Nothing Special   »   [go: up one dir, main page]

WO2019012766A1 - Rfid tag-attached spectacles and rfid tag-attached article - Google Patents

Rfid tag-attached spectacles and rfid tag-attached article Download PDF

Info

Publication number
WO2019012766A1
WO2019012766A1 PCT/JP2018/015362 JP2018015362W WO2019012766A1 WO 2019012766 A1 WO2019012766 A1 WO 2019012766A1 JP 2018015362 W JP2018015362 W JP 2018015362W WO 2019012766 A1 WO2019012766 A1 WO 2019012766A1
Authority
WO
WIPO (PCT)
Prior art keywords
rfid tag
dipole
rfic
dipole element
output terminal
Prior art date
Application number
PCT/JP2018/015362
Other languages
French (fr)
Japanese (ja)
Inventor
越智 達也
加藤 登
哲平 三浦
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018545522A priority Critical patent/JP6531873B1/en
Publication of WO2019012766A1 publication Critical patent/WO2019012766A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength

Definitions

  • the present invention relates to an item to which an RFID tag is attached in order to perform management of a predetermined item, and more particularly to an RFID tag-attached article in which the RFID tag can be used even for an article which is not suitable for applying the RFID tag.
  • Patent Document 1 discloses an RFID tag-equipped eyeglass that enables a wearer to be managed as a customer using an RFID tag. Further, Patent Document 2 shows an RFID tag-equipped eyeglass that enables management of information on eyeglasses purchased by a customer using an RFID tag.
  • the RFID tags are attached to the temples of the glasses.
  • the temple is an insulating resin
  • reading of the RFID tag is possible, but if the temple is metal, reading of the RFID tag becomes difficult.
  • the rim is metal, reading of the RFID tag may be difficult depending on the positional relationship of the reader / writer with respect to the glasses. Since the rim is electromagnetically two looped conductors, it acts as a planarly spread conductor plate in the UHF band. Therefore, when the reader / writer is directed to the front side of the rim, for example, the rim electromagnetically shields the RFID tag, which makes it difficult to communicate with the RFID tag.
  • the RFID tag is embedded in the recess of the lens.
  • the rim is a metal, it is difficult to be affected, but it is difficult to make the antenna of the RFID tag large, and a sufficient communication distance can not be obtained. Therefore, it is difficult to read the tag if the reader / writer is not in proximity, and the usage of the RFID tag is limited.
  • an object of the present invention is to provide an RFID-tagged article capable of communicating with an RFID tag, particularly an RFID-tagged eyeglass, even for an article on which an electromagnetically looped conductor is formed.
  • the RFID tag-equipped glasses of the present invention comprise: glasses having a spectacle lens, a metal rim for holding the spectacle lens, and an RFID tag having a planar dimension smaller than that of the spectacle lens,
  • the RFID tag is A substrate, An RFIC element mounted on the substrate and having a first input / output terminal and a second input / output terminal;
  • a first dipole element formed on the base material one end being a first connection end connected to the first input / output terminal, and the other end being a first open end, and one end being the second input / output terminal
  • Consists of The formation area of the dipole antenna has a longitudinal direction and a short direction in a plan view, and has a first end and a second end which are opposite ends in the longitudinal direction, and the short direction Having opposite sides, a first side and a second side
  • the first dipole element is a conductor pattern extending from the first connection end toward the
  • the rim acts as part of the antenna of the RFID tag, since the open end of the first dipole element and its vicinity will be arranged along the rim. That is, although the RFID tag is disposed in the loop conductor, the loop conductor is effectively used and the RFID tag can communicate with the reader / writer.
  • An article with an RFID tag according to the present invention is an article having an insulator portion and a metal portion surrounding all or part of the periphery of the insulator portion, and an RFID tag having a planar dimension smaller than that of the insulator portion
  • the RFID tag is A substrate, An RFIC element mounted on the substrate and having a first input / output terminal and a second input / output terminal; A first dipole element formed on the base material, one end being a first connection end connected to the first input / output terminal, and the other end being a first open end, and one end being the second input / output terminal A second connection end connected to the second end and a second open end, the other end being a second open end, Consists of The formation area of the dipole antenna has a longitudinal direction and a short direction in a plan view, and has a first end and a second end which are opposite ends in the longitudinal direction, and the short direction Having opposite sides, a first side and a second side,
  • the first dipole element is a conduct
  • the open end of the first dipole element and the vicinity thereof are disposed along the metal portion, so that the metal portion acts as a part of the antenna of the RFID tag. That is, although the RFID tag is disposed in the loop conductor, the loop conductor is effectively used and the RFID tag can communicate with the reader / writer.
  • the said 1st open end exists in the position near the said 1st side.
  • the degree of electric field coupling between the first open end and the metal portion is increased, and the current induced in the metal portion is increased, whereby the metal portion effectively functions as a radiator.
  • the RFIC element is preferably an element in which an RFIC chip and an impedance matching circuit for matching the impedances of the RFIC chip and the dipole antenna are integrated.
  • a part of the first dipole element is disposed between the RFIC element and the first side, and a part of the second dipole element is the RFIC element and the second side It is preferable that it is arrange
  • mold antenna is 2 times or more of the dimension of the said transversal direction.
  • the RFIC element communicates in the UHF band via the dipole antenna.
  • the RFIC element can adapt to the RFID system which utilizes a UHF band.
  • an RFID-tagged article capable of communicating with an RFID tag can be obtained even for an article in which a loop conductor is electromagnetically formed.
  • glasses with RFID tags are obtained.
  • FIG. 1 is a partial front view of the RFID tag equipped eyeglasses 410 according to the first embodiment.
  • FIG. 2A is a plan view of the RFID tag 301.
  • FIG. 2B is a front view showing the relationship between the RFID tag 301 and the spectacle lens 411 and the rim 412.
  • FIG. 3A is a diagram particularly showing the relationship between the current flowing through the RFID tag 301 and the current flowing through the rim 412.
  • FIG. 3B is an equivalent circuit diagram of the antenna portion of the RFID tag-equipped glasses.
  • FIG. 4 is a perspective view of the RFIC element 100.
  • FIG. FIG. 5 is a longitudinal sectional view of the RFIC element shown in FIG. FIG.
  • FIG. 6A is a plan view of the upper insulating layer of the multilayer substrate 120 as viewed from directly above.
  • FIG. 6B is a plan view of the middle insulating layer of the multilayer substrate 120.
  • FIG. 6C is a plan view of the lower insulating layer of the multilayer substrate 120.
  • FIG. 7A is a cross-sectional view of the insulating layer shown in FIG. 6A along the line B1-B1.
  • FIG. 7B is a cross-sectional view of the insulating layer shown in FIG. 6B along the line B2-B2.
  • FIG. 7C is a cross-sectional view of the insulating layer shown in FIG. 6C along the line B3-B3.
  • FIG. 8 is a diagram showing an equivalent circuit of the RFIC element 100.
  • FIG. 9 is a diagram showing the direction of the magnetic field generated in the inductors L1 to L4 of the RFIC element 100.
  • FIG. 10 is a diagram showing the distribution of rigid regions and flexible regions in the RFIC element 100.
  • FIG. 11 is a view showing a state in which the RFID tag in which the RFIC element 100 is attached to the lands LA1 and LA2 is bent.
  • FIG. 12 is a diagram showing an example of current flowing in the equivalent circuit of the RFID tag of FIG.
  • FIG. 13 is a diagram showing frequency characteristics of reflection loss when the circuit connected to the RFIC chip in the RFID tag of FIG. 11 is viewed from the RFIC chip.
  • FIG. 14 is a plan view of the RFID tag 302A according to the second embodiment.
  • FIG. 15 is a plan view of another RFID tag 302B according to the second embodiment.
  • FIG. 16 is a plan view of another RFID tag 302C according to the second embodiment.
  • FIG. 17 is a plan view of another RFID tag 302D according to the second embodiment.
  • FIG. 18 is a plan view of another RFID tag 302E according to the second embodiment.
  • FIG. 19 is a plan view showing an internal structure of the RFID tag-attached name tag 421.
  • FIG. 20 is a view showing the main configuration of a portable electronic device 422 with an RFID tag.
  • FIG. 21 is a plan view of the clipboard 423 with an RFID tag.
  • FIG. 22 is a perspective view of a car 424 with an RFID tag.
  • FIG. 1 is a partial front view of the RFID tag equipped eyeglasses 410 according to the first embodiment.
  • the RFID tag-attached eyeglasses 410 includes an eyeglass lens 411 and an eyeglass lens 411 and a metal rim (hereinafter simply referred to as “rim”) 412 for holding the eyeglass lens 411, and an RFID tag 301 whose planar dimension is smaller than the eyeglass lens 411. And.
  • the rim 412 is a looped conductor.
  • the spectacle lens 411 is, for example, a powerless resin lens fitted in advance for display of a spectacle frame.
  • FIG. 2A is a plan view of the RFID tag 301.
  • the RFID tag 301 includes a rectangular plate-shaped base 1, a first dipole element 10 and a second dipole element 20 formed on the base 1, and an RFIC element 100 mounted on the base 1.
  • the base material 1 has a longitudinal direction (X-axis direction in FIG. 2A) and a lateral direction (Y-axis direction in FIG. 2A) in plan view, and the mutually opposing end portions in the longitudinal direction It has one end E1 and a second end E2, and has a first side S1 and a second side S2 which are mutually opposite sides in the transverse direction.
  • the first side and the second side correspond to each other.
  • Lands LA1 and LA2 for mounting the RFIC element 100 are formed at the center of the substrate 1.
  • the first input / output terminal and the second input / output terminal of the RFIC element 100 are connected to the lands LA1 and LA2, respectively.
  • a first dipole element 10 and a second dipole element 20 are formed on the substrate 1.
  • the first dipole element 10 and the second dipole element 20 constitute one dipole antenna.
  • this dipole antenna basically uses quarter-wave resonance, it is not limited thereto as described later.
  • the first dipole element 10 is composed of the main conductor pattern portion 11 and the tip portion 12.
  • the second dipole element 20 is composed of the main conductor pattern 21 and the tip 22.
  • the main conductor pattern portion 11 of the first dipole element 10 includes a side conductor pattern 11S.
  • the side conductor pattern 11 S is disposed between the RFIC element 100 and the tip 12.
  • a side conductor pattern 21 S which is a part of the main conductor pattern portion 21 of the second dipole element 20 is disposed between the RFIC element 100 and the tip 22.
  • One end of the first dipole element 10 is a first connection end CE1 connected to the land LA1 (connected to the first input / output terminal of the RFIC element).
  • the other end of the first dipole element 10 is a first open end OE1.
  • One end of the second dipole element 20 is a second connection end CE2 connected to the land LA2 (connected to the second input / output terminal of the RFIC element).
  • the other end of the second dipole element 20 is a second open end OE2.
  • the first dipole element 10 is a conductor pattern extending from the first connection end CE1 in the direction of the first end E1 and meandering in the direction of the first side portion S1 in a meandering manner.
  • the second dipole element 20 is a conductor pattern extending from the second connection end CE2 in the direction of the second end E2 and meandering in the direction of the second side S2.
  • the side conductor patterns 11S and 21S are disposed between the RFIC element 100 and the tip portions 12 and 22, the area of the base material 1 is effectively used as a space for forming a dipole element. It can be used to miniaturize the RFID tag. Also, if the size is the same, high gain can be achieved.
  • the first open end OE1 is located closer to the first side S1 in the formation area of the first dipole element 10.
  • the second open end OE2 is located closer to the second side S2 in the formation area of the second dipole element 20.
  • the first open end OE1 is folded back from the first end E1 of the substrate 1 in the direction of the second end E2.
  • the second open end OE2 is folded back from the second end E2 of the substrate 1 toward the first end E1.
  • the line width of the tip portion 12 of the first dipole element 10 is twice or more than the line width of the main conductor pattern portion 11.
  • the line width of the tip 22 of the second dipole element 20 is twice or more than the line width of the main conductor pattern 21.
  • the tip 12 further extends in the direction of the second end E2 from the formation region of the side conductor pattern 11S.
  • the tip 22 further extends in the direction of the first end E1 from the formation region of the side conductor pattern 21S.
  • the tip 12 of the first dipole element 10 and the tip 22 of the second dipole element 20 are conductor patterns for adding capacitance at and near the open end of the dipole element. This addition of capacitance shortens the dipole element.
  • the portion along the first side S1 and the tip portion 12 form a capacitive coupling portion CC.
  • the RFID tag 301 has a dimension of 24 mm in the longitudinal direction and a dimension of 8 mm in the latitudinal direction, and the dimensional ratio of the latitudinal direction to the longitudinal direction is 1: 3. That is, the dimension in the longitudinal direction is twice or more the dimension in the transverse direction (see FIG. 2 (B)).
  • FIG. 2B is a front view showing the relationship between the RFID tag 301 and the spectacle lens 411 and the rim 412.
  • FIG. 3A is a diagram particularly showing the relationship between the current flowing through the RFID tag 301 and the current flowing through the rim 412.
  • FIG. 3A the number of times the meandering pattern of the first dipole element 10 and the second dipole element 20 is folded is represented in a simplified manner.
  • FIG. 3B is an equivalent circuit diagram of the antenna portion of the RFID tag-equipped glasses.
  • the front in FIG. 2 (B) and the plane in FIG. 2 (A) are planes viewed in the same direction.
  • the RFID tag 301 is configured such that the first side S 1 (first open end) is along the rim 412 and the second side.
  • the eyeglass lens 411 is attached such that the portion S2 (second open end) is positioned closer to the center of the rim 412 (center of the spectacle lens 311) than the first side portion S1 (first open end).
  • the capacitive coupling portion CC (the open end OE1 of the first dipole element 10 and its vicinity) is arranged along the rim 412.
  • the capacitive coupling portion CC and the rim 412 are in close proximity to each other, as shown by the circuit symbol of the capacitor in FIG. 2B and FIG. 3A, the capacitance between the capacitive coupling portion CC and the rim 412 Will occur.
  • the capacitive coupling portion CC and the rim 412 are capacitively coupled via this capacitance. Thereby, current is induced as shown in FIG. In FIG. 3A, for example, when a current flows from the first connection end CE1 toward the first open end OE1, a rightward current flows in the capacitive coupling portion CC, and a rightward current flows in the rim 412.
  • the rim 412 can be represented as a ground GND shown by a loop conductor in FIG. 3 (B).
  • the second dipole element 20 can be represented as a monopole antenna.
  • FIG. 4 is a perspective view of the RFIC element 100.
  • the RFIC element 100 is, for example, an RFIC element corresponding to a communication frequency of 900 MHz band, that is, UHF band.
  • the RFIC element 100 has a multilayer substrate 120 whose main surface is rectangular.
  • the multilayer substrate 120 is flexible.
  • the multilayer substrate 120 has, for example, a laminated structure in which a flexible resin insulating layer such as polyimide or liquid crystal polymer is laminated.
  • the dielectric constant of each insulating layer composed of these materials is smaller than the dielectric constant of the ceramic base layer represented by LTCC.
  • the length direction of the multilayer substrate 120 is taken as the X axis, the width direction of the multilayer substrate 120 as the Y axis, and the thickness direction of the multilayer substrate 120 as the Z axis.
  • FIG. 5 is a longitudinal sectional view of the RFIC element shown in FIG.
  • FIG. 6A is a plan view of the upper insulating layer of the multilayer substrate 120 as viewed from directly above.
  • FIG. 6B is a plan view of the middle insulating layer of the multilayer substrate 120.
  • FIG. 6C is a plan view of the lower insulating layer of the multilayer substrate 120.
  • FIG. 7A is a cross-sectional view of the insulating layer shown in FIG. 6A along the line B1-B1.
  • FIG. 7B is a cross-sectional view of the insulating layer shown in FIG. 6B along the line B2-B2.
  • FIG. 7C is a cross-sectional view of the insulating layer shown in FIG. 6C along the line B3-B3.
  • an RFIC chip 160 and an impedance matching circuit 180 are incorporated in the multilayer substrate 120.
  • a first terminal electrode 140 a and a second terminal electrode 140 b are formed on one main surface of the multilayer substrate 120.
  • the matching circuit 180 impedance-matches the RFIC chip 160 with the first dipole element 10 and the second dipole element 20, and determines the resonant frequency characteristic of the antenna.
  • the RFIC chip 160 has a structure in which various elements are incorporated in a hard semiconductor substrate made of a semiconductor such as silicon. Both main surfaces of the RFIC chip 160 are square. Further, as shown in FIG. 6C, on the other main surface of the RFIC chip 160, a first input / output terminal 160a and a second input / output terminal 160b are formed. Inside the multilayer substrate 120, the RFIC chip 160 is X with each side of the square extending along the X-axis or Y-axis direction and one main surface and the other main surface parallel to the XY plane. Centrally located on each of the axis, Y axis, and Z axis.
  • the matching circuit 180 is configured of the coil conductor 200 and the interlayer connection conductors 240 a and 240 b.
  • the coil conductor 200 is configured by the coil patterns 200a to 200c shown in FIG. 6B or 6C.
  • a part of the coil pattern 200a is configured by the first coil portion CIL1.
  • a part of the coil pattern 200b is configured by the second coil portion CIL2.
  • a part of the coil pattern 200c is configured by the third coil portion CIL3 and the fourth coil portion CIL4.
  • the first coil portion CIL1, the third coil portion CIL3, and the interlayer connection conductor 240a are arranged in the Z-axis direction.
  • the second coil portion CIL2, the fourth coil portion CIL4, and the interlayer connection conductor 240b are also arranged in the Z-axis direction.
  • the RFIC chip 160 is disposed between the first coil portion CIL1 and the second coil portion CIL2 when the multilayer substrate 120 is viewed in the Z-axis direction.
  • the RFIC chip 160 is disposed between the third coil portion CIL3 and the fourth coil portion CIL4 when the multilayer substrate 120 is viewed in the Y-axis direction.
  • Each of the first terminal electrode 140a and the second terminal electrode 140b is formed in a strip shape using a flexible copper foil as a material.
  • the sizes of the main surfaces of each of the first terminal electrode 140a and the second terminal electrode 140b match each other.
  • the short sides of the first terminal electrode 140a and the second terminal electrode 140b extend in the X-axis direction.
  • the long sides of the first terminal electrode 140a and the second terminal electrode 140b extend in the Y-axis direction.
  • the RFIC chip 160 is sandwiched between a part of the matching circuit 180 and another part of the matching circuit 180 when the multilayer substrate 120 is viewed from the Y-axis direction. Further, the RFIC chip 160 overlaps the matching circuit 180 when the multilayer substrate 120 is viewed from the X-axis direction.
  • the matching circuit 180 partially overlaps each of the first terminal electrode 140 a and the second terminal electrode 140 b when the multilayer substrate 120 is viewed in plan.
