WO2019019828A1 - 目标对象的遮挡检测方法及装置、电子设备及存储介质 - Google Patents
目标对象的遮挡检测方法及装置、电子设备及存储介质 Download PDFInfo
- Publication number
- WO2019019828A1 WO2019019828A1 PCT/CN2018/090994 CN2018090994W WO2019019828A1 WO 2019019828 A1 WO2019019828 A1 WO 2019019828A1 CN 2018090994 W CN2018090994 W CN 2018090994W WO 2019019828 A1 WO2019019828 A1 WO 2019019828A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- target
- detection area
- electronic device
- detection
- image
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/255—Detecting or recognising potential candidate objects based on visual cues, e.g. shapes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/168—Feature extraction; Face representation
- G06V40/171—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2137—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on criteria of topology preservation, e.g. multidimensional scaling or self-organising maps
- G06F18/21375—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on criteria of topology preservation, e.g. multidimensional scaling or self-organising maps involving differential geometry, e.g. embedding of pattern manifold
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
- G06F18/2148—Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the process organisation or structure, e.g. boosting cascade
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/2163—Partitioning the feature space
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
- G06V10/755—Deformable models or variational models, e.g. snakes or active contours
- G06V10/7553—Deformable models or variational models, e.g. snakes or active contours based on shape, e.g. active shape models [ASM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/161—Detection; Localisation; Normalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/161—Detection; Localisation; Normalisation
- G06V40/162—Detection; Localisation; Normalisation using pixel segmentation or colour matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/161—Detection; Localisation; Normalisation
- G06V40/165—Detection; Localisation; Normalisation using facial parts and geometric relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/08—Detecting or categorising vehicles
Definitions
- the present invention relates to the field of information technology, and more particularly to occlusion detection.
- the electronic device needs to acquire some images including the target object, and sometimes the captured image or the user-uploaded image, the target object is occluded, which may result in the captured or uploaded image not meeting the requirements.
- detecting such occlusion can generally be manually screened, and the other is based on repeated detection, extraction and iteration of image features to automatically determine whether the current target object is occluded.
- the former method is obviously inefficient by manual operation.
- the latter method realizes the automatic determination of the electronic device, there are still problems such as large calculation amount and low precision.
- the embodiment of the present invention provides an occlusion detection method, an electronic device, and a storage medium of a target object, which solves the problem of large calculation amount and low accuracy of occlusion detection.
- a first aspect of the embodiments of the present invention provides a method for detecting an occlusion of a target object, including:
- the electronic device determines a first position of the first feature and a second position of the second feature in the target image based on a pixel value of each pixel in the target image, wherein the first feature is an outer contour of the target object in the target image a feature; the second feature is a feature of the interference sub-object in the target object that interferes with the occlusion determination; and the interference sub-object is a sub-object in the target object that causes interference to the occlusion detection;
- the electronic device divides the image area into at least two detection areas based on the second position
- the electronic device determines, according to the pixel value of each of the detection areas, whether each of the detection areas meets a preset unoccluded condition; when the preset unobstructed condition is not met, the electronic device determines a corresponding detection. An occlusion is present in the area; wherein, for the target detection area, the electronic device combines the pixel values of the target detection area to determine whether the target detection area satisfies the preset unoccluded condition, if the electronic device determines the If the target detection area does not satisfy the preset unoccluded condition, the electronic device determines that there is occlusion in the target detection area, and the target detection area is any one of the at least two detection areas.
- a second aspect of the embodiments of the present invention provides an occlusion detecting apparatus for a target object, including:
- a first determining unit configured to determine, according to pixel values of each pixel in the target image, a first location of the first feature and a second location of the second feature in the target image, where the first feature is in the target image
- a second determining unit configured to determine an image area where the target object is located based on the first location
- a dividing unit configured to divide the image area into at least two detection areas based on the second position
- a third determining unit configured to determine, in combination with the pixel value of each of the detection regions, whether each of the detection regions meets a preset unoccluded condition; wherein, for the target detection region, the third determining unit uses Determining, according to the pixel value of the target detection area, whether the target detection area satisfies the preset unoccluded condition, and the target detection area is any one of the at least two detection areas;
- a fourth determining unit configured to determine that there is an occlusion in the corresponding detection area when the preset unoccluded condition is not met, wherein, for the target detection area, the fourth determining unit is configured to determine the If the target detection area does not satisfy the preset unoccluded condition, it is determined that there is occlusion in the target detection area.
- a third aspect of the embodiments of the present invention provides an electronic device, including:
- a memory for storing information
- a processor coupled to the memory for performing an occlusion detection method of the target object provided by one or more of the foregoing technical solutions by executing a computer program stored in the memory.
- a fourth aspect of the embodiments of the present invention provides a computer storage medium, where the computer storage medium stores a computer program; and after the computer program is executed, the occlusion detection method of the target object provided by the foregoing one or more technical solutions can be implemented.
- the occlusion detection method, the electronic device and the storage medium of the target object provided by the embodiment of the present invention, the first aspect, before the occlusion detection, the feature point extraction of the target object, for example, the extraction of the first feature in the target image , to determine the image area where the entire target object is located.
- the detection interference of the non-target object to the target object for occlusion is excluded.
- the second position of the feature of the interference sub-object included in the target object itself that interferes with the occlusion detection is extracted, and then the entire image area is partitioned based on the second position to obtain one detection area; Whether there is interference in each detection area; this can reduce or eliminate the interference of the target object itself to the occlusion detection, thereby eliminating interference from the non-target object and interference elimination of the self-interfering sub-object, which enhances the occlusion The accuracy of the test.
- there is no repeated iterative calculation process in the process of detection which reduces the computational complexity and computational complexity caused by the iterative calculation, improves the detection effect of the occlusion detection and reduces the resource overhead of the occlusion detection.
- FIG. 1 is a schematic flowchart of a method for detecting an occlusion of a target object according to an embodiment of the present invention
- FIG. 2 is a schematic flowchart of a method for detecting an occlusion of a target object according to an embodiment of the present invention
- FIG. 3 is a schematic diagram of display changes of a target image and a feature mark according to an embodiment of the present invention
- FIG. 4 is a schematic diagram of a detection partition according to an embodiment of the present invention.
- FIG. 5 is a schematic diagram of another detection partition according to an embodiment of the present invention.
- FIG. 6 is a schematic diagram of a display of a replacement prompt according to an embodiment of the present invention.
- FIG. 7 is a schematic diagram of display of an adjustment prompt according to an embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of an occlusion detecting apparatus of a target object according to an embodiment of the present invention.
- FIG. 9 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
- FIG. 10 is a schematic flowchart diagram of a method for detecting occlusion of a target object according to an embodiment of the present invention.
- the embodiment provides an occlusion detection method for a target object, including:
- S110 determining, according to pixel values of each pixel in the target image, a first position of the first feature and a second position of the second feature in the target image, wherein the first feature is an outer contour of the target object in the target image
- the second feature is a feature of the interference sub-object in the target object; the interference sub-object is a sub-object in the target object that interferes with occlusion detection.
- S120 Determine an image area where the target object is located based on the first location.
- S140 Determine, in combination with a pixel value of each of the detection regions, whether a predetermined unoccluded condition is met in each of the detection regions, where the target detection region is combined with a pixel value of the target detection region to determine the Whether the target detection area satisfies the preset unoccluded condition, and the target detection area is any one of the at least two detection areas.
- the occlusion detection method of the target object provided in this embodiment may be applied to various electronic devices, and may be applied to a server on the network side or to a terminal device that provides the target image.
- the server may be an image server that uploads images.
- the terminal device may be various mobile terminals or fixed terminals such as a mobile phone, a tablet computer, a wearable device, a notebook computer or a desktop computer.
- the target image is collected by the collection terminal, and the collection terminal transmits the target image to the server via the Internet or the like. After the server receives the target image, the process proceeds to step S110 to step S150.
- the execution subject shown in Figure 2 is a server. In some embodiments, the execution subject may also be the collection terminal itself.
- the collection terminal here can be any electronic device with a camera, such as a mobile phone or a tablet computer.
- the step S110 in the embodiment may include: inputting the target image into a learning model by using a machine learning algorithm or the like, and the learning model automatically performs information processing on the target image, and extracting a target object in the target image.
- An image area, the target object may be described by feature points of the target object.
- the feature points of the target object may be referred to as target features.
- the target features herein include the first feature and the second feature.
- the image area is a large image area that is connected.
- the target object is a human face
- the first feature may be an outer contour feature of a face of a face
- the second feature is a feature of a pre-specified organ within the face.
- the pre-specified organ may include at least an organ such as an eyebrow, an eye, a nose, a lip or a forehead.
- the pre-designated organ herein is a specific example of the aforementioned disturbing sub-object.
- the second feature is a feature that interferes with the sub-object.
- the left image in FIG. 3 is the target image
- the right image in FIG. 3 is the image in which the feature points corresponding to the first feature and the second feature are marked.
- the target object is a human face
- the first feature is a facial outer contour feature
- the second feature is a feature of an eye, an eyebrow, a nose, and a mouth.
- the learning model may be: a neural network, a vector learning machine, or a cascade regression model obtained by training using training samples labeled with the recognition result.
- the learning model is obtained by means of a random forest:
- a large number of training samples of the target object mark are collected, for example, a sample of the position of the first feature and the second feature in the target object may be manually labeled.
- the random forest is a classifier that trains and predicts samples by multiple decision trees.
- the local binary is an operator for describing local texture features of an image; it has significant advantages such as rotation invariance and gray invariance.
- the Local Binary Pattern (LBP) operator is defined as a window within the window of 3*3, with the center pixel of the window as the threshold, and the gray value of the adjacent 8 pixels is compared with it, if the surrounding pixel value is greater than The center pixel value, then the position of the pixel is marked as 1, otherwise 0.
- the online recognition stage using the trained learning model, processing the target image such as the recognized face image, calculating the local binary feature of the target feature, and then using the previously trained random forest to distinguish the feature to obtain the final target feature.
- an Active Shape Model (ASM) based on the shape constraint of the target object or an Active Appearance Model (AAM) based on the shape constraint and texture constraint of the target object may also be utilized. Extracting the first feature and the second feature to determine the first location and the second location.
- ASM Active Shape Model
- AAM Active Appearance Model
- the first position and the second position may be pixel coordinates or geometric positions of corresponding pixels in the target image of the corresponding target feature.
- a first position corresponding to the first feature and a second position corresponding to the second feature may be extracted by using a Scale-invariant feature transform (SIFT).
- SIFT Scale-invariant feature transform
- the location of the target object in the target image may be determined based on the first location, thereby determining an image region corresponding to the target object.
- the image area may be divided into at least two detection areas based on the second position.
- the image area that is in communication may be divided into several sub-areas based on the second position, and each sub-area is referred to as a detection area.
- each sub-region includes the interfering sub-objects, ie each of the detection regions may include the interfering sub-objects, and in other embodiments, each of the interfering sub-objects may be directly deleted, such that Each detection area does not include an interference sub-object.
- step S120 may include:
- the first position of the first feature is connected in series to obtain a closed image area.
- step S130 may include:
- the dividing line and the edge line of the image area can be combined into at least two closed detection regions that do not include the interference sub-object .
- Figure 4 shows that when the target object is a human face and the interference sub-object is an organ of a human face, the image area where the face is located is divided into several detection areas based on the distribution of the organs, and the detection area shown in FIG. Includes: image parts of organs such as eyebrows or lips.
- FIG. 5 shows that when the target object is a human face and the interference sub-object is an organ of a human face, the detection area formed after the interference sub-object is not included and does not include the interference sub-object.
- the dotted line boxes in FIGS. 4 and 5 indicate the corresponding image areas when the face is the target object.
- the image area corresponding to the face is divided into a forehead detection area including the forehead, a left face detection area including the left face, and a right face detection area including the right face.
