Nothing Special   »   [go: up one dir, main page]

WO2019017426A1 - 無方向性電磁鋼板 - Google Patents

無方向性電磁鋼板 Download PDF

Info

Publication number
WO2019017426A1
WO2019017426A1 PCT/JP2018/027078 JP2018027078W WO2019017426A1 WO 2019017426 A1 WO2019017426 A1 WO 2019017426A1 JP 2018027078 W JP2018027078 W JP 2018027078W WO 2019017426 A1 WO2019017426 A1 WO 2019017426A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
oriented electrical
electrical steel
annealing
Prior art date
Application number
PCT/JP2018/027078
Other languages
English (en)
French (fr)
Inventor
義顕 名取
竹田 和年
屋鋪 裕義
美穂 冨田
藤村 浩志
脇坂 岳顕
鉄州 村川
松本 卓也
弘樹 堀
佑哉 郷元
応 宇山
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65015231&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019017426(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020197032115A priority Critical patent/KR102107439B1/ko
Priority to CN201880028307.9A priority patent/CN110573643B/zh
Priority to BR112019021222-1A priority patent/BR112019021222B1/pt
Priority to JP2018560686A priority patent/JP6478004B1/ja
Priority to EP18835029.2A priority patent/EP3656885A4/en
Priority to US16/606,107 priority patent/US11279985B2/en
Publication of WO2019017426A1 publication Critical patent/WO2019017426A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Definitions

