WO2019006901A1 - 一种提高金属构件含氯溶液中抗腐蚀性能的组合处理方法 - Google Patents
一种提高金属构件含氯溶液中抗腐蚀性能的组合处理方法 Download PDFInfo
- Publication number
- WO2019006901A1 WO2019006901A1 PCT/CN2017/105316 CN2017105316W WO2019006901A1 WO 2019006901 A1 WO2019006901 A1 WO 2019006901A1 CN 2017105316 W CN2017105316 W CN 2017105316W WO 2019006901 A1 WO2019006901 A1 WO 2019006901A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- chlorine
- metal
- corrosion resistance
- layer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/73—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
- C23C22/76—Applying the liquid by spraying
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D10/00—Modifying the physical properties by methods other than heat treatment or deformation
- C21D10/005—Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/73—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/78—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/82—After-treatment
- C23C22/83—Chemical after-treatment
Definitions
- the invention relates to the field of special processing and materials science, in particular to a method for firstly using a chlorine-containing solution as a constraining layer, performing a large-area non-absorbent layer laser lap impact strengthening treatment on a metal member, and then polishing the surface, and then adopting a large area at room temperature.
- the absorption layer is laser shock-strengthened to lap the surface of the metal member, thereby improving the corrosion resistance of the metal member.
- Offshore Engineering has a wide range of connotations and scopes.
- Marine engineering equipment in a broad sense includes marine fishery equipment, marine oil and gas development equipment, marine transportation equipment, marine tourism equipment, marine power equipment, offshore construction equipment, etc.
- the narrowly defined offshore engineering equipment mainly refers to offshore oil and gas development equipment.
- Offshore oil and gas exploration includes exploration, development, production and decommission. From the initial geophysical exploration to the final stage of demolition, each link involves many offshore projects. equipment.
- Offshore oil and gas development equipment can be divided into drilling platforms, production platforms, and offshore engineering vessels. As the development of marine oil and gas resources continues to advance into the deep waters, the demand for offshore engineering equipment is very broad.
- Seawater is an electrolyte solution in which a large amount of NaCl solute is present, which can react with various substances, and the metal is destroyed by seawater in the action of chemical, physical and biological factors.
- the material becomes thinner, the strength is lowered, and sometimes local perforation or fracture occurs, and even the structure is broken.
- the alloy steel immersed in the sea will have local corrosion. Chloride ions are easily adsorbed on the passivation film, the oxygen atoms are squeezed out, and then combined with the cations in the passivation film to form soluble chloride, which results in corrosion on the exposed metal. A small pit. These pits have become pitting nuclei.
- Laser shock peening is an effective material surface strengthening technology.
- the chlorine-containing solution is used as a constraining layer for large-area non-absorbent layer laser lap impact strengthening treatment.
- a chlorine-containing passivation film is induced on the surface of the metal substrate, and then polished at room temperature.
- a large area has an absorbing layer laser lap impact strengthening treatment to further strengthen the metal members, thereby greatly improving the corrosion resistance of the metal members.
- the present invention adopts a chlorine-containing solution as a constraining layer, and uses a large-area non-absorbent layer laser lap impact strengthening treatment, and a chloride film in the chlorine-containing solution forms a passivation film under the laser induction with the surface layer metal. Then, after polishing, a large-area room temperature absorbing layer laser lap impact strengthening treatment is performed to improve the corrosion resistance of the metal member in the chlorine-containing solution.
- a combined treatment method for improving corrosion resistance of a chlorine component in a metal component characterized in that firstly, the metal component is placed in a chlorine-containing solution, the liquid level of the solution is higher than the surface of the component or the impact point of 1-2 mm, and the solution is kept circulating.
- the large-area non-absorbent layer laser lap impact strengthening treatment is used.
- the surface of the metal substrate absorbs laser energy to evaporate and expand to form a high-temperature and high-pressure plasma, and the chlorine-containing solution serves as a constraining layer to limit the plasma.
- the expansion of the body produces high-pressure shock waves with a strength of several to several tens of GPa, far exceeding the yield strength of the metal members, causing severe plastic deformation on the surface, and the surface grains are refined or even nano-sized and impacted.
- the region induces high residual compressive stress, and chloride ions in the chlorine-containing solution and the surface layer metal form a chlorine-containing passivation film under laser induction to improve the surface corrosion resistance of the metal member; large-area non-absorbent layer laser bonding
- the surface of the metal component is surface-polished, and then the absorption layer is excited by a large area at room temperature. Overlapping the impact surface treated metal reinforcing member, to further strengthen the corrosion resistance of the metal member. Includes the following steps:
- Step 1 After the sample to be processed is subjected to stepwise grinding treatment using metallographic sandpaper, the dust and oil stains on the surface are removed by an ultrasonic cleaning machine in an alcohol solution, and the necessary crack detecting process is completed;
- Step 2 mounting the metal matrix sample on the loading platform of the combined process device, and superimposing the center of the laser beam spot on the upper left corner of the impact surface of the substrate at point A, as the starting position of the impact strengthening treatment, and making the X-axis of the area to be impacted
- the Y-axis direction is consistent with the X-axis and Y-axis directions of the loading platform;
- Step 3 spraying the chlorine-containing solution onto the surface of the metal substrate through a water spray device to form a liquid constraining layer having a thickness of 1-2 mm;
- Step 4 setting the output power and spot parameters of the laser through the laser control device; impacting the surface of the metal substrate with a strong pulse laser, absorbing the laser energy on the surface of the metal substrate to evaporate and expand to form a high temperature and high pressure plasma, and the chlorine solution as a constraining layer Limiting the expansion of the plasma, generating a high-pressure shock wave with a strength of several to several tens of GPa, far exceeding the yield strength of the metal member, causing severe plastic deformation on the surface, and the surface grains are refined or even nano-sized. And the high residual pressure is induced in the impact region, and the chloride ion in the chlorine solution and the surface metal form a passivation film under laser induction;
- Step 5 Turn on the laser, and use the method of progressive processing to control the movement of the sample loading platform by the robot control system, and perform large-area laser lap impact strengthening on the surface of the metal substrate sample to be processed, and finally complete the absorption of the entire area to be impacted.
