Nothing Special   »   [go: up one dir, main page]

WO2019003896A1 - Production method for 2-chloro-1,1,1,2-tetrafluoropropane and/or 3-chloro-1,1,1,2-tetrafluoropropane, and production method for 2,3,3,3-tetrafluoropropene - Google Patents

Production method for 2-chloro-1,1,1,2-tetrafluoropropane and/or 3-chloro-1,1,1,2-tetrafluoropropane, and production method for 2,3,3,3-tetrafluoropropene Download PDF

Info

Publication number
WO2019003896A1
WO2019003896A1 PCT/JP2018/022409 JP2018022409W WO2019003896A1 WO 2019003896 A1 WO2019003896 A1 WO 2019003896A1 JP 2018022409 W JP2018022409 W JP 2018022409W WO 2019003896 A1 WO2019003896 A1 WO 2019003896A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
tetrafluoropropane
chlorine
chloro
reactor
Prior art date
Application number
PCT/JP2018/022409
Other languages
French (fr)
Japanese (ja)
Inventor
英史 塩田
古田 昇二
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2019526772A priority Critical patent/JP7081596B2/en
Publication of WO2019003896A1 publication Critical patent/WO2019003896A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • C07C19/10Acyclic saturated compounds containing halogen atoms containing fluorine and chlorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a process for producing 2-chloro-1,1,1,2-tetrafluoropropane and / or 3-chloro-1,1,1,2-tetrafluoropropane, and 2,3,3,3 To a process for producing tetrafluoropropene.
  • Patent Document 1 discloses that 1,2-dichloro-2-fluoropropane (CH 3 CClFCH 2 Cl, HCFC-261ba) is chlorinated to 1,1,1,2-tetrachloro-2-
  • the fluoropropane (CH 3 CClFCCl 3 , HCFC-241bb) is obtained and the 241bb is fluorinated to give 2-chloro-1,1,1,2-tetrafluoropropane (CF 3 CFClCH 3 , HCFC-244bb)
  • a method of dehydrochlorinating the obtained 244bb to obtain 1234yf is described.
  • 1234yf is obtained by reaction of 3 steps from 261ba which is a raw material, and improvement was desired by the point of productivity.
  • a method for producing 1234yf with high productivity by efficiently producing 244bb has been desired.
  • the present invention has been made from the above-mentioned viewpoints, and is an advantageous raw material for producing 2,3,3,3-tetrafluoropropene (HFO-1234yf) 2-chloro-1,1,1,1,2.
  • the present invention provides a method of producing 244bb and / or 244eb, and a method of producing 1234yf, having the following configurations [1] to [11].
  • a process for producing 244bb and / or 244eb which comprises reacting 1,1,1,2-tetrafluoropropane (HFC-254eb) with chlorine (Cl 2 ) to obtain 244bb and / or 244eb.
  • HFC-254eb 1,1,1,2-tetrafluoropropane
  • chlorine Cl 2
  • [7] The process according to any one of [1] to [6], wherein the reaction of 254eb with chlorine is carried out in the liquid phase in the presence of a solvent.
  • the solvent is carbon tetrachloride, 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113), CF 3 (CF 2 ) n CF 3 (wherein n is the formula) , And represents an integer of from 3 to 6), a method of producing [7], comprising at least one selected from the group consisting of C 5-8 linear perfluoroalkyl compounds, hexachloroacetone, 244bb and 244eb .
  • 244bb and / or 244eb which are advantageous raw materials for producing 1234yf, can be produced with high productivity from industrially available 254eb. Furthermore, according to the present invention, 1234yf can be produced in an economically advantageous manner by using 244bb and / or 244eb thus obtained.
  • reaction (1) The reaction to obtain 244bb and / or 244eb by the chlorination reaction of 254eb is a reaction represented by the following formula (1) (hereinafter also referred to as reaction (1)).
  • 244bb and / or 244eb mean either 244bb only, 244eb only, 244bb and 244eb.
  • chlorine refers to chlorine in the molecular state (Cl 2 ).
  • the 244bb and / or 244eb obtained in the first embodiment is useful as a raw material for efficiently producing 1234yf, which is useful as a refrigerant with low environmental load.
  • 254eb used in the first embodiment is a known compound known as a raw material or an intermediate for producing a fluorine-containing compound, and can be produced by a known method.
  • 1214 ya which is a starting material of reaction shown by Formula (2) can be manufactured by a well-known manufacturing method.
  • a method for producing 1214 ya for example, the method described in Japanese Patent No. 5582036 can be mentioned.
  • Z isomer and E isomer which are geometric isomers exist depending on the position of the substituent on the double bond of 1224yd.
  • a compound name or an abbreviation of a compound is used without particular notice, at least one selected from a Z form and an E form is indicated, and the compound name or the abbreviation of the compound is followed by (E) or When Z) is attached, it shows that it is E form or Z form of each compound.
  • 1224yd (Z) and 1224yd (E) indicate 1224yd Z form and E form, respectively.
  • a hydrogenation catalyst is used in the above-mentioned reaction of reacting 1214 ya with hydrogen.
  • a palladium catalyst is preferable, and the palladium catalyst is preferably used by being supported on a carrier.
  • palladium alone but also palladium alloy may be used as the palladium catalyst.
  • it may be a mixture of palladium and another metal or a composite catalyst in which palladium and another metal are separately supported on a carrier.
  • Examples of palladium alloy catalysts include palladium / platinum alloy catalysts and palladium / rhodium alloy catalysts.
  • Examples of the carrier include activated carbon and metal oxides (alumina, zirconia, silica and the like), and activated carbon is preferable in terms of activity, durability, and reaction selectivity.
  • Examples of activated carbon include those obtained from plant materials (wood, charcoal, fruit shells, coconut shells, etc.), mineral materials (peat, lignite, coal, etc.), etc. From the viewpoint of catalyst durability, plant materials can be used. The obtained one is preferable, and coconut shell activated carbon is particularly preferable.
  • the reduction reaction of 1214 ya with hydrogen takes place in the gas phase.
  • the reaction tube is filled with a catalyst supporting carrier to form a catalyst layer, and 1214 ya gas and hydrogen gas are allowed to flow through the catalyst layer.
  • 50 degreeC or more is preferable and, as for the temperature of the catalyst layer at the time of reaction, 60 degreeC or more is more preferable.
  • the ratio of 1214 ya and hydrogen is adjusted appropriately.
  • 1214 ya gas and hydrogen gas may be added to a dilution gas composed of nitrogen gas, a rare gas or the like to be used for the reaction.
  • the conditions in the above-mentioned reduction reaction may not necessarily be the conditions for increasing the selectivity of 254eb. Since 1224yd and 1234yf as intermediate products obtained in producing the target product 254eb from 1214ya of the raw material can be respectively isolated and used as valuables, the total selectivity of 1224yd, 1234yf and 254eb is high. It is preferable to carry out the reaction under the following conditions. Specifically, it is preferable to carry out the reaction under the conditions in which the formation of a super-reduced product of 254eb such as 1,1,1-trifluoropropane (CF 3 CH 2 CH 3 , HFC-263fb) is suppressed.
  • a super-reduced product of 254eb such as 1,1,1-trifluoropropane (CF 3 CH 2 CH 3 , HFC-263fb) is suppressed.
  • the conversion rate refers to the ratio (mol%) of the amount of the raw material consumed in the reaction to the total amount of the raw material used in the reaction, and the selectivity is the amount of the target product produced relative to the total amount of product.
  • the proportion (mol%) is said.
  • 254eb is isolated by a conventional separation method, for example, by distillation, and used as a raw material of the first embodiment.
  • 254eb and impurities such as 1214ya, 1224yd and 1234yf are used if necessary, and 254eb composition containing 10% by mass or more of 254eb with respect to the total amount of the composition is used. It is also good.
  • the content of 254eb with respect to the total amount of the composition in the 254eb composition is preferably 85% by mass to less than 100% by mass, and more preferably 90% by mass to 99% by mass.
  • the first embodiment is a method of reacting 254eb with chlorine to produce 244bb and / or 244eb by reaction (1).
  • 254eb obtained by the above-mentioned method can be used as the starting material 254eb. Note that the method for obtaining 254eb is not limited to this.
  • the ratio of each compound to the total amount of 244bb and 244eb in the target product 244bb and / or 244eb is not particularly limited. That is, in the first embodiment, the target products 244bb and / or 244eb may be 244bb alone, 244eb alone, or a mixture of 244bb and 244eb in any mixing ratio. As used herein, “selectivity of 244bb and / or 244eb” means the total selectivity of 244bb and 244eb.
  • both of 244bb and 244eb become 1234yf by the dehydrochlorination reaction, When both are obtained as a mixture, it is not necessary to separate them in particular.
  • the 244bb and 244eb are separated from the by-products described below by a usual method such as distillation, the 244bb and 244eb are easily separated due to the difference in boiling point. In that case, 244bb and 244eb may be obtained as single units.
  • a side reaction occurs in which the 244bb and / or 244eb obtained in the reaction (1) is further chlorinated together with the reaction (1), and 2,3-dichloro-1, 1,1,2-Tetrafluoropropane (HCFC-234bb), 3,3-Dichloro-1,1,1,2-tetrafluoropropane (HCFC-234ea), 2,3,3-Trichloro-1,1,3 1,2-tetrafluoropropane (HCFC-224ba), 1,1,1-trichloro-2,3,3,3-tetrafluoropropane (HCFC-224eb), 1,1,1,2-tetrachloro-2 Perchlorinated products such as 2,3,3,3-tetrafluoropropane (CFC-214bb) may be by-produced.
  • the reaction in which these perchlorinated products are by-produced is represented by the following reaction formula.
  • the chlorination reaction of 254eb is preferably performed under conditions that suppress side reactions associated with such reaction (1) in order to increase the selectivity of 244bb and / or 244eb.
  • 234bb, 234ea, 224ba and 224eb can be further dehydrochlorinated to produce 1214ya or 1224yd, and some of them may be produced as by-products.
  • the chlorination reaction of 254eb in the first embodiment is particularly preferably performed under the condition that the amount of 214bb is reduced.
  • the chlorination reaction may be carried out in the liquid phase or in the gas phase.
  • the case where the chlorination reaction is performed in a liquid phase under light irradiation will be described as an example.
  • the ratio of 254eb to chlorine to be used activates the reaction, suppresses the formation of by-products, in particular 214bb.
  • 0.01 to 3.00 mol of chlorine (Cl 2 ) with respect to 1 mol of 254eb from the viewpoint of increasing the selectivity of 244bb and / or 244eb and the yield of 244bb and / or 244eb from 254eb 0.10 to 2.00 mol is more preferable, 0.20 to 1.60 mol is more preferable, and 0.50 to 1.50 mol is the most preferable.
  • the reaction temperature in the chlorination reaction is preferably 0 to 100 ° C., more preferably 5 to 60 ° C., from the viewpoint of increasing the reaction rate.
  • the reaction pressure corresponds to the pressure in the reactor.
  • the pressure in the reactor is preferably 0.00 to 1.00 MPa, more preferably 0.05 to 0.50 MPa, because the pressure can be efficiently produced. In order to improve the productivity, it is preferable to carry out the reaction under pressurized conditions. In the present specification, pressure refers to gauge pressure unless otherwise stated.
  • the chlorination reaction of 254eb (hereinafter, also simply referred to as “chlorination reaction”) is preferably performed under light irradiation from the viewpoint of increasing the reaction rate.
  • the wavelength of light used for irradiation is preferably 200 to 750 nm, and more preferably 250 to 730 nm. If the light has a wavelength of 200 nm or more, the reaction of generating a by-product can be sufficiently suppressed, and if the light has a wavelength of 750 nm or less, the reaction proceeds sufficiently.
  • the light used for the irradiation may include light of a wavelength of less than 200 nm or light of a wavelength of more than 750 nm.
  • examples of a light source capable of efficiently irradiating the raw material with light having a wavelength of 200 to 750 nm include a fluorescent lamp, an LED light, an incandescent lamp, a high pressure mercury lamp, and a halogen lamp.
  • a light source with large heat generation is not preferable because it becomes difficult to keep the internal temperature of the reactor low.
  • the internal temperature is high, the internal pressure rises, and it is necessary to increase the pressure resistance of the reactor, which is disadvantageous in cost. Also, if the internal temperature is high, side reactions are likely to occur.
  • a fluorescent lamp and an LED light are preferable.
  • the chlorination reaction is carried out in the liquid phase, as a method of irradiating the raw material with light, the whole reaction liquid containing the raw material, the solvent used as needed, and the product can be uniformly irradiated through the reaction time. If it is a method, it will not be restricted in particular.
  • a method of inserting a light source equipped with a jacket into the reaction solution and irradiating light on the raw material in the reaction solution from the inside of the reaction solution can be mentioned.
  • the material of the jacket is preferably a material which transmits at least light of a wavelength useful for the above reaction, is inert to the components contained in the reaction solution, and is not easily corroded by these components.
  • the jacket preferably has a cooling means.
  • 254eb and chlorine may be separately supplied to the reactor, or may be supplied in a premixed state.
  • a solvent it is possible to dissolve the raw material component (254eb and chlorine) as the solvent, and it is inert with respect to the raw material component, and the target product (244bb and / or 244eb) is obtained by distillation or the like.
  • the solvent which is easy to separate with) can be mentioned without particular limitation.
  • the solvent has 5 to 6 carbon atoms represented by carbon tetrachloride, CFC-113, CF 3 (CF 2 ) n CF 3 (wherein n represents an integer of 3 to 6). Mention may be made of the linear perfluoroalkyl compounds of 8 and perhalo compounds such as hexachloroacetone.
  • desired products 244bb and / or 244eb may be used as a solvent, and byproducts 234bb, 234ea, 224ba, 224eb and 214bb may be used as a solvent.
  • the solvent one of these compounds may be used alone, or two or more thereof may be used in combination.
  • the solvent is preferably carbon tetrachloride which is low in cost and easy to separate from the desired product, or 244bb and / or 244eb without the need for separation.
  • the amount of solvent used for the chlorination reaction is not particularly limited as long as it can dissolve 244bb and / or 244eb to be produced, but specifically, it is preferably 1 to 4000% by mass, preferably 1 to 4000% by mass with respect to the raw material component (total amount of 254eb and chlorine) Is preferably in an amount of 50 to 3000% by mass.
  • the material of the reactor is not particularly limited as long as it is a material that is inert to the components contained in the reaction solution and is not easily corroded by these components.
  • a material of a reactor iron, nickel, the alloy which has these as a main component, glass, resin etc. can be mentioned, for example.
  • the reaction container made of the above alloy in which the inner surface of the reactor is lined with a resin is preferable.
  • the chlorination reaction may be carried out by any of a semi-continuous system, a batch system and a continuous system.
  • the reaction time can be appropriately adjusted by a general method according to each method.
  • the supply of the raw materials to the reactor may be a method of supplying each predetermined amount for each component, or a method of supplying each component as a mixture containing each predetermined amount.
  • the chlorine gas may be supplied diluted with an inert gas such as nitrogen as necessary.
  • the feed is added at a constant rate as a component of the feed, or as a mixture of components of the feed, during the reaction.
  • the addition of the raw material may be intermittent or continuous.
  • the raw materials are charged into a reactor together with a solvent and the like before the reaction and subjected to the reaction.
  • the raw material is continuously supplied into the reaction, for example, from the lower part of the reactor charged with the solvent.
  • the product after completion of the reaction is continuously taken out from the top of the reactor, for example, by overflow and the like.
  • the chlorination reaction When the chlorination reaction is carried out in the gas phase, it differs from the case in which it is carried out in the liquid phase in that it does not use a solvent, and that the temperature and / or pressure is in the gas phase.
  • conditions for carrying out the chlorination reaction in the gas phase for example, conditions of a pressure of 0.00 to 1.00 MPa and a temperature of 0 to 100 ° C. can be mentioned.
  • the reaction product obtained by the chlorination reaction in which 254eb is reacted with chlorine is the target product 244bb and / or 244eb, unreacted raw materials, solvents, byproducts such as perchlorinated products, etc. Contains
  • a method of separating desired products 244bb and / or 244eb from the product obtained for example, after removing chlorine by washing with alkali, a method such as a method of removing solvent and by-products by distillation is usually used. Methods of separation of In addition, purification can be performed on 244bb and / or 244eb by distillation, and repeated distillation can be performed to obtain 244bb or 244eb of desired purity, or 244bb and 244eb of desired purity.
  • the method for producing 1234yf of the present invention (“the second embodiment") provides 244bb and / or 244eb by the method of the first embodiment, and the obtained 244bb and / or 244eb is the presence of a base and / or a catalyst. It is the method of dehydrochlorination reaction below.
  • the reaction for desalting 244bb and / or 244eb in the presence of a base and / or a catalyst is a reaction represented by the following formula (3) (hereinafter, also referred to as reaction (3)).
  • the starting material for the reaction (3) is either 244bb alone, 244eb alone, or a mixture of 244bb and 244eb.
  • the raw material used to carry out the reaction (3) (hereinafter, also referred to as “the raw material for the reaction (3)”) is 244bb alone, 244eb alone, or a mixture of any of 244bb and 244eb In addition, it is conceptually preferable that it does not contain an impurity.
  • the raw material of the reaction (3) may contain impurities such as perchlorinated products generated as a by-product of 244bb and / or 244eb in the first embodiment from the viewpoint of economy.
  • 234bb, 234ea, 224ba and 224eb are dehydrochlorinated as shown in the formula (4) or the formula (5) under the condition that the reaction (3) desalts the 244bb and / or 244eb.
  • To produce 1224yd or 1214ya Specifically, 234bb and / or 234ea to 1224yd, and 224ba and / or 224eb to 1214ya, respectively, are generated.
  • 214bb does not inhibit 244bb and / or 244eb dehydrochlorination reactions.
  • the ratio of 244bb and / or 244eb to the total amount of impurities and 244bb and / or 244eb is 85% by mass or more and less than 100% by mass Is preferable, and 90 to 99 mass% is more preferable.
  • the raw material of the reaction (3) may contain 244bb and / or 244eb as a main component and at least one compound selected from 234bb, 234ea, 224ba and 224eb.
  • the raw material of reaction (3) may further contain 214bb.
  • the proportion of the total amount of the impurities 234bb, 234ea, 224ba, 224eb and 214bb is more than 0 mol% and 15 mol with respect to the total amount of the above impurities and 244bb and / or 244eb in order to efficiently produce 1234yf. % Or less is preferable, and 0.1 mol% or more and 7 mol% or less are more preferable.
  • the dehydrochlorination reaction of the reaction (3) in the second embodiment can be carried out by a conventionally known method.
  • the reaction (3) can be carried out in the gas phase in the presence of a catalyst, for example, by the method described in Japanese Patent No. 5482665 (hereinafter, method (A)).
  • the reaction (3) can be carried out in the presence of a base, in the gas phase or in the liquid phase (hereinafter, method (B)).
  • the catalyst in the method (A) include activated carbon, nickel catalyst (for example, nickel mesh), or a combination thereof.
  • nickel catalyst for example, nickel mesh
  • palladium on carbon, palladium on alumina, etc. are used. These catalysts are used by being packed in the form of a fixed bed or fluidized bed in a reactor.
  • the reaction temperature is appropriately adjusted according to the pressure conditions during the reaction.
