of OLEDs and LCDs, thinning of polarizing plates and wavelength plates has also been demanded. However, when producing a polarizing plate and a wavelength plate, when a stretched film is used conventionally, there is a limit in reducing the film thickness of the stretched film itself, and a sufficient thin film can not be obtained.
 そこで、基板上に所定材料を有する塗布液を塗布し、必要な膜厚の偏光板や波長板を形成することで、薄膜化が図られている。具体的には、例えば所定材料として液晶性を有する塗布液を基板に塗布し、流延・配向させる。液晶化合物は塗布液中で超分子会合体を形成しており、せん断応力を加えながら塗布液を流動させると超分子会合体の長軸方向が流動方向に配向する。 Therefore, a thin film is realized by applying a coating solution having a predetermined material on a substrate to form a polarizing plate or a wave plate having a required film thickness. Specifically, for example, a coating liquid having liquid crystallinity is applied to a substrate as a predetermined material, and cast and oriented. The liquid crystal compound forms a supramolecular association in the coating solution, and when the coating solution is caused to flow while applying shear stress, the long axis direction of the supramolecular association is aligned in the flowing direction.
 例えば特許文献1に記載された偏光膜印刷装置は、基板を保持するためのテーブルと、基板にインク液を吐出するスロットダイとを有している。テーブルは、定盤の部分をくり抜いた枠板に定盤を嵌め込む構成で、これより定盤周辺部の高さを定盤に定着した基板の表面と同じ高さにする。スロットダイは、少なくとも定盤を覆うように延伸している。そして、定盤を印刷方向に配置した状態で基板を定着させ、さらにその定盤を回転させて、基板を印刷方向に対して所定の角度傾けた後、スロットダイを印刷方向に移動させて基板にインク液を塗布する。 For example, a polarizing film printing apparatus described in Patent Document 1 includes a table for holding a substrate and a slot die for discharging an ink liquid onto the substrate. The table has a configuration in which the surface plate is fitted into a frame plate in which a portion of the surface plate has been cut out, so that the height of the peripheral portion of the surface plate is made the same height as the surface of the substrate fixed to the surface plate. The slot die extends at least to cover the platen. Then, the substrate is fixed with the platen arranged in the printing direction, and the platen is further rotated to tilt the substrate at a predetermined angle with respect to the printing direction, and then the slot die is moved in the printing direction. Apply the ink solution to the
日本国特開2005-62502号公報Japanese Patent Application Laid-Open No. 2005-62502
 しかしながら、特許文献1に記載された偏光膜印刷装置では、基板を定着させた定盤を回転させているが、この定盤の回転は基板を所定の位置(印刷方向と平行になる位置)で受け取るためのものであって、塗布方向を制御するものではない。換言すれば、基板に対するインク液の塗布方向は固定されており、その塗布方向を自由に制御することはできない。 However, in the polarizing film printing apparatus described in Patent Document 1, the platen on which the substrate is fixed is rotated, but the rotation of the platen causes the substrate to be at a predetermined position (a position parallel to the printing direction). It is for receiving, not controlling the application direction. In other words, the application direction of the ink liquid to the substrate is fixed, and the application direction can not be freely controlled.
 また、特許文献1に記載された偏光膜印刷装置を用いた場合、スロットダイが少なくとも定盤を覆うように延伸しているので、基板にインク液を塗布する際、定盤に定着された基板にインク液が吐出されると共に、基板の外側にある定盤と定盤周囲の枠板にもインク液が吐出されて付着する。このため、基板の塗布処理毎に枚葉で定盤と枠板を洗浄する必要があり、手間がかかる。 In addition, when the polarizing film printing apparatus described in Patent Document 1 is used, since the slot die extends so as to cover at least the platen, the substrate fixed to the platen when applying the ink liquid to the substrate The ink liquid is discharged to the surface plate on the outside of the substrate and the frame plate around the surface plate, and the ink liquid is also adhered to the surface plate. For this reason, it is necessary to clean the surface plate and the frame plate with a single wafer each time the substrate is applied, which takes time and effort.
 本発明は、かかる点に鑑みてなされたものであり、光学材料を含む塗布液を、基板に対して任意の角度で適切にかつ効率よく塗布することを目的とする。 The present invention has been made in view of such points, and it is an object of the present invention to apply a coating liquid containing an optical material appropriately and efficiently at an arbitrary angle with respect to a substrate.
 上記課題を解決する本発明の一態様は、基板に光学材料を含む塗布液を塗布する塗布処理装置であって、基板を保持する保持部と、前記保持部に保持された基板に前記塗布液を吐出する塗布ノズルと、前記保持部と前記塗布ノズルを直交方向に相対的に移動させる移動機構と、前記保持部に保持された基板の平面視外側の両側に設けられ、前記塗布ノズルから吐出された前記塗布液を受けとめる受液部と、を有する。 One aspect of the present invention which solves the above-mentioned subject is a coating treatment device which applies a coating liquid containing an optical material to a substrate, and the holding part which holds a substrate, and the coating liquid to the substrate held by the holding part And a moving mechanism for moving the holding unit and the coating nozzle relative to each other in a direction perpendicular to each other, and a discharge mechanism provided on both sides of the substrate held by the holding unit in plan view. And a liquid receiver for receiving the coating liquid.
 本発明の一態様によれば、移動機構によって保持部と塗布ノズルが直交方向に相対的に移動するので、これら保持部と塗布ノズルの相対的な移動速度を制御することで、基板に塗布される塗布液の塗布方向を任意に制御することができる。このように簡易な構成及び簡易な制御で、基板に対して任意の角度で塗布液を塗布することができる。また、保持部に保持された基板の平面視外側の両側において受液部で塗布液を受けとめるので、保持部に塗布液が垂れ落ちて付着するのを抑制することができ、従来のように枚葉での保持部の洗浄は必要ない。したがって、基板に塗布液を適切かつ効率よく塗布することができる。 According to one aspect of the present invention, since the holding unit and the coating nozzle move relative to each other in the orthogonal direction by the moving mechanism, the substrate is coated on the substrate by controlling the relative moving speed of the holding unit and the coating nozzle. The application direction of the coating solution can be arbitrarily controlled. The coating liquid can be applied to the substrate at any angle with such a simple configuration and simple control. Further, since the coating liquid is received by the liquid receiving part on both sides outside the plan view of the substrate held by the holding part, the coating liquid can be prevented from dripping and adhering to the holding part, and the sheet can be prevented as in the prior art. There is no need to wash the holding part with leaves. Therefore, the coating liquid can be applied to the substrate appropriately and efficiently.
 別な観点による本発明の一態様は、基板に光学材料を含む塗布液を塗布する塗布処理方法であって、基板を保持部した保持部と塗布ノズルを直交方向に相対的に移動させながら、前記塗布ノズルから前記塗布液を吐出し、基板の平面視外側の両側において受液部で前記塗布液を受けとめて、基板に前記塗布液を塗布する。 One embodiment of the present invention according to another aspect is a coating treatment method of coating a substrate with a coating solution containing an optical material, and while relatively moving a holding unit holding a substrate and a coating nozzle in the orthogonal direction, The coating liquid is discharged from the coating nozzle, and the liquid receiving portion receives the coating liquid on both sides outside the substrate in a plan view, and applies the coating liquid to the substrate.
 別な観点による本発明の一態様は、前記塗布処理方法を塗布処理装置によって実行させるように、当該塗布処理装置を制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体である。 According to another aspect of the present invention, there is provided a readable computer storage medium storing a program operating on a computer of a control unit that controls the coating processing apparatus to cause the coating processing apparatus to execute the coating processing method. It is.
 本発明の一態様によれば、光学材料を含む塗布液を、基板に対して任意の角度で適切かつ効率よく塗布することができる。 According to one aspect of the present invention, a coating liquid containing an optical material can be applied appropriately and efficiently at any angle with respect to a substrate.
第1の実施形態に係る塗布処理装置の構成の概略を示す平面図である。It is a top view which shows the outline of a structure of the coating treatment apparatus which concerns on 1st Embodiment. 第1の実施形態に係る塗布処理装置の構成の概略を示す側面図である。It is a side view showing an outline of composition of a coating treatment device concerning a 1st embodiment. 第1の実施形態に係る塗布処理装置の構成の概略を示す側面図である。It is a side view showing an outline of composition of a coating treatment device concerning a 1st embodiment. 第1の実施形態に係る塗布ノズルの構成の概略を示す斜視図である。It is a perspective view which shows the outline of a structure of the application | coating nozzle which concerns on 1st Embodiment. 第1の実施形態に係る受液部で塗布液を受けとめる様子を示す説明図である。It is explanatory drawing which shows a mode that a coating liquid is received in the liquid receiving part which concerns on 1st Embodiment. 第1の実施形態に係る受液部の構成の概略を示す側面図である。It is a side view which shows the outline of a structure of the liquid receiving part which concerns on 1st Embodiment. 第1の実施形態において直線偏光膜を形成する際に、ガラス基板と塗布ノズルの動作を示す説明図である。When forming a linear-polarization film | membrane in 1st Embodiment, it is explanatory drawing which shows the operation | movement of a glass substrate and a coating nozzle. 第1の実施形態においてλ/4波長膜を形成する際に、ガラス基板と塗布ノズルの動作を示す説明図である。FIG. 7 is an explanatory view showing operations of a glass substrate and a coating nozzle when forming a λ / 4 wavelength film in the first embodiment. 第2の実施形態に係る塗布処理装置の構成の概略を示す側面図である。It is a side view which shows the outline of a structure of the coating processing apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る塗布処理装置の構成の概略を示す側面図である。It is a side view which shows the outline of a structure of the coating processing apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る受液部で塗布液を受けとめる様子を示す説明図である。It is explanatory drawing which shows a mode that a coating liquid is received in the liquid receiving part which concerns on 2nd Embodiment. 第3の実施形態に係る受液部で塗布液を受けとめる様子を示す説明図である。It is explanatory drawing which shows a mode that a coating liquid is received in the liquid receiving part which concerns on 3rd Embodiment. 第4の実施形態に係る受液部で塗布液を受けとめる様子を示す説明図である。It is explanatory drawing which shows a mode that a coating liquid is received in the liquid receiving part which concerns on 4th Embodiment. 第5の実施形態に係る受液部で塗布液を受けとめる様子を示す説明図である。It is explanatory drawing which shows a mode that a coating liquid is received in the liquid receiving part which concerns on 5th Embodiment. 第6の実施形態に係る受液部で塗布液を受けとめる様子を示す説明図である。It is explanatory drawing which shows a mode that a coating liquid is received in the liquid receiving part which concerns on 6th Embodiment. 第7の実施形態に係る塗布処理装置の構成の概略を示す側面図である。It is a side view which shows the outline of a structure of the coating treatment apparatus which concerns on 7th Embodiment. 第8の実施形態に係る塗布処理装置の構成の概略を示す側面図である。It is a side view which shows the outline of a structure of the coating processing apparatus which concerns on 8th Embodiment. 第8の実施形態に係る塗布処理装置の構成の概略を示す側面図である。It is a side view which shows the outline of a structure of the coating processing apparatus which concerns on 8th Embodiment. 第9の実施形態に係る塗布処理装置の構成の概略を示す平面図である。It is a top view which shows the outline of a structure of the coating processing apparatus which concerns on 9th Embodiment. 第10の実施形態に係る塗布処理装置の構成の概略を示す平面図である。It is a top view which shows the outline of a structure of the coating processing apparatus which concerns on 10th Embodiment.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and the drawings, elements having substantially the same functional configuration will be assigned the same reference numerals and redundant description will be omitted.
<光学膜形成>
 本実施形態では、OLEDに用いられる円偏光板を作製する場合において、光学膜である、直線偏光膜(直線偏光板)とλ/4波長膜(λ/4波長板)を、その偏光軸が45度で交差するようにガラス基板に形成する。
<Optical film formation>
In the present embodiment, in the case of producing a circularly polarizing plate used for an OLED, a linear polarizing film (linearly polarizing plate) and a λ / 4 wavelength film (λ / 4 wavelength plate), which are optical films, have their polarization axes The glass substrate is formed to cross at 45 degrees.