- Layer laser lap impact strengthening treatment
- Step 6 The metal matrix sample without the absorption layer laser shock in the chlorine-containing solution is subjected to ultrasonic alcohol cleaning, and the aluminum foil is used as the absorption layer after polishing, and then the room temperature large-area laser lap impact strengthening treatment is performed, thereby improving the corrosion resistance of the metal member. ability.
- the single-pulse Nd:YAG laser used in the laser has operating parameters of a wavelength of 1064 nm, a pulse width of 5-10 ns, a single pulse energy of 1.5-10 J, and a spot radius of 1-3 mm.
- the chlorine-containing solution is a 3.5% NaCl solution or a 42% MgCl 2 solution.
- the polishing in the step 6 is to ensure the flatness of the surface of the metal substrate sample, and to improve the final large-area absorbing layer laser lap impact strengthening efficiency under the premise of ensuring the integrity of the laser-impedance strengthening layer without the absorption layer.
- the laser shock absorbing absorption layer is a special aluminum foil having a thickness of 0.10-0.12 mm.
- Large-area non-absorbent layer laser lap impact strengthening treatment and large-area absorbing layer laser lap impact strengthening treatment row and column lap joint rate is 50%.
- the present invention has a beneficial effect.
- the invention adopts a chlorine-containing solution as a constraining layer, and adopts a large-area non-absorptive layer laser lap impact strengthening treatment, and a chloride film in the chlorine-containing solution and a surface layer metal form a passivation film under laser induction to improve the surface resistance of the metal member. Corrosive, then throw After the light, a large area of the room has an absorption layer laser lap impact strengthening treatment, thereby improving the corrosion resistance of the metal member.
- Figure 1 is a schematic view of a combined process apparatus of the present invention
- 2 is a microscopic corrosion image of a surface layer of a metal member after ordinary laser shock peening treatment
- 3 is a microscopic corrosion image of a surface layer of a metal member after the combined treatment method of the present invention
- the combined process apparatus used in the present invention is shown in FIG.
- the invention adopts a chlorine-containing solution as a constraining layer, and the non-absorbent layer laser lap impact strengthens the surface of the metal member, and forms a chlorine-containing passivation film at the same time to induce a residual compressive stress layer and a grain refining layer to suppress corrosion of chloride ions. Then, after polishing, the room temperature has an absorption layer laser lap impact strengthening, thereby improving the corrosion resistance of the metal member.
- 316L stainless steel was selected as the research object.
- the 316L stainless steel was made into a 40mm ⁇ 40mm ⁇ 5mm block sample.
- the sample to be treated was placed in an alcohol solution.
- the surface was cleaned of dust and grease with an ultrasonic cleaner, and the necessary crack detection was completed. The process ensures that there are no visible cracks and defects on the surface.
- the 316L stainless steel sample is mounted on the combined process device loading platform 6, and the center of the laser beam spot is coincident with the upper left corner of the base impact surface at point A as the starting position of the impact strengthening treatment, and the X-axis and the Y-axis of the area to be impacted are made.
- the direction is the same as the X-axis and Y-axis directions of the loading platform.
- a 3.5% sodium chloride solution was sprayed through the liquid discharge device 4 onto the surface of the 316L stainless steel sample substrate to form a liquid constraining layer having a thickness of 1-2 mm.
- the output power and spot parameters of the laser are set by the laser control device 2: the wavelength is 1064 nm, the pulse width is 5 ns, the single pulse energy is 1.5 J, and the spot radius is 1 mm.
- the surface of the 316L stainless steel substrate is impacted by a strong pulse laser, and the surface of the stainless steel absorbs laser energy to evaporate. Swelling forms a high-temperature and high-pressure plasma.
- the sodium chloride solution acts as a constraining layer to limit the expansion of the plasma, producing a high-pressure shock wave with a strength of several to several tens of GPa, far exceeding the yield strength of the stainless steel member, making it surface.
- the metal sample after the laser irradiation without the absorption layer in the sodium chloride solution was subjected to ultrasonic alcohol cleaning, and after polishing, an aluminum foil having a thickness of 0.10 mm was used as an absorption layer, and a room temperature large-area laser lap impact strengthening was carried out at a bonding ratio of 50%. Treatment to improve the corrosion resistance of metal components.
- a chlorine-containing passivation film is formed on the surface of the 316L stainless steel sample to induce a chlorine-containing passivation film, which inhibits corrosion of chloride ions and improves corrosion resistance by 21%.
- AISI 304 stainless steel was selected as the research object.
- the AISI 304 stainless steel was made into a 40 mm ⁇ 40 mm ⁇ 5 mm block sample.
- the sample to be treated was placed in an alcohol solution.
- the ultrasonic cleaner was used to remove dust and grease from the surface, and the necessary The crack detection process ensures that there are no obvious cracks and defects on the surface.