  • the pressure condition of the reaction in the method (A) for example, when pressurization is required for the purpose of shortening the reaction time, the pressurization condition of 1.0 MPa or less, the internal pressure in the reactor and the normal pressure It is possible to set a reaction pressure condition of ⁇ 1.0 MPa. From the viewpoint of industrial easiness of operation, it is preferable to carry out the reaction under normal pressure without pressure adjustment.
  • the reaction temperature is preferably 200 to 700 ° C., and more preferably 250 to 650 ° C.
  • the reaction temperature is preferably 400 to 650 ° C., more preferably 450 to 600 ° C. In the case of 244eb, the reaction temperature is preferably 250 to 500 ° C., more preferably 300 to 400 ° C.
  • Method (A) can be carried out either batchwise or continuous flow, but continuous flow is preferred in terms of production efficiency.
  • reaction time can be suitably adjusted with a general method by each mode.
  • Method (A) is usually carried out in the gas phase.
  • the material of the gas phase reactor used for this reaction is, for example, stainless steel, Hastelloy (registered trademark) which is a nickel alloy, Inconel (registered trademark), Monel (registered trademark) or fluorine-based polymer Materials such as metal, glass, etc. can be mentioned.
  • the base in the method (B) is not particularly limited as long as the dehydrochlorination reaction of the reaction (3) can be carried out.
  • the base is preferably at least one selected from the group consisting of metal hydroxides, metal oxides and metal carbonates.
  • the base may be used alone or in combination of two or more.
  • Examples of the metal hydroxide include alkaline earth metal hydroxides and alkali metal hydroxides.
  • As the alkaline earth metal hydroxide magnesium hydroxide, calcium hydroxide, strontium hydroxide and barium hydroxide are preferable, and as the alkali metal hydroxide, lithium hydroxide, sodium hydroxide and potassium hydroxide are preferable.
  • the metal oxide examples include alkali metal oxides and alkaline earth metal oxides.
  • the alkali metal oxide sodium oxide is preferable, and as the alkaline earth metal oxide, calcium oxide is preferable.
  • the metal oxide may be an oxide of one metal, or a composite oxide of two or more metals.
  • Alkaline earth metal carbonates include carbonates of beryllium, magnesium, calcium, strontium, barium or radium.
  • the alkali metal carbonates include carbonates of lithium, sodium, potassium, rubidium, cesium or francium.
  • the base is preferably at least one selected from metal hydroxides, and more preferably potassium hydroxide, sodium hydroxide or a combination of potassium hydroxide and sodium hydroxide.
  • the ratio of the base to 244bb and / or 244eb is 0.2 to 3.0 moles to 1 mole of 244bb and / or 244eb from the viewpoint of improving the conversion of 244bb and / or 244eb and the selectivity of 1234yf.
  • 0.5 to 2.5 mol is more preferable.
  • the method (B) is carried out in the gas phase or in the liquid phase.
  • the raw material is brought into the gas phase and brought into contact with a solid phase or a base solution containing a base and a solvent.
  • the process (B) is carried out in the liquid phase, the above base is present in the liquid phase in which the reaction is carried out.
  • the method (B) is performed in the liquid phase.
  • Method (B) is preferably carried out in the liquid phase in the presence of a base and a solvent.
  • the solvent is not particularly limited as long as it can dissolve a predetermined amount of the base and does not contribute to the dehydrochlorination reaction.
  • Water is preferable as a solvent for dissolving the above-mentioned base since it has high solubility in the above-mentioned base and is inactive to dehydrochlorination reaction. That is, in the method (B), the base is preferably used as an aqueous solution of the base.
  • the aqueous solution of the base is preferably an aqueous solution of an alkali metal hydroxide, more preferably an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide.
  • the ratio of the mass of the base to the total mass of the solvent and the base is preferably 10 to 55% by mass, and more preferably 20 to 50% by mass.
  • the amount of the base is at least the above lower limit value, a sufficient reaction rate is easily obtained, and separation of the target product by two-layer separation is easily performed. If it is below the said upper limit, since a base will be easy to melt
  • a solution in which a base is dissolved in a solvent, 244bb and / or 244eb, and a compound involved in another reaction that is optionally used is supplied to a reactor to carry out the reaction.
  • the resulting composition containing 1234yf is recovered from the reactor, but is optionally cooled via a cooler. Furthermore, it is preferable to recover the product from which water has been removed, if necessary, by passing it through a dewatering tower.
  • the well-known reactor used for dehydrochlorination reaction in liquid phase reaction is preferable.
  • the material of the reactor include iron, nickel, alloys containing these as main components, and glass. If necessary, lining treatment such as resin lining or glass lining may be performed on the reactor. Further, it is preferable to provide a stirring means in the reactor and carry out the reaction while stirring so that the reaction is carried out in a state in which the raw materials, products, bases, solvents and the like are uniformly distributed in the reaction system.
  • the reaction temperature is the temperature in the reactor, preferably 40 to 120 ° C., more preferably 50 to 110 ° C.
  • the reaction temperature is preferably 60 to 120 ° C., and more preferably 80 to 110 ° C.
  • the reaction temperature is preferably 40 to 80 ° C., more preferably 50 to 70 ° C.
  • the pressure in the reactor during the reaction is preferably 0.00 to 10.00 MPa, more preferably 0.05 to 5.00 MPa, and still more preferably 0.15 to 2.00 MPa.
  • the pressure in the reactor is preferably at least the vapor pressure of 244bb and / or 244eb at the reaction temperature.
  • the method (B) can be carried out either semi-continuously, batchwise or continuously.
  • reaction time can be suitably adjusted with a general method by each system.
  • the reaction time is preferably 1 to 50 hours in a batch system, and preferably 1 to 3000 seconds in a continuous system, since it is easy to control the conversion of starting materials 244bb and / or 244eb and the selectivity of 1234yf. .
  • the method (B) may be carried out in the presence of a phase transfer catalyst as long as the reaction is not affected.
  • a water-soluble organic solvent such as tetraglyme may be used as long as the reaction is not affected.
  • phase transfer catalysts include quaternary ammonium salts, quaternary phosphonium salts, quaternary arsonium salts, sulfonium salts, crown ethers and the like, and quaternary ammonium salts, quaternary phosphonium salts and quaternary arsonium Salts and sulfonium salts are preferred, and quaternary ammonium salts are more preferred.
  • the quaternary ammonium salt is at least one selected from the group consisting of tetra-n-butylammonium chloride (TBAC), tetra-n-butylammonium bromide (TBAB) and methyltri-n-octylammonium chloride (TOMAC) Is preferred.
  • TBAC tetra-n-butylammonium chloride
  • TBAB tetra-n-butylammonium bromide
  • TOMAC methyltri-n-octylammonium chloride
  • triphenylmethylarsonium chloride is preferred.
  • a sulfonium salt dodecyl methyl ethyl sulfonium chloride is preferable.
  • crown ethers examples include 18-crown-6, dibenzo-18-crown-6, and dicyclohexyl-18-crown-6.
  • the amount of phase transfer catalyst used is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5.0 parts by mass, and more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of 244bb and / or 244eb. 0 parts by mass is more preferred.
  • the amount of phase transfer catalyst is in the above range, a sufficient reaction rate is likely to be obtained. If it is out of the above range, it is difficult to obtain the reaction promoting effect, and the cost tends to be disadvantageous.
  • reaction process When using a phase transfer catalyst, the reaction process, the reactor, and the materials of the reactor may be the same as in the case where the phase transfer catalyst is not used.
  • reaction conditions such as the concentration of the base, the amount used, and the reaction temperature may be the same as in the case where the phase transfer catalyst is not used.
  • Method (B) supplies, for example, compounds involved in the reaction such as 244bb and / or 244eb, a base, if necessary, a solvent, and, if necessary, a phase transfer catalyst, to the reactor so that they become uniform
  • the reaction is allowed to proceed by stirring to the desired temperature and pressure conditions.
  • aqueous solution of an alkali metal hydroxide or the like is used as a solution in which a base is dissolved in a solvent
  • the reaction system is separated into an aqueous phase and an organic phase.
  • a water-soluble organic solvent such as tetraglyme is used to perform method (B) by compatibilizing the aqueous phase containing the base and the organic phase.
  • B water-soluble organic solvent
  • the method (A) has a high conversion rate of 244bb and / or 244eb and a high selectivity of 1234yf.
  • the method (B) although the conversion of 244bb and / or 244eb is slightly lower than the method (A), the selectivity of 1234yf is high, and the reaction temperature can be set lower.
  • the product obtained in the second embodiment includes unreacted 244bb and / or 244eb, byproducts, etc. in addition to the target product 1234yf.
  • Components other than the target product 1234yf can be easily removed by a method such as distillation and separation.
  • reaction (3) When reaction (3) is carried out using a composition containing impurities such as 244bb and / or 244eb and 234bb, 234ea, 224ba, 224eb, 214bb, etc. as raw materials, the reaction from 234bb and / or 234ea is According to (4), 1224yd is produced from 224ba and / or 224eb, and according to reaction (5), 1214ya is produced as a by-product. Such 1224yd and 1214ya as by-products, as well as impurities contained in the raw material, for example, 214bb etc., can be easily separated from 1234yf by distillation.
  • impurities such as 244bb and / or 244eb and 234bb, 234ea, 224ba, 224eb, 214bb, etc.
  • 244bb and / or 244eb can be manufactured from industrially available 254eb by an industrially practicable method.
  • 1234yf useful as a refrigerant with a small global warming potential from 244bb and / or 244eb as a raw material can be produced with high conversion and selectivity in an industrially practicable and economically advantageous method.
  • Examples 1-6 are examples in the manufacture of 244bb and / or 244eb, and Examples 7-9 are examples in the manufacture of 1234yf.
  • composition analysis of the obtained reaction composition was performed using gas chromatography (GC).
  • GC gas chromatography
  • DB-1 trade name, manufactured by Agilent Technologies, Ltd., length 60 m ⁇ inner diameter 250 ⁇ m ⁇ thickness 1 ⁇ m
  • the recovered reaction composition contained 1214 ya, 1224 yd, 1234 yf, 254 eb and the like. From the reaction composition, 254eb was obtained by distillation.
  • a stainless steel autoclave (having an inner volume of 6.9 liters) equipped with a quartz tube and a jacket for transmitting light from a light source was cooled to 20.degree.
  • an LED lamp Mitsubishi Electric Co., Ltd., LHT42N-G-E39 (product name), output
  • Chlorine gas was introduced into the reactor at a flow rate of 3.2 g / min while being irradiated with visible light from 40 W; wavelength of 400 to 750 nm of emitted light).
  • reaction composition 1 was recovered from the separated lower layer and subjected to GC analysis.
  • Example 2 The same reactor as that used in Example 1 was kept at 20 ° C., and 2336 g of carbon tetrachloride (CCl 4 ) as a solvent was charged into the reactor, and 103 g of 254eb was charged. Thereafter, chlorine gas was supplied into the reactor at a flow rate of 3.2 g / min while being irradiated with visible light from an LED lamp (LHT42N-G-E39, manufactured by Mitsubishi Electric Corp., output 40 W). As the reaction progressed, heat of reaction was generated, and the temperature in the reactor (reaction temperature) rose to 22.6 ° C.
  • CCl 4 carbon tetrachloride
  • the flow rate of chlorine gas was introduced for 10 minutes, that is, 0.50 mole of chlorine was introduced to 1 mole of 254eb, and the light irradiation was continued until the temperature in the reactor became constant at 20 ° C.
  • the pressure in the reactor the pressure before chlorine supply was 0.045 MPa, and the pressure after chlorine supply, that is, the reaction pressure was 0.085 MPa.
  • reaction composition 2 was recovered from the separated lower layer and subjected to GC analysis.
  • Example 3 The same reactor as that used in Example 1 is maintained at 20 ° C., and 2336 g of carbon tetrachloride (CCl 4 ) and 103 g of 254 eb are put therein, and then an LED lamp (Mitsubishi Electric Co., LHT42N-G-E39, output) Chlorine gas was introduced into the reactor at a flow rate of 3.2 g / min while emitting visible light from 40 W). As the reaction progressed, heat of reaction was generated, and the temperature in the reactor rose to 23.8 ° C.
  • LED lamp Mitsubishi Electric Co., LHT42N-G-E39, output
  • the flow rate of chlorine gas was introduced for 20 minutes, that is, 1.00 mole of chlorine was introduced to 1 mole of 254eb, and the light irradiation was continued until the temperature in the reactor became constant at 20 ° C.
  • the pressure in the reactor the pressure before chlorine supply was 0.045 MPa, and the pressure after chlorine supply, that is, the reaction pressure was 0.125 MPa.
  • reaction composition 3 was recovered from the separated lower layer and subjected to GC analysis. After removing the chlorine by washing the reaction composition 3 with alkali, the solvent and byproducts were removed by distillation to obtain 244bb of purity 99.9% and 244eb of 99.9%.
  • Example 4 The same reactor as that used in Example 1 is maintained at 20 ° C., and 2336 g of carbon tetrachloride (CCl 4 ) and 103 g of 254 eb are put therein, and then an LED lamp (Mitsubishi Electric Co., LHT42N-G-E39, output) Chlorine gas was introduced into the reactor at a flow rate of 3.2 g / min while emitting visible light from 40 W). As the reaction progressed, heat of reaction was generated, and the temperature in the reactor rose to 23.8 ° C.
  • CCl 4 carbon tetrachloride
  • 254 eb 254 eb
  • the flow rate of chlorine gas was introduced for 30 minutes, that is, 1.50 mol of chlorine was introduced per 1 mol of 254 eb, and light irradiation was continued until the temperature in the reactor became constant at 20 ° C.
  • the pressure in the reactor the pressure before chlorine supply was 0.045 MPa, and the pressure after chlorine supply, that is, the reaction pressure was 0.165 MPa.
  • reaction composition 4 was recovered from the separated lower layer and subjected to GC analysis.
  • Example 5 The same reactor as that used in Example 1 is maintained at 20 ° C., and 2336 g of carbon tetrachloride (CCl 4 ) and 103 g of 254 eb are put therein, and then an LED lamp (Mitsubishi Electric Co., LHT42N-G-E39, output) Chlorine gas was introduced into the reactor at a flow rate of 3.2 g / min while emitting visible light from 40 W). As the reaction progressed, heat of reaction was generated, and the temperature in the reactor rose to 23.8 ° C.
  • LED lamp Mitsubishi Electric Co., LHT42N-G-E39, output
  • the flow rate of chlorine gas was introduced for 40 minutes, that is, 2.00 mol of chlorine was introduced per 1 mol of 254 eb, and the light irradiation was continued until the temperature in the reactor became constant at 20 ° C.
  • the pressure in the reactor the pressure before chlorine supply was 0.045 MPa, and the pressure after chlorine supply, that is, the reaction pressure was 0.198 MPa.
  • reaction composition 5 was recovered from the separated lower layer and subjected to GC analysis.
  • Example 6 The same reactor as that used in Example 1 is maintained at 50 ° C., 2430 g of carbon tetrachloride (CCl 4 ) and 103 g of 254 eb are put therein, and then an LED lamp (Mitsubishi Electric Co., LHT42N-G-E39, power output) Chlorine gas was introduced into the reactor at a flow rate of 3.2 g / min while emitting visible light from 40 W). As the reaction progressed, heat of reaction was generated, and the temperature in the reactor rose to 52.8 ° C.
  • LED lamp Mitsubishi Electric Co., LHT42N-G-E39, power output
  • the flow rate of chlorine gas was introduced for 20 minutes, that is, 1.00 mole of chlorine was introduced to 1 mole of 254eb, and the light irradiation was continued until the temperature in the reactor became constant at 50 ° C.
  • the pressure in the reactor the pressure before chlorine supply was 0.075 MPa, and the pressure after chlorine supply, that is, the reaction pressure was 0.165 MPa.
  • reaction composition 6 was recovered from the separated lower layer and subjected to GC analysis.
  • the reaction conditions of Examples 1 to 6 and the GC analysis results of the resulting reaction compositions 1 to 6 are shown in Table 1.
  • the conversion of 254eb is a ratio of the amount of 254eb consumed in the reaction to the amount of 254eb supplied to the reactor, and is a molar conversion value (unit: mol%).
  • the selectivity of each compound is a ratio of each compound with respect to the total amount of the reaction composition, and is a molar equivalent value (unit: mol%).
  • the target 244bb and 244eb can be obtained with high selectivity.
  • Example 7 Activated carbon (8.50 g) was charged as a catalyst into a 1/2 inch radius SUS 316 gas phase reaction vessel. The reaction vessel was fitted with a preheater and the temperature was maintained at 450 ° C. To this gas phase reactor, 244bb obtained in Example 3 above was supplied from a cylinder maintained at a temperature of 65 ° C. via a mass flow controller and a preheater. The temperature in the line from the cylinder through the mass flow controller to the preheater was kept at 65 ° C. to prevent 244bb from condensing.
  • 244bb supplied to the gas phase reactor is dehydrochlorinated by contacting with an activated carbon catalyst under the condition of a reaction temperature of 450 ° C. while passing through the gas phase reactor (passing time: 60 seconds) to be 1234yf .
  • the reaction composition containing 1234yf was recovered from the outlet of the gas phase reactor. GC analysis of the recovered reaction composition showed that the conversion rate of 244bb was 95%, the yield of 1234yf was 85%, and the selectivity was 89%.
  • Example 8 A 0.1 L reactor equipped with a thermocouple and a stirring blade was placed in a thermostat and kept at 80 ° C. Into this reactor, 61 g of 48% by mass KOH aqueous solution, 40 g of 244bb obtained in Example 3 above and 0.85 g of tetra-n-butylammonium bromide (TBAB) were added, the reactor was closed, and a pressure test was conducted. The The stirring blade was rotated at 400 rpm, and reaction was carried out for 3 hours. Then, the reactor was taken out of the thermostatic bath and cooled to 0 ° C. with ice water to stop the reaction, and the reaction composition was recovered. As a result of conducting GC analysis of the recovered reaction composition, the conversion rate of 244bb was 61%, the yield of 1234yf was 61%, and the selectivity was 100%.
  • TBAB tetra-n-butylammonium bromide
  • Example 9 A 0.1 L reactor equipped with a thermocouple and a stirring blade was placed in a thermostat and kept at 60 ° C. Into this reactor, 60 g of 40 mass% KOH aqueous solution, 32 g of 244eb obtained in Example 3 above, and 0.69 g of tetra-n-butylammonium bromide (TBAB) were added, the reactor was closed, and a pressure test was conducted. The The stirring blade was rotated at 400 rpm and reaction was carried out for 30 minutes, then the reactor was taken out of the thermostatic bath and cooled to 0 ° C. with ice water to stop the reaction, and the reaction composition was recovered. As a result of carrying out GC analysis of the recovered reaction composition, the conversion of 244eb was 99%, the yield of 1234yf was 99%, and the selectivity was 100%.
  • TBAB tetra-n-butylammonium bromide
  • Example 7 it is possible to obtain the desired 1234yf with high conversion and high selectivity without using an expensive metal catalyst. Further, according to Examples 8 and 9, it is possible to obtain the target 1234yf with a high conversion rate and a high selectivity at a low reaction temperature without using an expensive metal catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The purpose of the present invention is to provide: a method for efficiently producing 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and/or 3-chloro-1,1,1,2-tetrafluoropropane (HCFC-244eb), which are advantageous starting materials for producing 2,3,3,3-tetrafluoropropene (HFO-1234yf), from industrially available materials; and an economically advantageous production method in which 1234yf is efficiently obtained thereby. The production method for HCFC-244bb and/or HCFC-244eb comprises reacting 1,1,1,2-tetrafluoropropane with chlorine. The production method for HFO-1234yf comprises obtaining HCFC-244bb and/or HCFC-244eb by said method and subjecting the obtained HCFC-244bb and/or HCFC-244eb to a dehydrochlorination reaction in the presence of a base and/or a catalyst.