 直線偏光膜とλ/4波長膜を形成するに際してはそれぞれ、塗布処理、減圧乾燥処理、加熱処理、膜定着処理、膜除去処理が順次行われる。 When forming the linear polarization film and the λ / 4 wavelength film, coating treatment, reduced-pressure drying treatment, heat treatment, film fixing treatment, and film removing treatment are sequentially performed.
 先ず、ガラス基板に直線偏光膜を形成する。直線偏光膜に対する塗布処理では、ガラス基板の全面に塗布液(偏光膜用塗布液)を塗布する。この際、塗布液に一方向のせん断応力を加えることで、分子を一方向に配向させる。その後、減圧乾燥処理では、直線偏光膜を減圧乾燥することで、膜中の溶媒が除去されて、膜中の分子の配向状態が適切に維持される。その後、加熱処理では、直線偏光膜を所定の温度することで、膜中に残存する溶媒を完全に除去する。その後、膜定着処理では、ガラス基板の画素エリアに定着材を塗布することで、直線偏光膜を不活性化(不溶化)し、不活性化された直線偏光膜をガラス基板に定着させる。その後、膜除去処理では、ガラス基板に洗浄液を供給することで、膜定着処理で定着していない直線偏光膜を選択的に除去する。 First, a linear polarizing film is formed on a glass substrate. In the coating process for the linear polarizing film, a coating solution (a coating solution for polarizing film) is coated on the entire surface of the glass substrate. At this time, by applying shear stress in one direction to the coating solution, molecules are oriented in one direction. Thereafter, in the reduced-pressure drying process, the solvent in the film is removed by drying the linearly polarized film under reduced pressure, and the alignment state of the molecules in the film is appropriately maintained. Thereafter, in the heat treatment, the solvent remaining in the film is completely removed by heating the linear polarizing film to a predetermined temperature. Thereafter, in the film fixing process, a fixing material is applied to the pixel area of the glass substrate to inactivate (insolubilize) the linearly polarizing film, and the inactivated linear polarizing film is fixed to the glass substrate. After that, in the film removal process, the cleaning liquid is supplied to the glass substrate to selectively remove the linearly polarized film not fixed in the film fixing process.
 ガラス基板に直線偏光膜が形成されると、次に、ガラス基板にλ/4波長膜をさらに形成する。λ/4波長膜に対する塗布処理では、ガラス基板の全面に塗布液(波長膜用塗布液)を塗布する。この際、塗布液に対し、直線偏光膜における一方向から45度傾いた方向(斜め45度方向)のせん断応力を加えることで、分子を斜め45度方向に配向させる。なお、その後の減圧乾燥処理、加熱処理、膜定着処理、膜除去処理はそれぞれ、直線偏光膜を形成する際の各処理と同様である。 After the linear polarization film is formed on the glass substrate, next, a λ / 4 wavelength film is further formed on the glass substrate. In the coating process for the λ / 4 wavelength film, a coating solution (coating solution for wavelength film) is applied to the entire surface of the glass substrate. At this time, by applying a shear stress in a direction (45 ° direction in a 45 ° direction) inclined from one direction in the linearly polarizing film to the coating solution, the molecules are oriented in a 45 ° direction in a θ direction. The subsequent reduced-pressure drying treatment, heat treatment, film fixing treatment, and film removal treatment are respectively the same as the respective treatments for forming the linear polarizing film.
 こうして直線偏光膜とλ/4波長膜が、その偏光軸が45度で交差するようにガラス基板に形成される。以下の説明においては、ガラス基板に対して任意の角度で塗布液を塗布する塗布処理装置及び塗布処理方法について説明する。 Thus, the linear polarizing film and the λ / 4 wavelength film are formed on the glass substrate such that their polarization axes intersect at 45 degrees. In the following description, a coating treatment apparatus and a coating treatment method for coating a coating liquid at an arbitrary angle with respect to a glass substrate will be described.
<第1の実施形態>
 次に、本発明の第1の実施形態に係る塗布処理装置について説明する。図1は、第1の実施形態に係る塗布処理装置1の構成の概略を示す平面図である。図2及び図3は、第1の実施形態に係る塗布処理装置1の構成の概略を示す側面図である。なお、以下に示す図面においては、位置関係を明確にするために、互いに直交するX軸方向、Y軸方向及びZ軸方向を規定し、Z軸正方向を鉛直上向き方向とする。
First Embodiment
Next, a coating treatment apparatus according to the first embodiment of the present invention will be described. FIG. 1 is a plan view showing an outline of the configuration of a coating treatment apparatus 1 according to the first embodiment. FIG.2 and FIG.3 is a side view which shows the outline of a structure of the coating processing apparatus 1 which concerns on 1st Embodiment. In the drawings described below, in order to clarify the positional relationship, the X-axis direction, the Y-axis direction, and the Z-axis direction orthogonal to one another are defined, and the positive Z-axis direction is the vertically upward direction.
 塗布処理装置1は、ガラス基板Gを保持する保持部としてのステージ10と、ガラス基板Gに塗布液を吐出する塗布ノズル20と、塗布ノズル20の端部から吐出された塗布液を受けとめる受液部30と、を有している。 The coating processing apparatus 1 receives a stage 10 as a holding unit for holding a glass substrate G, a coating nozzle 20 that discharges the coating liquid onto the glass substrate G, and a liquid receiver that receives the coating liquid discharged from the end of the coating nozzle 20 And a unit 30.
 ステージ10は、ガラス基板Gに塗布液が塗布される表面が上方を向くように、その裏面を吸着保持する。ステージ10は、平面視においてガラス基板Gよりも小さい形状、又はガラス基板Gと同じ形状を有している。ステージ10は、移動機構(図示せず)によってY軸方向に移動自在に構成されている。ステージ10の移動範囲は少なくともガラス基板GのY軸方向に2枚分の長さ以上であり、ステージ10がY軸方向負方向の端部に位置している場合のガラス基板G(図1中の実線、基板位置A1)と、ステージ10がY軸方向正方向の端部に位置している場合のガラス基板G(図1中の点線、基板位置A2)とが、平面視において重ならない。 The stage 10 adsorbs and holds the back surface of the glass substrate G such that the surface on which the coating liquid is applied is directed upward. The stage 10 has a smaller shape than the glass substrate G in plan view, or the same shape as the glass substrate G. The stage 10 is configured to be movable in the Y-axis direction by a movement mechanism (not shown). The movable range of the stage 10 is at least a length of two or more in the Y-axis direction of the glass substrate G, and the glass substrate G when the stage 10 is positioned at the end in the negative Y-axis direction (FIG. The solid line of the substrate position A1) and the glass substrate G (dotted line in FIG. 1, substrate position A2) when the stage 10 is positioned at the end in the positive direction of the Y-axis direction do not overlap in plan view.
 塗布ノズル20は、ステージ10の上方に設けられ、ステージ10に保持されたガラス基板Gに塗布液を吐出する。塗布ノズル20は、ステージ10に保持されたガラス基板Gの移動方向(Y軸方向)と直交する方向(X軸方向)に延伸する長尺状のスリットノズルである。図4に示すように塗布ノズル20の下端面には、ガラス基板Gに塗布液を吐出する吐出口21が形成されている。吐出口21は、塗布ノズル20の長手方向(X軸方向)に沿って、ガラス基板GのX軸方向の長さより長く延伸するスリット状の吐出口である。 The coating nozzle 20 is provided above the stage 10 and discharges the coating liquid onto the glass substrate G held by the stage 10. The coating nozzle 20 is a long slit nozzle extending in a direction (X-axis direction) orthogonal to the moving direction (Y-axis direction) of the glass substrate G held by the stage 10. As shown in FIG. 4, at the lower end surface of the coating nozzle 20, a discharge port 21 for discharging the coating liquid onto the glass substrate G is formed. The discharge port 21 is a slit-like discharge port which extends longer than the length of the glass substrate G in the X-axis direction along the longitudinal direction (X-axis direction) of the coating nozzle 20.
 図1~図3に示すように塗布ノズル20は、X軸方向に延伸する支持梁22に支持されている。そして、塗布ノズル20は、移動機構(図示せず)により、支持梁22に沿って移動自在に構成されている。塗布ノズル20は、ガラス基板GのX軸方向負方向側(図1中の実線、ノズル位置B1)と、ガラス基板GのX軸方向正方向側(図1中の点線、ノズル位置B2)との間を移動する。そして、ノズル位置B1とノズル位置B2との間のいずれの位置においても、塗布ノズル20はその吐出口21から、ガラス基板GのX軸方向を覆うように塗布液を吐出する。 As shown in FIGS. 1 to 3, the coating nozzle 20 is supported by a support beam 22 extending in the X-axis direction. The coating nozzle 20 is configured to be movable along the support beam 22 by a moving mechanism (not shown). The application nozzle 20 is the X axis direction negative direction side of the glass substrate G (solid line in FIG. 1, nozzle position B1) and the X axis direction positive direction side of the glass substrate G (dotted line in FIG. 1 nozzle position B2) Move between Then, at any position between the nozzle position B1 and the nozzle position B2, the coating nozzle 20 discharges the coating liquid from the discharge port 21 so as to cover the X axis direction of the glass substrate G.
 このようにステージ10と塗布ノズル20は直交方向に移動する。そして、塗布ノズル20は、ステージ10に保持されたガラス基板Gに塗布液を塗布することができる。また、ステージ10の移動速度と塗布ノズル20の移動速度を制御することで、ガラス基板Gに塗布される塗布液の塗布方向を任意に制御することができる。 Thus, the stage 10 and the coating nozzle 20 move in the orthogonal direction. Then, the coating nozzle 20 can apply the coating liquid to the glass substrate G held by the stage 10. Further, by controlling the moving speed of the stage 10 and the moving speed of the coating nozzle 20, it is possible to arbitrarily control the coating direction of the coating liquid to be coated on the glass substrate G.
 なお、塗布ノズル20から吐出される塗布液は、光学材料を含む塗布液である。具体的には、直線偏光膜を形成するための偏光膜用塗布液と、λ/4波長膜を形成するための波長膜用塗布液であり、それぞれ例えば光学材料としてリオトロピック液晶化合物やサーモトロピック液晶化合物など、任意の液晶化合物が含まれる。 In addition, the coating liquid discharged from the coating nozzle 20 is a coating liquid containing an optical material. Specifically, a coating solution for a polarizing film for forming a linear polarizing film and a coating solution for a wavelength film for forming a λ / 4 wavelength film, and for example, a lyotropic liquid crystal compound or a thermotropic liquid crystal as an optical material, respectively Included are any liquid crystal compounds, such as compounds.
 受液部30は、ステージ10に保持されたガラス基板GのX軸方向外側の両側に設けられている。各受液部30は、塗布ノズル20の端部から吐出された塗布液を巻き取る巻き取り材としてのローラ31と、ローラ31に巻き取られた塗布液を回収する回収槽32と、ローラ31及び回収槽32を支持する支持構造体としての支持フレーム33と、を有している。 The liquid receiving portions 30 are provided on both sides of the glass substrate G held by the stage 10 on the outer side in the X-axis direction. Each liquid receiving unit 30 includes a roller 31 as a winding material for winding the coating liquid discharged from the end of the coating nozzle 20, a collection tank 32 for collecting the coating liquid wound around the roller 31, and a roller 31. And a support frame 33 as a support structure for supporting the recovery tank 32.
 ローラ31は、X軸方向に延伸して設けられている。ローラ31のガラス基板G側の端部は、ガラス基板Gに接触しないように当該ガラス基板Gに近接して位置している。ローラ31のガラス基板Gと反対側の端部は、ノズル位置B1、B2のそれぞれにある塗布ノズル20の外側に位置している。そして、図5に示すように塗布ノズル20からガラス基板Gに塗布液Pを吐出する際、塗布ノズル20の端部から吐出される塗布液Pは、ガラス基板Gの移動方向と同じ方向に回転するローラ31に巻き取られて回収される。 The roller 31 is provided so as to extend in the X-axis direction. The end portion of the roller 31 on the glass substrate G side is positioned close to the glass substrate G so as not to contact the glass substrate G. The end of the roller 31 opposite to the glass substrate G is located outside the coating nozzle 20 at each of the nozzle positions B1 and B2. Then, when the coating liquid P is discharged from the coating nozzle 20 to the glass substrate G as shown in FIG. 5, the coating liquid P discharged from the end of the coating nozzle 20 rotates in the same direction as the moving direction of the glass substrate G. It is taken up by a roller 31 and collected.
 また、ローラ31は、塗布ノズル20の吐出口21と所定の隙間を空けた状態で塗布液Pを巻き取る。そうすると、ガラス基板Gに塗布液Pを塗布する際の、塗布ノズル20から吐出される塗布液Pのビードが乱れることがない。さらに、本実施形態ではローラ31は、ローラ31の上面と、ステージ10に保持されたガラス基板Gの上面とが同じ高さになるように配置されている。換言すれば、ローラ31はガラス基板Gの延長(疑似基板)のような役割を果たす。かかる場合、ローラ31と塗布ノズル20との隙間の距離と、ガラス基板Gと塗布ノズル20との隙間の距離とが同じになり、これら隙間の塗布液Pの状態、例えば塗布液Pの量が同じになるため、塗布ノズル20からの塗布液Pのビードをさらに適切に安定させることができる。 In addition, the roller 31 rolls up the coating solution P in a state where a predetermined gap from the discharge port 21 of the coating nozzle 20 is formed. Then, the bead of the coating liquid P discharged from the coating nozzle 20 when the coating liquid P is applied to the glass substrate G is not disturbed. Furthermore, in the present embodiment, the roller 31 is disposed such that the upper surface of the roller 31 and the upper surface of the glass substrate G held by the stage 10 have the same height. In other words, the roller 31 plays the role of extending the glass substrate G (simulated substrate). In this case, the distance between the roller 31 and the application nozzle 20 is the same as the distance between the glass substrate G and the application nozzle 20, and the state of the application liquid P in these gaps, for example, the amount of the application liquid P is Since the same, the bead of the coating liquid P from the coating nozzle 20 can be stabilized more appropriately.
