Nothing Special   »   [go: up one dir, main page]

WO2019003337A1 - Painting defect inspection device and painting defect inspection method - Google Patents

Painting defect inspection device and painting defect inspection method Download PDF

Info

Publication number
WO2019003337A1
WO2019003337A1 PCT/JP2017/023725 JP2017023725W WO2019003337A1 WO 2019003337 A1 WO2019003337 A1 WO 2019003337A1 JP 2017023725 W JP2017023725 W JP 2017023725W WO 2019003337 A1 WO2019003337 A1 WO 2019003337A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
image
light
dark
lightness
Prior art date
Application number
PCT/JP2017/023725
Other languages
French (fr)
Japanese (ja)
Inventor
慎之介 伊藤
満 平山
雅行 織田
佐藤 敏之
務 坂田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2017/023725 priority Critical patent/WO2019003337A1/en
Publication of WO2019003337A1 publication Critical patent/WO2019003337A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined

Definitions

  • the present invention relates to a coating defect inspection apparatus and a coating defect inspection method.
  • the problem to be solved by the present invention is to provide a coating defect inspection apparatus and a coating defect inspection method capable of inspecting the presence or absence of a coating defect inside a coating film having no unevenness on a surface to be inspected.
  • the present invention irradiates the inspection surface with a light and dark pattern in which light areas and dark parts alternately appear periodically, and moves the image of the light and dark pattern reflected on the surface to be inspected by moving it one or more cycles in the alignment direction of the light and dark pattern.
  • Photographing and extracting the maximum lightness of each position from the photographed image to generate a maximum lightness image, and depending on whether the lightness of each position of the maximum lightness image is within a predetermined range, defects other than the uneven defect at that position The problem is solved by determining the presence or absence of a defect inside the coating film.
  • the present invention can not inspect the presence or absence of a defect because the lightness cancels out and the difference does not become apparent even if an attempt is made to inspect a defect other than the concavo-convex defect and a defect inside the coating film using the difference image of the image of light and dark pattern.
  • the maximum brightness of each position is extracted from the image of the light and dark pattern to generate a maximum brightness image, and the inspection is performed based on whether the brightness of each position of the maximum brightness image is within a predetermined range. It is possible to inspect the presence or absence of a coating defect inside the coating film without unevenness.
  • FIG. 1 It is a block diagram which shows the coating defect inspection apparatus 1 which concerns on one embodiment of this invention.
  • the left view is a side view showing an arrangement example of the pattern irradiator and the imaging device with respect to the surface to be inspected
  • the right view is a front view showing a movement example of the light and dark pattern projected on the pattern irradiator.
  • It is a perspective view which shows the example which applied the coating defect inspection apparatus of FIG. 1 as a test object to the coating surface of a motor vehicle body.
  • It is a top view which shows an example of the movement trace of the pattern irradiator and imaging device by a robot with respect to the vehicle body of FIG.
  • FIG. 1 It is a block diagram which shows the coating defect inspection method which concerns on other embodiment of this invention. It is a figure explaining the method to determine the defect inside a coating film from the maximum brightness image shown in FIG. It is a figure explaining the method to determine an uneven
  • FIG. 1 is a block diagram showing a coating defect inspection apparatus 1 according to an embodiment of the present invention.
  • the coating defect inspection apparatus 1 includes a computer 13 having functions of a pattern irradiator 11, an imaging device 12, an image processor, a determinator, and a controller for specifying the position of a defect, and a robot 14. Prepare.
  • the pattern irradiator 11 is composed of a liquid crystal display, an organic EL display, etc., and according to the control signal of the controller 11a, a light and dark pattern 3 in which light and dark parts alternately appear periodically in a plane perpendicular to the irradiation direction. While irradiating the inspection surface 2, the light and dark pattern is moved in the alignment direction of the light and dark portions for one or more cycles of the pair of light and dark portions.
  • the left view of FIG. 2 is a side view showing an arrangement example of the pattern irradiator 11 and the imaging device 12 with respect to the inspection surface 2
  • the right view of FIG. 2 is a front view showing a movement example of bright and dark patterns projected on the pattern irradiator 11.
  • a rectangular bright portion 3a extending in the vertical direction of the screen and a rectangular dark portion 3b extending in the vertical direction of the screen are paired (one cycle), and these stripes are continuous. Pattern.
  • the light portion 3a and the dark portion 3b have the same shape.
  • Such a bright and dark pattern 3 moves the bright and dark pattern 3 in the alignment direction of the bright portion 3a and the dark portion 3b, that is, the left and right direction in the right view of FIG.
  • the moving speed at this time is set in accordance with the photographing speed of the photographing device 12 described later (the number of photographing frames per unit time, fps).
  • at the time of inspecting a coating defect at least the bright portion 3a and the dark portion 3b are moved with respect to one inspection surface 2 by one cycle, preferably two cycles or more.
  • the reason for moving by 2 cycles or more is that the boundary between the light part 3a and the dark part 3b does not appear sharp in the light and dark pattern 4 reflected on the inspection surface 2, that is, the image of the light and dark pattern 4 photographed by the photographing device 12 This is to improve inspection accuracy by acquiring images of light and dark patterns 4 of multiple cycles.
  • the light and dark pattern 4 reflected on the inspection surface 2, that is, the light and dark pattern 4 photographed by the photographing device 12 is different from the light and dark pattern 3 reflected on the pattern irradiator 11.
  • the shape of the light and dark pattern 3 shown in the pattern irradiator 11 may be a horizontal stripe shape or an oblique stripe shape in addition to the vertical stripe shape shown in FIG. Further, other than the stripe shape, any shape may be used as long as the light portion 3a and the dark portion 3b are alternately repeated periodically at an arbitrary inspection position. Furthermore, the light portion 3a and the dark portion 3b are not limited to only white and black, and may have other colors as long as they have contrast of light and dark.
  • the photographing device 12 is configured by a CCD camera or the like, and as shown in FIG. 2, the pattern light reflected from the inspection surface 2 of the light and dark pattern 3 irradiated from the pattern irradiator 11 is incident at a predetermined angle It is assembled with the irradiator 11. Then, the imaging device 12 captures a plurality of images of the light and dark pattern 4 reflected on the inspection surface 2 by the pattern irradiator 11 in accordance with the movement of the light and dark pattern 3 of the pattern irradiator 11. As described above, in the image of the light and dark pattern 4 reflected on the inspection surface 2, the boundary between the light portion 3a and the dark portion 3b does not appear sharp. It is preferable to acquire an image of The image of the light and dark pattern 4 photographed by the photographing unit 12 is output to the computer 13 having the functions of an image processor, a judgment unit, and a controller for specifying the position of the defect.
  • the computer 13 extracts the maximum brightness of each position from the plurality of images captured by the imaging device 12 and generates an image processor with the maximum brightness, and does the brightness of each position of the maximum brightness image fall within a predetermined range? It functions as a determinator that determines whether or not it is a controller and a controller that specifies the position of a defect. Specifically, image processing software, determination software, and position specifying software are installed, and predetermined processing is executed according to the procedure of the software by a computing unit such as a CPU, a ROM, and a RAM. Details of these specific processes will be described later.
  • the robot 14 mounts the pattern irradiator 11 and the imaging device 12 at the tip of the hand, and carries the controller such that the pattern irradiator 11 and the imaging device 12 are transported to the inspection surface 2 in a predetermined posture.
  • the teaching program is installed in 14a.
  • FIG. 3 is a perspective view showing an example in which the painted surface of the car body 5 is to be inspected, and shows one robot 14 having the pattern irradiator 11 and the photographing device 12 attached to the tip of the hand.
  • FIG. 3 is a perspective view showing an example in which the painted surface of the car body 5 is to be inspected, and shows one robot 14 having the pattern irradiator 11 and the photographing device 12 attached to the tip of the hand.
  • FIG. 8 is a plan view showing an example of a movement trajectory when inspecting the painted surfaces of the hood 51 and the roof 52 of the car body 5 by a total of four robots 14 arranged two each on the left and right of the car body 5;
  • the painted surfaces of the front fender, the side door, the rear fender and the back door are also inspected by these four robots 15, but illustration thereof is omitted.
  • the robot 14 at the lower left of the figure moves in the order of point P1 ⁇ point P2 ⁇ point P3 ⁇ point P4 ⁇ point P5 ⁇ point P6, It stops at each point, and an image of the light and dark pattern 4 reflected on the inspection surface 2 is acquired. As a result, an image of the light and dark patterns 4 of the six inspection surfaces 2 in the left half of the hood 51 is obtained.
  • the robot 14 on the upper left moves in the order of point P7 ⁇ point P8 ⁇ point P9 ⁇ point P10 ⁇ point P11 ⁇ point P12, stops at each point, and displays the light and dark pattern 4 image on the inspection surface 2 get.
  • an image of the light and dark patterns 4 of the six inspection surfaces 2 in the right half of the hood 51 is obtained.
  • the robot 14 at the lower right and the robot 14 at the upper right share the inspection surfaces of the right half and the left half of the roof 52, respectively, Get 4 images.
  • the pattern irradiator 11 and the photographing device 12 are shown in FIG. 4 by the four robots 14 also for inspection of the painted surface of the front fender, the side door, the rear fender and the back door other than the hood 51 and the roof 52. The movement is performed as described above, and an image of light and dark pattern 4 is acquired.
  • FIG. 5 is a side view showing an example of an inspection line to which the coating defect inspection device 1 of the present embodiment is applied
  • FIG. 6 is a flowchart showing processing executed in the inspection line.
  • the car type specification of the car body 5 arriving at the car type specification detection process from the car type specification data memory attached to each of the car body 5 completed the top coating It receives the vehicle type and information on the basking shown in the data, and outputs this vehicle type specification data to the coating defect inspection apparatus 1 of the present embodiment (step S1 in FIG. 6).
  • next car type detection process a plurality of photoelectric tube detectors are used to detect the car type (such as the shape of the car) of the car body 5 arriving at the car type detection process, and this detection data is arranged in the next defect inspection process Output to the robot 14.
  • the car type information of the car body 5 is mainly used for selecting the movement trajectory of the robot 14, and the paint color information is mainly used for selecting the photographing conditions of the photographing device 12.
  • the coating defect inspection apparatus 1 of the present embodiment is provided, and the teaching program of the robot 14 and the imaging condition of the imaging device 12 are selected according to the type of vehicle detected in the previous process (FIG. Step S2)
  • the robot 14 moves the pattern irradiator 11 and the imaging device 12 in accordance with the movement trajectory.
  • the pattern irradiator 11 and the photographing device 12 are moved to the respective photographing points P1 to P12, stopped at the respective photographing points P1 to P12, and the light and dark pattern 4 of the inspection surface 2 is photographed ( Step S3 of FIG. From the image of the bright and dark pattern 4 obtained by this, the presence or absence of a coating defect is determined by processing described later (step S4 in FIG.
  • step S5 in FIG. 6 The inspection result (the presence or absence of a defect, the type of defect, the position of the defect, which will be described in detail later) thus obtained is output to the display 6 of the next step.
  • the inspection result sent from the previous step is displayed on the display 6 (step S6 in FIG. 6), and the inspection operator uses the displayed type and position of the coating defect as the actual vehicle Compare and fix.