- the AISI 304 stainless steel sample is mounted on the combined process device loading platform 6, and the center of the laser beam spot is coincident with the upper left corner of the base impact surface at point A, as the starting position of the impact strengthening treatment, and the X-axis and Y of the area to be impacted are
- the axis direction is the same as the X-axis and Y-axis directions of the loading platform.
- a 3.5% sodium chloride solution was sprayed through the liquid discharge device 4 onto the surface of the 316L stainless steel sample substrate to form a liquid constraining layer having a thickness of 1-2 mm.
- the output power and spot parameters of the laser are set by the laser control device 2: the wavelength is 1064 nm, the pulse width is 8 ns, the single pulse energy is 6 J, and the spot radius is 2 mm; the surface of the AISI 304 stainless steel substrate is impacted by a strong pulse laser, and the surface of the stainless steel absorbs laser energy, Swelling forms a high-temperature and high-pressure plasma.
- the sodium chloride solution acts as a constraining layer to limit the expansion of the plasma, producing a high-pressure shock wave with a strength of several to several tens of GPa, far exceeding the yield strength of the stainless steel member, making it surface.
- the metal sample after the laser irradiation without the absorption layer in the sodium chloride solution was subjected to ultrasonic alcohol cleaning, and after polishing, an aluminum foil having a thickness of 0.10 mm was used as an absorption layer, and a room temperature large-area laser lap impact strengthening was carried out at a bonding ratio of 50%. Treatment to improve the corrosion resistance of metal components.
- a chlorine-containing passivation film is formed on the surface of the AISI 304 stainless steel sample to induce a chlorine-containing passivation film to suppress corrosion of chloride ions, and the corrosion resistance is improved by 32%.
- AM50 magnesium alloy was selected as the research object.
- the AM50 magnesium alloy was made into a block sample of 40mm ⁇ 40mm ⁇ 5mm.
- the sample to be treated was placed in an alcohol solution.
- the ultrasonic cleaner was used to remove dust and grease from the surface, and the necessary The crack detection process ensures that there are no obvious cracks and defects on the surface.
- the AM50 magnesium alloy sample is mounted on the assembly device loading platform 6, and the center of the laser beam spot is coincident with the upper left corner of the base impact surface at point A, as the starting position of the impact strengthening treatment, and the X-axis and Y of the area to be impacted are
- the axis direction is the same as the X-axis and Y-axis directions of the loading platform.
- a 3.5% sodium chloride solution was sprayed through the liquid discharge device 4 onto the surface of the AM50 magnesium alloy sample substrate to form a liquid constraining layer having a thickness of 1-2 mm.
- the output power and spot parameters of the laser are set by the laser control device 2: the wavelength is 1064 nm, the pulse width is 10 ns, the single pulse energy is 10 J, and the spot radius is 3 mm; the surface of the AM50 magnesium alloy substrate is impacted by a strong pulse laser, and the surface of the stainless steel absorbs laser energy, The expansion forms a high-temperature and high-pressure plasma, and the magnesium chloride solution acts as a constraining layer to limit the expansion of the plasma, generating a high-pressure shock wave with a strength of several to several tens of GPa, far exceeding the yield strength of the magnesium alloy member, resulting in surface generation.
- the magnesium alloy metal sample after laser shock without absorption layer in the magnesium chloride solution is subjected to ultrasonic alcohol cleaning, and after polishing, an aluminum foil having a thickness of 0.10 mm is used as an absorption layer, and a room temperature large-area laser lap impact strengthening is performed at a lap joint ratio of 50%. Treatment to improve the corrosion resistance of magnesium alloy metal parts.
- a chlorine-containing passivation film is formed on the surface of the AM50 magnesium alloy sample to form a chlorine-containing passivation film, which inhibits corrosion of chloride ions, and corrosion resistance is improved by 47%, and the metal after ordinary laser shock strengthening treatment
- the microstructure of the surface layer of the component is shown in Fig. 2.
- the laser energy is 10 J
- the surface microstructure corrosion of the metal component after the combined treatment method of the present invention is as shown in Fig. 3.