Description

2-クロロ-1,1,1,2-テトラフルオロプロパンおよび/または3-クロロ-1,1,1,2-テトラフルオロプロパンの製造方法、ならびに2,3,3,3-テトラフルオロプロペンの製造方法Process for the preparation of 2-chloro-1,1,1,2-tetrafluoropropane and / or 3-chloro-1,1,1,2-tetrafluoropropane and of 2,3,3,3-tetrafluoropropene Production method
 本発明は、2-クロロ-1,1,1,2-テトラフルオロプロパンおよび/または3-クロロ-1,1,1,2-テトラフルオロプロパンを製造する方法、ならびに2,3,3,3-テトラフルオロプロペンを製造する方法に関する。 The present invention relates to a process for producing 2-chloro-1,1,1,2-tetrafluoropropane and / or 3-chloro-1,1,1,2-tetrafluoropropane, and 2,3,3,3 To a process for producing tetrafluoropropene.
 2,3,3,3-テトラフルオロプロペン(CH=CF-CF、HFO-1234yf)は、温室効果ガスである1,1,1,2-テトラフルオロエタン(HFC-134a)に代わる新しい冷媒として、近年大きな期待が寄せられている。 2,3,3,3-Tetrafluoropropene (CH 2 CFCF—CF 3 , HFO-1234yf) is a new alternative to the greenhouse gas 1,1,1,2-tetrafluoroethane (HFC-134a) As refrigerants, great expectations have been received in recent years.
 1234yfの製造方法として、特許文献1には、1,2-ジクロロ-2-フルオロプロパン(CHCClFCHCl、HCFC-261ba)を塩素化して1,1,1,2-テトラクロロ-2-フルオロプロパン(CHCClFCCl、HCFC-241bb)を得、該241bbをフッ素化して2-クロロ-1,1,1,2-テトラフルオロプロパン(CFCFClCH、HCFC-244bb)を得、得られた244bbを脱塩化水素反応させて1234yfを得る方法が記載されている。 As a method for producing 1234yf, Patent Document 1 discloses that 1,2-dichloro-2-fluoropropane (CH 3 CClFCH 2 Cl, HCFC-261ba) is chlorinated to 1,1,1,2-tetrachloro-2- The fluoropropane (CH 3 CClFCCl 3 , HCFC-241bb) is obtained and the 241bb is fluorinated to give 2-chloro-1,1,1,2-tetrafluoropropane (CF 3 CFClCH 3 , HCFC-244bb) A method of dehydrochlorinating the obtained 244bb to obtain 1234yf is described.
 特許文献1においては、原料である261baから3段階の反応により1234yfを得ており、生産性の点で改善が望まれていた。特に、244bbを効率よく製造することで1234yfを生産性よく製造する方法が望まれていた。 In patent document 1, 1234yf is obtained by reaction of 3 steps from 261ba which is a raw material, and improvement was desired by the point of productivity. In particular, a method for producing 1234yf with high productivity by efficiently producing 244bb has been desired.
 また、244bbの構造異性体である3-クロロ-1,1,1,2-テトラフルオロプロパン(CFCHFCHCl、HCFC-244eb)からも、244bbと同様に脱塩化水素反応により1234yfが得られる。そのため、244ebを効率よく製造できれば、1234yfを生産性よく製造することができる。 Also from the structural isomer of 244bb, 3-chloro-1,1,1,2-tetrafluoropropane (CF 3 CHFCH 2 Cl, HCFC-244eb), 1234yf is obtained by the dehydrochlorination reaction as in 244bb. Be Therefore, if 244eb can be manufactured efficiently, 1234yf can be manufactured with high productivity.
 一方、1,1,1,2-テトラフルオロプロパン(CFCHFCH、HFC-254eb)を脱水素化して一段階の反応で1234yfを得る方法が知られている(特許文献2を参照)。しかしながら、該反応は、高温反応であり、かつ高価な触媒が必要とされるため、特許文献2による1234yfの製造方法は、経済的に有利な方法とはいえなかった。 On the other hand, there is known a method of dehydrogenating 1,1,1,2-tetrafluoropropane (CF 3 CHFCH 3 , HFC-254eb) to obtain 1234yf in a one-step reaction (see Patent Document 2). However, since the reaction is a high temperature reaction and an expensive catalyst is required, the method for producing 1234yf according to Patent Document 2 was not economically advantageous.
特許第5482665号公報Patent No. 5482665 特許第5886841号公報Patent No. 5886841
 本発明は、上記観点からなされたものであって、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)を製造するのに有利な原料である2-クロロ-1,1,1,2-テトラフルオロプロパン(HCFC-244bb)および/または3-クロロ-1,1,1,2-テトラフルオロプロパン(HCFC-244eb)を工業的に入手可能な材料から、生産性よく製造する方法、および、それにより、効率的に1234yfを得る経済的に有利な製造方法の提供を目的とする。 The present invention has been made from the above-mentioned viewpoints, and is an advantageous raw material for producing 2,3,3,3-tetrafluoropropene (HFO-1234yf) 2-chloro-1,1,1,1,2. A method for productively producing 2-tetrafluoropropane (HCFC-244bb) and / or 3-chloro-1,1,1,2-tetrafluoropropane (HCFC-244eb) from commercially available materials, And by that, it aims at provision of the economically advantageous manufacturing method which obtains 1234yf efficiently.
 本明細書において、ハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記すが、必要に応じて化合物名に代えてその略称を用いる。また、略称として、ハイフン(-)より後ろの数字およびアルファベット小文字部分だけ(例えば、「HCFO-1234yf」においては「1234yf」)を用いることがある。 In the present specification, for halogenated hydrocarbons, the abbreviation of the compound is indicated in the parentheses after the compound name, but the abbreviation is used in place of the compound name as necessary. In addition, as the abbreviations, only numbers after the hyphen (-) and lower case letters of the alphabet may be used (for example, "1234yf" in "HCFO-1234yf").
 本発明は、以下の[1]~[11]の構成を有する244bbおよび/または244ebの製造方法、および1234yfの製造方法を提供する。
 [1]1,1,1,2-テトラフルオロプロパン(HFC-254eb)と塩素(Cl)を反応させて244bbおよび/または244ebを得る、244bbおよび/または244ebの製造方法。
 [2]前記254ebの1モルに対して、前記塩素を0.01~3.00モルの割合で用いる[1]の製造方法。
 [3]前記254ebと塩素との反応を、0~100℃の温度で行う、[1]または[2]の製造方法。
 [4]前記254ebと塩素との反応を、ゲージ圧で、0.00~1.00MPaの圧力で行う、[1]~[3]のいずれかの製造方法。
 [5]前記254ebと塩素との反応を、200~750nmの波長の光の照射下で行う、[1]~[4]のいずれかの製造方法。
 [6]前記254ebと塩素との反応を、蛍光灯またはLEDランプの照射下で行う、[1]~[5]のいずれかの製造方法。
 [7]前記254ebと塩素との反応を、溶媒の存在下で液相にて行う、[1]~[6]のいずれかの製造方法。
 [8]前記溶媒が、四塩化炭素、1,1,2-トリクロロ-1,2,2-トリフルオロエタン(CFC-113)、CF(CFCF(ただし、式中nは、3~6の整数を表す。)で表される炭素数5~8の直鎖パーフルオロアルキル化合物、ヘキサクロロアセトン、244bbおよび244ebからなる群から選ばれる少なくとも一種を含む、[7]の製造方法。
 [9]前記溶媒を、前記254ebと前記塩素の合計量に対して1~4000質量%の割合で用いる、[7]または[8]の製造方法。
 [10]前記254ebと塩素との反応を気相にて行う、[1]~[6]のいずれかの製造方法。
 [11][1]~[10]のいずれかの製造方法により244bbおよび/または244ebを得、前記得られた244bbおよび/または244ebを塩基および/または触媒の存在下で脱塩化水素反応させる1234yfの製造方法。
The present invention provides a method of producing 244bb and / or 244eb, and a method of producing 1234yf, having the following configurations [1] to [11].
[1] A process for producing 244bb and / or 244eb, which comprises reacting 1,1,1,2-tetrafluoropropane (HFC-254eb) with chlorine (Cl 2 ) to obtain 244bb and / or 244eb.
[2] The method according to [1], wherein the chlorine is used in a proportion of 0.01 to 3.00 mol with respect to 1 mol of the 254eb.
[3] The process according to [1] or [2], wherein the reaction of 254eb with chlorine is carried out at a temperature of 0 to 100 ° C.
[4] The process according to any one of [1] to [3], wherein the reaction of 254eb with chlorine is carried out under a gauge pressure at a pressure of 0.00 to 1.00 MPa.
[5] The method according to any one of [1] to [4], wherein the reaction of 254eb with chlorine is performed under irradiation of light having a wavelength of 200 to 750 nm.
[6] The method according to any one of [1] to [5], wherein the reaction of 254eb with chlorine is performed under irradiation of a fluorescent lamp or an LED lamp.
[7] The process according to any one of [1] to [6], wherein the reaction of 254eb with chlorine is carried out in the liquid phase in the presence of a solvent.
[8] The solvent is carbon tetrachloride, 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113), CF 3 (CF 2 ) n CF 3 (wherein n is the formula) , And represents an integer of from 3 to 6), a method of producing [7], comprising at least one selected from the group consisting of C 5-8 linear perfluoroalkyl compounds, hexachloroacetone, 244bb and 244eb .
[9] The production method of [7] or [8], wherein the solvent is used at a ratio of 1 to 4000% by mass with respect to the total amount of the 254eb and the chlorine.
[10] The process according to any one of [1] to [6], wherein the reaction of 254eb with chlorine is carried out in the gas phase.
[11] 1234yf, wherein 244bb and / or 244eb are obtained by the production method of any of [1] to [10], and the obtained 244bb and / or 244eb is dehydrochlorinated in the presence of a base and / or a catalyst. Manufacturing method.
 本発明によれば、1234yfを製造するのに有利な原料である244bbおよび/または244ebを、工業的に入手可能な254ebから、生産性よく製造できる。さらに、本発明によれば、これにより得られる、244bbおよび/または244ebを用いることにより1234yfを経済的に有利な方法で製造できる。 According to the present invention, 244bb and / or 244eb, which are advantageous raw materials for producing 1234yf, can be produced with high productivity from industrially available 254eb. Furthermore, according to the present invention, 1234yf can be produced in an economically advantageous manner by using 244bb and / or 244eb thus obtained.
[244bbおよび/または244ebの製造方法]
 本発明の244bbおよび/または244ebの製造方法(「第1の実施形態」)は、254ebを塩素と反応させる塩素化反応により行われる。254ebの塩素化反応により244bbおよび/または244ebを得る反応は、下式(1)で示される反応(以下、反応(1)ともいう。)である。
[Method of producing 244bb and / or 244eb]
The method for producing 244bb and / or 244eb of the present invention ("first embodiment") is carried out by a chlorination reaction in which 254eb is reacted with chlorine. The reaction to obtain 244bb and / or 244eb by the chlorination reaction of 254eb is a reaction represented by the following formula (1) (hereinafter also referred to as reaction (1)).
 本明細書において、244bbおよび/または244ebとは、244bbのみ、244ebのみ、244bbおよび244ebの場合のいずれかである。本明細書において塩素は、分子状態の塩素(Cl)をいう。 In the present specification, 244bb and / or 244eb mean either 244bb only, 244eb only, 244bb and 244eb. As used herein, chlorine refers to chlorine in the molecular state (Cl 2 ).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 第1の実施形態で得られる244bbおよび/または244ebは、環境負荷が少ない冷媒として有用な1234yfを、効率よく生産するための原料として有用である。 The 244bb and / or 244eb obtained in the first embodiment is useful as a raw material for efficiently producing 1234yf, which is useful as a refrigerant with low environmental load.
<254ebの製造>
 第1の実施形態に用いる254ebは、含フッ素化合物の製造原料または中間体として知られる公知の化合物であり、公知の方法により製造できる。254ebは、例えば、下式(2)に示されるとおり、1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFCF=CCl、CFO-1214ya)に触媒の存在下で水素を反応させることで製造可能である。なお、この反応は、1214yaから、1-クロロ-2,3,3,3-テトラフルオロプロペン(CFCF=CHCl、HCFO-1224yd)、や1234yfを製造する際の還元反応系に含まれる。
<Manufacturing of 254eb>
254eb used in the first embodiment is a known compound known as a raw material or an intermediate for producing a fluorine-containing compound, and can be produced by a known method. 254eb is, for example, as shown in the following formula (2), 1,1-dichloro-2,3,3,3-tetrafluoropropene (CF 3 CF = CCl 2 , CFO-1214ya) in the presence of a catalyst It can be produced by reacting hydrogen. This reaction is included in the reduction reaction system for producing 1-chloro-2,3,3,3-tetrafluoropropene (CF 3 CF = CHCl, HCFO-1224yd) or 1234yf from 1214 ya.
 式(2)で示される反応の出発物質である1214yaは公知の製造方法により製造することができる。1214yaの製造方法としては、例えば、特許第5582036号明細書に記載の方法が挙げられる。 1214 ya which is a starting material of reaction shown by Formula (2) can be manufactured by a well-known manufacturing method. As a method for producing 1214 ya, for example, the method described in Japanese Patent No. 5582036 can be mentioned.
 なお、1224ydは二重結合上の置換基の位置により、幾何異性体であるZ体とE体が存在する。本明細書中では特に断らずに化合物名や化合物の略称を用いた場合には、Z体およびE体から選ばれる少なくとも1種を示し、化合物名や化合物の略称の後ろに(E)または(Z)を付した場合には、其々の化合物のE体またはZ体であることを示す。例えば、1224yd(Z)および1224yd(E)は、それぞれ1224ydのZ体およびE体を示す。 Incidentally, Z isomer and E isomer which are geometric isomers exist depending on the position of the substituent on the double bond of 1224yd. In the present specification, when a compound name or an abbreviation of a compound is used without particular notice, at least one selected from a Z form and an E form is indicated, and the compound name or the abbreviation of the compound is followed by (E) or When Z) is attached, it shows that it is E form or Z form of each compound. For example, 1224yd (Z) and 1224yd (E) indicate 1224yd Z form and E form, respectively.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 1214yaを水素と反応させて還元させる上記反応には、水素化触媒が用いられる。水素化触媒としては、パラジウム触媒が好ましく、パラジウム触媒は担体に担持して用いることが好ましい。パラジウム触媒としてはパラジウム単体のみならず、パラジウム合金であってもよい。また、パラジウムと他の金属との混合物やパラジウムと他の金属とを担体に別々に担持させた複合触媒であってもよい。パラジウム合金触媒としては、パラジウム/白金合金触媒やパラジウム/ロジウム合金触媒などが挙げられる。 A hydrogenation catalyst is used in the above-mentioned reaction of reacting 1214 ya with hydrogen. As the hydrogenation catalyst, a palladium catalyst is preferable, and the palladium catalyst is preferably used by being supported on a carrier. Not only palladium alone but also palladium alloy may be used as the palladium catalyst. In addition, it may be a mixture of palladium and another metal or a composite catalyst in which palladium and another metal are separately supported on a carrier. Examples of palladium alloy catalysts include palladium / platinum alloy catalysts and palladium / rhodium alloy catalysts.
 担体としては、活性炭、金属酸化物(アルミナ、ジルコニア、シリカ等)等が挙げられ、活性、耐久性、反応選択性の点から、活性炭が好ましい。活性炭としては、植物原料(木材、木炭、果実殻、ヤシ殻等)、鉱物質原料(泥炭、亜炭、石炭等)等から得られたものが挙げられ、触媒耐久性の点から、植物原料から得られたものが好ましく、ヤシ殻活性炭が特に好ましい。 Examples of the carrier include activated carbon and metal oxides (alumina, zirconia, silica and the like), and activated carbon is preferable in terms of activity, durability, and reaction selectivity. Examples of activated carbon include those obtained from plant materials (wood, charcoal, fruit shells, coconut shells, etc.), mineral materials (peat, lignite, coal, etc.), etc. From the viewpoint of catalyst durability, plant materials can be used. The obtained one is preferable, and coconut shell activated carbon is particularly preferable.
 1214yaを水素と反応させる還元反応は気相で行われる。具体的には、反応管に触媒担持担体を充填して触媒層を形成し、該触媒層に1214yaガスと水素ガスを流通させることで行われる。反応時の触媒層の温度は、50℃以上が好ましく、60℃以上がより好ましい。1214yaと水素の割合は適宜調整される。1214yaガスと水素ガスに、窒素ガス、希ガス等からなる希釈ガスを加えて反応に供してもよい。 The reduction reaction of 1214 ya with hydrogen takes place in the gas phase. Specifically, the reaction tube is filled with a catalyst supporting carrier to form a catalyst layer, and 1214 ya gas and hydrogen gas are allowed to flow through the catalyst layer. 50 degreeC or more is preferable and, as for the temperature of the catalyst layer at the time of reaction, 60 degreeC or more is more preferable. The ratio of 1214 ya and hydrogen is adjusted appropriately. 1214 ya gas and hydrogen gas may be added to a dilution gas composed of nitrogen gas, a rare gas or the like to be used for the reaction.
 なお、上記還元反応における条件は、必ずしも254ebの選択率を高くする条件でなくてもよい。原料の1214yaから目的生成物である254ebを製造する際に得られる中間生成物としての1224ydおよび1234yfは、それぞれ単離して有価物として使用できるため、1224yd、1234yfおよび254ebの合計の選択率を高くする条件で反応を行うことが好ましい。具体的には、1,1,1-トリフルオロプロパン(CFCHCH、HFC-263fb)等の254ebの過還元体の生成が抑制される条件で反応を行うことが好ましい。 The conditions in the above-mentioned reduction reaction may not necessarily be the conditions for increasing the selectivity of 254eb. Since 1224yd and 1234yf as intermediate products obtained in producing the target product 254eb from 1214ya of the raw material can be respectively isolated and used as valuables, the total selectivity of 1224yd, 1234yf and 254eb is high. It is preferable to carry out the reaction under the following conditions. Specifically, it is preferable to carry out the reaction under the conditions in which the formation of a super-reduced product of 254eb such as 1,1,1-trifluoropropane (CF 3 CH 2 CH 3 , HFC-263fb) is suppressed.
 なお、転化率は、反応に使用した原料の全量に対する、反応で消費された原料の量の割合(モル%)をいい、選択率は、生成物の全量に対する、目的生成物の生成した量の割合(モル%)をいう。 The conversion rate refers to the ratio (mol%) of the amount of the raw material consumed in the reaction to the total amount of the raw material used in the reaction, and the selectivity is the amount of the target product produced relative to the total amount of product. The proportion (mol%) is said.
 1214yaを水素と反応させて得られる反応生成物から、通常の分離方法により、例えば、蒸留により254ebを単離して、第1の実施形態の原料として使用する。なお、第1の実施形態には、必要に応じて、254ebと、1214ya、1224yd、1234yf等の不純物とからなり、組成物全量に対して254ebを10質量%以上含有する254eb組成物を用いてもよい。ただし、上記254eb組成物が含有する1214ya、1224ydおよび1234yfはそれぞれ取り出して有価物として使用することが好ましい。 From the reaction product obtained by reacting 1214 ya with hydrogen, 254eb is isolated by a conventional separation method, for example, by distillation, and used as a raw material of the first embodiment. In the first embodiment, 254eb and impurities such as 1214ya, 1224yd and 1234yf are used if necessary, and 254eb composition containing 10% by mass or more of 254eb with respect to the total amount of the composition is used. It is also good. However, it is preferable to take out 1214ya, 1224yd and 1234yf which the said 254eb composition contains, respectively, and to use them as valuables.
 また、254eb組成物が263fbを含む場合、263fbは以下の塩素化反応および脱塩化水素反応により1234yfとの分離が困難な3,3,3-トリフルオロプロペン(CFCH=CH、HFO-1243zf)を生成することから上記254eb組成物から除去されることが好ましい。このような観点から、254eb組成物における組成物全量に対する254ebの含有量は、85質量%以上100質量%未満が好ましく、90質量%以上99質量%以下がより好ましい。 When the 254eb composition contains 263fb, 263fb is 3,3,3-trifluoropropene (CF 3 CH = CH 2 , HFO-, which is difficult to separate from 1234yf by the following chlorination reaction and dehydrochlorination reaction: Preferably it is removed from the 254eb composition from producing 1243zf). From such a viewpoint, the content of 254eb with respect to the total amount of the composition in the 254eb composition is preferably 85% by mass to less than 100% by mass, and more preferably 90% by mass to 99% by mass.
<244bbおよび/または244ebの製造>
 第1の実施形態は、254ebを塩素と反応させて、反応(1)により、244bbおよび/または244ebを製造する方法である。第1の実施形態において、出発物質である254ebとしては、前述の方法で得られた254ebを用いることができる。なお、254ebの入手方法はこれに限定されない。
<Production of 244bb and / or 244eb>
The first embodiment is a method of reacting 254eb with chlorine to produce 244bb and / or 244eb by reaction (1). In the first embodiment, 254eb obtained by the above-mentioned method can be used as the starting material 254eb. Note that the method for obtaining 254eb is not limited to this.
 目的生成物である244bbおよび/または244ebにおける、244bbおよび244ebの合計量に対する各化合物の割合は特に限定されない。すなわち、第1の実施形態において、目的生成物である244bbおよび/または244ebは、244bbの単体、244ebの単体、244bbと244ebのいかなる混合割合の混合物であってもよい。本明細書において、「244bbおよび/または244ebの選択率」とは、244bbと244ebの合計選択率を意味する。 The ratio of each compound to the total amount of 244bb and 244eb in the target product 244bb and / or 244eb is not particularly limited. That is, in the first embodiment, the target products 244bb and / or 244eb may be 244bb alone, 244eb alone, or a mixture of 244bb and 244eb in any mixing ratio. As used herein, “selectivity of 244bb and / or 244eb” means the total selectivity of 244bb and 244eb.