- Each detection area is a sub-area of the image area in which the target object is located.
- step S140 for the target detection area, it is determined whether the target detection area satisfies the unoccluded preset unoccluded condition in combination with the pixel value of the target detection area.
- the pixel value may be a color value of a pixel included in the target detection area, for example, a value of red, green, and blue (R, G, B).
- the pixel value of the combined target detection area may be all pixel values in the combined target detection area, or may be partial pixel values.
- the target object may be a half body or a whole body of the human body in addition to the human face; therefore, the target image may be a face image, a bust or a full body image.
- the target image may also be an image that includes other target objects.
- the surveillance image includes an image of the imaging of the vehicle.
- the interference sub-object may be an image portion that interferes with detecting whether an occlusion object occludes the target object.
- the detection region is obtained by determining the second location and partitioning the image region. Image processing based on the detection area, determining whether there is occlusion occlusion in the detection area, and directly processing by repeated iterations compared with the prior art, which has the characteristics of small calculation amount and fast processing speed; at the same time, through interference to the interference
- the processing of the second position corresponding to the object eliminates the interference of the target object itself on whether or not there is occlusion occlusion, and can improve the accuracy of the judgment.
- the interference sub-object having the interference occlusion determination in the target object is an image element having color similarity to the occlusion.
- the features of the facial features are obviously different from the characteristics of the skin, and the obstructions are usually different from the characteristics of the skin.
- the facial features are interferences with color similarity with the obstructing objects.
- the facial features of the person here may include: eyebrows, eyes, mouth, nose and ears.
- the interference sub-object having the interference occlusion judgment in the target object is a graphic element having shape similarity with the occlusion.
- the target object is a person
- the pattern on the clothes worn by the person being photographed may be an interference sub-object having a shape similarity to the obstruction.
- the photographed character A is wearing a top of a model with an airplane pattern, and specifically how to determine whether the airplane pattern is a pattern on the clothes or an occlusion pattern outside the clothes. Therefore, at this time, it is necessary to eliminate the influence of the pattern on the clothes, and to influence whether or not the occlusion is affected, to obtain more accurate results.
- the method further includes:
- attribute information of the target object includes: overall attribute information and/or area attribute information; the overall attribute information is used to represent an overall attribute of the target object; and the area attribute information is used for Characterizing an area attribute of the detection area;
- Determining, according to the pixel value of the target detection area, whether the target detection area satisfies the preset unoccluded condition including at least one of the following:
- the overall attribute information may include: type information of the target object, for example, a face or a whole body or a half body, or an animal image or a vehicle image or the like.
- the overall attribute information may include: gender information, age information, and the like.
- gender information For example, the facial features of men and women have different proportions of faces, for example, women's eyes are usually larger, while men's eyes are smaller.
- an adult man may have more skin on the forehead because of baldness and the like, and the child has a small forehead due to the thick hair and the hairline.
- the judgment basis parameter and/or the judgment policy are determined according to the overall attribute information.
- the characteristics of the corresponding detection area reflected by the area attribute information for example, the interference sub-objects included in the different detection areas are different, and the detection of the occlusion interference by the interference sub-objects is different.
- the area attribute information herein may be a parameter such as the type of the interference sub-object.
- the target object is a human face
- the eyes and eyebrows are divided into the forehead detection area corresponding to the forehead
- the nose and the mouth are half-divided into the left face detection area and the right face detection area. If in some embodiments, it is necessary to distinguish that the area ratio of the skin to the entire area is different. Therefore, when making a judgment, it can be judged based on different area thresholds.
- Different target objects may correspond to different judgment strategies, for example, color-based judgments or shape-based judgments.
- the judgment basis parameter and/or the judgment strategy are first determined based on at least one of the overall attribute information and the area attribute information, so that the corresponding judgment parameter and/or the judgment strategy can be adopted, and the accurate It is judged whether there is an obstruction in each detection area for occlusion.
- the determining according to the parameter includes at least an extreme value for determining whether an occlusion occurs in a certain detection area, or an interval value of an area in which a certain detection area is occluded.
- step S140 may include:
- the target detection area has an obstruction.
- the pixel value may be a color value, for example, the value of RGB, determining the number of pixels in the same range, where the same range may be: all the pixels whose difference is within the preset difference range may be Is a pixel that is in the same range.
- the number of pixels is compared with the total number of all pixels in the entire detection area.
- the ratio of the numbers here can be the detection ratio.
- the preset ratio may be a predetermined empirical value or a simulated value.
- the detection ratio in each detection area is counted, and then the detection ratio of the detection area is compared with a corresponding preset ratio to determine whether the detection area is occluded.
- different detection areas correspond to different preset ratios.
- a preset preset ratio that can reflect the original detection area is given, so that when the target image is judged, the uniform preset ratio can be more accurate. It is judged whether or not occlusion occurs in each detection area, and the accuracy of the occlusion judgment is improved again.
- the step S140 may specifically include:
- the target object is a bust of a person. If the pattern or shape on the wearer's clothes or the like is similar to the actual obstruction of the person's body, for example, all have sharp lines, but the covering on the clothes may follow The clothes are bent, but the actual obstructions are not. Therefore, in step S110, the line features are detected by edge feature detection or the like, and then in step S130, it can be determined whether the clothing is on the clothes or outside the clothes based on the degree of bending of the line features, and is located within the bounding boundary of the entire human body. Or outside the border. In step S140, the detection area division may be performed based on the lines according to the degree of bending, and detection may be performed, or may be determined based on the inside and outside of the boundary.
- the step S140 may include:
- based on the pixel values of the pixels of the target detection area it is determined that a large number of non-skinned color values appear at the position where the skin color should appear, and occlusion may occur, and an occlusion object appears in the corresponding target detection area. This results in occlusion of the target detection area.
- the method further includes at least one of the following:
- the electronic device If the electronic device is in an acquisition mode of acquiring the target image and detecting that the target object is occluded, outputting an adjustment prompt corresponding to the detection region according to the occluded detection region;
- a replacement prompt of the target image is output.
- the electronic device is currently in a state of real-time acquisition, for example, the user is using a computer to collect a photo ID or uploading a photo of his avatar to a public service platform (for example, a household registration management platform or a public security system platform), if the user's forehead is blocked by hair, or Taking photos with sunglasses, it is obvious that the photos taken in this way are not satisfactory. Therefore, in the embodiment, by performing the steps S110 to S140, it is determined that at least the individual detection areas have occlusion, and the adjustment prompt is output, prompting the user to move the hair or remove the sunglasses and then take the picture, reducing the upload to the corresponding system identification. If you fail, you need to repeat the problem.
- a public service platform for example, a household registration management platform or a public security system platform
- the electronic device is only in the upload mode, the camera is not currently opened for image collection.
- the background server needs to be specifically audited or manually verified by the background staff. Users need to log in again, they can't respond in time, and they can't notify users in time.
- the speed of performing step S110 to step S140 is fast, the user can be timely fed back and the user is notified to change the prompt.
- the server may also return an adjustment prompt or a replacement prompt to the collection terminal.
- FIG. 6 is a schematic diagram showing the display of a replacement prompt
- FIG. 7 is a schematic diagram showing the adjustment prompt.
- the replacement prompt and the adjustment prompt may also be output by voice.
- the method further includes:
- the electronic device If the electronic device is in the automatic reconstruction mode and detects that the target object is occluded, determining whether an unobstructed substitute image can be reconstructed based on the target image according to the occluded condition of the target image;
- the substitute image is generated based on the target image.
- the image and/or video frame uploaded by the user may be re-acquired or prompted to be replaced.
- the image is reconstructed based on the currently acquired image.
- the alternative image is that there is no occlusion. For example, due to the problem of illumination, the user has a strong whitening on the face near the window, and it seems that the electronic device is occluded. If the electronic device is in the automatic reconstruction mode, the image of the face on the glare side is automatically reconstructed based on the symmetrical relationship of the face according to the image of the face of the user not close to the window, so that the photo that satisfies the requirement can be provided, and the user's repetition can be avoided. Adjust and repeat collection to enhance intelligence and user satisfaction.
- the determining whether to reconstruct an unoccluded substitute image based on the target image comprises:
- the target image is reconstructed based on the unoccluded detection region symmetrical with the occluded detection region, and the substitute image is generated.
- occlusion detection is performed based on each detection area. If two detection areas are symmetrical to each other, and one of the detection areas is occluded, reconstruction may be performed based on another detection area. For example, taking a human face as an example, the left face region is the left face detection region, the right face is the right face detection region, and the left face detection region and the right face detection region are mutually symmetrical.
- the image of the left face detection area may be reconstructed directly based on the image data of the right face detection area, so that an unoccluded substitute image is obtained instead of the target object to perform a corresponding operation, for example, sent to the opposite end. Equipment, etc.
- the embodiment provides an occlusion detecting device for a target object, including:
- the first determining unit 110 is configured to determine, according to pixel values of each pixel in the target image, a first location of the first feature and a second location of the second feature, where the first feature is the target image An outer contour feature of the target object; the second feature is a feature of the interference sub-object in the target object; and the interference sub-object is a sub-object of the target object that causes interference to the occlusion detection;
- a second determining unit 120 configured to determine, according to the first location, an image region where the target object is located
- the dividing unit 130 is configured to divide the image area into at least two detection areas based on the second position;
- the third determining unit 140 is configured to determine, according to at least a part of the pixel values of each of the detection regions, whether the preset unobstructed condition is satisfied in each of the detection regions; wherein, for the target detection region, the a determining unit, configured to determine, according to a pixel value of the target detection area, whether the target detection area satisfies the preset unoccluded condition, where the target detection area is any one of the at least two detection areas;
- the fourth determining unit 150 is configured to determine that there is occlusion in the corresponding detection area when the preset unoccluded condition is not satisfied, wherein, for the target detection area, the fourth determining unit is configured to determine The target detection area does not satisfy the preset unoccluded condition, and it is determined that there is occlusion in the target detection area.
- the first determining unit 110, the second determining unit 120, the dividing unit 130, the third determining unit 140, and the fourth determining unit 150 provided in this embodiment may all correspond to a processor or a processing circuit.
- the processor may include a central processing unit (CPU), a microprocessor (MCU), a digital signal processor (DSP), an application processor (AP), or a programmable array (PLC), and the like.
- the processing circuit can be an application specific integrated circuit (ASIC) or the like.
- the processor or processing circuitry can be used to execute computer executable code, such as a computer program, to perform the functions of the various units described above.
- the occlusion detecting device of the target object in the embodiment may be applied to a server on the network side or used to collect the target image terminal.
- the server may be a cloud server or the like of various cloud platforms.
- the terminal may include: a mobile terminal or a fixed terminal.
- a typical mobile terminal may include a mobile device, a tablet computer, or a terminal device that can be carried around with a wearable device or a notebook computer.
- the fixed terminal may include a terminal device such as a desktop computer.
- the embodiment provides an occlusion device of the target object, which can first determine an image region where the target object is located based on the extraction of the location information of the feature point of the target object, and then based on the location information of the interference sub-object in the target object that is likely to interfere with the detection of the occlusion object.
- the division of the detection area is performed, and then the occlusion condition in each detection area is determined one by one, which has the characteristics of less calculation and low computational complexity compared with repeated iteration determination; and because of the detection of the partition, the detection precision is high.
- the dividing unit 130 is configured to connect the second locations in series to form at least two detection regions that are closed and do not include the interference sub-object.
- the partial image corresponding to the interference sub-object may be stripped from the detection area, so that each detection area does not interfere with the occlusion of the target object's own interference sub-object, and may further Improve the accuracy of judgment.