 なお、ローラ31とガラス基板Gとの間にはX軸方向に若干の隙間があるが、塗布液Pの表面張力によって、この隙間から塗布液Pが垂れ落ちることはない。また、塗布液Pの粘度が高い場合、隙間は広くてもよいが、塗布液Pの粘度が低い場合、隙間は狭い方がよい。また、例えば塗布ノズル20のX軸方向の移動を考慮して、ローラ31とガラス基板Gとの隙間の大きさを、ガラス基板Gの左右(塗布ノズル20の移動方向両側)で異なるようにしてもよい。 Although there is a slight gap between the roller 31 and the glass substrate G in the X-axis direction, the surface tension of the coating fluid P does not cause the coating fluid P to drop from this gap. Further, when the viscosity of the coating liquid P is high, the gap may be wide, but when the viscosity of the coating liquid P is low, it is preferable that the gap be narrow. Also, for example, in consideration of the movement of the coating nozzle 20 in the X-axis direction, the size of the gap between the roller 31 and the glass substrate G is made different between the left and right of the glass substrate G (both sides in the moving direction of the coating nozzle 20). It is also good.
 図6に示すように回収槽32は、ローラ31の下方において当該ローラ31を覆うように設けられている。回収槽32は上面が開口し、ローラ31で巻き取られた塗布液Pを回収して一時的に貯留する。またこの際、回収槽32においてローラ31の下部は塗布液Pに浸漬している。なお、回収槽32に一時的に貯留されている塗布液Pに水を供給し、当該塗布液Pを水に溶かしてもよい。 As shown in FIG. 6, the recovery tank 32 is provided below the roller 31 so as to cover the roller 31. The upper surface of the recovery tank 32 is open, and the coating liquid P taken up by the roller 31 is recovered and temporarily stored. At this time, the lower part of the roller 31 in the recovery tank 32 is immersed in the coating solution P. Water may be supplied to the application liquid P temporarily stored in the recovery tank 32, and the application liquid P may be dissolved in water.
 回収槽32の底面は中央部に向かって下方に傾斜しており、その中央部には塗布液Pの排液管34が接続されている。また、回収槽32の側面には、塗布液Pのオーバーフローを防止するためのオーバーフロー管(図示せず)が接続されている。そして、回収槽32に貯留された塗布液Pは、排液管34及びオーバーフロー管から排出される。なお、このように排液管34から排出された塗布液Pは、次以降に処理されるガラス基板Gに再利用してもよい。 The bottom surface of the recovery tank 32 is inclined downward toward the central portion, and a drain pipe 34 of the coating liquid P is connected to the central portion. Further, an overflow pipe (not shown) for preventing an overflow of the coating liquid P is connected to the side surface of the recovery tank 32. Then, the coating liquid P stored in the recovery tank 32 is drained from the drain pipe 34 and the overflow pipe. The coating liquid P discharged from the drainage pipe 34 in this manner may be reused for the glass substrate G to be processed subsequently.
 図2及び図3に示すように支持フレーム33は、ローラ31と回収槽32を下方から支持する。かかる場合、例えばローラ31と回収槽32のメンテナンスの際、当該ローラ31と回収槽32を支持フレーム33ごと容易に交換することができる。また、支持フレーム33は塗布ノズル20に干渉しないので、塗布ノズル20のメンテナンスの際、当該塗布ノズル20を容易に交換することもできる。 As shown in FIGS. 2 and 3, the support frame 33 supports the roller 31 and the recovery tank 32 from below. In such a case, for example, at the time of maintenance of the roller 31 and the collection tank 32, the roller 31 and the collection tank 32 can be easily replaced together with the support frame 33. Further, since the support frame 33 does not interfere with the coating nozzle 20, the coating nozzle 20 can be easily replaced at the time of maintenance of the coating nozzle 20.
 図1に示すように以上の塗布処理装置1には、制御部40が設けられている。制御部40は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、塗布処理装置1における塗布処理を制御するプログラムが格納されている。このプログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、その記憶媒体Hから制御部40にインストールされたものであってもよい。 As shown in FIG. 1, a control unit 40 is provided in the coating treatment apparatus 1 described above. The control unit 40 is, for example, a computer and has a program storage unit (not shown). The program storage unit stores a program for controlling the coating process in the coating treatment apparatus 1. This program is recorded on a computer readable storage medium H such as a computer readable hard disk (HD), flexible disk (FD), compact disk (CD), magnet optical desk (MO), memory card, etc. It may be one that is installed in the control unit 40 from the storage medium H.
 次に、以上のように構成された塗布処理装置1を行われる塗布処理方法について説明する。 Next, a coating treatment method in which the coating treatment apparatus 1 configured as described above is performed will be described.
 先ず、ガラス基板Gに直線偏光膜を形成する。具体的には、図7に示すように塗布処理装置1において、ガラス基板Gの全面に塗布液P1を塗布する。この場合の塗布液P1は、直線偏光膜を形成するための偏光膜用塗布液である。また、塗布処理装置1では、塗布ノズル20をノズル位置B1から移動させずに、ガラス基板Gを基板位置A1から基板位置A2に移動させる。なお、塗布ノズル20の位置はノズル位置B1に限定されず、ノズル位置B1とノズル位置B2の間の任意の位置であってもよい。 First, a linear polarization film is formed on a glass substrate G. Specifically, as shown in FIG. 7, the coating solution P1 is applied to the entire surface of the glass substrate G in the coating treatment apparatus 1. The coating liquid P1 in this case is a coating liquid for polarizing film for forming a linear polarizing film. Further, in the coating treatment apparatus 1, the glass substrate G is moved from the substrate position A1 to the substrate position A2 without moving the coating nozzle 20 from the nozzle position B1. The position of the application nozzle 20 is not limited to the nozzle position B1, and may be any position between the nozzle position B1 and the nozzle position B2.
 図7(a)に示すように、基板位置A1においてガラス基板Gがステージ10に保持される。続いて、図7(b)に示すように塗布ノズル20から塗布液P1を吐出しつつ、ガラス基板GをY軸方向正方向に移動させ、ガラス基板Gに塗布液P1が塗布される。そして、図7(c)に示すようにガラス基板Gが基板位置A2まで移動して、ガラス基板Gの全面に塗布液P1が塗布される。 As shown in FIG. 7A, the glass substrate G is held by the stage 10 at the substrate position A1. Subsequently, as shown in FIG. 7B, while the coating liquid P1 is discharged from the coating nozzle 20, the glass substrate G is moved in the Y-axis direction positive direction, and the coating liquid P1 is coated on the glass substrate G. Then, as shown in FIG. 7C, the glass substrate G moves to the substrate position A2, and the coating liquid P1 is applied to the entire surface of the glass substrate G.
 この際、塗布ノズル20の端部から吐出される塗布液P1、すなわちガラス基板Gの外側に吐出される塗布液P1は、ローラ31に巻き取られ回収される。したがって、塗布液P1が下方に垂れ落ちることがない。 At this time, the coating liquid P1 discharged from the end of the coating nozzle 20, that is, the coating liquid P1 discharged to the outside of the glass substrate G is wound around the roller 31 and collected. Therefore, the coating liquid P1 does not drip down.
 またこの際、塗布液P1はせん断応力(図7中のブロック矢印)が加えられながら塗布される。塗布ノズル20は移動せず、ガラス基板GがY軸方向正方向に移動するので、せん断応力はY軸方向正方向に加えられる。 At this time, the coating solution P1 is applied while applying a shear stress (block arrow in FIG. 7). Since the coating nozzle 20 does not move and the glass substrate G moves in the Y-axis direction positive direction, shear stress is applied in the Y-axis direction positive direction.
 また、せん断応力(シアレート)は、塗布速度(ガラス基板Gに対する塗布ノズル20の移動速度)を、ガラス基板Gと塗布ノズル20の吐出口21との距離(ギャップ)で割った値である。塗布ノズル20にはスリットノズルが用いられるので、塗布ノズル20は、ガラス基板Gを傷つけることなく、当該ガラス基板Gに十分に近接できる。このため、ギャップを小さくすることができる。そうすると、塗布ノズル20の移動速度を制御することで、塗布液P1に十分なせん断応力を加えることができる。またその結果、塗布液P1中の分子を一方向(Y軸方向)に配向させることができる。 The shear stress (shear rate) is a value obtained by dividing the coating speed (moving speed of the coating nozzle 20 with respect to the glass substrate G) by the distance (gap) between the glass substrate G and the discharge port 21 of the coating nozzle 20. Since a slit nozzle is used for the coating nozzle 20, the coating nozzle 20 can sufficiently approach the glass substrate G without damaging the glass substrate G. Thus, the gap can be reduced. Then, by controlling the moving speed of the coating nozzle 20, a sufficient shear stress can be applied to the coating solution P1. As a result, molecules in the coating liquid P1 can be oriented in one direction (Y-axis direction).
 なお、塗布ノズル20には、スリットノズル以外の他のノズルを用いることもできるが、上述したようにギャップをできるだけ小さくできるという観点からは、スリットノズルが好適である。また、ガラス基板Gに塗布される塗布液P1の膜厚は小さく、かかる観点からもスリットノズルが好適である。 In addition, although other nozzles other than a slit nozzle can also be used for the application | coating nozzle 20, a slit nozzle is suitable from a viewpoint that gap can be made as small as mentioned above. Moreover, the film thickness of the coating liquid P1 apply | coated to the glass substrate G is small, and a slit nozzle is suitable also from this viewpoint.
 次に、ガラス基板Gにλ/4波長膜を形成する。具体的には、図8に示すように塗布処理装置1において、ガラス基板Gの全面に塗布液P2を塗布する。この場合の塗布液P2は、λ/4波長膜を形成するための波長膜用塗布である。また、塗布処理装置1では、ガラス基板Gを基板位置A1から基板位置A2に移動させると共に、塗布ノズル20をノズル位置B1からノズル位置B2に移動させる。このとき、ガラス基板Gの移動速度と塗布ノズル20の移動速度は同じである。 Next, a λ / 4 wavelength film is formed on the glass substrate G. Specifically, as shown in FIG. 8, the coating solution P2 is applied to the entire surface of the glass substrate G in the coating treatment apparatus 1. The coating liquid P2 in this case is a coating for a wavelength film for forming a λ / 4 wavelength film. Further, in the coating treatment apparatus 1, the glass substrate G is moved from the substrate position A1 to the substrate position A2, and the coating nozzle 20 is moved from the nozzle position B1 to the nozzle position B2. At this time, the moving speed of the glass substrate G and the moving speed of the coating nozzle 20 are the same.
 図8(a)に示すように、基板位置A1においてガラス基板Gがステージ10に保持される。続いて、図8(b)に示すようにガラス基板GをY軸方向正方向に移動させると共に、塗布ノズル20から塗布液P2を吐出しつつ、塗布ノズル20をX軸方向正方向に移動させ、ガラス基板Gに塗布液P2が塗布される。そして、図8(c)に示すようにガラス基板Gが基板位置A2まで移動し、かつ塗布ノズル20がノズル位置B2まで移動して、ガラス基板Gの全面に塗布液P2が塗布される。 As shown in FIG. 8A, the glass substrate G is held by the stage 10 at the substrate position A1. Subsequently, as shown in FIG. 8B, the glass substrate G is moved in the positive direction along the Y-axis, and the application nozzle 20 is moved along the positive direction along the X-axis while discharging the coating liquid P2 from the application nozzle 20. The coating liquid P2 is applied to the glass substrate G. Then, as shown in FIG. 8C, the glass substrate G moves to the substrate position A2, and the coating nozzle 20 moves to the nozzle position B2, and the coating liquid P2 is coated on the entire surface of the glass substrate G.
 この際、塗布ノズル20がノズル位置B1とノズル位置B2との間で移動しても、塗布ノズル20の端部から吐出される塗布液P2、すなわちガラス基板Gの外側に吐出される塗布液P2は、ローラ31に巻き取られ回収される。したがって、塗布液P1が下方に垂れ落ちることがない。 At this time, even if the coating nozzle 20 moves between the nozzle position B1 and the nozzle position B2, the coating liquid P2 discharged from the end of the coating nozzle 20, that is, the coating liquid P2 discharged to the outside of the glass substrate G Is wound around the roller 31 and collected. Therefore, the coating liquid P1 does not drip down.
 また、この際、塗布液P2はせん断応力(図8中のブロック矢印)が加えられながら塗布される。すなわち、ガラス基板Gの移動速度と塗布ノズル20の移動速度が同じであるため、せん断応力はY軸方向正方向及びX軸方向正方向に斜め45度方向に加えられる。 At this time, the coating solution P2 is applied while applying a shear stress (block arrow in FIG. 8). That is, since the moving speed of the glass substrate G and the moving speed of the coating nozzle 20 are the same, the shear stress is applied in the oblique direction of 45 degrees in the positive direction along the Y axis and the positive direction along the X axis.
 また、ガラス基板Gの移動速度と塗布ノズル20の移動速度を制御することで、塗布液P2に十分なせん断応力を加えることができる。その結果、塗布液P2中の分子を一方向(斜め45度方向)に配向させることができる。 Further, by controlling the moving speed of the glass substrate G and the moving speed of the coating nozzle 20, a sufficient shear stress can be applied to the coating liquid P2. As a result, the molecules in the coating solution P2 can be oriented in one direction (45-degree oblique direction).