 第1の実施形態で得られる244bbおよび/または244ebを、後述の脱塩化水素反応による1234yfの製造方法の原料として使用する場合、244bbおよび244ebのいずれも脱塩化水素反応により1234yfとなることから、両者を混合物として得た場合に、特に両者を分離しなくてもよい。ただし、以下に説明する副生物と、244bbおよび244ebを蒸留等の通常の方法で分離する場合、244bbおよび244ebは沸点差があることから容易に分離される。その場合、244bbおよび244ebは単体として得られてもよい。 When 244bb and / or 244eb obtained in the first embodiment are used as a raw material for the method for producing 1234yf by the dehydrochlorination reaction described below, both of 244bb and 244eb become 1234yf by the dehydrochlorination reaction, When both are obtained as a mixture, it is not necessary to separate them in particular. However, when the 244bb and 244eb are separated from the by-products described below by a usual method such as distillation, the 244bb and 244eb are easily separated due to the difference in boiling point. In that case, 244bb and 244eb may be obtained as single units.
 ここで、254ebの塩素化反応においては、反応(1)とともに、反応(1)で得られる244bbおよび/または244ebがさらに塩素化される副反応が生起して、2,3-ジクロロ-1,1,1,2-テトラフルオロプロパン(HCFC-234bb)、3,3-ジクロロ-1,1,1,2-テトラフルオロプロパン(HCFC-234ea)、2,3,3-トリクロロ-1,1,1,2-テトラフルオロプロパン(HCFC-224ba)、1,1,1-トリクロロ-2,3,3,3-テトラフルオロプロパン(HCFC-224eb)、1,1,1,2-テトラクロロ-2,3,3,3-テトラフルオロプロパン(CFC-214bb)等の過塩素化体が副生することがある。これらの過塩素化体が副生する反応は、以下の反応式で示される。 Here, in the chlorination reaction of 254eb, a side reaction occurs in which the 244bb and / or 244eb obtained in the reaction (1) is further chlorinated together with the reaction (1), and 2,3-dichloro-1, 1,1,2-Tetrafluoropropane (HCFC-234bb), 3,3-Dichloro-1,1,1,2-tetrafluoropropane (HCFC-234ea), 2,3,3-Trichloro-1,1,3 1,2-tetrafluoropropane (HCFC-224ba), 1,1,1-trichloro-2,3,3,3-tetrafluoropropane (HCFC-224eb), 1,1,1,2-tetrachloro-2 Perchlorinated products such as 2,3,3,3-tetrafluoropropane (CFC-214bb) may be by-produced. The reaction in which these perchlorinated products are by-produced is represented by the following reaction formula.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 第1の実施形態における、254ebの塩素化反応は、244bbおよび/または244ebの選択率を高めるために、このような反応(1)に伴う副反応を抑制する条件で行うことが好ましい。なお、上記過塩素化体のうち、234bb、234ea、224baおよび224ebはさらに脱塩化水素することで1214yaまたは1224ydの製造が可能であり、副生物として多少生成されてもよい。しかしながら、214bbについては有用性が小さいため、生成量は少ない方が好ましい。したがって、第1の実施形態における、254ebの塩素化反応は、214bbの生成量が少なくなる条件で行うことが特に好ましい。 In the first embodiment, the chlorination reaction of 254eb is preferably performed under conditions that suppress side reactions associated with such reaction (1) in order to increase the selectivity of 244bb and / or 244eb. Among the above perchlorinated products, 234bb, 234ea, 224ba and 224eb can be further dehydrochlorinated to produce 1214ya or 1224yd, and some of them may be produced as by-products. However, since 214bb is less useful, the smaller amount is preferable. Therefore, the chlorination reaction of 254eb in the first embodiment is particularly preferably performed under the condition that the amount of 214bb is reduced.
 塩素化反応は液相で行われてもよく、気相で行われてもよい。以下、塩素化反応を液相で光照射下に行う場合を例にして説明する。 The chlorination reaction may be carried out in the liquid phase or in the gas phase. Hereinafter, the case where the chlorination reaction is performed in a liquid phase under light irradiation will be described as an example.
 第1の実施形態において、用いる254ebと塩素の割合、例えば、上記反応器に供給される254ebと塩素の割合は、反応を活性化する観点、副生成物、特には214bbの生成を抑制する観点、244bbおよび/または244ebの選択率を上げる観点ならびに254ebからの244bbおよび/または244ebの収率の観点から、254ebの1モルに対して塩素(Cl)0.01~3.00モルが好ましく、0.10~2.00モルがより好ましく、0.20~1.60モルがさらに好ましく、0.50~1.50モルが最も好ましい。 In the first embodiment, the ratio of 254eb to chlorine to be used, for example, the ratio of 254eb to chlorine supplied to the reactor, activates the reaction, suppresses the formation of by-products, in particular 214bb. , 0.01 to 3.00 mol of chlorine (Cl 2 ) with respect to 1 mol of 254eb from the viewpoint of increasing the selectivity of 244bb and / or 244eb and the yield of 244bb and / or 244eb from 254eb 0.10 to 2.00 mol is more preferable, 0.20 to 1.60 mol is more preferable, and 0.50 to 1.50 mol is the most preferable.
 塩素化反応における、反応温度は、反応速度を上げる観点から、0~100℃が好ましく、5~60℃がより好ましい。反応圧力は、反応器内の圧力に相当する。反応器内の圧力は、効率良く製造できるため、0.00~1.00MPaが好ましく、0.05~0.50MPaがより好ましい。生産性を向上させるため、加圧条件で反応を行うことが好ましい。本明細書において、圧力は、特に記載しない限りゲージ圧のことである。 The reaction temperature in the chlorination reaction is preferably 0 to 100 ° C., more preferably 5 to 60 ° C., from the viewpoint of increasing the reaction rate. The reaction pressure corresponds to the pressure in the reactor. The pressure in the reactor is preferably 0.00 to 1.00 MPa, more preferably 0.05 to 0.50 MPa, because the pressure can be efficiently produced. In order to improve the productivity, it is preferable to carry out the reaction under pressurized conditions. In the present specification, pressure refers to gauge pressure unless otherwise stated.
 254ebの塩素化反応(以下、単に「塩素化反応」ともいう。)は、反応速度を上げる観点から、光照射下で行うことが好ましい。照射に用いる光の波長は、200~750nmが好ましく、250~730nmがより好ましい。200nm以上の波長をもつ光であれば副生物の生成反応が十分に抑制でき、750nm以下の波長をもつ光であれば反応が十分進行する。なお、照射に用いる光には、200nm未満の波長の光や750nmを超える波長の光が含まれていてもよい。 The chlorination reaction of 254eb (hereinafter, also simply referred to as “chlorination reaction”) is preferably performed under light irradiation from the viewpoint of increasing the reaction rate. The wavelength of light used for irradiation is preferably 200 to 750 nm, and more preferably 250 to 730 nm. If the light has a wavelength of 200 nm or more, the reaction of generating a by-product can be sufficiently suppressed, and if the light has a wavelength of 750 nm or less, the reaction proceeds sufficiently. Note that the light used for the irradiation may include light of a wavelength of less than 200 nm or light of a wavelength of more than 750 nm.
 塩素化反応において、原料に200~750nmの波長の光の照射を効率よく行える光源としては、例えば、蛍光灯、LEDライト、白熱灯、高圧水銀灯、ハロゲンランプなどが挙げられる。発熱が大きい光源は、反応器の内温を低く保つのが困難になるため好ましくない。内温が高いと内圧が上昇し、反応器の耐圧を上げる必要がありコスト面で不利である。また、内温が高いと、副反応が起こり易くなる。発熱が小さい光源としては、蛍光灯やLEDライトが好ましい。 In the chlorination reaction, examples of a light source capable of efficiently irradiating the raw material with light having a wavelength of 200 to 750 nm include a fluorescent lamp, an LED light, an incandescent lamp, a high pressure mercury lamp, and a halogen lamp. A light source with large heat generation is not preferable because it becomes difficult to keep the internal temperature of the reactor low. When the internal temperature is high, the internal pressure rises, and it is necessary to increase the pressure resistance of the reactor, which is disadvantageous in cost. Also, if the internal temperature is high, side reactions are likely to occur. As a light source with small heat generation, a fluorescent lamp and an LED light are preferable.
 塩素化反応を液相で行う場合、原料に光を照射する方法としては、反応時間を通して、原料と、必要に応じて用いられる溶媒、および生成物を含む反応液全体に均一に光を照射できる方法であれば、特に制限されない。 When the chlorination reaction is carried out in the liquid phase, as a method of irradiating the raw material with light, the whole reaction liquid containing the raw material, the solvent used as needed, and the product can be uniformly irradiated through the reaction time. If it is a method, it will not be restricted in particular.
 例えば、ジャケットを装着した光源を、反応液中に挿入し、反応液内部から反応液中の原料に対して光を照射する方法等が挙げられる。該ジャケットの材質は、少なくとも上記反応に有用な波長の光を透過し、反応液に含まれる成分に対して不活性であり、またこれらの成分により腐食されにくい材質であることが好ましい。また、光源が熱を発生する場合には、反応温度によっては、上記ジャケットは冷却手段を有することが好ましい。 For example, a method of inserting a light source equipped with a jacket into the reaction solution and irradiating light on the raw material in the reaction solution from the inside of the reaction solution can be mentioned. The material of the jacket is preferably a material which transmits at least light of a wavelength useful for the above reaction, is inert to the components contained in the reaction solution, and is not easily corroded by these components. When the light source generates heat, depending on the reaction temperature, the jacket preferably has a cooling means.
 塩素化反応において、254ebと塩素は、それぞれ別々に反応器に供給されてもよく、予め混合された状態で供給されてもよい。溶媒を用いる場合、該溶媒としては、原料成分(254ebと塩素)を溶解することが可能であり、かつ原料成分に対して不活性であって、蒸留等によって目的生成物(244bbおよび/または244eb)との分離が容易である溶媒が、特に制限なく挙げられる。 In the chlorination reaction, 254eb and chlorine may be separately supplied to the reactor, or may be supplied in a premixed state. When a solvent is used, it is possible to dissolve the raw material component (254eb and chlorine) as the solvent, and it is inert with respect to the raw material component, and the target product (244bb and / or 244eb) is obtained by distillation or the like. The solvent which is easy to separate with) can be mentioned without particular limitation.
 溶媒として、具体的には、四塩化炭素、CFC-113、CF(CFCF(ただし、式中nは、3~6の整数を表す。)で表される炭素数5~8の直鎖パーフルオロアルキル化合物およびヘキサクロロアセトン等のパーハロ化合物を挙げることができる。また、目的生成物である244bbおよび/または244ebを溶媒として用いてもよく、副生する234bb、234ea、224ba、224ebおよび214bbを溶媒として用いてもよい。溶媒としては、これらの化合物の1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Specifically, the solvent has 5 to 6 carbon atoms represented by carbon tetrachloride, CFC-113, CF 3 (CF 2 ) n CF 3 (wherein n represents an integer of 3 to 6). Mention may be made of the linear perfluoroalkyl compounds of 8 and perhalo compounds such as hexachloroacetone. In addition, desired products 244bb and / or 244eb may be used as a solvent, and byproducts 234bb, 234ea, 224ba, 224eb and 214bb may be used as a solvent. As the solvent, one of these compounds may be used alone, or two or more thereof may be used in combination.
 溶媒は、第1の実施形態においては、低コストで、目的生成物と分離が容易な四塩化炭素や、分離の必要性のない244bbおよび/または244ebが好ましい。 In the first embodiment, the solvent is preferably carbon tetrachloride which is low in cost and easy to separate from the desired product, or 244bb and / or 244eb without the need for separation.
 塩素化反応に用いる溶媒の量は、生成する244bbおよび/または244ebを溶解できれば特に制限されないが、具体的には、原料成分(254ebと塩素の合計量)に対して1~4000質量%、好ましくは50~3000質量%の量が好ましい。 The amount of solvent used for the chlorination reaction is not particularly limited as long as it can dissolve 244bb and / or 244eb to be produced, but specifically, it is preferably 1 to 4000% by mass, preferably 1 to 4000% by mass with respect to the raw material component (total amount of 254eb and chlorine) Is preferably in an amount of 50 to 3000% by mass.
 反応器の材質としては、反応液に含まれる成分に対して不活性で、これらの成分により腐食されにくい材質であれば特に制限されない。反応器の材質としては、例えば、鉄、ニッケル、これらを主成分とする合金、ガラス、樹脂等を挙げることができる。耐圧性と耐腐食性の観点から、反応器の内面が樹脂でライニングされた上記合金製の反応容器が好ましい。 The material of the reactor is not particularly limited as long as it is a material that is inert to the components contained in the reaction solution and is not easily corroded by these components. As a material of a reactor, iron, nickel, the alloy which has these as a main component, glass, resin etc. can be mentioned, for example. From the viewpoint of pressure resistance and corrosion resistance, the reaction container made of the above alloy in which the inner surface of the reactor is lined with a resin is preferable.
 塩素化反応は、半連続式、バッチ式、連続式のいずれの方法で行ってもよい。反応時間は、各方式により一般的な方法で適宜調整することができる。反応器への原料の供給は、成分毎に各所定量を供給する方法でもよいし、各成分を各所定量含む混合物として供給する方法でもよい。塩素を塩素ガスとして反応器に供給する場合、塩素ガスの供給は、必要に応じて窒素等の不活性ガスで希釈して行ってもよい。 The chlorination reaction may be carried out by any of a semi-continuous system, a batch system and a continuous system. The reaction time can be appropriately adjusted by a general method according to each method. The supply of the raw materials to the reactor may be a method of supplying each predetermined amount for each component, or a method of supplying each component as a mixture containing each predetermined amount. When chlorine is supplied to the reactor as chlorine gas, the chlorine gas may be supplied diluted with an inert gas such as nitrogen as necessary.
 半連続式の場合において、原料は反応中に原料の各成分として、または原料の各成分を混合した混合物として、一定の速度で添加して供給される。原料の添加は、断続的であってもよいし、連続的であってもよい。バッチ式の場合は、原料は反応前に反応器に溶媒などとともに仕込まれ、反応に供される。 In the case of a semi-continuous system, the feed is added at a constant rate as a component of the feed, or as a mixture of components of the feed, during the reaction. The addition of the raw material may be intermittent or continuous. In the case of a batch system, the raw materials are charged into a reactor together with a solvent and the like before the reaction and subjected to the reaction.
 連続式の場合は、原料は、例えば、溶媒を仕込んだ反応器の下部から反応中に連続的に供給される。連続式の場合は、反応終了後の生成物は反応器上部から、例えば、オーバーフロー等により連続的に取り出す。 In the case of the continuous system, the raw material is continuously supplied into the reaction, for example, from the lower part of the reactor charged with the solvent. In the case of the continuous system, the product after completion of the reaction is continuously taken out from the top of the reactor, for example, by overflow and the like.
 塩素化反応に際しては、半連続式、バッチ式、連続式のいずれの方法においても、通常の方法、装置等を用いて、撹拌することが好ましい。 At the time of chlorination reaction, it is preferable to stir using a usual method, an apparatus, etc. also in any method of semi-continuous type, a batch type, and a continuous type.
 塩素化反応を気相で行う場合、液相で行う場合と異なる点は、溶媒を使用しない点、温度および/または圧力を気相の条件とする点等である。塩素化反応を気相で行う場合の条件として、例えば、圧力0.00~1.00MPa、温度0~100℃の条件が挙げられる。 When the chlorination reaction is carried out in the gas phase, it differs from the case in which it is carried out in the liquid phase in that it does not use a solvent, and that the temperature and / or pressure is in the gas phase. As conditions for carrying out the chlorination reaction in the gas phase, for example, conditions of a pressure of 0.00 to 1.00 MPa and a temperature of 0 to 100 ° C. can be mentioned.
 上記のようにして、254ebを塩素と反応させる塩素化反応により得られる反応生成物は、目的生成物である244bbおよび/または244eb、未反応原料、溶媒、過塩素化体等の副生成物等を含有する。 As described above, the reaction product obtained by the chlorination reaction in which 254eb is reacted with chlorine is the target product 244bb and / or 244eb, unreacted raw materials, solvents, byproducts such as perchlorinated products, etc. Contains
 得られる生成物から目的生成物である244bbおよび/または244ebを分離する方法としては、例えば、アルカリで洗浄することにより塩素を除去した後、蒸留によって溶媒および副生成物を除去する方法などの通常の分離方法が挙げられる。また、蒸留により244bbおよび/または244ebの精製を行うことができ、蒸留を繰り返し行うことで所望の純度の244bbまたは244eb、あるいは、所望の純度の244bbおよび244ebを得ることができる。 As a method of separating desired products 244bb and / or 244eb from the product obtained, for example, after removing chlorine by washing with alkali, a method such as a method of removing solvent and by-products by distillation is usually used. Methods of separation of In addition, purification can be performed on 244bb and / or 244eb by distillation, and repeated distillation can be performed to obtain 244bb or 244eb of desired purity, or 244bb and 244eb of desired purity.
[1234yfの製造方法]
 本発明の1234yfの製造方法(「第2の実施形態」)は、第1の実施形態の方法により244bbおよび/または244ebを得、得られた244bbおよび/または244ebを塩基および/または触媒の存在下で脱塩化水素反応させる方法である。244bbおよび/または244ebを塩基および/または触媒の存在下で脱塩化水素させる反応は、下式(3)で示される反応(以下、反応(3)ともいう。)である。
[Method of producing 1234yf]
The method for producing 1234yf of the present invention ("the second embodiment") provides 244bb and / or 244eb by the method of the first embodiment, and the obtained 244bb and / or 244eb is the presence of a base and / or a catalyst. It is the method of dehydrochlorination reaction below. The reaction for desalting 244bb and / or 244eb in the presence of a base and / or a catalyst is a reaction represented by the following formula (3) (hereinafter, also referred to as reaction (3)).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 反応(3)の出発物質は、244bbの単体、244ebの単体、または、244bbと244ebのいずれかの混合割合の混合物である。 The starting material for the reaction (3) is either 244bb alone, 244eb alone, or a mixture of 244bb and 244eb.
 ここで、反応(3)を行うのに用いる原料(以下、「反応(3)の原料」ともいう)は、244bbの単体、244ebの単体、または、244bbと244ebのいずれかの混合割合の混合物の他に不純物を含まないものが概念上好ましい。しかしながら、反応(3)の原料は、経済性の観点からは、第1の実施形態において、244bbおよび/または244ebの副生物として生成される過塩素化体等の不純物を含んでもよい。 Here, the raw material used to carry out the reaction (3) (hereinafter, also referred to as “the raw material for the reaction (3)”) is 244bb alone, 244eb alone, or a mixture of any of 244bb and 244eb In addition, it is conceptually preferable that it does not contain an impurity. However, the raw material of the reaction (3) may contain impurities such as perchlorinated products generated as a by-product of 244bb and / or 244eb in the first embodiment from the viewpoint of economy.
 過塩素化体のうち234bb、234ea、224baおよび224ebは、反応(3)により244bbおよび/または244ebが脱塩化水素反応する条件下で、式(4)または式(5)に示すとおり脱塩化水素して1224ydまたは1214yaを生成する。具体的には、234bbおよび/または234eaから1224ydが、224baおよび/または224ebから1214yaがそれぞれ生成する。また、214bbは、244bbおよび/または244ebの脱塩化水素反応を阻害しない。 Among the perchlorinated products, 234bb, 234ea, 224ba and 224eb are dehydrochlorinated as shown in the formula (4) or the formula (5) under the condition that the reaction (3) desalts the 244bb and / or 244eb. To produce 1224yd or 1214ya. Specifically, 234bb and / or 234ea to 1224yd, and 224ba and / or 224eb to 1214ya, respectively, are generated. Also, 214bb does not inhibit 244bb and / or 244eb dehydrochlorination reactions.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 反応(3)の原料が、244bbおよび/または244ebと、それ以外の不純物を含む場合、不純物と244bbおよび/または244ebの総量に対する244bbおよび/または244ebの割合は、85質量%以上100質量%未満が好ましく、90質量%以上99質量%以下がより好ましい。 When the raw material of the reaction (3) contains 244bb and / or 244eb and other impurities, the ratio of 244bb and / or 244eb to the total amount of impurities and 244bb and / or 244eb is 85% by mass or more and less than 100% by mass Is preferable, and 90 to 99 mass% is more preferable.
 反応(3)の原料は、244bbおよび/または244ebを主成分とし、234bb、234ea、224baおよび224ebから選ばれる少なくとも1種の化合物を含んでもよい。反応(3)の原料は、さらに、214bbを含んでもよい。この場合、不純物である234bb、234ea、224ba、224ebおよび214bbの総量の割合は、効率よく1234yfを製造するために、上記不純物と244bbおよび/または244ebの総量に対して、0モル%超15モル%以下が好ましく、0.1モル%以上7モル%以下がより好ましい。 The raw material of the reaction (3) may contain 244bb and / or 244eb as a main component and at least one compound selected from 234bb, 234ea, 224ba and 224eb. The raw material of reaction (3) may further contain 214bb. In this case, the proportion of the total amount of the impurities 234bb, 234ea, 224ba, 224eb and 214bb is more than 0 mol% and 15 mol with respect to the total amount of the above impurities and 244bb and / or 244eb in order to efficiently produce 1234yf. % Or less is preferable, and 0.1 mol% or more and 7 mol% or less are more preferable.