  • the multilayer substrate 120 is configured by three sheet-like insulating layers 120a to 120c stacked as shown in FIGS. 6A to 6C.
  • the insulating layer 120 a is located on the upper side
  • the insulating layer 120 b is located on the middle side
  • the insulating layer 120 c is located on the lower side.
  • a first terminal electrode 140a and a second terminal electrode 140b are formed on one main surface of the insulating layer 120a.
  • a rectangular through hole HL1 reaching the other main surface is formed at the central position of one of the main surfaces of the insulating layer 120b.
  • the through hole HL1 is formed to a size including the RFIC chip 160.
  • a coil pattern 200c is formed around the through hole HL1 on one of the main surfaces of the insulating layer 120b.
  • the coil pattern 200c is configured using a flexible copper foil as a material.
  • One end of the coil pattern 200c is disposed at a position overlapping the first terminal electrode 140a in plan view, and is connected to the first terminal electrode 140a by the interlayer connection conductor 220a extending in the Z-axis direction.
  • the other end of the coil pattern 200c is disposed at a position overlapping the second terminal electrode 140b in plan view, and is connected to the second terminal electrode 140b by the interlayer connection conductor 220b extending in the Z-axis direction.
  • the interlayer connection conductors 220a and 220b are made of a hard metal bulk mainly composed of Sn.
  • Coil patterns 200a and 200b are formed on one main surface of the insulating layer 120c.
  • the coil patterns 200a and 200b are configured using a flexible copper foil as a material.
  • the first coil end T1 and the second coil end T2 are both formed in a rectangular shape when the insulating layer 120c is viewed in plan.
  • One end of the coil pattern 200a is connected to one end of the coil pattern 200c by an interlayer connection conductor 240a extending in the Z-axis direction.
  • One end of the coil pattern 200b is connected to the other end of the coil pattern 200c by an interlayer connection conductor 240b extending in the Z-axis direction.
  • the interlayer connection conductors 240a and 240b are made of a hard metal bulk mainly composed of Sn.
  • a section of the coil pattern 200a overlaps a section of the coil pattern 200c, and a section of the coil pattern 200b is also another section of the coil pattern 200c.
  • the section on the coil pattern 200a side is referred to as “first coil portion CIL1”
  • the section on the coil pattern 200c side is referred to as "third coil portion CIL3”.
  • the section on the coil pattern 200b side is referred to as "second coil section CIL2”
  • the section on the coil pattern 200c side is referred to as "fourth coil section CIL4".
  • first position P1 the position of one end of the coil pattern 200a or the one end of the coil pattern 200c is referred to as "first position P1"
  • second position P2 the position of the one end of the coil pattern 200b or the other end of the coil pattern 200c is "second position P2" It is said.
  • Rectangular dummy conductors 260a and 260b are formed on one main surface of the insulating layer 120c.
  • the dummy conductors 260a and 260b are made of a flexible copper foil.
  • the dummy conductors 260a and 260b are arranged to overlap two of the four corner portions of the rectangular through hole HL1.
  • the RFIC chip 160 is mounted on the insulating layer 120c such that the four corner portions of the other main surface face the first coil end T1, the second coil end T2, and the dummy conductors 260a and 260b.
  • the first input / output terminal 160a is disposed on the other main surface of the RFIC chip 160 so as to overlap with the first coil end T1 in plan view.
  • the second input / output terminal 160b is disposed on the other main surface of the RFIC chip 160 so as to overlap the second coil end T2 in a plan view.
  • the RFIC chip 160 is connected to the first coil end T1 by the first input / output terminal 160a, and is connected to the second coil end T2 by the second input / output terminal 160b.
  • the thickness of the insulating layers 120a to 120c is 10 ⁇ m to 100 ⁇ m. Therefore, the RFIC chip 160 and the matching circuit 180 built in the multilayer substrate 120 can be seen through from the outside. Therefore, the connection state (presence or absence of disconnection) of the RFIC chip 160 and the matching circuit 180 can be easily confirmed.
  • FIG. 8 is a diagram showing an equivalent circuit of the RFIC element 100 configured as described above.
  • an inductor L1 corresponds to the first coil portion CIL1.
  • the inductor L2 corresponds to the second coil portion CIL2.
  • the inductor L3 corresponds to the third coil portion CIL3.
  • the inductor L4 corresponds to the fourth coil portion CIL4.
  • the characteristics of impedance matching by matching circuit 180 are defined by the values of inductors L1 to L4.
  • One end of the inductor L1 is connected to a first input / output terminal 160a provided in the RFIC chip 160.
  • One end of the inductor L2 is connected to a second input / output terminal 160b provided on the RFIC chip 160.
  • the other end of the inductor L1 is connected to one end of the inductor L3.
  • the other end of the inductor L2 is connected to one end of the inductor L4.
  • the other end of the inductor L3 is connected to the other end of the inductor L4.
  • the first terminal electrode 140a is connected to the connection point of the inductors L1 and L3.
  • the second terminal electrode 140 b is connected to the connection point of the inductors L 2 and L 4.
  • the first coil portion CIL1, the second coil portion CIL2, the third coil portion CIL3, and the fourth coil portion CIL4 are wound such that the magnetic fields are in phase and in series with each other. It is connected. Therefore, the magnetic field is generated at a certain point so as to turn in the direction indicated by the arrow in FIG. On the other hand, the magnetic field is generated at another time point so as to turn in the opposite direction to the direction shown by the arrow in FIG.
  • the first coil portion CIL1 and the third coil portion CIL3 have substantially the same loop shape and the same first winding axis.
  • the second coil portion CIL2 and the fourth coil portion CIL4 have substantially the same loop shape and the same second winding axis.
  • the first winding axis and the second winding axis are disposed at positions sandwiching the RFIC chip 160.
  • first coil portion CIL1 and the third coil portion CIL3 are magnetically and capacitively coupled.
  • second coil portion CIL2 and the fourth coil portion CIL4 are magnetically and capacitively coupled.
  • the RFIC chip 160 has the first input / output terminal 160 a and the second input / output terminal 160 b and is built in the multilayer substrate 120.
  • the matching circuit 180 is incorporated in the multilayer substrate 120 including the coil patterns 200a to 200c.
  • the first terminal electrode 140 a and the second terminal electrode 140 b are provided on one main surface of the multilayer substrate 120.
  • first coil portion CIL1 is present in a section from the first coil end T1 to the first position P1, and has a first winding axis in a direction intersecting with one main surface of the multilayer substrate 120.
  • the second coil portion CIL2 is present in a section from the second coil end T2 to the second position P2, and has a second winding axis in a direction intersecting with one main surface of the multilayer substrate 120.
  • the third coil portion CIL3 is arranged to overlap the first coil portion CIL1 in plan view.
  • the fourth coil portion CIL4 is arranged to overlap the second coil portion CIL2 in plan view.
  • the first coil portion CIL1, the third coil portion CIL3, the second coil portion CIL2, and the fourth coil portion CIL4 are disposed at positions sandwiching the RFIC chip 160.
  • the matching circuit 180 and the RFIC chip 160 are incorporated in the multilayer substrate 120.
  • the RFIC chip 160 is formed of a semiconductor substrate. Therefore, the RFIC chip 160 functions as a ground or a shield for the first coil portion CIL1, the second coil portion CIL2, the third coil portion CIL3, and the fourth coil portion CIL4. As a result, the first coil portion CIL1 and the second coil portion CIL2 as well as the third coil portion CIL3 and the fourth coil portion CIL4 become difficult to couple to each other magnetically or capacitively. Thus, narrowing of the pass band of the communication signal is suppressed.
  • FIG. 10 is a diagram showing the distribution of rigid regions and flexible regions in the RFIC element 100.
  • FIG. 11 is a view showing a state in which the RFID tag in which the RFIC element 100 is attached to the lands LA1 and LA2 is bent.
  • the multilayer substrate 120, the coil patterns 200a to 200c, the first terminal electrode 140a, and the second terminal electrode 140b are made of flexible members.
  • interlayer connection conductors 220a, 220b, 240a, 240b, and the RFIC chip 160 are made of hard members.
  • the first terminal electrode 140a and the second terminal electrode 140b are relatively large in size, their flexibility is low.
  • the flexibility of the first terminal electrode 140a and the second terminal electrode 140b is even lower. Become.
  • a rigid region and a flexible region are formed in the RFIC element 100. More specifically, the area in which the first terminal electrode 140a, the second terminal electrode 140b, and the RFIC chip 160 are disposed is a rigid area, and the other area is a flexible area. In particular, since the first terminal electrode 140a and the second terminal electrode 140b are provided at a distance from the RFIC chip 160, the first terminal electrode 140a and the RFIC chip 160, and the second terminal electrode 140b and the RFIC chip 160. The area is a flexible area.
  • the RFIC element 100 bends as shown in FIG. 11, for example.
  • FIG. 12 is a diagram showing an example of current flowing in the equivalent circuit of the RFID tag of FIG.
  • FIG. 13 is a diagram showing frequency characteristics of reflection loss when the circuit connected to the RFIC chip in the RFID tag of FIG. 11 is viewed from the RFIC chip.
  • a parasitic capacitance (floating capacitance) Cp that the RFIC chip 160 has is present between the first input / output terminal 160a and the second input / output terminal 160b. Therefore, in the RFIC element 100, two resonances occur.
  • the first resonance is a resonance that occurs in the current path configured by the first dipole element 10, the second dipole element 20, and the inductors L3 and L4.
  • the second resonance is a resonance that occurs in a current path (current loop) formed of the inductors L1 to L4 and the parasitic capacitance Cp. These two resonances are coupled by the inductors L3 to L4 shared by the respective current paths.
  • Two currents I1 and I2 respectively corresponding to the two resonances flow as indicated by broken arrows in FIG.
  • both the first resonance frequency and the second resonance frequency are affected by the inductors L3 to L4.
  • a difference of several tens of MHz is generated between the first resonance frequency f1 and the second resonance frequency f2.
  • the rim 412 is a loop conductor
  • the rim 412 acts as a part of the antenna of the RFID tag 301. That is, although the RFID tag is disposed in the loop conductor, the loop conductor is effectively used and the RFID tag can communicate with the reader / writer.
  • the loop conductor acts as part of the RFID tag's antenna, that is, it does not radiate only by the dipole antenna of the RFID tag, the dipole antenna is sized for quarter-wave resonance. It does not have to be.
  • the first dipole element relatively close to the rim interacts with the rim as shown in FIGS. 3A and 3B, it does not have a length equivalent to a quarter wavelength. It is also good.
  • the RFID tag according to the present embodiment is attached to the spectacle lens just as in the case of a conventional spectacle seal attached to a resin lens which has been fitted in advance for display of the spectacle frame, that is,
  • the RFID tag-equipped glasses can be configured without significantly impairing the design.
  • the RFID tag-equipped glasses can be used for inventory control, store control, distribution control, and the like.
  • the rim shows the example which constitutes a loop conductor of a closed loop
  • the rim is an open loop loop conductor like a so-called half rim type eyeglass frame and an under rim type eyeglass frame Even if it is applicable similarly.
  • the impedance matching circuit is provided in the RFIC element 100 to match the impedances of the RFIC chip 160 and the first dipole element 10 and the second dipole element 20 and to determine the resonance frequency characteristics of the antenna. Therefore, the following effects can be achieved.
  • the area of the substrate can be effectively used as a space for forming a dipole element, and the RFID tag can be miniaturized. Also, if the size is the same, high gain can be achieved.
  • the lands LA1 and LA2 on which the RFIC element 100 is mounted overlap the first coil portion CIL1, the second coil portion CIL2, the third coil portion CIL3 and the fourth coil portion CIL4 of the RFIC element 100 in plan view,
  • the sections CIL1 to CIL4 are electromagnetically shielded by the lands LA1 and LA2, which make the sections CIL1 to CIL4 unlikely to be affected by the electromagnetic properties of the article to which the RFID tag is attached. That is, even when the RFID tag 301 is attached to an article having a high relative dielectric constant or relative permeability, the change in the electromagnetic characteristics of the RFID tag is small between the attached state and the single state before attachment.
  • FIG. 14 is a plan view of the RFID tag 302A according to the second embodiment.
  • the RFID tag 302 ⁇ / b> A includes a rectangular plate-shaped base 1, a first dipole element 10 and a second dipole element 20 formed on the base 1, and an RFIC element 100 mounted on the base 1.
  • the shape, size, and position of the tip 12 are different from those of the RFID tag 301 shown in FIG. 2A. Moreover, it differs in the point which is not equipped with side part conductor pattern 11S, 21S.
  • the line width of the tip portions 12 and 22 is three or more times thicker than the line width of the main conductor pattern portions 11 and 21. Moreover, it is longer than the dimension of the formation area of the longitudinal direction of the main conductor pattern parts 11 and 21.
  • the tip portion 12 of the first dipole element 10 constitutes a capacitive coupling portion CC.
  • the other configuration is the same as that shown in the first embodiment.
  • the capacitive coupling with the rim (see the rim 412 in FIG. 3A) closely following the capacitive coupling portion CC is large.
  • FIG. 15 is a plan view of another RFID tag 302B according to the present embodiment.
  • the first dipole element 10 has the first open end OE1 close to the first end E1 of the substrate 1.
  • the second dipole element 20 is positioned such that the second open end OE2 is close to the second end E2 of the substrate 1.
  • the other configuration is the same as that shown in the first embodiment.
  • FIG. 16 is a plan view of another RFID tag 302C according to the present embodiment.
  • the side conductor pattern 10S which is a part of the first dipole element 10 is disposed between the RFIC element 100 and the first side S1.
  • the side conductor pattern 20S which is a portion, is disposed between the RFIC element 100 and the second side S2.
  • the other configuration is the same as that of the RFID tag 302B shown in FIG.
  • FIG. 17 is a plan view of another RFID tag 302D according to the present embodiment.
  • the first open end OE1 of the first dipole element 10 is not located closer to the first end E1, but closer to the center than the first end E1 or the second end E2. is there.
  • the second open end OE2 of the second dipole element 20 is not closer to the second end E2, but is closer to the center than the first end E1 or the second end E2.
  • the side conductor pattern 10S of the first dipole element 10 is formed to a position extending in the direction of the second end E2 from the middle point between the land LA1 and the land LA2.
  • the side conductor pattern 20S of the second dipole element 20 is formed to a position extending in the direction of the first end E1 more than the middle point between the land LA1 and the land LA2.
  • the other configuration is the same as that of the RFID tag 302C shown in FIG.
  • FIG. 18 is a plan view of another RFID tag 302E according to this embodiment.
  • the first open end OE1 of the first dipole element 10 protrudes from the main portion of the side conductor pattern 10S.
  • the second open end OE2 of the second dipole element 20 protrudes from the main part of the side conductor pattern 20S.
  • the other configuration is the same as that of the RFID tag 302D shown in FIG.
  • the first dipole element 10 or the second dipole element 20 capacitively couples with the rim, and the rim contributes to radiation. Therefore, communication becomes possible also from the radio wave arrival direction electromagnetically shielded by the rim, and the communicable distance is also improved.
  • FIG. 19 is a plan view showing an internal structure of the RFID tag-attached name tag 421.
  • the RFID tag-attached name tag 421 includes a base 91, a coil antenna 92, an RFIC element 93 for the HF band, and an RFID tag 301 for the UHF band.
  • the coil antenna 92 for the HF band RFID is formed on the base 91.
  • the RFIC element 93 in the HF band is mounted on the base 91 and connected to the coil antenna 92.
  • the UHF band RFID tag 301 is provided on the base 91 along the inner periphery of the coil antenna 92.
  • the coil antenna 92 acts as a loop conductor in the UHF band. That is, this coil antenna 92 corresponds to the "metal part" in the present invention.
  • FIG. 20 is a view showing the main configuration of a portable electronic device 422 with an RFID tag.
  • the RFID tag-attached portable electronic device 422 includes a circuit board 95 on which the RFID tag 301 is provided, and a frame-shaped metal portion 94.
  • the RFID tag 301 is disposed close to and along the metal portion 94.
  • the metal part 94 acts as a part of the antenna of the RFID tag 301.
  • FIG. 21 is a plan view of the clipboard 423 with an RFID tag.
  • the RFID tag-attached clipboard 423 has a metal frame formed around the base portion 96, and the RFID tag 301 is provided at a position along and in close proximity to the metal frame. Since the metal frame constitutes a looped conductor, this structure capacitively couples the looped conductor to the dipole element of the RFID tag 301. That is, the metal frame acts as part of the antenna of the RFID tag 301.
  • a metal clip portion 97 may be used as a loop conductor.
  • the RFID tag 301 is provided at a position along and in close proximity to the clip unit 97.
  • the loop conductor capacitively couples with the dipole element of the RFID tag 301. That is, the clip unit 97 acts as part of the antenna of the RFID tag 301.
  • FIG. 22 is a perspective view of a car 424 with an RFID tag.
  • an RFID tag 301 is attached to a windshield 98 thereof.
  • the RFID tag 301 is disposed at a position along and in close proximity to the frame of the windshield 98. Since the frame of the windshield 98 constitutes a looped conductor, this looped conductor acts as part of the antenna of the RFID tag 301.
  • the RFID tag may be configured such that the first side (or first open end) is along the metal portion provided at the edge portion of the insulator portion, and the second side (or second portion) By arranging (offset) the open end) closer to the center (part away from the metal part) of the insulator portion than the first side (or first open end), the design of the article is not significantly impaired. , An RFID tagged article capable of communicating with the RFID tag is obtained.
  • an RFID tag in a display device provided with a metal frame portion as an article with an RFID tag, can be arranged in proximity to the metal frame portion to constitute a display device with an RFID tag.
  • the dipole antenna has an electrical length corresponding to a quarter wavelength, and an electrical length from the first open end to the second open end corresponds to a half wavelength.
  • the electric length from the 1st open end to the 2nd open end may be less than 1/2 wavelength, and it is an asymmetrical dipole type antenna from which the electric length of the 1st dipole element and the 2nd dipole differ. May be
  • the dipole antenna is formed on almost the entire surface of the base material, but a part of the base material may be a formation region of the dipole antenna. Also, the outer shape of the substrate may not be similar to the formation area of the dipole antenna.
  • RFID tag 410 ... RFID tag glasses 411 ... glasses lens 412 ... metal rim 421 ... RFID tag name tag 422 ... RFID tag portable electronic device 423 ... RFID tag clipboard 424 ... RFID tag automobile car