 以上の実施の形態によれば、塗布処理装置1において、ステージ10に保持されたガラス基板Gと塗布ノズル20がそれぞれ直交方向に移動するので、これらガラス基板Gの移動速度と塗布ノズル20の移動速度を制御することで、ガラス基板Gに塗布される塗布液の塗布方向を制御することができる。このように簡易な構成及び簡易な制御で、ガラス基板Gに対して任意の角度で塗布液を塗布することができる。そして、塗布液P1の塗布方向と塗布液P2の塗布方向を45度で交差させ、直線偏光膜とλ/4波長膜を、その偏光軸が45度で交差するように形成することができる。 According to the above embodiment, in the coating treatment apparatus 1, the glass substrate G held by the stage 10 and the coating nozzle 20 move in the orthogonal direction, so the moving speed of the glass substrate G and the movement of the coating nozzle 20 By controlling the speed, it is possible to control the application direction of the coating liquid applied to the glass substrate G. The coating liquid can be applied to the glass substrate G at an arbitrary angle with such a simple configuration and simple control. Then, the application direction of the application liquid P1 and the application direction of the application liquid P2 can be crossed at 45 degrees, and a linear polarization film and a λ / 4 wavelength film can be formed so that the polarization axes thereof intersect at 45 degrees.
 また、ガラス基板Gの外側の両側において受液部30(ローラ31)で塗布液Pを巻き取って回収するので、塗布液Pが垂れ落ちるのを抑制することができる。その結果、ステージ10に塗布液Pが垂れ落ちて付着するのを抑制することができ、従来のように枚葉でのステージ10を洗浄する必要がない。さらに、回収槽32で回収された塗布液Pが再利用される場合には、塗布液Pの使用量を抑えることも可能となる。 In addition, since the coating liquid P is wound up and collected by the liquid receiving portion 30 (roller 31) on both sides outside the glass substrate G, it is possible to suppress the coating liquid P from falling down. As a result, the coating liquid P can be prevented from dripping and adhering to the stage 10, and there is no need to wash the single-wafer stage 10 as in the prior art. Furthermore, when the coating liquid P collected in the collection tank 32 is reused, it is possible to reduce the amount of the coating liquid P used.
<第2の実施形態>
 次に、本発明の第2の実施形態に係る塗布処理装置について説明する。図9及び図10は、第2の実施形態に係る塗布処理装置1の構成の概略を示す側面図である。
Second Embodiment
Next, a coating treatment apparatus according to a second embodiment of the present invention will be described. FIG.9 and FIG.10 is a side view which shows the outline of a structure of the coating processing apparatus 1 which concerns on 2nd Embodiment.
 第2の実施形態と第1の実施形態では、塗布処理装置1における受液部の構成が異なる。すなわち、第2の実施形態の塗布処理装置1では、第1の実施形態の受液部30に代えて、受液部100が設けられている。 The second embodiment and the first embodiment are different in the configuration of the liquid receiver in the coating treatment apparatus 1. That is, in the coating treatment apparatus 1 of the second embodiment, the liquid receiving unit 100 is provided instead of the liquid receiving unit 30 of the first embodiment.
 受液部100は、ステージ10に保持されたガラス基板GのX軸方向外側の両側に設けられている。各受液部100は、塗布ノズル20の端部の吐出口を封止する封止材としてのディッケル101と、ディッケル101を下方から支持する支持構造体としての支持フレーム102と、を有している。 The liquid receiving portions 100 are provided on both sides of the glass substrate G held by the stage 10 on the outer side in the X-axis direction. Each liquid receiving portion 100 has a deckle 101 as a sealing material for sealing the discharge port at the end of the coating nozzle 20, and a support frame 102 as a support structure for supporting the deckle 101 from below. There is.
 ディッケル101は、X軸方向に延伸して設けられている。ディッケル101のガラス基板G側の端部は、ガラス基板Gに接触しないように当該ガラス基板Gに近接して位置している。ディッケル101のガラス基板Gと反対側の端部は、ノズル位置B1、B2のそれぞれにある塗布ノズル20の外側に位置している。そして、図11に示すようにディッケル101が塗布ノズル20の端部に密着することで、当該塗布ノズル20(吐出口21)の端部が封止される。その結果、塗布ノズル20の端部における塗布液Pも封止され、吐出されることがない。 The deckle 101 is provided so as to extend in the X-axis direction. The end portion of the glass substrate G side of the deckle 101 is positioned close to the glass substrate G so as not to contact the glass substrate G. The end of the deckle 101 opposite to the glass substrate G is located outside the coating nozzle 20 at each of the nozzle positions B1 and B2. Then, as shown in FIG. 11, the end of the application nozzle 20 (discharge port 21) is sealed by bringing the deckle 101 into close contact with the end of the application nozzle 20. As a result, the coating liquid P at the end of the coating nozzle 20 is also sealed and is not discharged.
 なお、ディッケル101の断面形状は、塗布ノズル20の端部に密着して封止できるものであれば限定されない。本実施形態で図示した例のように上面が平坦の矩形状であってもよいし、あるいは例えば特開2013-165137号公報に記載されたV字形状であってもよい。また、ディッケル101には、塗布ノズル20と密着した際にパーティクルの発生が抑制される材料、例えばシリコンゴムやフッ素ゴムを用いるのが好ましい。 The cross-sectional shape of the deckle 101 is not limited as long as it can be sealed in close contact with the end of the coating nozzle 20. As in the example illustrated in the present embodiment, the upper surface may be a flat rectangular shape, or may be a V shape described in, for example, Japanese Patent Application Laid-Open No. 2013-165137. In addition, it is preferable to use, for the deckle 101, a material that suppresses the generation of particles when in close contact with the coating nozzle 20, such as silicone rubber and fluororubber.
 本実施形態においても、第1の実施形態と同様の効果を享受することができる。しかも、ディッケル101が塗布ノズル20の端部が封止され、塗布ノズル20の端部から塗布液Pが吐出されることがないので、塗布液Pの使用量を抑えることも可能となる。また、ディッケル101は塗布ノズル20に密着するので、吐出口21に付着する塗布液Pを拭き取ることができ、吐出口21を常に清浄に維持することができる。 Also in this embodiment, it is possible to receive the same effect as that of the first embodiment. In addition, since the end of the coating nozzle 20 is sealed with the deckle 101 and the coating liquid P is not discharged from the end of the coating nozzle 20, it is possible to suppress the amount of the coating liquid P used. Further, since the deckle 101 is in close contact with the coating nozzle 20, the coating liquid P adhering to the discharge port 21 can be wiped off, and the discharge port 21 can be always kept clean.
<第3の実施形態>
 次に、本発明の第3の実施形態に係る塗布処理装置について説明する。図12は、第3の実施形態に係る受液部110で塗布液Pを受けとめる様子を示す説明図である。
Third Embodiment
Next, a coating treatment apparatus according to a third embodiment of the present invention will be described. FIG. 12 is an explanatory view showing a state in which the coating liquid P is received by the liquid receiver 110 according to the third embodiment.
 第3の実施形態と第1の実施形態では、塗布処理装置1における受液部の構成が異なる。すなわち、第3の実施形態の塗布処理装置1では、第1の実施形態の受液部30に代えて、受液部110が設けられている。 The third embodiment and the first embodiment differ in the configuration of the liquid receiving portion in the coating treatment apparatus 1. That is, in the coating treatment apparatus 1 of the third embodiment, the liquid receiving unit 110 is provided instead of the liquid receiving unit 30 of the first embodiment.
 受液部110は、ステージ10に保持されたガラス基板GのX軸方向外側の両側に設けられている。各受液部110は、塗布ノズル20の端部から吐出された塗布液Pを回収する回収容器としてのパン111と、パン111を下方から支持する支持構造体としての支持フレーム(図示せず)と、を有している。なお、支持フレームの構成は、例えば第1の実施形態の支持フレーム33の構成と同様である。 The liquid receiving portions 110 are provided on both sides of the glass substrate G held by the stage 10 on the outer side in the X-axis direction. Each liquid receiving unit 110 includes a pan 111 as a collection container for collecting the coating liquid P discharged from the end of the coating nozzle 20, and a support frame (not shown) as a support structure for supporting the pan 111 from below. And. In addition, the structure of a support frame is the same as that of the structure of the support frame 33 of 1st Embodiment, for example.
 パン111は、X軸方向に延伸して設けられている。パン111のガラス基板G側の端部は、ガラス基板Gに接触しないように当該ガラス基板Gに近接して位置している。パン111のガラス基板Gと反対側の端部は、ノズル位置B1、B2のそれぞれにある塗布ノズル20の外側に位置している。また、パン111は上面が開口し、塗布ノズル20の端部から吐出された塗布液Pを回収して一時的に貯留する。そして、パン111に貯留された塗布液Pは、パン111に接続された排液管(図示せず)から排出される。 The pan 111 is provided so as to extend in the X-axis direction. An end portion of the pan 111 on the glass substrate G side is positioned close to the glass substrate G so as not to contact the glass substrate G. The end of the pan 111 opposite to the glass substrate G is located outside the coating nozzle 20 at each of the nozzle positions B1 and B2. Further, the upper surface of the pan 111 is open, and the coating liquid P discharged from the end of the coating nozzle 20 is collected and temporarily stored. Then, the coating liquid P stored in the pan 111 is drained from a drain pipe (not shown) connected to the pan 111.
 本実施形態においても、第1の実施形態と同様の効果を享受することができる。但し、本実施形態のパン111は、第1の実施形態の回収槽32と異なり、塗布ノズル20の端部から吐出された塗布液Pを直接回収する。 Also in this embodiment, it is possible to receive the same effect as that of the first embodiment. However, unlike the recovery tank 32 of the first embodiment, the pan 111 of the present embodiment directly recovers the coating liquid P discharged from the end of the application nozzle 20.
<第4の実施形態>
 次に、本発明の第4の実施形態に係る塗布処理装置について説明する。図13は、第4の実施形態に係る受液部120で塗布液Pを受けとめる様子を示す説明図である。
Fourth Embodiment
Next, a coating treatment apparatus according to a fourth embodiment of the present invention will be described. FIG. 13 is an explanatory view showing a state in which the coating liquid P is received by the liquid receiver 120 according to the fourth embodiment.
 第4の実施形態と第1の実施形態では、塗布処理装置1における受液部の構成が異なる。すなわち、第4の実施形態の塗布処理装置1では、第1の実施形態の受液部30に代えて、受液部120が設けられている。 The fourth embodiment and the first embodiment are different in the configuration of the liquid receiving portion in the coating treatment apparatus 1. That is, in the coating treatment apparatus 1 of the fourth embodiment, the liquid receiving unit 120 is provided instead of the liquid receiving unit 30 of the first embodiment.
 受液部120は、ステージ10に保持されたガラス基板GのX軸方向外側の両側に設けられている。各受液部120は、塗布ノズル20の端部から吐出された塗布液Pを吸収する吸収材121と、吸収材121を下方から支持する支持構造体としての支持フレーム(図示せず)と、を有している。なお、支持フレームの構成は、例えば第1の実施形態の支持フレーム33の構成と同様である。 The liquid receiving portions 120 are provided on both sides of the glass substrate G held by the stage 10 on the outer side in the X-axis direction. Each liquid receiving section 120 includes an absorbent 121 for absorbing the coating liquid P discharged from the end of the coating nozzle 20, and a support frame (not shown) as a support structure for supporting the absorbent 121 from below. have. In addition, the structure of a support frame is the same as that of the structure of the support frame 33 of 1st Embodiment, for example.
 吸収材121は、X軸方向に延伸して設けられている。吸収材121のガラス基板G側の端部は、ガラス基板Gに接触しないように当該ガラス基板Gに近接して位置している。吸収材121のガラス基板Gと反対側の端部は、ノズル位置B1、B2のそれぞれにある塗布ノズル20の外側に位置している。そして、吸収材121が塗布ノズル20の端部と所定の隙間を空けて配置された状態で、当該塗布ノズル20(吐出口21)の端部から吐出される塗布液Pが吸収材121に吸収される。また、吸収材121で吸収された塗布液Pは、回収機構(図示せず)によって回収される。なお、吸収材121を塗布ノズル20の端部に密着させてもよい。 The absorbent material 121 is provided so as to extend in the X-axis direction. An end portion of the absorbing material 121 on the glass substrate G side is positioned close to the glass substrate G so as not to be in contact with the glass substrate G. The end of the absorbing material 121 opposite to the glass substrate G is located outside the coating nozzle 20 at each of the nozzle positions B1 and B2. Then, in a state where the absorbing material 121 is disposed with a predetermined gap from the end of the application nozzle 20, the absorbing liquid 121 absorbs the application liquid P discharged from the end of the application nozzle 20 (ejection port 21). Be done. Further, the coating solution P absorbed by the absorbing material 121 is recovered by a recovery mechanism (not shown). The absorbing material 121 may be in close contact with the end of the coating nozzle 20.
 なお、吸収材121には、塗布液Pを吸収できるものであれば、特に限定されるものではないが、例えば複数の孔が形成された多孔質体が用いられる。また、吸収材121には、塗布ノズル20と密着した際にパーティクルの発生が抑制される材料、例えばポリエチレンを用いるのが好ましい。 The absorbent material 121 is not particularly limited as long as it can absorb the coating liquid P. For example, a porous body in which a plurality of holes are formed is used. Further, as the absorbent material 121, it is preferable to use a material that suppresses generation of particles when in close contact with the coating nozzle 20, for example, polyethylene.
