Nothing Special   »   [go: up one dir, main page]

WO2019012815A1 - Foam characteristic measurement system - Google Patents

Foam characteristic measurement system Download PDF

Info

Publication number
WO2019012815A1
WO2019012815A1 PCT/JP2018/019994 JP2018019994W WO2019012815A1 WO 2019012815 A1 WO2019012815 A1 WO 2019012815A1 JP 2018019994 W JP2018019994 W JP 2018019994W WO 2019012815 A1 WO2019012815 A1 WO 2019012815A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
mechanical impedance
unit
vibrator
characteristic
Prior art date
Application number
PCT/JP2018/019994
Other languages
French (fr)
Japanese (ja)
Inventor
順一 西田
佑 坂井
圭 東
Original Assignee
リオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リオン株式会社 filed Critical リオン株式会社
Publication of WO2019012815A1 publication Critical patent/WO2019012815A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/16Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring damping effect upon oscillatory body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00

Definitions

  • the present invention relates to a foam characteristic measurement system.
  • foam retention An objective evaluation of foam characteristics (such as foam retention) is desired in various industries such as food-related, cosmetic-related and oil-chemical related.
  • a method of evaluating foam characteristics for example, a flow-down method adopted in JIS-K3362 regarding foam retention (foam stability) of synthetic detergent, an air supply method adopted in JIS-K2518 regarding foam stability of lubricating oil, etc. Test methods of have been proposed.
  • the above-mentioned method observes the temporal change of the bubbles due to the sample from the outside of the container etc., and evaluates the foam characteristics of the sample by the unique measurement method according to the type of each sample. Because it changes depending on the characteristics of the sample, in the above method, it is necessary to establish a measurement method for each type of sample, and for samples of types for which there is no established measurement method, objectively It is difficult to identify the characteristics. In addition, in the food-related and cosmetic-related cases, when the lather is visually observed, it takes about one hour for the observation time, and the burden is large and man-hours are also required.
  • the present invention has been made in view of the above problems, and an object of the present invention is to obtain a general-purpose foam characteristic measurement system capable of objectively measuring the foam characteristic regardless of the type of sample.
  • the foam characteristic measurement system comprises a vibrator immersed in a foam layer, a drive unit for vibrating the vibrator according to a drive signal, a sensor unit for detecting vibration of the vibrator, an output of the drive signal and the sensor unit
  • the mechanical impedance specifying unit that calculates the mechanical impedance of the foam layer from the signal, and the foam characteristic specifying unit that measures the foam characteristic of the foam layer based on the calculated mechanical impedance.
  • the drive time of the vibrator can be shortened, so that the general-purpose foam can objectively measure the characteristics of the foam while reducing the influence on the foam due to the vibration of the vibrator. A characteristic measurement system is obtained.
  • FIG. 1 is a view showing the configuration of a foam characteristic measurement system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of temporal change of mechanical impedance in the first embodiment.
  • FIG. 3 is a diagram showing an example of two-dimensional coordinates by the attenuation coefficient of the real component of the mechanical impedance and the attenuation coefficient of the imaginary component in the second embodiment.
  • FIG. 4 is a diagram showing an example of a locus of mechanical impedance in the complex number plane in the third embodiment.
  • FIG. 1 is a view showing the configuration of a foam characteristic measurement system according to an embodiment of the present invention.
  • the sample (liquid) is separated into the liquid layer 111 and the foam layer 112 in the container 101, and the foam property measuring system shown in FIG. 1 measures the foam property of the foam layer 112.
  • the foam characteristic measurement system shown in FIG. 1 includes a probe unit 1, a fixing base 2 for fixing the probe unit 1, a signal conversion unit 3, and a signal processing unit 4.
  • the probe unit 1 includes a vibrator 11, a drive unit 12, and a sensor unit 13.
  • the vibrator 11 includes a shaft 11 a and a spherical portion 11 b at the end of the shaft 11 a.
  • the spherical portion 11 b is immersed in the foam layer 112.
  • the spherical portion 11b is, for example, a metal sphere, but may be other material such as resin (synthetic resin) or PTFE (Polytetrafluoroethylene), as long as it is sufficiently rigid to the target bubble.
  • the drive unit 12 vibrates the vibrator 11 in the vertical direction (that is, in the depth direction perpendicular to the surface of the foam layer) according to the drive signal.
  • the drive unit 12 includes a solenoid coil, applies a drive signal to the solenoid coil, and vibrates the vibrator 11 at the same frequency as the drive signal.
  • the sensor unit 13 detects the vibration of the vibrator.
  • the sensor unit 13 detects the acceleration of the vibrator 11 with, for example, a piezoelectric element, and generates an acceleration signal indicating the detected acceleration.
  • the spherical portion 11b has a diameter of 5 mm, the diameter of the shaft 11a be sufficiently small, and not more than about 1 ⁇ 5 of the spherical diameter of the spherical portion 11b.
  • the drive unit 12 vibrates the vibrator 11 at a resonance frequency of about 300 Hz.
  • the resonance frequency is a resonance frequency found by sweeping the vibration frequency in a state where the vibrator is not immersed in the measurement target (in the air). By driving the drive unit 12 using this resonance frequency, it is possible to perform measurement with high sensitivity. However, although the sensitivity decreases, it is not necessary to limit the condition of the vibration frequency to resonance.
  • probe unit 1 for example, the one described in Japanese Patent No. 5020403 can be used.
  • the signal conversion unit 3 includes an analog amplifier, a digital analog converter, an analog digital converter, and the like.
  • the signal conversion unit 3 converts a drive signal as a digital signal from the signal processing unit 4 into an analog signal, amplifies it as necessary, and then supplies the drive signal to the drive unit 12 of the probe unit 1. Further, the signal conversion unit 3 amplifies an acceleration signal as an analog signal from the sensor unit 13 of the probe unit 1 as necessary, and then converts it into a digital signal, and supplies the acceleration signal to the signal processing unit 4 Do.
  • the signal processing unit 4 is a computer such as a personal computer including a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), etc., and is stored in a ROM, a storage device (not shown)
  • the program is loaded into the RAM and executed by the CPU, thereby operating as various processing units.
  • the signal processing unit 4 operates as the drive signal output unit 21, the mechanical impedance specifying unit 22, the bubble characteristic specifying unit 23, and the timer unit 24.
  • the drive signal output unit 21 generates a drive signal of a predetermined frequency and supplies the drive signal to the drive unit 12 of the probe unit 1 via the signal conversion unit 3.
  • the mechanical impedance identification unit 22 calculates the mechanical impedance of the foam layer 112 from the drive signal and the output signal of the sensor unit 3.
  • the mechanical impedance specifying unit 22 acquires an acceleration signal from the sensor unit 3 of the probe unit 1 via the signal conversion unit 3 and calculates the mechanical impedance of the foam layer 112 from the drive signal and the acceleration signal.
  • the mechanical impedance specifying unit 22 has a phase difference ⁇ L between the drive signal and the acceleration signal and the drive signal and the acceleration signal when the vibrator 11 is immersed in the foam layer 112.
  • between the drive signal and the acceleration signal are measured in advance when the vibrator 11 is disposed in the air.
  • the mechanical impedance Zp depends only on the vibration frequency of the vibrator 11 and the mechanism of the measurement system such as the probe unit 1, it is a constant here and, for example, an experiment etc. as described in Japanese Patent No. 5020403. Are specified in advance.
  • the foam property specifying unit 23 measures the foam property of the foam layer 112 based on the measured mechanical impedance.
  • the timer 24 sets a time interval in which the vibrator vibrates and a time interval in which the vibration is stopped, and manages a series of operation times in the measurement.
  • the measurement time is 10 seconds
  • the measurement cycle is 1 minute
  • the bubble characteristic measurement system operates according to the number of times of measurement.
  • the number of measurements is one
  • a drive signal is input to the drive unit 12 for 10 seconds
  • the spherical portion 11 b is vibrated to measure the mechanical impedance. Stop.
  • a drive signal is input to the drive unit 12 for 10 seconds to vibrate the spherical portion 11 b to measure mechanical impedance.
  • the vibration time of the spherical portion 11 b can be shortened, the measurement can be performed with almost no influence of the vibration of the spherical portion 11 b on the foam layer 112.
  • it is necessary to compare the measurement results under the same conditions so it is possible not only to automatically monitor the progress by using a timer, but also to other samples. Measurement of the same condition can be easily performed.