  • FIG. 7 is a view showing the main coating defects that occur in the top coating of the automobile body 5.
  • the main coating defects generated in the top coating of the automobile body 5 can be classified into defects having irregularities on the surface of the coating film and defects having no irregularities on the surface of the coating film.
  • dust attached to the automobile body 5 before the top coating is applied or dust attached to the automobile body 5 at the time of coating the top coating is left on the wet coating, and it is convexly formed.
  • a thinner or water such as a solvent for the top coating
  • a stain appears as a stain.
  • water stain There is a defect called “water stain”.
  • defects such as "metal spots” or flaws or the like in which the bright pigment is locally concentrated or the bright pigment orientation is uneven are caused.
  • the defect called “penetration defect” in which the coating film is scraped to expose the metal surface of the automobile body 5 is also a defect having no unevenness on the surface of the coating film.
  • FIG. 8 is a view for explaining a method of determining a concavo-convex defect based on a difference between luminance values of an image of light and dark pattern 4. In this inspection method, as shown in the upper left drawing of FIG.
  • the luminance of the image obtained by photographing the pattern of the bright portion 3a shows a white value (for example, 255)
  • the luminance of the image obtained by photographing the pattern of the dark portion 3b indicates a black value (for example, 0), so the luminance value of the difference is a white value (for example, 255).
  • the light of the bright and dark pattern 3 is irregularly reflected due to the concavo-convex defect.
  • the brightness of the gray indicates a gray value (for example 128) between white and black, and the brightness of the image photographed the pattern of the dark part 3b also shows a gray value (for example 128) between black and white
  • the luminance value of the difference is zero, that is, a black value (for example, 0).
  • FIG. 9 is a view for explaining the reason why it is not possible to determine a defect in the coating film which is not a concavo-convex defect based on the difference in luminance value of the image of light and dark pattern 4. That is, as shown in the upper left figure of FIG.
  • the brightness of the image obtained by photographing the pattern of the bright portion 3a is a white value (for example, Since the luminance of the image obtained by photographing the pattern of the dark portion 3b indicates a black value (for example, 0), the luminance value of the difference is a white value (for example, 255).
  • the light of the light and dark pattern 3 is similarly on the surface 2 to be inspected.
  • the brightness of the image obtained by capturing the pattern of the light portion 3a indicates a white value (for example, 255), and the brightness of the image obtained by capturing the pattern of the dark portion 3b is a black value (for example, 0).
  • the luminance value of is a white value (for example, 255). Therefore, these differences are equal, and it is impossible to determine a defect inside the coating film from the difference in luminance value.
  • the coating defect inspection apparatus 1 of the present embodiment by performing the following process, although there are no uneven defects, defects existing inside the coating film and uneven defects are detected. That is, as shown in FIG. 2, with the pattern irradiator 11 and the photographing device 12 mounted on the robot 14 being stopped at a desired inspection position, the bright and dark pattern 3 imaged on the pattern irradiator 11 is inspected While irradiating the surface 2, the light and dark pattern 3 is moved by one or more cycles in the alignment direction of the light portion 3a and the dark portion 3b, and the image of the light and dark pattern 4 reflected on the inspection surface 2 is adjusted to the movement of the light and dark patterns 3, 4
  • the camera 12 takes a plurality of pictures.
  • FIG. 10 is a block diagram showing a coating defect inspection method according to an embodiment of the present invention.
  • the computer in which the image processing program is installed takes in these captured images IM1, extracts the maximum brightness of each position from the plurality of captured images IM1, and generates a maximum brightness image IM2.
  • the maximum lightness of each position from the photographed image IM1 the lightness of each pixel (or a pixel group which is a set of a predetermined number of pixels) of each photographed image IM1 is detected, and the maximum lightness is determined for each pixel Are combined into one image.
  • the inspected surface 2 without using the luminance indicating the brightness per unit area of the light emitter, using the lightness that is the attribute of the color sensation related to the relative brightness of the object surface, the inspected surface 2 has unevenness.
  • FIG. 12 is a diagram for explaining a method of determining a defect in a coating film from the maximum brightness image IM2 shown in FIG.
  • the left figure of FIG. 12 shows a part of the scanning line
  • the central figure of FIG. 12 is a graph showing the measured value of the lightness with respect to the scanning line
  • Scanning is sequentially performed in the horizontal direction from the upper left pixel to the lower right pixel of the maximum brightness image IM2 shown in the left diagram of FIG. 12, and the brightness measured as shown in the center diagram of FIG. Determine if there is. Since the brightness of the coating film differs depending on the paint color acquired in the vehicle type specification detection step of FIG. 5, a predetermined range corresponding to the paint color is selected.
  • the lightness at each position of the maximum lightness image IM2 is not within the predetermined range, it is determined that there is a defect other than the concave and convex defect of the inspection surface 2 at that position and a defect inside the coating film.
  • a stain defect is present at that position. Thinner spots and water stains appear black around their surroundings.
  • the measured brightness is larger than the predetermined range, it is determined that there is a metal spot defect or a penetration defect to the metal surface at that position. It is because metal spots locally contain white parts.
  • the penetration defect to the metal surface is because the metal color appears white, but since the local penetration defect is also a concavo-convex defect, it can also be detected by a difference image IM4 described later.
  • the position is stored and a defect position is specified as shown in the right drawing of FIG.
  • the defect inspection result is collected as defect data for one car body when the inspection of the whole car body 5 is finished, and is output to the display 6 installed in the next process of FIG.
  • the position of the defect the position of the surface 2 to be inspected moved by the robot 14 is fetched from the controller 14a of the robot 14, and the position in the defect determined by the computer 13 is collated with this position. The position of can be identified.
  • the computer in which the image processing program is installed extracts the minimum lightness of each position from the plurality of captured images IM1 captured, and generates the minimum lightness image IM3.
  • the minimum lightness of each position from the photographed image IM1 the lightness of each pixel (or a pixel group which is an aggregation of a predetermined number of pixels) of each photographed image IM1 is detected, and the minimum lightness of each pixel Are combined into one image.
  • FIG. 13 is a diagram for explaining a method of determining a concavo-convex defect from the difference image IM4 shown in FIG.
  • Scanning is sequentially performed in the horizontal direction from the upper left pixel to the lower right pixel of the difference image IM4 shown in the left diagram of FIG. 13, and the lightness measured as shown in the center diagram of FIG. It is determined whether or not.
  • the lightness of the coating film differs depending on the paint color acquired in the vehicle type specification detection step of FIG. 5, it is not necessary to select the threshold value according to the paint color since the difference lightness of the maximum lightness and the minimum lightness is used.
  • the determination principle is the same as that due to the irregular reflection of the unevenness shown in the upper right of FIG. That is, the lightness of the image obtained by photographing the pattern of the bright portion 3a by the irregular reflection of the unevenness shows the gray value between white and black, and the lightness of the image obtained by photographing the pattern of the dark portion 3b is also between black and white Since the gray value is shown, the difference in lightness becomes smaller toward zero.
  • FIG. 11 is a block diagram showing a coating defect inspection method according to another embodiment of the present invention.
  • a maximum brightness image IM2 and a minimum brightness image IM3 are respectively synthesized from a plurality of photographed images IM1, and the maximum brightness image IM2 and the minimum brightness image IM3 are differentially processed to generate a difference image IM4, It is the same as the embodiment shown in FIG. 10 described above.
  • the maximum lightness image IM2 and the difference image IM4 are further combined for each pixel (each position) to generate a combined image IM5.
  • each pixel or a group of pixels which is a set of a predetermined number of pixels is scanned in the vertical and horizontal directions to measure the brightness of each pixel (corresponding to the position of the inspection surface) Do.
  • the measured lightness measured as shown in the central view of FIG. 12 is within the predetermined range indicated by the alternate long and short dash line, the measured lightness as shown in the central view of FIG. It is judged whether it is more than the threshold value shown by. If the measured lightness is not within the predetermined range, it is determined that there is a defect other than the concave and convex defect of the surface 2 to be inspected and a defect inside the coating film at that position. In addition, when the measured lightness is less than the threshold value, it is determined that the uneven defect of the surface 2 to be inspected is present at that position.
  • the inspection is performed based on whether the brightness of each position of the maximum brightness image IM2 is within the predetermined range. It is possible to inspect for the presence of coating defects inside the coating film, such as thinner stains, water stains, metal spots, and penetration defects to metal surfaces.
  • defects such as thin stains and water stains and defects such as metal spots and penetration defects to metal surfaces It can be identified.
  • the coating defect inspection apparatus 1 and the coating defect inspection method of the present embodiment it is determined whether the brightness of each position of the difference image IM4 between the maximum brightness image IM2 and the minimum brightness image IM3 is less than a predetermined threshold. If it is less than the predetermined threshold value, it is determined that there is an uneven defect at that position, so it is possible to inspect also the uneven defect of the inspection surface 2 in addition to the inspection of the coating defect inside the coating film.
  • the coating defect inspection apparatus 1 and the coating defect inspection method of the present embodiment it is determined whether the brightness of each position of the composite image IM5 obtained by combining the maximum brightness image IM2 and the difference image IM4 is within a predetermined range. Therefore, the uneven defects or defects other than the uneven defects can be inspected together in one scan.
  • the robot 14 has a pattern for the automobile body 5 or the like having the inspection surface 2 which can not be processed by one inspection process.
  • Irradiator 11 and imaging device 12 are moved to the position of each inspection surface, and the position of inspection surface 2 moved by robot 14 and the position of the defect determined by computer 13 are input to detect defects in car body 5 Since the position of the identified defect is indicated on the display 6, the position of the identified defect can be immediately identified.
  • the computer 13 corresponds to an image processor, a determiner, and a controller according to the present invention, and the vehicle body 5 corresponds to an object to be inspected according to the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

The present invention is provided with: a pattern irradiation apparatus (11) which, within a surface perpendicular to the irradiation direction, irradiates a surface (2) to be inspected with a bright-and-dark pattern (3) in which bright portions (3a) and dark portions (3b) alternately appear, and which moves the bright-and-dark pattern by at least one pitch of a pair of the bright and dark portions in the arrangement direction of the bright portions and dark portions; an image-capturing apparatus which captures a plurality of images of the bright-and-dark pattern (4), projected by the pattern irradiation apparatus onto the surface to be inspected, according to the movement of the bright-and-dark pattern; an image processing apparatus (13) which extracts, from the plurality of images (IM1) captured by the image-capturing apparatus, the maximum brightness at each position and generates a maximum brightness image (IM2); and a determination unit (13) which determines whether the brightness at each position in the maximum brightness image is within a predetermined range.