- the combined treatment method of the present invention is more resistant to corrosion by ordinary laser shock. Significantly improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Laser Beam Processing (AREA)
Abstract
一种提高金属构件含氯溶液中抗腐蚀性能的组合处理方法,首先将金属构件放置在含氯溶液中,溶液液面高于构件表面或者冲击点1-2mm,且溶液保持循环流动,采用大面积无吸收层激光搭接冲击强化处理,当激光脉冲照射在目标金属构件上时,金属基体表面吸收激光能量蒸发、膨胀形成高温高压的等离子体,含氯溶液作为约束层限制了等离子体的膨胀,产生高压冲击波,其强度达到几个到数十个GPa,远远超过了金属构件的屈服强度,使其表面产生严重塑性变形,表层晶粒得到细化甚至纳米化,并在冲击区域诱导出高幅残余压应力,同时含氯溶液中的氯离子与表层金属在激光诱导下形成一层含氯钝化膜,提高金属构件的表面耐腐蚀性;大面积无吸收层激光搭接冲击强化处理后,对金属构件表层进行表面抛光,然后采用室温大面积有吸收层激光搭接冲击强化处理金属构件表面,进一步强化金属构件的耐腐蚀性能。可应用于海水等含氯易腐蚀环境中金属构件的抗腐蚀性能强化。
Description
本发明涉及特种加工与材料学领域,特指一种首先将含氯溶液作为约束层,对金属构件进行大面积无吸收层激光搭接冲击强化处理,然后对表面进行抛光,再采用室温大面积有吸收层激光冲击强化搭接处理金属构件表面,从而提高金属构件的抗腐蚀性能。
海洋工程(Offshore Engineering)的内涵和范围十分广泛,广义的海洋工程装备包括海洋渔业装备、海洋油气开发装备、海洋交通运输装备、海洋旅游业装备、海洋电力装备、海上建筑施工装备等等,而狭义的海洋工程装备主要指海洋油气开发装备。海洋油气开采包括勘探(Exploration)、开发(Development)、生产(Production)和退役(Decommission)四个环节,从最初阶段的地球物理勘探到最后阶段的平台拆除,每个环节都涉及到许多海洋工程装备。海洋油气开发装备可以分为钻井平台、生产平台、海洋工程船等。随着海洋油气资源开发不断向深水海域进军,海洋工程装备的需求前景十分广阔。
海水是电解质溶液,其中存在大量NaCl溶质,能够和多种物质反应,金属在海水中受化学因素、物理因素和生物因素的作用而发生的破坏。金属结构腐蚀的结果,材料变薄,强度降低,有时发生局部穿孔或断裂,甚至使结构破坏。浸入海中的合金钢,会出现局部腐蚀,氯离子容易吸附在钝化膜上,把氧原子挤掉,然后和钝化膜中的阳离子结合形成可溶性氯化物,结果在露出来的机体金属上腐蚀了一个小坑。这些小坑被成为点蚀核。这些氯化物容易水解,使小坑能溶液PH值下降,使溶液成酸性,溶解了一部分氧化膜,造成多余的金属离子,为了平衡腐蚀坑内的电中性,外部的Cl-离子不断向空内迁移,使空内金属又进一步水解。如此循环,奥氏体不锈钢不断的腐蚀,越来越快,并且向孔的深度方向发展,直至形成穿孔。在拉应力和腐蚀性介质同时作用下,钢材会发生应力腐蚀破裂;在波浪或其他周期性力作用下,金属结构会发生腐蚀疲劳而破坏,是引起海洋工程设备结构破坏的根源,成为威胁海工设备安全运行的隐
患之一。因此,针对改善金属构件抗含氯溶液腐蚀性能展开研究具有很大的意义。
激光冲击强化是一种有效的材料表面强化技术,采用含氯溶液作为约束层进行大面积无吸收层激光搭接冲击强化处理,在金属基体表面诱导出含氯钝化膜,抛光后再进行室温大面积有吸收层激光搭接冲击强化处理,进一步强化金属构件,从而大幅提高金属构件的抗腐蚀能力。
发明内容
本发明的目的在于提供一种提高金属构件含氯溶液中抗腐蚀性能的组合处理方法,以进一步提高金属构件在含氯溶液中的抗腐蚀能力。
为了解决以上技术问题,本发明采用含氯溶液作为约束层,采用大面积无吸收层激光搭接冲击强化处理,含氯溶液中的氯离子与表层金属在激光诱导下形成一层钝化膜,然后抛光后再进行室温大面积有吸收层激光搭接冲击强化处理,从而提高金属构件在含氯溶液中的抗腐蚀能力。
具体技术方案如下:
一种提高金属构件含氯溶液中抗腐蚀性能的组合处理方法,其特征在于首先将金属构件放置在含氯溶液中,溶液液面高于构件表面或者冲击点1-2mm,且溶液保持循环流动,采用大面积无吸收层激光搭接冲击强化处理,当激光脉冲照射在目标金属构件上时,金属基体表面吸收激光能量蒸发、膨胀形成高温高压的等离子体,含氯溶液作为约束层限制了等离子体的膨胀,产生高压冲击波,其强度达到几个到数十个GPa,远远超过了金属构件的屈服强度,使其表面产生严重塑性变形,表层晶粒得到细化甚至纳米化,并在冲击区域诱导出高幅残余压应力,同时含氯溶液中的氯离子与表层金属在激光诱导下形成一层含氯钝化膜,提高金属构件的表面耐腐蚀性;大面积无吸收层激光搭接冲击强化处理后,对金属构件表层进行表面抛光,然后采用室温大面积有吸收层激光搭接冲击强化处理金属构件表面,进一步强化金属构件的耐腐蚀性能。包括以下步骤:
步骤一,采用金相砂纸将待处理试样进行逐级磨削处理后,放在酒精溶液中用超声波清洗机清除表面的灰尘与油渍,并完成必要的裂纹探测过程;
步骤二,将金属基体试样安装在组合工艺装置加载平台上,将激光束光斑中心与基体待冲击表面左上角重合在A点,作为冲击强化处理起始位置,并使待冲击区域X轴和Y轴方向与加载平台的X轴和Y轴方向一致;
步骤三,将含氯溶液通过喷水装置喷到金属基体表面,形成一层厚度为1-2mm的液体约束层;
步骤四,通过激光器控制装置设定激光器的输出功率和光斑参数;用强脉冲激光冲击金属基体试样表面,金属基体表面吸收激光能量蒸发、膨胀形成高温高压的等离子体,含氯溶液作为约束层限制了等离子体的膨胀,产生高压冲击波,其强度达到几个到数十个GPa,远远超过了金属构件的屈服强度,使其表面产生严重塑性变形,表层晶粒得到细化甚至纳米化,并在冲击区域诱导出高幅残余压应力,同时含氯溶液中的氯离子与表层金属在激光诱导下形成一层钝化膜;
步骤五,打开激光器,采用逐行加工的方法通过机械手控制系统控制试样加载平台移动,对金属基体试样待加工表面进行大面积激光搭接冲击强化,最终完成对整个待冲击区域的无吸收层激光搭接冲击强化处理;
步骤六,将含氯溶液中无吸收层激光冲击后的金属基体试样进行超声波酒精清洗,抛光后采用铝箔作为吸收层再进行室温大面积激光搭接冲击强化处理,从而提高金属构件的抗腐蚀能力。
所述激光器采用的单脉冲Nd:YAG激光器,工作参数为:波长1064nm,脉冲宽度5-10ns,单次脉冲能量1.5-10J,光斑半径1-3mm。
所述含氯溶液为3.5%的NaCl溶液或者42%的MgCl2溶液。