  • the present invention relates to a non-oriented electrical steel sheet.
  • Priority is claimed on Japanese Patent Application No. 2017-139765, filed Jul. 19, 2017, the content of which is incorporated herein by reference.
  • the motor cores of the above-described various motors are composed of a stator, which is a stator, and a rotor, which is a rotor.
  • the characteristics required for the stator and the rotor that constitute the motor core are different from each other.
  • the stator is required particularly for excellent magnetic properties (iron loss and magnetic flux density), whereas the rotor is required for excellent mechanical properties (tensile strength and yield ratio).
  • the characteristics required for the stator and the rotor are different. Therefore, if the non-oriented electrical steel sheet for the stator and the non-oriented electrical steel sheet for the rotor are separately formed, the respective desired characteristics can be realized. However, preparing two types of non-oriented electrical steel sheets results in a decrease in yield. Therefore, in order to realize the excellent strength required for the rotor and the low core loss required for the stator, a non-oriented electrical steel sheet excellent in strength and also excellent in magnetic characteristics has been conventionally studied.
  • Patent Documents 1 to 3 silicon is used as a chemical component of a steel plate to realize excellent strength required for a rotor while realizing excellent magnetic characteristics required for a stator.
  • a technology has been proposed in which a large amount of (Si) is contained and at the same time an element contributing to high strength such as nickel (Ni) or copper (Cu) is intentionally added.
  • An object of the present invention is to provide a high strength and high yield ratio non-oriented electrical steel sheet whose manufacturing cost is suppressed.
  • the obtained high strength and yield ratio non-oriented electrical steel sheet is punched into a desired motor core shape (rotor shape and stator shape), and a plurality of punched non-oriented electromagnetic steel plates are stacked to form a desired motor core shape ( It is an object of the present invention to provide a non-oriented electrical steel sheet which exhibits even more excellent magnetic properties when forming a rotor shape and a stator shape) and annealing is performed on those laminated in the stator shape.
  • the present inventors diligently studied. Specifically, the members for the rotor and the stator are punched out of the same non-oriented electrical steel sheet, and the members for the rotor are laminated so as to have a desired rotor shape, and the laminate is not annealed. In addition, for the member for the stator, after laminating so as to be a desired stator shape, the magnetic property is further improved by performing annealing on the laminated body. We have seriously studied the means to realize it.
  • the non-oriented electrical steel sheet is punched into a desired stator shape to form a stator member, and the punched stator members are stacked to form the desired stator shape, and then the obtained laminated body is implemented.
  • Annealing is called "core annealing”.
  • non-oriented electrical steel sheets having equivalent tensile strength it is possible to make the non-oriented electrical steel sheets have an upper yield point in order to achieve a high yield ratio for the purpose of improving the fatigue strength. It is considered as The present inventors focused attention on controlling the non-oriented electrical steel sheet to have an upper yield point by utilizing strain aging of carbon (C).
  • C strain aging of carbon
  • non-oriented electrical steel sheets that are generally manufactured have high purity and a low content of C that causes strain aging.
  • Si has no upper yield point by suppressing the formation of carbides.
  • the present inventors made further studies. As a result, in a non-oriented electrical steel sheet having a high Si content, which does not intentionally contain high-cost elements, the grain size is further refined to realize a yield phenomenon by realizing a yield phenomenon. It has been found that even better mechanical properties can be obtained. Furthermore, in this non-oriented electrical steel sheet, if it is possible to suppress the content of elements that inhibit grain growth at the time of core annealing, it is possible to simultaneously improve even better magnetic properties after core annealing. It came to obtain the knowledge of The gist of the present invention completed based on the above findings is as follows.
  • a non-oriented electrical steel sheet has a chemical composition of, by mass%, C: 0.0015% to 0.0040%, Si: 3.5% to 4.5%, Al : 0.65% or less, Mn: 0.2% to 2.0%, Sn: 0% to 0.20%, Sb: 0% to 0.20%, P: 0.005% to 0.150% S: 0.0001% to 0.0030%, Ti: 0.0030% or less, Nb: 0.0050% or less, Zr: 0.0030% or less, Mo: 0.030% or less, V: 0.0030 %, N: 0.0010% to 0.0030%, O: 0.0010% to 0.0050%, Cu: less than 0.10%, Ni: less than 0.50%, the balance being Fe And impurities, the product plate thickness is 0.10 mm to 0.30 mm, the average crystal grain size is 10 ⁇ m to 40 ⁇ m, and iron loss W10 / 800 is 50 W / kg or less, tensile strength is 5
  • the content of C, Ti, Nb, Zr, and V may satisfy the condition represented by the following formula (1).
  • the description with [X] represents content (unit: mass%) of the element X.
  • the non-oriented electrical steel sheet according to the above [1] or [2] is annealed under annealing conditions in which the annealing temperature is in the range of 750 ° C. to 900 ° C. and the soaking time is in the range of 10 minutes to 180 minutes.
  • the average crystal grain size may be 60 ⁇ m to 150 ⁇ m, and the iron loss W10 / 400 may be 11 W / Kg or less.
  • the non-oriented electrical steel sheet according to any one of the above [1] to [3] has an upper yield point and a lower yield point, and the upper yield point is 5 MPa or more than the lower yield point It may be high.
  • the non-oriented electrical steel sheet according to any one of the above [1] to [5] may further have an insulating film on the surface.
  • FIG. 1 is an explanatory view schematically showing the structure of the non-oriented electrical steel sheet according to the present embodiment.
  • FIG. 2 is an explanatory view for explaining the non-oriented electrical steel sheet according to the present embodiment.
  • FIG. 3 is an explanatory view for explaining a stress-strain curve shown by the non-oriented electrical steel sheet according to the present embodiment.
  • FIG. 4 is a view showing an example of a stress-strain curve shown by the non-oriented electrical steel sheet.
  • FIG. 5 is a flow chart showing an example of the flow of the method of manufacturing a non-oriented electrical steel sheet according to the present embodiment.
  • the non-oriented electrical steel sheet 10 according to the present embodiment is a non-oriented electrical steel sheet 10 suitable as a material when manufacturing both a stator and a rotor. As schematically shown in FIG. 1, the non-oriented electrical steel sheet 10 according to the present embodiment has a ground iron 11 that contains a predetermined chemical component and exhibits predetermined mechanical characteristics and magnetic characteristics. Moreover, it is preferable that the non-oriented electrical steel sheet 10 according to the present embodiment further has an insulating film 13 on the surface of the ground iron 11.
  • ground iron 11 of the non-oriented electrical steel sheet 10 will be described in detail.
  • the ground iron 11 of the non-oriented electrical steel sheet 10 is, by mass%, C: 0.0015% to 0.0040%, Si: 3.5% to 4.5%, Al: 0.65 % Or less, Mn: 0.2% to 2.0%, P: 0.005% to 0.150%, S: 0.0001% to 0.0030%, Ti: 0.0030% or less, Nb: 0 .0050% or less, Zr: 0.0030% or less, Mo: 0.030% or less, V: 0.0030% or less, N: 0.0010% to 0.0030%, O: 0.0010% to 0..
  • the base iron 11 is, for example, a steel plate such as a hot-rolled steel plate or a cold-rolled steel plate.
  • C is an element which causes iron loss deterioration.
  • the C content is set to 0.0040% or less.
  • the C content is preferably 0.0035% or less, more preferably 0.0030% or less.
  • the C content is set to 0.0015% or more.
  • the C content is preferably 0.0020% or more, and more preferably 0.0025% or more.
  • Si is an element that raises the electrical resistance of steel to reduce eddy current loss and improve high frequency core loss.
  • Si is an element effective also to increase the strength of the non-oriented electrical steel sheet 10 because Si has a large solid solution strengthening ability.
  • it is necessary to contain 3.5% or more of Si.
  • it is 3.6% or more.
  • the Si content is 4.5% or less.
  • the Si content is preferably 4.0% or less, more preferably 3.9% or less.
  • Al 0.65% or less
  • Al aluminum
  • Al is an effective element for reducing the eddy current loss by raising the electrical resistance of the non-oriented electrical steel sheet and improving the high frequency core loss.
  • Al also has the effect of reducing the workability in the steel plate manufacturing process and the magnetic flux density of the product. Therefore, the Al content is set to 0.65% or less.
  • it is important to suppress the adverse effect of solid solution Ti, but when the Al content is high, AlN instead of TiN is precipitated as nitride. Thus, the solid solution Ti increases.
  • the Al content is preferably 0.50% or less.
  • the Al content is more preferably 0.40% or less, still more preferably 0.35% or less.
  • the lower limit value of the Al content is not particularly limited and may be 0%, but in order to make the Al content less than 0.0005%, the load in steel making is high and the cost is increased. Therefore, the Al content is preferably 0.0005% or more.
  • the Al content is preferably 0.10% or more, and more preferably 0.20% or more.
  • Mn manganese
  • MnS fine sulfides
  • the Mn content is preferably 0.4% or more, more preferably 0.5% or more.
  • the Mn content is 2.0% or less.
  • the Mn content is preferably 1.7% or less, more preferably 1.5% or less.
  • P 0.005% to 0.150%
  • P (phosphorus) is an element that has a large solid solution strengthening ability and also has the effect of increasing ⁇ 100 ⁇ texture which is advantageous for improving magnetic properties, and is extremely effective in achieving both high strength and high magnetic flux density. It is an effective element.
  • P is a punching process of the non-oriented electrical steel sheet 10 It also has the effect of improving the dimensional accuracy of time. In order to obtain the effect of improving such strength, magnetic properties and dimensional accuracy, the P content needs to be 0.005% or more.
  • the P content is preferably 0.010% or more, more preferably 0.020% or more.
  • the content of P is 0.150% or less.
  • the P content is preferably 0.100% or less, more preferably 0.080% or less.
  • S sulfur
  • S is an element that increases iron loss by forming fine precipitates of MnS and degrades the magnetic properties of the non-oriented electrical steel sheet 10. Therefore, the S content needs to be 0.0030% or less.
  • the S content is preferably 0.0020% or less, more preferably 0.0010% or less.
  • the S content is made 0.0001% or more.
  • the S content is preferably 0.0003% or more, more preferably 0.0005% or more.
  • Ti titanium
  • Ti titanium
  • carbides When carbides are formed, the growth of crystal grains during core annealing is inhibited and the magnetic properties are degraded. Therefore, the Ti content is made 0.0030% or less.
  • the Ti content is 0.0015% or less, more preferably 0.0010% or less.
  • the Ti content may be 0%, if it is attempted to reduce the Ti content to less than 0.0005%, the cost is unnecessarily increased. Therefore, the Ti content is preferably 0.0005% or more.
  • Nb 0.0050% or less
  • Nb niobium
  • carbide nitride
  • the Nb content is preferably made 0.0030% or less.
  • the Nb content is preferably 0.0010% or less, more preferably below the measurement limit (tr.) (Including 0%).
  • Zr 0.0030% or less
  • Zr zirconium
  • the Zr content is preferably 0.0010% or less, more preferably below the measurement limit (tr.) (Including 0%).
  • Mo molybdenum
  • Mo molybdenum
  • carbides carbides
  • Mo molybdenum
  • Mo is an element that can be inevitably mixed, and is an element that combines with carbon to form inclusions (carbides).
  • Mo is apt to be a solution at a temperature of 750 ° C. or higher where core annealing is carried out, so some incorporation is allowed.
  • the Mo content is made 0.030% or less.
  • the Mo content is preferably 0.020% or less, more preferably 0.015% or less, and may be below the measurement limit (tr.) (Including 0%).
  • the Mo content is preferably made 0.0005% or more.
  • the Mo content is preferably 0.0010% or more.
  • V vanadium
  • V vanadium
  • tr. the measurement limit
  • N nitrogen
  • nitrogen is an element which is inevitably mixed, and is an element which causes magnetic aging to increase iron loss and degrades the magnetic characteristics of the non-oriented electrical steel sheet 10. Therefore, the N content needs to be 0.0030% or less.
  • the N content is preferably 0.0025% or less, more preferably 0.0020% or less.
  • the N content is made 0.0010% or more.
  • O oxygen
  • Oxgen is an element which is unavoidably mixed, and is an element which increases iron loss by forming an oxide and degrades the magnetic characteristics of the non-oriented electrical steel sheet 10. Therefore, O content needs to be made into 0.0050% or less. Since O may be mixed in the annealing step, in the slab stage (that is, ladle value), it is preferable to be not more than 0.0050%. On the other hand, if it is going to reduce O content more than 0.0010%, cost will be increased needlessly. Therefore, the O content is made 0.0010% or more.
  • Cu less than 0.10%
  • Ni less than 0.50%
  • Cu (copper) and Ni (nickel) are elements which can be inevitably mixed.
  • the intentional addition of Cu and Ni increases the manufacturing cost of the non-oriented electrical steel sheet 10. Therefore, in the non-oriented electrical steel sheet 10 according to the present embodiment, it is not necessary to add it.
  • the Cu content is less than 0.10%, which is the maximum value that can be inevitably mixed in the manufacturing process.
  • Ni is also an element that improves the strength of the non-oriented electrical steel sheet 10, and may be intentionally added and contained. However, since Ni is expensive, even when it is intentionally contained, the upper limit of the content is made less than 0.50%.
  • the lower limit of the Cu content and the Ni content is not particularly limited and may be 0%, but if it is attempted to reduce the Cu content and the Ni content to less than 0.005%, the cost will be unnecessarily increased. . Accordingly, the Cu content and the Ni content are preferably each 0.005% or more. The Cu content and the Ni content are preferably 0.01% or more and 0.09% or less, respectively, and more preferably 0.02% or more and 0.06% or less.
  • Sn (tin) and Sb (antimony) are optional additional elements useful for securing low core loss by segregating on the surface of the steel sheet and suppressing oxidation during annealing. Therefore, in the non-oriented electrical steel sheet according to the present embodiment, at least one of Sn or Sb may be contained in the base iron as an optional additional element in order to obtain the above-mentioned effect. In order to fully exhibit the said effect, it is preferable to make Sn content or Sb content into 0.01% or more, respectively. More preferably, it is 0.03% or more.
  • the Sn content or the Sb content exceeds 0.20%, respectively, the ductility of the base iron may be reduced and cold rolling may become difficult. Therefore, the Sn content or the Sb content is preferably 0.20% or less, even when it is contained. When Sn or Sb is contained in the base iron, the Sn content or Sb content is more preferably 0.10% or less.
  • the ground iron 11 of the non-oriented electrical steel sheet 10 according to the present embodiment has the chemical components as described above, but the content of C, Ti, Nb, Zr, V of the ground iron 11 is further It is preferable to satisfy the condition represented by the following formula (1).
  • the value given on the left side of the above formula (1) is more preferably 0.000006 or less, still more preferably 0.000004 or less. The smaller the value given by the left side of the above equation (1), the better.
  • the lower limit is not particularly limited, but the lower limit of the above element in the ground iron 11 according to the present embodiment is 0.
  • the value .00000075 is a practical lower limit.
  • the average grain size of the base iron 11 is 10 ⁇ m to 40 ⁇ m after undergoing finish annealing described in detail below (when core annealing is not performed). It is in a state of being miniaturized. Since the average grain size of the ground iron 11 is refined to be in the range of 10 ⁇ m to 40 ⁇ m, the proportion of grain boundaries in the ground iron 11 can be increased, and the strain aging phenomenon can be generated. .
  • Such a refined average grain size is subjected to annealing at a specific cooling rate after performing annealing at a specific annealing temperature and soaking time under a specific atmosphere in the finish annealing step described in detail below. It is realized by doing.
  • the average grain size of the base iron 11 can be controlled by changing the heat treatment conditions at the time of finish annealing.
  • the average crystal grain size of the ground iron 11 after finish annealing is less than 10 ⁇ m, no Si content is obtained even if core annealing is performed. It is not preferable because the core loss, which is one of the important magnetic properties required for the grain oriented electrical steel sheet, increases. On the other hand, when the average grain size of the base iron 11 after finish annealing (in a state where the core annealing is not performed) exceeds 40 ⁇ m, the average grain size becomes too large. It is not preferable because the yield ratio can not be obtained.
  • the average grain size of the ground iron 11 is preferably in the range of 15 ⁇ m to 30 ⁇ m, and more preferably in the range of 20 ⁇ m to 25 ⁇ m.
  • the non-oriented electrical steel sheet 10 when core annealing performed when manufacturing the stator is performed, crystal grains of the base iron 11 grow and the average crystal grain size becomes coarse. This is because the contents of C, Ti, Nb, Zr, and V, which are elements that inhibit the growth of crystal grains, are controlled to be in the above range.
  • the average grain size of the coarsened ground iron 11 after core annealing is preferably 60 ⁇ m to 150 ⁇ m by performing core annealing under predetermined conditions.
  • “core annealing” is annealing performed for the purpose of promoting grain growth of crystal grains of the base iron 11.
  • the predetermined conditions for core annealing are conditions appropriately selected according to the thickness of the magnetic steel sheet, the particle size before core annealing, and the like from the range of annealing temperature 750 ° C. to 900 ° C. and soaking time 10 minutes to 180 minutes. It is.
  • the preferred annealing temperature is 775 ° C. to 850 ° C., and the preferred soaking time is 30 minutes to 150 minutes.
  • the dew point in the annealing atmosphere may be set appropriately according to the type and performance of the annealing furnace, but may be set, for example, in the range of -40 ° C. or more and 20 ° C. or less. More specifically, for example, in a nitrogen atmosphere with a dew point of -40.degree. C., the annealing temperature can be 800.degree. C. and the soaking time can be 120 minutes.
  • the average crystal grain size of the base iron 11 after the predetermined core annealing is less than 60 ⁇ m, it is important for the non-oriented electrical steel sheet even if the Si content is the maximum value. This is not preferable because iron loss, which is one of the magnetic properties, increases. In addition, even when the average crystal grain size of the ground iron 11 after the predetermined core annealing exceeds 150 ⁇ m, the crystal grains grow too much, which causes an increase in iron loss, which is not preferable.
  • the average crystal grain size of the ground iron 11 after the predetermined core annealing is more preferably in the range of 65 ⁇ m to 120 ⁇ m, still more preferably in the range of 70 ⁇ m to 100 ⁇ m.
  • the average crystal grain size of the ground iron 11 largely changes when the core annealing under the predetermined condition is performed.
  • FIG. 2 is a flow chart showing an example of a flow in the case of manufacturing a rotor and a stator using the non-oriented electrical steel sheet 10 according to the present embodiment.
  • the average grain size of the base iron 11 is in the range of 10 ⁇ m to 40 ⁇ m, and the crystal grains are fine It is in a state of being
  • steps 1 members for manufacturing the rotor and the stator are manufactured.
  • step 2 each of the manufactured member for manufacturing a rotor and the member for manufacturing a stator is laminated (step 2).
  • the average grain size of the ground iron 11 in each of the stacked members is in the range of 10 ⁇ m to 40 ⁇ m even after the punching step and the stacking step.
  • the rotor is manufactured using the laminated members for manufacturing a rotor (without undergoing core annealing).
  • the manufactured rotor has the average crystal grain size of the ground iron 11 as it is refined to 10 ⁇ m to 40 ⁇ m, so the rotor is required to have excellent strength (for example, a tensile strength of 580 MPa or more), It has a high yield ratio (0.82 or more).
  • the stator is manufactured by applying core annealing to the laminated members for manufacturing a stator (Step 3).
  • the crystal grains of the base iron 11 grow largely by core annealing, and for example, if core annealing under predetermined conditions is performed, the above-mentioned range of 60 ⁇ m to 150 ⁇ m is obtained. Iron loss and magnetic flux density can be realized.