  • the bubble characteristic specifying unit 23 specifies (a) a model expression that indicates a temporal change of mechanical impedance as an exponential decay, and (b) based on the attenuation coefficient ⁇ in the model expression.
  • the foam characteristics related to the foam retention of the foam layer 112 are measured. In this measurement, the number of times of measurement may be set to several times (two to five times), and estimation can be made in a considerably short time as compared with visual observation.
  • the model equation is, for example, the following equation.
  • Y is the value of the imaginary or real component of the mechanical impedance
  • Y 0 is the initial value of the attenuation term Y 0 ⁇ exp ( ⁇ ⁇ (t ⁇ t 0 )), and ⁇ is the attenuation coefficient
  • t 0 is an offset value which is the time from the end of bubbling to the start of measurement
  • Y 1 is an offset value.
  • the bubble characteristic specifying unit 23 measures, for example, the measured values of the imaginary number component or the real number component of the mechanical impedance at a plurality of timings from the start of measurement until the predetermined time elapses
  • the values of regression coefficients (constants) Y 0 , ⁇ , t 0 , and Y 1 of a model equation (nonlinear regression equation) are specified by predetermined nonlinear regression analysis processing on serial data).
  • GCG Generalized Reduced Gradient
  • FIG. 2 is a diagram showing an example of temporal change of the real component of the mechanical impedance in the first embodiment.
  • the sample A is a stock solution of a hand soap having relatively good bubbling and lathering
  • the sample B is a stock solution of non-added soap having relatively low bubbling and lathering.
  • the attenuation coefficient ⁇ of the sample A is ⁇ 0.002518
  • the attenuation coefficient ⁇ of the sample B is ⁇ 0.007436.
  • the absolute value of the attenuation coefficient ⁇ of the sample A is smaller than the absolute value of the attenuation coefficient ⁇ of the sample B.
  • the damping coefficient ⁇ of a sample having a good bubble resistance has a smaller absolute value.
  • the foam characteristic specifying unit 23 may set the attenuation coefficient ⁇ as the foam characteristic value of the foam layer 112, or obtain in advance the correspondence between the attenuation coefficient and the existing characteristic value such as foam retention, This attenuation coefficient may be converted to an existing characteristic value based on the correspondence relationship.
  • a sample is prepared, and the liquid layer 111 and the foam layer 112 are formed in a predetermined procedure.
  • the probe unit 1 is disposed such that the spherical portion 11 b of the vibrator 11 is immersed in the foam layer 112.
  • the drive signal output unit 21 of the signal processing unit 4 generates a drive signal and supplies the drive signal to the drive unit 12 of the probe unit 1 without passing through the signal conversion unit 3.
  • the drive unit 12 vibrates the vibrator 11. Thereby, the spherical portion 11 b vibrates up and down in the foam layer 112.
  • the sensor unit 13 of the probe unit 1 supplies an acceleration signal corresponding to the vibration to the signal processing unit 4 via the signal conversion unit 3.
  • the mechanical impedance specifying unit 22 measures the mechanical impedance received from the foam by the vibrator 11 immersed in the foam layer 112 based on the acceleration signal and the drive signal, and the foam characteristic specifying unit 23 measures it. Based on the obtained mechanical impedance, the foam characteristics relating to the foam retention of the foam layer 112 in which the vibrator 11 is immersed are measured.
  • the mechanical impedance specifying unit 22 measures the mechanical impedance at each point in time along the time series, and the bubble characteristic specifying unit 23 determines the temporal change of the measured mechanical impedance. As described above, the value of the attenuation coefficient ⁇ is specified. Furthermore, if necessary, the foam property identifying unit 23 converts the value of the attenuation coefficient ⁇ into the value of the existing foam properties (such as foam retention).
  • the drive unit 12 vibrates the vibrator 11 immersed in the foam layer 112 according to the drive signal, and the sensor unit 13 detects the acceleration of the vibrator 11. An acceleration signal indicating the detected acceleration is generated.
  • the mechanical impedance identification unit 22 measures the mechanical impedance of the foam from the drive signal and the acceleration signal, and the foam characteristic identification unit 23 measures the foam characteristics relating to foam retention of the foam layer 112 based on the measured mechanical impedance. .
  • the mechanical impedance specifying unit 22 specifies the real component and the imaginary component of the mechanical impedance of the vibrator 11, and the bubble characteristic specifying unit 23 performs the (a) real component of the mechanical impedance.
  • (1) specify a first model equation that indicates the temporal change of L as an exponential decay, and identify a second model equation that indicates a temporal change of the imaginary component of the mechanical impedance as an exponential decay;
  • the foam characteristics of the foam layer relating to the stability of the foam are measured based on two-dimensional coordinates based on the damping coefficient ⁇ r in one model equation and the damping coefficient ⁇ i in the second model equation.
  • the same attenuation coefficient as that of the first embodiment is derived for both the real component and the imaginary component of the mechanical impedance, and a pair of the real component attenuation coefficient ⁇ r and the imaginary component attenuation coefficient ⁇ i
  • the foam characteristics of the foam layer relating to the stability of the foam are measured depending on which one of a plurality of regions divided in advance in the two-dimensional plane the two-dimensional coordinate indicated by.
  • FIG. 3 is a diagram showing an example of two-dimensional coordinates according to the attenuation coefficient ⁇ r of the real component of the mechanical impedance and the attenuation coefficient ⁇ i of the imaginary component in the second embodiment.
  • the two-dimensional plane is divided into a stable area and an unstable area by a predetermined boundary line, and the two-dimensional coordinates of the damping coefficient of sample A belong to the stable area. Is determined to be stable, and since the two-dimensional coordinate of the attenuation coefficient of the sample B belongs to the unstable region, the bubble retention of the sample B is determined to be unstable.
  • the boundary line may be set so as to be able to be evaluated according to each type.
  • the bubble characteristic of the sample is identified from the two-dimensional coordinates of the attenuation coefficient ⁇ r of the real component of the mechanical impedance and the attenuation coefficient ⁇ i of the imaginary component for each sample. Therefore, by setting the target area in advance, it is possible to evaluate the sample by measuring the foam characteristics relating to the stability of the foam by whether or not the two-dimensional coordinates belong to the area. it can.
  • the mechanical impedance specifying unit 22 measures the real component and the imaginary component of the mechanical impedance that the vibrator 11 receives from the foam
  • the bubble characteristic specifying unit 23 measures the complex component plane.
  • the position of the coordinate of mechanical impedance or the locus of mechanical impedance is measured as the foam characteristics of the foam layer relating to the feel and texture of the foam.
  • the signal processing unit 4 displays the locus of the mechanical impedance on a complex display on a predetermined display device or prints it on a recording sheet.
  • the viscosity of the foam film becomes stronger, and for the imaginary component of the mechanical impedance, if the imaginary component of the mechanical impedance is positive, the mass of the foam film dominates If the imaginary component of the mechanical impedance is negative, then the elasticity of the foam film will dominate. Therefore, it is possible to grasp the temporal change of the bubble characteristic relating to the touch and texture of the bubble by the locus of the mechanical impedance in the complex number plane.
  • FIG. 4 is a diagram showing an example of a locus of mechanical impedance in the complex number plane in the third embodiment.
  • the foam of sample A shown in FIG. 4 is strong initially and is dominated by mass, over time, the stickiness weakens and elasticity becomes dominant.
  • the foam of sample B shown in FIG. 4 is weaker than the sample A in initial viscosity, and elasticity does not increase much with time.
  • the temporal change of the bubble characteristic relating to the touch or texture of the bubble is evaluated by the position of the measured mechanical impedance coordinate in the complex number plane or the locus of the mechanical impedance. be able to.
  • the vibrator 11 is changed in the depth direction of the foam layer, and the mechanical impedance identification unit 22 determines the mechanical impedance value at each point (one of the real component and the imaginary component). Or the both values are measured, and the bubble characteristic specifying unit 23 specifies (a) a change in mechanical impedance when the vibrator 11 is changed in the depth direction of the foam layer 112, and (b) the mechanical impedance
  • the distribution of the foam characteristics of the foam layer 112 in the depth direction of the foam layer 112 (for example, the water content distribution in the depth direction of the foam layer 112) is identified based on the change in.
  • the invention is applicable, for example, to the measurement of foam properties of various samples.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