- the device further includes:
- An obtaining unit configured to acquire attribute information of the target object, where the attribute information includes: overall attribute information and/or area attribute information; the overall attribute information is used to represent an overall attribute of the target object; The area attribute information is used to represent the area attribute of the detection area;
- a fourth determining unit configured to determine, according to the attribute information, a judgment basis parameter and/or a judgment policy
- the third determining unit 140 is specifically configured to perform at least one of the following:
- the apparatus in this embodiment further includes: an obtaining unit and a fourth determining unit. Both the obtaining unit and the fourth determining unit may correspond to a processor or a processing circuit. A detailed description of the processor or processing circuit can be found in the aforementioned counterparts and will not be repeated here.
- the acquiring unit obtains the judgment parameter and/or the judgment strategy suitable for the target detection area according to the correspondence between the attribute information and the judgment basis parameter and the judgment policy according to the acquisition of the overall attribute information and/or the area attribute information.
- the attribute information may also be input to a specific model, and a judgment criterion and/or a judgment strategy that is compatible with the entire attribute information may be output by the specific model.
- the third determining unit 140 is further configured to determine, by the third target determining unit, a detection ratio of a number of pixels whose pixel values are in the same range and a total number of all pixels in the target detection area; And comparing the detection ratio to a preset ratio of the target detection area; if the detection ratio is smaller than the preset ratio, the target detection area has an obstruction.
- the different detection areas may correspond to the same preset ratio.
- different detection areas are preferably corresponding to different preset ratios, so as to achieve a preset preset ratio according to different characteristics of different detection areas. .
- the preset ratio here may be an empirical value and/or a simulation value, etc., thereby improving the judgment accuracy of a single detection area, thereby improving the judgment accuracy of the entire image area.
- the third determining unit 140 may be configured to perform at least one of: acquiring a shape feature of the target detection area based on a pixel value of an edge pixel of the target detection area, and determining the shape feature Whether the corresponding shape is a preset shape; determining a color feature in the target detection area based on a pixel value of each pixel of the target detection area, and determining whether the color feature satisfies a preset color condition.
- the device further includes:
- An output unit configured to perform at least one of the following:
- the electronic device If the electronic device is in an acquisition mode of acquiring the target image and detecting that the target object is occluded, outputting an adjustment prompt corresponding to the detection region according to the occluded detection region;
- a replacement prompt of the target image is output.
- the output unit may correspond to a display output unit such as a display for displaying and outputting the adjustment prompt and/or the replacement prompt.
- the output unit may further include a voice output unit such as a speaker; the voice output unit may be configured to output the aforementioned adjustment prompt and/or replacement prompt by voice.
- the device further includes:
- a reconstruction unit configured to determine, according to an occluded condition of the target image, whether an unobstructed substitute image can be reconstructed based on the target image, if the electronic device is in an automatic reconstruction mode and detects that the target object is occluded; If an unoccluded substitute image can be reconstructed based on the target image, the substitute image is generated based on the target image.
- the reconstruction unit may also correspond to a processor or a processing circuit, and may be used to generate a substitute image that can replace the original target image based on attributes such as symmetry of the target object, and may reduce repeated acquisition or repeated prompts. Wait.
- the reconstruction unit is specifically configured to: based on the symmetry of the target object, if one of the two symmetric detection regions is occluded, based on the unoccluded detection region symmetric with the occluded detection region The target image is reconstructed to generate the substitute image.
- the target object is a human face; the target feature comprises: a facial feature of a human face.
- the facial features of the person here may include: eyebrows, eyes, mouth, nose and ears.
- the embodiment provides an electronic device, including:
- a memory 210 configured to store information
- the processor 220 is coupled to the memory for performing an occlusion method of the target object provided by one or more technical solutions by executing a computer program stored in the memory.
- the memory 210 can include a variety of storage media that can be used to store computer programs.
- the storage medium included in the memory 210 may include a non-transitory storage medium that can be used to store a computer program.
- the storage medium included in the memory 210 may further include a storage medium for buffering pixel values, such as a cache.
- the processor 220 can be coupled to the display screen 210 and the memory 210 via a bus 240, such as an integrated circuit IIC bus or the like.
- the processor 220 may include: a central processor, a microprocessor, a digital signal processor, an application processor, a programming array, or the like, or a processing circuit, and may be used to implement an occlusion method of any one of the target objects by execution of a computer program. .
- the embodiment further provides a computer storage medium, wherein the computer storage medium stores a computer program, and after the computer program is executed by the processor, the occlusion method of the target object provided by any one or more of the foregoing technical solutions can be implemented.
- the computer storage medium may be a random storage medium, a read-only storage medium, a flash memory, a mobile hard disk, an optical disk, or a magnetic tape, and may be selected as a non-volatile storage medium.
- This example proposes a method for automatically detecting facial obstructions, which can prompt for a photo change or a reminder for photographing or photographing when detecting facial obscuration.
- a face detection mark is performed by inputting a photo or a video stream containing a face
- the detection area of the block occlusion is selected for the face mark result.
- the skin color detection is performed on the detection areas, and the skin color detection result is used to automatically determine whether the corresponding detection area is occluded.
- the detection method provided in this example can effectively detect the facial occlusion phenomenon in most face scenes, and the detection speed is fast.
- This example can be applied to a three-dimensional reconstruction of a face based on a single photo, a positive face photographing, etc., which requires a quick and automatic detection of a scene in which the face is unoccluded.
- the user takes a picture, or selects a photo in the album to perform three-dimensional reconstruction of the face. Since the face occlusion (hair, mask, etc.) has a great influence on the three-dimensional reconstruction of the face, the present example can be performed before the three-dimensional reconstruction of the face.
- the method of detecting facial occlusion If occlusion is detected, you can prompt the user to change the face photo by using the mobile phone prompt, or adjust the face position (remove the occlusion).
- the method provided in this example relies on a wide range of hardware environments for any hardware device with image processing and image selection capabilities, such as smartphones, personal computers (PCs), servers, and more.
- the face detection mark can utilize a face monitoring mark algorithm. Face detection markers are more commonly used in ASM, AAM, cascade regression and other algorithms.
- a. offline training phase collect a large number of face-marked training samples (including face images, and manually calibrated feature point positions), and then establish a random forest based on the image characteristics of each feature point's local binary (machine learning) Algorithm nouns, a cascade of regressions), and machine learning of such random forests through training samples, to obtain the specific parameter values of all nodes in all random forests.
- On-line recognition stage For the face image to be marked, first calculate all local binary features of the image, and then discriminate the features with the random forest obtained before training to obtain the final feature points.
- a block face occlusion area is constructed according to the detected points of the face features, and the skin color area threshold of each block is calibrated according to the statistical sample.
- the face samples are sampled for various common occlusion and non-occlusion situations based on actual sampling. Calculate the face skin area ratio (the number of pixels detected as skin color/the total number of pixels in the detection area) in each of the three areas, and count the minimum occlusion skin area ratio that can be tolerated for each detection area.
- the skin color occlusion threshold of the detection area is the skin color occlusion threshold of the detection area.
- the target is determined by setting the judgment basis parameters for the overall attribute and the area attribute of the object.
- the following takes the gender as the overall attribute as an example to illustrate the difference between the judgment parameters.
- the occlusion threshold of the three detection areas meaning: the number of pixel values detected as skin color / the total number of pixels in the detection area
- Detection area 1 Corresponds to the forehead-eyebrow-eye lower edge area. (Mainly detect occlusion of bangs, sunglasses, etc., the occlusion threshold can be as follows:
- Detection area 2 Corresponds to the left face to the left nostril and the left corner area.
- the main detection mask, left long hair and other occlusion conditions, the occlusion threshold can be as follows:
- Detection area 3 Corresponding to the right face to the right nostril and the right corner area.
- the main detection mask, right long hair and other occlusion conditions, the occlusion threshold can be as follows:
- this example provides another method for detecting a face occlusion, including:
- the image frame here may be a component of the video stream, if it is to proceed to the next step, otherwise return to this step;
- the face detection mark is specifically: detecting a feature of a face photo or an image frame including a face;
- the image area of the face is partitioned according to the mark point, the detection area is obtained, and the skin color area threshold value of each detection area is calibrated according to the statistical sample;
- the skin color area of the at least one detection area is less than the skin color area threshold, it is determined that the face is occluded.
- the disclosed apparatus and method may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
- the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
- the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may be separately used as one unit, or two or more units may be integrated into one unit; the above integration
- the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
- the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
- the foregoing storage device includes the following steps: the foregoing storage medium includes: a mobile storage device, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
- ROM read-only memory
- RAM random access memory
- magnetic disk or an optical disk.