 本実施形態においても、第1の実施形態と同様の効果を享受することができる。 Also in this embodiment, it is possible to receive the same effect as that of the first embodiment.
<第5の実施形態>
 次に、本発明の第5の実施形態に係る塗布処理装置について説明する。図14は、第5の実施形態に係る受液部130で塗布液Pを受けとめる様子を示す説明図である。
Fifth Embodiment
Next, a coating treatment apparatus according to a fifth embodiment of the present invention will be described. FIG. 14 is an explanatory view showing a state in which the coating liquid P is received by the liquid receiver 130 according to the fifth embodiment.
 第5の実施形態と第1の実施形態では、塗布処理装置1における受液部の構成が異なる。すなわち、第5の実施形態の塗布処理装置1では、第1の実施形態の受液部30に代えて、受液部130が設けられている。 In the fifth embodiment and the first embodiment, the configuration of the liquid receiving portion in the coating treatment apparatus 1 is different. That is, in the coating treatment apparatus 1 of the fifth embodiment, a liquid receiving unit 130 is provided instead of the liquid receiving unit 30 of the first embodiment.
 受液部130は、ステージ10に保持されたガラス基板GのX軸方向外側の両側に設けられている。各受液部130は、巻き取り材としてのローラ131aと封止材としてのディッケル131bとが一体に接続された複合材131と、複合材131を下方から支持する支持構造体としての支持フレーム(図示せず)と、を有している。なお、支持フレームの構成は、例えば第1の実施形態の支持フレーム33の構成と同様である。 The liquid receiving portions 130 are provided on both sides of the glass substrate G held by the stage 10 on the outer side in the X-axis direction. Each liquid receiving portion 130 includes a composite material 131 in which a roller 131a as a winding-up material and a deckle 131b as a sealing material are integrally connected, and a support frame as a support structure for supporting the composite material 131 from below. Not shown). In addition, the structure of a support frame is the same as that of the structure of the support frame 33 of 1st Embodiment, for example.
 複合材131のうち、ローラ131aはX軸方向においてガラス基板Gに近い側に設けられ、ローラ131aのガラス基板G側の端部は、ガラス基板Gに接触しないように当該ガラス基板Gに近接して位置している。ローラ131aは、塗布ノズル20の端部から吐出された塗布液Pを巻き取る。このローラ131aの構成は、第1の実施形態のローラ31の構成と同様である。また、ローラ131aの下方には、第1の実施形態の回収槽32と同様に、ローラ131aに巻き取られた塗布液Pを回収する回収槽(図示せず)が設けられている。 In the composite material 131, the roller 131a is provided on the side close to the glass substrate G in the X-axis direction, and the end of the roller 131a on the glass substrate G side approaches the glass substrate G so as not to contact the glass substrate G. Is located. The roller 131 a takes up the coating liquid P discharged from the end of the coating nozzle 20. The configuration of the roller 131a is the same as the configuration of the roller 31 of the first embodiment. Further, below the roller 131a, a recovery tank (not shown) for recovering the coating liquid P wound around the roller 131a is provided as in the recovery tank 32 of the first embodiment.
 複合材131のうち、ディッケル131bはX軸方向においてガラス基板Gに遠い側に設けられ、ディッケル131bのガラス基板Gと反対側の端部は、ノズル位置B1、B2のそれぞれにある塗布ノズル20の外側に位置している。ディッケル131bは、塗布ノズル20(吐出口21)の端部を封止する。このディッケル131bの構成は、第2の実施形態のディッケル101の構成と同様である。 Of the composite material 131, the deckel 131b is provided on the side far from the glass substrate G in the X-axis direction, and the end of the deckle 131b opposite to the glass substrate G is at the nozzle position B1 or B2 of the application nozzle 20. It is located outside. The deckle 131 b seals the end of the application nozzle 20 (discharge port 21). The configuration of the deckle 131 b is the same as the configuration of the deckle 101 of the second embodiment.
 本実施形態では、第1の実施形態の効果と第2の実施形態の効果を両方享受することができる。すなわち、ローラ131aとディッケル131bによって、ガラス基板Gの外側に塗布液Pが垂れ落ちるのを抑制することができる。また、ローラ131aによって、塗布ノズル20からの塗布液Pのビードをさらに適切に安定させることができる。さらに、ディッケル131bによって、塗布液Pの使用量を抑えることも可能となる。 In the present embodiment, it is possible to receive both the effects of the first embodiment and the effects of the second embodiment. That is, the application liquid P can be suppressed from dropping to the outside of the glass substrate G by the roller 131a and the deckle 131b. Moreover, the bead of the coating liquid P from the coating nozzle 20 can be stabilized further appropriately by the roller 131a. Furthermore, the amount of use of the coating solution P can be suppressed by the deckle 131 b.
<第6の実施形態>
 次に、本発明の第6の実施形態に係る塗布処理装置について説明する。図15は、第6の実施形態に係る受液部140で塗布液Pを受けとめる様子を示す説明図である。
Sixth Embodiment
Next, a coating treatment apparatus according to a sixth embodiment of the present invention will be described. FIG. 15 is an explanatory view showing a state in which the coating liquid P is received by the liquid receiver 140 according to the sixth embodiment.
 第6の実施形態と第1の実施形態では、塗布処理装置1における受液部の構成が異なる。すなわち、第6の実施形態の塗布処理装置1では、第1の実施形態の受液部30に代えて、受液部140が設けられている。 The sixth embodiment and the first embodiment are different in the configuration of the liquid receiving portion in the coating treatment apparatus 1. That is, in the coating treatment apparatus 1 of the sixth embodiment, a liquid receiving unit 140 is provided instead of the liquid receiving unit 30 of the first embodiment.
 受液部140は、ステージ10に保持されたガラス基板GのX軸方向外側の両側に設けられている。各受液部140は、Y軸方向に延伸する一対のローラ141、141と、一対のローラ141、141に巻回されたベルト142と、ローラ141及びベルト142を下方から支持する支持構造体としての支持フレーム(図示せず)と、を有している。なお、支持フレームの構成は、例えば第1の実施形態の支持フレーム33の構成と同様である。 The liquid receiving portions 140 are provided on both sides of the glass substrate G held by the stage 10 on the outer side in the X-axis direction. Each liquid receiving portion 140 is a support structure that supports the pair of rollers 141 and 141 extending in the Y-axis direction, the belt 142 wound around the pair of rollers 141 and 141, and the roller 141 and the belt 142 from below. And a support frame (not shown). In addition, the structure of a support frame is the same as that of the structure of the support frame 33 of 1st Embodiment, for example.
 ベルト142のガラス基板G側の端部は、ガラス基板Gに接触しないように当該ガラス基板Gに近接して位置している。ベルト142のガラス基板Gと反対側の端部は、ノズル位置B1、B2のそれぞれにある塗布ノズル20の外側に位置している。そして、塗布ノズル20の端部から吐出された塗布液Pは、ベルト142に巻き取られて回収される。また、ベルト142に巻き取られた塗布液Pは、回収槽(図示せず)によって回収される。 The end portion of the belt 142 on the glass substrate G side is positioned close to the glass substrate G so as not to contact the glass substrate G. The end of the belt 142 opposite to the glass substrate G is located outside the coating nozzle 20 at each of the nozzle positions B1 and B2. Then, the coating liquid P discharged from the end of the coating nozzle 20 is wound around the belt 142 and collected. Further, the coating liquid P wound up on the belt 142 is collected by a collection tank (not shown).
 本実施形態においても、第1の実施形態と同様の効果を享受することができる。 Also in this embodiment, it is possible to receive the same effect as that of the first embodiment.
<第7の実施形態>
 次に、本発明の第7の実施形態に係る塗布処理装置について説明する。図16は、第7の実施形態に係る塗布処理装置1の構成の概略を示す側面図である。
Seventh Embodiment
Next, a coating treatment apparatus according to a seventh embodiment of the present invention will be described. FIG. 16 is a side view showing the outline of the configuration of the coating treatment apparatus 1 according to the seventh embodiment.
 第7の実施形態と上記実施形態では、塗布処理装置1における受液部の構成が異なる。すなわち、第7の実施形態の塗布処理装置1には、第1の実施形態における受液部30と第2の実施形態における受液部100とが設けられている。受液部30は、ステージ10に保持されたガラス基板GのX軸方向負方向側に設けられ、塗布ノズル20の端部から吐出された塗布液Pを巻き取って回収する。受液部100は、ガラス基板GのX軸方向正方向側に設けられ、塗布ノズル20(吐出口21)の端部を封止する。 The seventh embodiment is different from the above embodiment in the configuration of the liquid receiver in the coating treatment apparatus 1. That is, in the coating treatment apparatus 1 of the seventh embodiment, the liquid receiving unit 30 in the first embodiment and the liquid receiving unit 100 in the second embodiment are provided. The liquid receiver 30 is provided on the negative side of the glass substrate G held by the stage 10 in the negative X-axis direction, and rolls up and collects the coating liquid P discharged from the end of the coating nozzle 20. The liquid receiving portion 100 is provided on the positive direction side in the X-axis direction of the glass substrate G, and seals the end portion of the application nozzle 20 (discharge port 21).
 本実施形態では、第1の実施形態の効果と第2の実施形態の効果を両方享受することができる。すなわち、受液部30のローラ31と受液部110のディッケル101によって、ガラス基板Gの外側に塗布液Pが垂れ落ちるのを抑制することができる。また、ローラ31によって、塗布ノズル20からの塗布液Pのビードをさらに適切に安定させることができる。さらに、ディッケル101によって、塗布液Pの使用量を抑えることも可能となる。 In the present embodiment, it is possible to receive both the effects of the first embodiment and the effects of the second embodiment. That is, the application liquid P can be suppressed from dripping to the outside of the glass substrate G by the roller 31 of the liquid receiving unit 30 and the deckle 101 of the liquid receiving unit 110. Further, the bead of the coating liquid P from the coating nozzle 20 can be stabilized more appropriately by the roller 31. Furthermore, the amount of use of the coating solution P can be suppressed by the deckle 101.
 また、受液部30と受液部100において、ローラ31及び回収槽32は支持フレーム33に支持され、ディッケル101は支持フレーム102に支持されているので、これら受液部30と受液部100の交換も容易に行うことができる。 In the liquid receiver 30 and the liquid receiver 100, the roller 31 and the collection tank 32 are supported by the support frame 33, and the deckle 101 is supported by the support frame 102. Therefore, the liquid receiver 30 and the liquid receiver 100 The exchange of can be easily done.
 なお、本実施形態では、受液部30と受液部110を組み合わせて用いたが、上記実施形態の受液部30、110、120、130、140を任意に組み合わせてもよい。また、各受液部30、110、120、130、140が支持フレームを有する場合、これらの組み合わせも容易に変更することができる。 In the present embodiment, the liquid receiving unit 30 and the liquid receiving unit 110 are used in combination, but the liquid receiving units 30, 110, 120, 130, and 140 of the above embodiments may be combined arbitrarily. Moreover, when each liquid receiving part 30, 110, 120, 130, 140 has a support frame, these combinations can also be changed easily.
<第8の実施形態>
 次に、本発明の第8の実施形態に係る塗布処理装置について説明する。図17及び図18は、第8の実施形態に係る塗布処理装置1の構成の概略を示す側面図である。
Eighth Embodiment
Next, a coating treatment apparatus according to an eighth embodiment of the present invention will be described. FIG.17 and FIG.18 is a side view which shows the outline of a structure of the coating processing apparatus 1 which concerns on 8th Embodiment.
 第8の実施形態と上記実施形態では、塗布処理装置1における受液部の構成が異なり、より具体的には、ガラス基板Gの端部から吐出される塗布液Pを受けとめる部材(例えばローラ31やディッケル101など)を支持する構成が異なる。第8の実施形態の塗布処理装置1には、受液部150、160が設けられている。 In the eighth embodiment and the above embodiment, the configuration of the liquid receiving portion in the coating treatment apparatus 1 is different, and more specifically, a member for receiving the coating liquid P discharged from the end of the glass substrate G (for example, roller 31) And the configuration for supporting the deckel 101 etc. is different. In the coating treatment apparatus 1 of the eighth embodiment, liquid receiving parts 150 and 160 are provided.
 受液部150は、ステージ10に保持されたガラス基板GのX軸方向負方向側に設けられている。受液部150は、塗布ノズル20の端部から吐出された塗布液Pを巻き取るローラ151と、ローラ151に巻き取られた塗布液Pを回収する回収槽152と、ローラ151及び回収槽152を支持する支持ブラケット153と、を有している。ローラ151と回収槽152はそれぞれ、第1の実施形態のローラ31と回収槽32と同様の構成を有している。また、ローラ151と回収槽152は、支持ブラケット153を介して支持梁22に吊り下げられて支持されている。 The liquid receiving portion 150 is provided on the X axis direction negative direction side of the glass substrate G held by the stage 10. The liquid receiving unit 150 includes a roller 151 for winding the application liquid P discharged from the end of the application nozzle 20, a recovery tank 152 for recovering the application liquid P wound around the roller 151, a roller 151, and a recovery tank 152. And a support bracket 153 for supporting the The roller 151 and the recovery tank 152 respectively have the same configuration as the roller 31 and the recovery tank 32 of the first embodiment. Further, the roller 151 and the recovery tank 152 are suspended and supported by the support beam 22 via the support bracket 153.