The present invention makes it possible to obtain a general-purpose foam characteristic measurement system capable of objectively measuring the characteristics of foam regardless of the type of sample. A drive unit 12 causes a vibrating element 11 immersed in a foam layer 112 to vibrate in accordance with a drive signal. A sensor unit 13 detects the vibration of the vibrating element 11. A mechanical impedance identification unit 22 uses the drive signal and the output signal of the sensor unit 13 to calculate the mechanical impedance received by the vibrating element 11 from the foam. A foam characteristic identification unit 23 measures the foam characteristics of the foam layer 112 on the basis of the calculated mechanical impedance.

Description

泡特性測定システムFoam characteristic measurement system
 本発明は、泡特性測定システムに関するものである。 The present invention relates to a foam characteristic measurement system.
 食品関連、化粧品関連、油化学関連など種々の業界において、泡特性(泡持ちなど)の客観的な評価が望まれている。泡特性の評価方法として、例えば、合成洗剤の泡持ち(泡安定度)に関するJIS-K3362に採用されている流下法、潤滑油の泡安定度に関するJIS-K2518に採用されている送気法などの試験法が提案されている。 An objective evaluation of foam characteristics (such as foam retention) is desired in various industries such as food-related, cosmetic-related and oil-chemical related. As a method of evaluating foam characteristics, for example, a flow-down method adopted in JIS-K3362 regarding foam retention (foam stability) of synthetic detergent, an air supply method adopted in JIS-K2518 regarding foam stability of lubricating oil, etc. Test methods of have been proposed.
 また、泡層厚と泡持ち時間との関係を特定することで、ビールの泡持ちを評価する測定装置が提案されている(例えば特許文献1参照)。 Moreover, the measuring apparatus which evaluates foam retention of a beer by specifying the relationship between foam layer thickness and foam retention time is proposed (for example, refer patent document 1).
国際公開第1999/030149号International Publication No. 1999/030149
 上述の方法は、試料による泡の時間的変化を容器などの外側から観察し、その試料の泡特性を、それぞれの試料の種別に応じた独自の測定方法で評価しているが、泡の特性は試料の特性によって変化するため、上述のような方法では、試料の種別ごとに測定方法を確立していく必要があり、確立された測定方法がない種別の試料については、客観的に泡の特性を特定することは困難である。また、食品関連や化粧品関連において、泡持ちを目視により観察する場合、その観察時間に1時間程度を要するものもあり、負担が大きく工数も必要となっている。 The above-mentioned method observes the temporal change of the bubbles due to the sample from the outside of the container etc., and evaluates the foam characteristics of the sample by the unique measurement method according to the type of each sample. Because it changes depending on the characteristics of the sample, in the above method, it is necessary to establish a measurement method for each type of sample, and for samples of types for which there is no established measurement method, objectively It is difficult to identify the characteristics. In addition, in the food-related and cosmetic-related cases, when the lather is visually observed, it takes about one hour for the observation time, and the burden is large and man-hours are also required.
 本発明は、上記の問題に鑑みてなされたものであり、試料の種別に拘わらず、客観的に泡の特性を測定できる汎用的な泡特性測定システムを得ることを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to obtain a general-purpose foam characteristic measurement system capable of objectively measuring the foam characteristic regardless of the type of sample.
 本発明に係る泡特性測定システムは、泡沫層に浸漬される振動子と、駆動信号に従って振動子を振動させる駆動部と、振動子の振動を検出するセンサ部と、駆動信号およびセンサ部の出力信号から泡沫層の機械インピーダンスを算出する機械インピーダンス特定部と、算出された機械インピーダンスに基づいて、泡沫層の泡特性を測定する泡特性特定部とを備える。 The foam characteristic measurement system according to the present invention comprises a vibrator immersed in a foam layer, a drive unit for vibrating the vibrator according to a drive signal, a sensor unit for detecting vibration of the vibrator, an output of the drive signal and the sensor unit The mechanical impedance specifying unit that calculates the mechanical impedance of the foam layer from the signal, and the foam characteristic specifying unit that measures the foam characteristic of the foam layer based on the calculated mechanical impedance.
 本発明によれば、試料の種別に拘わらず、振動子の駆動時間を短くできるので、振動子の振動による泡沫への影響を少なくしつつ、客観的に泡の特性を測定できる汎用的な泡特性測定システムが得られる。 According to the present invention, regardless of the type of sample, the drive time of the vibrator can be shortened, so that the general-purpose foam can objectively measure the characteristics of the foam while reducing the influence on the foam due to the vibration of the vibrator. A characteristic measurement system is obtained.
図1は、本発明の実施の形態に係る泡特性測定システムの構成を示す図である。FIG. 1 is a view showing the configuration of a foam characteristic measurement system according to an embodiment of the present invention. 図2は、実施の形態1における機械インピーダンスの時間的変化の例を示す図である。FIG. 2 is a diagram showing an example of temporal change of mechanical impedance in the first embodiment. 図3は、実施の形態2における機械インピーダンスの実数成分の減衰係数と虚数成分の減衰係数とによる2次元座標の例を示す図である。FIG. 3 is a diagram showing an example of two-dimensional coordinates by the attenuation coefficient of the real component of the mechanical impedance and the attenuation coefficient of the imaginary component in the second embodiment. 図4は、実施の形態3における複素数平面での機械インピーダンスの軌跡の例を示す図である。FIG. 4 is a diagram showing an example of a locus of mechanical impedance in the complex number plane in the third embodiment.
 以下、図に基づいて本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described based on the drawings.
実施の形態1. Embodiment 1
 図1は、本発明の実施の形態に係る泡特性測定システムの構成を示す図である。 FIG. 1 is a view showing the configuration of a foam characteristic measurement system according to an embodiment of the present invention.
 容器101内で試料(液体)が液体層111および泡沫層112に分離しており、図1に示す泡特性測定システムは、この泡沫層112の泡特性を測定する。 The sample (liquid) is separated into the liquid layer 111 and the foam layer 112 in the container 101, and the foam property measuring system shown in FIG. 1 measures the foam property of the foam layer 112.
 図1に示す泡特性測定システムは、プローブ部1、プローブ部1を固定する固定台2、信号変換部3、および信号処理部4を備える。 The foam characteristic measurement system shown in FIG. 1 includes a probe unit 1, a fixing base 2 for fixing the probe unit 1, a signal conversion unit 3, and a signal processing unit 4.
 プローブ部1は、振動子11、駆動部12、およびセンサ部13を備える。 The probe unit 1 includes a vibrator 11, a drive unit 12, and a sensor unit 13.
 振動子11は、シャフト11aと、シャフト11a先端の球状部11bとを備える。球状部11bは、泡沫層112に浸漬される。球状部11bは、例えば金属球とされるが、対象となる泡に対して充分に剛体であるならば、 resin(合成樹脂)やPTFE(Polytetrafluoroethylene)など他の材質でもよい。 The vibrator 11 includes a shaft 11 a and a spherical portion 11 b at the end of the shaft 11 a. The spherical portion 11 b is immersed in the foam layer 112. The spherical portion 11b is, for example, a metal sphere, but may be other material such as resin (synthetic resin) or PTFE (Polytetrafluoroethylene), as long as it is sufficiently rigid to the target bubble.
 駆動部12は、駆動信号に従って振動子11を上下方向(つまり、泡沫層の表面に対して垂直方向となる深さ方向)に振動させる。例えば、駆動部12は、ソレノイドコイルを備え、駆動信号をソレノイドコイルに印加し、駆動信号と同一の周波数で振動子11を振動させる。なお、振動子11を、上下方向に限らず、泡沫層の表面に対して斜め方向に振動させてもよい。 The drive unit 12 vibrates the vibrator 11 in the vertical direction (that is, in the depth direction perpendicular to the surface of the foam layer) according to the drive signal. For example, the drive unit 12 includes a solenoid coil, applies a drive signal to the solenoid coil, and vibrates the vibrator 11 at the same frequency as the drive signal. In addition, you may vibrate the vibrator | oscillator 11 in the diagonal direction with respect to the surface of a foam layer not only in an up-down direction.
 センサ部13は、振動子の振動を検出する。ここでは、センサ部13は、例えば圧電素子などで振動子11の加速度を検出し、検出した加速度を示す加速度信号を生成する。 The sensor unit 13 detects the vibration of the vibrator. Here, the sensor unit 13 detects the acceleration of the vibrator 11 with, for example, a piezoelectric element, and generates an acceleration signal indicating the detected acceleration.
 例えば、球状部11bは、直径5mmとされ、シャフト11aの直径は十分に細く、球状部11bの球径の約1/5以下にすることが望ましい。ここでは0.6mmである。駆動部12は、約300Hzの共振周波数で振動子11を振動させる。なお、共振周波数は、振動子が測定対象に浸漬していない状態(空中)において、振動周波数を掃引して探した共振周波数である。この共振周波数を使用して駆動部12を駆動することで、感度よく測定ができる。ただし、感度は低下するが、振動周波数の条件を共振に限定する必要はない。 For example, it is desirable that the spherical portion 11b has a diameter of 5 mm, the diameter of the shaft 11a be sufficiently small, and not more than about 1⁄5 of the spherical diameter of the spherical portion 11b. Here, it is 0.6 mm. The drive unit 12 vibrates the vibrator 11 at a resonance frequency of about 300 Hz. The resonance frequency is a resonance frequency found by sweeping the vibration frequency in a state where the vibrator is not immersed in the measurement target (in the air). By driving the drive unit 12 using this resonance frequency, it is possible to perform measurement with high sensitivity. However, although the sensitivity decreases, it is not necessary to limit the condition of the vibration frequency to resonance.