  • the average crystal grain size of the base iron 11 as described above can be determined, for example, with respect to the structure of the Z cross section at the center in the plate thickness direction, according to the cutting method of JIS G0551 "Steel-Microscopic test method of grain size".
  • the average crystal grain size of the base iron 11 having the above-described chemical composition and after finish annealing is refined to 10 ⁇ m to 40 ⁇ m It is done.
  • the tensile strength is 580 MPa to 700 MPa.
  • the non-oriented electrical steel sheet 10 performs cooling at a specific cooling rate after performing annealing at a specific annealing temperature and soaking time in a specific atmosphere when manufacturing.
  • a yield phenomenon occurs and an upper yield point and a lower yield point are indicated.
  • the upper yield point is defined as a point at which the stress shows the maximum value in a micro strain area before the tensile strength (left side from the position showing the tensile strength), as at point A in FIG.
  • the lower yield point is a point at which the stress value decreases after passing the upper yield point.
  • the lower yield point is a point between the upper yield point and the tensile strength as shown by point B in FIG. The point at which the stress shows the minimum value in
  • the yield ratio is 0.82 or more.
  • the non-oriented electrical steel sheet 10 according to the present embodiment exhibits more excellent mechanical characteristics as a rotor.
  • the yield ratio is preferably 0.84 or more.
  • the upper limit value of the yield ratio is not particularly limited, and the larger the better, but the upper limit is actually about 0.90.
  • the difference between the stress value at the upper yield point (point A in FIG. 3) and the stress value at the lower yield point (point B in FIG. 3) (FIG. 3) It is preferable that (DELTA) ( sigma ) becomes 5 Mpa or more. If ⁇ is 5 MPa or more, a yield ratio of 0.82 or more can be easily obtained.
  • FIG. 4 shows the case where the annealing temperature is changed to five types after fixing the soaking time to 20 seconds under the annealing atmosphere described in detail below, with the steel having the chemical composition as described above. Shows an example of the measurement results of the stress-strain curve. Assuming that the annealing temperature is 950 ° C. and 1000 ° C., which are finish annealing temperatures of general non-oriented electrical steel sheets, the average grain size of the ground iron 11 is 54 ⁇ m at 950 ° C. and 77 ⁇ m at 1000 ° C. It became. On the other hand, when the annealing temperature is set to 800 ° C., 850 ° C., or 900 ° C.
  • the average grain size of the base iron 11 The thickness was 16 ⁇ m at 800 ° C., 25 ⁇ m at 850 ° C., and 37 ⁇ m at 900 ° C.
  • the measurement results of the stress-strain curves of the five types of non-oriented electrical steel sheets 10 obtained are as shown in FIG.
  • the stress-strain curve of the non-oriented electrical steel sheet according to the present embodiment in which the average crystal grain size is 16 ⁇ m, 25 ⁇ m, and 37 ⁇ m, an upper yield point and a lower yield point are observed. Manifests a strong yield phenomenon.
  • the stress-strain curve of the non-oriented electrical steel sheet having an average grain size of 54 ⁇ m and 77 ⁇ m has no upper yield point and no lower yield point.
  • the tensile strength and the yield point as described above can be measured by performing a tensile test with a tensile tester after producing a test piece defined in JIS Z2201.
  • the thickness of the base iron 11 (the thickness t in FIG. 1, which can be regarded as the product thickness of the non-oriented electrical steel sheet 10) in the non-oriented electrical steel sheet 10 according to the present embodiment reduces high frequency iron loss. Therefore, it is necessary to make it 0.30 mm or less.
  • the thickness t of the ground iron 11 in the non-oriented electrical steel sheet 10 is set to 0.10 mm or more and 0.30 mm or less.
  • the thickness t of the ground iron 11 in the non-oriented electrical steel sheet 10 is preferably 0.15 mm or more and 0.25 mm or less.
  • the iron loss W10 / 800 after finish annealing (in a state in which core annealing is not performed) is 50 W / kg or less.
  • the iron loss W10 / 800 is preferably 48 W / kg or less, more preferably 45 W / kg or less.
  • the crystal grains of the base iron 11 grow by performing the predetermined core annealing as described above, and a more excellent iron loss is exhibited.
  • the iron loss W10 / 400 is preferably 11 W / Kg or less.
  • the iron loss W10 / 400 is more preferably 10 W / Kg or less.
  • the conditions of the core annealing can be, for example, an annealing temperature of 800 ° C. and a soaking time of 120 minutes in a nitrogen atmosphere with a dew point of ⁇ 40 ° C.
  • Various magnetic properties of the non-oriented electrical steel sheet 10 according to the present embodiment conform to the Epstein method specified in JIS C2550, and the single sheet tester (SST) specified in JIS C2556. It is possible to measure.
  • Non-oriented electrical steel sheets are used after being punched out of a core blank. Therefore, by providing the insulating coating 13 on the surface of the ground iron 11, it is possible to reduce the eddy current between the plates and to reduce the eddy current loss as a core.
  • the insulating film 13 of the non-oriented electrical steel sheet 10 according to the present embodiment is not particularly limited as long as it is used as the insulating film of the non-oriented electrical steel sheet, and a known insulating film can be used It is.
  • a composite insulating film mainly composed of an inorganic substance and further containing an organic substance can be mentioned.
  • the composite insulating film is mainly composed of at least one of inorganic substances such as metal salts of chromate, metal salts of phosphate, or colloidal silica, Zr compounds, Ti compounds, etc., and fine organic resin particles are dispersed Is an insulating coating.
  • insulating coatings using metal salts of phosphoric acid, coupling agents of Zr or Ti, or carbonates or ammonium salts of these as starting materials It is preferably used.
  • the adhesion amount of the insulating film 13 as described above is not particularly limited, for example, preferably 400 mg / m 2 or more and 1200 mg / m 2 or less per one side, 800 mg / m 2 or more per one side, It is more preferable to set it as 1000 mg / m ⁇ 2 > or less.
  • the adhesion amount of the insulating film 13 it is possible to use various known measuring methods, for example, a method of measuring a mass difference before and after immersion in an aqueous solution of sodium hydroxide, or a calibration curve method. A fluorescent X-ray method or the like may be used as appropriate.
  • FIG. 5 is a flow chart showing an example of the flow of the method of manufacturing a non-oriented electrical steel sheet according to the present embodiment.
  • a steel ingot (slab) having the above-described chemical composition is heated, and hot rolling is performed on the heated steel ingot.
  • a hot-rolled steel sheet is obtained (step S101).
  • the heating temperature of the steel ingot at the time of being subjected to hot rolling is not particularly limited, but, for example, preferably 1050 ° C. or more and 1200 ° C. or less.
  • the thickness of the hot-rolled sheet after hot rolling is not particularly limited, but it is preferably, for example, about 1.5 mm to 3.0 mm in consideration of the final thickness of the base steel. .
  • a scale mainly composed of an oxide of Fe is generated on the surface of the base iron 11.
  • Hot-rolled sheet annealing process After the hot rolling, hot-rolled sheet annealing is performed (step S103).
  • the dew point in the annealing atmosphere is ⁇ 20 ° C. or more and 50 ° C. or less
  • the annealing temperature is 850 ° C. or more and 1100 ° C. or less
  • the soaking time is 10 seconds or more and 150 seconds or less It is preferable to The soaking time refers to the time during which the temperature of the hot-rolled sheet to be subjected to hot-rolled sheet annealing is within the range of the maximum achieved sheet temperature ⁇ 5 ° C.
  • the dew point in the annealing atmosphere is preferably ⁇ 10 ° C. or more and 40 ° C. or less, more preferably ⁇ 10 ° C. or more and 20 ° C. or less.
  • the annealing temperature is less than 850 ° C., or if the soaking time is less than 10 seconds, the magnetic flux density B 50 is deteriorated, which is not preferable.
  • the annealing temperature exceeds 1100 ° C., or if the soaking time exceeds 150 seconds, there is a possibility that the base iron may break in the subsequent cold rolling step, which is not preferable.
  • the annealing temperature is preferably 900 ° C. or more and 1050 ° C. or less, more preferably 950 ° C. or more and 1050 ° C. or less.
  • the soaking time is preferably 20 seconds or more and 100 seconds or less, and more preferably 30 seconds or more and 80 seconds or less.
  • the average cooling rate in the temperature range from 800 ° C. to 500 ° C. in order to realize a yield ratio of 0.82 or more more reliably. Is preferably 10 ° C./second to 100 ° C./second, and more preferably 25 ° C./second or more. If the cooling rate in the temperature range from 800 ° C. to 500 ° C. is less than 10 ° C./sec, strain aging due to solid solution C is not sufficiently obtained, the upper yield point is less likely to occur, and the yield ratio decreases. .
  • the average cooling rate up to a plate temperature of 800 ° C. to 500 ° C. is preferably as high as possible.
  • the temperature is 100 ° C./sec.
  • pickling is performed (step S105), and the scale layer formed on the surface of the ground iron 11 is removed.
  • the pickling conditions such as the concentration of the acid used for pickling, the concentration of the promoter used for pickling, and the temperature of the pickling solution are not particularly limited, and may be known pickling conditions.
  • cold rolling is performed (step S107).
  • the pickling plate from which the scale layer has been removed is rolled at a reduction ratio such that the final thickness of the base steel is 0.10 mm or more and 0.30 mm or less.
  • the metal structure of the ground iron 11 becomes a cold rolled structure obtained by cold rolling.
  • finish annealing is performed (step S109).
  • the finish annealing step is an important step in order to realize the average grain size of the base iron 11 as described above and to cause a yield phenomenon. is there.
  • the annealing atmosphere is a wet atmosphere with a dew point of -20 ° C to 50 ° C
  • the annealing temperature is 750 ° C to 900 ° C
  • the soaking time is 10 seconds to less than 100 seconds. .
  • the soaking time refers to the time during which the temperature of the cold-rolled steel sheet to be subjected to finish annealing is within the range of the maximum achieved sheet temperature ⁇ 5 ° C.
  • the dew point of the annealing atmosphere When the dew point of the annealing atmosphere is less than ⁇ 20 ° C., the grain growth near the surface layer is deteriorated at the time of core annealing, which is not preferable because the iron loss becomes inferior. On the other hand, when the dew point of the annealing atmosphere exceeds 50 ° C., internal oxidation occurs to deteriorate the iron loss, which is not preferable. In addition, when the annealing temperature is less than 750 ° C., the annealing time becomes too long, which is likely to decrease the productivity, which is not preferable. On the other hand, when the annealing temperature exceeds 900 ° C., it is not preferable because control of the crystal grain size after finish annealing becomes difficult.
  • the soaking time is less than 10 seconds, it is not preferable because sufficient finish annealing can not be performed and it may be difficult to appropriately generate seed crystals in the base iron 11.
  • the soaking time exceeds 100 seconds, the possibility that the average crystal grain size of the seed crystals generated in the ground iron 11 is out of the range mentioned above is increased, which is not preferable.
  • the dew point of the annealing atmosphere is preferably ⁇ 10 ° C. or more and 20 ° C. or less, and more preferably 0 ° C. or more and 10 ° C. or less.
  • the oxygen potential of the annealing atmosphere (partial pressure P H2 O of H 2 O, divided by the partial pressure P H2 of H 2: P H2O / P H2 ) is a reducing atmosphere of 0.01 to 0.30 Is preferred.
  • the annealing temperature is preferably 800 ° C. or more and 850 ° C. or less, more preferably 800 ° C. or more and 825 ° C. or less.
  • the soaking time is preferably 10 seconds or more and 30 seconds or less.
  • the average cooling rate from 750 ° C. to 600 ° C. for achieving the average grain size of the ground iron 11 of 10 ⁇ m to 40 ⁇ m and the yield ratio of 0.82 or more more reliably as mentioned above It is preferable to set strong cooling at 25 ° C./sec or more. Moreover, as for the cooling rate from 400 degreeC to 100 degreeC of board temperature, it is still more preferable to carry out gentle cooling of 20 degrees C / s or less at any timing in this interval. If the cooling rate from a plate temperature of 750 ° C. to 600 ° C.
  • the cooling rate from a plate temperature of 750 ° C. to 600 ° C. is less than 25 ° C./sec, precipitation of carbides such as TiC occurs in the cooling process, and solid solution C decreases, so solid solution C The strain aging due to is not sufficiently obtained, the upper yield point is less likely to occur, and the yield ratio is lowered.
  • the cooling rate from the plate temperature of 750 ° C. to 600 ° C. is preferably 30 ° C./second or more and 60 ° C./second or less.
  • perform slow cooling including the case where the instantaneous cooling rate is 20 ° C / sec or less
  • the strain aging due to solid solution C proceeds and the upper yield point is more likely to occur.
  • the steel plate stay in the temperature range of 400 ° C. to 100 ° C. for 16 seconds or more by performing slow cooling in at least a part of the temperature section.
  • the heating rate to a temperature range of a plate temperature of 750 ° C. or more and 900 ° C. or less is preferably, for example, 20 ° C./second to 1000 ° C./second.
  • the heating rate in the temperature range of 750 ° C. or more and 900 ° C. or less in the finish annealing is more preferably 50 ° C./second to 200 ° C./second.
  • the non-oriented electrical steel sheet 10 according to the present embodiment can be manufactured through the above-described steps.
  • step S111 a step of forming an insulating film is carried out, if necessary (step S111).
  • the step of forming the insulating coating is not particularly limited, and the coating and drying of the processing solution may be performed by a known method using the known insulating coating processing solution as described above.
  • the surface of the base steel on which the insulating coating is to be formed may be subjected to any pretreatment such as degreasing treatment with an alkali, or pickling treatment with hydrochloric acid, sulfuric acid, phosphoric acid or the like before applying the treatment liquid.
  • the surface may be left as it is after finish annealing without being subjected to these pretreatments.
  • the non-oriented electrical steel sheet 10 according to the present embodiment is punched into a core shape (rotor shape / stator shape) (step 1),
  • the resulting members are stacked (step 2) to form the desired motor core shape (i.e., the desired rotor shape and stator shape).
  • the non-oriented electrical steel sheet 10 used for manufacturing the motor core has the insulating coating 13 formed on the surface of the ground iron 11.
  • annealing is performed on the non-oriented electrical steel sheets stacked in a desired stator shape (step 3).
  • the core annealing is preferably performed in an atmosphere containing 70% by volume or more of nitrogen.
  • the annealing temperature of core annealing is 750 degreeC or more and 900 degrees C or less.
  • the proportion of nitrogen in the atmosphere is less than 70% by volume, the cost of core annealing increases, which is not preferable.
  • the proportion of nitrogen in the atmosphere is more preferably 80% by volume or more, still more preferably 90% by volume to 100% by volume, and particularly preferably 97% by volume to 100% by volume.
  • the atmosphere gas other than nitrogen is not particularly limited, but generally, a reducing mixed gas composed of hydrogen, carbon dioxide, carbon monoxide, water vapor, methane and the like can be used. In order to obtain these gases, a method of burning propane gas or natural gas is generally employed.
  • the annealing temperature of core annealing is less than 750 degreeC, sufficient grain growth can not be implement
  • the annealing temperature of the core annealing exceeds 900 ° C., grain growth of the recrystallized structure proceeds too much and the hysteresis loss decreases, but the eddy current loss increases and as a result, the total core loss increases. Not desirable.
  • the annealing temperature of the core annealing is preferably 775 ° C. or more and 850 ° C. or less.
  • the soaking time for carrying out the core annealing may be appropriately set according to the above-mentioned annealing temperature, but can be, for example, 10 minutes to 180 minutes. If the soaking time is less than 10 minutes, grain growth may not be sufficiently realized. On the other hand, when the soaking time exceeds 180 minutes, the annealing time is too long, which may lower the productivity.
  • the soaking time is more preferably 30 minutes to 150 minutes.
  • the heating rate in the temperature range of 500 ° C. or more and 750 ° C. or less in the core annealing is preferably 50 ° C./Hr to 300 ° C./Hr.
  • the heating rate in the temperature range of 500 ° C. or more and 750 ° C. or less in core annealing is more preferably 80 ° C./Hr to 150 ° C./Hr.
  • the cooling rate in the temperature range of 750 ° C. or less and 500 ° C. or more is preferably 50 ° C./Hr to 500 ° C./Hr.
  • the cooling rate in the temperature range of 750 ° C. or less and 500 ° C. or more in the core annealing is more preferably 80 ° C./Hr to 200 ° C./Hr.
  • a motor core can be manufactured through each process as described above.
  • non-oriented electrical steel sheet concerning the present invention is concretely explained, showing an example and a comparative example.
  • the example shown below is only an example of the non-oriented electrical steel sheet according to the present invention, and the non-oriented electrical steel sheet according to the present invention is not limited to the following example.
  • Hot-rolled sheet annealing was performed on the obtained hot-rolled steel sheet at 1000 ° C. for 50 seconds in an atmosphere with a dew point of 10 ° C.
  • the average cooling rate of 800 to 500 ° C. after hot-rolled sheet annealing is No. 1 6 was 7.0 ° C./sec, and others were 35 ° C./sec.
  • surface scale was removed by pickling.
  • the pickling plate (hot-rolled steel plate after pickling) thus obtained was made into a cold-rolled steel plate with a thickness of 0.25 mm by cold rolling. Furthermore, finish annealing conditions (annealing temperature and soaking time) so as to obtain an average crystal grain size as shown in Tables 2A and 2B below in a mixed atmosphere of 10% hydrogen, 90% nitrogen, and a dew point of 0 ° C. was changed and annealed. Specifically, in the case of controlling to increase the average grain size, the finish annealing temperature is higher and / or the soaking time is longer. Moreover, when controlling so that average grain size becomes small, it was made the opposite. The heating rates to a temperature range of 750 ° C. or more and 900 ° C.
  • the cooling rate in the temperature range from 750 ° C. to 600 ° C. after finish annealing is No. 4 7 and No. Only 13 was at 10 ° C./s, the others at 35 ° C./s.
  • the minimum values of the cooling rates at 400 to 100 ° C. during finish annealing were as shown in Tables 2A and 2B. In each of the invention examples, the minimum value of the cooling rate at 400 to 100 ° C. was 20 ° C./second or less, and the residence time between 400 to 100 ° C. was also 16 seconds or more.
  • the insulating film was formed by applying an insulating film consisting of aluminum phosphate and an acrylic-styrene copolymer resin emulsion having a particle diameter of 0.2 ⁇ m so as to have a predetermined adhesion amount, and baking it at 350 ° C. in the air.
  • annealing is simply referred to as core annealing, hereinafter referred to as "pseudo-core annealing".
  • the heating rate at 500 ° C. or more and 700 ° C. or less and the cooling rate in pseudo core annealing were 100 ° C./Hr and 100 ° C./Hr, respectively.
  • tensile test pieces are taken in the rolling direction according to JIS Z 2241 from a non-oriented electrical steel sheet after finish annealing and before pseudo core annealing, and a tensile test is performed to obtain a yield point, tensile strength (TS), The yield ratio was measured.
  • TS tensile strength
  • No. 3, 5, 14, 42, 52 had a yield ratio of less than 0.82.
  • the grain size after finish annealing was 40 ⁇ m or less, but the upper yield point to the lower yield point were low. It is considered that the aging effect by carbon did not work sufficiently because quenching was performed at 20 ° C./s or more throughout the cooling process of 400 ° C. to 100 ° C. of the final annealing.
  • No. 7 and 13 had a yield ratio below 0.82.
  • the cooling rate at 750 ° C to 600 ° C for finish annealing is slower compared to the others, and it is considered that the upper yield point is lowered because carbide starts to precipitate at high temperatures and becomes overaging.
  • the present invention it is possible to obtain a non-oriented electrical steel sheet in which the manufacturing cost is suppressed and the mechanical properties and the magnetic properties after core annealing are more excellent. Therefore, the possibility of industrial use is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