- optical disk A medium that can store program code.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Data Mining & Analysis (AREA)
- Human Computer Interaction (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Software Systems (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- General Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Computing Systems (AREA)
- Geometry (AREA)
- Image Analysis (AREA)
Abstract
本发明实施例公开了一种目标对象的遮挡物检测方法、电子设备及存储介质,所述方法包括:基于目标图像中各像素的像素值,确定目标图像中第一特征的第一位置和第二特征的第二位置,其中,第一特征为所述目标图像中目标对象的外轮廓特征;第二特征为所述目标对象中干扰子对象的特征;干扰子对象为目标对象中会对遮挡检测造成干扰的子对象;基于第一位置,确定目标对象所在的图像区域;基于第二位置,将图像区域分为至少两个检测区域;分别判断每一个检测区域是否存在遮挡,针对目标检测区域,若结合目标检测区域的像素值,确定目标检测区域不满足预设无遮挡条件,则确定目标检测区域内存在遮挡,目标检测区域为至少两个检测区域中任意一个。
Description
本申请要求于2017年7月27日提交中国专利局、申请号201710625671.0、申请名称为“目标对象的遮挡检测方法及装置、电子设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及信息技术领域,尤其涉及遮挡物检测。
在一些情况下,电子设备需要获取一些包括目标对象的图像,而有时候采集的图像或用户上传的图像,目标对象是有被遮挡的,这就会导致采集或上传的图像不满足要求。
在现有技术中检测这种遮挡一般可以由人工进行筛选,另一种则是基于图像特征的反复检测、提取及迭代,自动确定出当前目标对象是否有被遮挡。前一种方法,由人工操作显然效率低,后一种方法虽然实现了电子设备的自动确定,但是依然存在着计算量大及精确度低等问题。
发明内容
有鉴于此,本发明实施例提供一种目标对象的遮挡检测方法、电子设备及存储介质,解决遮挡检测计算量大以及精确度低的问题。
本发明实施例第一方面提供一种目标对象的遮挡检测方法,包括:
电子设备基于目标图像中各像素的像素值,确定目标图像中第一特征的第一位置和第二特征的第二位置,其中,所述第一特征为所述目标图像中目标对象的外轮廓特征;所述第二特征为所述目标对象中干扰遮挡判断的干扰子对象的特征;所述干扰子对象为所述目标对象中会对遮挡检测造成干扰的子对象;
所述电子设备基于所述第一位置,确定所述目标对象所在的图像区域;
所述电子设备基于所述第二位置,将所述图像区域分为至少两个检测区域;
所述电子设备结合每一个所述检测区域的像素值,确定每一个所述检测区域是否满足预设无遮挡条件;当不满足所述预设无遮挡条件时,所述电子设备确定对应的检测区域内存在遮挡;其中,针对目标检测区域,所述电子设备结合所述目标检测区域的像素值,确定所述目标检测区域是否满足所述预设无遮挡条件,若所述电子设备确定所述目标检测区域不满足所述预设无遮挡条件,则所述电子设备确定所述目标检测区域内存在遮挡,所述目标检测区域为所述至少两个检测区域中任意一个。
本发明实施例第二方面提供一种目标对象的遮挡检测装置,包括:
第一确定单元,用于基于目标图像中各像素的像素值,确定目标图像中第一特征的第一位置和第二特征的第二位置,其中,所述第一特征为所述目标图像中目标对象的外轮廓特征;所述第二特征为所述目标对象中干扰子对象的特征;所述干扰子对象为所述目标对象中会对遮挡检测造成干扰的子对象;
第二确定单元,用于基于所述第一位置,确定所述目标对象所在的图像区域;
划分单元,用于基于所述第二位置,将所述图像区域分为至少两个检测区域;
第三确定单元,用于结合每一个所述检测区域的像素值,确定每一个所述检测区域内是否均满足预设无遮挡条件;其中,针对目标检测区域,所述第三确定单元,用于结合所述目标检测区域的像素值,确定所述目标检测区域是否满足所述预设无遮挡条件,所述目标检测区域为所述至少两个检测区域中任意一个;
第四确定单元,用于当不满足所述预设无遮挡条件时,确定对应的检测区域内存在遮挡,其中,针对所述目标检测区域,所述第四确定单元,用于若确定所述目标检测区域不满足所述预设无遮挡条件,则确定所述目标检测区域内存在遮挡。
本发明实施例第三方面提供一种电子设备,包括:
存储器,用于存储信息;
处理器,与所述存储器连接,用于通过执行存储在所述存储器内的计算机程序,能够执行前述一个或多个技术方案提供的目标对象的遮挡检测方法。
本发明实施例第四方面提供一种计算机存储介质,所述计算机存储介质存储有计算机程序;所述计算机程序被执行后能够实现前述一个或多个技术方案提供的目标对象的遮挡检测方法。
本发明实施例提供的目标对象的遮挡物检测方法、电子设备及存储介质,第一方面,在进行遮挡检测之前,会通过目标对象的特征点的提取,例如对目标图像中第一特征的提取,确定出整个目标对象所在的图像区域。排除了非目标对象对目标对象是否存在遮挡的检测干扰。第二方面,会提取出目标对象自身包括的会对遮挡检测造成干扰的干扰子对象的特征的第二位置,然后基于第二位置进行整个图像区域的分区,获得一个个检测区域;然后单独判断每一个检测区域是否存在着干扰;这样可以减少或排除目标对象中本身会对遮挡检测造成干扰,从而从非目标对象的干扰排除和自身的干扰子对象的干扰排除,这两个方面来提升遮挡检测的精确度。第三方面,在检测的过程中不存在反复迭代的计算过程,减少了迭代计算导致的计算量大及计算复杂的问题,提升了遮挡检测的检测效果并降低了遮挡检测的资源开销。
图1为本发明实施例提供的一种目标对象的遮挡检测方法的流程示意图;
图2为本发明实施例提供的一种目标对象的遮挡检测方法的流程示意图;
图3为本发明实施例提供的目标图像及特征标记的显示变化示意图;
图4为本发明实施例提供的一种检测分区的示意图;
图5为本发明实施例提供的另一种检测分区的示意图;
图6为本发明实施例提供的一种更换提示的显示示意图;
图7为本发明实施例提供的一种调整提示的显示示意图;
图8为本发明实施例提供的一种目标对象的遮挡检测装置的结构示意图;
图9为本发明实施例提供的一种电子设备的结构示意图;
图10为本发明实施例提供的一种目标对象的遮挡检测方法的流程示意图。
以下结合说明书附图及具体实施例对本发明的技术方案做进一步的详细阐述。
如图1及图2所示,本实施例提供一种目标对象的遮挡检测方法,包括:
S110:基于目标图像中各像素的像素值,确定目标图像中第一特征的第一位置和第二特征的第二位置,其中,所述第一特征为所述目标图像中目标对象的外轮廓特征;所述第二特征为所述目标对象中干扰子对象的特征;所述干扰子对象为所述目标对象中会对遮挡检测造成干扰的子对象。
S120:基于所述第一位置,确定所述目标对象所在的图像区域。
S130:基于所述第二位置,将所述图像区域分为至少两个检测区域。
S140:结合每一个所述检测区域的像素值,确定每一个所述检测区域内是否均满足预设无遮挡条件;其中,针对目标检测区域,结合所述目标检测区域的像素值,确定所述目标检测区域是否满足所述预设无遮挡条件,所述目标检测区域为所述至少两个检测区域中任意一个。
S150:当不满足所述当所述预设无遮挡条件时,确定对应的检测区域内存在遮挡;其中,针对目标检测区域,若确定所述目标检测区域不满足所述预设无遮挡条件时,确定所述目标检测区域内存在遮挡。
本实施例提供的所述目标对象的遮挡检测方法,可以应用于各种电子设备,通常可为应用于网络侧的服务器,也可以应用于提供所述目标图像的终端设备中。所述服务器可为上传图像的图像服务器。所述终端设备可为手机、平板电脑、可穿戴式设备、笔记本电脑或台式电脑等各种移动终端或固定终端。图2所示的为目标图像由采集终端采集,采集终端通过互联网等将目标图像发送给服务器,服务器接收到所述目标图像之后,执行所述步 骤S110至步骤S150。图2所示的执行主体为服务器。在一些实施例中,所述执行主体还可以为采集终端自身。这里的采集终端可为任意带有摄像头的电子设备,如,手机或平板电脑等。
在本实施例中所述步骤S110可包括:利用机器学习算法等将所述目标图像输入到学习模型中,学习模型自动对所述目标图像进行信息处理,提取所述目标图像中目标对象所在的图像区域,所述目标对象可以由目标对象的特征点来描述。所述目标对象的特征点可称为目标特征。这里的目标特征包括:所述第一特征和所述第二特征。通常此时,所述图像区域为一个相通的大的图像区域。例如,所述目标对象为人脸,所述第一特征可为人脸的脸型的外轮廓特征;所述第二特征为人脸内预先指定的器官的特征。所述预先指定的器官至少可包括:眉毛、眼睛、鼻子、嘴唇或额头等器官。这里的预先指定的器官即为前述的干扰子对象的具体举例。总之,所述第二特征为干扰子对象的特征。
图3中的左侧图像为目标图像,图3的右侧图像为标记出第一特征和第二特征对应的特征点的图像。当所述目标对象为人脸时,第一特征为脸部外轮廓特征;第二特征为眼、眉毛、鼻子及嘴巴的特征。
在本实施例中所述学习模型可为:利用被标注有识别结果的训练样本进行训练得到的神经网络、向量学习机或级联回归模型等。例如,利用随机森林的方式获得所述学习模型:
首先,线下训练阶段,收集大量的目标对象标记的训练样本,例如,可为人工标注出了目标对象中第一特征和第二特征的位置的样本。所述随机森林为:多个决策树对样本进行训练并预测的一种分类器。
然后,根据每个特征的特征点的局部二值建立一个目标特征的随机森林,并对是随机森林进行机器学习,得到随机森林所有节点的参数值,一旦参数值确定相当于就确定了学习模型。所述局部二值是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。在局部二值(Local Binary Pattern,LBP)算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这里的窗口的包括的像素3*3=9,在一些实施例中还可以根据需要调整所述窗口的大小,例如,调整为4*4的窗口。
线上识别阶段:利用训练好的学习模型,对待识别的人脸图像等目标图像进行处理,计算出目标特征的局部二值特征,然后利用之前训练的随机森林对特征进行判别,得到最终目标特征在图像中的几何位置或目标特征对应的像素点的像素坐标等位置。
在一些实施例中,还可以利用基于目标对象的形状约束的活跃形状模型(Active Shape Model,ASM)或利用基于目标对象的形状约束及纹理约束的活跃外表模型(Active Appearance Model,AAM)进行所述第一特征和所述第二特征的提取,从而确定出所述第一位置和所述第二位置。
例如,所述第一位置和所述第二位置,都可为对应的目标特征在目标图像中对应像素的像素坐标或几何位置。
在还有一些实施例中,还可以利用尺度不变特征变换(Scale-invariant feature transform,SIFT)提取出所述第一特征对应的第一位置和第二特征对应的第二位置。
在提取出所述第一位置之后,就可以基于第一位置确定出目标对象在所述目标图像中的位置,从而确定出所述目标对象对应的图像区域。
在提取出所述第二位置之后,基于所述第二位置,可以将所述图像区域分为至少两个检测区域。在具体实现时,可以基于所述第二位置,将一个相通的所述图像区域分为几个子区域,每一个子区域称之为一个检测区域。
例如,在一些实施例中,每一个子区域包括所述干扰子对象,即每一个检测区域可以包括所述干扰子对象,在另一些实施例中,可以直接抠除每一个干扰子对象,这样每一个检测区域都不包括干扰子对象。
可选地,所述步骤S120可包括:
串联所述第一特征的第一位置得到一个封闭的图像区域。
对应地,在所述步骤S130可包括:
串联所述第二位置,得到分割所述图像区域的分割线;这样所述分割线及所述图像区域的边缘线就能够组合成至少两个封闭的且不包括所述干扰子对象的检测区域。
图4所示的是:目标对象为人脸,而干扰子对象为人脸的器官时,直接基于器官的分布,将人脸所在的图像区域分为几个检测区域,图4所示的检测区域内包括:眉毛或嘴唇等器官的图像部分。
图5所示的是:目标对象为人脸,而干扰子对象为人脸的器官时,直接抠掉干扰子对象以后形成的不包括干扰子对象的检测区域。
在图4和图5中虚线方框表示的为人脸作为目标对象时对应的图像区域。在图4至图5所示的图像中,人脸对应的图像区域被分为了:包括额头的额头检测区域,包括左脸的左脸检测区域,以及包括右脸的右脸检测区域。
每一个检测区域均为目标对象所在的图像区域的子区域。
总之,将所述图像区域分割成至少两个检测区域的方式有很多种,不局限于上述任意一种。
在步骤S140中,针对目标检测区域,会结合目标检测区域的像素值,判断目标检测区域是否均满足未被遮挡的预设无遮挡条件。在本实施例中,所述像素值可为目标检测区 域内包括的像素的颜色值,例如,红绿蓝(R,G,B)的取值。具体实现时,所述结合目标检测区域的像素值可以是结合目标检测区域内的所有像素值,也可以是部分像素值。
所述目标对象除了人脸,还可以是人体的半身或者全身;故所述目标图像可为人脸图像、半身像或全身像。
在一些实施例中,所述目标图像还可以是包括其他目标对象的图像。例如,监控图像中包括:交通工具的成像的图像。