 第2の実施形態における、反応(3)の脱塩化水素反応は、従来公知の方法で行うことができる。反応(3)は、例えば、特許第5482665号公報記載の方法により、触媒の存在下、気相で行うことができる(以下、(A)法)。反応(3)は、塩基の存在下、気相または液相中で行うことができる(以下、(B)法)。 The dehydrochlorination reaction of the reaction (3) in the second embodiment can be carried out by a conventionally known method. The reaction (3) can be carried out in the gas phase in the presence of a catalyst, for example, by the method described in Japanese Patent No. 5482665 (hereinafter, method (A)). The reaction (3) can be carried out in the presence of a base, in the gas phase or in the liquid phase (hereinafter, method (B)).
 (A)法における触媒として具体的には、活性炭、ニッケル触媒(例えば、ニッケルメッシュ)、またはこれらを組み合わせたもの等を挙げることができる。その他の触媒としてはパラジウム担持カーボンやパラジウム担持アルミナなどが用いられる。なお、これらの触媒は反応器に固定床や流動床といった形で充填されて用いられる。 Specific examples of the catalyst in the method (A) include activated carbon, nickel catalyst (for example, nickel mesh), or a combination thereof. As other catalysts, palladium on carbon, palladium on alumina, etc. are used. These catalysts are used by being packed in the form of a fixed bed or fluidized bed in a reactor.
 (A)法において、反応温度は、反応時の圧力条件により適宜調整される。(A)法における、反応の圧力条件については、例えば、反応時間の短縮等の目的で加圧を必要とする場合には、1.0MPa以下の加圧条件、反応器内の内圧で常圧~1.0MPaの反応圧条件とすることが可能である。工業的な実施のしやすさの点から、圧力調整を行わずに常圧で反応を行うことが好ましい。(A)法を常圧で行う場合の反応温度は、200~700℃とすることが好ましく、250~650℃がより好ましい反応温度である。なお、244bbにおいては、反応温度は400~650℃が好ましく、450~600℃がより好ましい。244ebにおいては、反応温度は250~500℃が好ましく、300~400℃がより好ましい。 In the method (A), the reaction temperature is appropriately adjusted according to the pressure conditions during the reaction. As for the pressure condition of the reaction in the method (A), for example, when pressurization is required for the purpose of shortening the reaction time, the pressurization condition of 1.0 MPa or less, the internal pressure in the reactor and the normal pressure It is possible to set a reaction pressure condition of ̃1.0 MPa. From the viewpoint of industrial easiness of operation, it is preferable to carry out the reaction under normal pressure without pressure adjustment. When the method (A) is carried out at normal pressure, the reaction temperature is preferably 200 to 700 ° C., and more preferably 250 to 650 ° C. In 244bb, the reaction temperature is preferably 400 to 650 ° C., more preferably 450 to 600 ° C. In the case of 244eb, the reaction temperature is preferably 250 to 500 ° C., more preferably 300 to 400 ° C.
 (A)法は、バッチ式、連続流通式のどちらで行うことも可能であるが、製造効率の点で連続流通式が好ましい。なお、反応時間は各様式により一般的な方法で適宜調整することができる。また、(A)法に際しては、通常の方法、装置等を用いて、撹拌の操作を加えることが好ましい。 Method (A) can be carried out either batchwise or continuous flow, but continuous flow is preferred in terms of production efficiency. In addition, reaction time can be suitably adjusted with a general method by each mode. In addition, in the case of the method (A), it is preferable to add an operation of stirring using an ordinary method, an apparatus or the like.
 (A)法は通常気相で実施される。この反応に用いられる気相反応器の材質としては、通常のもの、例えば、ステンレス鋼、ニッケル合金であるハステロイ(登録商標)、インコネル(登録商標)、モネル(登録商標)やフッ素系ポリマーでライニングされた金属、ガラス等の材質を挙げることができる。 Method (A) is usually carried out in the gas phase. The material of the gas phase reactor used for this reaction is, for example, stainless steel, Hastelloy (registered trademark) which is a nickel alloy, Inconel (registered trademark), Monel (registered trademark) or fluorine-based polymer Materials such as metal, glass, etc. can be mentioned.
 (B)法における塩基としては、反応(3)の脱塩化水素反応が実行可能な塩基であれば、特に限定されない。塩基は、金属水酸化物、金属酸化物および金属炭酸塩からなる群より選ばれる少なくとも1種が好ましい。塩基は、1種であっても2種以上の併用であってもよい。 The base in the method (B) is not particularly limited as long as the dehydrochlorination reaction of the reaction (3) can be carried out. The base is preferably at least one selected from the group consisting of metal hydroxides, metal oxides and metal carbonates. The base may be used alone or in combination of two or more.
 金属水酸化物としては、アルカリ土類金属水酸化物、アルカリ金属水酸化物などが挙げられる。アルカリ土類金属水酸化物としては、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムが好ましく、アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが好ましい。 Examples of the metal hydroxide include alkaline earth metal hydroxides and alkali metal hydroxides. As the alkaline earth metal hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide and barium hydroxide are preferable, and as the alkali metal hydroxide, lithium hydroxide, sodium hydroxide and potassium hydroxide are preferable.
 金属酸化物としては、アルカリ金属酸化物、アルカリ土類金属酸化物などが挙げられる。アルカリ金属酸化物としては、酸化ナトリウムが好ましく、アルカリ土類金属酸化物としては、酸化カルシウムが好ましい。また、金属酸化物は、1種の金属の酸化物であってもよく、2種以上の金属の複合酸化物であってもよい。 Examples of the metal oxide include alkali metal oxides and alkaline earth metal oxides. As the alkali metal oxide, sodium oxide is preferable, and as the alkaline earth metal oxide, calcium oxide is preferable. The metal oxide may be an oxide of one metal, or a composite oxide of two or more metals.
 金属炭酸塩としては、アルカリ土類金属炭酸塩、アルカリ金属炭酸塩などが挙げられる。アルカリ土類金属炭酸塩としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムまたはラジウムの炭酸塩が挙げられる。アルカリ金属炭酸塩としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムまたはフランシウムの炭酸塩が挙げられる。 As metal carbonate, alkaline earth metal carbonate, alkali metal carbonate and the like can be mentioned. Alkaline earth metal carbonates include carbonates of beryllium, magnesium, calcium, strontium, barium or radium. The alkali metal carbonates include carbonates of lithium, sodium, potassium, rubidium, cesium or francium.
 上記塩基としては、金属水酸化物から選ばれる少なくとも1種が好ましく、水酸化カリウム、水酸化ナトリウムまたは水酸化カリウムと水酸化ナトリウムの併用がより好ましい。 The base is preferably at least one selected from metal hydroxides, and more preferably potassium hydroxide, sodium hydroxide or a combination of potassium hydroxide and sodium hydroxide.
 244bbおよび/または244ebに対する塩基の割合は、244bbおよび/または244ebの転化率および1234yfの選択率を向上させる観点から、244bbおよび/または244ebの1モルに対して0.2~3.0モルが好ましく、0.5~2.5モルがより好ましい。 The ratio of the base to 244bb and / or 244eb is 0.2 to 3.0 moles to 1 mole of 244bb and / or 244eb from the viewpoint of improving the conversion of 244bb and / or 244eb and the selectivity of 1234yf. Preferably, 0.5 to 2.5 mol is more preferable.
 (B)法は気相または液相で行われる。(B)法が気相で行われる場合、原料を気相として固相の塩基または塩基と溶媒を含む塩基溶液に接触させる。(B)法が液相で行われる場合、上記塩基は反応が行われる液相中に存在する。以下、(B)法を液相で行う場合について説明する。 The method (B) is carried out in the gas phase or in the liquid phase. (B) When the process is carried out in the gas phase, the raw material is brought into the gas phase and brought into contact with a solid phase or a base solution containing a base and a solvent. When the process (B) is carried out in the liquid phase, the above base is present in the liquid phase in which the reaction is carried out. Hereinafter, the case where the method (B) is performed in the liquid phase will be described.
 (B)法は塩基と溶媒の存在下の液相中で行われることが好ましい。溶媒としては、上記塩基の所定量を溶解できかつ上記脱塩化水素反応に寄与しない溶媒であれば特に制限されない。上記塩基に対する溶解性が高く、脱塩化水素反応に対して不活性であるため、上記塩基を溶解する溶媒としては水が好ましい。すなわち、(B)法において塩基は、好ましくは塩基の水溶液として用いられる。塩基の水溶液としては、アルカリ金属水酸化物の水溶液が好ましく、水酸化ナトリウムの水溶液または水酸化カリウムの水溶液がより好ましい。 Method (B) is preferably carried out in the liquid phase in the presence of a base and a solvent. The solvent is not particularly limited as long as it can dissolve a predetermined amount of the base and does not contribute to the dehydrochlorination reaction. Water is preferable as a solvent for dissolving the above-mentioned base since it has high solubility in the above-mentioned base and is inactive to dehydrochlorination reaction. That is, in the method (B), the base is preferably used as an aqueous solution of the base. The aqueous solution of the base is preferably an aqueous solution of an alkali metal hydroxide, more preferably an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide.
 溶媒と塩基の総質量に対する塩基の質量の割合は、10~55質量%となる量が好ましく、20~50質量%がより好ましい。塩基の量が上記下限値以上であれば、十分な反応速度が得られやすく、2層分離による目的生成物の分離を行いやすい。上記上限値以下であれば、塩基が十分に溶解されやすく、金属塩が析出しにくいため、工業的なプロセスにおいて有利になりやすい。 The ratio of the mass of the base to the total mass of the solvent and the base is preferably 10 to 55% by mass, and more preferably 20 to 50% by mass. When the amount of the base is at least the above lower limit value, a sufficient reaction rate is easily obtained, and separation of the target product by two-layer separation is easily performed. If it is below the said upper limit, since a base will be easy to melt | dissolve sufficiently and a metal salt will not precipitate easily, it will be easy to become advantageous in an industrial process.
 (B)法においては、例えば、塩基を溶媒に溶解させた溶液、244bbおよび/または244eb、および必要に応じて用いる他の反応に関与する化合物を、反応器に供給し、反応を実施する。生成した1234yfを含む組成物は、反応器から回収するが、必要に応じて、冷却器を経由して冷却する。さらに、必要に応じて脱水塔に通して水分を取り除いたものを、生成物として回収するのが好ましい。 In the method (B), for example, a solution in which a base is dissolved in a solvent, 244bb and / or 244eb, and a compound involved in another reaction that is optionally used is supplied to a reactor to carry out the reaction. The resulting composition containing 1234yf is recovered from the reactor, but is optionally cooled via a cooler. Furthermore, it is preferable to recover the product from which water has been removed, if necessary, by passing it through a dewatering tower.
 反応器としては、液相反応での脱塩化水素反応に用いる公知の反応器が好ましい。反応器の材質としては、鉄、ニッケル、これらを主成分とする合金、ガラス等が挙げられる。必要に応じて、樹脂ライニング、ガラスライニング等のライニング処理を反応器に行ってもよい。また、反応系において原料や生成物、塩基、溶媒等が均一に分布している状態で反応が行われるように、反応器に撹拌手段を設け、撹拌しながら反応を行うことが好ましい。 As a reactor, the well-known reactor used for dehydrochlorination reaction in liquid phase reaction is preferable. Examples of the material of the reactor include iron, nickel, alloys containing these as main components, and glass. If necessary, lining treatment such as resin lining or glass lining may be performed on the reactor. Further, it is preferable to provide a stirring means in the reactor and carry out the reaction while stirring so that the reaction is carried out in a state in which the raw materials, products, bases, solvents and the like are uniformly distributed in the reaction system.
 (B)法において、反応温度は、反応器内の温度であり、40~120℃が好ましく、50~110℃がより好ましい。反応温度を上記範囲にすることにより、反応速度および244bbおよび/または244ebの転化率および1234yfの選択率が向上し、副生成物を抑制しやすい。なお、244bbにおいては、反応温度は60~120℃が好ましく、80~110℃がより好ましい。244ebにおいては、反応温度は40~80℃が好ましく、50~70℃がより好ましい。 In the method (B), the reaction temperature is the temperature in the reactor, preferably 40 to 120 ° C., more preferably 50 to 110 ° C. By setting the reaction temperature in the above range, the reaction rate and the conversion of 244bb and / or 244eb and the selectivity of 1234yf can be improved, and byproducts can be easily suppressed. In the 244bb, the reaction temperature is preferably 60 to 120 ° C., and more preferably 80 to 110 ° C. In the case of 244eb, the reaction temperature is preferably 40 to 80 ° C., more preferably 50 to 70 ° C.
 (B)法において、反応中の反応器内の圧力は、0.00~10.00MPaが好ましく、0.05~5.00MPaがより好ましく、0.15~2.00MPaがさらに好ましい。反応器内の圧力は、反応温度における244bbおよび/または244ebの蒸気圧以上であることが好ましい。 In the method (B), the pressure in the reactor during the reaction is preferably 0.00 to 10.00 MPa, more preferably 0.05 to 5.00 MPa, and still more preferably 0.15 to 2.00 MPa. The pressure in the reactor is preferably at least the vapor pressure of 244bb and / or 244eb at the reaction temperature.
 (B)法は、半連続式、バッチ式、連続式のいずれの方法でも実行可能である。なお、反応時間は各方式により一般的な方法で適宜調整することができる。反応時間は、出発物質である244bbおよび/または244ebの転化率および1234yfの選択率を制御しやすいため、バッチ式であれば1~50時間が好ましく、連続式であれば1~3000秒間が好ましい。 The method (B) can be carried out either semi-continuously, batchwise or continuously. In addition, reaction time can be suitably adjusted with a general method by each system. The reaction time is preferably 1 to 50 hours in a batch system, and preferably 1 to 3000 seconds in a continuous system, since it is easy to control the conversion of starting materials 244bb and / or 244eb and the selectivity of 1234yf. .
 (B)法は、反応に影響を与えない範囲で、相間移動触媒の存在下に行ってもよい。反応に影響を与えない範囲で、テトラグライム等の水溶性有機溶媒を用いてもよい。反応速度を上げるために、相間移動触媒を用いることが好ましい。 The method (B) may be carried out in the presence of a phase transfer catalyst as long as the reaction is not affected. A water-soluble organic solvent such as tetraglyme may be used as long as the reaction is not affected. In order to speed up the reaction, it is preferred to use a phase transfer catalyst.
 相間移動触媒としては、第4級アンモニウム塩、第4級ホスホニウム塩、第4級アルソニウム塩、スルホニウム塩、クラウンエーテルなどが挙げられ、第4級アンモニウム塩、第4級ホスホニウム塩、第4級アルソニウム塩、スルホニウム塩が好ましく、第4級アンモニウム塩がより好ましい。 Examples of phase transfer catalysts include quaternary ammonium salts, quaternary phosphonium salts, quaternary arsonium salts, sulfonium salts, crown ethers and the like, and quaternary ammonium salts, quaternary phosphonium salts and quaternary arsonium Salts and sulfonium salts are preferred, and quaternary ammonium salts are more preferred.
 第4級アンモニウム塩としては、テトラ-n-ブチルアンモニウムクロリド(TBAC)、テトラ-n-ブチルアンモニウムブロミド(TBAB)、メチルトリ-n-オクチルアンモニウムクロリド(TOMAC)からなる群より選ばれる少なくとも1種であることが好ましい。 The quaternary ammonium salt is at least one selected from the group consisting of tetra-n-butylammonium chloride (TBAC), tetra-n-butylammonium bromide (TBAB) and methyltri-n-octylammonium chloride (TOMAC) Is preferred.
 第4級アルソニウム塩としては、トリフェニルメチルアルソニウムクロリドが好ましい。スルホニウム塩としては、ドデシルメチルエチルスルホニウムクロリドが好ましい。 As the quaternary arsonium salt, triphenylmethylarsonium chloride is preferred. As a sulfonium salt, dodecyl methyl ethyl sulfonium chloride is preferable.
 クラウンエーテルとしては、18-クラウン-6、ジベンゾ-18-クラウン-6、ジシクロヘキシル-18-クラウン-6などが挙げられる。 Examples of crown ethers include 18-crown-6, dibenzo-18-crown-6, and dicyclohexyl-18-crown-6.
 相間移動触媒の使用量は、244bbおよび/または244ebの100質量部に対して、0.01~10質量部が好ましく、0.05~5.0質量部がより好ましく、0.1~3.0質量部がさらに好ましい。相間移動触媒の量が上記範囲内であると、十分な反応速度が得られやすい。上記範囲外であると反応促進効果は得られにくく、コスト面で不利になりやすい。相間移動触媒を使用する場合、予め相間移動触媒を244bbおよび/または244ebに混合しておき、244bbおよび/または244ebとの混合液の状態で反応器に供給することが好ましい。 The amount of phase transfer catalyst used is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5.0 parts by mass, and more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of 244bb and / or 244eb. 0 parts by mass is more preferred. When the amount of phase transfer catalyst is in the above range, a sufficient reaction rate is likely to be obtained. If it is out of the above range, it is difficult to obtain the reaction promoting effect, and the cost tends to be disadvantageous. When using a phase transfer catalyst, it is preferable to previously mix the phase transfer catalyst in 244bb and / or 244eb, and supply it to the reactor in the form of a mixed liquid with 244bb and / or 244eb.
 相間移動触媒を使用する場合の、反応工程、反応装置、および反応器の材質は、相間移動触媒を使用しない場合と同様であってよい。また、塩基の濃度、使用量、および反応温度などの反応条件も、相間移動触媒を使用しない場合と同様であってよい。 When using a phase transfer catalyst, the reaction process, the reactor, and the materials of the reactor may be the same as in the case where the phase transfer catalyst is not used. In addition, reaction conditions such as the concentration of the base, the amount used, and the reaction temperature may be the same as in the case where the phase transfer catalyst is not used.
 (B)法は、例えば、244bbおよび/または244eb、塩基、必要に応じて溶媒、さらに必要に応じて相間移動触媒などの反応に関与する化合物を反応器に供給し、これらが均一になるように撹拌し、所望の温度条件、圧力条件にすることで進行させうる。 Method (B) supplies, for example, compounds involved in the reaction such as 244bb and / or 244eb, a base, if necessary, a solvent, and, if necessary, a phase transfer catalyst, to the reactor so that they become uniform The reaction is allowed to proceed by stirring to the desired temperature and pressure conditions.
 塩基を溶媒に溶解した溶液として、例えば、アルカリ金属水酸化物の水溶液等を用いた場合、反応系は水相と有機相に分離する。そのような場合は、相間移動触媒の代わりに、例えば、テトラグライム等の水溶性有機溶媒を用いて、塩基を含む水相と有機相とを相溶化することにより、(B)法を行うことができる。水溶性有機溶媒を用いる場合は、反応系中の反応に関与する化合物を均一な状態にするために、撹拌を十分に行うのが好ましい。 When, for example, an aqueous solution of an alkali metal hydroxide or the like is used as a solution in which a base is dissolved in a solvent, the reaction system is separated into an aqueous phase and an organic phase. In such a case, instead of the phase transfer catalyst, for example, a water-soluble organic solvent such as tetraglyme is used to perform method (B) by compatibilizing the aqueous phase containing the base and the organic phase. Can. In the case of using a water-soluble organic solvent, it is preferable to carry out sufficient stirring in order to make the compound involved in the reaction in the reaction system homogeneous.
 第2の実施形態において(A)法は、244bbおよび/または244ebの転化率が高く、1234yfの選択率も高い。(B)法は、(A)法に比べて、244bbおよび/または244ebの転化率はやや低いが、1234yfの選択率は高く、さらに反応温度を低く設定できる。 In the second embodiment, the method (A) has a high conversion rate of 244bb and / or 244eb and a high selectivity of 1234yf. In the method (B), although the conversion of 244bb and / or 244eb is slightly lower than the method (A), the selectivity of 1234yf is high, and the reaction temperature can be set lower.
 第2の実施形態で得られる生成物には、目的生成物である1234yfの他に、未反応の244bbおよび/または244eb、副生成物等が含まれる。目的生成物である1234yf以外の成分は、蒸留して分離する等の方法により、容易に除去することができる。 The product obtained in the second embodiment includes unreacted 244bb and / or 244eb, byproducts, etc. in addition to the target product 1234yf. Components other than the target product 1234yf can be easily removed by a method such as distillation and separation.
 なお、反応(3)を行うに際して、原料として、244bbおよび/または244ebと、234bb、234ea、224ba、224eb、214bb等の不純物を含む組成物を用いた場合、234bbおよび/または234eaからは、反応(4)により1224ydが、224baおよび/または224ebからは、反応(5)により1214yaが、それぞれ副生成物として生成される。このような、副生物としての1224ydおよび1214ya、さらには、原料に含まれる不純物、例えば、214bb等についても、1234yfと蒸留により容易に分離できる。 When reaction (3) is carried out using a composition containing impurities such as 244bb and / or 244eb and 234bb, 234ea, 224ba, 224eb, 214bb, etc. as raw materials, the reaction from 234bb and / or 234ea is According to (4), 1224yd is produced from 224ba and / or 224eb, and according to reaction (5), 1214ya is produced as a by-product. Such 1224yd and 1214ya as by-products, as well as impurities contained in the raw material, for example, 214bb etc., can be easily separated from 1234yf by distillation.
 本発明の製造方法によれば、工業的に入手可能な254ebから、工業的に実施可能な方法で、244bbおよび/または244ebを製造できる。また、244bbおよび/または244ebを原料として、地球温暖化係数の小さい冷媒として有用な1234yfを、工業的に実施可能な経済的に有利な方法で、高い転化率および選択率で製造することができる。 According to the manufacturing method of the present invention, 244bb and / or 244eb can be manufactured from industrially available 254eb by an industrially practicable method. Moreover, 1234yf useful as a refrigerant with a small global warming potential from 244bb and / or 244eb as a raw material can be produced with high conversion and selectivity in an industrially practicable and economically advantageous method. .