Description

塗装欠陥検査装置及び塗装欠陥検査方法Painting defect inspection device and painting defect inspection method
 本発明は、塗装欠陥検査装置及び塗装欠陥検査方法に関するものである。 The present invention relates to a coating defect inspection apparatus and a coating defect inspection method.
 メッキ品や塗装品などの被検査体表面の凹凸や傷などの欠陥を検査する方法として、照射方向に対して垂直な面内で、全ての方向に対して周期的に明部と暗部とが交互に現れる照射パターンを、被検査体の表面に照射し、被検査体の表面に映る照射パターンを、被検査体の表面に沿って所定の方向に移動させ、照射パターンの移動に合わせて、被検査体の表面の同じ範囲に映る照射パターンを撮影し、撮影された被検査体の表面の各位置における、1周期分の画像の輝度の変化に基づいて、被検査体の表面の欠陥を検出する表面検査装置が知られている(特許文献1)。 As a method of inspecting defects such as irregularities and flaws on the surface of the inspection object such as plated products and painted products, light areas and dark areas are periodically formed in all directions in a plane perpendicular to the irradiation direction. The irradiation pattern which appears alternately is irradiated on the surface of the inspection object, the irradiation pattern reflected on the surface of the inspection object is moved along the surface of the inspection object in a predetermined direction, and in accordance with the movement of the irradiation pattern, The irradiation pattern that appears in the same area of the surface of the inspection object is photographed, and defects of the surface of the inspection object are taken based on the change in the luminance of the image for one cycle at each position of the photographed object surface. A surface inspection apparatus for detecting is known (Patent Document 1).
登録実用新案第3197766号公報Registered utility model 3197766
 しかしながら、上記表面検査装置では、メッキ品や塗装品の表面の凹凸や傷などの欠陥は検査できても、表面に凹凸が出ない、シンナー染み、水染み又はメタル斑など、塗膜内部の欠陥は検査できないという問題がある。 However, with the surface inspection apparatus described above, although defects such as irregularities and flaws on the surface of a plated product or a coated product can be inspected, no irregularities appear on the surface, defects such as thinner stain, water stain or metal spots, etc. inside the coating film There is a problem that can not be inspected.
 本発明が解決しようとする課題は、被検査面に凹凸がない塗膜内部の塗装欠陥の有無を検査することができる塗装欠陥検査装置及び塗装欠陥検査方法を提供することである。 The problem to be solved by the present invention is to provide a coating defect inspection apparatus and a coating defect inspection method capable of inspecting the presence or absence of a coating defect inside a coating film having no unevenness on a surface to be inspected.
 本発明は、周期的に明部と暗部とが交互に現れる明暗パターンを被検査面に照射するとともに、明暗パターンの整列方向に1周期以上、移動させ、被検査面に映る明暗パターンの画像を撮影し、撮影された画像から各位置の最大明度を抽出して最大明度画像を生成し、最大明度画像の各位置の明度が所定範囲であるか否かにより、その位置に凹凸欠陥以外の欠陥であって塗膜内部の欠陥の有無を判定することによって上記課題を解決する。 The present invention irradiates the inspection surface with a light and dark pattern in which light areas and dark parts alternately appear periodically, and moves the image of the light and dark pattern reflected on the surface to be inspected by moving it one or more cycles in the alignment direction of the light and dark pattern. Photographing and extracting the maximum lightness of each position from the photographed image to generate a maximum lightness image, and depending on whether the lightness of each position of the maximum lightness image is within a predetermined range, defects other than the uneven defect at that position The problem is solved by determining the presence or absence of a defect inside the coating film.
 明暗パターンの画像の差分画像を用い、凹凸欠陥以外の欠陥であって塗膜内部の欠陥を検査しようとしても、明度が打ち消し合って差分が顕在化しないため欠陥の有無は検査できないが、本発明によれば、明暗パターンの画像から各位置の最大明度を抽出して最大明度画像を生成し、最大明度画像の各位置の明度が所定範囲であるか否かにより検査するので、被検査面に凹凸がない塗膜内部の塗装欠陥の有無を検査することができる。 The present invention can not inspect the presence or absence of a defect because the lightness cancels out and the difference does not become apparent even if an attempt is made to inspect a defect other than the concavo-convex defect and a defect inside the coating film using the difference image of the image of light and dark pattern. According to the above, the maximum brightness of each position is extracted from the image of the light and dark pattern to generate a maximum brightness image, and the inspection is performed based on whether the brightness of each position of the maximum brightness image is within a predetermined range. It is possible to inspect the presence or absence of a coating defect inside the coating film without unevenness.
本発明の一実施の形態に係る塗装欠陥検査装置1を示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the coating defect inspection apparatus 1 which concerns on one embodiment of this invention. 左図は、被検査面に対するパターン照射器及び撮影器の配置例を示す側面図、右図は、パターン照射器に映し出される明暗パターンの移動例を示す正面図である。The left view is a side view showing an arrangement example of the pattern irradiator and the imaging device with respect to the surface to be inspected, and the right view is a front view showing a movement example of the light and dark pattern projected on the pattern irradiator. 図1の塗装欠陥検査装置を自動車ボディの塗装面を検査対象として適用した例を示す斜視図である。It is a perspective view which shows the example which applied the coating defect inspection apparatus of FIG. 1 as a test object to the coating surface of a motor vehicle body. 図3の自動車ボディに対し、ロボットによるパターン照射器及び撮影器の移動軌跡の一例を示す平面図である。It is a top view which shows an example of the movement trace of the pattern irradiator and imaging device by a robot with respect to the vehicle body of FIG. 図1の塗装欠陥検査装置を適用した検査ラインの一例を示す側面図である。It is a side view which shows an example of the inspection line to which the painting defect inspection apparatus of FIG. 1 is applied. 図5の検査ラインにて実行される処理を示すフローチャートである。It is a flowchart which shows the process performed by the inspection line of FIG. 自動車ボディの上塗り塗装において発生する主たる塗装欠陥を示す図である。It is a figure which shows the main coating defect which generate | occur | produces in top-coat coating of a motor vehicle body. 明暗パターンの画像の輝度値の差分に基づいて凹凸欠陥を判定する方法を説明する図である。It is a figure explaining the method to determine an uneven | corrugated defect based on the difference of the luminance value of the image of a light-and-dark pattern. 明暗パターンの画像の輝度値の差分に基づいて凹凸欠陥ではない塗膜内部の欠陥が判定できない理由を説明する図である。It is a figure explaining the reason which can not determine the defect inside the coating film which is not an uneven | corrugated defect based on the difference of the luminance value of the image of a light-dark pattern. 本発明の一実施の形態に係る塗装欠陥検査方法を示すブロック図である。It is a block diagram showing a paint defect inspection method concerning a 1 embodiment of the present invention. 本発明の他の実施の形態に係る塗装欠陥検査方法を示すブロック図である。It is a block diagram which shows the coating defect inspection method which concerns on other embodiment of this invention. 図10に示す最大明度画像から塗膜内部の欠陥を判定する方法を説明する図である。It is a figure explaining the method to determine the defect inside a coating film from the maximum brightness image shown in FIG. 図10に示す差分画像から凹凸欠陥を判定する方法を説明する図である。It is a figure explaining the method to determine an uneven | corrugated defect from the difference image shown in FIG.
 以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の一実施の形態に係る塗装欠陥検査装置1を示す構成図である。本実施形態の塗装欠陥検査装置1は、パターン照射器11と、撮影器12と、画像処理器と判定器と欠陥の位置を特定する制御器との機能を有するコンピュータ13と、ロボット14とを備える。 Hereinafter, embodiments of the present invention will be described based on the drawings. FIG. 1 is a block diagram showing a coating defect inspection apparatus 1 according to an embodiment of the present invention. The coating defect inspection apparatus 1 according to the present embodiment includes a computer 13 having functions of a pattern irradiator 11, an imaging device 12, an image processor, a determinator, and a controller for specifying the position of a defect, and a robot 14. Prepare.
 パターン照射器11は、液晶ディスプレイや有機ELディスプレイなどから構成され、コントローラ11aの制御信号により、照射方向に対して垂直な面内において周期的に明部と暗部とが交互に現れる明暗パターン3を被検査面2に照射するとともに、明暗パターンを明部と暗部の整列方向に、一対の明部及び暗部の1周期以上、移動させる。図2の左図は、被検査面2に対するパターン照射器11及び撮影器12の配置例を示す側面図、図2の右図は、パターン照射器11に映し出される明暗パターンの移動例を示す正面図である。本実施形態の明暗パターン3は、画面の縦方向に延在する矩形の明部3aと、同じく画面の縦方向に延在する矩形の暗部3bとが一対(1周期)となり、これが連続する縞状パターンである。特に限定はされないが、明部3aと暗部3bは同じ形状であることが好ましい。 The pattern irradiator 11 is composed of a liquid crystal display, an organic EL display, etc., and according to the control signal of the controller 11a, a light and dark pattern 3 in which light and dark parts alternately appear periodically in a plane perpendicular to the irradiation direction. While irradiating the inspection surface 2, the light and dark pattern is moved in the alignment direction of the light and dark portions for one or more cycles of the pair of light and dark portions. The left view of FIG. 2 is a side view showing an arrangement example of the pattern irradiator 11 and the imaging device 12 with respect to the inspection surface 2, and the right view of FIG. 2 is a front view showing a movement example of bright and dark patterns projected on the pattern irradiator 11. FIG. In the light-dark pattern 3 of the present embodiment, a rectangular bright portion 3a extending in the vertical direction of the screen and a rectangular dark portion 3b extending in the vertical direction of the screen are paired (one cycle), and these stripes are continuous. Pattern. There is no particular limitation, but it is preferable that the light portion 3a and the dark portion 3b have the same shape.
 こうした明暗パターン3は、塗装欠陥の検査をする際に、コントローラ11aの制御信号により、明暗パターン3を明部3aと暗部3bの整列方向、すなわち図2の右図の左右方向に移動する。このときの移動速度は、後述する撮影器12の撮影速度(単位時間当たりの撮影フレーム数,fps)に応じて設定される。本実施形態では、塗装欠陥の検査をする際に、一つの被検査面2に対して、少なくとも明部3aと暗部3bが1周期、好ましくは2周期以上移動させる。2周期以上移動させるのは、被検査面2に映る明暗パターン4、すなわち撮影器12にて撮影される明暗パターン4の画像は、明部3aと暗部3bとの境界部分がシャープに現れないため、複数周期の明暗パターン4の画像を取得することで検査精度を向上させるためである。なお、被検査面2に映る明暗パターン4、すなわち撮影器12にて撮影される明暗パターン4は、パターン照射器11に映る明暗パターン3と異なるので、これらを区別する意味で異なる符号を用いる。 Such a bright and dark pattern 3 moves the bright and dark pattern 3 in the alignment direction of the bright portion 3a and the dark portion 3b, that is, the left and right direction in the right view of FIG. The moving speed at this time is set in accordance with the photographing speed of the photographing device 12 described later (the number of photographing frames per unit time, fps). In the present embodiment, at the time of inspecting a coating defect, at least the bright portion 3a and the dark portion 3b are moved with respect to one inspection surface 2 by one cycle, preferably two cycles or more. The reason for moving by 2 cycles or more is that the boundary between the light part 3a and the dark part 3b does not appear sharp in the light and dark pattern 4 reflected on the inspection surface 2, that is, the image of the light and dark pattern 4 photographed by the photographing device 12 This is to improve inspection accuracy by acquiring images of light and dark patterns 4 of multiple cycles. The light and dark pattern 4 reflected on the inspection surface 2, that is, the light and dark pattern 4 photographed by the photographing device 12 is different from the light and dark pattern 3 reflected on the pattern irradiator 11.
 パターン照射器11に現す明暗パターン3の形状は、図2に示す縦の縞状の他、横の縞状、斜めの縞状であってもよい。また、縞状以外にも、任意の検査位置において、周期的に明部3aと暗部3bとが交互に繰り返される形状であればよい。さらに、明部3aと暗部3bは、白色と黒色にのみ限定されず、明暗のコントラストがついていれば他の色目であってもよい。 The shape of the light and dark pattern 3 shown in the pattern irradiator 11 may be a horizontal stripe shape or an oblique stripe shape in addition to the vertical stripe shape shown in FIG. Further, other than the stripe shape, any shape may be used as long as the light portion 3a and the dark portion 3b are alternately repeated periodically at an arbitrary inspection position. Furthermore, the light portion 3a and the dark portion 3b are not limited to only white and black, and may have other colors as long as they have contrast of light and dark.