この無方向性電磁鋼板は、化学組成が、質量%で、C:0.0015%~0.0040%、Si:3.5%~4.5%、Al:0.65%以下、Mn:0.2%~2.0%、Sn:0%~0.20%、Sb:0%~0.20%、P:0.005%~0.150%、S:0.0001%~0.0030%、Ti:0.0030%以下、Nb:0.0050%以下、Zr:0.0030%以下、Mo:0.030%以下、V:0.0030%以下、N:0.0010%~0.0030%、O:0.0010%~0.0500%、Cu:0.10%未満、Ni:0.50%未満、を含有し、残部がFe及び不純物からなり、製品板厚が、0.10mm~0.30mmであり、平均結晶粒径が、10μm~40μmであり、鉄損W10/800が、50W/Kg以下であり、引張強度が、580MPa~700MPaであり、降伏比が、0.82以上である。

Description

無方向性電磁鋼板
 本発明は、無方向性電磁鋼板に関する。
 本願は、2017年07月19日に、日本に出願された特願2017-139765号に基づき優先権を主張し、その内容をここに援用する。
 昨今、地球環境問題が注目されており、省エネルギーへの取り組みに対する要求は、一段と高まってきている。なかでも電気機器の高効率化は、近年強く要望されている。このため、モータ又は発電機等の鉄心材料として広く使用されている無方向性電磁鋼板においても、磁気特性の向上に対する要請が更に強まっている。電気自動車やハイブリッド自動車用のモータ、及び、コンプレッサ用モータにおいては、その傾向が顕著である。
 上記のような各種モータのモータコアは、固定子であるステータ、及び、回転子であるロータから構成される。モータコアを構成するステータ及びロータに求められる特性は、互いに相違する。ステータには、優れた磁気特性(鉄損及び磁束密度)が特に求められるのに対し、ロータには、優れた機械特性(引張強度及び降伏比)が求められる。
 ステータとロータとでは求められる特性が異なる。そのため、ステータ用の無方向性電磁鋼板と、ロータ用の無方向性電磁鋼板と、を造り分ければ、それぞれの所望の特性を実現することができる。しかしながら、2種類の無方向性電磁鋼板を準備することは、歩留まりの低下を招いてしまう。そこで、ロータに求められる優れた強度と、ステータに求められる低鉄損とを実現するために、強度に優れ、かつ、磁気特性にも優れた無方向性電磁鋼板が、従来検討されてきた。
 例えば、以下の特許文献1~特許文献3では、ステータに求められるような優れた磁気特性を実現しつつ、ロータに求められるような優れた強度を実現するために、鋼板の化学成分として、ケイ素(Si)を多く含有させるとともに、ニッケル(Ni)や銅(Cu)といった高強度化に寄与する元素を意図的に添加する技術が提案されている。
日本国特開2004-300535号公報 日本国特開2004-315956号公報 日本国特開2008-50686号公報
 しかしながら、近年、電気自動車やハイブリッド自動車のモータに求められる省エネルギー特性を実現するには、上記特許文献1~特許文献3で開示されているような技術では、ステータ素材としての低鉄損化が不十分であった。
 また、上記特許文献1~特許文献3で開示されているようなNiやCuといった高強度化を促進する元素は高価であり、これらの元素を積極的に添加すると、無方向性電磁鋼板の製造コストは増大する。
 また、近年、電気自動車やハイブリッド自動車用のモータにおいて、モータ回転数を高速化することでモータトルクを稼ぐ設計が多くなされるようになり、ロータの更なる高強度化が強く求められている。モータの安全性を確保するためには、引張強度で示される破壊の限界特性だけでなく、疲労による破壊も避けるべきである。そのためには、単なる引張強度だけでなく、高い降伏応力を得ること(すなわち、高い降伏比を得ること)が重要となる。しかしながら、上記特許文献1~特許文献3に開示されている技術を用いたとしても、ロータの更なる高強度化・高降伏比化を図ることが困難である。
 本発明は、上記問題に鑑みてなされた。本発明の目的は、製造コストが抑制された、高強度かつ高降伏比の無方向性電磁鋼板を提供することである。
 好ましくは、得られた高強度かつ降伏比の無方向性電磁鋼板を所望のモータコア形状(ロータ形状及びステータ形状)に打ち抜き、打ち抜いた無方向性電磁鋼板を複数枚積層して所望のモータコア形状(ロータ形状及びステータ形状)を形成し、そのうち、ステータ形状に積層したものに対して焼鈍を施した場合に、より一層優れた磁気特性を示す無方向性電磁鋼板を提供することにある。
 上記課題を解決するために、本発明者らは、鋭意検討を行った。具体的には、ロータ及びステータ用の部材を同一の無方向性電磁鋼板から打ち抜き、ロータ用の部材については、所望のロータ形状となるように積層した後に、積層体に対して焼鈍を行わなくとも、より一層優れた機械特性を有し、また、ステータ用の部材については、所望のステータ形状となるように積層した後に、積層体に対して焼鈍を行うことでより一層優れた磁気特性を実現する手段について、鋭意検討を行った。
 以下では、無方向性電磁鋼板を所望のステータ形状に打ち抜いてステータ用の部材とし、打ち抜いたステータ用の部材を所望のステータ形状となるように積層した後に、得られた積層体に対して実施する焼鈍のことを、「コア焼鈍」と称する。
 同等の引張強度を有する無方向性電磁鋼板の中で、疲労強度の向上を目的として高い降伏比を実現するために、無方向性電磁鋼板が上降伏点を有するようにすることが、可能性として考えられる。
 本発明者らは、炭素(C)の歪時効を活用して、無方向性電磁鋼板が上降伏点を有するように制御することに着目した。しかしながら、一般的に製造される無方向性電磁鋼板は、高純度であって歪時効の原因となるCの含有量が低い。特に、Siの含有量が3%以上である無方向性電磁鋼板では、Siが炭化物の生成を抑制することで、上降伏点を有しない。また、単に高強度化を目指して、C、チタン(Ti)、ニオブ(Nb)等の元素を意図的に含有させた無方向性電磁鋼板では、Cを多く含有することによって降伏現象は生じたとしても、炭化物がコア焼鈍時の粒成長を大幅に劣化させるので、コア焼鈍後の磁気特性が向上しない。
 そのため、これまで、上降伏点を有し、かつコア焼鈍後の磁気特性に優れる無方向性電磁鋼板を得ることは難しかった。
 かかる観点に基づき、本発明者らは更なる検討を行った。その結果、コストの高い元素を意図的に含有させず、かつ、高いSi含有量を有する無方向性電磁鋼板において、結晶粒径の更なる微細化を図ることで降伏現象を実現させることで、より一層優れた機械特性が得られることを知見した。さらに、この無方向性電磁鋼板において、コア焼鈍時の粒成長を阻害するような元素の含有を抑制することができれば、コア焼鈍後のより一層優れた磁気特性も同時に向上させることが可能となるとの知見を得るに至った。
 上記知見に基づき完成された本発明の要旨は、以下の通りである。
[1]本発明の一態様に係る無方向性電磁鋼板は、化学組成が、質量%で、C:0.0015%~0.0040%、Si:3.5%~4.5%、Al:0.65%以下、Mn:0.2%~2.0%、Sn:0%~0.20%、Sb:0%~0.20%、P:0.005%~0.150%、S:0.0001%~0.0030%、Ti:0.0030%以下、Nb:0.0050%以下、Zr:0.0030%以下、Mo:0.030%以下、V:0.0030%以下、N:0.0010%~0.0030%、O:0.0010%~0.0500%、Cu:0.10%未満、Ni:0.50%未満、を含有し、残部がFe及び不純物からなり、製品板厚が、0.10mm~0.30mmであり、平均結晶粒径が、10μm~40μmであり、鉄損W10/800が、50W/Kg以下であり、引張強度が、580MPa~700MPaであり、降伏比が、0.82以上である。
[2]上記[1]に記載の無方向性電磁鋼板は、C、Ti、Nb、Zr、Vの含有量が、以下の式(1)で表される条件を満足してもよい。
 [C]×([Ti]+[Nb]+[Zr]+[V])<0.000010・・・(1)
 ここで、上記式(1)において、[X]との表記は、元素Xの含有量(単位:質量%)を表す。
[3]上記[1]または[2]に記載の無方向性電磁鋼板は、焼鈍温度750℃以上900℃以下、均熱時間10分~180分の範囲内となる焼鈍条件下での焼鈍によって、平均結晶粒径が、60μm~150μm、かつ、鉄損W10/400が、11W/Kg以下となってもよい。
[4]上記[1]~[3]のいずれか1項に記載の無方向性電磁鋼板は、上降伏点及び下降伏点を有しており、上降伏点が下降伏点よりも5MPa以上高くてもよい。
[5]上記[1]~[4]のいずれか1項に記載の無方向性電磁鋼板は、前記化学組成が、質量%で、Sn:0.01%~0.20%、Sb:0.01%~0.20%、のいずれか一方または両方を含有してもよい。
[6]上記[1]~[5]のいずれか1項に記載の無方向性電磁鋼板は、表面に更に絶縁被膜を有してもよい。
 本発明の上記態様によれば、製造コストが抑制され、かつ、機械特性及びコア焼鈍後の磁気特性により一層優れる無方向性電磁鋼板を得ることができる。
本発明の実施形態に係る無方向性電磁鋼板の構造を模式的に示した説明図である。 同実施形態に係る無方向性電磁鋼板について説明するための説明図である。 同実施形態に係る無方向性電磁鋼板が示す応力-ひずみ曲線について説明するための説明図である。 無方向性電磁鋼板が示す応力-ひずみ曲線の一例を示した図である。 同実施形態に係る無方向性電磁鋼板の製造方法の流れの一例を示した流れ図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
(無方向性電磁鋼板について)
 まず、図1~図5を参照しながら、本発明の一実施形態に係る無方向性電磁鋼板(本実施形態に係る無方向性電磁鋼板)について、詳細に説明する。
 図1は、本実施形態に係る無方向性電磁鋼板の構造を模式的に示した説明図である。図2は、本実施形態に係る無方向性電磁鋼板について説明するための説明図である。図3は、本実施形態に係る無方向性電磁鋼板が示す応力-ひずみ曲線について説明するための説明図である。図4は、無方向性電磁鋼板が示す応力-ひずみ曲線の一例を示した図である。図5は、本実施形態に係る無方向性電磁鋼板の製造方法の流れの一例を示した流れ図である。
 本実施形態に係る無方向性電磁鋼板10は、ステータ及びロータの双方を製造する際の素材として好適な無方向性電磁鋼板10である。本実施形態に係る無方向性電磁鋼板10は、図1に模式的に示したように、所定の化学成分を含有し、所定の機械特性及び磁気特性を示す地鉄11を有している。また、本実施形態に係る無方向性電磁鋼板10は、地鉄11の表面に、更に絶縁被膜13を有していることが好ましい。
 以下では、まず、本実施形態に係る無方向性電磁鋼板10の地鉄11について、詳細に説明する。
<地鉄の化学成分について>
 本実施形態に係る無方向性電磁鋼板10の地鉄11は、質量%で、C:0.0015%~0.0040%、Si:3.5%~4.5%、Al:0.65%以下、Mn:0.2%~2.0%、P:0.005%~0.150%、S:0.0001%~0.0030%、Ti:0.0030%以下、Nb:0.0050%以下、Zr:0.0030%以下、Mo:0.030%以下、V:0.0030%以下、N:0.0010%~0.0030%、O:0.0010%~0.0500%、Cu:0.10%未満、Ni:0.50%未満を含有し、必要に応じてさらにSn又はSbの一方または両方を、それぞれ0.01質量%以上0.2質量%以下含有し、残部がFe及び不純物からなる。
 地鉄11は例えば熱延鋼板や冷延鋼板などの鋼板である。
 以下では、本実施形態に係る地鉄11の化学組成が上記のように規定される理由について、詳細に説明する。以下では、特に断りの無い限り、「%」は「質量%」を表すものとする。
[C:0.0015%~0.0040%]
 C(炭素)は、鉄損劣化を引き起こす元素である。C含有量が0.0040%を超える場合には、無方向性電磁鋼板において鉄損劣化が生じ、良好な磁気特性を得ることができない。従って、本実施形態に係る無方向性電磁鋼板10では、C含有量を、0.0040%以下とする。C含有量は、好ましくは、0.0035%以下、より好ましくは0.0030%以下である。
 一方、C含有量が0.0015%未満となる場合には、無方向性電磁鋼板10において上降伏点が生じず、良好な降伏比が得られない。従って、本実施形態に係る無方向性電磁鋼板10では、C含有量を、0.0015%以上とする。本実施形態に係る無方向性電磁鋼板において、C含有量は、好ましくは、0.0020%以上であり、より好ましくは、0.0025%以上である。
[Si:3.5%~4.5%]
 Si(ケイ素)は、鋼の電気抵抗を上昇させて渦電流損を低減させ、高周波鉄損を改善する元素である。また、Siは、固溶強化能が大きいため、無方向性電磁鋼板10の高強度化にも有効な元素である。上記効果を十分に発揮させるためには、3.5%以上のSiを含有させることが必要である。好ましくは、3.6%以上である。
 一方、Si含有量が4.5%を超える場合には、加工性が著しく劣化し、冷間圧延を実施することが困難となる。従って、Si含有量は、4.5%以下とする。Si含有量は、好ましくは、4.0%以下であり、より好ましくは、3.9%以下である。
[Al:0.65%以下]
 Al(アルミニウム)は、無方向性電磁鋼板の電気抵抗を上昇させることで渦電流損を低減し、高周波鉄損を改善するために有効な元素である。一方で、Alは、鋼板製造過程における加工性と、製品の磁束密度と、を低下させる影響もある。そのため、Al含有量を0.65%以下とする。
 また、コア焼鈍後において良好な磁気特性を得るためには、固溶Tiの悪影響を抑制することが肝要であるが、Al含有量が高い場合には、窒化物としてTiNではなくAlNが析出して、固溶Tiが増加する。Al含有量が0.50%を超える場合には、無方向性電磁鋼板の磁束密度が著しく低下し、また脆化することで冷間圧延を実施することが困難となり、コア焼鈍後の磁気特性が劣位となる。従って、コア焼鈍後の磁気特性を考慮すれば、Al含有量は、0.50%以下とすることが好ましい。Al含有量は、より好ましくは、0.40%以下であり、さらに好ましくは、0.35%以下である。
 一方、Al含有量の下限値は、特に規定するものではなく0%でもよいが、Al含有量を0.0005%未満とするには、製鋼での負荷が高く、コストが増加してしまう。そのため、Al含有量は0.0005%以上とすることが好ましい。また、高周波鉄損を改善する効果を得る場合には、Al含有量は、好ましくは、0.10%以上であり、より好ましくは、0.20%以上である。
[Mn:0.2%~2.0%]
 Mn(マンガン)は、鋼の電気抵抗を上昇させて渦電流損を低減し、高周波鉄損を改善するために有効な元素である。上記効果を十分に発揮させるためには、0.2%以上のMnを含有させることが必要である。また、Mn含有量が0.2%未満となる場合には、微細な硫化物(MnS)が析出することで、コア焼鈍時の粒成長性が劣化するので、好ましくない。Mn含有量は、好ましくは、0.4%以上、より好ましくは、0.5%以上である。
 一方、Mn含有量が2.0%を超える場合には、磁束密度の低下が顕著となる。従って、Mn含有量は、2.0%以下とする。Mn含有量は、好ましくは、1.7%以下であり、より好ましくは、1.5%以下である。
[P:0.005%~0.150%]
 P(リン)は、固溶強化能が大きく、加えて磁気特性の向上に有利な{100}集合組織を増加させる効果も有する元素であり、高強度と高磁束密度とを両立するうえで極めて有効な元素である。更に、{100}集合組織の増加は、無方向性電磁鋼板10の板面内における機械特性の異方性を低減することにも寄与するので、Pは、無方向性電磁鋼板10の打ち抜き加工時の寸法精度を改善する効果も有する。このような強度、磁気特性、及び、寸法精度を改善する効果を得るためには、P含有量を0.005%以上とすることが必要である。P含有量は、好ましくは0.010%以上、より好ましくは0.020%以上である。
 一方、P含有量が0.150%を超える場合には、無方向性電磁鋼板10の延性が著しく低下する。従って、Pの含有量は、0.150%以下とする。P含有量は、好ましくは、0.100%以下であり、より好ましくは、0.080%以下である。
[S:0.0001%~0.0030%]
 S(硫黄)は、MnSの微細析出物を形成することで鉄損を増加させ、無方向性電磁鋼板10の磁気特性を劣化させる元素である。そのため、S含有量は、0.0030%以下とする必要がある。S含有量は、好ましくは、0.0020%以下、より好ましくは、0.0010%以下である。
 一方、S含有量を0.0001%よりも低減させようとすると、いたずらにコストアップを招くのみである。従って、S含有量は、0.0001%以上とする。S含有量は、好ましくは、0.0003%以上であり、より好ましくは、0.0005%以上である。
[Ti:0.0030%以下]
 Ti(チタン)は、鋼中に不可避的に混入し得る元素であり、炭素や窒素と結合して介在物(炭化物、窒化物)を形成する元素である。炭化物が形成された場合には、コア焼鈍中の結晶粒の成長が阻害されて、磁気特性が劣化する。従って、Ti含有量は、0.0030%以下とする。Ti含有量は、0.0015%以下であり、より好ましくは、0.0010%以下である。
 一方、Ti含有量は0%でもよいが、0.0005%よりも低減させようとすると、いたずらにコストアップを招く。従って、Ti含有量は、0.0005%以上とすることが好ましい。
[Nb:0.0050%以下]
 Nb(ニオブ)は、炭素や窒素と結合して介在物(炭化物、窒化物)を形成することで高強度化に寄与する元素である。しかしながら、Nbは高価な元素であり、含有量を0.0050%以下とする。また、Nbは、コア焼鈍中の結晶粒の成長を阻害して磁気特性を劣化させる元素でもある。従って、コア焼鈍後の磁気特性を考慮すれば、Nb含有量は、0.0030%以下とすることが好ましい。Nb含有量は、好ましくは、0.0010%以下であり、より好ましくは、測定限界以下(tr.)(0%を含む)である。
[Zr:0.0030%以下]
 Zr(ジルコニウム)は、炭素や窒素と結合して介在物(炭化物、窒化物)を形成することで高強度化に寄与する元素である。しかしながら、Zrは、コア焼鈍中の結晶粒の成長を阻害して磁気特性を劣化させる元素でもある。従って、Zr含有量は、0.0030%以下とする。Zr含有量は、好ましくは、0.0010%以下であり、より好ましくは、測定限界以下(tr.)(0%を含む)である。
[Mo:0.030%以下]
 Mo(モリブデン)は、不可避的に混入し得る元素であり、炭素と結合して介在物(炭化物)を形成する元素である。ただし、Moは、コア焼鈍が実施されるような750℃以上の温度では溶体化しやすいので、若干の混入が許容される。しかしながら、混入量が増えすぎると結晶粒の成長を阻害して磁気特性を劣化させるので、Mo含有量は、0.030%以下とする。Mo含有量は、好ましくは、0.020%以下であり、より好ましくは0.015%以下であり、測定限界以下(tr.)(0%を含む)でもよい。