所述步骤六中的抛光是为了保证金属基体试样表面的平整性,在保证无吸收层激光冲击强化层完整性的前提下提高最后的大面积有吸收层激光搭接冲击强化效率。
激光冲击强化吸收层为专用铝箔,其厚度为0.10-0.12mm。
大面积无吸收层激光搭接冲击强化处理和大面积有吸收层激光搭接冲击强化处理行和列搭接率为50%。本发明具有有益效果。本发明采用含氯溶液作为约束层,采用大面积无吸收层激光搭接冲击强化处理,含氯溶液中的氯离子与表层金属在激光诱导下形成一层钝化膜,提高金属构件的表面耐腐蚀性,然后抛
光后再进行室温大面积有吸收层激光搭接冲击强化处理,从而提高金属构件的抗腐蚀能力。
图1为本发明组合工艺装置示意图;
图2为普通激光冲击强化处理后金属构件表层微观组织腐蚀图像;
图3为本发明组合处理方法处理后金属构件表层微观组织腐蚀图像;
图中:1.激光器,2.激光器控制装置,3.激光束,4.喷水装置,5.试样,6.加载平台,7.机械手。
下面结合附图和具体实施例,对本发明的技术方案做进一步详细说明。
本发明用到的组合工艺装置如图1所示。本发明采用含氯溶液作为约束层,无吸收层激光搭接冲击强化金属构件表面,在表层诱导出残余压应力层与晶粒细化层的同时形成含氯钝化膜,抑制氯离子的腐蚀,然后抛光后再进行室温有吸收层激光搭接冲击强化,从而提高金属构件的抗腐蚀能力。
实施例1:
选取316L不锈钢作为研究对象,将316L不锈钢制成40mm×40mm×5mm的块状试样,将待处理试样放在酒精溶液中用超声波清洗机清除表面的灰尘与油渍,并完成必要的裂纹探测过程,确保表面没有明显的裂纹与缺陷。
将316L不锈钢试样安装在组合工艺装置加载平台6上,将激光束光斑中心与基体待冲击表面左上角重合在A点,作为冲击强化处理起始位置,并使待冲击区域X轴和Y轴方向与加载平台的X轴和Y轴方向一致。
将3.5%的氯化钠溶液通过喷液装置4喷到316L不锈钢试样基体表面,形成一层厚度为1-2mm的液体约束层。
通过激光器控制装置2设定激光器的输出功率和光斑参数:波长1064nm,脉冲宽度5ns,单次脉冲能量1.5J,光斑半径1mm;用强脉冲激光冲击316L不锈钢基体表面,不锈钢表面吸收激光能量蒸发、膨胀形成高温高压的等离子体,氯化钠溶液作为约束层限制了等离子体的膨胀,产生高压冲击波,其强度达到几个到数十个GPa,远远超过了不锈钢构件的屈服强度,使其表面产生严重塑性变形,表层晶粒得到细化甚至纳米化,并在冲击区域诱导出高幅残余压应力,同时氯化钠溶液中的氯离子与表层金属在激光诱导下形成一层钝化膜,提高不锈
钢金属构件的表面耐腐蚀性;
打开激光器1,采用逐行加工的方法通过机械手7控制系统控制试样加载平台6移动实现对试样待加工表面进行搭接率为50%的大面积激光搭接冲击强化,最终完成对整个待冲击区域的无吸收层激光搭接冲击强化处理。
将氯化钠溶液中无吸收层激光冲击后的金属试样进行超声波酒精清洗,抛光后采用厚度为0.10mm的铝箔作为吸收层再进行搭接率为50%的室温大面积激光搭接冲击强化处理,从而提高金属构件的抗腐蚀能力。
本实施例在316L不锈钢试样表面诱导出激光冲击强化层的同时形成含氯钝化膜,抑制氯离子的腐蚀,耐腐蚀性提升了21%。
实施例2:
选取AISI 304不锈钢作为研究对象,将AISI 304不锈钢制成40mm×40mm×5mm的块状试样,将待处理试样放在酒精溶液中用超声波清洗机清除表面的灰尘与油渍,并完成必要的裂纹探测过程,确保表面没有明显的裂纹与缺陷。
将AISI 304不锈钢试样安装在组合工艺装置加载平台6上,将激光束光斑中心与基体待冲击表面左上角重合在A点,作为冲击强化处理起始位置,并使待冲击区域X轴和Y轴方向与加载平台的X轴和Y轴方向一致。
将3.5%的氯化钠溶液通过喷液装置4喷到316L不锈钢试样基体表面,形成一层厚度为1-2mm的液体约束层。
通过激光器控制装置2设定激光器的输出功率和光斑参数:波长1064nm,脉冲宽度8ns,单次脉冲能量6J,光斑半径2mm;用强脉冲激光冲击AISI 304不锈钢基体表面,不锈钢表面吸收激光能量蒸发、膨胀形成高温高压的等离子体,氯化钠溶液作为约束层限制了等离子体的膨胀,产生高压冲击波,其强度达到几个到数十个GPa,远远超过了不锈钢构件的屈服强度,使其表面产生严重塑性变形,表层晶粒得到细化甚至纳米化,并在冲击区域诱导出高幅残余压应力,同时氯化钠溶液中的氯离子与表层金属在激光诱导下形成一层钝化膜,提高不锈钢金属构件的表面耐腐蚀性;
打开激光器1,采用逐行加工的方法通过机械手7控制系统控制试样加载平台6移动实现对试样待加工表面进行搭接率为50%的大面积激光搭接冲击强化,最终完成对整个待冲击区域的无吸收层激光搭接冲击强化处理。
将氯化钠溶液中无吸收层激光冲击后的金属试样进行超声波酒精清洗,抛光后采用厚度为0.10mm的铝箔作为吸收层再进行搭接率为50%的室温大面积激光搭接冲击强化处理,从而提高金属构件的抗腐蚀能力。
本实施例在AISI 304不锈钢试样表面诱导出激光冲击强化层的同时形成含氯钝化膜,抑制氯离子的腐蚀,耐腐蚀性提升了32%。
实施例3:
选取AM50镁合金作为研究对象,将AM50镁合金制成40mm×40mm×5mm的块状试样,将待处理试样放在酒精溶液中用超声波清洗机清除表面的灰尘与油渍,并完成必要的裂纹探测过程,确保表面没有明显的裂纹与缺陷。
将AM50镁合金试样安装在组合装置装置加载平台6上,将激光束光斑中心与基体待冲击表面左上角重合在A点,作为冲击强化处理起始位置,并使待冲击区域X轴和Y轴方向与加载平台的X轴和Y轴方向一致。
将3.5%的氯化钠溶液通过喷液装置4喷到AM50镁合金试样基体表面,形成一层厚度为1-2mm的液体约束层。
通过激光器控制装置2设定激光器的输出功率和光斑参数:波长1064nm,脉冲宽度10ns,单次脉冲能量10J,光斑半径3mm;用强脉冲激光冲击AM50镁合金基体表面,不锈钢表面吸收激光能量蒸发、膨胀形成高温高压的等离子体,氯化镁溶液作为约束层限制了等离子体的膨胀,产生高压冲击波,其强度达到几个到数十个GPa,远远超过了镁合金构件的屈服强度,使其表面产生严重塑性变形,表层晶粒得到细化甚至纳米化,并在冲击区域诱导出高幅残余压应力,同时氯化镁溶液中的氯离子与表层金属在激光诱导下形成一层钝化膜,提高镁合金金属构件的表面耐腐蚀性;
打开激光器1,采用逐行加工的方法通过机械手7控制系统控制试样加载平台6移动实现对试样待加工表面进行搭接率为50%的大面积激光搭接冲击强化,最终完成对整个待冲击区域的无吸收层激光搭接冲击强化处理。
将氯化镁溶液中无吸收层激光冲击后的镁合金金属试样进行超声波酒精清洗,抛光后采用厚度为0.10mm的铝箔作为吸收层再进行搭接率为50%的室温大面积激光搭接冲击强化处理,从而提高镁合金金属构件的抗腐蚀能力。