在本实施例中,所述干扰子对象可为对检测是否有遮挡物遮挡目标对象造成干扰的图像部分,在本实施例中通过第二位置的确定及所述图像区域的分区,获得检测区域;基于检测区域进行图像处理,判断出检测区域中是否有遮挡物遮挡,相对于现有技术直接通过反复迭代进行处理,具有计算量小及处理速度快的特点;与此同时,通过对干扰子对象对应的第二位置的处理,排除了目标对象自身会对是否存在遮挡物遮挡的干扰,可以提升判断的精确度。
在一些实施例中,若基于颜色特征对是否遮挡目标对象进行判断,则目标对象中具有干扰遮挡判断的干扰子对象为与遮挡物具有颜色相似性的图像元素。例如,目标对象为人脸时,五官的特征明显会不同于皮肤的特征,而遮挡物通常也不同于皮肤的特征,这时,相对于皮肤而言,五官就是与遮挡物具有颜色相似性的干扰子对象。这里人的五官可包括:眉、眼、口、鼻及耳。
在另一些实施例中,若基于形状特征对是否遮挡目标对象进行判断,则目标对象中具有干扰遮挡物判断的干扰子对象为与遮挡物具有形状相似性的图形元素。例如,目标对象为人身,被拍摄的人身着的衣服上的图案就可能是与遮挡物具有形状相似性的干扰子对象。例如,被拍摄的人物A身着一个有飞机图案的模型的上衣,具体如何判断该飞机图案是衣服上的图案还是衣服外的遮挡图案。故此时,需要消除衣服上图案的影响,对是否出现遮挡进行影响剔除处理,以获得更加精确的结果。
可选地,所述方法还包括:
获取所述目标对象的属性信息,其中,所述属性信息包括:整体属性信息和/或区域属性信息;所述整体属性信息用于表征所述目标对象的整体属性;所述区域属性信息用于表征所述检测区域的区域属性;
根据所述属性信息,确定判断依据参数和/或判断策略;
所述针对目标检测区域,结合所述目标检测区域的像素值,确定所述目标检测区域是否满足所述预设无遮挡条件,包括以下至少之一:
结合所述判断依据参数及所述目标检测区域的像素值,确定所述目标检测区域是否满足所述预设无遮挡条件;
基于所述目标检测区域的像素值,利用所述判断策略确定所述目标检测区域是否满足所述预设无遮挡条件。
所述整体属性信息可包括:目标对象的类型信息,例如,是人脸还是全身或是半身,或者是动物图像或交通工具图像等。
对于以人的整体或局部为目标对象而言,所述整体属性信息可包括:性别信息、年龄信息等。例如,男和女的脸部的五官占人脸的比例不同,例如,女的眼睛通常较大,而男的眼睛较小。例如,针对成年人和儿童也是不同的,例如,成年男子可能因为秃顶等原因,导致额头部分的皮肤部分较多,而儿童因为头发茂密及发际线靠前导致额头极小的特点,故在本实施中会根据所述整体属性信息,确定出判断依据参数和/或判断策略。
所述区域属性信息反映的对应检测区域的特点,例如,不同检测区域包括的干扰子对象不同,干扰子对象的对遮挡干扰的检测不同。例如,这里的区域属性信息可为干扰子对象的类型等参数。
在一些实施例中,若目标对象为人脸,若眼睛和眉毛都划分到额头对应的额头检测区域,而鼻子和嘴边对半划分到了左脸检测区域和右脸检测区域。若在一些实施例中,需要区分皮肤占整个区域的面积比值是不同的。故进行判断时,可以基于不同的面积阈值进行判断。
对于不同的目标对象可能对应于不同的判断策略,例如,是基于颜色的判断还是基于形状的判断。
总之,在本实施例中首先会基于整体属性信息和区域属性信息的至少其中之一,确定出判断依据参数和/或判断策略,这样可以采用对应的判断依据参数和/或判断策略,精确的判断出每一个检测区域内是否有遮挡物进行遮挡。
在本实施例中,所述判断依据参数至少包括:用于确定某一个检测区域的是否出现遮挡的极值,或,确定某一个检测区域是否出现遮挡的区域的区间值等。
当然,以上仅是举例,具体实现时不局限于上述任意一个值。
可选地,所述步骤S140可包括:
确定所述目标检测区域内像素值位于同一范围内的像素个数与所述目标检测区域内的所有像素的总个数的检测比值;
将所述检测比值与所述目标检测区域的预设比值进行比较;
若所述检测比值小于所述预设比值时,所述目标检测区域存在遮挡物。
例如,像素值可为颜色值,例如,RGB的取值,确定位于同一范围内的像素个数,这里的位于同一范围内可为:差值在预设差值范围内的所有像素,可为是位于同一范围内的 像素。将该像素个数与整个检测区域内所有像素的总数的个数比值。这里的个数比值可为检测比值。所述预设比值可为预先确定的经验值或仿真值。
故在本实施例中会统计出每一个检测区域内的所述检测比值,然后将该检测区域的检测比值与对应的预设比值进行比对,确定出该检测区域是否有被遮挡。
在本实施例中可以通过简单的统计各个检测区域内的像素值,及比值的计算,就可以简便的计算出该检测区域内是否出现遮挡物的遮挡,相对于对大量的像素进行反复的迭代和计算,具有计算量小、消耗的计算资源少及确定速度快的特点。
可选地,不同的检测区域对应于不同的预设比值。
在本实施例中还会根据各个检测区域的特点,给出能够反映出该检测区域原本特定的预设比值,这样在进行目标图像的判断时,相对于采用统一预设比值,能够更加精确的判断出各个检测区域内是否出现遮挡,再次提升了遮挡判断的精确度。
具体如何判断,以下结合上述任意一个实施例提供几个可选方式:
可选方式一:
所述步骤S140具体可包括:
基于所述目标检测区域的边缘像素的像素值,获取所述目标检测区域的形状特征,确定所述形状特征对应的是否为预设形状。
例如,目标对象为人的半身像,若人的衣服等穿戴物上的图案或形状与实际遮挡人身的遮挡物具有相似性,例如,都具有比较锋利的线条,但是衣服上的遮挡物可能会随着衣服弯曲,而实际的遮挡物则不会。故在步骤S110中通过边缘特征检测等方式检测出这些线条特征,然后在步骤S130中可基于线条特征的弯曲程度确定出是衣服上的还是衣服外的,是位于整个人身的边界框定的边界内,还是边界外。在步骤S140中可以根据弯曲程度,基于这些线条进行检测区域划分,再进行检测,也可以基于边界内外进行判断。
可选方式二:
所述步骤S140可包括:
基于所述目标检测区域的各像素的像素值,确定所述目标检测区域内的颜色特征,确定所述颜色特征是否满足预设色彩条件。
例如,基于目标检测区域的各像素的像素值,确定应该出现肤色的位置出现了大量的非肤色的色彩值的像素,则可为出现了遮挡,则对应的目标检测区域内出现了遮挡物,导致了对目标检测区域的遮挡。
可选地,所述方法还包括以下至少之一:
若电子设备处于采集所述目标图像的采集模式且检测到所述目标对象有被遮挡,则根据被遮挡的检测区域输出与该检测区域对应的调整提示;
若所述电子设备处于非采集模式且检测到所述目标对象有被遮挡,则输出所述目标图像的更换提示。
若电子设备当前处于实时采集的状态,例如,用户正在利用电脑采集证件照或向公共服务平台(例如,户籍管理平台或公安系统平台)上传自己的头像照片,若用户的额头被头发遮挡,或者带着墨镜拍照,显然这样拍出来的照片是不满足要求的。故在本实施例中通过步骤S110至步骤S140的执行,确定出至少个别检测区域出现了遮挡,则输出调整提示,提示用户将头发拨动一下或去除墨镜之后再拍照,减少上传到对应系统识别出不合格,需要反复重新拍摄的问题。
例如,若电子设备仅是处于上传模式,当前并没有打开摄像头进行图像采集,一般情况下需要确定上传的照片是否合格,需要后台服务器专门进行审核或者由后台工作人员手工进行审核,显然这种审核需要用户再次登录才可以,不能及时反馈,也不能及时通知用户。而在本实施例中,由于执行步骤S110至步骤S140的速度快,可以及时向用户反馈,并通知用户更换提示。
若本实施例提供的目标对象的遮挡检测方法,应用于网络侧的服务器中,则如图2所示,所述服务器还可向采集终端返回调整提示或更换提示。
图6为一种更换提示的显示示意图;图7为一种调整提示的显示示意。在具体实现时,所述更换提示和调整提示还可以通过语音的方式输出。
在另一些实施例中,所述方法还包括:
若电子设备处于自动重建模式且检测出所述目标对象有被遮挡,则根据所述目标图像的被遮挡状况,确定是否能够基于所述目标图像重建一个无遮挡的替代图像;
若能够基于所述目标图像重建一个无遮挡的替代图像,则基于所述目标图像生成所述替代图像。
虽然用户上传的图像和/或视频帧不满足无遮挡条件,可以提示用户重新采集或提示用户更换,在本实施例中为了提升电子设备的智能性,会基于当前获取的图像进行重建,重建之后的替代图像是不存在遮挡的。例如,由于光照的问题,用户靠近窗户一边脸出现了强光泛白现象,对于电子设备而言就好像出现了遮挡。若电子设备处于自动重建模式,则会根据用户不靠近窗户一边的脸的图像,基于脸部的对称关系自动重建出现强光侧的脸的图像,从而可以提供满足要求的照片,避免用户的反复调整和反复采集,再次提升智能性及用户使用满意度。
可选地,所述确定是否能够基于所述目标图像重建一个无遮挡的替代图像,包括:
根据所述目标对象的对称性,若两个对称的检测区域中的其中一个被遮挡时,基于与该被遮挡的检测区域对称的未遮挡检测区域重建所述目标图像,生成所述替代图像。
进行自动重建时,并不是所有目标图像都可以重建,仅是部分被遮挡的图像可以重建。例如,目标对象为人脸,而人脸是对称,任意对称的两个部分中只有一个被遮挡时,才可以进行重建,否则是不可能精确重建的。故在本实施例中基于各个检测区域进行遮挡检测,若两个检测区域是相互对称的,其中一个检测区域被遮挡时,可以基于另一个检测区域进行重建。例如,以人脸为例,左脸区域作为左脸检测区域,右脸作为右脸检测区域,左脸检测区域和右脸检测区域是相互对称的,若左脸检测区域被遮挡,但是右脸检测区域未被遮挡,则可以直接基于右脸检测区域的图像数据重建左脸检测区域的图像,从而获得一个未被遮挡的替代图像替代所述目标对象执行对应的操作,例如,发送给对端设备等。
如图8所示,本实施例提供一种目标对象的遮挡检测装置,包括:
第一确定单元110,用于基于目标图像中各像素的像素值,确定目标图像中第一特征的第一位置和第二特征的第二位置,其中,所述第一特征为所述目标图像中目标对象的外轮廓特征;所述第二特征为所述目标对象中干扰子对象的特征;所述干扰子对象为所述目标对象中会对遮挡检测造成干扰的子对象;
第二确定单元120,用于基于所述第一位置,确定所述目标对象所在的图像区域;
划分单元130,用于基于所述第二位置,将所述图像区域分为至少两个检测区域;
第三确定单元140,用于结合每一个所述检测区域的至少部分像素值,确定每一个所述检测区域内是否均满足所述预设无遮挡条件;其中,针对目标检测区域,所述第三确定单元,用于结合所述目标检测区域的像素值,确定所述目标检测区域是否满足所述预设无遮挡条件,所述目标检测区域为所述至少两个检测区域中任意一个;
第四确定单元150,用于当不满足所述当所述预设无遮挡条件时,确定对应的检测区域内存在遮挡,其中,针对目标检测区域,所述第四确定单元,用于若确定所述目标检测区域不满足所述预设无遮挡条件,确定所述目标检测区域内存在遮挡。
本实施例提供的第一确定单元110、第二确定单元120、划分单元130、第三确定单元140及第四确定单元150,都可以对应于处理器或处理电路。所述处理器可包括:中央处理器(CPU)、微处理器(MCU)、数字信号处理器(DSP)、应用处理器(AP)或可编程阵列(PLC)等。所述处理电路可为专用集成电路(ASIC)等。所述处理器或处理电路可用于执行计算机程序等计算机可执行代码实现上述各个单元的功能。
在本实施例中所述目标对象的遮挡检测装置,可为应用于网络侧的服务器中,或应用于采集所述目标图像终端中。所述服务器可为各种云平台的云服务器等。所述终端可包括:移动终端或固定终端。典型的移动终端可包括:手机、平板电脑或可穿戴式设备或笔记本电脑等可随身携带的终端设备。所述固定终端可包括:台式电脑等终端设备。
本实施例提供目标对象的遮挡装置,能够基于目标对象的特征点的位置信息的提取,首先确定出目标对象所在的图像区域,然后基于目标对象中容易干扰遮挡物检测的干扰子对象的位置信息进行检测区域的划分,然后逐一确定每一个检测区域内的遮挡状况,相对于反复迭代确定,具有计算量少及计算复杂度低的特点;且由于分区进行检测,具有检测精度高的特点。
可选地,所述划分单元130,用于串联所述第二位置,形成至少两个封闭的且不包括所述干扰子对象的检测区域。
在本实施例中,为了进一步精确判断,可以将干扰子对象对应的部分图像从检测区域中剥离,这样的话,每一检测区域的都没有目标对象自身的干扰子对象对遮挡的干扰,可以进一步提升判断精确度。
可选地,所述装置还包括:
获取单元,用于获取所述目标对象的属性信息,其中,所述属性信息包括:整体属性信息和/或区域属性信息;所述整体属性信息用于表征所述目标对象的整体属性;所述区域属性信息用于表征所述检测区域的区域属性;
第四确定单元,用于根据所述属性信息,确定判断依据参数和/或判断策略;
所述第三确定单元140,具体用于执行以下至少之一:
结合所述判断依据参数及所述目标检测区域的像素值,确定所述目标检测区域是否满足所述预设无遮挡条件;
基于所述目标检测区域的像素值,利用所述判断策略确定所述目标检测区域是否满足所述预设无遮挡条件。
在本实施例中所述装置还包括:获取单元和第四确定单元。所述获取单元及第四确定单元,都可以对应于处理器或处理电路。所述处理器或处理电路的详细描述可以参见前述对应部分,在此就不再重复了。
在本实施例中获取单元通过整体属性信息和/或区域属性信息的获取,会根据属性信息与判断依据参数及判断策略的对应关系,得到适宜于目标检测区域的判断依据参数和/或判断策略。在有些实施例中,还可以将所述属性信息,输入到特定模型,由特定模型输出与所述整属性信息相适配的判断依据参数和/或判断策略。