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Details Of Aerials (AREA)
  • Eyeglasses (AREA)
  • Support Of Aerials (AREA)

Abstract

A pair of RFID tag-attached spectacles (410) is provided with: a pair of spectacles having spectacle lenses (411) and a metal rim (412); and an RFID tag (301). The RFID tag (301) is provided with a dipole antenna comprising a first dipole element and a second dipole element. The RFID tag is adhered to one of the spectacle lenses (411) such that one side section of the first dipole element is disposed along the metal rim (412).

Description

RFIDタグ付きメガネおよびRFIDタグ付き物品RFID tagged glasses and articles with RFID tag
 本発明は、所定の物品の管理を行うためにRFIDタグが付された物品に関し、特に、RFIDタグの付与に適さない物品についても、RFIDタグを使用できるようにしたRFIDタグ付き物品に関する。 The present invention relates to an item to which an RFID tag is attached in order to perform management of a predetermined item, and more particularly to an RFID tag-attached article in which the RFID tag can be used even for an article which is not suitable for applying the RFID tag.
 RFIDタグを用いて、装着者を顧客として管理できるようにしたRFIDタグ付きメガネが特許文献1に示されている。また、顧客の購入したメガネに関する情報を、RFIDタグを用いて管理できるようにしたRFIDタグ付きメガネが特許文献2に示されている。 Patent Document 1 discloses an RFID tag-equipped eyeglass that enables a wearer to be managed as a customer using an RFID tag. Further, Patent Document 2 shows an RFID tag-equipped eyeglass that enables management of information on eyeglasses purchased by a customer using an RFID tag.
特開2016-11970号公報JP, 2016-11970, A 特開2005-215324号公報JP 2005-215324 A
 特許文献1に示されているRFIDタグ付きメガネにおいては、メガネのテンプルにRFIDタグが貼着されている。この構造の場合、テンプルが絶縁樹脂であれば、RFIDタグの読取りが可能であるが、テンプルが金属であると、RFIDタグの読取りは困難となる。また、たとえ、テンプルが絶縁樹脂製であっても、リムが金属であれば、メガネに対するリーダライタの位置関係によっては、RFIDタグの読取りが難しいことがある。電磁気的にはリムは二つのループ状の導体であるので、UHF帯においては面状に拡がった導体板として作用する。そのため、例えばリムの正面側にリーダ/ライタを向けた場合に、リムがRFIDタグを電磁気的に遮蔽することになり、RFIDタグとの通信が困難になる。 In the RFID tag-equipped glasses disclosed in Patent Document 1, the RFID tags are attached to the temples of the glasses. In this structure, if the temple is an insulating resin, reading of the RFID tag is possible, but if the temple is metal, reading of the RFID tag becomes difficult. Moreover, even if the temple is made of insulating resin, if the rim is metal, reading of the RFID tag may be difficult depending on the positional relationship of the reader / writer with respect to the glasses. Since the rim is electromagnetically two looped conductors, it acts as a planarly spread conductor plate in the UHF band. Therefore, when the reader / writer is directed to the front side of the rim, for example, the rim electromagnetically shields the RFID tag, which makes it difficult to communicate with the RFID tag.
 特許文献2に示されているRFIDタグ付きメガネにおいては、レンズの凹部にRFIDタグが埋め込まれている。この構造であれば、リムが金属であってもその影響を受け難いが、RFIDタグのアンテナを大きくすることが難しく、十分な通信距離は得られない。そのため、リーダライタを近接させないとタグの読取りが難しく、RFIDタグの利用用途が限定される。 In the RFID tag-equipped glasses disclosed in Patent Document 2, the RFID tag is embedded in the recess of the lens. With this structure, even if the rim is a metal, it is difficult to be affected, but it is difficult to make the antenna of the RFID tag large, and a sufficient communication distance can not be obtained. Therefore, it is difficult to read the tag if the reader / writer is not in proximity, and the usage of the RFID tag is limited.
 そこで、本発明の目的は、電磁気的にループ状導体が形成される物品についても、RFIDタグとの通信が可能なRFIDタグ付き物品、特にRFIDタグ付きメガネを提供することにある。 Therefore, an object of the present invention is to provide an RFID-tagged article capable of communicating with an RFID tag, particularly an RFID-tagged eyeglass, even for an article on which an electromagnetically looped conductor is formed.
(1)本発明のRFIDタグ付きメガネは、メガネレンズと、当該メガネレンズを保持する金属製リムと、を有するメガネと、平面寸法が前記メガネレンズより小さなRFIDタグと、を備え、
 前記RFIDタグは、
  基材と、
  前記基材に搭載され、第1入出力端子および第2入出力端子を有するRFIC素子と、
  前記基材に形成され、一端が前記第1入出力端子に接続される第1接続端であり、他端が第1開放端である第1ダイポールエレメント、および、一端が前記第2入出力端子に接続される第2接続端であり、他端が第2開放端である第2ダイポールエレメントで構成されるダイポール型アンテナと、
 で構成され、
 前記ダイポール型アンテナの形成領域は、平面視で長手方向および短手方向をもち、前記長手方向の互いに対向する端部である第1端部および第2端部を有し、前記短手方向の互いに対向する側部である第1側部および第2側部を有し、
 前記第1ダイポールエレメントは、前記第1接続端から前記第1端部方向へ延伸するとともに前記第1側部方向に向かってミアンダ状に蛇行する導体パターンであり、
 前記第2ダイポールエレメントは、前記第2接続端から前記第2端部方向へ延伸するとともに前記第2側部方向に向かってミアンダ状に蛇行する導体パターンであり、
 前記RFIDタグは、前記第1側部が前記金属製リムに沿うように前記メガネレンズに貼着された、
 ことを特徴とする。
(1) The RFID tag-equipped glasses of the present invention comprise: glasses having a spectacle lens, a metal rim for holding the spectacle lens, and an RFID tag having a planar dimension smaller than that of the spectacle lens,
The RFID tag is
A substrate,
An RFIC element mounted on the substrate and having a first input / output terminal and a second input / output terminal;
A first dipole element formed on the base material, one end being a first connection end connected to the first input / output terminal, and the other end being a first open end, and one end being the second input / output terminal A second connection end connected to the second end and a second open end, the other end being a second open end,
Consists of
The formation area of the dipole antenna has a longitudinal direction and a short direction in a plan view, and has a first end and a second end which are opposite ends in the longitudinal direction, and the short direction Having opposite sides, a first side and a second side,
The first dipole element is a conductor pattern extending from the first connection end toward the first end and meandering in a meandering direction toward the first side,
The second dipole element is a conductor pattern extending from the second connection end toward the second end and meandering in a meandering direction toward the second side,
The RFID tag is attached to the spectacle lens such that the first side portion is along the metal rim.
It is characterized by
 上記の構成により、第1ダイポールエレメントの開放端およびその近傍がリムに沿って配置されることになるので、リムがRFIDタグのアンテナの一部として作用する。すなわち、ループ状導体内にRFIDタグが配置されているにも拘わらず、ループ状導体が有効に利用され、RFIDタグはリーダ/ライタと通信可能となる。 With the above configuration, the rim acts as part of the antenna of the RFID tag, since the open end of the first dipole element and its vicinity will be arranged along the rim. That is, although the RFID tag is disposed in the loop conductor, the loop conductor is effectively used and the RFID tag can communicate with the reader / writer.
(2)本発明のRFIDタグ付き物品は、絶縁体部と、当該絶縁体部の周縁の全部または一部を囲む金属部と、を有する物品と、平面寸法が前記絶縁体部より小さなRFIDタグと、を備え、
 前記RFIDタグは、
  基材と、
  前記基材に搭載され、第1入出力端子および第2入出力端子を有するRFIC素子と、
  前記基材に形成され、一端が前記第1入出力端子に接続される第1接続端であり、他端が第1開放端である第1ダイポールエレメント、および、一端が前記第2入出力端子に接続される第2接続端であり、他端が第2開放端である第2ダイポールエレメントで構成されるダイポール型アンテナと、
 で構成され、
 前記ダイポール型アンテナの形成領域は、平面視で長手方向および短手方向をもち、前記長手方向の互いに対向する端部である第1端部および第2端部を有し、前記短手方向の互いに対向する側部である第1側部および第2側部を有し、
 前記第1ダイポールエレメントは、前記第1接続端から前記第1端部方向へ延伸するとともに前記第1側部方向に向かってミアンダ状に蛇行する導体パターンであり、
 前記第2ダイポールエレメントは、前記第2接続端から前記第2端部方向へ延伸するとともに前記第2側部方向に向かってミアンダ状に蛇行する導体パターンであり、
 前記RFIDタグは、前記第1側部が前記金属部に沿うように前記絶縁体部に貼着された、
 ことを特徴とする。
(2) An article with an RFID tag according to the present invention is an article having an insulator portion and a metal portion surrounding all or part of the periphery of the insulator portion, and an RFID tag having a planar dimension smaller than that of the insulator portion And
The RFID tag is
A substrate,
An RFIC element mounted on the substrate and having a first input / output terminal and a second input / output terminal;
A first dipole element formed on the base material, one end being a first connection end connected to the first input / output terminal, and the other end being a first open end, and one end being the second input / output terminal A second connection end connected to the second end and a second open end, the other end being a second open end,
Consists of
The formation area of the dipole antenna has a longitudinal direction and a short direction in a plan view, and has a first end and a second end which are opposite ends in the longitudinal direction, and the short direction Having opposite sides, a first side and a second side,
The first dipole element is a conductor pattern extending from the first connection end toward the first end and meandering in a meandering direction toward the first side,
The second dipole element is a conductor pattern extending from the second connection end toward the second end and meandering in a meandering direction toward the second side,
The RFID tag is attached to the insulator portion such that the first side portion is along the metal portion.
It is characterized by
 上記の構成により、第1ダイポールエレメントの開放端およびその近傍が金属部に沿って配置されることになるので、金属部がRFIDタグのアンテナの一部として作用する。すなわち、ループ状導体内にRFIDタグが配置されているにも拘わらず、ループ状導体が有効に利用され、RFIDタグはリーダ/ライタと通信可能となる。 According to the above configuration, the open end of the first dipole element and the vicinity thereof are disposed along the metal portion, so that the metal portion acts as a part of the antenna of the RFID tag. That is, although the RFID tag is disposed in the loop conductor, the loop conductor is effectively used and the RFID tag can communicate with the reader / writer.
(3)前記第1開放端は前記第1側部寄りの位置にあることが好ましい。このことにより、第1開放端と金属部との間の電界結合度が大きくなり、金属部に誘導される電流が増大することで、金属部は放射体として効果的に作用する。 (3) It is preferable that the said 1st open end exists in the position near the said 1st side. As a result, the degree of electric field coupling between the first open end and the metal portion is increased, and the current induced in the metal portion is increased, whereby the metal portion effectively functions as a radiator.
(4)前記RFIC素子は、RFICチップと、前記RFICチップと前記ダイポール型アンテナとのインピーダンスを整合させるインピーダンス整合回路とを一体化した素子であることが好ましい。この構成により、貼付などによりRFIDタグを設ける先である物品の誘電率や透磁率の影響を受けず、RFIDタグ単体での電気的特性を保てる。 (4) The RFIC element is preferably an element in which an RFIC chip and an impedance matching circuit for matching the impedances of the RFIC chip and the dipole antenna are integrated. With this configuration, the electrical characteristics of the RFID tag alone can be maintained without being affected by the permittivity and permeability of the article to which the RFID tag is to be provided by sticking or the like.
(5)前記第1ダイポールエレメントの一部は前記RFIC素子と前記第1側部との間に配置されていて、前記第2ダイポールエレメントの一部は前記RFIC素子と前記第2側部との間に配置されていることが好ましい。この構造により、限られた面積の基材に所定線長の第1ダイポールエレメントおよび第2ダイポールエレメントを形成できる。 (5) A part of the first dipole element is disposed between the RFIC element and the first side, and a part of the second dipole element is the RFIC element and the second side It is preferable that it is arrange | positioned between. With this structure, it is possible to form a first dipole element and a second dipole element of a predetermined line length on a substrate of a limited area.
(6)前記ダイポール型アンテナは、前記長手方向の寸法が前記短手方向の寸法の2倍以上であることが好ましい。この構造により、第1開放端と金属部との間の電界結合度が大きくなり、金属部に誘導される電流が増大することで、金属部は放射体として効果的に作用する。また、RFIC素子から互いに概略反対方向へ延びる第1ダイポールエレメントおよび第2ダイポールエレメントの範囲を長く確保でき、アンテナの所定の利得が得やすい。 (6) It is preferable that the dimension of the said longitudinal direction of the said dipole type | mold antenna is 2 times or more of the dimension of the said transversal direction. With this structure, the degree of electric field coupling between the first open end and the metal portion is increased, and the current induced in the metal portion is increased, whereby the metal portion effectively functions as a radiator. Further, a long range of the first dipole element and the second dipole element extending in substantially opposite directions from the RFIC element can be secured, and it is easy to obtain a predetermined gain of the antenna.
(7)前記RFIC素子は前記ダイポール型アンテナを介してUHF帯で通信することが好ましい。これにより、UHF帯を利用するRFIDシステムに適合できる。 (7) Preferably, the RFIC element communicates in the UHF band via the dipole antenna. Thereby, it can adapt to the RFID system which utilizes a UHF band.
 本発明によれば、電磁気的にループ状導体が形成される物品についても、RFIDタグとの通信が可能なRFIDタグ付き物品が得られる。また、特にRFIDタグ付きメガネが得られる。 According to the present invention, an RFID-tagged article capable of communicating with an RFID tag can be obtained even for an article in which a loop conductor is electromagnetically formed. In particular, glasses with RFID tags are obtained.
図1は第1の実施形態に係るRFIDタグ付きメガネ410の部分正面図である。FIG. 1 is a partial front view of the RFID tag equipped eyeglasses 410 according to the first embodiment. 図2(A)はRFIDタグ301の平面図である。図2(B)はRFIDタグ301と、メガネレンズ411およびリム412との関係を示す正面図である。FIG. 2A is a plan view of the RFID tag 301. FIG. FIG. 2B is a front view showing the relationship between the RFID tag 301 and the spectacle lens 411 and the rim 412. 図3(A)は、特にRFIDタグ301に流れる電流とリム412に流れる電流との関係を示す図である。図3(B)はRFIDタグ付きメガネのアンテナ部分の等価回路図である。FIG. 3A is a diagram particularly showing the relationship between the current flowing through the RFID tag 301 and the current flowing through the rim 412. FIG. 3B is an equivalent circuit diagram of the antenna portion of the RFID tag-equipped glasses. 図4は、RFIC素子100の斜視図である。FIG. 4 is a perspective view of the RFIC element 100. FIG. 図5は、図4に示すRFIC素子の縦断面図である。FIG. 5 is a longitudinal sectional view of the RFIC element shown in FIG. 図6Aは、多層基板120の上位の絶縁層を真上から見た状態を示す平面図である。FIG. 6A is a plan view of the upper insulating layer of the multilayer substrate 120 as viewed from directly above. 図6Bは、多層基板120の中位の絶縁層の平面図である。FIG. 6B is a plan view of the middle insulating layer of the multilayer substrate 120. As shown in FIG. 図6Cは、多層基板120の下位の絶縁層の示す平面図である。6C is a plan view of the lower insulating layer of the multilayer substrate 120. FIG. 図7Aは、図6Aに示す絶縁層のB1-B1線断面図である。FIG. 7A is a cross-sectional view of the insulating layer shown in FIG. 6A along the line B1-B1. 図7Bは、図6Bに示す絶縁層のB2-B2線断面図である。FIG. 7B is a cross-sectional view of the insulating layer shown in FIG. 6B along the line B2-B2. 図7Cは、図6Cに示す絶縁層のB3-B3線断面図である。FIG. 7C is a cross-sectional view of the insulating layer shown in FIG. 6C along the line B3-B3. 図8は、RFIC素子100の等価回路を示す図である。FIG. 8 is a diagram showing an equivalent circuit of the RFIC element 100. As shown in FIG. 図9は、RFIC素子100のインダクタL1~L4に生じる磁界の方向を示す図である。FIG. 9 is a diagram showing the direction of the magnetic field generated in the inductors L1 to L4 of the RFIC element 100. 図10は、RFIC素子100におけるリジッド領域およびフレキシブル領域の分布を示す図である。FIG. 10 is a diagram showing the distribution of rigid regions and flexible regions in the RFIC element 100. As shown in FIG. 図11は、RFIC素子100をランドLA1,LA2に取り付けたRFIDタグが撓んだ状態を示す図である。FIG. 11 is a view showing a state in which the RFID tag in which the RFIC element 100 is attached to the lands LA1 and LA2 is bent. 図12は、図11のRFIDタグの等価回路を流れる電流の一例を示す図である。FIG. 12 is a diagram showing an example of current flowing in the equivalent circuit of the RFID tag of FIG. 図13は、図11のRFIDタグにおいて、RFICチップに接続される回路をRFICチップから視た反射損失の周波数特性を示す図である。FIG. 13 is a diagram showing frequency characteristics of reflection loss when the circuit connected to the RFIC chip in the RFID tag of FIG. 11 is viewed from the RFIC chip. 図14は第2の実施形態に係るRFIDタグ302Aの平面図である。FIG. 14 is a plan view of the RFID tag 302A according to the second embodiment. 図15は第2の実施形態に係る別のRFIDタグ302Bの平面図である。FIG. 15 is a plan view of another RFID tag 302B according to the second embodiment. 図16は第2の実施形態に係る別のRFIDタグ302Cの平面図である。FIG. 16 is a plan view of another RFID tag 302C according to the second embodiment. 図17は第2の実施形態に係る別のRFIDタグ302Dの平面図である。FIG. 17 is a plan view of another RFID tag 302D according to the second embodiment. 図18は第2の実施形態に係る別のRFIDタグ302Eの平面図である。FIG. 18 is a plan view of another RFID tag 302E according to the second embodiment. 図19はRFIDタグ付き名札421の内部構造を示す平面図である。FIG. 19 is a plan view showing an internal structure of the RFID tag-attached name tag 421. As shown in FIG. 図20はRFIDタグ付き携帯電子機器422の主要構成を示す図である。FIG. 20 is a view showing the main configuration of a portable electronic device 422 with an RFID tag. 図21はRFIDタグ付きクリップボード423の平面図である。FIG. 21 is a plan view of the clipboard 423 with an RFID tag. 図22はRFIDタグ付き自動車424の斜視図である。FIG. 22 is a perspective view of a car 424 with an RFID tag.
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明または理解の容易性を考慮して、便宜上実施形態を分けて示すが、異なる実施形態で示した構成の部分的な置換または組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。 Hereinafter, some specific examples will be described with reference to the drawings to show a plurality of modes for carrying out the present invention. The same reference numerals are given to the same parts in each drawing. Although the embodiments are shown separately for convenience in consideration of the description of the main points or the ease of understanding, partial replacement or combination of the configurations shown in the different embodiments is possible. In the second and subsequent embodiments, descriptions of matters in common with the first embodiment will be omitted, and only different points will be described. In particular, the same operation and effect by the same configuration will not be sequentially referred to in each embodiment.
《第1の実施形態》
 図1は第1の実施形態に係るRFIDタグ付きメガネ410の部分正面図である。このRFIDタグ付きメガネ410は、メガネレンズ411と、このメガネレンズ411を保持する金属製リム(以下、単に「リム」)412と、を有するメガネと、平面寸法がメガネレンズ411より小さなRFIDタグ301と、を備える。リム412はループ状導体である。上記メガネレンズ411は、例えばメガネフレームの展示用に予め嵌め込まれた、度数の無い樹脂製のレンズである。
First Embodiment
FIG. 1 is a partial front view of the RFID tag equipped eyeglasses 410 according to the first embodiment. The RFID tag-attached eyeglasses 410 includes an eyeglass lens 411 and an eyeglass lens 411 and a metal rim (hereinafter simply referred to as “rim”) 412 for holding the eyeglass lens 411, and an RFID tag 301 whose planar dimension is smaller than the eyeglass lens 411. And. The rim 412 is a looped conductor. The spectacle lens 411 is, for example, a powerless resin lens fitted in advance for display of a spectacle frame.
 図2(A)はRFIDタグ301の平面図である。このRFIDタグ301は、矩形板状の基材1、この基材1に形成された第1ダイポールエレメント10および第2ダイポールエレメント20、基材1に搭載されたRFIC素子100を備える。 FIG. 2A is a plan view of the RFID tag 301. FIG. The RFID tag 301 includes a rectangular plate-shaped base 1, a first dipole element 10 and a second dipole element 20 formed on the base 1, and an RFIC element 100 mounted on the base 1.