 撮影器12は、CCDカメラなどで構成され、図2に示すように、パターン照射器11から照射された明暗パターン3の被検査面2からの反射光が所定角度で入射されるように、パターン照射器11とともに組み付けられている。そして、撮影器12は、パターン照射器11により被検査面2に映る明暗パターン4の画像を、パターン照射器11の明暗パターン3の移動に合わせて、複数撮影する。上述したとおり、被検査面2に映る明暗パターン4の画像は、明部3aと暗部3bとの境界部分がシャープに現れないため、検査精度を高めるために、複数周期の移動に対して複数フレームの画像を取得することが好ましい。撮影器12にて撮影された明暗パターン4の画像は、画像処理器と判定器と欠陥の位置を特定する制御器との機能を有するコンピュータ13に出力される。 The photographing device 12 is configured by a CCD camera or the like, and as shown in FIG. 2, the pattern light reflected from the inspection surface 2 of the light and dark pattern 3 irradiated from the pattern irradiator 11 is incident at a predetermined angle It is assembled with the irradiator 11. Then, the imaging device 12 captures a plurality of images of the light and dark pattern 4 reflected on the inspection surface 2 by the pattern irradiator 11 in accordance with the movement of the light and dark pattern 3 of the pattern irradiator 11. As described above, in the image of the light and dark pattern 4 reflected on the inspection surface 2, the boundary between the light portion 3a and the dark portion 3b does not appear sharp. It is preferable to acquire an image of The image of the light and dark pattern 4 photographed by the photographing unit 12 is output to the computer 13 having the functions of an image processor, a judgment unit, and a controller for specifying the position of the defect.
 コンピュータ13は、撮影器12により撮影された複数の画像から各位置の最大明度を抽出して最大明度画像を生成する画像処理器と、最大明度画像の各位置の明度が、所定範囲にあるか否かを判定する判定器と、欠陥の位置を特定する制御器として機能する。具体的には、画像処理ソフトウェアと判定ソフトウェアと位置特定ソフトウェアがインストールされ、CPU,ROM,RAMといった演算器等により、これらソフトウェアの手順に沿って所定の処理が実行される。これらの具体的処理の詳細については後述する。 The computer 13 extracts the maximum brightness of each position from the plurality of images captured by the imaging device 12 and generates an image processor with the maximum brightness, and does the brightness of each position of the maximum brightness image fall within a predetermined range? It functions as a determinator that determines whether or not it is a controller and a controller that specifies the position of a defect. Specifically, image processing software, determination software, and position specifying software are installed, and predetermined processing is executed according to the procedure of the software by a computing unit such as a CPU, a ROM, and a RAM. Details of these specific processes will be described later.
 ロボット14は、ハンドの先端にパターン照射器11及び撮影器12を装着し、これらパターン照射器11及び撮影器12が被検査面2に対して所定の姿勢となるように搬送するように、コントローラ14aにティーチングプログラムがインストールされている。図3は、自動車ボディ5の塗装面を検査対象とした例を示す斜視図であり、ハンドの先端にパターン照射器11及び撮影器12を装着した1台のロボット14を示し、図4は、自動車ボディ5の左右それぞれに2台ずつ配置された合計4台のロボット14により、自動車ボディ5のフード51及びルーフ52の塗装面を検査する際の移動軌跡の一例を示す平面図である。なお、これら4台のロボット15によりフロントフェンダ、サイドドア、リヤフェンダ及びバックドアの塗装面も検査対象とされるがこれらについての図示は省略する。 The robot 14 mounts the pattern irradiator 11 and the imaging device 12 at the tip of the hand, and carries the controller such that the pattern irradiator 11 and the imaging device 12 are transported to the inspection surface 2 in a predetermined posture. The teaching program is installed in 14a. FIG. 3 is a perspective view showing an example in which the painted surface of the car body 5 is to be inspected, and shows one robot 14 having the pattern irradiator 11 and the photographing device 12 attached to the tip of the hand. FIG. 8 is a plan view showing an example of a movement trajectory when inspecting the painted surfaces of the hood 51 and the roof 52 of the car body 5 by a total of four robots 14 arranged two each on the left and right of the car body 5; The painted surfaces of the front fender, the side door, the rear fender and the back door are also inspected by these four robots 15, but illustration thereof is omitted.
 たとえば、図4に示すフード51の塗装面の検査を行う場合には、同図の左下のロボット14が、点P1→点P2→点P3→点P4→点P5→点P6の順に移動し、各点において停止し、被検査面2に映った明暗パターン4の画像を取得する。これにより、フード51の左半分の6つの被検査面2の明暗パターン4の画像が得られる。同様に、左上のロボット14が、点P7→点P8→点P9→点P10→点P11→点P12の順に移動し、各点において停止し、被検査面2に映った明暗パターン4の画像を取得する。これにより、フード51の右半分の6つの被検査面2の明暗パターン4の画像が得られる。図4に示すルーフ52の塗装面の検査を行う場合も同様にして、右下のロボット14と右上のロボット14が、ルーフ52の右半分と左半分の被検査面をそれぞれ分担し、明暗パターン4の画像を取得する。図示は省略するが、フード51及びルーフ52以外のフロントフェンダ、サイドドア、リヤフェンダ及びバックドアの塗装面の検査についても、4台のロボット14によりパターン照射器11及び撮影器12を図4に示すような移動軌跡で移動させ、明暗パターン4の画像を取得する。 For example, when inspecting the painted surface of the hood 51 shown in FIG. 4, the robot 14 at the lower left of the figure moves in the order of point P1 → point P2 → point P3 → point P4 → point P5 → point P6, It stops at each point, and an image of the light and dark pattern 4 reflected on the inspection surface 2 is acquired. As a result, an image of the light and dark patterns 4 of the six inspection surfaces 2 in the left half of the hood 51 is obtained. Similarly, the robot 14 on the upper left moves in the order of point P7 → point P8 → point P9 → point P10 → point P11 → point P12, stops at each point, and displays the light and dark pattern 4 image on the inspection surface 2 get. As a result, an image of the light and dark patterns 4 of the six inspection surfaces 2 in the right half of the hood 51 is obtained. Similarly, when inspecting the painted surface of the roof 52 shown in FIG. 4, the robot 14 at the lower right and the robot 14 at the upper right share the inspection surfaces of the right half and the left half of the roof 52, respectively, Get 4 images. Although illustration is omitted, the pattern irradiator 11 and the photographing device 12 are shown in FIG. 4 by the four robots 14 also for inspection of the painted surface of the front fender, the side door, the rear fender and the back door other than the hood 51 and the roof 52. The movement is performed as described above, and an image of light and dark pattern 4 is acquired.
 図5は、本実施形態の塗装欠陥検査装置1を適用した検査ラインの一例を示す側面図、図6は当該検査ラインにて実行される処理を示すフローチャートである。本例においては、まず車種仕様検出工程において、上塗り塗装を完了した自動車ボディ5のそれぞれに装着された車種仕様データ記憶器から、当該車種仕様検出工程に到着した自動車ボディ5の車種仕様(生産指示データに示された車種や徒食に関する情報)を受信し、この車種仕様データを本実施形態の塗装欠陥検査装置1に出力する(図6のステップS1)。次の車種検知工程では、複数の光電管検知器を用いて、当該車種検知工程に到着した自動車ボディ5の車種(車両の形状など)を検知し、この検知データを次の欠陥検査工程に配置されたロボット14に出力する。なお、自動車ボディ5の車種情報は、主としてロボット14の移動軌跡の選択に用いられ、塗色情報は、主として撮影器12の撮影条件の選択に用いられる。 FIG. 5 is a side view showing an example of an inspection line to which the coating defect inspection device 1 of the present embodiment is applied, and FIG. 6 is a flowchart showing processing executed in the inspection line. In this example, first, in the car type specification detection process, the car type specification of the car body 5 arriving at the car type specification detection process from the car type specification data memory attached to each of the car body 5 completed the top coating It receives the vehicle type and information on the basking shown in the data, and outputs this vehicle type specification data to the coating defect inspection apparatus 1 of the present embodiment (step S1 in FIG. 6). In the next car type detection process, a plurality of photoelectric tube detectors are used to detect the car type (such as the shape of the car) of the car body 5 arriving at the car type detection process, and this detection data is arranged in the next defect inspection process Output to the robot 14. The car type information of the car body 5 is mainly used for selecting the movement trajectory of the robot 14, and the paint color information is mainly used for selecting the photographing conditions of the photographing device 12.
 次の欠陥検査工程には、本実施形態の塗装欠陥検査装置1が設けられ、前工程で検出された車種に応じてロボット14のティーチングプログラム及び撮影器12の撮影条件を選択し(図6のステップS2)、その移動軌跡にしたがって、ロボット14がパターン照射器11及び撮影器12を移動させる。そして、図4に示すように、各撮影ポイントP1~P12にパターン照射器11及び撮影器12を移動させ、各撮影ポイントP1~P12で停止させ、被検査面2の明暗パターン4を撮影する(図6のステップS3)。これにより得られた明暗パターン4の画像から、後述する処理によって塗装欠陥の有無を判定し(図6のステップS4)、自動車ボディ5の1台分の検査結果をまとめる(図6のステップS5)。こうして得られた検査結果(詳細は後述するが、欠陥の有無、欠陥の種類、欠陥の位置)を次工程の表示器6に出力する。最後の検査結果の表示工程には、前工程から送られてきた検査結果が表示器6に表示され(図6のステップS6)、検査作業者は表示された塗装欠陥の種類と位置を実車に照らし合わせ、手直し修正をする。 In the next defect inspection process, the coating defect inspection apparatus 1 of the present embodiment is provided, and the teaching program of the robot 14 and the imaging condition of the imaging device 12 are selected according to the type of vehicle detected in the previous process (FIG. Step S2) The robot 14 moves the pattern irradiator 11 and the imaging device 12 in accordance with the movement trajectory. Then, as shown in FIG. 4, the pattern irradiator 11 and the photographing device 12 are moved to the respective photographing points P1 to P12, stopped at the respective photographing points P1 to P12, and the light and dark pattern 4 of the inspection surface 2 is photographed ( Step S3 of FIG. From the image of the bright and dark pattern 4 obtained by this, the presence or absence of a coating defect is determined by processing described later (step S4 in FIG. 6), and the inspection results for one car body 5 are summarized (step S5 in FIG. 6). . The inspection result (the presence or absence of a defect, the type of defect, the position of the defect, which will be described in detail later) thus obtained is output to the display 6 of the next step. In the final inspection result display step, the inspection result sent from the previous step is displayed on the display 6 (step S6 in FIG. 6), and the inspection operator uses the displayed type and position of the coating defect as the actual vehicle Compare and fix.
 次に、本実施形態の塗装欠陥検査装置1による塗装欠陥の検査方法について説明する。図7は、自動車ボディ5の上塗り塗装において発生する主たる塗装欠陥を示す図である。自動車ボディ5の上塗り塗装において発生する主たる塗装欠陥は、塗膜の表面に凹凸のある欠陥と、塗膜の表面に凹凸のない欠陥とに分類することができる。塗膜の表面に凹凸のある欠陥としては、上塗り塗料の塗装前に自動車ボディ5に付着したゴミ又は上塗り塗料の塗装時に自動車ボディ5に付着したゴミがウェット塗膜に残り、それが凸状に現れる「ごみぶつ」と呼ばれる欠陥、塗膜の底面側に残った上塗り塗料の溶剤が半硬化した塗膜を突き抜けて蒸発することで小さな孔として現れる「ピンホール」と呼ばれる欠陥、撥油性又は撥水性の物質がウェット塗膜に飛散し、クレータ状に現れる「ハジキ」と呼ばれる欠陥がある。 Next, the inspection method of the coating defect by the coating defect inspection apparatus 1 of this embodiment is demonstrated. FIG. 7 is a view showing the main coating defects that occur in the top coating of the automobile body 5. The main coating defects generated in the top coating of the automobile body 5 can be classified into defects having irregularities on the surface of the coating film and defects having no irregularities on the surface of the coating film. As a defect having unevenness on the surface of the coating film, dust attached to the automobile body 5 before the top coating is applied or dust attached to the automobile body 5 at the time of coating the top coating is left on the wet coating, and it is convexly formed. Defects called "dust bumps", solvents in the top coat left on the bottom side of the coating penetrate through the semi-cured coating and evaporate as defects called "pinholes" appearing as small holes, oil or oil repellency There is a defect called "hajiki" that appears in the form of craters, as water-based substances scatter in the wet coating.
 また、塗膜の表面に凹凸のない欠陥としては、上塗り塗料の塗装時にウェット塗膜の内部にシンナー又は水(上塗り塗料の溶剤など)が局部的に残留し、染みとなって現れる「シンナー染み」又は「水染み」と呼ばれる欠陥がある。また、図7には示さないが、メタリック系上塗り塗料において、光輝性顔料が局部的に集中したり、光輝性顔料の配向が不均一となる「メタル斑」と呼ばれる欠陥、傷などが原因で塗膜が削られて自動車ボディ5の金属面が露出する「貫通欠陥」と呼ばれる欠陥も塗膜の表面に凹凸のない欠陥である。 In addition, as a defect having no unevenness on the surface of the coating, a thinner or water (such as a solvent for the top coating) remains locally inside the wet coating when the top coating is applied, and a stain appears as a stain. There is a defect called “water stain”. Also, although not shown in FIG. 7, in metallic top coats, defects such as "metal spots" or flaws or the like in which the bright pigment is locally concentrated or the bright pigment orientation is uneven are caused. The defect called "penetration defect" in which the coating film is scraped to expose the metal surface of the automobile body 5 is also a defect having no unevenness on the surface of the coating film.