可选地,所述第三确定单元140,还用于判断所述目标检测区域内像素值位于同一范围内的像素个数与所述目标检测区域内的所有像素的总个数的检测比值;将所述检测比值与所述目标检测区域的预设比值进行比较;若所述检测比值小于所述预设比值时,所述目标检测区域存在遮挡物。不同的检测区域可以对应于同一个预设比值,在一些实施例中优选为不同的检测区域对应于不同的预设比值,以实现根据不同的检测区域的不同特点有针 对性的设置预设比值。这里的预设比值可为经验值和/或仿真值等,从而提升单个检测区域的判断精确度,从而提升整个图像区域的判断精确度。
可选地,所述第三确定单元140,可具体用于执行以下至少之一:基于所述目标检测区域的边缘像素的像素值,获取所述目标检测区域的形状特征,判断所述形状特征对应的是否为预设形状;基于所述目标检测区域的各像素的像素值,确定所述目标检测区域内的颜色特征,判断所述颜色特征是否满足预设色彩条件。
进一步地,所述装置还包括:
输出单元,所述输出单元,至少用于执行以下至少之一:
若电子设备处于采集所述目标图像的采集模式且检测到所述目标对象有被遮挡,则根据被遮挡的检测区域输出与该检测区域对应的调整提示;
若所述电子设备处于非采集模式且检测到所述目标对象有被遮挡,则输出所述目标图像的更换提示。
所述输出单元可对应于显示器等显示输出单元,用于显示输出所述调整提示和/或更换提示。在一些实施中,所述输出单元还可包括扬声器等语音输出单元;所述语音输出单元,可以用于通过语音输出前述的调整提示和/或更换提示。
可选地,所述装置还包括:
重建单元,用于若电子设备处于自动重建模式且检测出所述目标对象有被遮挡,则根据所述目标图像的被遮挡状况,判断是否能够基于所述目标图像重建一个无遮挡的替代图像;若能够基于所述目标图像重建一个无遮挡的替代图像,则基于所述目标图像生成所述替代图像。
在本实施例中所述重建单元同样可对应于处理器或处理电路,可以用于基于目标对象的对称性等属性重建目标图像生成可以替代原始目标图像的替代图像,可以减少重复采集或反复提示等。
可选地,所述重建单元,具体用于根据所述目标对象的对称性,若两个对称的检测区域中的其中一个被遮挡时,基于与该被遮挡的检测区域对称的未遮挡检测区域重建所述目标图像,生成所述替代图像。
在一些实施例中,所述目标对象为人脸;所述目标特征包括:人脸的五官的特征。这里人的五官可包括:眉、眼、口、鼻及耳。
如9图所示,本实施例提供一种电子设备,包括:
存储器210,用于存储信息;
处理器220,与所述存储器连接,用于通过执行存储在所述存储器内的计算机程序,能够执行一个或多个技术方案提供的目标对象的遮挡方法。
所述存储器210可包括:各种存储介质,可用于存储计算机程序。所述存储器210包括的存储介质可包括:非瞬间存储介质,该非瞬间存储介质可用于存储计算机程序。所述存储器210包括的存储介质还可包括:缓存等用于缓存像素值的存储介质。
所述处理器220可通过总线240,例如,集成电路IIC总线等可以与显示屏210及存储器210相连。所述处理器220可包括:中央处理器、微处理器、数字信号处理器、应用处理器、编程阵列等处理器或处理电路,可用于通过计算机程序的执行实现上述任意一个目标对象的遮挡方法。
本实施例还提供一种计算机存储介质,所述计算机存储介质存储有计算机程序,所述计算机程序被处理器执行后,能够实现前述任意一个或多个技术方案提供的目标对象的遮挡方法。
在本实施例中所述计算机存储介质,可为随机存储介质、只读存储介质、闪存、移动硬盘、光盘或磁带等各种存储介质,可选为一种非易失性存储介质,可用于在掉电后依然存储有计算机程序的存储介质。
以下结合上述任意一个实施例提供几个示例:
示例1:
本示例提出了一套自动检测面部遮挡物的方法,在检测到面部遮挡时,可提示更换照片或提示拍照或摄影的注意事项的方法。
首先,通过对输入包含人脸的照片或视频流进行人脸检测标记;
基于人脸检测标记确定出了人脸所在的图像区域后,对人脸标记结果选取分块遮挡的检测区域。
对检测区域分别进行肤色检测,通过肤色检测结果来自动判定对应的检测区域是否面部有遮挡。
若有遮挡,则可根据场景给出更换照片或调整头部位置的提示。
本示例提供的检测方法,能有效检测大部分人脸场景下的面部遮挡现象,检测速度快。
本示例可应用于基于单张照片的人脸三维重建、正脸拍照等需要快速自动检测提示人脸无遮挡的场景。
例如:用户拍照、或者选择相册内照片进行人脸三维重建,由于面部遮挡(头发、口罩等)对人脸三维重建的效果有较大影响,因此可在进行人脸三维重建前,通过本实例的 方法对面部遮挡进行检测。如果检测到有遮挡,可通过手机提示等方式提示用户更换人脸照片,或调整脸部拍照位置(撤去遮挡物)。
此示例提供的方法依赖的硬件环境较为宽泛,可用于任何带图像处理和图像选择功能的硬件设备中,如智能手机、个人电脑(PC)、服务器等。
以下详细描述一下如何进行人脸检测标记。
所述人脸检测标记,可利用人脸监测标记算法。人脸检测标记比较常见的有ASM,AAM,级联回归等算法。
这里举例采用级联回归算法中的一个分类:随机森林的方式。主要思路包含两个阶段:
a.线下训练阶段:收集大量人脸标记的训练样本(包含人脸图像,以及手工标定的特征点位置),然后根据每个特征点的局部二值这样一个图像特征建立随机森林(机器学习算法名词,一种级联回归器),并对这类随机森林通过训练样本进行机器学习,得到所有随机森林里面所有节点的具体参数值。
b.线上识别阶段:针对要标记的人脸图像,首先计算出图像的所有局部二值特征,然后用之前训练得到的随机森林对特征进行判别,得到最终的特征点。
以下详细描述一下如何进行图像区域的分区,获得检测区域。
根据检测的人脸特征的标记点构建分块人脸遮挡区域,并根据统计样本标定每个分块肤色面积阈值。
a.采用标记点构建分块人脸遮挡区域的优势:
(1)由于在眉毛、眼球内部、鼻孔、口腔内部区域,眉毛本身、眼球、鼻孔、舌头等差异较大,而且容易被误检为非肤色区域,从而对遮挡检测整体效果产生影响。
(2)进行分块检测,更易于发现局部区域遮挡情况:比如只是额头处有部分头发遮挡,如果算整个脸肤色面积比例,则遮挡区域占比不高,容易误检。如果只是计算额头区域的肤色面积比例,则能精确检测出头发遮挡。
因此针对实践中的大部分遮挡情况,这里确定以下三个遮挡检测区域:
(1)额头-眉毛-眼睛下缘区域。(头发的刘海、墨镜等遮挡情况)
(2)左脸到左鼻孔、左嘴角区域。(口罩、左边长头发等遮挡情况)
(3)右脸到右鼻孔、右嘴角区域。(口罩、右边长头发等遮挡情况)
b.根据统计样本标记各区域遮挡阈值;
这里主要根据实际采样,对各种常见遮挡和非遮挡情况进行人脸照片采样。对每张照片分别计算其在这三个区域的人脸肤色面积比(检测为肤色的像素数量/检测区域总体像素 数量),并统计出每个检测区域可容忍的最小遮挡肤色面积比,作为该检测区域的肤色遮挡阈值。
以下详细介绍以下结合肤色检测进行遮挡判断,包括:
a.遍历每个检测区域内的所有像素,对其像素值(RGB空间,以下简记为(r,g,b))进行肤色检测:
(1)计算肤色判定参数1(param1):param1=(-176933*r-347355*g+524288*b+134217728)>>20
(2)如果param1<=77或者param1>=127,则为非肤色
(2)如果127>param1>77:再计算肤色判定参数2param2:
param2=(524288*r-439026*g-85262*b+134217728)>>20
如果173>param2>133,则为肤色;否则为非肤色。
实践证明,采用此算法内的参数计算,对绝大部分光照下的肤色情况都能做到正确检测。这里的20、77、127、133及170都是判断阈值,可为前述判断依据参数的一种。
b.统计区域内肤色面积比:所有肤色像素的数量/检测区域总体像素数量,并与“b”中统计得到的遮挡阈值进行对比,如果小于遮挡阈值则证明此区域存在遮挡。
实践证明,此方案能够有效检测面部遮挡情况,避免眼球、口腔、鼻孔等常见误检区域带来的干扰。同时从方案算法可以看出,整个技术方案计算量小,检测速度快,是一种较好的既准确又快速的面部遮挡检测方案。
在一些情况下,会区分目标对对象的整体属性和区域属性等设置判断依据参数。以下以性别为整体属性为例对判断依据参数的差异进行举例说明。
三个检测区域的遮挡阈值(含义:检测为肤色的像素值个数/检测区域总体像素数量):
检测区域1:对应于额头-眉毛-眼睛下缘区域。(主要检测刘海、墨镜等遮挡情况,遮挡阈值可如下:
男:86%-90%
女:82%-91%
中性(适用于性别未知):86%-90%。
检测区域2:对应于左脸到左鼻孔、左嘴角区域。主要检测口罩、左边长头发等遮挡情况,,遮挡阈值可如下:
男:88.2%-92.7%
女:86.4%-92.5%
中性(适用于性别未知):88%-92%
检测区域3:对应于右脸到右鼻孔、右嘴角区域。主要检测口罩、右边长头发等遮挡情况,遮挡阈值可如下:
男:88.2%-92.7%
女:86.4%-92.5%
中性(适用于性别未知):88%-92%。
示例2:
如图10,本示例提供另一种人脸遮挡检测方法,包括:
判断是否有人脸照片或包括人脸的图像帧输入;这里的图像帧可为视频流的组成部分,若是进入下一步骤,若否则返回本步骤;
人脸检测标记,具体为:对人脸照片或包括人脸的图像帧进行特征的检测;
根据标记点将人脸的图像区域进行分区,获得检测区域,并根据统计样本标定每一个检测区域的肤色面积阈值;
对每一个检测区域进行肤色检测;
判断检测的实际肤色面积是否大于肤色面积阈值;
当所有分区的肤色检测面积都大于面积阈值时,确定面部无遮挡;
当存在至少一个检测区域的肤色面积小于肤色面积阈值时,确定面部有遮挡。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理模块中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (14)
- 一种目标对象的遮挡检测方法,包括:电子设备基于目标图像中各像素的像素值,确定目标图像中第一特征的第一位置和第二特征的第二位置,其中,所述第一特征为所述目标图像中目标对象的外轮廓特征;所述第二特征为所述目标对象中干扰子对象的特征;所述干扰子对象为所述目标对象中会对遮挡检测造成干扰的子对象;所述电子设备基于所述第一位置,确定所述目标对象所在的图像区域;所述电子设备基于所述第二位置,将所述图像区域分为至少两个检测区域;所述电子设备结合每一个所述检测区域的像素值,确定每一个所述检测区域是否满足预设无遮挡条件,当不满足所述预设无遮挡条件时,所述电子设备确定对应的检测区域内存在遮挡;其中,针对目标检测区域,所述电子设备结合所述目标检测区域的像素值,确定所述目标检测区域是否满足所述预设无遮挡条件,若所述电子设备确定所述目标检测区域不满足所述预设无遮挡条件,则所述电子设备确定所述目标检测区域内存在遮挡,所述目标检测区域为所述至少两个检测区域中任意一个。
- 根据权利要求1所述的方法,所述电子设备基于所述第二位置,将所述图像区域分为至少两个检测区域,包括:所述电子设备串联所述第二位置,形成至少两个封闭的且不包括所述干扰子对象的检测区域。
- 根据权利要求1或2所述的方法,所述方法还包括:所述电子设备获取所述目标对象的属性信息,其中,所述属性信息包括:整体属性信息和/或区域属性信息;所述整体属性信息用于表征所述目标对象的整体属性;所述区域属性信息用于表征所述检测区域的区域属性;所述电子设备根据所述属性信息,确定判断依据参数和/或判断策略;所述针对目标检测区域,所述电子设备结合所述目标检测区域的像素值,确定所述目标检测区域是否满足所述预设无遮挡条件,包括以下至少之一:所述电子设备结合所述判断依据参数及所述目标检测区域的像素值,确定所述目标检测区域是否满足所述预设无遮挡条件;所述电子设备基于所述目标检测区域的像素值,利用所述判断策略确定所述目标检测区域是否满足所述预设无遮挡条件。
- 根据权利要求3所述的方法,所述电子设备结合所述判断依据参数及所述目标检测区域的像素值,确定所述目标检测区域是否满足所述预设无遮挡条件,包括:所述电子设备判断所述目标检测区域内像素值位于同一范围内的像素个数与所述目标检测区域内的所有像素的总个数的检测比值;所述电子设备将所述检测比值与所述目标检测区域的预设比值进行比较;若所述检测比值小于所述预设比值时,所述目标检测区域存在遮挡物。
- 根据权利要求3所述的方法,所述电子设备基于所述目标检测区域的像素值,利用所述判断策略确定所述目标检测区域是否满足所述预设无遮挡条件,包括以下至少之一:所述电子设备基于所述目标检测区域的边缘像素的像素值,获取所述目标检测区域的形状特征,确定所述形状特征对应的是否为预设形状;所述电子设备基于所述目标检测区域的各像素的像素值,确定所述目标检测区域内的颜色特征,确定所述颜色特征是否满足预设色彩条件。
- 根据权利要求1或2所述的方法,所述方法还包括以下至少之一:若所述电子设备处于采集所述目标图像的采集模式且检测到所述目标对象有被遮挡,则根据被遮挡的检测区域输出与该检测区域对应的调整提示;若所述电子设备处于非采集模式且检测到所述目标对象有被遮挡,则输出所述目标图像的更换提示。
- 根据权利要求1或2所述的方法,所述方法还包括:若所述电子设备处于自动重建模式且检测出所述目标对象有被遮挡,则根据所述目标图像的被遮挡状况,确定是否能够基于所述目标图像重建一个无遮挡的替代图像;若所述电子设备能够基于所述目标图像重建一个无遮挡的替代图像,则所述电子设备基于所述目标图像生成所述替代图像。
- 根据权利要求7所述的方法,所述电子设备确定是否能够基于所述目标图像重建一个无遮挡的替代图像,包括:根据所述目标对象的对称性,若两个对称的检测区域中的其中一个被遮挡时,所述电子设备基于与该被遮挡的检测区域对称的未遮挡检测区域重建所述目标图像,生成所述替代图像。
- 根据权利要求1或2所述的方法,所述目标对象为人脸;所述目标特征包括:人脸的五官的特征。