 一方、Mo含有量を0.0005%よりも低減させようとすると、いたずらにコストアップを招く。従って、製造コストの観点からは、Mo含有量は、0.0005%以上とすることが好ましい。Mo含有量は、好ましくは、0.0010%以上である。
[V:0.0030%以下]
 V(バナジウム)は、炭素や窒素と結合して介在物(炭化物、窒化物)を形成することで高強度化に寄与する元素である。しかしながら、Vは、コア焼鈍中の結晶粒の成長を阻害して磁気特性を劣化させる元素でもある。従って、V含有量は、0.0030%以下とする。V含有量は、好ましくは、0.0010%以下であり、より好ましくは、測定限界以下(tr.)(0%を含む)である。
[N:0.0010%~0.0030%]
 N(窒素)は、不可避的に混入する元素であり、磁気時効を引き起こして鉄損を増加させ、無方向性電磁鋼板10の磁気特性を劣化させる元素である。そのため、N含有量は、0.0030%以下とする必要がある。N含有量は、好ましくは、0.0025%以下であり、より好ましくは、0.0020%以下である。
 一方、N含有量を0.0010%よりも低減させようとすると、いたずらにコストアップを招く。従って、N含有量は、0.0010%以上とする。
[O:0.0010%~0.0500%]
 O(酸素)は、不可避的に混入する元素であり、酸化物を形成することで鉄損を増加させ、無方向性電磁鋼板10の磁気特性を劣化させる元素である。そのため、O含有量は、0.0500%以下とする必要がある。Oは、焼鈍工程において混入することもあるので、スラブ段階(すなわち、レードル値)においては、0.0050%以下とすることが好ましい。
 一方、O含有量を0.0010%よりも低減させようとすると、いたずらにコストアップを招く。従って、O含有量は、0.0010%以上とする。
[Cu:0.10%未満]
[Ni:0.50%未満]
 Cu(銅)及びNi(ニッケル)は、不可避的に混入し得る元素である。意図的なCu及びNiの添加は、無方向性電磁鋼板10の製造コストを増加させる。従って、本実施形態に係る無方向性電磁鋼板10では、添加する必要がない。
 Cu含有量は、製造工程において不可避的に混入しうる最大値である0.10%未満とする。
 一方で、特に、Niは、無方向性電磁鋼板10の強度を向上させる元素でもあり、意図的に添加して含有させてもよい。ただし、Niは高価であるため、意図的に含有させる場合でも、その含有量の上限を0.50%未満とする。
 Cu含有量及びNi含有量の下限は、特に限定されるものではなく0%でもよいが、Cu含有量及びNi含有量を0.005%よりも低減させようとすると、いたずらにコストアップを招く。従って、Cu含有量及びNiの含有量は、いずれも0.005%以上とすることが好ましい。Cu含有量及びNi含有量は、好ましくは、それぞれ、0.01%以上、0.09%以下であり、より好ましくは、0.02%以上、0.06%以下である。
[Sn:0%~0.20%]
[Sb:0%~0.20%]
 Sn(スズ)及びSb(アンチモン)は、鋼板の表面に偏析し焼鈍中の酸化を抑制することで、低い鉄損を確保するのに有用な任意添加元素である。従って、本実施形態に係る無方向性電磁鋼板では、上記効果を得るために、Sn又はSbの少なくとも何れか一方を、任意添加元素として地鉄中に含有させてもよい。上記効果を十分に発揮させるためには、Sn含有量又はSb含有量を、それぞれ0.01%以上とすることが好ましい。より好ましくは、0.03%以上である。
 一方、Sn含有量又はSb含有量がそれぞれ0.20%を超える場合には、地鉄の延性が低下して冷間圧延が困難となる可能性がある。従って、Sn含有量又はSb含有量は、含有させる場合でも、それぞれ0.20%以下とすることが好ましい。Sn又はSbを地鉄中に含有させる場合に、Sn含有量又はSb含有量は、より好ましくは、0.10%以下である。
[[C]×([Ti]+[Nb]+[Zr]+[V])<0.000010]
 本実施形態に係る無方向性電磁鋼板10の地鉄11は、以上説明したような化学成分を有しているが、地鉄11のC、Ti、Nb、Zr、Vの含有量は、更に、以下の式(1)で表される条件を満足することが好ましい。
 [C]×([Ti]+[Nb]+[Zr]+[V])<0.000010・・・(1)
 ここで、上記式(1)において、[X]との表記は、元素Xの含有量(単位:質量%)を表す、すなわち、例えば[C]であれば、質量%でのC含有量を表す。
 地鉄11中にCが存在すると、地鉄11では、C含有量に応じた炭化物が形成されうる。また、先だって説明したように、Ti、Nb、Zr、Vは、炭素との間で炭化物を形成する元素であり、地鉄11中にこれらの元素が存在することで、炭化物がより形成されやすくなる。従って、上記式(1)の左辺は、本実施形態に係る無方向性電磁鋼板10の地鉄11において、炭化物形成能力を示す指標とみなすことができる。
 本発明者らが、地鉄11中の化学成分の含有量を変化させながら、地鉄11中での炭化物の形成の様子について鋭意検討を行った結果、上記式(1)の左辺で与えられる値が0.000010以上となる場合には、炭化物が形成されることでコア焼鈍中の結晶粒の成長が阻害され、コア焼鈍後の磁気特性が劣化しやすくなることが明らかとなった。従って、本実施形態に係る無方向性電磁鋼板10では、C、Ti、Nb、Zr、Vの含有量について、上記式(1)の左辺で与えられる値が0.000010未満となるようにすることが好ましい。上記式(1)の左辺で与えられる値は、より好ましくは、0.000006以下であり、更に好ましくは、0.000004以下である。
 上記式(1)の左辺で与えられる値は、小さければ小さいほど好ましく、その下限値は特に規定されるものではないが、本実施形態に係る地鉄11における上記元素の下限値に基づき、0.00000075という値が実質的な下限値となる。
 以上、本実施形態に係る無方向性電磁鋼板における地鉄の化学成分について、詳細に説明した。
 上記の元素の他に、不純物として、Pb、Bi、As、B、Se、Mg、Ca、La、Ceなどの元素が0.0001%~0.0050%の範囲で含まれていても、本実施形態に係る無方向性電磁鋼板の効果を損なうものではない。
 無方向性電磁鋼板10における地鉄11の化学成分を測定する場合には、公知の各種測定法を利用することが可能であり、例えば、ICP-MS(誘導結合プラズマ質量分析)法等を適宜利用すればよい。
<地鉄の平均結晶粒径について>
 本実施形態に係る無方向性電磁鋼板10において、地鉄11の平均結晶粒径は、以下で詳述する仕上焼鈍を経た後(コア焼鈍が行われていない状態)の時点で、10μm~40μmという微細化された状態となっている。地鉄11の平均結晶粒径が10μm~40μmの範囲内に微細化されることで、地鉄11中の粒界の割合を増加させることができ、歪時効現象を生じさせることが可能となる。
 このような微細化された平均結晶粒径は、以下で詳述する仕上焼鈍工程において、特定の雰囲気下において特定の焼鈍温度及び均熱時間の焼鈍を行った後、特定の冷却速度で冷却を行うことによって実現される。地鉄11の平均結晶粒径は、仕上焼鈍時における熱処理条件を変更することで、制御することが可能である。
 仕上焼鈍後(コア焼鈍が行われていない状態)の地鉄11の平均結晶粒径が10μm未満である場合には、Si含有量を最大値とし、かつ、コア焼鈍を行ったとしても、無方向性電磁鋼板に求められる重要な磁気特性の一つである鉄損が大きくなるので、好ましくない。
 一方、仕上焼鈍後(コア焼鈍が行われていない状態)の地鉄11の平均結晶粒径が40μmを超える場合には、平均結晶粒径が大きくなりすぎる結果、ロータに求められる優れた強度及び降伏比が得られなくなるので、好ましくない。地鉄11の平均結晶粒径は、好ましくは、15μm~30μmの範囲内であり、より好ましくは、20μm~25μmの範囲内である。
 また、本実施形態に係る無方向性電磁鋼板10では、ステータを製造する際に実施されるコア焼鈍を施すと、地鉄11の結晶粒が成長して、平均結晶粒径が粗大化する。これは、結晶粒の成長を阻害する元素であるC、Ti、Nb、Zr、V含有量が、上記範囲内となるように制御されているからである。所定条件のコア焼鈍を行うことによって、コア焼鈍後の粗大化した地鉄11の平均結晶粒径は、60μm~150μmとなることが好ましい。本実施形態において、「コア焼鈍」とは、地鉄11の結晶粒の粒成長を促進することを目的として実施される焼鈍である。
 コア焼鈍の所定条件とは、焼鈍温度750℃~900℃、均熱時間10分~180分という範囲内から、電磁鋼板の板厚やコア焼鈍前の粒径等に応じて適宜選択される条件である。好ましい焼鈍温度は、775℃~850℃であり、好ましい均熱時間は30分~150分である。焼鈍雰囲気における露点は、焼鈍炉の種類や性能に応じて適宜設定すればよいが、例えば、-40℃以上20℃以下の範囲内で設定すればよい。より具体的には、例えば、露点-40℃の窒素雰囲気において、焼鈍温度800℃、均熱時間120分とすることができる。
 所定のコア焼鈍を施した後の地鉄11の平均結晶粒径が60μm未満である場合には、Si含有量を最大値とした場合であっても、無方向性電磁鋼板に求められる重要な磁気特性の一つである鉄損が大きくなるので、好ましくない。また、所定のコア焼鈍を施した後の地鉄11の平均結晶粒径が150μmを超える場合においても、結晶粒が成長しすぎた結果鉄損が大きくなるので、好ましくない。所定のコア焼鈍を施した後の地鉄11の平均結晶粒径は、より好ましくは、65μm~120μmの範囲内であり、更に好ましくは、70μm~100μmの範囲内である。
 以上説明したように、本実施形態に係る無方向性電磁鋼板10は、所定条件のコア焼鈍を実施すると、地鉄11の平均結晶粒径が大きく変化する。このような特徴を利用することで、本実施形態に係る無方向性電磁鋼板10では、一枚の無方向性電磁鋼板から、ロータとステータとの双方を製造することができ、その結果、歩留まりの低下を抑制することが可能となる。
 図2は、本実施形態に係る無方向性電磁鋼板10を用いて、ロータ及びステータを製造する場合の流れの一例を示した流れ図である。
 以上説明したように、本実施形態に係る無方向性電磁鋼板10は、コア焼鈍を施していない状態では、地鉄11の平均結晶粒径は10μm~40μmの範囲内であり、結晶粒が微細化された状態にある。この無方向性電磁鋼板10を用いて、ロータ及びステータの形状に打ち抜くことで(工程1)、ロータ及びステータを製造するための部材が製造される。続いて、製造したロータ製造用部材、及び、ステータ製造用部材のそれぞれを、積層する(工程2)。打ち抜き工程及び積層工程を経た後も、積層された各部材における地鉄11の平均結晶粒径は、10μm~40μmの範囲内にある。
 図2に示したように、積層されたロータ製造用部材を用いて(コア焼鈍を経ることなく)、ロータが製造される。製造されたロータは、地鉄11の平均結晶粒径が10μm~40μmと微細化された状態のままであるので、ロータに求められる優れた強度(例えば、引張強度580MPa以上の強度)、さらには高い降伏比(0.82以上)を有している。
 また、図2に示したように、積層されたステータ製造用部材に対して、コア焼鈍を施すことで(工程3)、ステータが製造される。本実施形態に係る無方向性電磁鋼板10は、コア焼鈍によって地鉄11の結晶粒が大きく成長し、例えば所定条件のコア焼鈍を行えば上記のような60μm~150μmの範囲内となり、優れた鉄損及び磁束密度を実現することができる。
 上記のような地鉄11の平均結晶粒径は、例えば、板厚方向中心のZ断面の組織に対し、JIS G0551「鋼-結晶粒度の顕微鏡試験方法」の切断法に従って求めることができる。
<機械特性について>
 本実施形態に係る無方向性電磁鋼板10では、上記化学組成を有し、かつ仕上焼鈍後(コア焼鈍が行われていない状態)の地鉄11の平均結晶粒径が10μm~40μmと微細化されている。その結果、引張強度は、580MPa~700MPaとなる。
 また、本実施形態に係る無方向性電磁鋼板10は、製造する際に、特定の雰囲気下において特定の焼鈍温度及び均熱時間の焼鈍を行った後、特定の冷却速度で冷却を行う。その結果、降伏現象を生じ、上降伏点及び下降伏点を示すようになる。
 本実施形態において、上降伏点とは、図3のA点のように、引張強度以前(引張強度を示す位置より左側)の微小歪域における、応力が最大値を示す点と定義する。下降伏点とは、上降伏点を過ぎた後に応力値が低下する点である。無方向性電磁鋼板では他鋼種に見られるような一定値とはなりにくいので、本実施形態では下降伏点を、図3のB点のように、上降伏点から引張強度を示す点の間における、応力が最小値を示す点と定義する。
 本実施形態に係る無方向性電磁鋼板10では、降伏比が、0.82以上である。降伏比が0.82以上となることで、本実施形態に係る無方向性電磁鋼板10は、ロータとしてより一層優れた機械特性を示すようになる。降伏比は、好ましくは0.84以上である。降伏比の上限値は、特に規定されるものではなく、大きければ大きいほど良いが、実際には、0.90程度が上限となる。
 また、本実施形態に係る無方向性電磁鋼板10では、上降伏点(図3における点A)の応力値と、下降伏点(図3における点B)の応力値との差分(図3におけるΔσ)は、5MPa以上となることが好ましい。Δσが、5MPa以上であれば、0.82以上の降伏比が得やすくなる。
 図4は、先だって説明したような化学組成を有する鋼を、以下で詳述する焼鈍雰囲気下のもと、均熱時間を20秒に固定した上で、焼鈍温度を5種類に変化させた場合における、応力-ひずみ曲線の測定結果の一例を示したものである。
 焼鈍温度を、一般的な無方向性電磁鋼板の仕上焼鈍温度である950℃、1000℃とした場合、地鉄11の平均結晶粒径は、950℃の場合で54μm、1000℃の場合で77μmとなった。一方で、焼鈍温度を、以下で詳述するような本実施形態に係る仕上焼鈍温度の範囲内である800℃、850℃、または900℃とした場合には、地鉄11の平均結晶粒径は、800℃の場合で16μm、850℃の場合で25μm、900℃の場合で37μmとなった。
 得られた5種類の無方向性電磁鋼板10の応力-ひずみ曲線の測定結果は、図4に示した通りである。
 図4に示したように、平均結晶粒径が16μm、25μm、37μmとなった本実施形態に係る無方向性電磁鋼板の応力-ひずみ曲線は、上降伏点及び下降伏点が観測されるような降伏現象を発現している。一方、平均結晶粒径が54μm、77μmとなった無方向性電磁鋼板の応力-ひずみ曲線は、上降伏点及び下降伏点が存在していない。
 上記のような引張強度及び降伏点は、JIS Z2201に規定された試験片を作製した上で、引張試験機により引張試験を行うことで、測定することが可能である。
<地鉄の板厚について>
 本実施形態に係る無方向性電磁鋼板10における地鉄11の板厚(図1における厚みt、無方向性電磁鋼板10の製品板厚と捉えることができる。)は、高周波鉄損を低減するために0.30mm以下とする必要がある。一方、地鉄11の板厚tが0.10mm未満である場合には、板厚が薄いために焼鈍ラインの通板が困難となる可能性がある。従って、無方向性電磁鋼板10における地鉄11の板厚tは、0.10mm以上、0.30mm以下とする。無方向性電磁鋼板10における地鉄11の板厚tは、好ましくは、0.15mm以上、0.25mm以下である。
<仕上焼鈍後・コア焼鈍前の磁気特性について>
 本実施形態に係る無方向性電磁鋼板10では、仕上焼鈍後(コア焼鈍が行われていない状態)の鉄損W10/800は、50W/kg以下である。鉄損W10/800は、好ましくは、48W/kg以下であり、より好ましくは、45W/kg以下である。
<コア焼鈍後の磁気特性について>
 本実施形態に係る無方向性電磁鋼板10は、上記のような所定のコア焼鈍を施すことで地鉄11の結晶粒が成長して、より優れた鉄損を示すようになる。本実施形態に係る無方向性電磁鋼板10は、鉄損W10/400が、11W/Kg以下となることが好ましい。鉄損W10/400は、より好ましくは、10W/Kg以下である。ここで、コア焼鈍の条件は、例えば、露点-40℃の窒素雰囲気において、焼鈍温度800℃、均熱時間120分とすることができる。
 本実施形態に係る無方向性電磁鋼板10の各種の磁気特性は、JIS C2550に規定されたエプスタイン法や、JIS C2556に規定された単板磁気特性測定法(Single Sheet Tester:SST)に則して、測定することが可能である。
<絶縁被膜について>
 再び図1に戻って、本実施形態に係る無方向性電磁鋼板10が有していることが好ましい絶縁被膜13について、簡単に説明する。
 無方向性電磁鋼板は、コアブランクを打ち抜いたのち積層され使用される。そのため、地鉄11の表面に絶縁被膜13を設けることで、板間の渦電流を低減することができ、コアとして渦電流損を低減することが可能となる。
 本実施形態に係る無方向性電磁鋼板10の絶縁被膜13は、無方向性電磁鋼板の絶縁被膜として用いられるものであれば、特に限定されるものではなく、公知の絶縁被膜を用いることが可能である。このような絶縁被膜として、例えば、無機物を主体とし、更に有機物を含んだ複合絶縁被膜を挙げることができる。ここで、複合絶縁被膜とは、例えば、クロム酸金属塩、リン酸金属塩、又は、コロイダルシリカ、Zr化合物、Ti化合物等の無機物の少なくとも何れかを主体とし、微細な有機樹脂の粒子が分散している絶縁被膜である。特に、近年ニーズの高まっている製造時の環境負荷低減の観点からは、リン酸金属塩やZrあるいはTiのカップリング剤、又は、これらの炭酸塩やアンモニウム塩を出発物質として用いた絶縁被膜が好ましく用いられる。
 上記のような絶縁被膜13の付着量は、特に限定するものではないが、例えば、片面あたり400mg/m以上、1200mg/m以下程度とすることが好ましく、片面あたり800mg/m以上、1000mg/m以下とすることが更に好ましい。上記付着量となるように絶縁被膜13を形成することで、優れた均一性を保持することが可能となる。絶縁被膜13の付着量を測定する場合には、公知の各種測定法を利用することが可能であり、例えば、水酸化ナトリウム水溶液浸漬前後の質量差を測定する方法や、検量線法を用いた蛍光X線法等を適宜利用すればよい。
(無方向性電磁鋼板の製造方法について)
 続いて、図5を参照しながら、以上説明したような本実施形態に係る無方向性電磁鋼板10の製造方法について、詳細に説明する。図5は、本実施形態に係る無方向性電磁鋼板の製造方法の流れの一例を示した流れ図である。
 本実施形態に係る無方向性電磁鋼板10の製造方法では、以上説明したような所定の化学成分を有する鋼塊に対して、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、仕上焼鈍を順に実施する。また、絶縁被膜13を地鉄11の表面に形成する場合には、上記仕上焼鈍の後に絶縁被膜の形成が行われる。以下、本実施形態に係る無方向性電磁鋼板10の製造方法で実施される各工程について、詳細に説明する。