本实施例在AM50镁合金试样表面诱导出激光冲击强化层的同时形成含氯钝化膜,抑制氯离子的腐蚀,耐腐蚀性提升了47%,普通激光冲击强化处理后金属
构件表层微观组织腐蚀图像如图2所示,激光能量为10J时本发明组合处理方法处理后金属构件表层微观组织腐蚀图像如图3所示,本发明组合处理方法较普通激光冲击强化耐腐蚀性能大幅提升。
Claims (6)
- 一种提高金属构件含氯溶液中抗腐蚀性能的组合处理方法,其特征在于首先将金属构件放置在含氯溶液中,溶液液面高于构件表面或者冲击点1-2mm,且溶液保持循环流动,采用大面积无吸收层激光搭接冲击强化处理,当激光脉冲照射在目标金属构件上时,金属基体表面吸收激光能量蒸发、膨胀形成高温高压的等离子体,含氯溶液作为约束层限制了等离子体的膨胀,产生高压冲击波,其强度达到几个到数十个GPa,远远超过了金属构件的屈服强度,使其表面产生严重塑性变形,表层晶粒得到细化甚至纳米化,并在冲击区域诱导出高幅残余压应力,同时含氯溶液中的氯离子与表层金属在激光诱导下形成一层含氯钝化膜,提高金属构件的表面耐腐蚀性;大面积无吸收层激光搭接冲击强化处理后,对金属构件表层进行表面抛光,然后采用室温大面积有吸收层激光搭接冲击强化处理金属构件表面,进一步强化金属构件的耐腐蚀性能;包括以下步骤:步骤一,采用金相砂纸将待处理试样进行逐级磨削处理后,放在酒精溶液中用超声波清洗机清除表面的灰尘与油渍,并完成必要的裂纹探测过程;步骤二,将金属基体试样安装在组合工艺装置加载平台上,将激光束光斑中心与基体待冲击表面左上角重合在A点,作为冲击强化处理起始位置,并使待冲击区域X轴和Y轴方向与加载平台的X轴和Y轴方向一致;步骤三,将含氯溶液通过喷水装置喷到金属基体表面,形成一层厚度为1-2mm的液体约束层;步骤四,通过激光器控制装置设定激光器的输出功率和光斑参数;用强脉冲激光冲击金属基体试样表面,金属基体表面吸收激光能量蒸发、膨胀形成高温高压的等离子体,含氯溶液作为约束层限制了等离子体的膨胀,产生高压冲击波,其强度达到几个到数十个GPa,远远超过了金属构件的屈服强度,使其表面产生严重塑性变形,表层晶粒得到细化甚至纳米化,并在冲击区域诱导出高幅残余压应力,同时含氯溶液中的氯离子与表层金属在激光诱导下形成一层钝化膜;步骤五,打开激光器,采用逐行加工的方法通过机械手控制系统控制试样 加载平台移动,对金属基体试样待加工表面进行大面积激光搭接冲击强化,最终完成对整个待冲击区域的无吸收层激光搭接冲击强化处理;步骤六,将含氯溶液中无吸收层激光冲击后的金属基体试样进行超声波酒精清洗,抛光后采用铝箔作为吸收层再进行室温大面积激光搭接冲击强化处理,从而提高金属构件的抗腐蚀能力。
- 根据权利要求1所述的一种提高金属构件含氯溶液中抗腐蚀性能的组合处理方法,其特征在于:所述激光器采用的单脉冲Nd:YAG激光器,工作参数为:波长1064nm,脉冲宽度5-10ns,单次脉冲能量1.5-10J,光斑半径1-3mm。
- 根据权利要求1所述的一种提高金属构件含氯溶液中抗腐蚀性能的组合处理方法,其特征在于:所述含氯溶液为3.5%的NaCl溶液或者42%的MgCl2溶液。
- 根据权利要求1所述的一种提高金属构件含氯溶液中抗腐蚀性能的组合处理方法,其特征在于:所述步骤六中的抛光是为了保证金属基体试样表面的平整性,在保证无吸收层激光冲击强化层完整性的前提下提高最后的大面积有吸收层激光搭接冲击强化效率。
- 根据权利要求1所述的一种提高金属构件含氯溶液中抗腐蚀性能的组合处理方法,其特征在于:激光冲击强化吸收层为专用铝箔,其厚度为0.10-0.12mm。
- 根据权利要求1所述的一种提高金属构件含氯溶液中抗腐蚀性能的组合处理方法,其特征在于:大面积无吸收层激光搭接冲击强化处理和大面积有吸收层激光搭接冲击强化处理行和列搭接率为50%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/066,305 US11248299B2 (en) | 2017-07-05 | 2017-10-09 | Combined treatment method for improving corrosion resistance of metal component in chlorine-containing solution |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710541125.9A CN107385193B (zh) | 2017-07-05 | 2017-07-05 | 一种提高金属构件含氯溶液中抗腐蚀性能的组合处理方法 |
CN201710541125.9 | 2017-07-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019006901A1 true WO2019006901A1 (zh) | 2019-01-10 |
Family
ID=60335130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/105316 WO2019006901A1 (zh) | 2017-07-05 | 2017-10-09 | 一种提高金属构件含氯溶液中抗腐蚀性能的组合处理方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11248299B2 (zh) |
CN (1) | CN107385193B (zh) |
WO (1) | WO2019006901A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115433823A (zh) * | 2022-10-17 | 2022-12-06 | 珠海罗西尼表业有限公司 | 奥氏体不锈钢带材的表面处理方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109750242A (zh) * | 2019-02-19 | 2019-05-14 | 江苏大学 | 激光冲击强化结合磁控溅射提升镁合金抗腐蚀性能的方法 |
CN110408769B (zh) * | 2019-07-02 | 2021-07-20 | 江苏大学 | 飞秒激光冲击提高镁合金耐腐蚀性的装置和方法 |
CA3168014A1 (en) * | 2020-02-19 | 2021-08-26 | Novelis Inc. | Control of aluminum alloy microstructure for improved corrosion resistance and bonding performance |
CN113913605B (zh) * | 2021-10-13 | 2023-04-18 | 中国航空制造技术研究院 | 飞秒激光叠加纳秒激光冲击的复合强化方法 |