 基材1は、平面視で長手方向(図2(A)におけるX軸方向)および短手方向(図2(A)におけるY軸方向)をもち、長手方向の互いに対向する端部である第1端部E1および第2端部E2を有し、短手方向の互いに対向する側部である第1側部S1および第2側部S2を有する。本実施形態では、基材のほぼ全面が、ダイポール型アンテナの形成領域であるので、基材1の「長手方向」、「短手方向」、「第1端部E1」、「第2端部E2」、「第1側部S1」および「第2側部S2」は、本発明に係る「長手方向」、「短手方向」、「第1端部」、「第2端部」、「第1側部」および「第2側部」にそれぞれ対応する。 The base material 1 has a longitudinal direction (X-axis direction in FIG. 2A) and a lateral direction (Y-axis direction in FIG. 2A) in plan view, and the mutually opposing end portions in the longitudinal direction It has one end E1 and a second end E2, and has a first side S1 and a second side S2 which are mutually opposite sides in the transverse direction. In the present embodiment, since the substantially entire surface of the base is the formation area of the dipole antenna, the “longitudinal direction”, “short side direction”, “first end E1”, “second end” of the base 1 E2 ”,“ first side S1 ”and“ second side S2 ”are“ longitudinal direction ”,“ short side direction ”,“ first end ”,“ second end ”,“ second end ”according to the present invention The first side and the second side correspond to each other.
 基材1の中央には、RFIC素子100を実装するためのランドLA1,LA2が形成されている。このランドLA1,LA2にRFIC素子100の第1入出力端子および第2入出力端子がそれぞれ接続される。 Lands LA1 and LA2 for mounting the RFIC element 100 are formed at the center of the substrate 1. The first input / output terminal and the second input / output terminal of the RFIC element 100 are connected to the lands LA1 and LA2, respectively.
 基材1には第1ダイポールエレメント10および第2ダイポールエレメント20が形成されている。この第1ダイポールエレメント10および第2ダイポールエレメント20で1つのダイポール型アンテナが構成される。このダイポール型アンテナは基本的に1/4波長共振を利用するが、後述するように、それに限るものではない。 A first dipole element 10 and a second dipole element 20 are formed on the substrate 1. The first dipole element 10 and the second dipole element 20 constitute one dipole antenna. Although this dipole antenna basically uses quarter-wave resonance, it is not limited thereto as described later.
 第1ダイポールエレメント10は主導体パターン部11と先端部12とで構成される。第2ダイポールエレメント20は主導体パターン部21と先端部22とで構成される。 The first dipole element 10 is composed of the main conductor pattern portion 11 and the tip portion 12. The second dipole element 20 is composed of the main conductor pattern 21 and the tip 22.
 第1ダイポールエレメント10の主導体パターン部11は側部導体パターン11Sを含む。この側部導体パターン11SはRFIC素子100と先端部12との間に配置されている。同様に、第2ダイポールエレメント20の主導体パターン部21の一部である側部導体パターン21SはRFIC素子100と先端部22との間に配置されている。 The main conductor pattern portion 11 of the first dipole element 10 includes a side conductor pattern 11S. The side conductor pattern 11 S is disposed between the RFIC element 100 and the tip 12. Similarly, a side conductor pattern 21 S which is a part of the main conductor pattern portion 21 of the second dipole element 20 is disposed between the RFIC element 100 and the tip 22.
 第1ダイポールエレメント10の一端は、ランドLA1に接続される(RFIC素子の第1入出力端子に接続される)第1接続端CE1である。第1ダイポールエレメント10の他端は第1開放端OE1である。第2ダイポールエレメント20の一端は、ランドLA2に接続される(RFIC素子の第2入出力端子に接続される)第2接続端CE2である。第2ダイポールエレメント20の他端は第2開放端OE2である。 One end of the first dipole element 10 is a first connection end CE1 connected to the land LA1 (connected to the first input / output terminal of the RFIC element). The other end of the first dipole element 10 is a first open end OE1. One end of the second dipole element 20 is a second connection end CE2 connected to the land LA2 (connected to the second input / output terminal of the RFIC element). The other end of the second dipole element 20 is a second open end OE2.
 第1ダイポールエレメント10は、第1接続端CE1から第1端部E1方向へ延伸するとともに第1側部S1方向に向かってミアンダ状に蛇行する導体パターンである。同様に、第2ダイポールエレメント20は、第2接続端CE2から第2端部E2方向へ延伸するとともに第2側部S2方向に向かってミアンダ状に蛇行する導体パターンである。本実施形態では、RFIC素子100と先端部12,22との間に側部導体パターン11S,21Sが配置されているので、基材1の面積を、ダイポールエレメントを形成するためのスペースとして有効に利用でき、RFIDタグの小型化が図れる。また、同サイズであれば、高利得化が図れる。 The first dipole element 10 is a conductor pattern extending from the first connection end CE1 in the direction of the first end E1 and meandering in the direction of the first side portion S1 in a meandering manner. Similarly, the second dipole element 20 is a conductor pattern extending from the second connection end CE2 in the direction of the second end E2 and meandering in the direction of the second side S2. In the present embodiment, since the side conductor patterns 11S and 21S are disposed between the RFIC element 100 and the tip portions 12 and 22, the area of the base material 1 is effectively used as a space for forming a dipole element. It can be used to miniaturize the RFID tag. Also, if the size is the same, high gain can be achieved.
 第1開放端OE1は第1ダイポールエレメント10の形成領域のうち第1側部S1寄りの位置にある。同様に、第2開放端OE2は第2ダイポールエレメント20の形成領域のうち第2側部S2寄りの位置にある。 The first open end OE1 is located closer to the first side S1 in the formation area of the first dipole element 10. Similarly, the second open end OE2 is located closer to the second side S2 in the formation area of the second dipole element 20.
 第1ダイポールエレメント10は、第1開放端OE1が、基材1の第1端部E1より第2端部E2方向へ折り返されている。同様に、第2ダイポールエレメント20は、第2開放端OE2が、基材1の第2端部E2より第1端部E1方向へ折り返されている。 In the first dipole element 10, the first open end OE1 is folded back from the first end E1 of the substrate 1 in the direction of the second end E2. Similarly, in the second dipole element 20, the second open end OE2 is folded back from the second end E2 of the substrate 1 toward the first end E1.
 本実施形態では、第1ダイポールエレメント10のうち、先端部12の線幅は主導体パターン部11の線幅より2倍以上太い。同様に、第2ダイポールエレメント20のうち、先端部22の線幅は主導体パターン部21の線幅より2倍以上太い。また、先端部12は側部導体パターン11Sの形成領域より第2端部E2方向へ更に延出している。同様に、先端部22は側部導体パターン21Sの形成領域より第1端部E1方向へ更に延出している。 In the present embodiment, the line width of the tip portion 12 of the first dipole element 10 is twice or more than the line width of the main conductor pattern portion 11. Similarly, the line width of the tip 22 of the second dipole element 20 is twice or more than the line width of the main conductor pattern 21. In addition, the tip 12 further extends in the direction of the second end E2 from the formation region of the side conductor pattern 11S. Similarly, the tip 22 further extends in the direction of the first end E1 from the formation region of the side conductor pattern 21S.
 第1ダイポールエレメント10の先端部12および第2ダイポールエレメント20の先端部22は、ダイポールエレメントの開放端およびその付近に容量を付加するための導体パターンである。この容量付加によって、ダイポールエレメントを短縮化している。 The tip 12 of the first dipole element 10 and the tip 22 of the second dipole element 20 are conductor patterns for adding capacitance at and near the open end of the dipole element. This addition of capacitance shortens the dipole element.
 第1ダイポールエレメント10の主導体パターン部11のうち、第1側部S1に近接して沿う部分および先端部12は容量結合部CCを構成する。 Of the main conductor pattern portion 11 of the first dipole element 10, the portion along the first side S1 and the tip portion 12 form a capacitive coupling portion CC.
 本実施形態のRFIDタグ301は、長手方向の寸法は24mm、短手方向の寸法は8mmであり、短手方向と長手方向の寸法比は1:3である。すなわち長手方向の寸法は短手方向の寸法の2倍以上である(図2(B)参照)。 The RFID tag 301 according to the present embodiment has a dimension of 24 mm in the longitudinal direction and a dimension of 8 mm in the latitudinal direction, and the dimensional ratio of the latitudinal direction to the longitudinal direction is 1: 3. That is, the dimension in the longitudinal direction is twice or more the dimension in the transverse direction (see FIG. 2 (B)).
 図2(B)はRFIDタグ301と、メガネレンズ411およびリム412との関係を示す正面図である。図3(A)は、特にRFIDタグ301に流れる電流とリム412に流れる電流との関係を示す図である。図3(A)においては、第1ダイポールエレメント10および第2ダイポールエレメント20のミアンダ状パターンの折り返し回数を簡略化して表している。図3(B)はRFIDタグ付きメガネのアンテナ部分の等価回路図である。 FIG. 2B is a front view showing the relationship between the RFID tag 301 and the spectacle lens 411 and the rim 412. FIG. 3A is a diagram particularly showing the relationship between the current flowing through the RFID tag 301 and the current flowing through the rim 412. In FIG. 3A, the number of times the meandering pattern of the first dipole element 10 and the second dipole element 20 is folded is represented in a simplified manner. FIG. 3B is an equivalent circuit diagram of the antenna portion of the RFID tag-equipped glasses.
 図2(B)における正面と、図2(A)における平面とは、同方向に視た面である。 The front in FIG. 2 (B) and the plane in FIG. 2 (A) are planes viewed in the same direction.
 図1、図2(B)、図3(A)に表れているように、RFIDタグ301は、第1側部S1(第1開放端)がリム412に沿うように、且つ、第2側部S2(第2開放端)が第1側部S1(第1開放端)よりもリム412の中央(メガネレンズ311の中央)寄りに位置するように、メガネレンズ411に貼着されている。このオフセット配置構造により、容量結合部CC(第1ダイポールエレメント10の開放端OE1およびその近傍)がリム412に沿って配置される。 As shown in FIGS. 1, 2 (B) and 3 (A), the RFID tag 301 is configured such that the first side S 1 (first open end) is along the rim 412 and the second side. The eyeglass lens 411 is attached such that the portion S2 (second open end) is positioned closer to the center of the rim 412 (center of the spectacle lens 311) than the first side portion S1 (first open end). By this offset arrangement structure, the capacitive coupling portion CC (the open end OE1 of the first dipole element 10 and its vicinity) is arranged along the rim 412.
 容量結合部CCとリム412とが近接して沿うことにより、図2(B)、図3(A)中にキャパシタの回路記号で示すように、容量結合部CCとリム412との間に容量が生じる。この容量を介して、容量結合部CCとリム412とが容量結合する。これにより、図3(A)に示すように電流が誘導される。図3(A)において、例えば第1接続端CE1から第1開放端OE1方向へ電流が流れるとき、容量結合部CCに右向きの電流が流れ、リム412に右向きの電流が流れる。 Since the capacitive coupling portion CC and the rim 412 are in close proximity to each other, as shown by the circuit symbol of the capacitor in FIG. 2B and FIG. 3A, the capacitance between the capacitive coupling portion CC and the rim 412 Will occur. The capacitive coupling portion CC and the rim 412 are capacitively coupled via this capacitance. Thereby, current is induced as shown in FIG. In FIG. 3A, for example, when a current flows from the first connection end CE1 toward the first open end OE1, a rightward current flows in the capacitive coupling portion CC, and a rightward current flows in the rim 412.
 なお、このとき、第2ダイポールエレメント20のうちリム412に近接して沿う部分には左向きの電流が流れるが、この部分は第2ダイポールエレメント20の第2開放端OE2から遠く、第2接続端CE2に近い位置であるので、電圧強度は低く、この部分とリム412との容量結合は殆ど無い。また、第2ダイポールエレメント20の第2開放端OE2およびその近傍はリム412から相対的に離れているので、第2開放端OE2およびその近傍とリム412との間には大きな容量は形成されない。したがって、第2ダイポールエレメント20とリム412との不要な結合は小さい。 At this time, a leftward current flows in a portion along the proximity of the rim 412 in the second dipole element 20, but this portion is far from the second open end OE2 of the second dipole element 20, and the second connection end Because it is located near CE2, the voltage strength is low and there is almost no capacitive coupling between this portion and the rim 412. Further, since the second open end OE2 of the second dipole element 20 and the vicinity thereof are relatively away from the rim 412, no large capacitance is formed between the second open end OE2 and the vicinity thereof and the rim 412. Therefore, unnecessary coupling between the second dipole element 20 and the rim 412 is small.
 上記リム412は図3(B)においてループ状導体で示すグランドGNDとして表すことができる。そして、第2ダイポールエレメント20はモノポールアンテナとして表すことができる。 The rim 412 can be represented as a ground GND shown by a loop conductor in FIG. 3 (B). And, the second dipole element 20 can be represented as a monopole antenna.
 以降、RFIC素子の構成と作用について説明する。 Hereinafter, the configuration and operation of the RFIC element will be described.
 図4は、RFIC素子100の斜視図である。RFIC素子100は、例えば、900MHz帯、すなわちUHF帯の通信周波数に対応するRFIC素子である。RFIC素子100は、主面が矩形をなす多層基板120を有する。多層基板120は、可撓性を有している。多層基板120は、例えば、ポリイミドや液晶ポリマ等の可撓性を有する樹脂絶縁層を積層した積層体の構造を有する。これらの材料で構成される各絶縁層の誘電率は、LTCCに代表されるセラミック基材層の誘電率よりも小さい。 FIG. 4 is a perspective view of the RFIC element 100. FIG. The RFIC element 100 is, for example, an RFIC element corresponding to a communication frequency of 900 MHz band, that is, UHF band. The RFIC element 100 has a multilayer substrate 120 whose main surface is rectangular. The multilayer substrate 120 is flexible. The multilayer substrate 120 has, for example, a laminated structure in which a flexible resin insulating layer such as polyimide or liquid crystal polymer is laminated. The dielectric constant of each insulating layer composed of these materials is smaller than the dielectric constant of the ceramic base layer represented by LTCC.
 ここでは、多層基板120の長さ方向をX軸とし、多層基板120の幅方向をY軸とし、多層基板120の厚み方向をZ軸とする。 Here, the length direction of the multilayer substrate 120 is taken as the X axis, the width direction of the multilayer substrate 120 as the Y axis, and the thickness direction of the multilayer substrate 120 as the Z axis.
 図5は、図4に示すRFIC素子の縦断面図である。図6Aは、多層基板120の上位の絶縁層を真上から見た状態を示す平面図である。図6Bは、多層基板120の中位の絶縁層の平面図である。図6Cは、多層基板120の下位の絶縁層の示す平面図である。図7Aは、図6Aに示す絶縁層のB1-B1線断面図である。図7Bは、図6Bに示す絶縁層のB2-B2線断面図である。図7Cは、図6Cに示す絶縁層のB3-B3線断面図である。 FIG. 5 is a longitudinal sectional view of the RFIC element shown in FIG. FIG. 6A is a plan view of the upper insulating layer of the multilayer substrate 120 as viewed from directly above. FIG. 6B is a plan view of the middle insulating layer of the multilayer substrate 120. As shown in FIG. 6C is a plan view of the lower insulating layer of the multilayer substrate 120. FIG. FIG. 7A is a cross-sectional view of the insulating layer shown in FIG. 6A along the line B1-B1. FIG. 7B is a cross-sectional view of the insulating layer shown in FIG. 6B along the line B2-B2. FIG. 7C is a cross-sectional view of the insulating layer shown in FIG. 6C along the line B3-B3.
 多層基板120には、図5に示すように、RFICチップ160およびインピーダンス整合回路180が内蔵されている。多層基板120の一方の主面には、第1端子電極140aおよび第2端子電極140bが形成されている。整合回路180はRFICチップ160と、第1ダイポールエレメント10および第2ダイポールエレメント20とをインピーダンス整合させるとともに、アンテナの共振周波数特性を定める。 In the multilayer substrate 120, as shown in FIG. 5, an RFIC chip 160 and an impedance matching circuit 180 are incorporated. A first terminal electrode 140 a and a second terminal electrode 140 b are formed on one main surface of the multilayer substrate 120. The matching circuit 180 impedance-matches the RFIC chip 160 with the first dipole element 10 and the second dipole element 20, and determines the resonant frequency characteristic of the antenna.
 RFICチップ160は、シリコン等の半導体を素材とする硬質の半導体基板に各種の素子を内蔵した構造を有している。RFICチップ160の両主面は正方形である。また、RFICチップ160の他方の主面には、図6Cに示すように、第1入出力端子160aおよび第2入出力端子160bが形成されている。多層基板120の内部において、RFICチップ160は、正方形の各辺がX軸またはY軸方向に沿って延び、且つ一方の主面および他方の主面がX-Y面に平行な状態で、X軸、Y軸、およびZ軸の各々における中央に位置する。 The RFIC chip 160 has a structure in which various elements are incorporated in a hard semiconductor substrate made of a semiconductor such as silicon. Both main surfaces of the RFIC chip 160 are square. Further, as shown in FIG. 6C, on the other main surface of the RFIC chip 160, a first input / output terminal 160a and a second input / output terminal 160b are formed. Inside the multilayer substrate 120, the RFIC chip 160 is X with each side of the square extending along the X-axis or Y-axis direction and one main surface and the other main surface parallel to the XY plane. Centrally located on each of the axis, Y axis, and Z axis.
 整合回路180は、コイル導体200および層間接続導体240a,240bによって構成されている。コイル導体200は、図6Bまたは図6Cに示すコイルパターン200a~200cによって構成されている。コイルパターン200aの一部は、第1コイル部CIL1により構成されている。コイルパターン200bの一部は、第2コイル部CIL2により構成されている。コイルパターン200cの一部は、第3コイル部CIL3および第4コイル部CIL4により構成されている。 The matching circuit 180 is configured of the coil conductor 200 and the interlayer connection conductors 240 a and 240 b. The coil conductor 200 is configured by the coil patterns 200a to 200c shown in FIG. 6B or 6C. A part of the coil pattern 200a is configured by the first coil portion CIL1. A part of the coil pattern 200b is configured by the second coil portion CIL2. A part of the coil pattern 200c is configured by the third coil portion CIL3 and the fourth coil portion CIL4.
 第1コイル部CIL1、第3コイル部CIL3、および層間接続導体240aは、Z軸方向に並ぶように配置されている。第2コイル部CIL2、第4コイル部CIL4、および層間接続導体240bも、Z軸方向に並ぶように配置されている。 The first coil portion CIL1, the third coil portion CIL3, and the interlayer connection conductor 240a are arranged in the Z-axis direction. The second coil portion CIL2, the fourth coil portion CIL4, and the interlayer connection conductor 240b are also arranged in the Z-axis direction.
 RFICチップ160は、多層基板120をZ軸方向から見たとき、第1コイル部CIL1と第2コイル部CIL2との間に配置されている。また、RFICチップ160は、多層基板120をY軸方向から見たとき、第3コイル部CIL3と第4コイル部CIL4との間に配置されている。 The RFIC chip 160 is disposed between the first coil portion CIL1 and the second coil portion CIL2 when the multilayer substrate 120 is viewed in the Z-axis direction. The RFIC chip 160 is disposed between the third coil portion CIL3 and the fourth coil portion CIL4 when the multilayer substrate 120 is viewed in the Y-axis direction.
 第1端子電極140aおよび第2端子電極140bは、いずれも可撓性を有する銅箔を素材として短冊状に形成されている。第1端子電極140aおよび第2端子電極140bの各々の主面のサイズは、互いに一致する。第1端子電極140aおよび第2端子電極140bの短辺は、X軸方向に延びている。第1端子電極140aおよび第2端子電極140bの長辺は、Y軸方向に延びている。 Each of the first terminal electrode 140a and the second terminal electrode 140b is formed in a strip shape using a flexible copper foil as a material. The sizes of the main surfaces of each of the first terminal electrode 140a and the second terminal electrode 140b match each other. The short sides of the first terminal electrode 140a and the second terminal electrode 140b extend in the X-axis direction. The long sides of the first terminal electrode 140a and the second terminal electrode 140b extend in the Y-axis direction.
 従って、RFICチップ160は、多層基板120をY軸方向から見たとき、整合回路180の一部と整合回路180の他の一部とによって挟まれる。また、RFICチップ160は、多層基板120をX軸方向から見たとき、整合回路180と重なる。整合回路180は、多層基板120を平面視したとき、第1端子電極140aおよび第2端子電極140bの各々と部分的に重なる。 Therefore, the RFIC chip 160 is sandwiched between a part of the matching circuit 180 and another part of the matching circuit 180 when the multilayer substrate 120 is viewed from the Y-axis direction. Further, the RFIC chip 160 overlaps the matching circuit 180 when the multilayer substrate 120 is viewed from the X-axis direction. The matching circuit 180 partially overlaps each of the first terminal electrode 140 a and the second terminal electrode 140 b when the multilayer substrate 120 is viewed in plan.
 多層基板120は、図6A~図6Cに示すように、積層された3つのシート状の絶縁層120a~120cによって構成されている。絶縁層120aは上位に位置し、絶縁層120bは中位に位置し、絶縁層120cは下位に位置する。 The multilayer substrate 120 is configured by three sheet-like insulating layers 120a to 120c stacked as shown in FIGS. 6A to 6C. The insulating layer 120 a is located on the upper side, the insulating layer 120 b is located on the middle side, and the insulating layer 120 c is located on the lower side.