<熱間圧延工程>
 本実施形態に係る無方向性電磁鋼板10の製造方法では、まず、上記の化学組成を有する鋼塊(スラブ)を加熱し、加熱された鋼塊について熱間圧延を行って、熱延板(熱延鋼板)を得る(ステップS101)。熱間圧延に供する際の鋼塊の加熱温度については、特に規定するものではないが、例えば、1050℃以上、1200℃以下とすることが好ましい。また、熱間圧延後の熱延板の板厚についても、特に規定するものではないが、地鉄の最終板厚を考慮して、例えば、1.5mm~3.0mm程度とすることが好ましい。鋼塊に対して以上のような熱間圧延が施されることで、地鉄11の表面には、Feの酸化物を主体とするスケールが生成される。
<熱延板焼鈍工程>
 上記熱間圧延の後には、熱延板焼鈍が実施される(ステップS103)。熱延板焼鈍においては、例えば、焼鈍雰囲気中の露点を-20℃以上、50℃以下とし、焼鈍温度を850℃以上、1100℃以下とし、かつ、均熱時間を10秒以上、150秒以下とすることが好ましい。均熱時間とは、熱延板焼鈍に供される熱延板の温度が、最高到達板温±5℃の範囲内となっている時間をいう。
 露点を-20℃未満に制御することは、過剰なコストアップを招くので、好ましくない。一方、露点が50℃を超える場合には、地鉄のFeの酸化が進むことで、その後の酸洗によって板厚が過剰に減少し、歩留まり悪化が生じるので、好ましくない。焼鈍雰囲気中の露点は、好ましくは、-10℃以上、40℃以下であり、より好ましくは、-10℃以上、20℃以下である。
 焼鈍温度が850℃未満である場合、又は、均熱時間が10秒未満である場合には、磁束密度B50が劣化してしまうので、好ましくない。
 一方、焼鈍温度が1100℃を超える場合、又は、均熱時間が150秒を超える場合には、後段の冷間圧延工程において地鉄が破断してしまう可能性が生じるので、好ましくない。
 焼鈍温度は、好ましくは、900℃以上、1050℃以下であり、より好ましくは、950℃以上、1050℃以下である。また、均熱時間は、好ましくは、20秒以上、100秒以下であり、より好ましくは、30秒以上、80秒以下である。
 また、熱延板焼鈍における冷却過程では、熱延板焼鈍における冷却過程では、0.82以上の降伏比をより確実に実現するために、800℃~500℃までの温度域での平均冷却速度を、10℃/秒~100℃/秒とすることが好ましく、25℃/秒以上とすることがより好ましい。
 800℃~500℃までの温度域での冷却速度が10℃/秒未満となる場合には、固溶Cによる歪時効が十分得られず、上降伏点が生じにくくなり、降伏比が低下する。平均冷却速度が10℃/秒以上の強冷却とするには、後段から流入させるガス量を増加する等により達成できる。
 一方、機械特性の観点では、板温800℃~500℃までの平均冷却速度は高い程好ましいが、平均冷却速度が速すぎると板形状が劣化して生産性、鋼板品質を損なうので、上限を100℃/秒とする。
<酸洗工程>
 上記熱延板焼鈍の後には、酸洗が実施され(ステップS105)、地鉄11の表面に生成したスケール層が除去される。酸洗に用いられる酸の濃度、酸洗に用いる促進剤の濃度、酸洗液の温度等の酸洗条件は、特に限定されるものではなく、公知の酸洗条件とすることができる。
<冷間圧延工程>
 上記酸洗の後には、冷間圧延が実施される(ステップS107)。
 冷間圧延では、地鉄の最終板厚が0.10mm以上0.30mm以下となるような圧下率で、スケール層の除去された酸洗板が圧延される。冷間圧延により、地鉄11の金属組織は、冷間圧延によって得られる冷延組織となる。
<仕上焼鈍工程>
 上記冷間圧延の後には、仕上焼鈍が実施される(ステップS109)。
 本実施形態に係る無方向性電磁鋼板の製造方法において、仕上焼鈍工程は、上記のような地鉄11の平均結晶粒径を実現し、かつ、降伏現象を生じさせるために、重要な工程である。仕上焼鈍工程において、焼鈍雰囲気は、露点が-20℃~50℃である湿潤雰囲気とし、焼鈍温度は、750℃以上、900℃以下とし、均熱時間は、10秒以上、100秒未満とする。均熱時間とは、仕上焼鈍に供される冷延鋼板の温度が、最高到達板温±5℃の範囲内となっている時間をいう。上記焼鈍条件下で仕上焼鈍を行い、後述するような冷却を行うことで、上記のような地鉄11の平均結晶粒径を実現し、かつ、降伏現象を生じさせることができる。
 焼鈍雰囲気の露点が-20℃未満である場合には、コア焼鈍時に表層付近の粒成長性が劣化して、鉄損が劣位となるので好ましくない。一方、焼鈍雰囲気の露点が50℃を超える場合には、内部酸化が生じて鉄損が劣化するので好ましくない。また、焼鈍温度が750℃未満である場合には、焼鈍時間が長くなりすぎて、生産性が低下する可能性が高くなるので、好ましくない。一方、焼鈍温度が900℃を超える場合には、仕上焼鈍後の結晶粒径の制御が困難となるので好ましくない。また、均熱時間が10秒未満である場合には、十分な仕上焼鈍を行うことができず、地鉄11に適切に種結晶を生じさせることが困難となることがあるので、好ましくない。一方、均熱時間が100秒を超える場合には、地鉄11に生じる種結晶の平均結晶粒径が、先だって言及した範囲外となる可能性が高まるので、好ましくない。
 焼鈍雰囲気の露点は、好ましくは、-10℃以上、20℃以下であり、より好ましくは、0℃以上、10℃以下である。また、焼鈍雰囲気の酸素ポテンシャル(HOの分圧PH2Oを、Hの分圧PH2で除した値:PH2O/PH2)は、0.01~0.30の還元雰囲気であることが好ましい。
 焼鈍温度は、好ましくは、800℃以上、850℃以下であり、より好ましくは、800℃以上、825℃以下である。均熱時間は、好ましくは、10秒以上、30秒以下である。
 先だって言及したような、10μm~40μmという地鉄11の平均結晶粒径、及び、0.82以上の降伏比をより確実に実現するために、板温が750℃から600℃までの平均冷却速度を、25℃/秒以上の強冷却とすることが好ましい。また、板温が400℃から100℃までの冷却速度は、この間の何れかのタイミングで20℃/秒以下の緩冷却することが更に好ましい。
 板温750℃から600℃までの冷却速度が25℃/秒未満となる場合には、冷却速度が遅くなりすぎて地鉄11の結晶粒を十分に微細化することができず、上記のような10μm~40μmという平均結晶粒径を実現することができない可能性がある。更に、板温750℃から600℃までの冷却速度が25℃/秒未満となる場合には、冷却過程でTiCなどの炭化物の析出が生じ、固溶Cが減少してしまうので、固溶Cによる歪時効が十分得られず、上降伏点が生じにくくなり、降伏比が低下する。一方、板温750℃から600℃までの冷却速度の上限値は、特に規定するものではないが、実際には、100℃/秒程度が上限となる。板温750℃から600℃までの冷却速度は、好ましくは、30℃/秒以上60℃/秒以下である。
 また、板温が400℃から100℃の間において、少なくとも一部の温度区間において冷却速度が20℃/秒以下の緩冷却(瞬間冷却速度が20℃/秒以下となる場合を含む)を行うことで、固溶Cによる歪時効が進み、上降伏点がより生じやすくなる。少なくとも一部の温度区間において緩冷却を行うことによって、鋼板が400℃~100℃の温度範囲に16秒以上滞留することがより好ましい。
 仕上焼鈍において、板温750℃以上900℃以下の温度域までの加熱速度は、例えば、20℃/秒~1000℃/秒とすることが好ましい。加熱速度を20℃/秒以上とすることで、無方向性電磁鋼板の磁気特性を更に良好なものとすることが可能となる。一方、加熱速度を1000℃/秒を超えて上げたとしても、磁気特性の向上効果が飽和する。仕上焼鈍における板温750℃以上900℃以下の温度域での加熱速度は、より好ましくは、50℃/秒~200℃/秒である。
 上記のような各工程を経ることで、本実施形態に係る無方向性電磁鋼板10を製造することができる。
<絶縁被膜形成工程>
 上記仕上焼鈍の後には、必要に応じて、絶縁被膜の形成工程が実施される(ステップS111)。ここで、絶縁被膜の形成工程については、特に限定されるものではなく、上記のような公知の絶縁被膜処理液を用いて、公知の方法により処理液の塗布及び乾燥を行えばよい。
 絶縁被膜が形成される地鉄の表面は、処理液を塗布する前に、アルカリなどによる脱脂処理や、塩酸、硫酸、リン酸などによる酸洗処理など、任意の前処理を施してもよいし、これら前処理を施さずに仕上焼鈍後のままの表面であってもよい。
 以上、図5を参照しながら、本実施形態に係る無方向性電磁鋼板の製造方法について、詳細に説明した。
(モータコアの製造方法について)
 続いて、再び図2を参照しながら、以上説明したような本実施形態に係る無方向性電磁鋼板を用いた、モータコア(ロータ/ステータ)の製造方法について、簡単に説明する。
 本実施形態に係る無方向性電磁鋼板から得られるモータコアの製造方法では、まず、本実施形態に係る無方向性電磁鋼板10を、コア形状(ロータ形状/ステータ形状)に打ち抜き(工程1)、得られた各部材を積層して(工程2)、所望のモータコアの形状(すなわち、所望のロータ形状及びステータ形状)を形成する。コア形状に打ち抜いた無方向性電磁鋼板を積層するため、モータコアの製造に用いる無方向性電磁鋼板10は、地鉄11の表面に絶縁被膜13が形成されたものであることが重要である。
 その後、所望のステータ形状に積層された無方向性電磁鋼板に対して、焼鈍(コア焼鈍)が実施される(工程3)。コア焼鈍は、70体積%以上窒素を含有した雰囲気中で実施されることが好ましい。また、コア焼鈍の焼鈍温度は、750℃以上900℃以下であることが好ましい。上記焼鈍条件でコア焼鈍を実施することで、無方向性電磁鋼板10の地鉄11中に存在する再結晶組織から粒成長が進行する。その結果、望ましい磁気特性を示すステータが得られる。
 雰囲気中の窒素の割合が70体積%未満である場合には、コア焼鈍のコストアップを招くので、好ましくない。雰囲気中の窒素の割合は、より好ましくは、80体積%以上であり、更に好ましくは、90体積%~100体積%であり、特に好ましくは、97体積%~100体積%である。窒素以外の雰囲気ガスは、特に規定するものではないが、一般的に、水素、二酸化炭素、一酸化炭素、水蒸気、メタンなどからなる還元性の混合ガスを用いることができる。これらのガスを得るために、プロパンガスや天然ガスを燃焼させて得る方法が、一般的に採用されている。
 また、コア焼鈍の焼鈍温度が750℃未満である場合には、十分な粒成長を実現することができず、好ましくない。一方、コア焼鈍の焼鈍温度が900℃を超える場合には、再結晶組織の粒成長が進み過ぎて、ヒステリシス損失は低下するものの、渦電流損失が増加し、結果として全鉄損は増加するので、好ましくない。コア焼鈍の焼鈍温度は、好ましくは、775℃以上850℃以下である。
 コア焼鈍を実施する均熱時間は、上記焼鈍温度に応じて適宜設定すればよいが、例えば、10分~180分とすることができる。均熱時間が10分未満である場合には、十分に粒成長を実現出来ないことがある。一方、均熱時間が180分を超える場合には、焼鈍時間が長くなりすぎて、生産性を低下させてしまう可能性が高い。均熱時間は、より好ましくは、30分~150分である。
 また、コア焼鈍における500℃以上750℃以下の温度域での加熱速度は、50℃/Hr~300℃/Hrとすることが好ましい。加熱速度を50℃/Hr~300℃/Hrとすることで、ステータの諸特性を更に良好なものとすることが可能となるからであり、加熱速度を300℃/Hrを超えて上げたとしても、諸特性の向上効果が飽和するからである。コア焼鈍における500℃以上750℃以下の温度域での加熱速度は、より好ましくは、80℃/Hr~150℃/Hrである。
 また、750℃以下500℃以上の温度域での冷却速度は、50℃/Hr~500℃/Hrとすることが好ましい。冷却速度を50℃/Hr以上とすることで、ステータの諸特性を更に良好なものとすることが可能となり、一方、冷却速度を500℃/Hrを超えたものとしても、冷却ムラが生じることで逆に熱応力による歪が導入され易くなってしまい、鉄損の劣化が生じてしまう可能性があるからである。コア焼鈍における750℃以下500℃以上の温度域での冷却速度は、より好ましくは、80℃/Hr~200℃/Hrである。
 上記のような各工程を経ることで、モータコアを製造することができる。
 以上、本実施形態に係るモータコアの製造方法について、簡単に説明した。
 以下では、実施例及び比較例を示しながら、本発明に係る無方向性電磁鋼板について、具体的に説明する。以下に示す実施例は、本発明に係る無方向性電磁鋼板の一例にすぎず、本発明に係る無方向性電磁鋼板が下記の例に限定されるものではない。
 以下の表1に示す化学組成を有するスラブを1150℃に加熱した後、仕上温度850℃、仕上板厚2.0mmにて熱間圧延を施し、650℃で巻取って熱延鋼板とした。
 得られた熱延鋼板に対して、露点10℃の雰囲気にて、1000℃×50秒の熱延板焼鈍を行った。熱延板焼鈍後の800~500℃の平均冷却速度は、No.6が7.0℃/秒であり、その他は、35℃/秒であった。熱延板焼鈍後、酸洗により表面のスケールを除去した。
 こうして得られた酸洗板(酸洗後の熱延鋼板)を、冷間圧延により板厚0.25mmの冷延鋼板とした。更に、水素10%、窒素90%、露点0℃の混合雰囲気にて、以下の表2A、表2Bに示すような平均結晶粒径となるように、仕上焼鈍条件(焼鈍温度及び均熱時間)を変えて焼鈍した。具体的には、平均結晶粒径が大きくなるように制御する場合には、仕上焼鈍温度をより高く、及び/又は、均熱時間をより長くした。また、平均結晶粒径が小さくなるように制御する場合は、その逆とした。
 仕上焼鈍時における750℃以上900℃以下の温度域までの加熱速度は、いずれも100℃/秒であった。また、仕上焼鈍後の750℃から600℃までの温度域での冷却速度は、No.7及びNo.13のみ10℃/秒であり、その他は35℃/秒であった。
 仕上焼鈍時の400~100℃の冷却速度の最小値は表2A、表2Bに示す通りであった。発明例においては、いずれも400~100℃における冷却速度の最小値が20℃/秒以下であり、400~100℃の間の滞留時間も16秒以上であった。
 その後、絶縁被膜を塗布し、無方向性電磁鋼板とした。絶縁被膜は、リン酸アルミニウム及び粒径0.2μmのアクリル-スチレン共重合体樹脂エマルジョンからなる絶縁被膜を所定付着量となるよう塗布し、大気中、350℃で焼付けることで形成した。
 得られた無方向性電磁鋼板の一部を、露点-40℃の窒素雰囲気(雰囲気中の窒素の割合が99.9体積%以上)で800℃×120分の焼鈍(コアへの加工を行っていないため、本実験例においては、単に「焼鈍」と称するが、コア焼鈍に相当する。以下、「疑似コア焼鈍」と称する。)を施した。
 疑似コア焼鈍における500℃以上700℃以下での加熱速度、及び、冷却速度は、それぞれ、100℃/Hr、及び、100℃/Hrであった。
Figure JPOXMLDOC01-appb-T000001
 疑似コア焼鈍前後の無方向性電磁鋼板について、JIS G0551「鋼-結晶粒度の顕微鏡試験方法」の切断法に従って、板厚中心部のZ断面の組織を観察し、地鉄の平均結晶粒径を計測した。また、疑似コア焼鈍前後の無方向性電磁鋼板について、圧延方向及び幅方向でエプスタイン試験片を採取し、JIS C2550に則したエプスタイン試験により、磁気特性(仕上げ焼鈍後、かつ、疑似コア焼鈍前については、鉄損W10/800、疑似コア焼鈍後については、鉄損W10/400)を評価した。
 更に、仕上焼鈍後、かつ、疑似コア焼鈍前の無方向性電磁鋼板から、JIS Z2241に従い圧延方向に引張試験片を採取し、引張試験を行って、降伏点、引張強度(TS)、及び、降伏比を計測した。上記のように計測した各種特性を、以下の表2A、表2Bにまとめて示した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記表2A、表2Bから明らかなように、発明例であるNo.2、4、11、12、15、18、24、25、28、31、32、34、36、37、39~41、45~47、50、51については、成分と仕上焼鈍条件とを適正に制御したため、0.82以上という高い降伏比が得られた。また、上降伏点及び下降伏点のそれぞれが生じ、上降伏点と下降伏点の差が5MPa以上となった。
 ただし、No.18は、用いた鋼種Cの「C×(Ti+Nb+Zr+V)」の値が0.000010を上回ったため、疑似コア焼鈍前の諸特性は優れるものの、疑似コア焼鈍後の平均結晶粒径が小さく、また、炭化物の形成により好ましい特性である鉄損W10/400が、11W/kgを上回った。
 また、No.24、No.25は、Al含有量が0.50%を超えたので、Tiが窒化物として固定されず、その結果、炭化物が増加して、疑似コア焼鈍後の鉄損W10/400が11W/kgを上回った。
 また、No.28は、Nb含有量が0.0030質量%を超えたので、炭化物の形成により鉄損W10/400が11W/kgを上回った。
 その他の発明例では、疑似コア焼鈍後の磁気特性においても、良好な結果が得られた。
 一方、No.1は、仕上焼鈍後の平均結晶粒径が10μmを下回っているため、仕上焼鈍後の鉄損W10/800が、50W/kgを上回った。
 No.8~10、16、17、26、27、29、30、35、38、43、44、48、49、53、54について、仕上焼鈍温度等の影響で仕上焼鈍後の平均結晶粒径が40μmを上回ったために上降伏点が明確に生じず、降伏比が低くなった。
 No.3、5、14、42、52は降伏比が0.82を下回った。これらの鋼では仕上げ焼鈍後の結晶粒径は40μm以下であったが上降伏点-下降伏点が低かった。仕上げ焼鈍の400℃~100℃の冷却過程全体で20℃/秒以上の急冷をしていたため炭素による時効効果が十分に働かなかったものと考えられる。
 No.6は、降伏比が0.82を下回った。この鋼では熱延板焼鈍後の800~500℃の平均冷却速度が他鋼種に比べて遅かったので、この間に固溶炭素が炭化物として析出してしまい、仕上げ焼鈍後の再結晶後に歪時効に寄与する固溶炭素が失われたものと考えられる。
 No.7、13は、降伏比が0.82を下回った。これらの鋼では、仕上げ焼鈍の750℃から600℃の冷却速度が他と比べて緩冷であり、高温で炭化物が析出を開始して過時効となることで上降伏点が低下したものと考えられる。
 No.19~23については、用いた鋼種DのC含有量が少なかったために上降伏点が明確に生じず、降伏比が低かった。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 本発明によれば、製造コストが抑制され、かつ、機械特性及びコア焼鈍後の磁気特性により一層優れる無方向性電磁鋼板を得ることができる。そのため、産業上の利用可能性が高い。
  10  無方向性電磁鋼板
  11  地鉄
  13  絶縁被膜