CN114059056A (zh) * | 2021-10-14 | 2022-02-18 | 江苏大学 | 一种激光辅助铝合金化学钝化的装置及加工方法 |
CN113976408B (zh) * | 2021-10-27 | 2022-08-12 | 广东工业大学 | 一种提高附着率的海工板件无吸收层激光冲击喷涂镀膜方法和装置 |
CN115198226B (zh) * | 2022-08-16 | 2023-08-22 | 中国人民解放军空军工程大学 | 基于飞秒激光诱导表面氧化层提升金属抗腐蚀性能的方法 |
CN117845046B (zh) * | 2024-02-27 | 2024-09-03 | 江苏大学 | 一种热力复合激光冲击强化镁合金抗腐蚀方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0040092A1 (en) * | 1980-05-14 | 1981-11-18 | Permelec Electrode Ltd | Method for forming an anticorrosive coating on a metal substrate |
CN1986841A (zh) * | 2006-11-03 | 2007-06-27 | 江苏大学 | 基于激光冲击强化技术提高镁合金耐腐蚀性的方法 |
US20090297720A1 (en) * | 2008-05-29 | 2009-12-03 | General Electric Company | Erosion and corrosion resistant coatings, methods and articles |
CN105063547A (zh) * | 2015-07-24 | 2015-11-18 | 中国工程物理研究院材料研究所 | 一种大气激光钝化制备铀表面抗腐蚀保护层的方法及其装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4398966A (en) * | 1982-04-28 | 1983-08-16 | Huntington Alloys, Inc. | Corrosion of type 304 stainless steel by laser surface treatment |
AU2001266888A1 (en) * | 2000-06-12 | 2001-12-24 | The Regents Of The University Of California | Ablation and insulation layer for laser peening |
US20040224179A1 (en) * | 2003-05-09 | 2004-11-11 | Lsp Technologies, Inc. | Laser peening method and apparatus using tailored laser beam spot sizes |
CN101392382B (zh) * | 2008-10-15 | 2010-08-11 | 江苏大学 | 一种激光熔覆结合激光喷丸强化表面改性的方法和装置 |
CN103305665A (zh) * | 2013-06-07 | 2013-09-18 | 江苏大学 | 一种无吸收层激光温冲击强化焊缝方法 |
CN105002349B (zh) * | 2015-07-21 | 2017-05-03 | 江苏大学 | 一种变光斑多层交错激光冲击均匀强化叶片的方法 |
-
2017
- 2017-07-05 CN CN201710541125.9A patent/CN107385193B/zh active Active
- 2017-10-09 US US16/066,305 patent/US11248299B2/en active Active
- 2017-10-09 WO PCT/CN2017/105316 patent/WO2019006901A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0040092A1 (en) * | 1980-05-14 | 1981-11-18 | Permelec Electrode Ltd | Method for forming an anticorrosive coating on a metal substrate |
CN1986841A (zh) * | 2006-11-03 | 2007-06-27 | 江苏大学 | 基于激光冲击强化技术提高镁合金耐腐蚀性的方法 |
US20090297720A1 (en) * | 2008-05-29 | 2009-12-03 | General Electric Company | Erosion and corrosion resistant coatings, methods and articles |
CN105063547A (zh) * | 2015-07-24 | 2015-11-18 | 中国工程物理研究院材料研究所 | 一种大气激光钝化制备铀表面抗腐蚀保护层的方法及其装置 |
Non-Patent Citations (2)
Title |
---|
LUO, XINMIN ET AL.: "Surface Layer High-Entropy Structure and Anti-Corrosion Performance of Aero-Aluminum Alloy Induced by Laser Shock Processing", ACTA METALLURGICA SINICA, vol. 51, no. 1, 31 January 2015 (2015-01-31), pages 57 - 66 * |
XING, QINGPU ET AL.: "Effect of Laser Shock Processing on Electrochemical Corrosion Behavior of 2A02 Aluminum Alloy", CORROSION SCIENCE AND PROTECTION TECHNOLOGY, vol. 25, no. 5, 30 September 2013 (2013-09-30), pages 402 - 405 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115433823A (zh) * | 2022-10-17 | 2022-12-06 | 珠海罗西尼表业有限公司 | 奥氏体不锈钢带材的表面处理方法 |