 上述した従来技術の表面検査装置では、明部と暗部とが交互に現れる明暗パターン3を被検査面2に照射し、被検査面2に映る明暗パターン4を撮影し、撮影された被検査面2の各位置における、1周期分の画像の輝度の変化に基づいて、被検査体の表面の欠陥を検出する。図8は、明暗パターン4の画像の輝度値の差分に基づいて凹凸欠陥を判定する方法を説明する図である。この検査方法において、図8の左上図に示すように、被検査面2に凹凸欠陥がない場合には、明部3aのパターンを撮影した画像の輝度は白色の値(たとえば255)を示し、暗部3bのパターンを撮影した画像の輝度は黒色の値(たとえば0)を示すので、その差分の輝度値は白色の値(たとえば255)となる。これに対して、図8の右上図に示すように、被検査面2に凹凸欠陥がある場合には、凹凸欠陥により明暗パターン3の光が乱反射するため、明部3aのパターンを撮影した画像の輝度は白色と黒色との間のグレー色の値(たとえば128)を示し、暗部3bのパターンを撮影した画像の輝度も黒色と白色との間のグレー色の値(たとえば128)を示すので、その差分の輝度値はゼロ、すなわち黒色の値(たとえば0)となる。これにより、凹凸欠陥の有無が判定できる。 In the above-described surface inspection apparatus of the prior art, a light and dark pattern 3 in which light portions and dark portions appear alternately is irradiated to the surface to be inspected 2, and the light and dark pattern 4 reflected on the surface to be inspected 2 is photographed. Defects on the surface of the object to be inspected are detected based on the change in the luminance of the image for one cycle at each position 2. FIG. 8 is a view for explaining a method of determining a concavo-convex defect based on a difference between luminance values of an image of light and dark pattern 4. In this inspection method, as shown in the upper left drawing of FIG. 8, when the inspection surface 2 has no concave and convex defects, the luminance of the image obtained by photographing the pattern of the bright portion 3a shows a white value (for example, 255), The luminance of the image obtained by photographing the pattern of the dark portion 3b indicates a black value (for example, 0), so the luminance value of the difference is a white value (for example, 255). On the other hand, as shown in the upper right view of FIG. 8, when the inspection surface 2 has a concavo-convex defect, the light of the bright and dark pattern 3 is irregularly reflected due to the concavo-convex defect. The brightness of the gray indicates a gray value (for example 128) between white and black, and the brightness of the image photographed the pattern of the dark part 3b also shows a gray value (for example 128) between black and white The luminance value of the difference is zero, that is, a black value (for example, 0). Thereby, the presence or absence of an uneven | corrugated defect can be determined.
 しかしながら、図7に示すシンナー染み、水染み、図示はしないがメタル斑など、被検査面2に凹凸のない欠陥(以下、塗膜内部の欠陥ともいう。)について従来技術の検査装置を用いると、輝度の差分を求めてもこの種の欠陥の有無は判定できない。図9は、明暗パターン4の画像の輝度値の差分に基づいて凹凸欠陥ではない塗膜内部の欠陥が判定できない理由を説明する図である。すなわち、図9の左上図に示すように、被検査面2に凹凸欠陥がなく且つ塗膜内部の欠陥もない場合には、明部3aのパターンを撮影した画像の輝度は白色の値(たとえば255)を示し、暗部3bのパターンを撮影した画像の輝度は黒色の値(たとえば0)を示すので、その差分の輝度値は白色の値(たとえば255)となる。これに対して、図9の右上図に示すように、被検査面2に凹凸欠陥がなく且つ塗膜内部に欠陥がある場合にも、被検査面2においては明暗パターン3の光が同様に反射するため、明部3aのパターンを撮影した画像の輝度は白色の値(たとえば255)を示し、暗部3bのパターンを撮影した画像の輝度は黒色の値(たとえば0)を示すので、その差分の輝度値は白色の値(たとえば255)となる。したがって、これらの差分は等しくなり、輝度値の差分から塗膜内部の欠陥は判定できないことになる。 However, when using the inspection apparatus of the prior art with respect to a defect having no unevenness on the inspected surface 2 (hereinafter, also referred to as a defect inside the coating film) such as a thinner stain, a water stain, or a metal spot, not shown. The presence or absence of this type of defect can not be determined even if the difference in luminance is obtained. FIG. 9 is a view for explaining the reason why it is not possible to determine a defect in the coating film which is not a concavo-convex defect based on the difference in luminance value of the image of light and dark pattern 4. That is, as shown in the upper left figure of FIG. 9, when the surface 2 to be inspected has no concave and convex defects and no defect inside the coating film, the brightness of the image obtained by photographing the pattern of the bright portion 3a is a white value (for example, Since the luminance of the image obtained by photographing the pattern of the dark portion 3b indicates a black value (for example, 0), the luminance value of the difference is a white value (for example, 255). On the other hand, as shown in the upper right drawing of FIG. 9, even when there are no uneven defects on the surface 2 to be inspected and there are defects inside the coating film, the light of the light and dark pattern 3 is similarly on the surface 2 to be inspected. Since the light is reflected, the brightness of the image obtained by capturing the pattern of the light portion 3a indicates a white value (for example, 255), and the brightness of the image obtained by capturing the pattern of the dark portion 3b is a black value (for example, 0). The luminance value of is a white value (for example, 255). Therefore, these differences are equal, and it is impossible to determine a defect inside the coating film from the difference in luminance value.
 このため、本実施形態の塗装欠陥検査装置1においては、次の処理を行うことで凹凸欠陥はないが塗膜内部に存在する欠陥と、凹凸欠陥とを検出する。すなわち、図2に示すように、ロボット14に装着されたパターン照射器11及び撮影器12を所望の検査位置に停止させた状態で、パターン照射器11に映された明暗パターン3を、被検査面2に照射するとともに、当該明暗パターン3を明部3aと暗部3bの整列方向に1周期以上移動させ、被検査面2に映る明暗パターン4の画像を、明暗パターン3,4の移動に合わせて、撮影器12により複数撮影する。上述したとおり、この明暗パターン4の画像の枚数(フレーム数)は、特に限定されないが、求める検査精度と検査の生産性とを考慮して適宜の値に設定する。この所望位置において撮影された複数の撮影画像IM1を図10の左端に示す。図10は、本発明の一実施の形態に係る塗装欠陥検査方法を示すブロック図である。 For this reason, in the coating defect inspection apparatus 1 of the present embodiment, by performing the following process, although there are no uneven defects, defects existing inside the coating film and uneven defects are detected. That is, as shown in FIG. 2, with the pattern irradiator 11 and the photographing device 12 mounted on the robot 14 being stopped at a desired inspection position, the bright and dark pattern 3 imaged on the pattern irradiator 11 is inspected While irradiating the surface 2, the light and dark pattern 3 is moved by one or more cycles in the alignment direction of the light portion 3a and the dark portion 3b, and the image of the light and dark pattern 4 reflected on the inspection surface 2 is adjusted to the movement of the light and dark patterns 3, 4 The camera 12 takes a plurality of pictures. As described above, the number of images (frame number) of the light-dark pattern 4 is not particularly limited, but is set to an appropriate value in consideration of the inspection accuracy to be obtained and the productivity of the inspection. A plurality of photographed images IM1 photographed at this desired position are shown at the left end of FIG. FIG. 10 is a block diagram showing a coating defect inspection method according to an embodiment of the present invention.
 画像処理プログラムがインストールされたコンピュータは、これらの撮影画像IM1を取り込み、複数の撮影画像IM1から各位置の最大明度を抽出して最大明度画像IM2を生成する。ここで、撮影画像IM1から各位置の最大明度を抽出するには、各撮影画像IM1の各画素(又は所定数の画素の集合体である画素群)の明度を検出し、各画素について最大明度を示す画素を一つの画像に合成する。本実施形態では、発光体の単位面積当たりの明るさを示す輝度を用いずに、物体表面の相対的な明るさに関する色感覚の属性である明度を用いることで、被検査面2に凹凸のない欠陥であって塗膜内部に存在する欠陥を検出することができる。輝度を用いると、被検査面2の反射光の強度が検出されるので、凹凸の状態が同じ被検査面2に対しては、塗膜内部の欠陥まで検出できないからである。 The computer in which the image processing program is installed takes in these captured images IM1, extracts the maximum brightness of each position from the plurality of captured images IM1, and generates a maximum brightness image IM2. Here, in order to extract the maximum lightness of each position from the photographed image IM1, the lightness of each pixel (or a pixel group which is a set of a predetermined number of pixels) of each photographed image IM1 is detected, and the maximum lightness is determined for each pixel Are combined into one image. In the present embodiment, without using the luminance indicating the brightness per unit area of the light emitter, using the lightness that is the attribute of the color sensation related to the relative brightness of the object surface, the inspected surface 2 has unevenness. It is possible to detect non-defective defects present inside the coating film. When the luminance is used, the intensity of the reflected light of the surface 2 to be inspected is detected, so that the defect in the inside of the coating can not be detected on the surface 2 to be inspected which has the same uneven state.
 このようにして複数の撮影画像IM1から最大明度画像IM2を合成して求めたら、当該最大明度画像IM2の各画素(又は所定数の画素の集合体である画素群)を縦横に走査し、各画素(被検査面の位置に相当する)の明度を測定する。図12は、図10に示す最大明度画像IM2から塗膜内部の欠陥を判定する方法を説明する図である。図12の左図は、走査線の一部を示し、図12の中央図は、その走査線に対する明度の測定値を示すグラフであり、図12の右図は、塗膜内部の欠陥の範囲を示す図である。図12の左図に示す最大明度画像IM2の左上の画素から右下の画素まで横方向に順次走査し、図12の中央図に示すように測定された明度が、一点鎖線で示す所定範囲にあるか否かを判定する。塗膜の明度は、図5の車種仕様検出工程にて取得される塗色により異なるため、塗色に応じた所定範囲を選択する。 Thus, when the maximum lightness image IM2 is obtained by combining the plurality of photographed images IM1, each pixel of the maximum lightness image IM2 (or a pixel group which is a set of a predetermined number of pixels) is scanned vertically and horizontally. The brightness of the pixel (corresponding to the position of the surface to be inspected) is measured. FIG. 12 is a diagram for explaining a method of determining a defect in a coating film from the maximum brightness image IM2 shown in FIG. The left figure of FIG. 12 shows a part of the scanning line, the central figure of FIG. 12 is a graph showing the measured value of the lightness with respect to the scanning line, and the right figure of FIG. FIG. Scanning is sequentially performed in the horizontal direction from the upper left pixel to the lower right pixel of the maximum brightness image IM2 shown in the left diagram of FIG. 12, and the brightness measured as shown in the center diagram of FIG. Determine if there is. Since the brightness of the coating film differs depending on the paint color acquired in the vehicle type specification detection step of FIG. 5, a predetermined range corresponding to the paint color is selected.
 そして、最大明度画像IM2の各位置の明度が、所定範囲にない場合には、その位置に被検査面2の凹凸欠陥以外の欠陥であって塗膜内部の欠陥があると判定する。具体的には、図12の中央図に示すように、測定された明度が所定範囲より小さい場合には、その位置に染み欠陥があると判定する。シンナー染みや水染みは、その周囲が黒く映るからである。逆に、測定された明度が所定範囲より大きい場合には、その位置にメタル斑欠陥又は金属面までの貫通欠陥があると判定する。メタル斑は局部的に白い部分を含むからである。なお、金属面までの貫通欠陥は、金属色が白く映るからであるが、局部的な貫通欠陥は凹凸欠陥でもあるため、後述する差分画像IM4によっても検出することができる。 Then, when the lightness at each position of the maximum lightness image IM2 is not within the predetermined range, it is determined that there is a defect other than the concave and convex defect of the inspection surface 2 at that position and a defect inside the coating film. Specifically, as shown in the central view of FIG. 12, when the measured lightness is smaller than the predetermined range, it is determined that a stain defect is present at that position. Thinner spots and water stains appear black around their surroundings. Conversely, if the measured brightness is larger than the predetermined range, it is determined that there is a metal spot defect or a penetration defect to the metal surface at that position. It is because metal spots locally contain white parts. The penetration defect to the metal surface is because the metal color appears white, but since the local penetration defect is also a concavo-convex defect, it can also be detected by a difference image IM4 described later.
 最大明度画像IM2の各画素(各位置)の走査により、所定範囲を外れた位置が検出されたら、その位置を記憶し、図12の右図に示すように欠陥位置を特定する。この欠陥検査結果は、自動車ボディ5の全体の検査を終了した段階で自動車ボディ1台分の欠陥データとして纏められ、図5の次工程に設置された表示器6に出力される。なお、欠陥の位置は、ロボット14により移動した被検査面2の位置をロボット14のコントローラ14aから取り込み、この位置とコンピュータ13により判定された欠陥の位置とを照合することにより自動車ボディ5における欠陥の位置を特定することができる。 When a position out of the predetermined range is detected by scanning each pixel (each position) of the maximum lightness image IM2, the position is stored and a defect position is specified as shown in the right drawing of FIG. The defect inspection result is collected as defect data for one car body when the inspection of the whole car body 5 is finished, and is output to the display 6 installed in the next process of FIG. As the position of the defect, the position of the surface 2 to be inspected moved by the robot 14 is fetched from the controller 14a of the robot 14, and the position in the defect determined by the computer 13 is collated with this position. The position of can be identified.