 絶縁層120aの一方の主面には、第1端子電極140aおよび第2端子電極140bが形成されている。絶縁層120bの一方の主面の中央位置には、他方主面に達する矩形の貫通孔HL1が形成されている。貫通孔HL1は、RFICチップ160を包含するサイズに形成されている。また、絶縁層120bの一方の主面のうち貫通孔HL1の周辺には、コイルパターン200cが形成されている。コイルパターン200cは、可撓性を有する銅箔を素材として構成されている。 A first terminal electrode 140a and a second terminal electrode 140b are formed on one main surface of the insulating layer 120a. A rectangular through hole HL1 reaching the other main surface is formed at the central position of one of the main surfaces of the insulating layer 120b. The through hole HL1 is formed to a size including the RFIC chip 160. In addition, a coil pattern 200c is formed around the through hole HL1 on one of the main surfaces of the insulating layer 120b. The coil pattern 200c is configured using a flexible copper foil as a material.
 コイルパターン200cの一端部は、平面視において、第1端子電極140aと重なる位置に配置され、Z軸方向に延びる層間接続導体220aによって第1端子電極140aと接続されている。また、コイルパターン200cの他端部は、平面視において、第2端子電極140bと重なる位置に配置され、Z軸方向に延びる層間接続導体220bによって第2端子電極140bと接続されている。層間接続導体220a,220bは、Snを主成分とする硬質の金属バルクで構成されている。 One end of the coil pattern 200c is disposed at a position overlapping the first terminal electrode 140a in plan view, and is connected to the first terminal electrode 140a by the interlayer connection conductor 220a extending in the Z-axis direction. The other end of the coil pattern 200c is disposed at a position overlapping the second terminal electrode 140b in plan view, and is connected to the second terminal electrode 140b by the interlayer connection conductor 220b extending in the Z-axis direction. The interlayer connection conductors 220a and 220b are made of a hard metal bulk mainly composed of Sn.
 絶縁層120cの一方の主面には、コイルパターン200a,200bが形成されている。コイルパターン200a,200bは、可撓性を有する銅箔を素材として構成されている。 Coil patterns 200a and 200b are formed on one main surface of the insulating layer 120c. The coil patterns 200a and 200b are configured using a flexible copper foil as a material.
 第1コイル端T1および第2コイル端T2は、いずれも、絶縁層120cを平面視したとき、矩形に形成されている。 The first coil end T1 and the second coil end T2 are both formed in a rectangular shape when the insulating layer 120c is viewed in plan.
 コイルパターン200aの一端部は、Z軸方向に延びる層間接続導体240aによってコイルパターン200cの一端部と接続されている。コイルパターン200bの一端部は、Z軸方向に延びる層間接続導体240bによってコイルパターン200cの他端部と接続されている。層間接続導体240a,240bは、Snを主成分とする硬質の金属バルクで構成されている。 One end of the coil pattern 200a is connected to one end of the coil pattern 200c by an interlayer connection conductor 240a extending in the Z-axis direction. One end of the coil pattern 200b is connected to the other end of the coil pattern 200c by an interlayer connection conductor 240b extending in the Z-axis direction. The interlayer connection conductors 240a and 240b are made of a hard metal bulk mainly composed of Sn.
 絶縁層120b,120cを平面視したとき、コイルパターン200aの一部の区間はコイルパターン200cの一部の区間と重なり、コイルパターン200bの一部の区間もコイルパターン200cの他の一部の区間と重なる。ここでは、コイルパターン200a,200cが重なり合う区間のうち、コイルパターン200a側の区間を“第1コイル部CIL1”といい、コイルパターン200c側の区間を“第3コイル部CIL3”という。また、コイルパターン200b,200cが重なり合う区間のうち、コイルパターン200b側の区間を“第2コイル部CIL2”といい、コイルパターン200c側の区間を“第4コイル部CIL4”という。さらに、コイルパターン200aの一端部またはコイルパターン200cの一端部の位置を“第1位置P1”といい、コイルパターン200bの一端部またはコイルパターン200cの他端部の位置を“第2位置P2”という。 When the insulating layers 120b and 120c are viewed in plan, a section of the coil pattern 200a overlaps a section of the coil pattern 200c, and a section of the coil pattern 200b is also another section of the coil pattern 200c. Overlap. Here, among the sections in which the coil patterns 200a and 200c overlap, the section on the coil pattern 200a side is referred to as "first coil portion CIL1", and the section on the coil pattern 200c side is referred to as "third coil portion CIL3". Further, among the sections in which the coil patterns 200b and 200c overlap, the section on the coil pattern 200b side is referred to as "second coil section CIL2", and the section on the coil pattern 200c side is referred to as "fourth coil section CIL4". Furthermore, the position of one end of the coil pattern 200a or the one end of the coil pattern 200c is referred to as "first position P1", and the position of the one end of the coil pattern 200b or the other end of the coil pattern 200c is "second position P2" It is said.
 絶縁層120cの一方の主面には、矩形のダミー導体260a,260bが形成されている。ダミー導体260a,260bは、可撓性を有する銅箔を素材として構成されている。絶縁層120b,120cを平面視したとき、ダミー導体260a,260bは、矩形の貫通孔HL1の4つのコーナー部のうち、2つのコーナー部にそれぞれ重なるように配置されている。 Rectangular dummy conductors 260a and 260b are formed on one main surface of the insulating layer 120c. The dummy conductors 260a and 260b are made of a flexible copper foil. When the insulating layers 120b and 120c are viewed in plan, the dummy conductors 260a and 260b are arranged to overlap two of the four corner portions of the rectangular through hole HL1.
 RFICチップ160は、他方の主面の4つのコーナー部が第1コイル端T1、第2コイル端T2、およびダミー導体260a,260bとそれぞれ対向するように、絶縁層120cに実装されている。第1入出力端子160aは、平面視において第1コイル端T1と重なるように、RFICチップ160の他方の主面に配置されている。同様に、第2入出力端子160bは、平面視において第2コイル端T2と重なるように、RFICチップ160の他方の主面に配置されている。 The RFIC chip 160 is mounted on the insulating layer 120c such that the four corner portions of the other main surface face the first coil end T1, the second coil end T2, and the dummy conductors 260a and 260b. The first input / output terminal 160a is disposed on the other main surface of the RFIC chip 160 so as to overlap with the first coil end T1 in plan view. Similarly, the second input / output terminal 160b is disposed on the other main surface of the RFIC chip 160 so as to overlap the second coil end T2 in a plan view.
 その結果、RFICチップ160は、第1入出力端子160aによって第1コイル端T1と接続され、第2入出力端子160bによって第2コイル端T2と接続されている。 As a result, the RFIC chip 160 is connected to the first coil end T1 by the first input / output terminal 160a, and is connected to the second coil end T2 by the second input / output terminal 160b.
 なお、絶縁層120a~120cの厚さは、10μm以上100μm以下である。このため、多層基板120に内蔵されたRFICチップ160および整合回路180は、外側から透けて見える。従って、RFICチップ160および整合回路180の接続状態(断線の有無)を容易に確認することができる。 Note that the thickness of the insulating layers 120a to 120c is 10 μm to 100 μm. Therefore, the RFIC chip 160 and the matching circuit 180 built in the multilayer substrate 120 can be seen through from the outside. Therefore, the connection state (presence or absence of disconnection) of the RFIC chip 160 and the matching circuit 180 can be easily confirmed.
 図8は、上述したように構成されるRFIC素子100の等価回路を示す図である。図8において、インダクタL1は、第1コイル部CIL1に対応している。インダクタL2は、第2コイル部CIL2に対応している。インダクタL3は、第3コイル部CIL3に対応している。インダクタL4は、第4コイル部CIL4に対応している。整合回路180によるインピーダンス整合の特性は、インダクタL1~L4の値によって規定される。 FIG. 8 is a diagram showing an equivalent circuit of the RFIC element 100 configured as described above. In FIG. 8, an inductor L1 corresponds to the first coil portion CIL1. The inductor L2 corresponds to the second coil portion CIL2. The inductor L3 corresponds to the third coil portion CIL3. The inductor L4 corresponds to the fourth coil portion CIL4. The characteristics of impedance matching by matching circuit 180 are defined by the values of inductors L1 to L4.
 インダクタL1の一端部は、RFICチップ160に設けられた第1入出力端子160aに接続されている。インダクタL2の一端部は、RFICチップ160に設けられた第2入出力端子160bに接続されている。インダクタL1の他端部は、インダクタL3の一端部に接続されている。インダクタL2の他端部は、インダクタL4の一端部に接続されている。インダクタL3の他端部は、インダクタL4の他端部に接続されている。第1端子電極140aは、インダクタL1,L3の接続点に接続されている。第2端子電極140bは、インダクタL2,L4の接続点に接続されている。 One end of the inductor L1 is connected to a first input / output terminal 160a provided in the RFIC chip 160. One end of the inductor L2 is connected to a second input / output terminal 160b provided on the RFIC chip 160. The other end of the inductor L1 is connected to one end of the inductor L3. The other end of the inductor L2 is connected to one end of the inductor L4. The other end of the inductor L3 is connected to the other end of the inductor L4. The first terminal electrode 140a is connected to the connection point of the inductors L1 and L3. The second terminal electrode 140 b is connected to the connection point of the inductors L 2 and L 4.
 図8に示す等価回路から分かるように、第1コイル部CIL1、第2コイル部CIL2、第3コイル部CIL3、および第4コイル部CIL4は、磁界が同相となるように巻回され且つ互いに直列接続されている。従って、磁界は、ある時点において、図9において矢印で示す方向に向くように発生する。一方、磁界は、別の時点において、図9において矢印で示す方向とは反対の方向に向くように発生する。 As can be seen from the equivalent circuit shown in FIG. 8, the first coil portion CIL1, the second coil portion CIL2, the third coil portion CIL3, and the fourth coil portion CIL4 are wound such that the magnetic fields are in phase and in series with each other. It is connected. Therefore, the magnetic field is generated at a certain point so as to turn in the direction indicated by the arrow in FIG. On the other hand, the magnetic field is generated at another time point so as to turn in the opposite direction to the direction shown by the arrow in FIG.
 また、図6Bおよび図6Cから分かるように、第1コイル部CIL1および第3コイル部CIL3は、ほぼ同一のループ形状で且つ同一の第1巻回軸を有している。同様に、第2コイル部CIL2および第4コイル部CIL4は、ほぼ同一のループ形状で且つ同一の第2巻回軸を有している。第1巻回軸および第2巻回軸は、RFICチップ160を挟む位置に配置されている。 Further, as can be seen from FIGS. 6B and 6C, the first coil portion CIL1 and the third coil portion CIL3 have substantially the same loop shape and the same first winding axis. Similarly, the second coil portion CIL2 and the fourth coil portion CIL4 have substantially the same loop shape and the same second winding axis. The first winding axis and the second winding axis are disposed at positions sandwiching the RFIC chip 160.
 すなわち、第1コイル部CIL1および第3コイル部CIL3は、磁気的且つ容量的に結合している。同様に、第2コイル部CIL2および第4コイル部CIL4は、磁気的且つ容量的に結合している。 That is, the first coil portion CIL1 and the third coil portion CIL3 are magnetically and capacitively coupled. Similarly, the second coil portion CIL2 and the fourth coil portion CIL4 are magnetically and capacitively coupled.
 以上の説明から分かるように、RFICチップ160は、第1入出力端子160aおよび第2入出力端子160bを有し、多層基板120に内蔵されている。また、整合回路180は、コイルパターン200a~200cを含んで多層基板120に内蔵されている。このうち、コイルパターン200aは第1入出力端子160aに接続された他端部(=第1コイル端T1)を有し、コイルパターン200bは第2入出力端子160bに接続された他方に端部(=第2コイル端T2)を有する。また、第1端子電極140aおよび第2端子電極140bは、多層基板120の一方の主面に設けられている。第1端子電極140aは、コイルパターン200aの一端部(=第1位置P1)に接続されている。第2端子電極140bは、コイルパターン200bの一端部(=第2位置P2)にそれぞれ接続されている。 As can be understood from the above description, the RFIC chip 160 has the first input / output terminal 160 a and the second input / output terminal 160 b and is built in the multilayer substrate 120. The matching circuit 180 is incorporated in the multilayer substrate 120 including the coil patterns 200a to 200c. Among them, the coil pattern 200a has the other end (= first coil end T1) connected to the first input / output terminal 160a, and the coil pattern 200b is an end connected to the second input / output terminal 160b. It has (= 2nd coil end T2). The first terminal electrode 140 a and the second terminal electrode 140 b are provided on one main surface of the multilayer substrate 120. The first terminal electrode 140a is connected to one end (= first position P1) of the coil pattern 200a. The second terminal electrode 140 b is connected to one end (= second position P 2) of the coil pattern 200 b.
 また、第1コイル部CIL1は、第1コイル端T1から第1位置P1までの区間に存在し、多層基板120の一方の主面と交差する方向に第1巻回軸を有する。第2コイル部CIL2は、第2コイル端T2から第2位置P2までの区間に存在し、多層基板120の一方の主面と交差する方向に第2巻回軸を有する。第3コイル部CIL3は、平面視において第1コイル部CIL1と重なるように配置されている。第4コイル部CIL4は、平面視において第2コイル部CIL2と重なるように配置されている。第1コイル部CIL1,第3コイル部CIL3と第2コイル部CIL2,第4コイル部CIL4とは、RFICチップ160を挟む位置に配置されている。多層基板120には、整合回路180と、RFICチップ160とが内蔵されている。 Further, the first coil portion CIL1 is present in a section from the first coil end T1 to the first position P1, and has a first winding axis in a direction intersecting with one main surface of the multilayer substrate 120. The second coil portion CIL2 is present in a section from the second coil end T2 to the second position P2, and has a second winding axis in a direction intersecting with one main surface of the multilayer substrate 120. The third coil portion CIL3 is arranged to overlap the first coil portion CIL1 in plan view. The fourth coil portion CIL4 is arranged to overlap the second coil portion CIL2 in plan view. The first coil portion CIL1, the third coil portion CIL3, the second coil portion CIL2, and the fourth coil portion CIL4 are disposed at positions sandwiching the RFIC chip 160. The matching circuit 180 and the RFIC chip 160 are incorporated in the multilayer substrate 120.
 RFICチップ160は、半導体基板で構成されている。このため、第1コイル部CIL1、第2コイル部CIL2、第3コイル部CIL3、および第4コイル部CIL4にとって、RFICチップ160は、グランドまたはシールドとして機能する。その結果、第1コイル部CIL1および第2コイル部CIL2、並びに、第3コイル部CIL3および第4コイル部CIL4は、磁気的にも容量的にも互いに結合し難くなる。これによって、通信信号の通過帯域の狭帯域化が抑制される。 The RFIC chip 160 is formed of a semiconductor substrate. Therefore, the RFIC chip 160 functions as a ground or a shield for the first coil portion CIL1, the second coil portion CIL2, the third coil portion CIL3, and the fourth coil portion CIL4. As a result, the first coil portion CIL1 and the second coil portion CIL2 as well as the third coil portion CIL3 and the fourth coil portion CIL4 become difficult to couple to each other magnetically or capacitively. Thus, narrowing of the pass band of the communication signal is suppressed.
 次に、RFIC素子100をはんだ等の導電性接合材13a,13bによってランドLA1,LA2上に取り付けた例について説明する。図10は、RFIC素子100におけるリジッド領域およびフレキシブル領域の分布を示す図である。図11は、RFIC素子100をランドLA1,LA2に取り付けたRFIDタグが撓んだ状態を示す図である。 Next, an example in which the RFIC element 100 is mounted on the lands LA1 and LA2 by the conductive bonding materials 13a and 13b such as solder will be described. FIG. 10 is a diagram showing the distribution of rigid regions and flexible regions in the RFIC element 100. As shown in FIG. FIG. 11 is a view showing a state in which the RFID tag in which the RFIC element 100 is attached to the lands LA1 and LA2 is bent.
 上述したように、多層基板120、コイルパターン200a~200c、第1端子電極140a、および第2端子電極140bは、可撓性を有する部材で構成されている。一方、層間接続導体220a,220b,240a,240b、およびRFICチップ160は、硬質の部材で構成されている。また、第1端子電極140aおよび第2端子電極140bは、比較的サイズが大きいため、可撓性が低い。また、第1端子電極140aおよび第2端子電極140bにNi/AuやNi/Sn等のめっき膜を施した場合には、第1端子電極140aおよび第2端子電極140bの可撓性はさらに低くなる。 As described above, the multilayer substrate 120, the coil patterns 200a to 200c, the first terminal electrode 140a, and the second terminal electrode 140b are made of flexible members. On the other hand, interlayer connection conductors 220a, 220b, 240a, 240b, and the RFIC chip 160 are made of hard members. Further, since the first terminal electrode 140a and the second terminal electrode 140b are relatively large in size, their flexibility is low. When the first terminal electrode 140a and the second terminal electrode 140b are plated with a plating film of Ni / Au, Ni / Sn, etc., the flexibility of the first terminal electrode 140a and the second terminal electrode 140b is even lower. Become.
 このため、RFIC素子100には、図10に示すように、リジッド領域およびフレキシブル領域が形成される。より具体的には、第1端子電極140a、第2端子電極140b、およびRFICチップ160が配置された領域はリジッド領域になり、他の領域はフレキシブル領域となる。特に、第1端子電極140aおよび第2端子電極140bはRFICチップ160から離れた位置に設けられるため、第1端子電極140aとRFICチップ160との間、および第2端子電極140bとRFICチップ160との間はフレキシブル領域になる。 Therefore, as shown in FIG. 10, a rigid region and a flexible region are formed in the RFIC element 100. More specifically, the area in which the first terminal electrode 140a, the second terminal electrode 140b, and the RFIC chip 160 are disposed is a rigid area, and the other area is a flexible area. In particular, since the first terminal electrode 140a and the second terminal electrode 140b are provided at a distance from the RFIC chip 160, the first terminal electrode 140a and the RFIC chip 160, and the second terminal electrode 140b and the RFIC chip 160. The area is a flexible area.
 このため、RFIC素子100が基材1のランドLA1,LA2に貼り付けたRFIDタグを曲面に貼り付けた場合、RFIC素子100は、例えば、図11に示すように撓む。 Therefore, when the RFID tag attached to the lands LA1 and LA2 of the base material 1 is attached to the curved surface, the RFIC element 100 bends as shown in FIG. 11, for example.
 図12は、図11のRFIDタグの等価回路を流れる電流の一例を示す図である。図13は、図11のRFIDタグにおいて、RFICチップに接続される回路をRFICチップから視た反射損失の周波数特性を示す図である。 FIG. 12 is a diagram showing an example of current flowing in the equivalent circuit of the RFID tag of FIG. FIG. 13 is a diagram showing frequency characteristics of reflection loss when the circuit connected to the RFIC chip in the RFID tag of FIG. 11 is viewed from the RFIC chip.
 図12に示すように、第1入出力端子160aとび第2入出力端子160bとの間には、RFICチップ160が有する寄生容量(浮遊容量)Cpが存在する。このため、RFIC素子100では2つの共振が発生する。1つ目の共振は、第1ダイポールエレメント10、第2ダイポールエレメント20、インダクタL3,L4で構成される電流経路に生じる共振である。2つ目の共振は、インダクタL1~L4および寄生容量Cpで構成される電流経路(電流ループ)に生じる共振である。これらの2つの共振は、各電流経路に共有されるインダクタL3~L4によって結合される。2つの共振にそれぞれ対応する2つの電流I1およびI2は、図12において破線の矢印で示すように流れる。 As shown in FIG. 12, a parasitic capacitance (floating capacitance) Cp that the RFIC chip 160 has is present between the first input / output terminal 160a and the second input / output terminal 160b. Therefore, in the RFIC element 100, two resonances occur. The first resonance is a resonance that occurs in the current path configured by the first dipole element 10, the second dipole element 20, and the inductors L3 and L4. The second resonance is a resonance that occurs in a current path (current loop) formed of the inductors L1 to L4 and the parasitic capacitance Cp. These two resonances are coupled by the inductors L3 to L4 shared by the respective current paths. Two currents I1 and I2 respectively corresponding to the two resonances flow as indicated by broken arrows in FIG.
 また、1つ目の共振周波数および2つ目の共振周波数のいずれも、インダクタL3~L4の影響を受ける。これにより、図13に示すように、1つ目の共振周波数f1と2つ目の共振周波数f2との間には、数10MHz(具体的には5MHz以上50MHz以下程度)の差が生じる。このように二つの共振を結合させることで、図13に示すような広帯域の共振周波数特性が得られる。 In addition, both the first resonance frequency and the second resonance frequency are affected by the inductors L3 to L4. Thereby, as shown in FIG. 13, a difference of several tens of MHz (specifically, about 5 MHz or more and 50 MHz or less) is generated between the first resonance frequency f1 and the second resonance frequency f2. By combining the two resonances in this manner, a wide band resonance frequency characteristic as shown in FIG. 13 can be obtained.