- 一种目标对象的遮挡检测装置,包括:第一确定单元,用于基于目标图像中各像素的像素值,确定目标图像中第一特征的第一位置和第二特征的第二位置,其中,所述第一特征为所述目标图像中目标对象的外轮廓特征;所述第二特征为所述目标对象中干扰子对象的特征,所述干扰子对象为所述目标对象中会对遮挡检测造成干扰的子对象第二确定单元,用于基于所述第一位置,确定所述目标对象所在的图像区域;划分单元,用于基于所述第二位置,将所述图像区域分为至少两个检测区域;第三确定单元,用于结合每一个所述检测区域的至少部分像素值,确定每一个所述检测区域内是否均满足所述预设无遮挡条件;其中,针对目标检测区域,所述第三确定单元,用于结合所述目标检测区域的像素值,确定所述目标检测区域是否满足所述预设无遮挡条件,所述目标检测区域为所述至少两个检测区域中任意一个;第四确定单元,用于当不满足所述当所述预设无遮挡条件时,确定对应的检测区域内存在遮挡;其中,针对所述目标检测区域,所述第四确定单元,用于若确定所述目标检测区域不满足所述预设无遮挡条件,确定所述目标检测区域内存在遮挡。
- 根据权利要求10所述的装置,所述划分单元,用于串联所述第二位置,形成至少两个封闭的且不包括所述干扰子对象的检测区域。
- 根据权利要求10或11所述的装置,所述装置还包括:获取单元,用于获取所述目标对象的属性信息;其中,所述属性信息包括:整体属性信息和/或区域属性信息;所述整体属性信息用于表征所述目标对象的整体属性;所述区域属性信息用于表征所述检测区域的区域属性;第四确定单元,用于根据所述属性信息,确定判断依据参数和/或判断策略;所述第三确定单元,具体用于执行以下至少之一:结合所述判断依据参数及所述目标检测区域的像素值,确定所述目标检测区域是否满足所述预设无遮挡条件;基于所述目标检测区域的像素值,利用所述判断策略确定所述目标检测区域是否满足所述预设无遮挡条件。
- 一种电子设备,包括:存储器,用于存储信息;处理器,与所述存储器连接,用于通过执行存储在所述存储器内的计算机程序,能够执行权利要求1至9任一项提供的方法。
- 一种计算机存储介质,所述计算机存储介质存储有计算机程序;所述计算机程序被执行后能够实现权利要求1至9任一项提供的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/545,017 US11030481B2 (en) | 2017-07-27 | 2019-08-20 | Method and apparatus for occlusion detection on target object, electronic device, and storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710625671.0 | 2017-07-27 | ||
CN201710625671.0A CN108319953B (zh) | 2017-07-27 | 2017-07-27 | 目标对象的遮挡检测方法及装置、电子设备及存储介质 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/545,017 Continuation US11030481B2 (en) | 2017-07-27 | 2019-08-20 | Method and apparatus for occlusion detection on target object, electronic device, and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019019828A1 true WO2019019828A1 (zh) | 2019-01-31 |
Family
ID=62891456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/090994 WO2019019828A1 (zh) | 2017-07-27 | 2018-06-13 | 目标对象的遮挡检测方法及装置、电子设备及存储介质 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11030481B2 (zh) |
CN (1) | CN108319953B (zh) |
WO (1) | WO2019019828A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110222764A (zh) * | 2019-06-10 | 2019-09-10 | 中南民族大学 | 遮挡目标检测方法、系统、设备及存储介质 |
CN112434562A (zh) * | 2020-11-03 | 2021-03-02 | 浙江大华技术股份有限公司 | 口罩佩戴状态的检测方法、设备、电子装置和存储介质 |
CN112530059A (zh) * | 2020-11-24 | 2021-03-19 | 厦门熵基科技有限公司 | 一种通道闸内拉杆箱判断方法、装置、设备和存储介质 |
CN112989878A (zh) * | 2019-12-13 | 2021-06-18 | Oppo广东移动通信有限公司 | 瞳孔检测方法及相关产品 |
CN113012126A (zh) * | 2021-03-17 | 2021-06-22 | 武汉联影智融医疗科技有限公司 | 标记点重建方法、装置、计算机设备和存储介质 |
CN113743195A (zh) * | 2021-07-23 | 2021-12-03 | 北京眼神智能科技有限公司 | 人脸遮挡定量分析方法、装置、电子设备及存储介质 |
CN114758363A (zh) * | 2022-06-16 | 2022-07-15 | 四川金信石信息技术有限公司 | 一种基于深度学习的绝缘手套佩戴检测方法和系统 |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10896318B2 (en) | 2017-09-09 | 2021-01-19 | Apple Inc. | Occlusion detection for facial recognition processes |
CN107909065B (zh) * | 2017-12-29 | 2020-06-16 | 百度在线网络技术(北京)有限公司 | 用于检测人脸遮挡的方法及装置 |
CN110765815B (zh) * | 2018-07-26 | 2024-05-24 | 北京京东尚科信息技术有限公司 | 展示架遮挡检测方法和装置 |
CN110837764B (zh) * | 2018-08-17 | 2022-11-15 | 广东虚拟现实科技有限公司 | 图像处理方法、装置、电子设备及视觉交互系统 |
CN109299658B (zh) * | 2018-08-21 | 2022-07-08 | 腾讯科技(深圳)有限公司 | 脸部检测方法、脸部图像渲染方法、装置及存储介质 |
US11163981B2 (en) * | 2018-09-11 | 2021-11-02 | Apple Inc. | Periocular facial recognition switching |
CN109460793B (zh) * | 2018-11-15 | 2023-07-18 | 腾讯科技(深圳)有限公司 | 一种节点分类的方法、模型训练的方法及装置 |
CN111241870A (zh) * | 2018-11-28 | 2020-06-05 | 深圳市帝迈生物技术有限公司 | 一种终端设备及其脸部图像的识别方法、识别系统 |
CN109568961B (zh) * | 2018-12-04 | 2022-06-21 | 网易(杭州)网络有限公司 | 遮挡率的计算方法、装置、存储介质和电子装置 |
CN109784255B (zh) * | 2019-01-07 | 2021-12-14 | 深圳市商汤科技有限公司 | 神经网络训练方法及装置以及识别方法及装置 |
CN109948494B (zh) * | 2019-03-11 | 2020-12-29 | 深圳市商汤科技有限公司 | 图像处理方法及装置、电子设备和存储介质 |
CN110263695B (zh) * | 2019-06-14 | 2021-07-16 | 北京达佳互联信息技术有限公司 | 人脸部位的位置获取方法、装置、电子设备及存储介质 |
CN110366037A (zh) * | 2019-07-31 | 2019-10-22 | 秒针信息技术有限公司 | 视频自动监测装置、方法、电子设备和存储介质 |
NL2024816B1 (en) * | 2020-02-03 | 2021-10-05 | 20Face B V | Detection method for detecting an occlusion of an eye region in an image |
CN111311578B (zh) * | 2020-02-17 | 2024-05-03 | 腾讯科技(深圳)有限公司 | 基于人工智能的对象分类方法以及装置、医学影像设备 |
CN113496158B (zh) * | 2020-03-20 | 2024-09-24 | 中移(上海)信息通信科技有限公司 | 对象检测模型的优化方法、装置、设备及存储介质 |
CN111488811B (zh) * | 2020-03-31 | 2023-08-22 | 长沙千视通智能科技有限公司 | 人脸识别方法、装置、终端设备及计算机可读介质 |
CN113469173A (zh) * | 2020-03-31 | 2021-10-01 | 珠海格力电器股份有限公司 | 一种信号灯遮挡检测方法、装置、终端及计算机可读介质 |
CN111382726B (zh) * | 2020-04-01 | 2023-09-01 | 浙江大华技术股份有限公司 | 工程作业检测方法以及相关装置 |
CN111652062B (zh) * | 2020-04-29 | 2024-09-13 | 浙江吉利汽车研究院有限公司 | 一种基于无人驾驶的样本图像处理方法、装置及介质 |
CN113569598A (zh) * | 2020-04-29 | 2021-10-29 | 华为技术有限公司 | 图像处理方法和图像处理装置 |
US11823458B2 (en) * | 2020-06-18 | 2023-11-21 | Embedtek, LLC | Object detection and tracking system |
CN111896145A (zh) * | 2020-07-07 | 2020-11-06 | 胡飞青 | 应用发体识别的测温控制系统 |
CN111985340A (zh) * | 2020-07-22 | 2020-11-24 | 深圳市威富视界有限公司 | 基于神经网络模型的人脸识别方法、装置和计算机设备 |
CN112070854B (zh) * | 2020-09-02 | 2023-08-08 | 北京字节跳动网络技术有限公司 | 一种图像生成方法、装置、设备及存储介质 |
CN112215242A (zh) * | 2020-10-21 | 2021-01-12 | 北京三快在线科技有限公司 | 基于区域分割的遮挡检测的方法及装置 |
CN112365416A (zh) * | 2020-11-10 | 2021-02-12 | 浙江大华技术股份有限公司 | 图片遮挡的处理方法和装置、存储介质及电子装置 |
CN112464747B (zh) * | 2020-11-10 | 2024-07-23 | 广州富港生活智能科技有限公司 | 基于图像采集设备的身高检测方法及装置 |
CN112434578B (zh) * | 2020-11-13 | 2023-07-25 | 浙江大华技术股份有限公司 | 口罩佩戴规范性检测方法、装置、计算机设备和存储介质 |
CN112446913B (zh) * | 2020-11-24 | 2023-08-29 | 厦门熵基科技有限公司 | 一种通道闸行人数量统计与尾随判断方法、装置和设备 |
CN112598628A (zh) * | 2020-12-08 | 2021-04-02 | 影石创新科技股份有限公司 | 一种图像遮挡检测方法、装置、拍摄设备及介质 |
CN112633144A (zh) * | 2020-12-21 | 2021-04-09 | 平安科技(深圳)有限公司 | 人脸遮挡检测方法、系统、设备及存储介质 |
CN112633183B (zh) * | 2020-12-25 | 2023-11-14 | 平安银行股份有限公司 | 影像遮挡区域自动检测方法、装置及存储介质 |
CN112926424B (zh) * | 2021-02-10 | 2024-05-31 | 北京爱笔科技有限公司 | 脸部遮挡的识别方法、装置、可读介质以及设备 |
CN112950988B (zh) * | 2021-02-25 | 2022-07-29 | 杭州立方控股股份有限公司 | 具有存证功能的停车管理系统 |
CN113011298B (zh) * | 2021-03-09 | 2023-12-22 | 阿波罗智联(北京)科技有限公司 | 截断物体样本生成、目标检测方法、路侧设备和云控平台 |
CN113069088B (zh) * | 2021-03-24 | 2023-05-05 | 重庆电子工程职业学院 | 一种人工智能交互装置 |