 なお、プローブ部1には、例えば、特許第5020403号公報に記載のものを使用することができる。 For the probe unit 1, for example, the one described in Japanese Patent No. 5020403 can be used.
 信号変換部3は、アナログアンプ、デジタルアナログコンバータ、アナログデジタルコンバータなどを備える。信号変換部3は、信号処理部4からのデジタル信号としての駆動信号をアナログ信号に変換し、必要に応じて増幅した後で、その駆動信号をプローブ部1の駆動部12に供給する。また、信号変換部3は、プローブ部1のセンサ部13からのアナログ信号としての加速度信号を、必要に応じて増幅した後で、デジタル信号に変換し、その加速度信号を信号処理部4に供給する。 The signal conversion unit 3 includes an analog amplifier, a digital analog converter, an analog digital converter, and the like. The signal conversion unit 3 converts a drive signal as a digital signal from the signal processing unit 4 into an analog signal, amplifies it as necessary, and then supplies the drive signal to the drive unit 12 of the probe unit 1. Further, the signal conversion unit 3 amplifies an acceleration signal as an analog signal from the sensor unit 13 of the probe unit 1 as necessary, and then converts it into a digital signal, and supplies the acceleration signal to the signal processing unit 4 Do.
 信号処理部4は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを含むパーソナルコンピュータなどといったコンピュータであって、ROM、図示せぬ記憶装置などに記憶されているプログラムをRAMにロードしてCPUで実行し、これにより、各種処理部として動作する。 The signal processing unit 4 is a computer such as a personal computer including a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), etc., and is stored in a ROM, a storage device (not shown) The program is loaded into the RAM and executed by the CPU, thereby operating as various processing units.
 ここでは、信号処理部4は、駆動信号出力部21、機械インピーダンス特定部22、泡特性特定部23、およびタイマー部24として動作する。 Here, the signal processing unit 4 operates as the drive signal output unit 21, the mechanical impedance specifying unit 22, the bubble characteristic specifying unit 23, and the timer unit 24.
 駆動信号出力部21は、所定周波数の駆動信号を生成し、信号変換部3を介してプローブ部1の駆動部12に供給する。 The drive signal output unit 21 generates a drive signal of a predetermined frequency and supplies the drive signal to the drive unit 12 of the probe unit 1 via the signal conversion unit 3.
 機械インピーダンス特定部22は、駆動信号およびセンサ部3の出力信号から泡沫層112の機械インピーダンスを算出する。ここでは、機械インピーダンス特定部22は、信号変換部3を介してプローブ部1のセンサ部3から加速度信号を取得し、駆動信号および加速度信号から泡沫層112の機械インピーダンスを算出する。 The mechanical impedance identification unit 22 calculates the mechanical impedance of the foam layer 112 from the drive signal and the output signal of the sensor unit 3. Here, the mechanical impedance specifying unit 22 acquires an acceleration signal from the sensor unit 3 of the probe unit 1 via the signal conversion unit 3 and calculates the mechanical impedance of the foam layer 112 from the drive signal and the acceleration signal.
 例えば、機械インピーダンス特定部22は、特許第5020403号公報に記載のように、振動子11を泡沫層112に浸漬した場合の、駆動信号と加速度信号との位相差θおよび駆動信号と加速度信号との振幅比|F|を特定し、そして、(a)振動子11を空中に配置した場合の、駆動信号と加速度信号との位相差θおよび駆動信号と加速度信号との振幅比|F|、並びに(b)振動子11を泡沫層112に浸漬した場合の、駆動信号と加速度信号との位相差θおよび駆動信号と加速度信号との振幅比|F|に基づき、位相差θ,θの差である位相差γ(=θ-θ)、および振幅比|F|,|F|の比である振幅比α(=|F|/|F|)を特定し、機械インピーダンスZx(複素数)を次式に従って計算する。 For example, as described in Japanese Patent No. 5020403, the mechanical impedance specifying unit 22 has a phase difference θ L between the drive signal and the acceleration signal and the drive signal and the acceleration signal when the vibrator 11 is immersed in the foam layer 112. Amplitude ratio | F L | with the (a) phase difference θ A between the drive signal and the acceleration signal and the amplitude ratio between the drive signal and the acceleration signal | when the vibrator 11 is placed in the air F A |, and (b) the phase difference θ L between the drive signal and the acceleration signal and the amplitude ratio | F L | between the drive signal and the acceleration signal when the vibrator 11 is immersed in the foam layer 112 retardation theta a, the phase difference is the difference of θ L γ (= θ a -θ L), and the amplitude ratio | F a |, | F L | amplitude ratio is the ratio of α (= | F a | / | F L |) to identify, mechanical impedance Zx the (complex) in the following equation Calculate I.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、振動子11を空中に配置した場合の、駆動信号と加速度信号との位相差θおよび駆動信号と加速度信号との振幅比|F|は、予め測定されているものとする。また、機械インピーダンスZpは、振動子11の振動周波数およびプローブ部1などの測定系の機構のみに依存するため、ここでは定数であって、例えば特許第5020403号公報に記載のようにして実験などにより予め特定されているものとする。 It is assumed that the phase difference θ A between the drive signal and the acceleration signal and the amplitude ratio | F A | between the drive signal and the acceleration signal are measured in advance when the vibrator 11 is disposed in the air. Further, since the mechanical impedance Zp depends only on the vibration frequency of the vibrator 11 and the mechanism of the measurement system such as the probe unit 1, it is a constant here and, for example, an experiment etc. as described in Japanese Patent No. 5020403. Are specified in advance.
 泡特性特定部23は、測定された機械インピーダンスに基づいて、泡沫層112の泡特性を測定する。 The foam property specifying unit 23 measures the foam property of the foam layer 112 based on the measured mechanical impedance.
 また、タイマー24は、振動子の振動する時間区間と振動を停止する時間区間を設定して、測定における一連の動作時間を管理する。例えば、測定時間を10秒とし、測定周期を1分とし、測定回数に応じて、泡特性測定システムが動作する。具体的には、測定回数が1回の場合、測定回数を1回とすることで、10秒の間で、駆動部12に駆動信号を入力し球状部11bを振動させて機械インピーダンスを測定し停止する。また、測定回数が2回の場合、1回目が開始されると、10秒の間で、駆動部12に駆動信号を入力し球状部11bを振動させて機械インピーダンスを測定する。その後の50秒間は停止して、次に2回目の測定が10秒間で行われて停止する。このように、球状部11bの振動する時間を短時間にすることができるので、球状部11bの振動による影響を泡沫層112にほとんど与えることなく測定ができる。また、泡特性の測定で時間経過をみる場合、同条件での測定結果の比較が必要であるため、タイマーを用いることで自動的に経過観察を行えるだけでなく、他の試料に対しても同条件の測定を容易に行うことができる。 Further, the timer 24 sets a time interval in which the vibrator vibrates and a time interval in which the vibration is stopped, and manages a series of operation times in the measurement. For example, the measurement time is 10 seconds, the measurement cycle is 1 minute, and the bubble characteristic measurement system operates according to the number of times of measurement. Specifically, when the number of measurements is one, by setting the number of measurements as one, a drive signal is input to the drive unit 12 for 10 seconds, and the spherical portion 11 b is vibrated to measure the mechanical impedance. Stop. In addition, in the case where the number of measurements is two, when the first time is started, a drive signal is input to the drive unit 12 for 10 seconds to vibrate the spherical portion 11 b to measure mechanical impedance. The next 50 seconds stop and then a second measurement takes 10 seconds to stop. As described above, since the vibration time of the spherical portion 11 b can be shortened, the measurement can be performed with almost no influence of the vibration of the spherical portion 11 b on the foam layer 112. In addition, when looking at the passage of time in the measurement of foam characteristics, it is necessary to compare the measurement results under the same conditions, so it is possible not only to automatically monitor the progress by using a timer, but also to other samples. Measurement of the same condition can be easily performed.
 なお、後述する実施の形態においては、温度や湿度の一定の環境下で測定することが望ましい。 In the embodiment to be described later, it is desirable to measure under a constant environment of temperature and humidity.
 実施の形態1では、泡特性特定部23は、(a)機械インピーダンスの時間的変化を指数関数的な減衰として示すモデル式を特定し、(b)そのモデル式における減衰係数βに基づいて、泡沫層112の泡持ちに係る泡特性を測定する。この測定においては、測定回数を数回(2回から5回)に設定すればよく、目視による観察に比べれば、かなり短時間で推定することができる。 In the first embodiment, the bubble characteristic specifying unit 23 specifies (a) a model expression that indicates a temporal change of mechanical impedance as an exponential decay, and (b) based on the attenuation coefficient β in the model expression. The foam characteristics related to the foam retention of the foam layer 112 are measured. In this measurement, the number of times of measurement may be set to several times (two to five times), and estimation can be made in a considerably short time as compared with visual observation.
 そのモデル式は、例えば、次式とされる。 The model equation is, for example, the following equation.
 Y=Y・exp(β・(t-t))+Y Y = Y 0 · exp (β · (t-t 0 )) + Y 1