Claims (6)

  1.  化学組成が、質量%で、
      C :0.0015%~0.0040%、
      Si:3.5%~4.5%、
      Al:0.65%以下、
      Mn:0.2%~2.0%、
      Sn:0%~0.20%、
      Sb:0%~0.20%、
      P :0.005%~0.150%、
      S :0.0001%~0.0030%、
      Ti:0.0030%以下、
      Nb:0.0050%以下、
      Zr:0.0030%以下、
      Mo:0.030%以下、
      V :0.0030%以下、
      N :0.0010%~0.0030%、
      O :0.0010%~0.0500%、
      Cu:0.10%未満、
      Ni:0.50%未満、
    を含有し、残部がFe及び不純物からなり、
     製品板厚が、0.10mm~0.30mmであり、
     平均結晶粒径が、10μm~40μmであり、
     鉄損W10/800が、50W/Kg以下であり、
     引張強度が、580MPa~700MPaであり、
     降伏比が、0.82以上である、
    無方向性電磁鋼板。
  2.  C、Ti、Nb、Zr、Vの含有量が、以下の式(1)で表される条件を満足する、請求項1に記載の無方向性電磁鋼板。
     [C]×([Ti]+[Nb]+[Zr]+[V])<0.000010・・・(1)
     ここで、上記式(1)において、[X]との表記は、元素Xの含有量(単位:質量%)を表す。
  3.  焼鈍温度750℃以上900℃以下、均熱時間10分~180分の範囲内となる焼鈍条件下での焼鈍によって、平均結晶粒径が、60μm~150μmであり、かつ、鉄損W10/400が、11W/Kg以下となる、請求項1又は2に記載の無方向性電磁鋼板。
  4.  上降伏点及び下降伏点を有しており、上降伏点が下降伏点よりも5MPa以上高い、請求項1~3の何れか1項に記載の無方向性電磁鋼板。
  5.  前記化学組成が、質量%で、
     Sn:0.01%~0.20%、
     Sb:0.01%~0.20%、
    のいずれか一方または両方を含有する、
    請求項1~4の何れか1項に記載の無方向性電磁鋼板。
  6.  表面に更に絶縁被膜を有する、請求項1~5の何れか1項に記載の無方向性電磁鋼板。
PCT/JP2018/027078 2017-07-19 2018-07-19 無方向性電磁鋼板 WO2019017426A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197032115A KR102107439B1 (ko) 2017-07-19 2018-07-19 무방향성 전자 강판
CN201880028307.9A CN110573643B (zh) 2017-07-19 2018-07-19 无取向电磁钢板
BR112019021222-1A BR112019021222B1 (pt) 2017-07-19 2018-07-19 Chapa de aço elétrico não orientado
JP2018560686A JP6478004B1 (ja) 2017-07-19 2018-07-19 無方向性電磁鋼板
EP18835029.2A EP3656885A4 (en) 2017-07-19 2018-07-19 NON-ORIENTED ELECTROMAGNETIC STEEL SHEET
US16/606,107 US11279985B2 (en) 2017-07-19 2018-07-19 Non-oriented electrical steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-139765 2017-07-19
JP2017139765 2017-07-19

Publications (1)

Publication Number Publication Date
WO2019017426A1 true WO2019017426A1 (ja) 2019-01-24

Family

ID=65015231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027078 WO2019017426A1 (ja) 2017-07-19 2018-07-19 無方向性電磁鋼板

Country Status (8)

Country Link
US (1) US11279985B2 (ja)
EP (1) EP3656885A4 (ja)
JP (1) JP6478004B1 (ja)
KR (1) KR102107439B1 (ja)
CN (1) CN110573643B (ja)
BR (1) BR112019021222B1 (ja)
TW (1) TWI683009B (ja)
WO (1) WO2019017426A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091043A1 (ja) * 2018-11-02 2020-05-07 日本製鉄株式会社 無方向性電磁鋼板
WO2020091039A1 (ja) * 2018-11-02 2020-05-07 日本製鉄株式会社 無方向性電磁鋼板
WO2020166718A1 (ja) * 2019-02-14 2020-08-20 日本製鉄株式会社 無方向性電磁鋼板
JPWO2021117325A1 (ja) * 2019-12-09 2021-06-17
JPWO2021199400A1 (ja) * 2020-04-02 2021-10-07
WO2021210671A1 (ja) * 2020-04-16 2021-10-21 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
WO2021210672A1 (ja) * 2020-04-16 2021-10-21 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
EP3992312A4 (en) * 2019-06-28 2022-07-20 JFE Steel Corporation METHOD OF PRODUCTION OF NON-ORIENTED ELECTROMAGNETIC STEEL SHEET, METHOD OF PRODUCTION OF MOTOR CORE AND MOTOR CORE
WO2022176933A1 (ja) 2021-02-17 2022-08-25 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
WO2022211004A1 (ja) 2021-04-02 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
WO2022210530A1 (ja) * 2021-03-31 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板、モータコア、無方向性電磁鋼板の製造方法及びモータコアの製造方法
JP2022545027A (ja) * 2019-08-26 2022-10-24 バオシャン アイアン アンド スティール カンパニー リミテッド 600MPa級無方向性電磁鋼板及びその製造方法
EP4079896A4 (en) * 2019-12-20 2023-06-07 Posco NON-ORIENTED ELECTRICAL STEEL SHEET, AND METHOD OF MANUFACTURING THEREOF
WO2023176866A1 (ja) 2022-03-15 2023-09-21 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
WO2023176865A1 (ja) 2022-03-15 2023-09-21 日本製鉄株式会社 無方向性電磁鋼板およびモータコアならびにそれらの製造方法
WO2024071628A1 (ko) * 2022-09-30 2024-04-04 현대제철 주식회사 무방향성 전기 강판 및 그 제조 방법
WO2024095665A1 (ja) * 2022-10-31 2024-05-10 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP7529973B2 (ja) 2020-04-06 2024-08-07 日本製鉄株式会社 ロータ用無方向性電磁鋼板およびその製造方法
KR20240143582A (ko) 2023-03-24 2024-10-02 현대제철 주식회사 무방향성 전기강판 및 그 제조방법
US12148555B2 (en) 2018-11-02 2024-11-19 Nippon Steel Corporation Non-oriented electrical steel sheet

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688658B (zh) * 2019-03-20 2020-03-21 日商新日鐵住金股份有限公司 無方向性電磁鋼板
JP6825758B1 (ja) * 2019-07-11 2021-02-03 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法およびモータコア
KR102353673B1 (ko) * 2019-12-20 2022-01-20 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR102325011B1 (ko) * 2019-12-20 2021-11-11 주식회사 포스코 무방향성 전기강판 및 그 제조방법
EP4108789A1 (en) * 2020-02-20 2022-12-28 Nippon Steel Corporation Hot-rolled steel sheet for non-oriented electromagnetic steel sheets
TWI767210B (zh) * 2020-04-06 2022-06-11 日商日本製鐵股份有限公司 無方向性電磁鋼板及其製造方法
TWI740474B (zh) * 2020-04-28 2021-09-21 中國鋼鐵股份有限公司 非方向性電磁鋼片及其製造方法
EP4317473A1 (en) 2021-03-31 2024-02-07 Nippon Steel Corporation Non-oriented electromagnetic steel sheet, production method for non-oriented electromagnetic steel sheet, electric motor, and production method for electric motor
CN116888295B (zh) * 2021-03-31 2024-03-19 日本制铁株式会社 无取向性电磁钢板、电机铁芯、无取向性电磁钢板的制造方法及电机铁芯的制造方法
KR20230023103A (ko) * 2021-08-09 2023-02-17 주식회사 포스코 무방향성 전기강판 및 그 제조 방법
KR20240015427A (ko) * 2022-07-27 2024-02-05 현대제철 주식회사 무방향성 전기강판 및 그 제조 방법
KR20240098847A (ko) * 2022-12-21 2024-06-28 주식회사 포스코 무방향성 전기강판 및 그 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300535A (ja) 2003-03-31 2004-10-28 Jfe Steel Kk 磁気特性の優れた高強度無方向性電磁鋼板およびその製造方法
JP2004315956A (ja) 2003-03-31 2004-11-11 Jfe Steel Kk 磁気特性の優れた高強度無方向性電磁鋼板およびその製造方法
JP2008050686A (ja) 2006-07-27 2008-03-06 Nippon Steel Corp 強度と磁気特性に優れた無方向性電磁鋼板とその製造方法
JP2010121150A (ja) * 2008-11-17 2010-06-03 Sumitomo Metal Ind Ltd 回転機用無方向性電磁鋼板および回転機ならびにそれらの製造方法
US20150318093A1 (en) * 2012-01-12 2015-11-05 Nucor Corporation Electrical steel processing without a post cold-rolling intermediate anneal
WO2016017263A1 (ja) * 2014-07-31 2016-02-04 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法ならびにモータコアとその製造方法
JP2016138316A (ja) * 2015-01-28 2016-08-04 Jfeスチール株式会社 無方向性電磁鋼板とモータコア
JP2017139765A (ja) 2016-02-04 2017-08-10 カシオ計算機株式会社 画像確認装置、画像確認方法、及びプログラム