 以下、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。例1~6が244bbおよび/または244ebの製造における実施例であり、例7~9が1234yfの製造における実施例である。 EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited by these examples. Examples 1-6 are examples in the manufacture of 244bb and / or 244eb, and Examples 7-9 are examples in the manufacture of 1234yf.
[分析条件]
 以下の各種化合物の製造において、得られた反応組成物の組成分析は、ガスクロマトグラフィー(GC)を用いて行った。カラムは、DB-1(商品名、アジレント・テクノロジー株式会社製、長さ60m×内径250μm×厚み1μm)を用いた。
[Analysis conditions]
In the following production of various compounds, composition analysis of the obtained reaction composition was performed using gas chromatography (GC). As a column, DB-1 (trade name, manufactured by Agilent Technologies, Ltd., length 60 m × inner diameter 250 μm × thickness 1 μm) was used.
[254ebの製造例]
 触媒担持担体を充填した触媒層を有するU字型の反応管と、これを浸漬する塩浴を備えた反応装置を用いて、1214yaに水素を反応させた。触媒担持担体として活性炭の100質量部に対して、0.5質量部のパラジウムを担持させた、パラジウム触媒担持活性炭を用いた。触媒層における触媒担持担体の充填密度は0.73g/cmとした。
[Production example of 254eb]
Hydrogen was allowed to react with 1214 ya using a U-shaped reaction tube having a catalyst layer packed with a catalyst-supporting carrier and a reactor equipped with a salt bath in which the U-shaped reaction tube is immersed. A palladium catalyst supporting activated carbon in which 0.5 parts by mass of palladium was supported with respect to 100 parts by mass of the activated carbon was used as a catalyst supporting carrier. The packing density of the catalyst supporting carrier in the catalyst layer was 0.73 g / cm 3 .
 塩浴の温度を調整して80℃に加熱した触媒層に、1214yaガス、水素ガス、および窒素ガスを、総量のモル比が水素/1214ya/窒素=1/1/2となるように流通させて、反応管の出口から反応組成物を回収した。触媒層に対する1214yaの接触時間は18秒とし、1214yaの線速度uは7cm/秒とした。 In the catalyst layer heated to 80 ° C. by adjusting the temperature of the salt bath, 1214 ya gas, hydrogen gas and nitrogen gas are caused to flow so that the total molar ratio is hydrogen / 1214 ya / nitrogen = 1/1/2. The reaction composition was recovered from the outlet of the reaction tube. The contact time of 1214 ya with the catalyst layer was 18 seconds, and the linear velocity u of 1214 ya was 7 cm / sec.
 回収した反応組成物は、1214ya、1224yd、1234yf、254eb等を含有していた。該反応組成物より、蒸留により254ebを得た。 The recovered reaction composition contained 1214 ya, 1224 yd, 1234 yf, 254 eb and the like. From the reaction composition, 254eb was obtained by distillation.
[例1]
 上記製造例で得られた254ebを、塩素化して244bbおよび244ebを製造した。
[Example 1]
The 254eb obtained in the above preparation example was chlorinated to produce 244bb and 244eb.
 まず、光源からの光を透過する石英管およびジャケットを取り付けたステンンレス製オートクレーブ(内容積6.9リットル)を、20℃に冷却した。このオートクレーブ(以下、反応器と示す。)内に、四塩化炭素(CCl)を2336gと254ebを103g入れた後、LEDランプ(三菱電機社製、LHT42N-G-E39(製品名)、出力40W;出射光の波長400~750nm)からの可視光を照射しながら、塩素ガスを毎分3.2gの流量で反応器内に導入した。反応の進行に伴い、反応熱が生じるとともに、反応器内の温度は23.8℃に上昇した。上記流量塩素ガスを2分間導入し、すなわち、254ebの1モルに対して0.10モルの割合の塩素を導入し、反応器内の温度が20℃で一定になるまで光照射を継続した。反応器内の圧力は、塩素供給前の圧力が0.045MPa、塩素供給後の圧力、すなわち反応圧力が0.045MPaであった。 First, a stainless steel autoclave (having an inner volume of 6.9 liters) equipped with a quartz tube and a jacket for transmitting light from a light source was cooled to 20.degree. After putting 2336 g of carbon tetrachloride (CCl 4 ) and 103 g of 254eb in this autoclave (hereinafter referred to as a reactor), an LED lamp (Mitsubishi Electric Co., Ltd., LHT42N-G-E39 (product name), output) Chlorine gas was introduced into the reactor at a flow rate of 3.2 g / min while being irradiated with visible light from 40 W; wavelength of 400 to 750 nm of emitted light). As the reaction progressed, heat of reaction was generated, and the temperature in the reactor rose to 23.8 ° C. The flow rate of chlorine gas was introduced for 2 minutes, that is, 0.10 mol of chlorine was introduced per 1 mol of 254 eb, and light irradiation was continued until the temperature in the reactor became constant at 20 ° C. As for the pressure in the reactor, the pressure before chlorine supply was 0.045 MPa, and the pressure after chlorine supply, that is, the reaction pressure was 0.045 MPa.
 反応終了後、得られた反応液を炭酸水素カリウムの20質量%水溶液と混合して中和し、次いで分液操作を行った。静置後、分離した下層から反応組成物1を回収し、GC分析を行った。 After completion of the reaction, the obtained reaction solution was mixed with a 20% by mass aqueous solution of potassium hydrogen carbonate to be neutralized, and then a liquid separation operation was performed. After standing, the reaction composition 1 was recovered from the separated lower layer and subjected to GC analysis.
[例2]
 例1で用いたものと同じ反応器を20℃に保ち、反応器内に、溶媒として2336gの四塩化炭素(CCl)を入れ、254ebを103g入れた。その後に、LEDランプ(三菱電機社製、LHT42N-G-E39、出力40W)からの可視光を照射しながら、毎分3.2gの流量で塩素ガスを反応器内に供給した。反応の進行に伴って反応熱が生じるとともに、反応器内の温度(反応温度)は22.6℃に上昇した。上記流量塩素ガスを10分間導入し、すなわち、254ebの1モルに対して0.50モルの割合の塩素を導入し、反応器内の温度が20℃で一定になるまで光照射を継続した。反応器内の圧力は、塩素供給前の圧力が0.045MPa、塩素供給後の圧力、すなわち反応圧力が0.085MPaであった。
[Example 2]
The same reactor as that used in Example 1 was kept at 20 ° C., and 2336 g of carbon tetrachloride (CCl 4 ) as a solvent was charged into the reactor, and 103 g of 254eb was charged. Thereafter, chlorine gas was supplied into the reactor at a flow rate of 3.2 g / min while being irradiated with visible light from an LED lamp (LHT42N-G-E39, manufactured by Mitsubishi Electric Corp., output 40 W). As the reaction progressed, heat of reaction was generated, and the temperature in the reactor (reaction temperature) rose to 22.6 ° C. The flow rate of chlorine gas was introduced for 10 minutes, that is, 0.50 mole of chlorine was introduced to 1 mole of 254eb, and the light irradiation was continued until the temperature in the reactor became constant at 20 ° C. As for the pressure in the reactor, the pressure before chlorine supply was 0.045 MPa, and the pressure after chlorine supply, that is, the reaction pressure was 0.085 MPa.
 反応終了後、得られた反応液を炭酸水素カリウムの20質量%水溶液と混合して中和し、次いで分液操作を行った。静置後、分離した下層から反応組成物2を回収し、GC分析を行った。 After completion of the reaction, the obtained reaction solution was mixed with a 20% by mass aqueous solution of potassium hydrogen carbonate to be neutralized, and then a liquid separation operation was performed. After standing, the reaction composition 2 was recovered from the separated lower layer and subjected to GC analysis.
[例3]
 例1で用いたものと同じ反応器を20℃に保ち、そこに四塩化炭素(CCl)を2336gと254ebを103g入れた後、LEDランプ(三菱電機社製、LHT42N-G-E39、出力40W)からの可視光を照射しながら、塩素ガスを毎分3.2gの流量で反応器内に導入した。反応の進行に伴い、反応熱が生じるとともに、反応器内の温度は23.8℃に上昇した。上記流量塩素ガスを20分間導入し、すなわち、254ebの1モルに対して1.00モルの割合の塩素を導入し、反応器内の温度が20℃で一定になるまで光照射を継続した。反応器内の圧力は、塩素供給前の圧力が0.045MPa、塩素供給後の圧力、すなわち反応圧力が0.125MPaであった。
[Example 3]
The same reactor as that used in Example 1 is maintained at 20 ° C., and 2336 g of carbon tetrachloride (CCl 4 ) and 103 g of 254 eb are put therein, and then an LED lamp (Mitsubishi Electric Co., LHT42N-G-E39, output) Chlorine gas was introduced into the reactor at a flow rate of 3.2 g / min while emitting visible light from 40 W). As the reaction progressed, heat of reaction was generated, and the temperature in the reactor rose to 23.8 ° C. The flow rate of chlorine gas was introduced for 20 minutes, that is, 1.00 mole of chlorine was introduced to 1 mole of 254eb, and the light irradiation was continued until the temperature in the reactor became constant at 20 ° C. As for the pressure in the reactor, the pressure before chlorine supply was 0.045 MPa, and the pressure after chlorine supply, that is, the reaction pressure was 0.125 MPa.
 反応終了後、得られた反応液を炭酸水素カリウムの20質量%水溶液と混合して中和し、次いで分液操作を行った。静置後、分離した下層から反応組成物3を回収し、GC分析を行った。反応組成物3をアルカリで洗浄することにより塩素を除去した後、蒸留によって溶媒および副生成物を除去することで、純度99.9%の244bbと99.9%の244ebを得た。 After completion of the reaction, the obtained reaction solution was mixed with a 20% by mass aqueous solution of potassium hydrogen carbonate to be neutralized, and then a liquid separation operation was performed. After standing, the reaction composition 3 was recovered from the separated lower layer and subjected to GC analysis. After removing the chlorine by washing the reaction composition 3 with alkali, the solvent and byproducts were removed by distillation to obtain 244bb of purity 99.9% and 244eb of 99.9%.
[例4]
 例1で用いたものと同じ反応器を20℃に保ち、そこに四塩化炭素(CCl)を2336gと254ebを103g入れた後、LEDランプ(三菱電機社製、LHT42N-G-E39、出力40W)からの可視光を照射しながら、塩素ガスを毎分3.2gの流量で反応器内に導入した。反応の進行に伴い、反応熱が生じるとともに、反応器内の温度は23.8℃に上昇した。上記流量塩素ガスを30分間導入し、すなわち、254ebの1モルに対して1.50モルの割合の塩素を導入し、反応器内の温度が20℃で一定になるまで光照射を継続した。反応器内の圧力は、塩素供給前の圧力が0.045MPa、塩素供給後の圧力、すなわち反応圧力が0.165MPaであった。
[Example 4]
The same reactor as that used in Example 1 is maintained at 20 ° C., and 2336 g of carbon tetrachloride (CCl 4 ) and 103 g of 254 eb are put therein, and then an LED lamp (Mitsubishi Electric Co., LHT42N-G-E39, output) Chlorine gas was introduced into the reactor at a flow rate of 3.2 g / min while emitting visible light from 40 W). As the reaction progressed, heat of reaction was generated, and the temperature in the reactor rose to 23.8 ° C. The flow rate of chlorine gas was introduced for 30 minutes, that is, 1.50 mol of chlorine was introduced per 1 mol of 254 eb, and light irradiation was continued until the temperature in the reactor became constant at 20 ° C. As for the pressure in the reactor, the pressure before chlorine supply was 0.045 MPa, and the pressure after chlorine supply, that is, the reaction pressure was 0.165 MPa.
 反応終了後、得られた反応液を炭酸水素カリウムの20質量%水溶液と混合して中和し、次いで分液操作を行った。静置後、分離した下層から反応組成物4を回収し、GC分析を行った。 After completion of the reaction, the obtained reaction solution was mixed with a 20% by mass aqueous solution of potassium hydrogen carbonate to be neutralized, and then a liquid separation operation was performed. After standing, the reaction composition 4 was recovered from the separated lower layer and subjected to GC analysis.
[例5]
 例1で用いたものと同じ反応器を20℃に保ち、そこに四塩化炭素(CCl)を2336gと254ebを103g入れた後、LEDランプ(三菱電機社製、LHT42N-G-E39、出力40W)からの可視光を照射しながら、塩素ガスを毎分3.2gの流量で反応器内に導入した。反応の進行に伴い、反応熱が生じるとともに、反応器内の温度は23.8℃に上昇した。上記流量塩素ガスを40分間導入し、すなわち、254ebの1モルに対して2.00モルの割合の塩素を導入し、反応器内の温度が20℃で一定になるまで光照射を継続した。反応器内の圧力は、塩素供給前の圧力が0.045MPa、塩素供給後の圧力、すなわち反応圧力が0.198MPaであった。
[Example 5]
The same reactor as that used in Example 1 is maintained at 20 ° C., and 2336 g of carbon tetrachloride (CCl 4 ) and 103 g of 254 eb are put therein, and then an LED lamp (Mitsubishi Electric Co., LHT42N-G-E39, output) Chlorine gas was introduced into the reactor at a flow rate of 3.2 g / min while emitting visible light from 40 W). As the reaction progressed, heat of reaction was generated, and the temperature in the reactor rose to 23.8 ° C. The flow rate of chlorine gas was introduced for 40 minutes, that is, 2.00 mol of chlorine was introduced per 1 mol of 254 eb, and the light irradiation was continued until the temperature in the reactor became constant at 20 ° C. As for the pressure in the reactor, the pressure before chlorine supply was 0.045 MPa, and the pressure after chlorine supply, that is, the reaction pressure was 0.198 MPa.
 反応終了後、得られた反応液を炭酸水素カリウムの20質量%水溶液と混合して中和し、次いで分液操作を行った。静置後、分離した下層から反応組成物5を回収し、GC分析を行った。 After completion of the reaction, the obtained reaction solution was mixed with a 20% by mass aqueous solution of potassium hydrogen carbonate to be neutralized, and then a liquid separation operation was performed. After standing, the reaction composition 5 was recovered from the separated lower layer and subjected to GC analysis.
[例6]
 例1で用いたものと同じ反応器を50℃に保ち、そこに四塩化炭素(CCl)を2430gと254ebを103g入れた後、LEDランプ(三菱電機社製、LHT42N-G-E39、出力40W)からの可視光を照射しながら、塩素ガスを毎分3.2gの流量で反応器内に導入した。反応の進行に伴い、反応熱が生じるとともに、反応器内の温度は52.8℃に上昇した。上記流量塩素ガスを20分間導入し、すなわち、254ebの1モルに対して1.00モルの割合の塩素を導入し、反応器内の温度が50℃で一定になるまで光照射を継続した。反応器内の圧力は、塩素供給前の圧力が0.075MPa、塩素供給後の圧力、すなわち反応圧力が0.165MPaであった。
[Example 6]
The same reactor as that used in Example 1 is maintained at 50 ° C., 2430 g of carbon tetrachloride (CCl 4 ) and 103 g of 254 eb are put therein, and then an LED lamp (Mitsubishi Electric Co., LHT42N-G-E39, power output) Chlorine gas was introduced into the reactor at a flow rate of 3.2 g / min while emitting visible light from 40 W). As the reaction progressed, heat of reaction was generated, and the temperature in the reactor rose to 52.8 ° C. The flow rate of chlorine gas was introduced for 20 minutes, that is, 1.00 mole of chlorine was introduced to 1 mole of 254eb, and the light irradiation was continued until the temperature in the reactor became constant at 50 ° C. As for the pressure in the reactor, the pressure before chlorine supply was 0.075 MPa, and the pressure after chlorine supply, that is, the reaction pressure was 0.165 MPa.
 反応終了後、得られた反応液を炭酸水素カリウムの20質量%水溶液と混合して中和し、次いで分液操作を行った。静置後、分離した下層から反応組成物6を回収し、GC分析を行った。 After completion of the reaction, the obtained reaction solution was mixed with a 20% by mass aqueous solution of potassium hydrogen carbonate to be neutralized, and then a liquid separation operation was performed. After standing, the reaction composition 6 was recovered from the separated lower layer and subjected to GC analysis.
 例1~6の反応条件、得られた反応組成物1~6のGC分析結果を、表1に示す。
 表1中、254ebの転化率は、反応器に供給した254eb量に対する、反応で消費された254eb量の割合であり、モル換算値(単位:モル%)である。また、各化合物の選択率は、反応組成物の全量に対する各化合物の割合であり、モル換算値(単位:モル%)である。
The reaction conditions of Examples 1 to 6 and the GC analysis results of the resulting reaction compositions 1 to 6 are shown in Table 1.
In Table 1, the conversion of 254eb is a ratio of the amount of 254eb consumed in the reaction to the amount of 254eb supplied to the reactor, and is a molar conversion value (unit: mol%). Moreover, the selectivity of each compound is a ratio of each compound with respect to the total amount of the reaction composition, and is a molar equivalent value (unit: mol%).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1からわかるように、例1~6によれば、高選択率で目的とする244bbと244ebを得ることができる。 As can be seen from Table 1, according to Examples 1 to 6, the target 244bb and 244eb can be obtained with high selectivity.
[例7]
 1/2インチ半径のSUS316製の気相反応容器に触媒として活性炭(8.50g)を充填した。反応容器に予備加熱器を取り付け、温度を450℃に保った。この気相反応器に、上記例3で得られた244bbを温度65℃に保ったシリンダーから、マスフローコントローラー、予備加熱器を経由して供給した。シリンダーから、マスフローコントローラーを経て予備加熱器までのラインにおける温度は244bbが凝縮するのを防ぐため65℃に保たれた。
[Example 7]
Activated carbon (8.50 g) was charged as a catalyst into a 1/2 inch radius SUS 316 gas phase reaction vessel. The reaction vessel was fitted with a preheater and the temperature was maintained at 450 ° C. To this gas phase reactor, 244bb obtained in Example 3 above was supplied from a cylinder maintained at a temperature of 65 ° C. via a mass flow controller and a preheater. The temperature in the line from the cylinder through the mass flow controller to the preheater was kept at 65 ° C. to prevent 244bb from condensing.
 上記気相反応器に供給された244bbは、気相反応器を通過(通過時間:60秒)しながら反応温度450℃の条件下、活性炭触媒に接触することで脱塩酸されて、1234yfとなる。この1234yfを含む反応組成物を上記気相反応器の取出口から回収した。回収した反応組成物のGC分析を行った結果、244bbの転化率は95%であり、1234yfの収率は85%であり、選択率は89%であった。 244bb supplied to the gas phase reactor is dehydrochlorinated by contacting with an activated carbon catalyst under the condition of a reaction temperature of 450 ° C. while passing through the gas phase reactor (passing time: 60 seconds) to be 1234yf . The reaction composition containing 1234yf was recovered from the outlet of the gas phase reactor. GC analysis of the recovered reaction composition showed that the conversion rate of 244bb was 95%, the yield of 1234yf was 85%, and the selectivity was 89%.
[例8]
 熱電対及び撹拌翼を取り付けた0.1Lの反応器を恒温槽内に設置し、80℃に保った。この反応器に、48質量%KOH水溶液を61g、上記例3で得られた244bbを40g、テトラ-n-ブチルアンモニウムブロミド(TBAB)を0.85g加え、反応器を閉止し、圧力試験を行った。400rpmで撹拌翼を回転させ、3時間反応を行った後に、恒温槽から反応器を取り出して氷水により0℃に冷却して反応を停止させ、反応組成物を回収した。回収した反応組成物のGC分析を行った結果、244bbの転化率は61%であり、1234yfの収率は61%であり、選択率は100%であった。
[Example 8]
A 0.1 L reactor equipped with a thermocouple and a stirring blade was placed in a thermostat and kept at 80 ° C. Into this reactor, 61 g of 48% by mass KOH aqueous solution, 40 g of 244bb obtained in Example 3 above and 0.85 g of tetra-n-butylammonium bromide (TBAB) were added, the reactor was closed, and a pressure test was conducted. The The stirring blade was rotated at 400 rpm, and reaction was carried out for 3 hours. Then, the reactor was taken out of the thermostatic bath and cooled to 0 ° C. with ice water to stop the reaction, and the reaction composition was recovered. As a result of conducting GC analysis of the recovered reaction composition, the conversion rate of 244bb was 61%, the yield of 1234yf was 61%, and the selectivity was 100%.
[例9]
 熱電対及び撹拌翼を取り付けた0.1Lの反応器を恒温槽内に設置し、60℃に保った。この反応器に、40質量%KOH水溶液を60g、上記例3で得られた244ebを32g、テトラ-n-ブチルアンモニウムブロミド(TBAB)を0.69g加え、反応器を閉止し、圧力試験を行った。400rpmで撹拌翼を回転させ、30分反応を行った後に、恒温槽から反応器を取り出して氷水により0℃に冷却して反応を停止させ、反応組成物を回収した。回収した反応組成物のGC分析を行った結果、244ebの転化率は99%であり、1234yfの収率は99%であり、選択率は100%であった。
[Example 9]
A 0.1 L reactor equipped with a thermocouple and a stirring blade was placed in a thermostat and kept at 60 ° C. Into this reactor, 60 g of 40 mass% KOH aqueous solution, 32 g of 244eb obtained in Example 3 above, and 0.69 g of tetra-n-butylammonium bromide (TBAB) were added, the reactor was closed, and a pressure test was conducted. The The stirring blade was rotated at 400 rpm and reaction was carried out for 30 minutes, then the reactor was taken out of the thermostatic bath and cooled to 0 ° C. with ice water to stop the reaction, and the reaction composition was recovered. As a result of carrying out GC analysis of the recovered reaction composition, the conversion of 244eb was 99%, the yield of 1234yf was 99%, and the selectivity was 100%.
 例7によれば、高価な金属触媒を用いることなく、高転化率、高選択率で目的とする1234yfを得ることができる。また、例8、9によれば、高価な金属触媒を用いることなく、低い反応温度で、高転化率、高選択率で目的とする1234yfを得ることができる。 According to Example 7, it is possible to obtain the desired 1234yf with high conversion and high selectivity without using an expensive metal catalyst. Further, according to Examples 8 and 9, it is possible to obtain the target 1234yf with a high conversion rate and a high selectivity at a low reaction temperature without using an expensive metal catalyst.