 ここで、Yは、機械インピーダンスの虚数成分または実数成分の値であり、Yは、減衰項Y・exp(β・(t-t))の初期値であり、βは、減衰係数であり、tは泡立て終了時から測定開始時までの時間となるオフセット値であり、Yは、オフセット値である。 Here, Y is the value of the imaginary or real component of the mechanical impedance, Y 0 is the initial value of the attenuation term Y 0 · exp (β · (t−t 0 )), and β is the attenuation coefficient And t 0 is an offset value which is the time from the end of bubbling to the start of measurement, and Y 1 is an offset value.
 そして、泡特性特定部23は、例えば、測定開始から所定時間が経過するまでの複数のタイミングでの機械インピーダンスの虚数成分または実数成分の測定値(つまり、機械インピーダンスの虚数成分または実数成分の時系列データ)に対する所定の非線形回帰分析処理によって、モデル式(非線形回帰式)の回帰係数(定数)Y,β,t,Yの値を特定する。非線形回帰分析処理としては、例えばGRG(Generalized Reduced Gradient)非線形を使用できる。 Then, the bubble characteristic specifying unit 23 measures, for example, the measured values of the imaginary number component or the real number component of the mechanical impedance at a plurality of timings from the start of measurement until the predetermined time elapses The values of regression coefficients (constants) Y 0 , β, t 0 , and Y 1 of a model equation (nonlinear regression equation) are specified by predetermined nonlinear regression analysis processing on serial data). For example, Generalized Reduced Gradient (GRG) non-linear can be used as non-linear regression analysis processing.
 図2は、実施の形態1における機械インピーダンスの実数成分の時間的変化の例を示す図である。図2において、試料Aは、比較的泡立ち・泡持ちの良いハンドソープの原液であり、試料Bは、比較的泡立ち・泡持ちの悪い無添加せっけんの原液である。 FIG. 2 is a diagram showing an example of temporal change of the real component of the mechanical impedance in the first embodiment. In FIG. 2, the sample A is a stock solution of a hand soap having relatively good bubbling and lathering, and the sample B is a stock solution of non-added soap having relatively low bubbling and lathering.
 図2において、試料Aのモデル式は、Y=4.104・exp(-0.002518・(t+58.10))-2.553となり、試料Bのモデル式は、Y=5.311・exp(-0.007436・(t+54.37))-2.536となる。なお、機械インピーダンスの虚数成分の測定値は、測定開始時(t=0)の測定値で正規化され、正規化済みの測定値に基づいて、回帰係数が特定されている。 In FIG. 2, the model formula of sample A is Y = 4.104 · exp (−0.002518 · (t + 58.10)) − 2.553, and the model formula of sample B is Y = 5.311 · exp. (−0.007436 · (t + 54.37)) − 2.536. The measurement value of the imaginary component of the mechanical impedance is normalized by the measurement value at the start of measurement (t = 0), and the regression coefficient is specified based on the normalized measurement value.
 つまり、試料Aの減衰係数βは、-0.002518であり、試料Bの減衰係数βは、-0.007436である。試料Aの減衰係数βの絶対値のほうが、試料Bの減衰係数βの絶対値より小さい。このように、泡持ちの良い試料の減衰係数βのほうが、絶対値が小さくなる。 That is, the attenuation coefficient β of the sample A is −0.002518, and the attenuation coefficient β of the sample B is −0.007436. The absolute value of the attenuation coefficient β of the sample A is smaller than the absolute value of the attenuation coefficient β of the sample B. As described above, the damping coefficient β of a sample having a good bubble resistance has a smaller absolute value.
 したがって、泡特性特定部23は、この減衰係数βを、泡沫層112の泡特性値としてもよいし、この減衰係数と泡持ちなどの既存の特性値との対応関係を予め求めておき、その対応関係に基づいて、この減衰係数を既存の特性値に変換するようにしてもよい。 Therefore, the foam characteristic specifying unit 23 may set the attenuation coefficient β as the foam characteristic value of the foam layer 112, or obtain in advance the correspondence between the attenuation coefficient and the existing characteristic value such as foam retention, This attenuation coefficient may be converted to an existing characteristic value based on the correspondence relationship.
 次に、実施の形態1に係る泡特性測定システムの動作について説明する。 Next, the operation of the foam characteristic measurement system according to the first embodiment will be described.
 まず、試料が用意され、所定の手順で液体層111と泡沫層112とが形成される。次に、泡沫層112に振動子11の球状部11bが浸漬されるように、プローブ部1が配置される。 First, a sample is prepared, and the liquid layer 111 and the foam layer 112 are formed in a predetermined procedure. Next, the probe unit 1 is disposed such that the spherical portion 11 b of the vibrator 11 is immersed in the foam layer 112.
 次に、信号処理部4の駆動信号出力部21は、駆動信号を生成し、信号変換部3を介さずにプローブ部1の駆動部12に供給する。駆動部12は、振動子11を振動させる。これにより、球状部11bは、泡沫層112内で上下に振動する。 Next, the drive signal output unit 21 of the signal processing unit 4 generates a drive signal and supplies the drive signal to the drive unit 12 of the probe unit 1 without passing through the signal conversion unit 3. The drive unit 12 vibrates the vibrator 11. Thereby, the spherical portion 11 b vibrates up and down in the foam layer 112.
 プローブ部1のセンサ部13は、この振動に応じた加速度信号を、信号変換部3を介して、信号処理部4へ供給する。 The sensor unit 13 of the probe unit 1 supplies an acceleration signal corresponding to the vibration to the signal processing unit 4 via the signal conversion unit 3.
 信号処理部4では、機械インピーダンス特定部22が、この加速度信号および駆動信号に基づいて、泡沫層112に浸漬した振動子11が泡沫から受ける機械インピーダンスを測定し、泡特性特定部23は、測定された機械インピーダンスに基づいて、振動子11が浸漬している泡沫層112の泡持ちに係る泡特性を測定する。 In the signal processing unit 4, the mechanical impedance specifying unit 22 measures the mechanical impedance received from the foam by the vibrator 11 immersed in the foam layer 112 based on the acceleration signal and the drive signal, and the foam characteristic specifying unit 23 measures it. Based on the obtained mechanical impedance, the foam characteristics relating to the foam retention of the foam layer 112 in which the vibrator 11 is immersed are measured.
 実施の形態1では、機械インピーダンス特定部22が、時系列に沿って、各時点の機械インピーダンスを測定していき、泡特性特定部23は、測定された機械インピーダンスの時間的変化に基づいて、上述のようにして減衰係数βの値を特定する。さらに、必要に応じて、泡特性特定部23は、この減衰係数βの値を、既存の泡特性(泡持ちなど)の値に変換する。 In the first embodiment, the mechanical impedance specifying unit 22 measures the mechanical impedance at each point in time along the time series, and the bubble characteristic specifying unit 23 determines the temporal change of the measured mechanical impedance. As described above, the value of the attenuation coefficient β is specified. Furthermore, if necessary, the foam property identifying unit 23 converts the value of the attenuation coefficient β into the value of the existing foam properties (such as foam retention).
 以上のように、上記実施の形態1によれば、駆動部12は、泡沫層112に浸漬された振動子11を駆動信号に従って振動させ、センサ部13は、振動子11の加速度を検出し、検出した加速度を示す加速度信号を生成する。機械インピーダンス特定部22は、駆動信号および加速度信号から泡沫の機械インピーダンスを測定し、泡特性特定部23は、測定された機械インピーダンスに基づいて、泡沫層112の泡持ちに係る泡特性を測定する。 As described above, according to the first embodiment, the drive unit 12 vibrates the vibrator 11 immersed in the foam layer 112 according to the drive signal, and the sensor unit 13 detects the acceleration of the vibrator 11. An acceleration signal indicating the detected acceleration is generated. The mechanical impedance identification unit 22 measures the mechanical impedance of the foam from the drive signal and the acceleration signal, and the foam characteristic identification unit 23 measures the foam characteristics relating to foam retention of the foam layer 112 based on the measured mechanical impedance. .
 これにより、試料の種別に拘わらず、客観的に泡の特性を測定できる。つまり、振動子11を泡沫層112に浸漬させた状態で振動子11の機械インピーダンスを測定しているので、試料により形成される泡の物性(粘性、弾性、マスなど)に応じて変化する機械インピーダンスから泡持ちに係る泡特性を測定することで、汎用的な泡特性測定システムが得られる。 Thereby, regardless of the type of sample, it is possible to objectively measure the characteristics of the bubble. That is, since the mechanical impedance of the vibrator 11 is measured in a state where the vibrator 11 is immersed in the foam layer 112, a machine that changes according to the physical properties (viscosity, elasticity, mass, etc.) of the foam formed by the sample. By measuring the foam characteristics related to bubble retention from the impedance, a versatile foam characteristics measurement system can be obtained.
実施の形態2. Second Embodiment
 実施の形態2に係る泡特性測定システムでは、機械インピーダンス特定部22は、振動子11の機械インピーダンスの実数成分および虚数成分を特定し、泡特性特定部23は、(a)機械インピーダンスの実数成分の時間的変化を指数関数的な減衰として示す第1モデル式を特定するとともに、機械インピーダンスの虚数成分の時間的変化を指数関数的な減衰として示す第2モデル式を特定し、(b)第1モデル式における減衰係数βと第2モデル式における減衰係数βとによる2次元座標に基づいて、泡持ちの安定性に係る泡沫層の泡特性を測定する。 In the bubble characteristic measuring system according to the second embodiment, the mechanical impedance specifying unit 22 specifies the real component and the imaginary component of the mechanical impedance of the vibrator 11, and the bubble characteristic specifying unit 23 performs the (a) real component of the mechanical impedance. (1) specify a first model equation that indicates the temporal change of L as an exponential decay, and identify a second model equation that indicates a temporal change of the imaginary component of the mechanical impedance as an exponential decay; The foam characteristics of the foam layer relating to the stability of the foam are measured based on two-dimensional coordinates based on the damping coefficient β r in one model equation and the damping coefficient β i in the second model equation.