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228379B2 (ja) 1972-03-08 1977-07-26
CZ284195B6 (cs) * 1991-10-22 1998-09-16 Pohang Iron And Steel Co., Ltd. Neorientované elektrické ocelové plechy a způsoby jejich výroby
JP4018790B2 (ja) * 1998-02-10 2007-12-05 新日本製鐵株式会社 高周波用無方向性電磁鋼板およびその製造方法
CN101310034B (zh) * 2005-12-15 2011-12-28 杰富意钢铁株式会社 高强度无方向性电磁钢板及其制造方法
CN100999050A (zh) * 2006-01-11 2007-07-18 宝山钢铁股份有限公司 低铁损高磁感冷轧无取向电工钢板的生产方法
JPWO2007144964A1 (ja) 2006-06-16 2009-10-29 新日本製鐵株式会社 高強度電磁鋼板およびその製造方法
JP5423175B2 (ja) 2009-06-23 2014-02-19 新日鐵住金株式会社 無方向性電磁鋼板及びその製造方法
CN104532119B (zh) * 2009-09-03 2018-01-02 新日铁住金株式会社 无方向性电磁钢板的制造方法
JP5699601B2 (ja) * 2010-12-28 2015-04-15 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
CN102151695B (zh) * 2011-01-18 2013-05-01 东北大学 一种冷轧无取向高硅钢薄带的制造方法
CN103392021B (zh) * 2011-02-24 2014-10-29 杰富意钢铁株式会社 无方向性电磁钢板及其制造方法
US8540081B2 (en) 2011-03-16 2013-09-24 Markel Corporation Fluoropolymer hollow fiber membrane with fluoro-copolymer and fluoro-terpolymer bonded end portion(s) and method to fabricate
CN103173678A (zh) 2011-12-23 2013-06-26 宝山钢铁股份有限公司 一种转子用无取向硅钢及其制造方法
KR101607044B1 (ko) * 2012-02-23 2016-03-28 제이에프이 스틸 가부시키가이샤 전기 강판의 제조 방법
CN103290190A (zh) 2012-03-02 2013-09-11 宝山钢铁股份有限公司 无取向硅钢及其制造方法
CN102634729B (zh) * 2012-04-01 2013-07-17 首钢总公司 一种低铁损高磁感高牌号无取向硅钢的制备方法
US10242782B2 (en) 2012-08-08 2019-03-26 Jfe Steel Corporation High-strength electrical steel sheet and method of producing the same
CN102925816B (zh) * 2012-11-21 2015-05-20 武汉钢铁(集团)公司 电驱动电机用无取向硅钢及其生产方法
CN103849810A (zh) 2012-12-03 2014-06-11 宝山钢铁股份有限公司 无取向硅钢及其制造方法
JP5825494B2 (ja) * 2013-03-06 2015-12-02 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP6176181B2 (ja) * 2014-04-22 2017-08-09 Jfeスチール株式会社 積層電磁鋼板およびその製造方法
US20170283903A1 (en) * 2014-10-15 2017-10-05 Sms Group Gmbh Process for producing grain-oriented electrical steel strip and grain-oriented electrical steel strip obtained according to said process
JP6048699B2 (ja) * 2015-02-18 2016-12-21 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法ならびにモータコア
JP6406522B2 (ja) 2015-12-09 2018-10-17 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP6682853B2 (ja) * 2015-12-28 2020-04-15 日本製鉄株式会社 無方向性電磁鋼板及び無方向性電磁鋼板の製造方法
CN105950960B (zh) * 2016-05-04 2018-09-14 武汉钢铁有限公司 电动汽车驱动电机用无取向硅钢及其制备方法
CN106435356B (zh) * 2016-09-13 2019-06-04 北京首钢股份有限公司 一种生产冲压用无取向带钢的方法
CN106282871A (zh) 2016-10-08 2017-01-04 周峰 一种钢铁板热镀锌工艺流程
CN106435358B (zh) 2016-10-11 2018-05-04 东北大学 一种新能源汽车驱动电机用高强度无取向硅钢的制造方法
CN106282781B (zh) * 2016-10-11 2018-03-13 东北大学 一种基于纳米Cu析出强化制备高强度无取向硅钢的方法
KR102225229B1 (ko) 2016-10-27 2021-03-08 제이에프이 스틸 가부시키가이샤 무방향성 전자 강판 및 그의 제조 방법
KR101918720B1 (ko) * 2016-12-19 2018-11-14 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP6624393B2 (ja) * 2016-12-28 2019-12-25 Jfeスチール株式会社 リサイクル性に優れる無方向性電磁鋼板
PL3594371T3 (pl) * 2017-03-07 2021-11-08 Nippon Steel Corporation Blacha cienka z niezorientowanej stali elektrotechnicznej i sposób wytwarzania blachy cienkiej z niezorientowanej stali elektrotechnicznej

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300535A (ja) 2003-03-31 2004-10-28 Jfe Steel Kk 磁気特性の優れた高強度無方向性電磁鋼板およびその製造方法
JP2004315956A (ja) 2003-03-31 2004-11-11 Jfe Steel Kk 磁気特性の優れた高強度無方向性電磁鋼板およびその製造方法
JP2008050686A (ja) 2006-07-27 2008-03-06 Nippon Steel Corp 強度と磁気特性に優れた無方向性電磁鋼板とその製造方法
JP2010121150A (ja) * 2008-11-17 2010-06-03 Sumitomo Metal Ind Ltd 回転機用無方向性電磁鋼板および回転機ならびにそれらの製造方法
US20150318093A1 (en) * 2012-01-12 2015-11-05 Nucor Corporation Electrical steel processing without a post cold-rolling intermediate anneal
WO2016017263A1 (ja) * 2014-07-31 2016-02-04 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法ならびにモータコアとその製造方法
JP2016138316A (ja) * 2015-01-28 2016-08-04 Jfeスチール株式会社 無方向性電磁鋼板とモータコア
JP2017139765A (ja) 2016-02-04 2017-08-10 カシオ計算機株式会社 画像確認装置、画像確認方法、及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3656885A4

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091043A1 (ja) * 2018-11-02 2020-05-07 日本製鉄株式会社 無方向性電磁鋼板
WO2020091039A1 (ja) * 2018-11-02 2020-05-07 日本製鉄株式会社 無方向性電磁鋼板
US12148555B2 (en) 2018-11-02 2024-11-19 Nippon Steel Corporation Non-oriented electrical steel sheet
US11866797B2 (en) 2018-11-02 2024-01-09 Nippon Steel Corporation Non-oriented electrical steel sheet
JPWO2020166718A1 (ja) * 2019-02-14 2021-10-21 日本製鉄株式会社 無方向性電磁鋼板
CN113474472B (zh) * 2019-02-14 2023-09-26 日本制铁株式会社 无方向性电磁钢板
CN113474472A (zh) * 2019-02-14 2021-10-01 日本制铁株式会社 无方向性电磁钢板
WO2020166718A1 (ja) * 2019-02-14 2020-08-20 日本製鉄株式会社 無方向性電磁鋼板
KR20210112365A (ko) * 2019-02-14 2021-09-14 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판
JP7180700B2 (ja) 2019-02-14 2022-11-30 日本製鉄株式会社 無方向性電磁鋼板
KR102554094B1 (ko) 2019-02-14 2023-07-12 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판
US11962184B2 (en) 2019-06-28 2024-04-16 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet, method for producing motor core, and motor core
EP3992312A4 (en) * 2019-06-28 2022-07-20 JFE Steel Corporation METHOD OF PRODUCTION OF NON-ORIENTED ELECTROMAGNETIC STEEL SHEET, METHOD OF PRODUCTION OF MOTOR CORE AND MOTOR CORE
JP2022545027A (ja) * 2019-08-26 2022-10-24 バオシャン アイアン アンド スティール カンパニー リミテッド 600MPa級無方向性電磁鋼板及びその製造方法
JP7462737B2 (ja) 2019-08-26 2024-04-05 バオシャン アイアン アンド スティール カンパニー リミテッド 600MPa級無方向性電磁鋼板及びその製造方法
JPWO2021117325A1 (ja) * 2019-12-09 2021-06-17
CN114630918A (zh) * 2019-12-09 2022-06-14 杰富意钢铁株式会社 无方向性电磁钢板和马达铁芯及其制造方法
JP7310880B2 (ja) 2019-12-09 2023-07-19 Jfeスチール株式会社 無方向性電磁鋼板とモータコアならびにそれらの製造方法
WO2021117325A1 (ja) * 2019-12-09 2021-06-17 Jfeスチール株式会社 無方向性電磁鋼板とモータコアならびにそれらの製造方法
KR102703090B1 (ko) 2019-12-09 2024-09-05 제이에프이 스틸 가부시키가이샤 무방향성 전기 강판과 모터 코어 그리고 그들의 제조 방법
EP4036257A4 (en) * 2019-12-09 2023-06-07 JFE Steel Corporation NON-ORIENTED ELECTROMAGNETIC STEEL, MOTOR CORE AND RELEVANT PROCESS FOR MANUFACTURE THEREOF
KR20220062605A (ko) * 2019-12-09 2022-05-17 제이에프이 스틸 가부시키가이샤 무방향성 전기 강판과 모터 코어 그리고 그들의 제조 방법
EP4079896A4 (en) * 2019-12-20 2023-06-07 Posco NON-ORIENTED ELECTRICAL STEEL SHEET, AND METHOD OF MANUFACTURING THEREOF
JPWO2021199400A1 (ja) * 2020-04-02 2021-10-07
WO2021199400A1 (ja) * 2020-04-02 2021-10-07 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
JP7469694B2 (ja) 2020-04-02 2024-04-17 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
CN115398012A (zh) * 2020-04-02 2022-11-25 日本制铁株式会社 无取向电磁钢板及其制造方法
JP7529973B2 (ja) 2020-04-06 2024-08-07 日本製鉄株式会社 ロータ用無方向性電磁鋼板およびその製造方法
JP7001210B1 (ja) * 2020-04-16 2022-01-19 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
WO2021210671A1 (ja) * 2020-04-16 2021-10-21 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
JP7328597B2 (ja) 2020-04-16 2023-08-17 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
WO2021210672A1 (ja) * 2020-04-16 2021-10-21 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
JPWO2021210671A1 (ja) * 2020-04-16 2021-10-21
KR20230129476A (ko) 2021-02-17 2023-09-08 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판 및 그 제조 방법
WO2022176933A1 (ja) 2021-02-17 2022-08-25 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
JP7303476B2 (ja) 2021-03-31 2023-07-05 日本製鉄株式会社 無方向性電磁鋼板、モータコア、無方向性電磁鋼板の製造方法及びモータコアの製造方法
KR20230134148A (ko) * 2021-03-31 2023-09-20 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판, 모터 코어, 무방향성 전자 강판의 제조 방법 및 모터 코어의 제조 방법
JPWO2022210530A1 (ja) * 2021-03-31 2022-10-06
KR102670258B1 (ko) 2021-03-31 2024-06-04 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판, 모터 코어, 무방향성 전자 강판의 제조 방법 및 모터 코어의 제조 방법
WO2022210530A1 (ja) * 2021-03-31 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板、モータコア、無方向性電磁鋼板の製造方法及びモータコアの製造方法
WO2022211004A1 (ja) 2021-04-02 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
KR20230143194A (ko) 2021-04-02 2023-10-11 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판 및 그 제조 방법
WO2023176865A1 (ja) 2022-03-15 2023-09-21 日本製鉄株式会社 無方向性電磁鋼板およびモータコアならびにそれらの製造方法
WO2023176866A1 (ja) 2022-03-15 2023-09-21 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
WO2024071628A1 (ko) * 2022-09-30 2024-04-04 현대제철 주식회사 무방향성 전기 강판 및 그 제조 방법
JP7525081B1 (ja) 2022-10-31 2024-07-30 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
WO2024095665A1 (ja) * 2022-10-31 2024-05-10 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
KR20240143582A (ko) 2023-03-24 2024-10-02 현대제철 주식회사 무방향성 전기강판 및 그 제조방법

Also Published As

Publication number Publication date
JP6478004B1 (ja) 2019-03-06
CN110573643B (zh) 2020-10-27
BR112019021222B1 (pt) 2023-10-31
EP3656885A1 (en) 2020-05-27
US11279985B2 (en) 2022-03-22
TWI683009B (zh) 2020-01-21
TW201908498A (zh) 2019-03-01
KR20190127964A (ko) 2019-11-13
EP3656885A4 (en) 2021-04-14
BR112019021222A2 (pt) 2020-04-28
CN110573643A (zh) 2019-12-13
US20200040423A1 (en) 2020-02-06
KR102107439B1 (ko) 2020-05-07
JPWO2019017426A1 (ja) 2019-07-18

Similar Documents

Publication Publication Date Title
JP6478004B1 (ja) 無方向性電磁鋼板
US11021771B2 (en) Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
US11053574B2 (en) Non-oriented electrical steel sheet
TWI722636B (zh) 無方向性電磁鋼板
WO2020091039A1 (ja) 無方向性電磁鋼板
JP7001210B1 (ja) 無方向性電磁鋼板およびその製造方法
JP2023554123A (ja) 無方向性電磁鋼板およびその製造方法
JP7328597B2 (ja) 無方向性電磁鋼板およびその製造方法
CN117120651B (zh) 无取向电磁钢板及其制造方法
JP7469694B2 (ja) 無方向性電磁鋼板およびその製造方法
KR20240162528A (ko) 무방향성 전자 강판 및 모터 코어 그리고 그것들의 제조 방법
CN118871604A (zh) 无取向性电磁钢板及电机铁芯以及它们的制造方法
CN118891387A (zh) 无取向性电磁钢板及其制造方法
CN116829753A (zh) 无取向电磁钢板及其制造方法
KR20240162103A (ko) 무방향성 전자 강판 및 그 제조 방법
TW202138581A (zh) 無方向性電磁鋼板及其製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018560686

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835029

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019021222

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197032115

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018835029

Country of ref document: EP

Effective date: 20200219

ENP Entry into the national phase

Ref document number: 112019021222

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191009