 受液部160は、ステージ10に保持されたガラス基板GのX軸方向正方向側に設けられている。受液部160は、塗布ノズル20の端部の吐出口を封止するディッケル161と、ディッケル161を支持する支持ブラケット162と、を有している。ディッケル161は、第2の実施形態のディッケル101と同様の構成を有している。また、ディッケル161は、支持ブラケット162を介して支持梁22に吊り下げられて支持されている。 The liquid receiver 160 is provided on the positive side in the X-axis direction of the glass substrate G held by the stage 10. The liquid receiver 160 has a deckle 161 for sealing the discharge port at the end of the application nozzle 20 and a support bracket 162 for supporting the deckle 161. The deckle 161 has the same configuration as the deckle 101 of the second embodiment. Further, the deckle 161 is suspended and supported by the support beam 22 via the support bracket 162.
 本実施形態では、第1の実施形態の効果と第2の実施形態の効果を両方享受することができる。また、受液部150においてローラ151と回収槽152は支持ブラケット153を介して支持梁22に吊り下げられて支持されているので、当該ローラ151と回収槽152の下方にスペースSが形成される。このスペースSにより、ローラ151と回収槽152のメンテナンスを容易に行うことができる。また、受液部160においてディッケル161の下方にもスペースSが形成されるので、ディッケル161のメンテナンスを容易に行うことができる。 In the present embodiment, it is possible to receive both the effects of the first embodiment and the effects of the second embodiment. Further, since the roller 151 and the recovery tank 152 are suspended and supported by the support beam 22 via the support bracket 153 in the liquid receiving portion 150, the space S is formed below the roller 151 and the recovery tank 152. . Maintenance of the roller 151 and the collection tank 152 can be easily performed by the space S. Further, since the space S is also formed below the deckle 161 in the liquid receiving portion 160, maintenance of the deckle 161 can be easily performed.
 なお、本実施形態では、第1の実施形態のローラ31と同様のローラ151と、第2の実施形態のディッケル101と同様のディッケル161とを組み合わせて用いたが、組み合わせは任意である。例えば第3の実施形態のパン111、第4の実施形態の吸収材121、第5の実施形態の複合材131、第6の実施形態のローラ141及びベルト142などを用いてもよい。 In the present embodiment, the same roller 151 as the roller 31 of the first embodiment and the same deckle 161 as the second embodiment of the second embodiment 101 are used in combination, but the combination is arbitrary. For example, the pan 111 of the third embodiment, the absorbent material 121 of the fourth embodiment, the composite material 131 of the fifth embodiment, the roller 141 and the belt 142 of the sixth embodiment may be used.
<第9の実施形態>
 次に、本発明の第9の実施形態に係る塗布処理装置について説明する。図19は、第9の実施形態に係る塗布処理装置1の構成の概略を示す平面図である。
The ninth embodiment
Next, a coating treatment apparatus according to a ninth embodiment of the present invention will be described. FIG. 19 is a plan view showing an outline of a configuration of a coating treatment apparatus 1 according to a ninth embodiment.
 第9の実施形態の塗布処理装置1は、上記実施形態の塗布処理装置1において、ガラス基板Gの端部の塗布液Pを除去する端部除去部170をさらに有している。端部除去部170は、基板位置A2において、ガラス基板GのX軸方向両側に設けられている。 The coating treatment apparatus 1 of the ninth embodiment further includes an end removing unit 170 for removing the coating liquid P at the end of the glass substrate G in the coating treatment apparatus 1 of the above embodiment. The edge removing portions 170 are provided on both sides of the glass substrate G in the X axis direction at the substrate position A2.
 端部除去部170は、塗布液Pの溶剤を供給する溶剤ノズル(図示せず)を有している。そして、ガラス基板GのX軸方向の端部に塗布された塗布液Pに溶剤を供給して、当該塗布液Pを除去する。なお、端部除去部170には公知の構成を用いることができ、例えば特開2013-58567号公報に記載された溶剤供給部を用いることができる。 The edge removing unit 170 has a solvent nozzle (not shown) that supplies the solvent of the coating solution P. Then, a solvent is supplied to the coating solution P applied to the end of the glass substrate G in the X-axis direction, and the coating solution P is removed. A known configuration can be used for the end removing unit 170, and for example, a solvent supply unit described in Japanese Patent Laid-Open No. 2013-58567 can be used.
 ここで、ガラス基板Gに形成される光学膜の種類によっては、ガラス基板Gの端部に光学膜が不要な場合がある。この点、本実施形態では、塗布ノズル20によってガラス基板Gの全面に塗布液Pが塗布された後、端部除去部170によってガラス基板Gの端部の塗布液Pを除去することができる。 Here, depending on the type of optical film formed on the glass substrate G, the optical film may not be required at the end of the glass substrate G. In this respect, in the present embodiment, after the coating liquid P is applied to the entire surface of the glass substrate G by the coating nozzle 20, the coating liquid P on the edge of the glass substrate G can be removed by the edge removing portion 170.
 また、ガラス基板Gの全面に塗布液Pを塗布する場合、例えばガラス基板Gの端部における塗布液Pの膜厚が、端部以外の部分における塗布液Pの膜厚と異なり、基板面内で膜厚が不均一になる場合がある。かかる場合に対し、本実施形態の端部除去部170を用いてガラス基板Gの端部における塗布液Pを所望の膜厚分除去することで、当該塗布液Pの膜厚を調節して、基板面内で膜厚を均一にすることもできる。なお、基板面内で膜厚を均一にする際には、ガラス基板Gの端部を温度調節してもよい。 When the coating liquid P is applied to the entire surface of the glass substrate G, for example, the film thickness of the coating liquid P at the end of the glass substrate G is different from the film thickness of the coating liquid P at the portion other than the end. Film thickness may become uneven. In this case, the film thickness of the coating solution P is adjusted by removing the coating solution P at the edge of the glass substrate G by the desired film thickness using the edge removal unit 170 of the present embodiment. The film thickness can also be made uniform within the substrate surface. In order to make the film thickness uniform in the substrate plane, the temperature of the end portion of the glass substrate G may be adjusted.
<第10の実施形態>
 次に、本発明の第10の実施形態に係る塗布処理装置について説明する。図20は、第10の実施形態に係る塗布処理装置1の構成の概略を示す平面図である。
Tenth Embodiment
Next, a coating treatment apparatus according to a tenth embodiment of the present invention will be described. FIG. 20 is a plan view showing an outline of a configuration of a coating treatment apparatus 1 according to a tenth embodiment.
 第10の実施形態の塗布処理装置1は、上記実施形態の塗布処理装置1において、プライミングローラ180をさらに有している。プライミングローラ180は、ステージ10のY軸方向正方向側の先端に設けられている。 The coating treatment apparatus 1 of the tenth embodiment further includes a priming roller 180 in the coating treatment apparatus 1 of the above embodiment. The priming roller 180 is provided at the tip of the stage 10 on the positive side in the Y-axis direction.
 プライミングローラ180は、塗布ノズル20からガラス基板Gに塗布液Pを吐出する前に、塗布ノズル20の先端部に付着した塗布液Pを均一化するプライミング処理を行う。具体的には、プライミングローラ180の直上に塗布ノズル20の吐出口21を対峙させて、吐出口21からプライミングローラ180に対して塗布液Pを吐出する。そして、プライミングローラ180を回転させて塗布液Pを巻き取ることで、吐出口21における塗布液Pの付着状態が整えられ、吐出口21における塗布液Pの吐出状態を安定化させることができる。 Prior to discharging the application liquid P from the application nozzle 20 to the glass substrate G, the priming roller 180 performs a priming process to make the application liquid P attached to the tip of the application nozzle 20 uniform. Specifically, the discharge port 21 of the coating nozzle 20 is made to face directly above the priming roller 180, and the coating liquid P is discharged from the discharge port 21 to the priming roller 180. Then, the priming roller 180 is rotated to wind up the coating liquid P, whereby the adhesion state of the coating liquid P at the ejection port 21 is adjusted, and the ejection state of the coating liquid P at the ejection port 21 can be stabilized.
<第11の実施形態>
 次に、本発明の第11の実施形態(他の実施形態)に係る塗布処理装置について説明する。
Eleventh Embodiment
Next, a coating treatment apparatus according to an eleventh embodiment (another embodiment) of the present invention will be described.
 上記実施形態の塗布処理装置1では、ガラス基板Gを保持したステージ10をY軸方向に移動させることでガラス基板Gを移動させていたが、ガラス基板Gの移動方式はこれに限定されない。例えば特開2012-204500号公報に記載されているように、いわゆる浮上搬送方式でガラス基板Gを移動させてもよい。具体的には、例えば基板位置A1から基板位置A2までY軸方向に延伸する浮上ステージ(図示せず)を設け、浮上ステージの上面から垂直上方に高圧の気体(通常はエア)を噴き出し、その高圧エアの圧力によって基板を水平姿勢で浮かす。
そして、浮上ステージ上でガラス基板Gを空中に浮かせた状態で、当該ガラス基板Gを移動させることができる。
In the coating treatment apparatus 1 of the above embodiment, the glass substrate G is moved by moving the stage 10 holding the glass substrate G in the Y-axis direction, but the method of moving the glass substrate G is not limited to this. For example, as described in JP-A-2012-204500, the glass substrate G may be moved by a so-called floating conveyance method. Specifically, for example, a floating stage (not shown) extending in the Y-axis direction from the substrate position A1 to the substrate position A2 is provided, and a high pressure gas (usually air) is jetted vertically upward from the upper surface of the floating stage The substrate is floated horizontally by the pressure of high pressure air.
Then, the glass substrate G can be moved in a state where the glass substrate G is floated in the air on the floating stage.
 また、上記実施形態の塗布処理装置1では、ステージ10に保持されたガラス基板GをY軸方向に移動させ、塗布ノズル20をX軸方向に移動させていたが、ガラス基板Gと塗布ノズル20を相対的に直交方向に移動させればよい。例えばガラス基板GがY軸方向及びX軸方向に移動してもよいし、あるいは塗布ノズル20がY軸方向及びX軸方向に移動してもよい。 Moreover, in the coating processing apparatus 1 of the said embodiment, although the glass substrate G hold | maintained at the stage 10 was moved to Y-axis direction, and the coating nozzle 20 was moved to X-axis direction, the glass substrate G and the coating nozzle 20 Relative to each other in the orthogonal direction. For example, the glass substrate G may move in the Y axis direction and the X axis direction, or the coating nozzle 20 may move in the Y axis direction and the X axis direction.
 また、上記実施形態では、OLEDに用いられる円偏光板を作製する場合において、ガラス基板に光学膜として、直線偏光膜(直線偏光板)とλ/4波長膜(λ/4波長板)を形成する場合を例にとって説明したが、本発明は他にも適用できる。例えばLCDに用いられる偏光板や波長板にも、本発明を適用することができる。また、波長板もλ/4波長膜に限定されず、例えばλ/2波長膜などの他の波長板にも、本発明を適用することができる。 Further, in the above embodiment, when producing a circularly polarizing plate used for OLED, a linear polarizing film (linearly polarizing plate) and a λ / 4 wavelength film (λ / 4 wavelength plate) are formed as an optical film on a glass substrate Although the case has been described as an example, the present invention can be applied to others. For example, the present invention can be applied to a polarizing plate or a wave plate used in an LCD. Also, the wavelength plate is not limited to the λ / 4 wavelength film, and the present invention can be applied to other wavelength plates such as, for example, a λ / 2 wavelength film.
 以上、本発明の実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 As mentioned above, although embodiment of this invention was described, this invention is not limited to this example. It is apparent that those skilled in the art can conceive of various modifications or alterations within the scope of the technical idea described in the claims, and they are naturally also within the technical scope of the present invention. It is understood that it belongs.
  1   塗布処理装置
  10  ステージ
  20  塗布ノズル
  21  吐出口
  22  支持梁
  30、100、110、120、130、140、150、160 受液部
  31  ローラ
  32  回収槽
  33  支持フレーム
  40  制御部
  101 ディッケル
  102 支持フレーム
  111 パン
  121 吸収材
  131 複合材
  131a ローラ
  131b ディッケル
  141 ローラ
  142 ベルト
  151 ローラ
  152 回収槽
  153 支持ブラケット
  161 ディッケル
  162 支持ブラケット
  170 端部除去部
  180 プライミングローラ
  G   ガラス基板
  P(P1、P2) 塗布液
DESCRIPTION OF SYMBOLS 1 application processing apparatus 10 stage 20 application nozzle 21 discharge outlet 22 support beam 30, 100, 110, 120, 130, 140, 150, 160 receiving part 31 roller 32 collection tank 33 support frame 40 control part 101 deckle 102 support frame 111 Pan 121 Absorbent material 131 Composite material 131a Roller 131b Deckel 141 Roller 142 Belt 151 Roller 152 Collection tank 153 Support bracket 161 Deckel 162 Support bracket 170 Edge removing part 180 Priming roller G Glass substrate P (P1, P2) Coating solution