 本実施形態によれば、リム412がループ状導体でありながらも、そのリム412がRFIDタグ301のアンテナの一部として作用する。すなわち、ループ状導体内にRFIDタグが配置されているにも拘わらず、ループ状導体が有効に利用され、RFIDタグはリーダ/ライタと通信可能となる。このようにループ状導体はRFIDタグのアンテナの一部として作用するので、つまり、RFIDタグのダイポール型アンテナだけで放射するのではないので、ダイポール型アンテナは1/4波長共振のための大きさでなくてもよい。特に、リムに相対的に近い第1ダイポールエレメントは、図3(A)、図3(B)に示したように、リムと相互に作用するので、1/4波長相当の長さでなくてもよい。 According to this embodiment, although the rim 412 is a loop conductor, the rim 412 acts as a part of the antenna of the RFID tag 301. That is, although the RFID tag is disposed in the loop conductor, the loop conductor is effectively used and the RFID tag can communicate with the reader / writer. Thus, since the loop conductor acts as part of the RFID tag's antenna, that is, it does not radiate only by the dipole antenna of the RFID tag, the dipole antenna is sized for quarter-wave resonance. It does not have to be. In particular, since the first dipole element relatively close to the rim interacts with the rim as shown in FIGS. 3A and 3B, it does not have a length equivalent to a quarter wavelength. It is also good.
 本実施形態のRFIDタグは、メガネフレームの展示用に予め嵌め込まれた、度数の無い樹脂製のレンズに貼り付けられた従来のメガネシールと同様に、メガネレンズに貼付するだけで、つまりメガネの意匠性を大きく損なうことなく、RFIDタグ付きメガネを構成できる。 The RFID tag according to the present embodiment is attached to the spectacle lens just as in the case of a conventional spectacle seal attached to a resin lens which has been fitted in advance for display of the spectacle frame, that is, The RFID tag-equipped glasses can be configured without significantly impairing the design.
 このようにして、RFIDタグ付きメガネは、その在庫管理、店頭での管理、流通時の管理等に用いることができる。 In this way, the RFID tag-equipped glasses can be used for inventory control, store control, distribution control, and the like.
 なお、以上に示した例では、リムが閉ループのループ状導体を構成する例を示したが、いわゆるハーフリムタイプのメガネフレームやアンダーリムタイプのメガネフレームのように、リムが開ループのループ状導体であっても同様に適用できる。 In the example shown above, although the rim shows the example which constitutes a loop conductor of a closed loop, the rim is an open loop loop conductor like a so-called half rim type eyeglass frame and an under rim type eyeglass frame Even if it is applicable similarly.
 また、本実施形態によれば、RFIC素子100内にRFICチップ160と、第1ダイポールエレメント10および第2ダイポールエレメント20とのインピーダンスを整合させるとともに、アンテナの共振周波数特性を定めるインピーダンス整合回路を設けたので、次のような作用効果を奏する。 Further, according to the present embodiment, the impedance matching circuit is provided in the RFIC element 100 to match the impedances of the RFIC chip 160 and the first dipole element 10 and the second dipole element 20 and to determine the resonance frequency characteristics of the antenna. Therefore, the following effects can be achieved.
 先ず、インピーダンス整合および共振周波数特性設定用の回路を基材に形成する必要が無いので、基材の面積を、ダイポールエレメントを形成するためのスペースとして有効に利用でき、RFIDタグの小型化が図れる。また、同サイズであれば、高利得化が図れる。 First, since it is not necessary to form a circuit for impedance matching and resonance frequency characteristic setting on a substrate, the area of the substrate can be effectively used as a space for forming a dipole element, and the RFID tag can be miniaturized. . Also, if the size is the same, high gain can be achieved.
 また、RFIC素子100を実装するランドLA1,LA2は、平面視でRFIC素子100の第1コイル部CIL1、第2コイル部CIL2、第3コイル部CIL3、および第4コイル部CIL4と重なるので、コイル部CIL1~CIL4はランドLA1,LA2で電磁気的に遮蔽される、このことにより、RFIDタグの貼付先の物品の電磁気的特性の影響を受けにくい。つまり、比誘電率や比透磁率の高い物品にRFIDタグ301を貼付する場合でも、その貼付した状態と貼付前の単体状態とで、RFIDタグの電磁気的特性の変化が少ない。 In addition, since the lands LA1 and LA2 on which the RFIC element 100 is mounted overlap the first coil portion CIL1, the second coil portion CIL2, the third coil portion CIL3 and the fourth coil portion CIL4 of the RFIC element 100 in plan view, The sections CIL1 to CIL4 are electromagnetically shielded by the lands LA1 and LA2, which make the sections CIL1 to CIL4 unlikely to be affected by the electromagnetic properties of the article to which the RFID tag is attached. That is, even when the RFID tag 301 is attached to an article having a high relative dielectric constant or relative permeability, the change in the electromagnetic characteristics of the RFID tag is small between the attached state and the single state before attachment.
《第2の実施形態》
 第2の実施形態ではダイポール型アンテナの形状が第1の実施形態で示したものとは異なる幾つかのRFIDタグについて示す。
Second Embodiment
In the second embodiment, several RFID tags having different dipole antenna shapes than those shown in the first embodiment are shown.
 図14は第2の実施形態に係るRFIDタグ302Aの平面図である。RFIDタグ302Aは、矩形板状の基材1、この基材1に形成された第1ダイポールエレメント10および第2ダイポールエレメント20、基材1に搭載されたRFIC素子100を備える。 FIG. 14 is a plan view of the RFID tag 302A according to the second embodiment. The RFID tag 302 </ b> A includes a rectangular plate-shaped base 1, a first dipole element 10 and a second dipole element 20 formed on the base 1, and an RFIC element 100 mounted on the base 1.
 図2(A)に示したRFIDタグ301とは、先端部12の形状、大きさ、位置が異なる。また、側部導体パターン11S,21Sを備えない点で異なる。この例では、先端部12,22の線幅は主導体パターン部11,21の線幅より3倍以上太い。また、主導体パターン部11,21の長手方向の形成領域の寸法より長い。第1ダイポールエレメント10の先端部12で容量結合部CCが構成されている。その他の構成は第1の実施形態で示したものと同じである。 The shape, size, and position of the tip 12 are different from those of the RFID tag 301 shown in FIG. 2A. Moreover, it differs in the point which is not equipped with side part conductor pattern 11S, 21S. In this example, the line width of the tip portions 12 and 22 is three or more times thicker than the line width of the main conductor pattern portions 11 and 21. Moreover, it is longer than the dimension of the formation area of the longitudinal direction of the main conductor pattern parts 11 and 21. As shown in FIG. The tip portion 12 of the first dipole element 10 constitutes a capacitive coupling portion CC. The other configuration is the same as that shown in the first embodiment.
 このRFIDタグ302Aによれば、容量結合部CCの線幅が太いので、この容量結合部CCに近接して沿うリム(図3(A)のリム412参照)との容量結合が大きい。 According to the RFID tag 302A, since the line width of the capacitive coupling portion CC is large, the capacitive coupling with the rim (see the rim 412 in FIG. 3A) closely following the capacitive coupling portion CC is large.
 図15は本実施形態に係る別のRFIDタグ302Bの平面図である。本実施形態のRFIDタグ302Bでは、第1ダイポールエレメント10は、第1開放端OE1が、基材1の第1端部E1に近接する位置にある。同様に、第2ダイポールエレメント20は、第2開放端OE2が、基材1の第2端部E2に近接する位置にある。その他の構成は第1の実施形態で示したものと同じである。 FIG. 15 is a plan view of another RFID tag 302B according to the present embodiment. In the RFID tag 302B of the present embodiment, the first dipole element 10 has the first open end OE1 close to the first end E1 of the substrate 1. Similarly, the second dipole element 20 is positioned such that the second open end OE2 is close to the second end E2 of the substrate 1. The other configuration is the same as that shown in the first embodiment.
 図16は本実施形態に係る別のRFIDタグ302Cの平面図である。本実施形態のRFIDタグ302Cでは、第1ダイポールエレメント10の一部である側部導体パターン10SはRFIC素子100と第1側部S1との間に配置されていて、第2ダイポールエレメント20の一部である側部導体パターン20SはRFIC素子100と第2側部S2との間に配置されていている。その他の構成は図15に示したRFIDタグ302Bと同じである。 FIG. 16 is a plan view of another RFID tag 302C according to the present embodiment. In the RFID tag 302C of the present embodiment, the side conductor pattern 10S which is a part of the first dipole element 10 is disposed between the RFIC element 100 and the first side S1. The side conductor pattern 20S, which is a portion, is disposed between the RFIC element 100 and the second side S2. The other configuration is the same as that of the RFID tag 302B shown in FIG.
 図17は本実施形態に係る別のRFIDタグ302Dの平面図である。本実施形態のRFIDタグ302Dでは、第1ダイポールエレメント10の第1開放端OE1は第1端部E1寄りの位置ではなく、第1端部E1や第2端部E2よりも中央寄りの位置にある。同様に、第2ダイポールエレメント20の第2開放端OE2は第2端部E2寄りの位置ではなく、第1端部E1や第2端部E2よりも中央寄りの位置にある。 FIG. 17 is a plan view of another RFID tag 302D according to the present embodiment. In the RFID tag 302D of the present embodiment, the first open end OE1 of the first dipole element 10 is not located closer to the first end E1, but closer to the center than the first end E1 or the second end E2. is there. Similarly, the second open end OE2 of the second dipole element 20 is not closer to the second end E2, but is closer to the center than the first end E1 or the second end E2.
 また、第1ダイポールエレメント10の側部導体パターン10Sは、ランドLA1とランドLA2との中間点よりも第2端部E2方向へ延出する位置まで形成されている。同様に、第2ダイポールエレメント20の側部導体パターン20Sは、ランドLA1とランドLA2との中間点よりも第1端部E1方向へ延出する位置まで形成されている。 In addition, the side conductor pattern 10S of the first dipole element 10 is formed to a position extending in the direction of the second end E2 from the middle point between the land LA1 and the land LA2. Similarly, the side conductor pattern 20S of the second dipole element 20 is formed to a position extending in the direction of the first end E1 more than the middle point between the land LA1 and the land LA2.
 その他の構成は図16に示したRFIDタグ302Cと同じである。 The other configuration is the same as that of the RFID tag 302C shown in FIG.
 図18は本実施形態に係る別のRFIDタグ302Eの平面図である。第1ダイポールエレメント10の第1開放端OE1が側部導体パターン10Sの主要部より突出している。同様に、第2ダイポールエレメント20の第2開放端OE2が側部導体パターン20Sの主要部より突出している。その他の構成は図17に示したRFIDタグ302Dと同じである。 FIG. 18 is a plan view of another RFID tag 302E according to this embodiment. The first open end OE1 of the first dipole element 10 protrudes from the main portion of the side conductor pattern 10S. Similarly, the second open end OE2 of the second dipole element 20 protrudes from the main part of the side conductor pattern 20S. The other configuration is the same as that of the RFID tag 302D shown in FIG.
 本実施形態で示したRFIDタグをリムに沿って貼ったときも、第1ダイポールエレメント10もしくは第2ダイポールエレメント20がリムと容量結合し、リムが放射に寄与する。したがって、リムによって電磁気的に遮蔽されていた電波到来方向からも通信可能となり、且つ、通信可能距離も向上する。 Also when the RFID tag shown in the present embodiment is attached along the rim, the first dipole element 10 or the second dipole element 20 capacitively couples with the rim, and the rim contributes to radiation. Therefore, communication becomes possible also from the radio wave arrival direction electromagnetically shielded by the rim, and the communicable distance is also improved.
《第3の実施形態》
 第3の実施形態では、RFIDタグ付きメガネ以外のRFIDタグ付き物品について示す。
Third Embodiment
In the third embodiment, an RFID tagged article other than RFID tagged glasses is shown.
 図19はRFIDタグ付き名札421の内部構造を示す平面図である。RFIDタグ付き名札421は、基材91、コイルアンテナ92、HF帯のRFIC素子93、およびUHF帯のRFIDタグ301を備える。HF帯RFID用のコイルアンテナ92は基材91に形成されている。また、HF帯のRFIC素子93は基材91に実装され、コイルアンテナ92に接続される。そして、UHF帯のRFIDタグ301はコイルアンテナ92の内周に沿うように基材91に設けられている。UHF帯においてコイルアンテナ92はループ状導体として作用する。つまり、このコイルアンテナ92は本発明における「金属部」に相当する。 FIG. 19 is a plan view showing an internal structure of the RFID tag-attached name tag 421. As shown in FIG. The RFID tag-attached name tag 421 includes a base 91, a coil antenna 92, an RFIC element 93 for the HF band, and an RFID tag 301 for the UHF band. The coil antenna 92 for the HF band RFID is formed on the base 91. Further, the RFIC element 93 in the HF band is mounted on the base 91 and connected to the coil antenna 92. The UHF band RFID tag 301 is provided on the base 91 along the inner periphery of the coil antenna 92. The coil antenna 92 acts as a loop conductor in the UHF band. That is, this coil antenna 92 corresponds to the "metal part" in the present invention.
 図20はRFIDタグ付き携帯電子機器422の主要構成を示す図である。RFIDタグ付き携帯電子機器422は、RFIDタグ301が設けられた回路基板95と、枠状の金属部94とを備える。RFIDタグ301は金属部94に近接して沿うように配置される。この構造により、金属部94はRFIDタグ301のアンテナの一部として作用する。 FIG. 20 is a view showing the main configuration of a portable electronic device 422 with an RFID tag. The RFID tag-attached portable electronic device 422 includes a circuit board 95 on which the RFID tag 301 is provided, and a frame-shaped metal portion 94. The RFID tag 301 is disposed close to and along the metal portion 94. By this structure, the metal part 94 acts as a part of the antenna of the RFID tag 301.
 図21はRFIDタグ付きクリップボード423の平面図である。RFIDタグ付きクリップボード423は、そのベース部96の周囲に金属フレームが形成されていて、この金属フレームに近接して沿う位置にRFIDタグ301が設けられたものである。金属フレームはループ状導体を構成するので、この構造により、そのループ状導体はRFIDタグ301のダイポールエレメントと容量結合する。すなわち金属フレームはRFIDタグ301のアンテナの一部として作用する。 FIG. 21 is a plan view of the clipboard 423 with an RFID tag. The RFID tag-attached clipboard 423 has a metal frame formed around the base portion 96, and the RFID tag 301 is provided at a position along and in close proximity to the metal frame. Since the metal frame constitutes a looped conductor, this structure capacitively couples the looped conductor to the dipole element of the RFID tag 301. That is, the metal frame acts as part of the antenna of the RFID tag 301.
 図21において、金属製のクリップ部97をループ状導体として利用してもよい。その場合には、クリップ部97に近接して沿う位置にRFIDタグ301を設ける。この構造により、そのループ状導体はRFIDタグ301のダイポールエレメントと容量結合する。すなわちクリップ部97はRFIDタグ301のアンテナの一部として作用する。 In FIG. 21, a metal clip portion 97 may be used as a loop conductor. In that case, the RFID tag 301 is provided at a position along and in close proximity to the clip unit 97. With this structure, the loop conductor capacitively couples with the dipole element of the RFID tag 301. That is, the clip unit 97 acts as part of the antenna of the RFID tag 301.
 図22はRFIDタグ付き自動車424の斜視図である。RFIDタグ付き自動車424は、そのフロントガラス98にRFIDタグ301が貼付されている。RFIDタグ301はフロントガラス98の枠に近接して沿う位置に配置される。フロントガラス98の枠はループ状導体を構成するので、この構造により、そのループ状導体はRFIDタグ301のアンテナの一部として作用する。 FIG. 22 is a perspective view of a car 424 with an RFID tag. In the RFID-tagged automobile 424, an RFID tag 301 is attached to a windshield 98 thereof. The RFID tag 301 is disposed at a position along and in close proximity to the frame of the windshield 98. Since the frame of the windshield 98 constitutes a looped conductor, this looped conductor acts as part of the antenna of the RFID tag 301.
 これらの用途例においても、RFIDタグを、第1側部(または第1開放端)が絶縁体部の縁部分に設けられた金属部に沿うように、且つ、第2側部(または第2開放端)が第1側部(または第1開放端)よりも絶縁体部の中央寄り(金属部から離れた部分)に配置(オフセット配置)することにより、物品の意匠性を大きく損なうことなく、RFIDタグとの通信が可能なRFIDタグ付き物品が得られる。 Also in these application examples, the RFID tag may be configured such that the first side (or first open end) is along the metal portion provided at the edge portion of the insulator portion, and the second side (or second portion) By arranging (offset) the open end) closer to the center (part away from the metal part) of the insulator portion than the first side (or first open end), the design of the article is not significantly impaired. , An RFID tagged article capable of communicating with the RFID tag is obtained.
 RFIDタグ付き物品として、その他に、金属枠部を備える表示装置において、その金属枠部にRFIDタグを近接配置することで、RFIDタグ付き表示装置を構成することもできる。 In addition, in a display device provided with a metal frame portion as an article with an RFID tag, an RFID tag can be arranged in proximity to the metal frame portion to constitute a display device with an RFID tag.
 また、以上の各実施形態で示したダイポール型アンテナは、各ダイポールエレメントの電気長が1/4波長相当で、第1開放端から第2開放端までの電気長が1/2波長相当のダイポールアンテナであるが、第1開放端から第2開放端までの電気長が1/2波長未満であってもよいし、第1ダイポールエレメントと第2ダイポールの電気長が異なる非対称ダイポール型アンテナであってもよい。 In the dipole antenna shown in each of the above embodiments, the dipole antenna has an electrical length corresponding to a quarter wavelength, and an electrical length from the first open end to the second open end corresponds to a half wavelength. Although it is an antenna, the electric length from the 1st open end to the 2nd open end may be less than 1/2 wavelength, and it is an asymmetrical dipole type antenna from which the electric length of the 1st dipole element and the 2nd dipole differ. May be
 また、以上の各実施形態で示したRFIDタグでは、基材のほぼ全面にダイポール型アンテナを形成したが、基材の一部がダイポール型アンテナの形成領域であってもよい。また、基材の外形はダイポール型アンテナの形成領域の相似形でなくてもよい。 Further, in the RFID tag shown in each of the above embodiments, the dipole antenna is formed on almost the entire surface of the base material, but a part of the base material may be a formation region of the dipole antenna. Also, the outer shape of the substrate may not be similar to the formation area of the dipole antenna.
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。 Finally, the description of the above embodiments is illustrative in all respects and not restrictive. Modifications and variations are possible as appropriate to those skilled in the art. The scope of the present invention is indicated not by the embodiments described above but by the claims. Furthermore, the scope of the present invention includes modifications from the embodiments within the scope of the claims and equivalents.
CC…容量結合部
CE1…第1接続端
CE2…第2接続端
E1…第1端部
E2…第2端部
GND…グランド
LA1,LA2…ランド
OE1…第1開放端
OE2…第2開放端
S1…第1側部
S2…第2側部
1…基材
10…第1ダイポールエレメント
10S,20S…側部導体パターン
11,21…主導体パターン部
11S,21S…側部導体パターン
12,22…先端部
13a,13b…導電性接合材
20…第2ダイポールエレメント
91…基材
92…コイルアンテナ
93…RFIC素子
94…金属部
95…回路基板
96…ベース部
97…クリップ部
98…フロントガラス
100…RFIC素子
120…多層基板
120a,120b,120c…絶縁層
140a…第1端子電極
140b…第2端子電極
160…RFICチップ
160a…第1入出力端子
160b…第2入出力端子
180…整合回路
200…コイル導体
200a,200b,200c…コイルパターン
220a,220b…層間接続導体
240a,240b…層間接続導体
260a,260b…ダミー導体
301,302A,302B,302C,302D,302E…RFIDタグ
410…RFIDタグ付きメガネ
411…メガネレンズ
412…金属製リム
421…RFIDタグ付き名札
422…RFIDタグ付き携帯電子機器
423…RFIDタグ付きクリップボード
424…RFIDタグ付き自動車
CC: Capacitive coupling portion CE1: first connection end CE2: second connection end E1: first end E2: second end GND: ground LA1, LA2: land OE1: first open end OE2: second open end S1 ... 1st side S2 ... 2nd side 1 ... base 10 ... 1st dipole element 10S, 20S ... side conductor pattern 11, 21 ... main conductor pattern part 11S, 21S ... side conductor pattern 12, 22 ... tip Portions 13a, 13b: conductive bonding material 20: second dipole element 91: base material 92: coil antenna 93: RFIC element 94: metal portion 95: circuit board 96: base portion 97: clip portion 98: front glass 100: RFIC Element 120: Multilayer substrate 120a, 120b, 120c: Insulating layer 140a: First terminal electrode 140b: Second terminal electrode 160: RFIC chip 160a: First input Force terminal 160b: second input / output terminal 180: matching circuit 200: coil conductor 200a, 200b, 200c: coil pattern 220a, 220b: interlayer connection conductor 240a, 240b ... interlayer connection conductor 260a, 260b ... dummy conductor 301, 302A, 302B , 302C, 302D, 302E ... RFID tag 410 ... RFID tag glasses 411 ... glasses lens 412 ... metal rim 421 ... RFID tag name tag 422 ... RFID tag portable electronic device 423 ... RFID tag clipboard 424 ... RFID tag automobile car