Claims (11)

  1.  1,1,1,2-テトラフルオロプロパンと塩素を反応させて2-クロロ-1,1,1,2-テトラフルオロプロパンおよび/または3-クロロ-1,1,1,2-テトラフルオロプロパンを得る、2-クロロ-1,1,1,2-テトラフルオロプロパンおよび/または3-クロロ-1,1,1,2-テトラフルオロプロパンの製造方法。 Reaction of 1,1,1,2-tetrafluoropropane with chlorine to give 2-chloro-1,1,1,2-tetrafluoropropane and / or 3-chloro-1,1,1,2-tetrafluoropropane A process for producing 2-chloro-1,1,1,2-tetrafluoropropane and / or 3-chloro-1,1,1,2-tetrafluoropropane,
  2.  前記1,1,1,2-テトラフルオロプロパンの1モルに対して、前記塩素を0.01~3.00モルの割合で用いる請求項1記載の製造方法。 The method according to claim 1, wherein the chlorine is used in a ratio of 0.01 to 3.00 mol with respect to 1 mol of the 1,1,1,2-tetrafluoropropane.
  3.  前記1,1,1,2-テトラフルオロプロパンと塩素との反応を、0~100℃の温度で行う、請求項1または2に記載の製造方法。 The process according to claim 1 or 2, wherein the reaction of 1,1,1,2-tetrafluoropropane with chlorine is carried out at a temperature of 0 to 100 属 C.
  4.  前記1,1,1,2-テトラフルオロプロパンと塩素との反応を、ゲージ圧で、0.00~1.00MPaの圧力で行う、請求項1~3のいずれか一項に記載の製造方法。 The method according to any one of claims 1 to 3, wherein the reaction of 1,1,1,2-tetrafluoropropane with chlorine is performed at a pressure of 0.00 to 1.00 MPa at a gauge pressure. .
  5.  前記1,1,1,2-テトラフルオロプロパンと塩素との反応を、200~750nmの波長の光の照射下で行う、請求項1~4のいずれか一項に記載の製造方法。 The process according to any one of claims 1 to 4, wherein the reaction of 1,1,1,2-tetrafluoropropane with chlorine is performed under irradiation of light having a wavelength of 200 to 750 nm.
  6.  前記1,1,1,2-テトラフルオロプロパンと塩素との反応を、蛍光灯またはLEDランプの照射下で行う、請求項1~5のいずれか一項に記載の製造方法。 The method according to any one of claims 1 to 5, wherein the reaction of 1,1,1,2-tetrafluoropropane with chlorine is performed under irradiation of a fluorescent lamp or an LED lamp.
  7.  前記1,1,1,2-テトラフルオロプロパンと塩素との反応を、溶媒の存在下で液相にて行う、請求項1~6のいずれか一項に記載の製造方法。 The method according to any one of claims 1 to 6, wherein the reaction of 1,1,1,2-tetrafluoropropane with chlorine is carried out in the liquid phase in the presence of a solvent.
  8.  前記溶媒が、四塩化炭素、1,1,2-トリクロロ-1,2,2-トリフルオロエタン、CF(CFCF(ただし、式中nは、3~6の整数を表す。)で表される炭素数5~8の直鎖パーフルオロアルキル化合物、ヘキサクロロアセトン、2-クロロ-1,1,1,2-テトラフルオロプロパンおよび3-クロロ-1,1,1,2-テトラフルオロプロパンからなる群から選ばれる少なくとも一種を含む、請求項7に記載の製造方法。 The solvent is carbon tetrachloride, 1,1,2-trichloro-1,2,2-trifluoroethane, CF 3 (CF 2 ) n CF 3 (wherein n represents an integer of 3 to 6) ), C 5-8 linear perfluoroalkyl compounds, hexachloroacetone, 2-chloro-1,1,1,2-tetrafluoropropane and 3-chloro-1,1,1,2- The production method according to claim 7, comprising at least one selected from the group consisting of tetrafluoropropane.
  9.  前記溶媒を、前記1,1,1,2-テトラフルオロプロパンと前記塩素の合計量に対して1~4000質量%の割合で用いる、請求項7または8に記載の製造方法。 The method according to claim 7 or 8, wherein the solvent is used in a proportion of 1 to 4000% by mass based on the total amount of the 1,1,1,2-tetrafluoropropane and the chlorine.
  10.  前記1,1,1,2-テトラフルオロプロパンと塩素との反応を気相にて行う、請求項1~6いずれか一項に記載の製造方法。 The method according to any one of claims 1 to 6, wherein the reaction of 1,1,1,2-tetrafluoropropane with chlorine is carried out in the gas phase.
  11.  請求項1~10のいずれか一項に記載の製造方法により2-クロロ-1,1,1,2-テトラフルオロプロパンおよび/または3-クロロ-1,1,1,2-テトラフルオロプロパンを得、前記得られた2-クロロ-1,1,1,2-テトラフルオロプロパンおよび/または3-クロロ-1,1,1,2-テトラフルオロプロパンを塩基および/または触媒の存在下で脱塩化水素反応させる2,3,3,3-テトラフルオロプロペンの製造方法。 A 2-chloro-1,1,1,2-tetrafluoropropane and / or 3-chloro-1,1,1,2-tetrafluoropropane by the method according to any one of claims 1 to 10. And removing the obtained 2-chloro-1,1,1,2-tetrafluoropropane and / or 3-chloro-1,1,1,2-tetrafluoropropane in the presence of a base and / or a catalyst. Process for producing 2,3,3,3-tetrafluoropropene to be reacted with hydrogen chloride.
PCT/JP2018/022409 2017-06-27 2018-06-12 Production method for 2-chloro-1,1,1,2-tetrafluoropropane and/or 3-chloro-1,1,1,2-tetrafluoropropane, and production method for 2,3,3,3-tetrafluoropropene WO2019003896A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019526772A JP7081596B2 (en) 2017-06-27 2018-06-12 Methods for producing 2-chloro-1,1,1,2-tetrafluoropropane and / or 3-chloro-1,1,1,2-tetrafluoropropane, and 2,3,3,3-tetrafluoropropene. Production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017125139 2017-06-27
JP2017-125139 2017-06-27