 つまり、実施の形態2では、実施の形態1と同様の減衰係数が、機械インピーダンスの実数成分と虚数成分の両方について導出され、実数成分の減衰係数βと虚数成分の減衰係数βの対が示す2次元座標が、2次元平面において予め区分されている複数の領域のうちのどの領域に属するかによって、泡持ちの安定性に係る泡沫層の泡特性が測定される。 That is, in the second embodiment, the same attenuation coefficient as that of the first embodiment is derived for both the real component and the imaginary component of the mechanical impedance, and a pair of the real component attenuation coefficient β r and the imaginary component attenuation coefficient β i The foam characteristics of the foam layer relating to the stability of the foam are measured depending on which one of a plurality of regions divided in advance in the two-dimensional plane the two-dimensional coordinate indicated by.
 図3は、実施の形態2における機械インピーダンスの実数成分の減衰係数βと虚数成分の減衰係数βとによる2次元座標の例を示す図である。図3に示す例では、2次元平面が所定の境界線によって安定領域と不安定領域とに区分されており、試料Aの減衰係数の2次元座標は安定領域に属するので、試料Aの泡持ちは安定であると判定され、試料Bの減衰係数の2次元座標は不安定領域に属するので、試料Bの泡持ちは不安定であると判定される。なお、試料の種別が様々であることから、境界線はそれぞれの種別に応じて評価できるように設定すればよい。 FIG. 3 is a diagram showing an example of two-dimensional coordinates according to the attenuation coefficient β r of the real component of the mechanical impedance and the attenuation coefficient β i of the imaginary component in the second embodiment. In the example shown in FIG. 3, the two-dimensional plane is divided into a stable area and an unstable area by a predetermined boundary line, and the two-dimensional coordinates of the damping coefficient of sample A belong to the stable area. Is determined to be stable, and since the two-dimensional coordinate of the attenuation coefficient of the sample B belongs to the unstable region, the bubble retention of the sample B is determined to be unstable. In addition, since the types of samples are various, the boundary line may be set so as to be able to be evaluated according to each type.
 なお、実施の形態2に係る泡特性測定システムのその他の構成および動作については実施の形態1と同様であるので、その説明を省略する。 The other configurations and operations of the foam characteristic measurement system according to the second embodiment are the same as those of the first embodiment, and thus the description thereof will be omitted.
 以上のように、上記実施の形態2によれば、試料ごとに、機械インピーダンスの実数成分の減衰係数βと虚数成分の減衰係数βとによる2次元座標から、試料の泡特性が特定されるため、目標となる領域を予め設定しておくことで、その領域に2次元座標が属するか否かで、泡持ちの安定性に係る泡特性を測定して、試料の評価を行うことができる。 As described above, according to the second embodiment, the bubble characteristic of the sample is identified from the two-dimensional coordinates of the attenuation coefficient β r of the real component of the mechanical impedance and the attenuation coefficient β i of the imaginary component for each sample. Therefore, by setting the target area in advance, it is possible to evaluate the sample by measuring the foam characteristics relating to the stability of the foam by whether or not the two-dimensional coordinates belong to the area. it can.
実施の形態3. Third Embodiment
 実施の形態3に係る泡特性測定システムでは、機械インピーダンス特定部22は、振動子11が泡沫から受ける機械インピーダンスの実数成分および虚数成分を測定し、泡特性特定部23は、複素数平面において、その機械インピーダンスの座標の位置または機械インピーダンスの軌跡を、泡の触感や食感に係る泡沫層の泡特性として測定する。 In the bubble characteristic measuring system according to the third embodiment, the mechanical impedance specifying unit 22 measures the real component and the imaginary component of the mechanical impedance that the vibrator 11 receives from the foam, and the bubble characteristic specifying unit 23 measures the complex component plane. The position of the coordinate of mechanical impedance or the locus of mechanical impedance is measured as the foam characteristics of the foam layer relating to the feel and texture of the foam.
 例えば、信号処理部4は、複素数平面においてその機械インピーダンスの軌跡を所定の表示装置に表示したり記録紙に印刷したりする。 For example, the signal processing unit 4 displays the locus of the mechanical impedance on a complex display on a predetermined display device or prints it on a recording sheet.
 機械インピーダンスの実数成分については、機械インピーダンスの実数成分が大きいほど、泡膜の粘りが強くなり、機械インピーダンスの虚数成分については、機械インピーダンスの虚数成分が正であれば、泡膜のマスが支配的となり、機械インピーダンスの虚数成分が負であれば、泡膜の弾性が支配的となる。そのため、複素数平面における機械インピーダンスの軌跡によって泡の触感や食感に係る泡特性の時間的変化が把握できる。 For the real component of the mechanical impedance, as the real component of the mechanical impedance is larger, the viscosity of the foam film becomes stronger, and for the imaginary component of the mechanical impedance, if the imaginary component of the mechanical impedance is positive, the mass of the foam film dominates If the imaginary component of the mechanical impedance is negative, then the elasticity of the foam film will dominate. Therefore, it is possible to grasp the temporal change of the bubble characteristic relating to the touch and texture of the bubble by the locus of the mechanical impedance in the complex number plane.
 図4は、実施の形態3における複素数平面での機械インピーダンスの軌跡の例を示す図である。 FIG. 4 is a diagram showing an example of a locus of mechanical impedance in the complex number plane in the third embodiment.
 例えば、図4に示す試料Aの泡は、当初、粘りが強く、マスが支配的になっているが、時間経過とともに、粘りが弱くなり、弾性が支配的になっている。また、図4に示す試料Bの泡は、試料Aに比べ、当初の粘りが弱く、時間経過とともに弾性もあまり増加しない。 For example, although the foam of sample A shown in FIG. 4 is strong initially and is dominated by mass, over time, the stickiness weakens and elasticity becomes dominant. In addition, the foam of sample B shown in FIG. 4 is weaker than the sample A in initial viscosity, and elasticity does not increase much with time.
 なお、実施の形態3に係る泡特性測定システムのその他の構成および動作については実施の形態1と同様であるので、その説明を省略する。 The other configuration and operation of the foam characteristic measurement system according to the third embodiment are the same as those of the first embodiment, and thus the description thereof will be omitted.
 以上のように、上記実施の形態3によれば、複素数平面における測定された機械インピーダンスの座標の位置または機械インピーダンスの軌跡によって泡の触感や食感に係る泡特性の時間的変化の評価を行うことができる。 As described above, according to the third embodiment, the temporal change of the bubble characteristic relating to the touch or texture of the bubble is evaluated by the position of the measured mechanical impedance coordinate in the complex number plane or the locus of the mechanical impedance. be able to.
実施の形態4. Fourth Embodiment
 実施の形態4に係る泡特性測定システムでは、振動子11を泡沫層の深さ方向に変化させていき、機械インピーダンス特定部22は、各時点の機械インピーダンスの値(実数成分および虚数成分の一方または両方の値)を測定し、泡特性特定部23は、(a)振動子11を泡沫層112の深さ方向に変化させた際の機械インピーダンスの変化を特定し、(b)その機械インピーダンスの変化に基づいて、泡沫層112の深さ方向における泡沫層112の泡特性の分布(例えば泡沫層112の深さ方向の水分量分布)を特定する。 In the foam characteristic measurement system according to the fourth embodiment, the vibrator 11 is changed in the depth direction of the foam layer, and the mechanical impedance identification unit 22 determines the mechanical impedance value at each point (one of the real component and the imaginary component). Or the both values are measured, and the bubble characteristic specifying unit 23 specifies (a) a change in mechanical impedance when the vibrator 11 is changed in the depth direction of the foam layer 112, and (b) the mechanical impedance The distribution of the foam characteristics of the foam layer 112 in the depth direction of the foam layer 112 (for example, the water content distribution in the depth direction of the foam layer 112) is identified based on the change in.
 なお、実施の形態4に係る泡特性測定システムのその他の構成および動作については実施の形態1と同様であるので、その説明を省略する。 The other configuration and operation of the foam characteristic measurement system according to the fourth embodiment are the same as those of the first embodiment, and thus the description thereof will be omitted.
 なお、上述の実施の形態に対する様々な変更および修正については、当業者には明らかである。そのような変更および修正は、その主題の趣旨および範囲から離れることなく、かつ、意図された利点を弱めることなく行われてもよい。つまり、そのような変更および修正が請求の範囲に含まれることを意図している。 Note that various changes and modifications to the above-described embodiment will be apparent to those skilled in the art. Such changes and modifications may be made without departing from the spirit and scope of the subject matter and without diminishing the intended advantages. That is, such changes and modifications are intended to be included in the scope of the claims.
 本発明は、例えば、様々な試料の泡特性の測定に適用可能である。 The invention is applicable, for example, to the measurement of foam properties of various samples.
 11 振動子
 12 駆動部
 13 センサ部
 22 機械インピーダンス特定部
 23 泡特性特定部
 24 タイマー
11 oscillator 12 drive unit 13 sensor unit 22 mechanical impedance identification unit 23 bubble characteristic identification unit 24 timer

Claims (6)

  1.  泡沫層に浸漬される振動子と、
     駆動信号に従って前記振動子を振動させる駆動部と、
     前記振動子の振動を検出するセンサ部と、
     前記駆動信号および前記センサ部の出力信号から前記泡沫層の機械インピーダンスを算出する機械インピーダンス特定部と、
     算出された前記機械インピーダンスに基づいて、前記泡沫層の泡特性を測定する泡特性特定部と、
     を備えることを特徴とする泡特性測定システム。
    A vibrator immersed in the foam layer,
    A drive unit that vibrates the vibrator according to a drive signal;
    A sensor unit that detects the vibration of the vibrator;
    A mechanical impedance identification unit that calculates mechanical impedance of the foam layer from the drive signal and an output signal of the sensor unit;
    A foam characteristic specifying unit that measures the foam characteristic of the foam layer based on the calculated mechanical impedance;
    A bubble characteristic measurement system comprising:
  2.  前記振動子の振動する時間区間を設定して、測定における一連の動作時間を管理するタイマーをさらに備え、
     前記センサ部は、前記振動子の加速度を検出し、
     前記機械インピーダンス特定部は、前記駆動信号および前記センサ部の加速度信号から前記振動子が泡沫から受ける機械インピーダンスを算出すること、
     を備えることを特徴とする請求項1記載の泡特性測定システム。
    The system further comprises a timer that sets a vibrating time interval of the vibrator and manages a series of operation time in measurement;
    The sensor unit detects an acceleration of the vibrator.
    The mechanical impedance specifying unit calculates mechanical impedance that the vibrator receives from foam from the drive signal and an acceleration signal of the sensor unit.
    The bubble characteristic measurement system according to claim 1, comprising:
  3.  前記泡特性特定部は、(a)前記機械インピーダンスの時間的変化を指数関数的な減衰として示すモデル式を特定し、(b)前記モデル式における減衰係数に基づいて、泡持ちに係る前記泡沫層の泡特性を測定することを特徴とする請求項1記載の泡特性測定システム。 The foam characteristic identifying unit identifies (a) a model equation that indicates temporal change of the mechanical impedance as an exponential decay, and (b) the foam associated with bubble retention based on the attenuation coefficient in the model equation. The system for measuring foam properties according to claim 1, characterized in that the foam properties of the layer are measured.
  4.  前記機械インピーダンス特定部は、前記機械インピーダンスの実数成分および虚数成分を算出し、
     前記泡特性特定部は、(a)前記機械インピーダンスの実数成分の時間的変化を指数関数的な減衰として示す第1モデル式を特定するとともに、前記機械インピーダンスの虚数成分の時間的変化を指数関数的な減衰として示す第2モデル式を特定し、(b)前記第1モデル式における減衰係数と前記第2モデル式における減衰係数とによる2次元座標に基づいて、前記泡持ちの安定性に係る前記泡沫層の泡特性を測定すること、
     を特徴とする請求項1記載の泡特性測定システム。
    The mechanical impedance identification unit calculates a real component and an imaginary component of the mechanical impedance,
    The bubble characteristic specifying unit specifies (a) a first model expression that indicates temporal change of the real component of the mechanical impedance as exponential decay, and an exponential function of the temporal change of the imaginary component of the mechanical impedance. The second model formula shown as the dynamic damping is specified, and (b) the stability of the bubble is determined based on the two-dimensional coordinates of the damping coefficient in the first model formula and the damping coefficient in the second model formula Measuring the foam properties of the foam layer,
    The bubble characteristic measurement system according to claim 1, characterized in that
  5.  前記機械インピーダンス特定部は、前記機械インピーダンスの実数成分および虚数成分を算出し、
     前記泡特性特定部は、複素数平面において、前記機械インピーダンスの座標の位置及び/または前記機械インピーダンスの軌跡を、泡の触感や食感に係る前記泡沫層の泡特性として測定すること、
     を特徴とする請求項1記載の泡特性測定システム。
    The mechanical impedance identification unit calculates a real component and an imaginary component of the mechanical impedance,
    The foam characteristic specifying unit measures the position of the coordinate of the mechanical impedance and / or the locus of the mechanical impedance in the complex number plane as the foam characteristic of the foam layer relating to the touch and texture of the foam,
    The bubble characteristic measurement system according to claim 1, characterized in that
  6.  前記泡特性特定部は、(a)前記振動子を前記泡沫層の深さ方向に変化させた際の前記機械インピーダンスの変化を算出し、(b)前記機械インピーダンスの変化に基づいて、前記泡沫層の深さ方向における前記泡沫層の泡特性の分布を測定することを特徴とする請求項1記載の泡特性測定システム。 The foam characteristic identification unit (a) calculates a change in the mechanical impedance when changing the vibrator in the depth direction of the foam layer, and (b) the foam based on the change in the mechanical impedance. The system for measuring foam characteristics according to claim 1, wherein the distribution of foam characteristics of the foam layer in the depth direction of the layer is measured.
PCT/JP2018/019994 2017-07-13 2018-05-24 Foam characteristic measurement system WO2019012815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017136936A JP2019020187A (en) 2017-07-13 2017-07-13 Foam characteristic measurement system
JP2017-136936 2017-07-13