Claims (7)

  1.  メガネレンズと、当該メガネレンズを保持する金属製リムと、を有するメガネと、平面寸法が前記メガネレンズより小さなRFIDタグと、を備え、
     前記RFIDタグは、
      基材と、
      前記基材に搭載され、第1入出力端子および第2入出力端子を有するRFIC素子と、
      前記基材に形成され、一端が前記第1入出力端子に接続される第1接続端であり、他端が第1開放端である第1ダイポールエレメント、および、一端が前記第2入出力端子に接続される第2接続端であり、他端が第2開放端である第2ダイポールエレメントで構成されるダイポール型アンテナと、
     で構成され、
     前記ダイポール型アンテナの形成領域は、平面視で長手方向および短手方向をもち、前記長手方向の互いに対向する端部である第1端部および第2端部を有し、前記短手方向の互いに対向する側部である第1側部および第2側部を有し、
     前記第1ダイポールエレメントは、前記第1接続端から前記第1端部方向へ延伸するとともに前記第1側部方向に向かってミアンダ状に蛇行する導体パターンであり、
     前記第2ダイポールエレメントは、前記第2接続端から前記第2端部方向へ延伸するとともに前記第2側部方向に向かってミアンダ状に蛇行する導体パターンであり、
     前記RFIDタグは、前記第1側部が前記金属製リムに沿うように前記メガネレンズに貼着された、
     ことを特徴とするRFIDタグ付きメガネ。
    An eyeglass lens and a metal rim for holding the eyeglass lens, and an RFID tag having a planar dimension smaller than that of the eyeglass lens,
    The RFID tag is
    A substrate,
    An RFIC element mounted on the substrate and having a first input / output terminal and a second input / output terminal;
    A first dipole element formed on the base material, one end being a first connection end connected to the first input / output terminal, and the other end being a first open end, and one end being the second input / output terminal A second connection end connected to the second end and a second open end, the other end being a second open end,
    Consists of
    The formation area of the dipole antenna has a longitudinal direction and a short direction in a plan view, and has a first end and a second end which are opposite ends in the longitudinal direction, and the short direction Having opposite sides, a first side and a second side,
    The first dipole element is a conductor pattern extending from the first connection end toward the first end and meandering in a meandering direction toward the first side,
    The second dipole element is a conductor pattern extending from the second connection end toward the second end and meandering in a meandering direction toward the second side,
    The RFID tag is attached to the spectacle lens such that the first side portion is along the metal rim.
    Glasses with RFID tag characterized by that.
  2.  絶縁体部と、当該絶縁体部の周縁の全部または一部を囲む金属部と、を有する物品と、平面寸法が前記絶縁体部より小さなRFIDタグと、を備え、
     前記RFIDタグは、
      基材と、
      前記基材に搭載され、第1入出力端子および第2入出力端子を有するRFIC素子と、
      前記基材に形成され、一端が前記第1入出力端子に接続される第1接続端であり、他端が第1開放端である第1ダイポールエレメント、および、一端が前記第2入出力端子に接続される第2接続端であり、他端が第2開放端である第2ダイポールエレメントで構成されるダイポール型アンテナと、
     で構成され、
     前記ダイポール型アンテナの形成領域は、平面視で長手方向および短手方向をもち、前記長手方向の互いに対向する端部である第1端部および第2端部を有し、前記短手方向の互いに対向する側部である第1側部および第2側部を有し、
     前記第1ダイポールエレメントは、前記第1接続端から前記第1端部方向へ延伸するとともに前記第1側部方向に向かってミアンダ状に蛇行する導体パターンであり、
     前記第2ダイポールエレメントは、前記第2接続端から前記第2端部方向へ延伸するとともに前記第2側部方向に向かってミアンダ状に蛇行する導体パターンであり、
     前記RFIDタグは、前記第1側部が前記金属部に沿うように前記絶縁体部に貼着された、
     ことを特徴とするRFIDタグ付き物品。
    An article having an insulator portion and a metal portion surrounding all or part of the periphery of the insulator portion; and an RFID tag having a planar dimension smaller than that of the insulator portion,
    The RFID tag is
    A substrate,
    An RFIC element mounted on the substrate and having a first input / output terminal and a second input / output terminal;
    A first dipole element formed on the base material, one end being a first connection end connected to the first input / output terminal, and the other end being a first open end, and one end being the second input / output terminal A second connection end connected to the second end and a second open end, the other end being a second open end,
    Consists of
    The formation area of the dipole antenna has a longitudinal direction and a short direction in a plan view, and has a first end and a second end which are opposite ends in the longitudinal direction, and the short direction Having opposite sides, a first side and a second side,
    The first dipole element is a conductor pattern extending from the first connection end toward the first end and meandering in a meandering direction toward the first side,
    The second dipole element is a conductor pattern extending from the second connection end toward the second end and meandering in a meandering direction toward the second side,
    The RFID tag is attached to the insulator portion such that the first side portion is along the metal portion.
    An article with an RFID tag characterized in that.
  3.  前記第1開放端は前記第1ダイポールエレメントの形成領域のうち前記第1側部寄りの位置にある、請求項2に記載のRFIDタグ付き物品。 The RFID tag-equipped article according to claim 2, wherein the first open end is located closer to the first side in the formation area of the first dipole element.
  4.  前記RFIC素子は、RFICチップと、前記RFICチップと前記ダイポール型アンテナとのインピーダンスを整合させるインピーダンス整合回路とを一体化した素子である、請求項2または3に記載のRFIDタグ付き物品。 The RFID tag-attached article according to claim 2 or 3, wherein the RFIC element is an element in which an RFIC chip and an impedance matching circuit for matching the impedance of the RFIC chip and the dipole antenna are integrated.
  5.  前記第1ダイポールエレメントの一部は前記RFIC素子と前記第1側部との間に配置されていて、前記第2ダイポールエレメントの一部は前記RFIC素子と前記第2側部との間に配置されている、請求項2から4のいずれかに記載のRFIDタグ付き物品。 A portion of the first dipole element is disposed between the RFIC element and the first side, and a portion of the second dipole element is disposed between the RFIC element and the second side The article with the RFID tag according to any one of claims 2 to 4,
  6.  前記ダイポール型アンテナは、前記長手方向の寸法が前記短手方向の寸法の2倍以上である、請求項2から5のいずれかに記載のRFIDタグ付き物品。 The RFID tag-equipped article according to any one of claims 2 to 5, wherein the dipole antenna has a dimension in the longitudinal direction equal to or larger than twice a dimension in the lateral direction.
  7.  前記RFIC素子は前記ダイポール型アンテナを介してUHF帯で通信する、請求項2から6のいずれかに記載のRFIDタグ付き物品。 The RFID tag-attached article according to any one of claims 2 to 6, wherein the RFIC element communicates in the UHF band via the dipole antenna.
PCT/JP2018/015362 2017-07-14 2018-04-12 Rfid tag-attached spectacles and rfid tag-attached article WO2019012766A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018545522A JP6531873B1 (en) 2017-07-14 2018-04-12 RFID tagged glasses and articles with RFID tag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017137973 2017-07-14
JP2017-137973 2017-07-14