CN113140005B (zh) * | 2021-04-29 | 2024-04-16 | 上海商汤科技开发有限公司 | 目标对象定位方法、装置、设备及存储介质 |
CN113284041B (zh) * | 2021-05-14 | 2023-04-18 | 北京市商汤科技开发有限公司 | 一种图像处理方法、装置、设备及计算机存储介质 |
CN113222973B (zh) * | 2021-05-31 | 2024-03-08 | 深圳市商汤科技有限公司 | 图像处理方法及装置、处理器、电子设备及存储介质 |
CN113486737A (zh) * | 2021-06-22 | 2021-10-08 | 卓尔智联(武汉)研究院有限公司 | 一种检测方法、装置、检测设备及存储介质 |
CN113487556B (zh) * | 2021-06-30 | 2024-10-22 | 北京博清科技有限公司 | 焊渣的检测方法与滤光片的更换方法 |
CN113499584A (zh) * | 2021-08-02 | 2021-10-15 | 网易(杭州)网络有限公司 | 一种游戏动画的控制方法和装置 |
CN113723318B (zh) * | 2021-09-01 | 2024-10-18 | 浙江大华技术股份有限公司 | 确定目标物体遮挡状态的方法、装置及监控设备 |
TWI818824B (zh) * | 2022-12-07 | 2023-10-11 | 財團法人工業技術研究院 | 用於計算遮蔽人臉影像的人臉擺動方向的裝置及方法 |
CN115909468B (zh) * | 2023-01-09 | 2023-06-06 | 广州佰锐网络科技有限公司 | 人脸五官遮挡检测方法、存储介质及系统 |
CN117119160B (zh) * | 2023-10-24 | 2024-02-06 | 合肥联宝信息技术有限公司 | 一种投影控制方法、装置、电子设备及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105827979A (zh) * | 2016-04-29 | 2016-08-03 | 维沃移动通信有限公司 | 一种拍摄提示的方法和移动终端 |
CN106503625A (zh) * | 2016-09-28 | 2017-03-15 | 维沃移动通信有限公司 | 一种检测头发分布情况的方法及移动终端 |
US20170147905A1 (en) * | 2015-11-25 | 2017-05-25 | Baidu Usa Llc | Systems and methods for end-to-end object detection |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7792335B2 (en) * | 2006-02-24 | 2010-09-07 | Fotonation Vision Limited | Method and apparatus for selective disqualification of digital images |
US7551754B2 (en) * | 2006-02-24 | 2009-06-23 | Fotonation Vision Limited | Method and apparatus for selective rejection of digital images |
US7804983B2 (en) * | 2006-02-24 | 2010-09-28 | Fotonation Vision Limited | Digital image acquisition control and correction method and apparatus |
JP4845755B2 (ja) * | 2007-01-30 | 2011-12-28 | キヤノン株式会社 | 画像処理装置、画像処理方法、プログラム及び記憶媒体 |
US8836777B2 (en) * | 2011-02-25 | 2014-09-16 | DigitalOptics Corporation Europe Limited | Automatic detection of vertical gaze using an embedded imaging device |
US9558396B2 (en) * | 2013-10-22 | 2017-01-31 | Samsung Electronics Co., Ltd. | Apparatuses and methods for face tracking based on calculated occlusion probabilities |
-
2017
- 2017-07-27 CN CN201710625671.0A patent/CN108319953B/zh active Active
-
2018
- 2018-06-13 WO PCT/CN2018/090994 patent/WO2019019828A1/zh active Application Filing
-
2019
- 2019-08-20 US US16/545,017 patent/US11030481B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170147905A1 (en) * | 2015-11-25 | 2017-05-25 | Baidu Usa Llc | Systems and methods for end-to-end object detection |
CN105827979A (zh) * | 2016-04-29 | 2016-08-03 | 维沃移动通信有限公司 | 一种拍摄提示的方法和移动终端 |
CN106503625A (zh) * | 2016-09-28 | 2017-03-15 | 维沃移动通信有限公司 | 一种检测头发分布情况的方法及移动终端 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110222764A (zh) * | 2019-06-10 | 2019-09-10 | 中南民族大学 | 遮挡目标检测方法、系统、设备及存储介质 |
CN112989878A (zh) * | 2019-12-13 | 2021-06-18 | Oppo广东移动通信有限公司 | 瞳孔检测方法及相关产品 |
CN112434562A (zh) * | 2020-11-03 | 2021-03-02 | 浙江大华技术股份有限公司 | 口罩佩戴状态的检测方法、设备、电子装置和存储介质 |
CN112434562B (zh) * | 2020-11-03 | 2023-08-25 | 浙江大华技术股份有限公司 | 口罩佩戴状态的检测方法、设备、电子装置和存储介质 |
CN112530059A (zh) * | 2020-11-24 | 2021-03-19 | 厦门熵基科技有限公司 | 一种通道闸内拉杆箱判断方法、装置、设备和存储介质 |
CN113012126A (zh) * | 2021-03-17 | 2021-06-22 | 武汉联影智融医疗科技有限公司 | 标记点重建方法、装置、计算机设备和存储介质 |
CN113012126B (zh) * | 2021-03-17 | 2024-03-22 | 武汉联影智融医疗科技有限公司 | 标记点重建方法、装置、计算机设备和存储介质 |
CN113743195A (zh) * | 2021-07-23 | 2021-12-03 | 北京眼神智能科技有限公司 | 人脸遮挡定量分析方法、装置、电子设备及存储介质 |
CN113743195B (zh) * | 2021-07-23 | 2024-05-17 | 北京眼神智能科技有限公司 | 人脸遮挡定量分析方法、装置、电子设备及存储介质 |
CN114758363A (zh) * | 2022-06-16 | 2022-07-15 | 四川金信石信息技术有限公司 | 一种基于深度学习的绝缘手套佩戴检测方法和系统 |
CN114758363B (zh) * | 2022-06-16 | 2022-08-19 | 四川金信石信息技术有限公司 | 一种基于深度学习的绝缘手套佩戴检测方法和系统 |
Also Published As
Publication number | Publication date |
---|---|
US20200034657A1 (en) | 2020-01-30 |
CN108319953B (zh) | 2019-07-16 |
CN108319953A (zh) | 2018-07-24 |
US11030481B2 (en) | 2021-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019019828A1 (zh) | 目标对象的遮挡检测方法及装置、电子设备及存储介质 | |
Matern et al. | Exploiting visual artifacts to expose deepfakes and face manipulations | |
US11043011B2 (en) | Image processing method, apparatus, terminal, and storage medium for fusing images of two objects | |
WO2022160701A1 (zh) | 特效生成方法、装置、设备及存储介质 | |
CN111353506B (zh) | 自适应的视线估计方法和设备 | |
US9013489B2 (en) | Generation of avatar reflecting player appearance | |
WO2021036314A1 (zh) | 人脸图像处理方法及装置、图像设备及存储介质 | |
KR20200004841A (ko) | 셀피를 촬영하도록 사용자를 안내하기 위한 시스템 및 방법 | |
EP3970123A1 (en) | Animating avatars from headset cameras | |
KR20180066160A (ko) | 안면 이미지 처리 방법 및 장치, 및 저장 매체 | |
WO2022179401A1 (zh) | 图像处理方法、装置、计算机设备、存储介质和程序产品 | |
US20160092726A1 (en) | Using gestures to train hand detection in ego-centric video | |
CN109299658B (zh) | 脸部检测方法、脸部图像渲染方法、装置及存储介质 | |
CN113192132B (zh) | 眼神捕捉方法及装置、存储介质、终端 | |
CN113628327A (zh) | 一种头部三维重建方法及设备 | |
CN110728242A (zh) | 基于人像识别的图像匹配方法、装置、存储介质及应用 | |
Polatsek et al. | Novelty-based spatiotemporal saliency detection for prediction of gaze in egocentric video | |
CN111105368B (zh) | 图像处理方法及其装置、电子设备和计算机可读存储介质 | |
Cimmino et al. | M2FRED: Mobile masked face REcognition through periocular dynamics analysis | |
EP3699865B1 (en) | Three-dimensional face shape derivation device, three-dimensional face shape deriving method, and non-transitory computer readable medium | |
CN114120068A (zh) | 图像处理方法、装置、电子设备、存储介质及计算机产品 | |
US11361467B2 (en) | Pose selection and animation of characters using video data and training techniques | |
CN110766631A (zh) | 人脸图像的修饰方法、装置、电子设备和计算机可读介质 | |
CN113012030A (zh) | 图像拼接方法、装置及设备 | |
US20220157016A1 (en) | System and method for automatically reconstructing 3d model of an object using machine learning model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18837940 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18837940 Country of ref document: EP Kind code of ref document: A1 |