Publications (1)

Publication Number Publication Date
WO2019012815A1 true WO2019012815A1 (en) 2019-01-17

Family

ID=65002444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019994 WO2019012815A1 (en) 2017-07-13 2018-05-24 Foam characteristic measurement system

Country Status (2)

Country Link
JP (1) JP2019020187A (en)
WO (1) WO2019012815A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264427A (en) * 1992-03-23 1993-10-12 Shiseido Co Ltd Apparatus and probe for measuring hardness
JP2005345228A (en) * 2004-06-02 2005-12-15 Toray Ind Inc Volume elasticity measuring method and measuring instrument therefor
EP2259031A1 (en) * 1999-07-12 2010-12-08 Hammertech AS Method of measuring multiphase flow
JP5020403B1 (en) * 2011-11-28 2012-09-05 リオン株式会社 Vibration type physical property measuring apparatus and method
WO2016024120A1 (en) * 2014-08-15 2016-02-18 Delta-T Devices Limited Matric potential sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264427A (en) * 1992-03-23 1993-10-12 Shiseido Co Ltd Apparatus and probe for measuring hardness
EP2259031A1 (en) * 1999-07-12 2010-12-08 Hammertech AS Method of measuring multiphase flow
JP2005345228A (en) * 2004-06-02 2005-12-15 Toray Ind Inc Volume elasticity measuring method and measuring instrument therefor
JP5020403B1 (en) * 2011-11-28 2012-09-05 リオン株式会社 Vibration type physical property measuring apparatus and method
WO2016024120A1 (en) * 2014-08-15 2016-02-18 Delta-T Devices Limited Matric potential sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAMURA, T.: "The test methods for measuring foaming and antifoaming properties of liquid", OLEOSCIENCES, vol. 42, no. 10, 1993, pages 737 - 744, XP055678039, DOI: 10.5650/jos1956.42.737 *

Also Published As

Publication number Publication date
JP2019020187A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
Gan et al. Non-contact ultrasonic quality measurements of food products
US7546769B2 (en) Ultrasonic inspection system and method
EP3658868B1 (en) Apparatus and method for performing an impact excitation technique
WO2013111608A1 (en) Viscoelasticity measurement method and viscoelasticity measurement device
JPWO2014049698A1 (en) Method and apparatus for measuring physical properties of fluid
McNamara et al. A sensitivity metric and software to guide the analysis of soft films measured by a quartz crystal microbalance
JP6410274B2 (en) Viscosity measurement method
Li et al. Evaluation of blood plasma coagulability by laser speckle correlation
WO2020051761A1 (en) Blood coagulation analyser, sample detection method thereof, and storage medium
Konigsberg et al. Online process rheometry using oscillatory squeeze flow
JP6034524B1 (en) Resonance frequency estimation method
CN108051604A (en) A kind of coagulation time test method, apparatus and system
US11624687B2 (en) Apparatus and method for detecting microcrack using orthogonality analysis of mode shape vector and principal plane in resonance point
KR20120123452A (en) Method for measuring viscoelasticity and device for measuring viscoelasticity
WO2019012815A1 (en) Foam characteristic measurement system
Graham et al. Characterising the frequency‐response of ultra‐soft polymers with the Virtual Fields Method
JP5831903B2 (en) Viscoelasticity measuring method and viscoelasticity measuring device
WO2019015399A1 (en) Method and apparatus for measuring viscoelasticity of medium
JPWO2006073068A1 (en) Surface position measuring method and surface position measuring device
JP2013156093A (en) Viscoelasticity measuring method and viscoelasticity measuring apparatus
Shambaugh et al. Multi-path Vibrometer-Based Strain Measurement Technique for Very High Cycle Fatigue (VHCF) Testing
Ilg et al. Determination of frequency and temperature dependent mechanical material properties by means of an Inverse Method
Badshah On modal testing and analysis of aluminum foam: experimental setup and approach
US20200064246A1 (en) High-Throughput Rheometer
CN111077346A (en) Micro-cantilever-beam-based soil humidity monitoring method, device, equipment and medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831240

Country of ref document: EP

Kind code of ref document: A1