Publications (1)

Publication Number Publication Date
WO2019012766A1 true WO2019012766A1 (en) 2019-01-17

Family

ID=65001182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015362 WO2019012766A1 (en) 2017-07-14 2018-04-12 Rfid tag-attached spectacles and rfid tag-attached article

Country Status (2)

Country Link
JP (2) JP6531873B1 (en)
WO (1) WO2019012766A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021152889A1 (en) * 2020-01-29 2021-08-05

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136542A1 (en) * 2022-01-17 2023-07-20 삼성전자 주식회사 Wearable device comprising antenna within transparent member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013168A1 (en) * 2005-07-29 2007-02-01 Fujitsu Limited Rf tag and rf tag manufacturing method
WO2012023511A1 (en) * 2010-08-16 2012-02-23 凸版印刷株式会社 Contactless ic label and nameplate
WO2012086619A1 (en) * 2010-12-22 2012-06-28 シャープ株式会社 Eyeglasses-type wireless communications apparatus
WO2013187509A1 (en) * 2012-06-14 2013-12-19 ヤマハ株式会社 Antenna
WO2016072335A1 (en) * 2014-11-07 2016-05-12 株式会社 村田製作所 Wireless communication device, method for manufacturing same, and method for producing seal fitted with rfic element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013168A1 (en) * 2005-07-29 2007-02-01 Fujitsu Limited Rf tag and rf tag manufacturing method
WO2012023511A1 (en) * 2010-08-16 2012-02-23 凸版印刷株式会社 Contactless ic label and nameplate
WO2012086619A1 (en) * 2010-12-22 2012-06-28 シャープ株式会社 Eyeglasses-type wireless communications apparatus
WO2013187509A1 (en) * 2012-06-14 2013-12-19 ヤマハ株式会社 Antenna
WO2016072335A1 (en) * 2014-11-07 2016-05-12 株式会社 村田製作所 Wireless communication device, method for manufacturing same, and method for producing seal fitted with rfic element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021152889A1 (en) * 2020-01-29 2021-08-05
JP7036287B2 (en) 2020-01-29 2022-03-15 株式会社村田製作所 RFID tag

Also Published As

Publication number Publication date
JP6857676B2 (en) 2021-04-14
JP6531873B1 (en) 2019-06-19
JP2019149168A (en) 2019-09-05
JPWO2019012766A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
US9847578B2 (en) Antenna device and communication terminal apparatus
EP2375494B1 (en) Wireless IC device
JP5464307B2 (en) ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE
US8725071B2 (en) Wireless IC device and component for wireless IC device
EP3091483B1 (en) Wireless communication device, method for manufacturing same, and method for producing seal fitted with rfic element
WO2019012767A1 (en) Rfid tag and rfid tag management method
JP6583589B2 (en) Wireless communication device
JP5776868B1 (en) ANTENNA DEVICE AND ELECTRONIC DEVICE
US8740093B2 (en) Radio IC device and radio communication terminal
JP6504324B1 (en) Wireless communication device
JP6857676B2 (en) RFID-tagged glasses and RFID-tagged articles
US10224604B2 (en) Antenna device and communication terminal device
WO2013035820A1 (en) Antenna device, rfid tag, and metal article with antenna device
RU2378746C1 (en) Wireless device on integrated circuit and component of wireless device on integrated circuit
JP6424995B1 (en) RFID tag

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545522

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832718

Country of ref document: EP

Kind code of ref document: A1