 一方において、画像処理プログラムがインストールされたコンピュータは、図10に示すように、取り込んだ複数の撮影画像IM1から各位置の最小明度を抽出して最小明度画像IM3を生成する。ここで、撮影画像IM1から各位置の最小明度を抽出するには、各撮影画像IM1の各画素(又は所定数の画素の集合体である画素群)の明度を検出し、各画素について最小明度を示す画素を一つの画像に合成する。 On the other hand, as shown in FIG. 10, the computer in which the image processing program is installed extracts the minimum lightness of each position from the plurality of captured images IM1 captured, and generates the minimum lightness image IM3. Here, in order to extract the minimum lightness of each position from the photographed image IM1, the lightness of each pixel (or a pixel group which is an aggregation of a predetermined number of pixels) of each photographed image IM1 is detected, and the minimum lightness of each pixel Are combined into one image.
 このようにして複数の撮影画像IM1から最小明度画像IM3を合成して求めたら、同時又は前後して合成した最大明度画像IM2と、各位置(各画素)における明度の差分を求める差分処理を実行し、差分画像IM4を生成する。そして、差分画像IM4の各画素(又は所定数の画素の集合体である画素群)を縦横に走査し、各画素(被検査面の位置に相当する)の明度を測定する。図13は、図10に示す差分画像IM4から凹凸欠陥を判定する方法を説明する図である。図13の左図に示す差分画像IM4の左上の画素から右下の画素まで横方向に順次走査し、図13の中央図に示すように測定された明度が、一点鎖線で示す閾値以上であるか否かを判定する。塗膜の明度は、図5の車種仕様検出工程にて取得される塗色により異なるが、最大明度と最小明度の差分明度を用いるため、塗色に応じた閾値を選択する必要はない。 In this way, when the minimum lightness image IM3 is synthesized from the plurality of photographed images IM1, the difference process is performed to obtain the difference in lightness at each position (each pixel) and the maximum lightness image IM2 synthesized simultaneously or before and after , And generates a difference image IM4. Then, each pixel (or a pixel group which is a set of a predetermined number of pixels) in the difference image IM4 is scanned in the vertical and horizontal directions, and the lightness of each pixel (corresponding to the position of the inspection surface) is measured. FIG. 13 is a diagram for explaining a method of determining a concavo-convex defect from the difference image IM4 shown in FIG. Scanning is sequentially performed in the horizontal direction from the upper left pixel to the lower right pixel of the difference image IM4 shown in the left diagram of FIG. 13, and the lightness measured as shown in the center diagram of FIG. It is determined whether or not. Although the lightness of the coating film differs depending on the paint color acquired in the vehicle type specification detection step of FIG. 5, it is not necessary to select the threshold value according to the paint color since the difference lightness of the maximum lightness and the minimum lightness is used.
 この走査により、測定された明度が閾値未満であるとその位置に凹凸欠陥があると判定する。この判定原理は、図8の右上図に示す凹凸の乱反射によるものと同じである。すなわち、凹凸の乱反射によって明部3aのパターンを撮影した画像の明度は白色と黒色との間のグレー色の値を示し、暗部3bのパターンを撮影した画像の明度も黒色と白色との間のグレー色の値を示すので、その明度の差分はゼロに近づくように小さくなる。 By this scanning, if the measured lightness is less than the threshold value, it is determined that the uneven defect is present at that position. The determination principle is the same as that due to the irregular reflection of the unevenness shown in the upper right of FIG. That is, the lightness of the image obtained by photographing the pattern of the bright portion 3a by the irregular reflection of the unevenness shows the gray value between white and black, and the lightness of the image obtained by photographing the pattern of the dark portion 3b is also between black and white Since the gray value is shown, the difference in lightness becomes smaller toward zero.
 差分画像IM4の各画素(各位置)の走査により、閾値未満となる位置が検出されたら、その位置を記憶し、図13の右図に示すように欠陥位置を特定する。この欠陥検査結果は、図12の塗膜内部の欠陥とともに、自動車ボディ5の全体の検査を終了した段階で自動車ボディ1台分の欠陥データとして纏められ、図5の次工程に設置された表示器6に出力される。なお、欠陥の位置は、ロボット14により移動した被検査面2の位置をロボット14のコントローラ14aから取り込み、この位置とコンピュータ13により判定された欠陥の位置とを照合することにより自動車ボディ5における欠陥の位置を特定することができる。 When a position below the threshold is detected by scanning each pixel (each position) of the difference image IM4, the position is stored, and a defect position is specified as shown in the right diagram of FIG. This defect inspection result is collected as defect data for one car body at the stage when the inspection of the whole car body 5 is finished together with the defect inside the paint film of FIG. 12, and the display installed in the next process of FIG. Output to the signal generator 6. As the position of the defect, the position of the surface 2 to be inspected moved by the robot 14 is fetched from the controller 14a of the robot 14, and the position in the defect determined by the computer 13 is collated with this position. The position of can be identified.
 上述した図10に示す塗装欠陥検査方法では、最大明度画像IM2を走査して塗膜内部の欠陥を判定し、差分画像IM4を走査して凹凸欠陥を判定したが、これら2つの明度の測定走査を一つの走査とすることもできる。図11は、本発明の他の実施の形態に係る塗装欠陥検査方法を示すブロック図である。図11において、複数の撮影画像IM1から最大明度画像IM2と最小明度画像IM3をそれぞれ合成し、これら最大明度画像IM2と最小明度画像IM3とを差分処理して差分画像IM4を生成するところまでは、上述した図10に示す実施形態と同じである。本実施形態では、さらに最大明度画像IM2と差分画像IM4とを各画素(各位置)について合成処理し、合成画像IM5を生成する。合成画像IM5を生成したら、当該合成画像IM5の各画素(又は所定数の画素の集合体である画素群)を縦横に走査し、各画素(被検査面の位置に相当する)の明度を測定する。 In the coating defect inspection method shown in FIG. 10 described above, the maximum brightness image IM2 is scanned to determine defects in the coating film, and the difference image IM4 is scanned to determine uneven defects. These two brightness measurement scans Can be a single scan. FIG. 11 is a block diagram showing a coating defect inspection method according to another embodiment of the present invention. In FIG. 11, a maximum brightness image IM2 and a minimum brightness image IM3 are respectively synthesized from a plurality of photographed images IM1, and the maximum brightness image IM2 and the minimum brightness image IM3 are differentially processed to generate a difference image IM4, It is the same as the embodiment shown in FIG. 10 described above. In the present embodiment, the maximum lightness image IM2 and the difference image IM4 are further combined for each pixel (each position) to generate a combined image IM5. After the composite image IM5 is generated, each pixel (or a group of pixels which is a set of a predetermined number of pixels) is scanned in the vertical and horizontal directions to measure the brightness of each pixel (corresponding to the position of the inspection surface) Do.
 そして、図12の中央図に示すように測定された明度が一点鎖線で示す所定範囲にあるか否かを判定すると同時に、図13の中央図に示すように、測定された明度が、一点鎖線で示す閾値以上であるか否かを判定する。測定された明度が、所定範囲にない場合には、その位置に被検査面2の凹凸欠陥以外の欠陥であって塗膜内部の欠陥があると判定する。また、測定された明度が閾値未満である場合には、その位置に被検査面2の凹凸欠陥があると判定する。 Then, at the same time it is determined whether the lightness measured as shown in the central view of FIG. 12 is within the predetermined range indicated by the alternate long and short dash line, the measured lightness as shown in the central view of FIG. It is judged whether it is more than the threshold value shown by. If the measured lightness is not within the predetermined range, it is determined that there is a defect other than the concave and convex defect of the surface 2 to be inspected and a defect inside the coating film at that position. In addition, when the measured lightness is less than the threshold value, it is determined that the uneven defect of the surface 2 to be inspected is present at that position.
 以上のとおり、本実施形態の塗装欠陥検査装置1及び塗装欠陥検査方法によれば、最大明度画像IM2の各位置の明度が所定範囲であるか否かにより検査するので、被検査面2に凹凸がない塗膜内部の塗装欠陥、たとえばシンナー染み、水染み、メタル斑、金属面までの貫通欠陥などの有無を検査することができる。 As described above, according to the coating defect inspection device 1 and the coating defect inspection method of the present embodiment, the inspection is performed based on whether the brightness of each position of the maximum brightness image IM2 is within the predetermined range. It is possible to inspect for the presence of coating defects inside the coating film, such as thinner stains, water stains, metal spots, and penetration defects to metal surfaces.
 また、最大明度画像IM2の各位置の明度が所定範囲未満であるか、所定範囲を超えたかにより、シンナー染みや水染みなどの欠陥と、メタル斑や金属面までの貫通欠陥などの欠陥とを識別することができる。 In addition, depending on whether the lightness of each position of the maximum lightness image IM2 is less than a predetermined range or exceeds a predetermined range, defects such as thin stains and water stains and defects such as metal spots and penetration defects to metal surfaces It can be identified.
 また、本実施形態の塗装欠陥検査装置1及び塗装欠陥検査方法によれば、最大明度画像IM2と最小明度画像IM3との差分画像IM4の各位置の明度が所定の閾値未満であるかを判定し、所定の閾値未満の場合にはその位置に凹凸欠陥があると判定するので、上記塗膜内部の塗装欠陥の検査に加えて、被検査面2の凹凸欠陥についても検査することができる。 Further, according to the coating defect inspection apparatus 1 and the coating defect inspection method of the present embodiment, it is determined whether the brightness of each position of the difference image IM4 between the maximum brightness image IM2 and the minimum brightness image IM3 is less than a predetermined threshold. If it is less than the predetermined threshold value, it is determined that there is an uneven defect at that position, so it is possible to inspect also the uneven defect of the inspection surface 2 in addition to the inspection of the coating defect inside the coating film.
 また、本実施形態の塗装欠陥検査装置1及び塗装欠陥検査方法によれば、最大明度画像IM2と差分画像IM4とを合成した合成画像IM5の各位置の明度が所定範囲にあるか否かを判定するので、凹凸欠陥又は凹凸欠陥以外の欠陥を、1回の走査にて併せて検査することができる。 Further, according to the coating defect inspection apparatus 1 and the coating defect inspection method of the present embodiment, it is determined whether the brightness of each position of the composite image IM5 obtained by combining the maximum brightness image IM2 and the difference image IM4 is within a predetermined range. Therefore, the uneven defects or defects other than the uneven defects can be inspected together in one scan.
 また、本実施形態の塗装欠陥検査装置1及び塗装欠陥検査方法によれば、1回の検査処理にて処理できない程度の被検査面2を有する自動車ボディ5などに対しては、ロボット14によってパターン照射器11及び撮影器12を各被検査面の位置に移動させ、ロボット14により移動した被検査面2の位置と、コンピュータ13により判定された欠陥の位置とを入力して自動車ボディ5における欠陥の位置を特定し、当該特定された欠陥の位置を表示器6に表示するので、修正が必要な部位を即座に特定することができる。 Moreover, according to the coating defect inspection apparatus 1 and the coating defect inspection method of the present embodiment, the robot 14 has a pattern for the automobile body 5 or the like having the inspection surface 2 which can not be processed by one inspection process. Irradiator 11 and imaging device 12 are moved to the position of each inspection surface, and the position of inspection surface 2 moved by robot 14 and the position of the defect determined by computer 13 are input to detect defects in car body 5 Since the position of the identified defect is indicated on the display 6, the position of the identified defect can be immediately identified.
 上記コンピュータ13は本発明に係る画像処理器、判定器及び制御器に相当し、上記自動車ボディ5は本発明に係る被検査体に相当する。 The computer 13 corresponds to an image processor, a determiner, and a controller according to the present invention, and the vehicle body 5 corresponds to an object to be inspected according to the present invention.
1…塗装欠陥検査装置
 11…パターン照射器
 11a…コントローラ
 12…撮影器
 13…コンピュータ(画像処理器,判定器,制御器)
 14…ロボット
 14a…コントローラ
2…被検査面
3…明暗パターン(パターン照射器)
 3a…明部
 3b…暗部
4…明暗パターン(被検査面)
5…自動車ボディ
 51…フード
 52…ルーフ
6…表示器
DESCRIPTION OF SYMBOLS 1 ... Painting defect inspection apparatus 11 ... Pattern irradiator 11a ... Controller 12 ... Imaging device 13 ... Computer (image processor, judgment device, controller)
14: Robot 14a: Controller 2: Inspection surface 3: Light and dark pattern (pattern irradiator)
3a ... bright part 3b ... dark part 4 ... light and dark pattern (surface to be inspected)
5 ... car body 51 ... hood 52 ... roof 6 ... indicator