Also Published As
Publication number | Publication date |
---|---|
US20210164106A1 (en) | 2021-06-03 |
US11248299B2 (en) | 2022-02-15 |
CN107385193B (zh) | 2019-03-01 |
CN107385193A (zh) | 2017-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019006901A1 (zh) | 一种提高金属构件含氯溶液中抗腐蚀性能的组合处理方法 | |
CN101665859B (zh) | 不锈钢焊接接头激光喷丸处理工艺 | |
US11447837B2 (en) | Combined fabricating method for gradient nanostructure in surface layer of metal workpiece | |
JP5682993B2 (ja) | 超音波衝撃による、金属性能の改善ならびに劣化からの保護およびその抑制の方法 | |
CN103409758B (zh) | 泵类壳体及叶片微细裂纹激光强化延寿方法 | |
Srivastava et al. | Potential of using water jet peening as a surface treatment process for welded joints | |
Hatamleh et al. | Laser peening and shot peening effects on fatigue life and surface roughness of friction stir welded 7075‐T7351 aluminum | |
CN101492759B (zh) | 一种抗应力腐蚀开裂的超声冲击处理工艺 | |
Hill et al. | Recent developments in laser peening technology | |
JP2005002475A5 (zh) | ||
Ebrahimi et al. | The investigation of laser shock peening effects on corrosion and hardness properties of ANSI 316L stainless steel | |
CN105039652A (zh) | 一种用于曲面的方形光斑激光冲击均匀强化方法 | |
Soyama et al. | Comparison of the effects of submerged laser peening, cavitation peening and shot peening on the improvement of the fatigue strength of magnesium alloy AZ31 | |
Fereidooni et al. | Influence of severe plastic deformation on fatigue life applied by ultrasonic peening in welded pipe 316 Stainless Steel joints in corrosive environment | |
Wang et al. | Cavitation erosion behaviour of AISI 420 stainless steel subjected to laser shock peening as a function of the coverage layer in distilled water and water-particle solutions | |
CN106834659A (zh) | 纳秒脉冲激光冲击不锈钢焊接接头抗应力腐蚀的方法 | |
Sun et al. | On enhancement of fracture resistance of adhesive joints by surface micropatterning using a femtosecond laser | |
KR100664003B1 (ko) | 내환경 조장 균열성이 우수한 금속 구조 제품 및 금속 구조제품의 환경 조장 균열 저항성 향상 방법 | |
CN108285971A (zh) | 一种超声波辅助激光温喷丸强化细管件的组合方法 | |
John et al. | Understanding the stress corrosion cracking resistance of laser shock surface patterned austenitic stainless-steel weld joints | |
Knysh et al. | Influence of the atmosphere corrosion on the fatigue life of welded T-joints treated by high frequency mechanical impact | |
RU2757881C1 (ru) | Способ виброударной обработки деталей из титановых сплавов | |
Lim et al. | Laser shock peening of AISI 304 stainless steel for the application to seawater desalination pump components | |
Cao et al. | The residual stress distribution and fatigue property of TC4 laser-welded joint treated by laser shock peening | |
Hirano et al. | Mechanism of anisotropic stress generation in laser peening process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17916906 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17916906 Country of ref document: EP Kind code of ref document: A1 |