Claims (17)

  1. 基板に光学材料を含む塗布液を塗布する塗布処理装置であって、
    基板を保持する保持部と、
    前記保持部に保持された基板に前記塗布液を吐出する塗布ノズルと、
    前記保持部と前記塗布ノズルを直交方向に相対的に移動させる移動機構と、
    前記保持部に保持された基板の平面視外側の両側に設けられ、前記塗布ノズルから吐出された前記塗布液を受けとめる受液部と、を有する。
    A coating processing apparatus for applying a coating solution containing an optical material to a substrate, comprising:
    A holding unit that holds the substrate;
    An application nozzle for discharging the application liquid onto the substrate held by the holding unit;
    A moving mechanism for relatively moving the holding unit and the coating nozzle in the orthogonal direction;
    And a liquid receiver provided on both sides of the substrate held by the holder outside in plan view and receiving the coating liquid discharged from the coating nozzle.
  2. 請求項1に記載の塗布処理装置において、
    前記受液部は、前記塗布ノズルから吐出された前記塗布液を巻き取る巻き取り材を有する。
    In the coating treatment apparatus according to claim 1,
    The liquid receiving portion has a winding material for winding the coating liquid discharged from the coating nozzle.
  3. 請求項2に記載の塗布処理装置において、
    前記受液部は、前記巻き取り材の下方に設けられ、当該巻き取り材に巻き取られた前記塗布液を回収する回収槽をさらに有する。
    In the coating treatment apparatus according to claim 2,
    The liquid receiver further includes a recovery tank provided below the winding material and recovering the coating liquid wound around the winding material.
  4. 請求項2に記載の塗布処理装置において、
    前記保持部に保持された基板の上面と、前記巻き取り材の上面とは同じ高さである。
    In the coating treatment apparatus according to claim 2,
    The upper surface of the substrate held by the holding portion and the upper surface of the winding material have the same height.
  5. 請求項1に記載の塗布処理装置において、
    前記受液部は、前記塗布ノズルの吐出口を封止する封止材を有する。
    In the coating treatment apparatus according to claim 1,
    The liquid receiving portion has a sealing material that seals the discharge port of the application nozzle.
  6. 請求項1に記載の塗布処理装置において、
    前記受液部は、前記塗布ノズルから吐出された前記塗布液を回収する回収容器を有する。
    In the coating treatment apparatus according to claim 1,
    The liquid receiver includes a recovery container for recovering the coating liquid discharged from the coating nozzle.
  7. 請求項1に記載の塗布処理装置において、
    前記受液部は、前記塗布ノズルから吐出された前記塗布液を吸収する吸収材を有する。
    In the coating treatment apparatus according to claim 1,
    The liquid receiving portion has an absorbent that absorbs the coating liquid discharged from the coating nozzle.
  8. 請求項1に記載の塗布処理装置において、
    基板の平面視外側の一方側に設けられた前記受液部は、前記塗布ノズルから吐出された前記塗布液を巻き取る巻き取り材を有し、
    基板の平面視外側の他方側に設けられた前記受液部は、前記塗布ノズルの吐出口を封止する封止材を有する。
    In the coating treatment apparatus according to claim 1,
    The liquid receiving portion provided on one side of the outer side in plan view of the substrate has a winding material for winding the coating liquid discharged from the coating nozzle,
    The liquid receiving portion provided on the other side of the substrate in the plan view outside has a sealing material for sealing the discharge port of the coating nozzle.
  9. 請求項1に記載の塗布処理装置において、
    前記受液部は、基板に近い側に設けられ、前記塗布ノズルから吐出された前記塗布液を巻き取る巻き取り材と、基板に遠い側に設けられ、前記塗布ノズルの吐出口を封止する封止材と、が一体に接続された複合材を有する。
    In the coating treatment apparatus according to claim 1,
    The liquid receiving portion is provided on the side close to the substrate, and is provided on a winding material for winding the coating liquid discharged from the application nozzle, and on the side far from the substrate, and seals the discharge port of the application nozzle. The sealing material has a composite material integrally connected.
  10. 請求項1に記載の塗布処理装置において、
    前記受液部は、支持構造体によって下方から支持されている。
    In the coating treatment apparatus according to claim 1,
    The liquid receiver is supported from below by a support structure.
  11. 請求項1に記載の塗布処理装置において、
    前記受液部は、前記塗布ノズルを支持する支持梁に吊り下げられて支持されている。
    In the coating treatment apparatus according to claim 1,
    The liquid receiving portion is suspended and supported by a support beam that supports the application nozzle.
  12. 請求項1に記載の塗布処理装置において、
    前記塗布ノズルから前記塗布液が塗布された基板に対し、当該基板の端部の前記塗布液を除去する端部除去部をさらに有する。
    In the coating treatment apparatus according to claim 1,
    It further has an edge removal part which removes the coating fluid of the edge of the substrate concerned to the substrate to which the coating fluid was applied from the application nozzle.
  13. 基板に光学材料を含む塗布液を塗布する塗布処理方法であって、
    基板を保持部した保持部と塗布ノズルを直交方向に相対的に移動させながら、前記塗布ノズルから前記塗布液を吐出し、基板の平面視外側の両側において受液部で前記塗布液を受けとめて、基板に前記塗布液を塗布する。
    An application processing method for applying a coating liquid containing an optical material to a substrate, comprising:
    The coating liquid is discharged from the coating nozzle while relatively moving the holding part holding the substrate and the coating nozzle in the orthogonal direction, and the liquid receiving part receives the coating liquid on both sides in plan view of the substrate. Apply the coating solution to the substrate.
  14. 請求項13に記載の塗布処理方法において、
    前記受液部は、前記塗布ノズルから吐出された前記塗布液を回収する。
    In the coating treatment method according to claim 13,
    The liquid receiver recovers the coating liquid discharged from the coating nozzle.
  15. 請求項13に記載の塗布処理方法において、
    前記受液部は、前記塗布ノズルの吐出口を封止する。
    In the coating treatment method according to claim 13,
    The liquid receiver seals the discharge port of the application nozzle.
  16. 請求項13に記載の塗布処理方法において、
    基板に前記塗布液を塗布した後、当該基板の端部の前記塗布液を除去する。
    In the coating treatment method according to claim 13,
    After the application liquid is applied to the substrate, the application liquid on the edge of the substrate is removed.
  17. 基板に光学材料を含む塗布液を塗布する塗布処理方法を塗布処理装置によって実行させるように、当該塗布処理装置を制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体であって、
    前記塗布処理方法は、基板を保持部した保持部と塗布ノズルを直交方向に相対的に移動させながら、前記塗布ノズルから前記塗布液を吐出し、基板の平面視外側の両側において受液部で前記塗布液を受けとめて、基板に前記塗布液を塗布する。
    A readable computer storage medium storing a program operating on a computer of a control unit that controls the coating processing apparatus to cause the coating processing apparatus to execute a coating processing method for applying a coating liquid containing an optical material to a substrate There,
    In the coating method, the coating liquid is discharged from the coating nozzle while moving the holding portion holding the substrate and the coating nozzle relatively in the orthogonal direction, and the liquid receiving portion is provided on both sides outside the substrate in plan view. The coating solution is applied to the substrate after receiving the coating solution.
PCT/JP2018/026496 2017-07-27 2018-07-13 Application device, application method, and computer storage medium WO2019021859A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207004602A KR102492389B1 (en) 2017-07-27 2018-07-13 Application processing device, application processing method, and computer storage medium
JP2019532511A JP6909854B2 (en) 2017-07-27 2018-07-13 Coating processing equipment, coating processing method and computer storage medium
CN201880047157.6A CN110891697B (en) 2017-07-27 2018-07-13 Coating processing device, coating processing method and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017145753 2017-07-27
JP2017-145753 2017-07-27

Publications (1)

Publication Number Publication Date
WO2019021859A1 true WO2019021859A1 (en) 2019-01-31

Family

ID=65040597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026496 WO2019021859A1 (en) 2017-07-27 2018-07-13 Application device, application method, and computer storage medium

Country Status (5)

Country Link
JP (1) JP6909854B2 (en)
KR (1) KR102492389B1 (en)
CN (1) CN110891697B (en)
TW (1) TWI790255B (en)
WO (1) WO2019021859A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232120A (en) * 1994-02-24 1995-09-05 Konica Corp Coating applying method and coating applying device
JPH1099764A (en) * 1996-08-07 1998-04-21 Matsushita Electric Ind Co Ltd Coating applicator and method therefor
WO2012140905A1 (en) * 2011-04-15 2012-10-18 パナソニック株式会社 Substrate coating method and substrate coating device as well as organic electroluminescent element production method using said method
JP2013184126A (en) * 2012-03-08 2013-09-19 Dainippon Printing Co Ltd Coating apparatus
JP2013202489A (en) * 2012-03-28 2013-10-07 Dainippon Screen Mfg Co Ltd Coating apparatus
JP2014147857A (en) * 2013-01-31 2014-08-21 Hitachi Vehicle Energy Ltd Die coater

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360516A (en) * 1992-11-12 1994-11-01 Philip Morris Incorporated Application of fluidized material to a substrate using intermittent charges of compressed air
CN2279961Y (en) * 1996-12-31 1998-04-29 中国科学院感光化学研究所 Device for removing coating bead
JP3940054B2 (en) * 2002-10-07 2007-07-04 大日本スクリーン製造株式会社 Nozzle cleaning apparatus and substrate processing apparatus provided with the nozzle cleaning apparatus
JP2005062502A (en) 2003-08-13 2005-03-10 Nakan Corp Polarizing film printer
KR101157348B1 (en) * 2007-11-08 2012-06-15 샤프 가부시키가이샤 Droplet applying apparatus, droplet applying method, apparatus for manufacturing liquid crystal display panel and method for manufacturing liquid crystal display panel
JP5919113B2 (en) * 2012-07-04 2016-05-18 東京エレクトロン株式会社 Coating processing apparatus, coating processing method, program, and computer storage medium
AT515608B1 (en) * 2014-04-03 2016-06-15 Worff Herwig Dipl Ing Device for closing sacks of tissue

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232120A (en) * 1994-02-24 1995-09-05 Konica Corp Coating applying method and coating applying device
JPH1099764A (en) * 1996-08-07 1998-04-21 Matsushita Electric Ind Co Ltd Coating applicator and method therefor
WO2012140905A1 (en) * 2011-04-15 2012-10-18 パナソニック株式会社 Substrate coating method and substrate coating device as well as organic electroluminescent element production method using said method
JP2013184126A (en) * 2012-03-08 2013-09-19 Dainippon Printing Co Ltd Coating apparatus
JP2013202489A (en) * 2012-03-28 2013-10-07 Dainippon Screen Mfg Co Ltd Coating apparatus
JP2014147857A (en) * 2013-01-31 2014-08-21 Hitachi Vehicle Energy Ltd Die coater

Also Published As

Publication number Publication date
TW201919768A (en) 2019-06-01
KR102492389B1 (en) 2023-01-26
JP6909854B2 (en) 2021-07-28
CN110891697B (en) 2022-02-25
JPWO2019021859A1 (en) 2020-07-02
TWI790255B (en) 2023-01-21
KR20200035974A (en) 2020-04-06
CN110891697A (en) 2020-03-17

Similar Documents

Publication Publication Date Title
JP6761860B2 (en) Coating processing equipment, coating processing method and computer storage medium
US7673580B2 (en) Apparatus and method for coating polyimide layer
KR101040353B1 (en) Polarizing Film Adsorption Device for Polarizing Film Cutting System Using Laser
CN104834118B (en) Method and apparatus for manufacturing liquid crystal display device
KR100796371B1 (en) Polarizer Protective Film Removal Device
US7108749B2 (en) Technological machinery for production of polarizers
JP6909854B2 (en) Coating processing equipment, coating processing method and computer storage medium
US20130228087A1 (en) Cleaning apparatuses for printing plates and printing apparatuses including the same
KR101779727B1 (en) Method and Apparatus for Manufacturing Polarizing Film, and Polarizing Film by Using the Same
CN102730978A (en) Film coating apparatus, system and method
JP5168029B2 (en) Printing apparatus and printed matter manufacturing method
JP4395012B2 (en) Panel cleaning apparatus and panel manufacturing method
KR20060133340A (en) Cleaning equipment of inkjet head and inkjet printing system using the same
JP6854884B2 (en) Coating treatment equipment, coating treatment method and optical film forming equipment
KR200417802Y1 (en) Detach device of polarizer film
JP2006208545A (en) Device, manufacturing method thereof, electro-optical device, manufacturing method thereof, and electronic apparatus
US20200026130A1 (en) Method of producing glass substrate for liquid crystal display device
JP2002045759A (en) Coating apparatus and method
WO2018003425A1 (en) Optical film forming method, computer storage medium and optical film forming device
JP2011016089A (en) Coating device and coating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207004602

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18839469

Country of ref document: EP

Kind code of ref document: A1