Claims (8)

  1.  照射方向に対して垂直な面内において周期的に明部と暗部とが交互に現れる明暗パターンを被検査面に照射するとともに、前記明暗パターンを前記明部と前記暗部の整列方向に、一対の明部及び暗部の1周期以上、移動させるパターン照射器と、
     前記パターン照射器により前記被検査面に映る明暗パターンの画像を、前記明暗パターンの移動に合わせて、複数撮影する撮影器と、
     前記撮影器により撮影された複数の画像から各位置の最大明度を抽出して最大明度画像を生成する画像処理器と、
     前記最大明度画像の各位置の明度が、所定範囲にあるか否かを判定する判定器と、を備える塗装欠陥検査装置。
    The test surface is irradiated with a light and dark pattern in which light areas and dark areas alternately appear alternately in a plane perpendicular to the irradiation direction, and the light and dark patterns are arranged in the alignment direction of the light area and the dark area. A pattern irradiator that is moved for one or more cycles of light and dark areas;
    An imaging device for capturing a plurality of images of light and dark patterns reflected on the surface to be inspected by the pattern irradiator according to movement of the light and dark patterns;
    An image processor that extracts the maximum brightness of each position from the plurality of images captured by the imaging device to generate a maximum brightness image;
    And a determinator for determining whether the lightness of each position of the maximum lightness image is within a predetermined range.
  2.  前記判定器は、
     前記最大明度画像の各位置の明度が、所定範囲より小さい場合には、その位置に染み欠陥があると判定する請求項1に記載の塗装欠陥検査装置。
    The judgment unit is
    The coating defect inspection apparatus according to claim 1, wherein if the lightness of each position of the maximum lightness image is smaller than a predetermined range, it is determined that a stain defect is present at the position.
  3.  前記判定器は、
     前記最大明度画像の各位置の明度が、所定範囲より大きい場合には、その位置にメタル斑欠陥又は金属面までの貫通欠陥があると判定する請求項1又は2に記載の塗装欠陥検査装置。
    The judgment unit is
    The coating defect inspection apparatus according to claim 1 or 2, wherein if the brightness of each position of the maximum brightness image is larger than a predetermined range, it is determined that there is a metal spot defect or a penetration defect up to the metal surface at that position.
  4.  前記画像処理器は、
      前記撮影器により撮影された複数の画像から各位置の最小明度を抽出して最小明度画像を生成し、
      前記最大明度画像と前記最小明度画像との各位置における明度の差分を抽出して差分画像を生成し、
     前記判定器は、
      前記差分画像の各位置の明度が、所定値より小さい場合には、その位置に凹凸欠陥があると判定する請求項1~3のいずれか一項に記載の塗装欠陥検査装置。
    The image processor is
    Extracting the minimum lightness of each position from the plurality of images photographed by the photographing device to generate a minimum lightness image;
    Extracting a difference in lightness at each position between the maximum lightness image and the minimum lightness image to generate a difference image;
    The judgment unit is
    The paint defect inspection device according to any one of claims 1 to 3, wherein it is determined that there is an uneven defect at the position if the brightness of each position of the difference image is smaller than a predetermined value.
  5.  前記画像処理器は、
      前記撮影器により撮影された複数の画像から各位置の最大明度を抽出して最大明度画像を生成し、
      前記撮影器により撮影された複数の画像から各位置の最小明度を抽出して最小明度画像を生成し、
      前記最大明度画像と前記最小明度画像との各位置における明度の差分を抽出して差分画像を生成し、
      前記最大明度画像と前記差分画像とを合成処理して合成画像を生成し、
     前記判定器は、
      前記合成画像の各位置の明度が、所定範囲にあるか否かを判定し、前記所定範囲にない場合には、凹凸欠陥又は凹凸欠陥以外の欠陥があると判定する請求項1に記載の塗装欠陥検査装置。
    The image processor is
    The maximum brightness of each position is extracted from the plurality of images captured by the imaging device to generate a maximum brightness image;
    Extracting the minimum lightness of each position from the plurality of images photographed by the photographing device to generate a minimum lightness image;
    Extracting a difference in lightness at each position between the maximum lightness image and the minimum lightness image to generate a difference image;
    Combining the maximum brightness image and the difference image to generate a combined image;
    The judgment unit is
    It is determined whether the brightness of each position of the composite image is within a predetermined range, and if it is not within the predetermined range, it is determined that there is an uneven defect or a defect other than the uneven defect. Defect inspection device.
  6.  複数の被検査面を有する被検査体に対し、前記パターン照射器及び前記撮影器を各被検査面の位置に移動するロボットと、
     前記ロボットにより移動した被検査面の位置と、前記判定器により判定された欠陥の位置とを入力して前記被検査体における前記欠陥の位置を特定する制御器と、
     前記制御器により特定された前記欠陥の位置を表示する表示器と、をさらに備える請求項1~5のいずれか一項に記載の塗装欠陥検査装置。
    A robot that moves the pattern irradiator and the imaging device to the positions of the respective inspection surfaces with respect to the inspection object having a plurality of inspection surfaces;
    A controller that inputs the position of the surface to be inspected moved by the robot and the position of the defect determined by the determiner to specify the position of the defect on the object;
    The paint defect inspection apparatus according to any one of claims 1 to 5, further comprising: a display for displaying the position of the defect specified by the controller.
  7.  照射方向に対して垂直な面内において周期的に明部と暗部とが交互に現れる明暗パターンを被検査面に照射するとともに、前記明暗パターンを前記明部と前記暗部の整列方向に、一対の明部及び暗部の1周期以上、移動させ、
     前記被検査面に映る明暗パターンの画像を、前記明暗パターンの移動に合わせて、複数撮影し、
     撮影された複数の画像から各位置の最大明度を抽出して最大明度画像を生成し、
     前記最大明度画像の各位置の明度が所定範囲にない場合には、その位置に前記被検査面の凹凸欠陥以外の欠陥であって塗膜内部の欠陥があると判定する塗装欠陥検査方法。
    The test surface is irradiated with a light and dark pattern in which light areas and dark areas alternately appear alternately in a plane perpendicular to the irradiation direction, and the light and dark patterns are arranged in the alignment direction of the light area and the dark area. Move one or more cycles of bright and dark areas,
    A plurality of images of light and dark patterns reflected on the surface to be inspected, in accordance with movement of the light and dark patterns;
    The maximum brightness of each position is extracted from a plurality of photographed images to generate a maximum brightness image,
    The coating defect inspection method which determines that it is defects other than the uneven | corrugated defect of the said to-be-inspected surface, and the defect inside a coating film exists in the position, when the brightness of each position of the said maximum brightness image is not in a predetermined range.
  8.  前記塗膜内部の欠陥は、染み欠陥、メタル斑欠陥又は金属面までの貫通欠陥のいずれかの欠陥である請求項7に記載の塗装欠陥検査方法。 The coating defect inspection method according to claim 7, wherein the defect inside the coating film is any one of a stain defect, a metal spot defect or a penetration defect to a metal surface.
PCT/JP2017/023725 2017-06-28 2017-06-28 Painting defect inspection device and painting defect inspection method WO2019003337A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/023725 WO2019003337A1 (en) 2017-06-28 2017-06-28 Painting defect inspection device and painting defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/023725 WO2019003337A1 (en) 2017-06-28 2017-06-28 Painting defect inspection device and painting defect inspection method