Publications (1)

Publication Number Publication Date
WO2019003896A1 true WO2019003896A1 (en) 2019-01-03

Family

ID=64741554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022409 WO2019003896A1 (en) 2017-06-27 2018-06-12 Production method for 2-chloro-1,1,1,2-tetrafluoropropane and/or 3-chloro-1,1,1,2-tetrafluoropropane, and production method for 2,3,3,3-tetrafluoropropene

Country Status (2)

Country Link
JP (1) JP7081596B2 (en)
WO (1) WO2019003896A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218336A1 (en) * 2019-04-25 2020-10-29 Agc株式会社 Method for producing hydrochlorofluorocarbon, method for producing 1-chloro-2, 3, 3-trifluoropropene, and method for producing 1-chloro-2, 3, 3, 4, 4, 5, 5-heptafluoro-1-pentene
WO2020218340A1 (en) * 2019-04-25 2020-10-29 Agc株式会社 Method for producing hydrochlorofluorocarbon, method for producing 1-chloro-2,3,3-trifluoropropene, and method for producing 1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene
CN113264810A (en) * 2021-06-03 2021-08-17 常熟三爱富振氟新材料有限公司 Preparation process of F112
CN113527040A (en) * 2020-04-22 2021-10-22 浙江省化工研究院有限公司 Preparation method of halogenated propylene
CN113527045A (en) * 2020-04-22 2021-10-22 浙江省化工研究院有限公司 Preparation method of chlorofluoropropane
CN114436764A (en) * 2020-11-04 2022-05-06 浙江省化工研究院有限公司 Preparation method of 1-chloro-2, 3,3, 3-tetrafluoropropene and intermediate thereof
WO2022218204A1 (en) * 2021-04-15 2022-10-20 浙江省化工研究院有限公司 Method for preparing 2,3,3,3-tetrafluoropropene
CN115215722A (en) * 2021-04-15 2022-10-21 浙江省化工研究院有限公司 Co-production preparation method of 2, 3-tetrafluoropropene and 1-chloro-3, 3-trifluoropropene
CN115215723A (en) * 2021-04-15 2022-10-21 浙江省化工研究院有限公司 Process for the coproduction of 2, 3-tetrafluoropropene and 1-chloro-2, 3-tetrafluoropropene
CN115215724A (en) * 2021-04-15 2022-10-21 浙江省化工研究院有限公司 Method for preparing 2,3,3,3-tetrafluoropropene by two-step method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005510549A (en) * 2001-11-27 2005-04-21 ハネウェル・インターナショナル・インコーポレーテッド Photochlorination of 1,1,1,3,3-pentafluoropropane
JP2010513437A (en) * 2006-12-19 2010-04-30 イネオス、フラウアー、ホールディングス、リミテッド process
JP2011520017A (en) * 2008-05-07 2011-07-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 2,3-dichloro-1,1,1-trifluoropropane, 2-chloro-1,1,1-trifluoropropene, 2-chloro-1,1,1,2-tetrafluoropropane or 2,3 Composition comprising 3,3-tetrafluoropropene
WO2011162336A1 (en) * 2010-06-23 2011-12-29 旭硝子株式会社 Production method for 1,1-dichloro-2,3,3,3-tetra-fluoropropene and 2,3,3,3-tetrafluoropropene

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773668A (en) * 1997-02-24 1998-06-30 Occidental Chemical Corporation Method of making trichloromethoxybenzene
DE50011826D1 (en) * 1999-06-16 2006-01-12 Solvay Fluor Gmbh UV-ACTIVATED CHLORINE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005510549A (en) * 2001-11-27 2005-04-21 ハネウェル・インターナショナル・インコーポレーテッド Photochlorination of 1,1,1,3,3-pentafluoropropane
JP2010513437A (en) * 2006-12-19 2010-04-30 イネオス、フラウアー、ホールディングス、リミテッド process
JP2011520017A (en) * 2008-05-07 2011-07-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 2,3-dichloro-1,1,1-trifluoropropane, 2-chloro-1,1,1-trifluoropropene, 2-chloro-1,1,1,2-tetrafluoropropane or 2,3 Composition comprising 3,3-tetrafluoropropene
WO2011162336A1 (en) * 2010-06-23 2011-12-29 旭硝子株式会社 Production method for 1,1-dichloro-2,3,3,3-tetra-fluoropropene and 2,3,3,3-tetrafluoropropene

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113710636A (en) * 2019-04-25 2021-11-26 Agc株式会社 Process for producing hydrochlorofluorocarbon, process for producing 1-chloro-2, 3, 3-trifluoropropene, and process for producing 1-chloro-2, 3,3,4,4,5, 5-heptafluoro-1-pentene
WO2020218340A1 (en) * 2019-04-25 2020-10-29 Agc株式会社 Method for producing hydrochlorofluorocarbon, method for producing 1-chloro-2,3,3-trifluoropropene, and method for producing 1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene
WO2020218336A1 (en) * 2019-04-25 2020-10-29 Agc株式会社 Method for producing hydrochlorofluorocarbon, method for producing 1-chloro-2, 3, 3-trifluoropropene, and method for producing 1-chloro-2, 3, 3, 4, 4, 5, 5-heptafluoro-1-pentene
CN113710635A (en) * 2019-04-25 2021-11-26 Agc株式会社 Process for producing hydrochlorofluorocarbon, process for producing 1-chloro-2, 3, 3-trifluoropropene, and process for producing 1-chloro-2, 3,3,4,4,5, 5-heptafluoro-1-pentene
CN113527040B (en) * 2020-04-22 2023-09-01 浙江省化工研究院有限公司 Preparation method of halogenated propylene
CN113527045A (en) * 2020-04-22 2021-10-22 浙江省化工研究院有限公司 Preparation method of chlorofluoropropane
CN113527040A (en) * 2020-04-22 2021-10-22 浙江省化工研究院有限公司 Preparation method of halogenated propylene
CN113527045B (en) * 2020-04-22 2023-09-26 浙江省化工研究院有限公司 Preparation method of fluorophlorpropane
CN114436764A (en) * 2020-11-04 2022-05-06 浙江省化工研究院有限公司 Preparation method of 1-chloro-2, 3,3, 3-tetrafluoropropene and intermediate thereof
CN114436764B (en) * 2020-11-04 2023-10-03 浙江省化工研究院有限公司 Preparation method of 1-chloro-2, 3-tetrafluoropropene and intermediate thereof
CN115215724A (en) * 2021-04-15 2022-10-21 浙江省化工研究院有限公司 Method for preparing 2,3,3,3-tetrafluoropropene by two-step method
CN115215723A (en) * 2021-04-15 2022-10-21 浙江省化工研究院有限公司 Process for the coproduction of 2, 3-tetrafluoropropene and 1-chloro-2, 3-tetrafluoropropene
CN115215722A (en) * 2021-04-15 2022-10-21 浙江省化工研究院有限公司 Co-production preparation method of 2, 3-tetrafluoropropene and 1-chloro-3, 3-trifluoropropene
CN115215723B (en) * 2021-04-15 2023-10-03 浙江省化工研究院有限公司 Co-production preparation method of 2, 3-tetrafluoropropene and 1-chloro-2, 3-tetrafluoropropene
WO2022218204A1 (en) * 2021-04-15 2022-10-20 浙江省化工研究院有限公司 Method for preparing 2,3,3,3-tetrafluoropropene
CN115215722B (en) * 2021-04-15 2023-10-03 浙江省化工研究院有限公司 Co-production preparation method of 2, 3-tetrafluoropropene and 1-chloro-3, 3-trifluoropropene
CN115215724B (en) * 2021-04-15 2023-10-27 浙江省化工研究院有限公司 Method for preparing 2, 3-tetrafluoropropene by two-step method
CN113264810A (en) * 2021-06-03 2021-08-17 常熟三爱富振氟新材料有限公司 Preparation process of F112

Also Published As

Publication number Publication date
JPWO2019003896A1 (en) 2020-04-30
JP7081596B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
JP7081596B2 (en) Methods for producing 2-chloro-1,1,1,2-tetrafluoropropane and / or 3-chloro-1,1,1,2-tetrafluoropropane, and 2,3,3,3-tetrafluoropropene. Production method
JP6860057B2 (en) Method for producing 1-chloro-2,3,3-trifluoropropene
JP6157568B2 (en) Method for producing tetrafluoropropene
JP6812988B2 (en) Method for producing 1-chloro-2,3,3,3-tetrafluoropropene
JP2019031526A (en) Manufacturing method of fluorinated organic compound
JP2010043083A (en) Preparation method of 2,3,3,3-tetrafluoropropene
JP2015120670A (en) Method for producing 1-chloro-1,2-difluoroethylene
JP2017001990A (en) Manufacturing method of 1,2-dichloro-3,3,3-trifluoropropene
WO2019203318A1 (en) Method for producing fluoroolefin
JP2017014160A (en) Manufacturing method of 1,2-dichloro-3,3,3-trifluoropropene
JP7287391B2 (en) Method for producing fluorine-containing propene
US10364201B2 (en) Process for the manufacture of fluorinated olefins
JP2020023453A (en) Method for producing 2-chloro-3,3-difluoropropene, method for producing 2-chloro-1,1,2-trifluoropropane, method for producing 2,3,3-trifluoropropene, method for producing 1,2-dichloro-2,3,3-trifluoropropane, and method for producing 1-chloro-2,3,3-trifluoropropene
WO2019203319A1 (en) Method for producing fluoroolefin
WO2022163745A1 (en) Method for producing 3-chloro-1,1,2,2-tetrafluoropropane and method for producing 1-chloro-2,3,3-trifluoropropane
WO2019168115A1 (en) Production method for 1,2-dichloro-2,3,3,3-tetrafluoropropane and production method for 1-chloro-2,3,3,3-tetrafluoropropene
JP7070220B2 (en) 2-Chloro-3,3-difluoropropene production method, 2-chloro-1,1,2-trifluoropropane production method, 2,3,3-trifluoropropene production method, 1,2-dichloro- Method for producing 2,3,3-trifluoropropane, method for producing 1-chloro-2,3,3-trifluoropropene
WO2014208452A1 (en) Method for producing trifluoroethylene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823370

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526772

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823370

Country of ref document: EP

Kind code of ref document: A1