Publications (1)

Publication Number Publication Date
WO2019003337A1 true WO2019003337A1 (en) 2019-01-03

Family

ID=64741256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023725 WO2019003337A1 (en) 2017-06-28 2017-06-28 Painting defect inspection device and painting defect inspection method

Country Status (1)

Country Link
WO (1) WO2019003337A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109838A (en) * 1996-06-25 1998-01-16 Matsushita Electric Works Ltd Processing method of image and detecting method of defect of surface of substance
JP2000241360A (en) * 1999-02-25 2000-09-08 Nisshin Steel Co Ltd Method and apparatus for inspecting surface of metal strip panel
JP2001266121A (en) * 2000-03-16 2001-09-28 Tomoe Corp Method for diagnosing deterioration of coating on coated steel product
JP2011226814A (en) * 2010-04-15 2011-11-10 Fujitsu Ltd Surface defect inspection device and surface defect inspection method
JP2014002125A (en) * 2012-06-21 2014-01-09 Fujitsu Ltd Inspection method and inspection device
JP3197766U (en) * 2015-03-17 2015-06-04 バイスリープロジェクツ株式会社 Surface inspection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109838A (en) * 1996-06-25 1998-01-16 Matsushita Electric Works Ltd Processing method of image and detecting method of defect of surface of substance
JP2000241360A (en) * 1999-02-25 2000-09-08 Nisshin Steel Co Ltd Method and apparatus for inspecting surface of metal strip panel
JP2001266121A (en) * 2000-03-16 2001-09-28 Tomoe Corp Method for diagnosing deterioration of coating on coated steel product
JP2011226814A (en) * 2010-04-15 2011-11-10 Fujitsu Ltd Surface defect inspection device and surface defect inspection method
JP2014002125A (en) * 2012-06-21 2014-01-09 Fujitsu Ltd Inspection method and inspection device
JP3197766U (en) * 2015-03-17 2015-06-04 バイスリープロジェクツ株式会社 Surface inspection device

Similar Documents

Publication Publication Date Title
JP6433268B2 (en) Inspection system and inspection method
KR101849962B1 (en) Overlay measurement method, device and display device
US20130057678A1 (en) Inspection system and method of defect detection on specular surfaces
US8050486B2 (en) System and method for identifying a feature of a workpiece
WO2015152307A1 (en) Inspection system and inspection method
JP6264132B2 (en) Inspection device and inspection method for painted surface of vehicle body
CN110231352B (en) Image inspection apparatus, image inspection method, and image inspection recording medium
JP2014066657A (en) Vehicle body surface inspection device and surface inspection method
EP3867866A1 (en) Automated inspection for sheet parts of arbitrary shape from manufactured film
JP2002148195A (en) Surface inspection apparatus and surface inspection method
JP2005148010A (en) Method and device for detecting shape and darkness of analyte
US10410336B2 (en) Inspection device, storage medium, and program
JP7098111B2 (en) Surface inspection equipment and surface inspection method
JP7003502B2 (en) Inspection equipment
JP2021139817A (en) Workpiece surface inspection device, surface inspection system, surface inspection method, and program
WO2019003337A1 (en) Painting defect inspection device and painting defect inspection method
JP7003669B2 (en) Surface inspection equipment and surface inspection method
JP3661466B2 (en) Coating unevenness inspection apparatus and method
JP2020118572A (en) Surface defect inspection device and surface defect inspection method
JP2020038091A (en) Inspection device
JP2001280939A (en) Method of evaluating abnormal condition of object surface
WO2023120243A1 (en) Surface scanning device, surface scanning method, automatic deficiency-repairing system, and program
KR20190139604A (en) Apparatus and method for surface inspection
JP2638121B2 (en) Surface defect inspection equipment
CN214749855U (en) Defect detection device for mirror-like object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP